.W woodward

Combined Protection and Control System
CSP2-F Feeder Protection
CSP2-L Cable-/Line Differential Protection
CSP2-T Transformer Differential Protection

Content

1 Introduction 3
2 Central and intelligent Protection and Control system CSP2 4
2.1 Capabilities and functions 4
2.2 Applications 5
2.3 Design 7
2.4 Protection functions 12
2.5 Control and Monitoring 12
2.6 Measuring functions 14
2.7 Statistical measuring values 15
2.8 Data recording 16
2.8.1 Event recorder 16
2.8.2 Fault recorder 16
2.8.3 Disturbance recorder (optional) 16
3 Display/Operating unit CMP 1 17
3.1 Operating the CMP 1 17
3.2 Operating elements of the CMP1 18
3.3 Functions of the operating elements 18
3.4 The operating modes 19
3.5 Control of switching devices 19
3.6 Programming \& Parameter Setting 20
4 Application software SL-SOFT 21
4.1 Scope of functions and performance 21
5 Communication 23
5.1 Communication with SCADA system 23
5.2 CSP2- multiple device communication 23
6 Technical Data 25
6.1 Auxiliary voltage 25
6.1.1 Power supply CMP1 25
6.1.2 Power supply CSP2 25
6.2 Measuring inputs 26
6.2.1 Current measuring 26
6.2.2 Voltage measuring 26
6.2.3 Measuring precision 27
6.3 Digital Inputs 27
6.4 Outputs 28
6.4.1 Power outputs 28
6.4.2 Signal relays 28
6.5 Communication interfaces of CSP2 29
6.6 Standards 31
6.6.1 General regulations 31
6.6.2 High-voltage tests (EN 60255-6 [11.94]) 31
6.6.3 EMC Immunity tests 31
6.6.4 EMC Emission tests 32
6.6.5 Mechanical tests 32
6.6.6 Protection level 32
6.6.7 Climatic conditions 32
6.6.8 Environmental tests 33
6.7 Dimensions and weights 33
7 Order form 34

1 Introduction

The top-quality digital protection and control system of the SYSTEM LINE fulfils all demands and needs for protection and control at medium-voltage level.

The combined protection and control system CSP2 is a feeder management system for the medium-voltage requirements. The system complies with state of the art modern digital protection technology.

Development work focuses primarily on the following goals:

- Userfriendly operation,
- Flexibility,
- Ease of integration with the switchboards,
- Freely selectable functions,
- A wide range of applications and
- Standardised communication.
\Rightarrow Cost optimisation at medium-voltage level!

The systems comprise of two separate devices:

- the base unit CSP2 and
- the operating/display unit CMP1:

All protection and control functions are completely integrated into the self-operating CSP2. The base unit is installed into the low-voltage niche (mounted on mounting plate). The wide-range of power parts also allows connection to all auxiliary voltage equipment commonly used in MV systems.
\Rightarrow One system for all switchgears and applications!
The compact operating/display unit CMP1 is decentralised and installed in the front door of the circuit breaker field. The simple, menu-guided operation, the large display with illuminated background as well as the ergonomically designed surface ensures that the operator of the system receives fast and comprehensive information at all times. A single bus/line has replaced the conventional cable

Figure 1.1: CSP2 as field management system

2 Central and intelligent Protection and Control system CSP2

The self-operating base module CSP2 offers complete protection and control functions.

Figure 2.1: Terminals and interfaces of the CSP2-F5

2.1 Capabilities and functions

The base unit CSP2 has the following special features:

- Compact design, with a robust synthetic housing in accordance with protection class IP50,
- Wide ranging power supply (AC and DC),
- Wide ranging power supply for digital inputs (AC and DC),
- Wide ranging power supply for control (DC),
- High/low voltage levels for digital inputs,
- A wide range of protection and control functions,
- Flexible management of inputs and outputs,
- Galvanically decoupled power outputs,
- Stand-alone operating mode of CSP2,
- Power outputs directly or indirectly driving the switch elements /circuit breakers, isolators, earth switches),
- Communication with SCADA systems via various protocol types and optional interfaces (electrical or fibre-optic),
- Various communication interfaces: CAN-Bus for communication to multiple devices and RS232 for connection to a PC/laptop.
- Highly efficient fault recording function (extended memory is optional, non-volatile.)
- Comprehensive self-monitoring (hardware and soffware),
- Two power categories of CSP2 as standard and
- Maintenance free.

2.2 Applications

The CSP2 is to be provided for various applications, each with two different power categories as standard version.

- CSP2-F3/L: This reasonably priced improved systems starter are predominantly used for simple feeder protection and is also used for the control of a circiut breaker, as well as two other switching devices, (disconnector and earth isolator). It is possible to recognize up to 5 switchgears.

Figure 2.2: Application example CSP2-F3 or CSP2-L

- Further applications of the CSP2-F3/L include meshed electrical grids for selective direction protection and for the control of other switching devices.
- CSP2-F5: This highly performing feeder management system is able to recognize and control up to five switching devices. According to higher requirements the CSP2-F5 provides a larger number of digital inputs and signal relays. The number of measuring inputs is the same as with the CSP2-F3.

Figure 2.3: Application example CSP2-F5

- CSP2-T25: This device is used for complexe protection and control in the application field of transformer differential protection.
The CSP2-T25 is especially developed for twowinding transformers and is able to switch up to 5 switchgears.

Figure 2.4: Application example CSP2-F3 or CSP2-L
All CSP2 have a highly efficient disturbance recorder function. Optionally, it is possible to store the disturbance records fail-safe on an extended memory.

Figure 2.5: CSP2-F Feeder protection

Figure 2.7: CSP2-T25 transformer differential protection and control

2.3 Design

The compact CSP2 incorporates all components necessary for:

- Measured value recording and evaluation,
- Signal and command output,
- Entry and evaluation of binary signals,
- Data transmission and storage and
- Auxiliary power supply.

The housing of the CSP2 housing is made of very robust synthetic material, which will withstand environmental perturbations such as vibration, shock, dirt, etc.

The upper circuit board tightly seals the housing, and at the same time, serves as a connection. Mounted on this board are all connections for the transformers, digital inputs, signal relays, as well as the control outputs. Below the cover of this board are the internal current and voltage transformers, opto-couplers and relays.

The housing is designed in such a way to guarantee a specific protection (i.e. Protection Classifiation IP50).

The base unit CSP2 is fitted with internal measuring transformers, which are supplied with analogous inputs signals from the main current and voltage transformers. The internal measuring transformers are galvanically decoupled, analogously filtered and finally transmitted to the analog/digital converter.

The CSP2 is equipped with a 24 -Bit signal processor for the protection functions and a high-power 16 -Bit controller for processing the control and communication functions. Thanks to the digital signal processing, the influences of higher frequency compensation processes and DC components are suppressed.

Figure 2.8: Connection diagram CSP2-F5

Figure 2.9: Connection diagram CSP2-F3

Figure 2.10: Connection diagram CSP2-L

Figure 2.11: Connection diagram CSP2-T

2.4 Protection functions

The combined protection and control system CSP2 is equipped with a great number of protection functions which cover nearly all protection tasks in the mediumvoltage range.

All protection functions are fully available to the operator and can be activated as desired. Parameter setting of the protection functions can either be done by using the operating/display unit CMP1 or by PC/Laptop via the operating software SL-SOFT.

The CSP2 provides four protection parameter sets. Each set includes all the available protection functions. The protection parameter sets can be switched over in the following way:

- Local parameter setting via CMP1
- Through digital input or
- By SCADA system (Datatelegram of the available protocol type).

To connect external protection devices for monitoring and controlling, the CSP2 is equipped with multiple functions.

2.5 Control and Monitoring

For control and monitoring tasks the CSP2/CMP1 system is equipped with the following functions:

- Graphic display of the status of the switching devices on CMP1,
- the switching devices can be controlled via the operating keys, digital inputs or a SCADA system via the serial interface,
- direct control of the circuit breaker coils,
- direct or indirect control of motor-drives,
- interlocking of different switching devices at feeder level,
- interlocking of different switching devices at station level (e.g. by SCADA system) and
- protocolling of switching operations and changes of switch positions (event recorder).

The switching device positions are recorded by CSP2 via two opto-decoupled digital inputs. One is for "OFF position«, the other is for » ON position«. The position signals of the various switching devices (up to 5) are shown on the LC graphic display of the CMP1 in the form of a single line diagram.
Fault and differential positions are shown by according symbols of the switching devices.

The single line diagram is configurated at the factory in accordance with customer requirements.

In addition to status recognition it is possible to record, protocol and transmit external protection signals, monitoring messages, external control commands and interlocking functions with varying functionalities via the configurable digital inputs.

In addition to the functional assignments, it is also possible to set parameters for rebouncing time and signal logics for each input.

By using signal relays equipped with potential-free contacts it is possible to transmit binary signals for protection and monitoring le.g. CB failure, backward interlocking).
$C B=$ Circuit Breaker

No.	Control functions	CSP2-F3	CSP2-F5	CSP2-L1	CSP2-L2	CSP2-T25
1	No. of controllable switching devices	3	5	3	3	5
2	No. of switching devices that can be shown on the graphic display	5	5	5	5	5
3	No. of power outputs for control of circiut breakers (Contol coils of circuit breakers)	2	3 (4)	2	2	4
4	No. of power outputs for control of motor-driven switching devices (i.e earthing isolators and disconectors)	2	4 (3)	2	2	3
5	No. of signal relays	6	10	6	6	6
6	No. of configurable digital inputs	22	26	22	22	26
7	Command outputs with defined switching and operation times	\bullet	\bullet	\bullet	\bullet	\bullet
No.	Supervision functions	CSP2-F3	CSP2-F5	CSP2-L1	CSP2-L2	CSP2-T25
1	Faul/differential position	\bullet	-	\bullet	\bullet	\bullet
2	Withdrawal of the circuit breaker	\bullet	\bullet	\bullet	\bullet	\bullet
3	Spring charged	\bullet	\bullet	\bullet	\bullet	\bullet
4	Programmable interlocking conditions at feeder level	\bullet	\bullet	\bullet	\bullet	\bullet
5	Interlocking of switching devices at station level by SCADA system	\bullet	\bullet	\bullet	\bullet	\bullet
No.	Progammable logic functions	CSP2-F3	CSP2-F5	CSP2-L1	CSP2-L2	CSP2-T25
1	32 programmable logic equations	\bullet	\bullet	\bullet	\bullet	\bullet
2	32 input variables per logic function	\bullet	\bullet	-	\bullet	\bullet
3	1 time element per logic output	\bullet	\bullet	\bullet	\bullet	\bullet

Table 2.2: Outtine CSP2 control, monitoring and programmable logic functions

2.6 Measuring functions

In addition to the recorded measuring values for both current and voltage, further measuring values such as active and reactive power etc. are calculated and displayed as primary values. The periodically measured values can be read
by the CMP1, a PC/notebook, or by SCADA system.
The measuring error rate, when in normal operation is less than 1%, and with a short-circuit, up to $40 \times I_{N}$, it is less than 2.5%.

Measure value							Available with CSP2-			
				Reco	ding					
Measuring value (displayed)	Description	Measuring range	Unit		$\begin{aligned} & \bar{\delta} \\ & \frac{\hat{b}}{3} \\ & \frac{3}{0} \end{aligned}$	Remark	L	F3	F5	T25
[L1 (A)	Phase currents		A			Momentary rms values	\bullet	-	\bullet	\bullet
IL2 (A)			A							
\|L3 (A)			A							
[LI (B)			A							
\|L2 (B)			A							
IL3 (B)			A							
le	Earth current		A	-	-	Momentary rms values	-	-	\bullet	\bullet
12	Negative phase sequence current $\left(I_{2}\right)$		A		\bullet	Momentary rms values of negative sequence system	-	-	\bullet	-
ULI	Phase-to-neutral voltage (LN)		V	\bullet	-	Momentary rms values	\bullet	\bullet	\bullet	\bullet
UL2			V							
UL3			V							
U12	Phase-to-phase voltage (LL)		V	\bullet	\bullet	Momentary rms values	\bullet	\bullet	\bullet	\bullet
U23			V							
U31			V							
Ue	Residual voltage		V	\bullet	\bullet	Momentary rms values	\bullet	-	\bullet	\bullet
f	Frequency		Hz	-	\bullet	Momentary values	\bullet	\bullet	\bullet	\bullet
P	Active power		kW	-	\bullet	Momentary rms values	-	\bullet	\bullet	*
Q	Reactive power		kvar	-	\bullet	Momentary rms values		\bullet	\bullet	*
$\cos \varphi$	Power factor	-1...+1	-	-	\bullet	Momentary values	-	\bullet	\bullet	*
Wp+	Energy active part - positive		kWh	-	\bullet	Counting value	-	\bullet	\bullet	*
Wp-	Energy active part - negative		kvarh	-	\bullet	Counting value	-	\bullet	\bullet	*
Wq+	Energy reactive part - positive		kWh	-	\bullet	Counting value	-	\bullet	\bullet	*
Wa-	Energy reactive part - negative		kvarh	-	\bullet	Counting value	-	\bullet	\bullet	*
ϑ	Thermal capacity	0...200\%	\%		\bullet	Momentary value	\bullet	-	\bullet	\bullet
†	Time until protection trip of the function $\vartheta>$		s		\bullet	Momentary value	\bullet	-	-	\bullet
$\vartheta 1$	Temp.- measurement: analog		${ }^{\circ} \mathrm{C} / \mathrm{F}$	\bullet		Momentary value	-	-	-	\bullet
७2			${ }^{\circ} \mathrm{C} / \mathrm{F}$	\bullet			-	-	-	\bullet
${ }_{1 d} \mathrm{LI}$	Differential current		A		\bullet	Momentary rms value	\bullet	-	-	\bullet
${ }_{\text {d }} \mathrm{d}^{1} 2$			A		\bullet		\bullet	-	-	\bullet
${ }_{\text {l }}^{\text {d }}$ L 3			A		\bullet		\bullet			\bullet
$\mathrm{I}_{\mathrm{s}} \mathrm{L}$	Stabilisation currents		A		\bullet	Momentary rms value	\bullet	-	-	\bullet
${ }_{\text {s }} \mathrm{L}^{\text {2 }}$			A		\bullet		\bullet	-	-	\bullet
${ }_{\text {s }} \mathrm{L} 3$			A		\bullet		\bullet	-		\bullet
mL1	Transient stabilisation factor		-		\bullet	Momentary values	\bullet	-	-	-
mL2			-		\bullet		\bullet	-	-	-
mL3			-		\bullet		\bullet	-	-	-

Table 2.3: Outline CSP2 measuring values

2.7 Statistical measuring values

The CSP2 not only records measuring values but also offers statistical data. Maximum and average values as well as counting values can be retrieved by the CSP2.

The maximum and average values are to be generated within a variable time window. The counting values such as operating hours or switching cycle counter are resetable.

Statistical Data				Available with CSP2-			
Statistical value	Description	Unit	Calculation (Actualisation)	L	F3	F5	T25
1.17 max	Max. value of current in phase Ll	A		\bullet	\bullet	\bullet	\bullet
112 max	Max. value of current value in phase in L2	A		\bullet	\bullet	\bullet	\bullet
113 max	Max. value of current value in phase in L3	A		\bullet	\bullet	\bullet	\bullet
LLl avg	Mean value of current value in phase L1	A		\bullet	\bullet	\bullet	\bullet
\|l2avg	Mean value of current value in phase L2	A		\bullet	\bullet	\bullet	\bullet
113 avg	Mean value of current value in phase L3	A		\bullet	\bullet	\bullet	\bullet
Ullmax	Max. value of phase-to-neutral voltage L1-N	V		\bullet	\bullet	\bullet	\bullet
UL2max	Max. value of phase -to-neutral voltage L2-N	V		\bullet	\bullet	\bullet	\bullet
Ul3max	Max. value of phase -to-neutral voltage L3-N	V		\bullet	\bullet	\bullet	\bullet
ULlavg	Mean value of phase to-neutral voltage L1-N	V		\bullet	\bullet	\bullet	\bullet
UL2avg	Mean value of phase to-neutral voltage L2-N	V		\bullet	\bullet	\bullet	\bullet
Ul3avg	Mean value of phase to-neutral voltage L3-N	V		\bullet	\bullet	\bullet	\bullet
U12max	Max. value of phase to-phase voltage L1-L2	V		\bullet	\bullet	\bullet	\bullet
U23max	Max. value of phase -to-phase L2-L3	V		\bullet	\bullet	\bullet	\bullet
U31max	Max. value of phase -to-phase L3-L1	V		\bullet	\bullet	\bullet	\bullet
U1 2avg	Mean value of phase -to-phase L1-L2	V		\bullet	\bullet	\bullet	\bullet
U23avg	Mean value of phase to-phase L2-L3	V	cyclically each „ $\Delta t^{\prime \prime}$	\bullet	\bullet	-	\bullet
U3lavg	Mean value of phase -to-phase $\mathrm{L3}-\mathrm{Ll}$	V	and	\bullet	\bullet	\bullet	\bullet
$f_{\text {max }}$	Max. value of frequency	Hz	at "moment of	\bullet	\bullet	-	\bullet
favg	Mean value of frequency	Hz	synchronization"	\bullet	\bullet	\bullet	\bullet
Pmax +	Max. value of pos. active power	kW		-	\bullet	-	*
Pmax	Max. value of neg. active power	kW		-	\bullet	\bullet	*
Pavg +	Mean value of pos. active power	kW		-	\bullet	\bullet	*
Pavg -	Mean value of neg. active power	kW		-	\bullet	\bullet	*
Qmax +	Max. value of pos. reactive power	kvar		-	\bullet	\bullet	*
Qmax	Max. value of neg. reactive power	kvar		-	\bullet	-	*
Qavg +	Mean value of pos. reactive power	kvar		-	\bullet	\bullet	*
Qavg -	Mean value of neg. reactive power	kvar		-	\bullet	-	*
$1_{d} 11$ max	Max. value of differential current in phase L1	A		\bullet	-	-	\bullet
$1_{d} 12$ max	Max. value of differential current in phase L2	A		\bullet	-	-	\bullet
1_{d} L3max	Max. value of differential current in phase L3	A		\bullet	-	-	\bullet
$1_{s} 11$ max	Max. value of stabilisation current in phase L1	A		\bullet	-	-	\bullet
1 L L2 max	Max. value of stabilisation current in phase L2	A		\bullet	-	-	\bullet
$1_{s} 13$ max	Max. value of stabilisation current in phase L3	A		\bullet	-	-	\bullet
mLImax	Max. value of harmonic stabilisation factor in phase L1	-		\bullet	-	-	-
mL2max	Max. value of harmonic stabilisation factor in phase L2	-		\bullet	-	-	-
ml3max	Max. value of harmonic stabilisation factor in phase L3	-		\bullet	-	-	

[^0]
2.8 Data recording

The CSP2 offers various protocolling and recording methods for events, fault values and fault records. Such information is stored in the CSP2 and can be retrieved by the CMP1, a PC/notebook or the serial interface to a SCADA system. In this way, the operator has at his disposal all the necessary data for fault analysis and fault elimination.

2.8.1 Event recorder

The event recorder protocols and stores the last 50 events in the CSP2. The recorded messages are saved in the fail-safe, non-volatile memory of the device, and are given consecutive numbers and time stamp. Each event is stored with date, time, cause, and information with a resolution of 5 ms . This includes all messages which are related to protection, control, the configurable digital inputs, parameter setting and internal self-supervision of the device. In case of a fault, the protection messages are additionally marked with a clear and definite failure case number.

2.8.2 Fault recorder

The fault recorder stores the last 5 faults fail-safe in the CSP2, in accordance with the failure case number. In addition to trip events, all effective measuring values are stored and displayed as primary values. Therefore if the CSP2 is damaged, evaluation and analysis at a later date is possible due to the protection messages, which are stored in the event recorder.

2.8.3 Disturbance recorder (optional)

To allow evaluation of the mains interferences, the analogous and digital information is stored in the disturbance recorder. Up to 8 digitalized measuring values (phase currents, earth current, voltages, residual voltage) are recorded. At the same time binary input and output signals can also be recorded. The maximum recording time for the CSP2-F is 10000 ms and for the CSP2-L 3500 ms . A pre- and postrunning time can be adjusted in accordance to the trigger event. The measured values are recorded in momentary values.
The capacity to save more disturbance recorder data is obtainable when such information is stored in a nonvolatile memory.
Optionally an increased non-volatile memory is available, which allows more storage for disturbance recorder data

3 Display/Operating unit CMP 1

The CMP1 is easy to operate and ergonomically designed. The CMP1 is installed in the front door of the medium-voltage compartment as a separate operating and control unit (MMI). Generally the display shows the phase current values and the single line diagram of the feeder.
The required communication with the base unit CSP2 is realised by a CAN-fieldbus. A single CAN-cable creates the connection to the base unit CSP2 and therefore replaces the conventional cable tree. This CAN-cable can be easily joined to the auxiliary voltage supply cable.

Figure 3.1: CMP1
The most important features of the CMP1 include:

- Flat, compact design,
- Wide ranging power supply,
- Large, automatic LC graphic display with illuminated background (128×240 Pixel):
- Representation of the configurated single line diagram,
- Display of switch positions, measuring values and pop-up messages,
- Protocolling of events including time stamps,
- Protocolling of fault events including fault values as effective values,
- Extensive commissioning support and
- various test functions.
- Front operating panel as per protection class IP54,
- Multi-coloured function keys for menu guidance, control and Danger-OFF function,
- Two key switches for fixing the switching authorizations:
- Local/remote operation mode and
- Normal operation/Parameter setting mode.
- 11 multi-coloured LEDs (configurable),
- Integrated signal relay for system fault message,
- CAN interface for communication with CSP2,
- Two RS232 interfaces for parameter setting and the evaluation of data via PC/laptop.

3.1 Operating the CMP 1

The control of the medium-voltage feeder and parameter setting can be carried out by the CMP 1. All inputting of information can be made with the front operating panel. Check-back signals and the status of the devices are shown on the large graphic display, which has a illuminated background. The switch positions are shown graphically, messages as texts and parameters/measured values are in table form.

3.2 Operating elements of the CMP1

Figure 3.2: Operating elements of the CMP1

3.3 Functions of the operating elements

Figure 3.3: Functions of operating elements

3.4 The operating modes

Two key switches allow for various switch authorisations to be set:

- MODUS 1: Local operating/control,
- MODUS 2: Local operating/parameter setting and
- MODUS 3: Remote control.

Depending on their position, the switches will either allow the control or parameter setting of the CSP2.

Figure 3.4: The operating modes

3.5 Control of switching devices

The switching devices shown in the single line diagram can be selected and controlled by the operating unit CMP1. Every control command that is given, is first checked by the internal, as well as external pre-programmed interlocking logics before being carried out. Switching operations via the CMP1 can only be carried out in MODUS 1 - Local operating/control.

The positions of the switching devices, e.g. those of the circuit breakers, are recorded and monitored via it's auxiliary contacts. In this procedure the contact bounce of the auxiliary switch is suppressed via software.
The integrated control logic evaluates and processes the available switch positions as well as the readiness of the switch (spring charged). It then issues the "Off" or "ON« command, only if the pre-programmed interlocking conditions have been scrutinized.

The switch-on and switch-off coils of the circuit breaker and the motors-drives of the switching devices are to be controlled by the power outputs of the CSP2. By simple wire bridges there is a choice between

- direct control (with change of polarity) and
- indirect control (without change of polarity)
of motor driven switching devices.
A switch-on command will only take place if the switch-off position has been clearly signalled beforehand, and vice versa.
Switching actions are carried out sequentially. All control commands issued have a time limit. If the control commands are not carried out within a specified time, the CSP2 will give a fault signal. Monitoring of the check-back signals of the controlled switching device is carried out by the maximum control and reaction times of the switching device.

3.6 Programming \& Parameter Setting

In principle the data sets of the CSP2 consist of 2 files sets, which are device configured based in respect to their use:

- "sline.sl" and
- "parameter.csp"

On one hand, the file "sline.sl" contains data of the single line diagram which represents the feeder configuration and is to be displayed on the CMP1 graphically. On the other hand it contains data for the feeder interlocking conditions, which are fixed by the internal interlocking matrix.

With the file "parameter.csp", there are 4 parameter sets available for the protection functions and one parameter set for system parameters, which are attached to one parameter file. This parameter file is dependent on the type of device used, (e.g. CSP2-F3, CSP2-F5, CSP2-L or CSP2-T25) as well as the soffware version of the CSP2 device.

The storing of a parameter file in an non-compatible device will be hindered by a Plausibility Control.

There are 4 complete protection parameter sets available for the protection functions. One of the four parameter sets is always in operation. Each parameter set can be edited in the background and then stored. This action will not influence the actively operating protection and control functions. A modified parameter set, even if only one single parameter has been changed, will only become active upon confirmation of being stored (acknowledgement). At any time, the four protection parameter sets can be changed to the active set.

The system parameter set contains the initial configuration of the device such as, i.e. rated feeder data, control times, configuration of the inputs and outputs and communication.
The parameter setting of the CSP2 can either be done locally using the menu buttons on the front of the CMP1 or remotely by PC via the serial interface.

4 Application software SL-SOFT

Operating and Evaluation Programme/Functions

The SL-SOFT ("System-Line-Soff") allows evaluation and parameter setting of the CSP-2 device. The software will work with PC operating systems Windows 95/98/ME or Windows NT/2000/XP.
Communication takes place via the RS232 interface or via the internal CAN-BUS. It also allows operation with a mouse (Windows sufface) and has a userguided window technique. The SL-SOFT is easy to install, allows ONLINE or OFFLINE parameter setting and provides menu commands in both German or English.

4.1 Scope of functions and performance

- Available for all SYSTEM LINE CSP2 devices
- Online/Offline mode
- Integrated change of languages,(German/English)
- Selection of devices to enable single or multiple device communication.
- Easy to use window technology to obtain operating and status performance information
- Menu-led surface
- Evaluation of all available data
- Cyclical reading of measured values
- Testing of inputs and outputs
- Parameter setting of all device-specific data
- Plausibility controls
- Editing, copying or erasing data sets
- Preparation of data set in offline mode
- Archiving of data sets
- Printing out of data sets with different print options
- Further working out of measured values (recording, displaying),
- Commissioning support le.g. differential and stability values with CSP2-L and CSP2-T25), functioning support
- Initiation of test fault records, (manual triggering)
- Time synchronisation from the PC
- Programming the logic functions (SL-LOGIC)

Figure 4.1: Connection Example CSP2/CMP1 to PC via RS 232

Figure 4.2: Overview in online mode, (Example: Menu "Logic inputs")

Figure 4.3: Overview in offline mode (Example: Menu "Field settings" of system parameter set)

5 Communication

5.1 Communication with SCADA system

The CSP2 is a high value digital protection and control system for many applications within the medium-voltage range.

In addition to the numerous protection functions, the device offers measuring, supervision as well as the control of switching devices in one system.

All relevant information from the medium-voltage cells are processed by the CSP2/CMP1-System and are made available through a serial interface of a higher level SCADA system.

The SCADA system represents the central part of the system technology and takes over the station-level functions such as:

- Control,
- Interlocking,
- Measurement, Display,
- Reporting,
- Operating hours etc.

	Communication options of the CSP2/CMP 1 systems	
Protocol type	Physical connection (serial interface)	Use
IEC 60870-5-103	FO	SCADA communication
	RS485	
PROFIBUS DP	FO	SCADA communication
	RS485	
MODBUS RTU*	FO	SCADA communication
	RS485	
DNP 3.0*	FO	SCADA communication
	RS485	
CAN-BUS	CAN 1	Single communication CSP2 - CMP1
	CAN 1: Variant 1	Multi device communication: one CMP1 - several CSP2
	CAN 1: Variant 2	Multi device communication: several CMP1 - several CSP2

Table 5.1: Outline of communication options

* in preparation

5.2 CSP2- multiple device communication

Operation soffware for single and multiple device communication, (secondary communication level).

This additional evaluation is made possible by CSP2 through the use of the operating soffware SL-SOFT.

Due to a limited capacity to transfer information to the SCADA system, e.g. via IEC 60870-5-1 03 or PROFIBUS-DP), often a second information level is offered by the protection device producers to make an additional evaluation of the device possible.

The necessary communication path between the PC/Laptop and CMP/CSP System can either be carried out as a single or multiple device communication.

By connecting the PC/laptop to the internal CAN-BUS the user will have access to the second level communication.

The concept "multiple device communication" represents the connection of more CSP2/CMP1systems together over a communication bus. This makes the operating of each individual CSP2 device (slaves) from a central location possible (PC/CMP1).

In principle, there are two variations of the multiple device communication with CSP2/CMP 1-system possible, which offers the user adaptation flexibility.

To enable a variant of a multiple device communication, specific prerequisites must be fulfilled:

- the construction of the communication path,
- device configuration
in order to achieve a bus- communication.
During the phase of technical clarification as a part of the project engineering, in general the CSP2/CMP1systems will be configured and described prior to dispatch, so that the system can be installed and commissioned without problems.

Through the use of converters or modems, remote communication will be established. Therefore remote parameter setting of each individual CSP2/CMP1System is possible.

Figure 5. 1: Variants of CSP2 multi device communication

6 Technical Data

6.1 Auxiliary voltage

Fixed auxiliary voltages (EN 60255-6):
Direct circuit (DC): $24 \mathrm{~V}, 48 \mathrm{~V}, 60 \mathrm{~V}, 110 \mathrm{~V}, 220 \mathrm{~V}$
Alternating circuit (AC): $24 \mathrm{~V}, 100 \mathrm{~V}, 110 \mathrm{~V}, 230 \mathrm{~V}$
Furthermore the power supply covers the following commonly used auxiliary voltages (among others in the UK) with limited tolerance ranges:

240 V AC with tolerance range between $-20 \% /+15 \%$
254 V AC with tolerance range between $-20 \% /+10 \%$
The permissible voltage deviations refer to the fixed aux. voltages.

6.1.1 Power supply CMP1

Voltage ranges of power supply	Power consumption in idle state	Max. power consumption
$19-395 \mathrm{VDC}$	5 W	8 W
$22-280 \mathrm{VAC}$	5 VA	8 VA
(Frequency range: $40-70 \mathrm{~Hz}$)		

6.1.2 Power supply CSP2

Voltage supply CSP2-F/L/T

Voltage ranges of power supply	Power consumption in idle state	Max. power consumption
$19-395 \mathrm{~V} \mathrm{DC}$	19 W	27 W
$22-280 \mathrm{VAC}$	19 VA	27 VA
(Frequency range: $40-70 \mathrm{~Hz}$)		

Buffering the power supply
Minimum buffering time: $t \geq 50 \mathrm{~ms}$, to Ue $<$ Uemin,
When a power supply failure occurs, the function of the device is guaranteed for at least 50 milliseconds.

6.2 Measuring inputs

6.2.1 Current measuring

Quantity	
CSP2-F/-L:	$3 \times$ phase currents, $1 \times$ summing current (for earth, e.g. ring core type CT)
CSP2-T25:	$6 \times$ phase currents, $1 \times$ summing current (for earth, e.g. ring core type CT)
Measuring method:	conventional CT-technique (other sensors in preparation)
Rated currents	1 A and 5 A (configurable)
Measuring ranges	
Phase currents IL 1, IL2, IL3:	0 $\ldots 40 \times \mathrm{I}_{\mathrm{N}}$ (only AC),
Summing current le:	O $\ldots 20 \times \mathrm{I}_{\mathrm{N}}$ (only AC)
Power consumption in the power path:	$\leq 0,1 \mathrm{VA} \quad\left(\right.$ for $\left.I=I_{N}\right)$
Thermal load capacity	
Rated peak short circuit current:	$250 \times I_{N} \quad$ (dynamic half period of sine oscillation)
Rated shortterm current:	$100 \times I_{N} \quad(f o r l s)$
Permanent load capacity:	4×1 N

6.2.2 Voltage measuring

Quantity	$3 \times$ phase voltage (measuring LL or LN) $1 \times$ residual voltage
Measuring method:	conventional PT-technique (other sensors in preparation)
Rated voltages:	$0 \ldots, 110 \mathrm{~V} \mathrm{AC}$
Measuring ranges:	$\leq 0,1 \mathrm{VA} \quad$ (for $U=U_{N}$)
Power consumption:	$2 \times U_{\mathrm{N}}$
Thermal load capacity Permanent load capacity:	$50 \mathrm{~Hz} ; 60 \mathrm{~Hz} \quad$ (configurable)
Rated frequencies:	

6.2.3 Measuring precision

Phase current measuring (for rated frequency)
0,1 to $1,5 \times 1$ N:
$<0,5 \%$ of I_{N}
1,5 to $40 \times \mathrm{I}_{\mathrm{N}}$:
< $1,0 \%$ of measured value

Earth current measuring (for rated frequency)
0,05 to $0,5 \times 1_{\mathrm{N}}$: $\quad<5,0 \%$ of measured value
0,5 to $20 \times I_{\mathrm{N}}: \quad<2,5 \%$ of measured value
Voltage measuring (for rated frequency)
10 to $50 \mathrm{VAC}: \quad<1 \%$ of U_{N}
50 to 220 V AC: < 1% of Messwert
Frequency influence
Current/voltage measuring: $\quad<2,0 \% / \mathrm{Hz}$
Frequency measuring
40 bis $70 \mathrm{~Hz}: \quad<0,05 \%$ von f_{N}
Power measuring (active power) P:
$<3,0 \%$ of $P_{N} \quad$ (rated power P_{N} results from the field settings of „CT pri" and "VTpri"

6.3 Digital Inputs

Performance: Opto-decoupler inputs

Quantity
CSP2-F5/-T25: 26
CSP2-F3/-L: 22
Input voltage range: $\quad 0$ to 350 V DC $\quad 0$ to 270 V AC
Threshold value recognition
Low set range (code plug plugged in): $U_{,}=19$ to $110 \mathrm{VDC} / 19$ to 110 V AC

$U_{\text {Hein }} \geq \quad 62 \mathrm{VDC} / \quad 75 \mathrm{VAC}$
$U_{\text {How }} \leq 50 \mathrm{VDC} / \quad 60 \mathrm{VAC}$

```
Input current (depending on input voltage)
Low set range (code plug plugged in): }\mp@subsup{\textrm{I}}{\mathrm{ Low }}{}<<4\textrm{mA DC}/60\textrm{mA AC
High set range (code plug plugged out): Itigh < Itan ( mA DC / 14 mA AC
Rebouncing time (configurable): 10 ... }60000\textrm{ms}\mathrm{ (per digital input)
```


6.4 Outputs

6.4.1 Power outputs

Quantitiy of power outputs

Type of power putput	CSP2-F5	CSP2-F3	CSP2-L
Control coils (OL)	$3(4)$	2	2
Motor drive $(O M)$	$4(3)$	2	2

CSP2-F/-L

Power outputs $O M$ und $O L$ refer to following data Switching voltage (aux. control voltage):
Max. permissible permanent current:
Rated peak connection current:
Max. shutdown power (depends on switching voltage):

Current resistance:

CSP2-T25

Power outputs OM und OL refer to following data
Switching voltage (aux. control voltage):
Max. permissible permanent current:
Rated peak connection current:
Max. shutdown power (depends on switching voltage):
Current resistance:

18 to 280 V DC
17 A continiously
35 A (for 1 s)
17 A, with load shedding measures (idle current circuit)
short-circuit resistant

18 to 280 V DC
8 A continiously
20 A (for 1 s)
8 A, with load shedding measures (idle current circuit)
short-circuit resistant

6.4.2 Signal relays

Quantity

CSP2-F3/-L/-T25:	6
CSP2-F5:	10

Switching voltages:
Max. voltage (AC):

Max. voltage (DC):

$$
250 \mathrm{~V} \mathrm{AC}
$$

$$
220 \mathrm{~V} D C \quad \text { and: } I_{\max }=0,2 \mathrm{~A} \quad \text { ohmic }
$$

and: $I_{\max }=0,1 \mathrm{~A} \quad$ inductive charge: $\mathrm{L} / \mathrm{R}<50 \mathrm{~ms}$
Voltage (DC): $\quad 24$ V DC
and: $\left.\right|_{\max }=5,0 \mathrm{~A} \quad$ inductive charge
Switching power
Ohmic:
1250 VA AC / 120 W DC
Inductive: 500 VA AC / 75 W DC

Min. switching load: $\quad 18 \mathrm{~V} / 2 \mathrm{~mA}$
Max. rated current: 5 A
Switching current: $\quad 20 \mathrm{~A} \quad$ (for 16 ms)

Insulation: 4 kV

Contact material: $\quad \mathrm{AgNi}+\mathrm{Au}$
Contact service life: mechanical: $100 \times 10^{\wedge} 6$ operating cycles

6.5 Communication interfaces of CSP2

PC interface (in preparation)
Quantity: 1
Type: RS232
Term: X9
Use: device configuration by PC/Laptop (SL-SOFT)
Data transmission rate: 19200 Baud (fixed)
Physical connection:
Plug type:
Electrical
9 -pin SUB-D (plug)
Characteristic:
Galvanically decoupled by opto-coupler (2,5 kV)

System interfaces

Quantity:
Type:
Terms:
Verwendung:
Basis-Datenprotokoll:
Processor type:
Physical connection:
Plug type:
Characteristic:

2
CAN-BUS
XIO/CAN 1 (plug), X11/CAN 1 (socket)
CMP1/CSP2 communication and CSP2 multi device communication CAN specification V2.0 part B (extended frame)
Siemens 80 C 167 C on chip CAN-module
Electrical
9-pin SUB-D
Galvanically decoupled by opto-coupler ($2,5 \mathrm{kV}$)

Optional fibre optic (FO) interface (operating range ca. 2 km)

Quantity:
Type:
Terms:
Use:
Protocol types:
Data transmission rates:

Physical connection:
Plug type:
Phase type:
Quantity of fibres:
Core diameter:
Sleeve diameter:
Wave length:
max. dampening:
max. length of fibre:

1

Serial communication interface
X7(RxD)/X7(TxD) or X8(RxD)/X8(TxD)
CSP2-F/T: SCADA communication,
CSP2-L: SCI communication to opposite device (CSP2-L)
CSP2-F/T: IEC 60870-5-103, PROFIBUS DP or MODBUS RTU,
CSP2-L: Woodward- protocol (SCl-communication)
IEC 60870-5-103: 9600 oder 19200 Baud (configurable),
PROFIBUS DP: max. 5 MBaud (automatic recognition),
MODBUS RTU: 9600 oder 19200 Baud (configurable)
Fibre optic (FO)
BFOC 2,5 (ST ${ }^{\circledR}$)
Multimode/multi gradient fibre
2 fibres (Transmitt [T]/Receive [R])
62,5 $\mu \mathrm{m}$
$125,0 \mu \mathrm{~m}$
$820-860 \mathrm{~nm}$
10 dB (refered to total dampening)
ca. 2 km (depends on fibre dampening between stations)

Optional fibre optic (FO) interface (operating range ca. 20 km)

Quantity:
Type:
Terms:
Use:
Protocol type:
Physical connection:
Plug type:
Phase type:
Quantity of fibres:
Core diameter:
Sleeve diameter:
Wave length:
max. dampening:
max. lenth of fibre:

1
Serial communication interface
X7(RxD)/X7(TxD) or $\mathrm{X} 8(R \times D) / X 8(T \times D)$
CSP2-L: SCl communication to opposite device (CSP2-L)
CSP2-L: Woodward-protocol (SCl-communication)
Fibre optic (FO)
BFOC 2,5(ST $\left.{ }^{\text {® }}\right)$
Monomode fibre
2 fibres (Transmitt [T]/Receive [R])
$9 \mu \mathrm{~m}$
$125 \mu \mathrm{~m}$
1300 nm
9 dB (refered to total dampening)
ca. 20 km (depends on fibre dampening between stations)

Optional SCADA interface

Quantity:
Type:
Terms:
Use:
Protocol types:
Data transmission rates:

Physical connection:
Plug type:
Characteristic:

1

RS485
$\times 12$
SCADA communication
IEC 60870-5-103, PROFIBUS DP or MODBUS RTU
IEC 60870-5-103: 9600 or 19200 Baud (configurable), PROFIBUS DP: max. 12 MBaud (automatic recognition), MODBUS RTU: 9600 or 19200 Baud (configurable)
Electrical
9-pin, SUB-D (socket)
Galvanically decoupled by opto-coupler (2,5 kV)

6.6 Standards

6.6.1 General regulations

Generic standard	DIN EN 61000-6-2[08.02]	Product standard
	DIN EN 61000-6-3[08.02]	
		DIN EN 60255-6 [11.94]
		DIN EN 60255-3 $50178[07.98]$

6.6.2 High-voltage tests (EN 60255-6 [11.94])

Insulation Voltage test

IEC 60255-5 [$12 / 00$]
DIN EN 50178 [04.98]
Impulse voltage test
IEC 60255-5 [12/00]

High-frequency interference test
DIN EN 60255-22-1 [05.91]
Class 3

All electric circuits against other electric circuits and touchable surfaces

6.6.3 EMC Immunity tests

Fast transient disturbance immunity test (Burst)
DIN IEC 60255-22-4 [10.93] Current supply, mains inputs
DIN EN 61000-4-4 [07.02]
Class 4
Other inputs and outputs

Electrical discharge immunity test
DIN EN 60255-22-2 [05.97] Air discharge 8 kV
DIN EN 61000-4-2 [12/01]
Class 3
Contact discharge

Surge immunity test
DIN EN 61000-4-5 [12/01] Within an electric circuit 2 kV
Class 4
Electric circuit against earth 4 kV
(only valid for cable lenght < 30 m)
Radiated radio-frequency electromagnetic field immunity test DIN EN 61000-4-3 [12/01]
Class 3

Immunity to conducted disturbances induced by radio frequency fields
DIN EN 61000-4-6 [12/01]
10 V/m
Class 3

Power frequency magnetic field immunity test
DIN EN 61000-4-8 [12/01] continious
$100 \mathrm{~A} / \mathrm{m}$
Class 5
3 sec .

6 kV

10 V/m
$\pm 4 \mathrm{kV}, 2,5 \mathrm{kHz}$
$\pm 2 \mathrm{kV}, 5 \mathrm{kHz}$2 kV
kV/2 s
2,5 kV/2 s
$2,5 \mathrm{kV} / 2 \mathrm{~s}$

6.6.4 EMC Emission tests

Radio interference suppressio voltage
DIN EN 55011 [10.97]

Limit value Class B

Limit value Class B

6.6.5 Mechanical tests

Vibration tests
DIN EN 60255-21-1[05.96] Vibration response test
Class 2

Vibration endurance test

Shock and bumb tests
DIN EN 60255-2 1-2 [05.96] Shock test for proper functioning Class 1

$$
\text { Shock resistance test }
$$

Shock endurance test
Earthquake test
DIN EN 60255-2 1-3 [11.95] Single axis earthquake vibration test
Class 2

Class 2

6.6.6 Protection level

Front area IP54

Terminals of protection and controls IP20

6.6.7 Climatic conditions

Temperature range
For storage / in case of emergency $\quad-25^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
(max. 2 h , device must be in operation)
Temperature range during operation
$-10^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C}$

6.6.8 Environmental tests

Classification

DIN EN 60068-1[03/95]
DIN EN 60721-3-3[09/95]
Test Ad: Cold
DIN EN 60068-2-1[03/95]
Test Bd: Dry heat
DIN EN 60068-2-2[08/94]

IEC 60068-2-78[08/01] Temperature $40^{\circ} \mathrm{C}$

Climatic classification
Classification of ambient conditions

Temperature
Duration of stress

Temperature
Relative humidity
Duration of stress

Relative humidity
Duration of stress
Temperature $55^{\circ} \mathrm{C}$

Relative humidity 95\%
Cycles (12 + 12 hours) 2 16 h
<50\%
72 h

93\%
56

10/055/56
$3 K 6 / 3 B 1 / 3 C 3 / 3 S 2 / 3 M 4$
$-10^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}$
$55^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$

Test Cab: Damp heat (steady state)

Test Dd: Damp heat (cyclic)
DIN IEC 60068-2-30 [09/86]

6.7 Dimensions and weights

Dimensions
Base unit CSP2-F/-L/-T25:
Base unit CSP7-B:
Operating panel CMP 1:

W $367,8 \mathrm{~mm}$	$\times H 263,9 \mathrm{~mm}$	\times	$D 138,4 \mathrm{~mm}$
W $368,0 \mathrm{~mm}$	$\times H 447,0 \mathrm{~mm}$	$\times D 155,0 \mathrm{~mm}$	
W $307,0 \mathrm{~mm}$	$\times H 246,0 \mathrm{~mm}$	\times	$D 55,0 \mathrm{~mm}$

Weights (Net)
Base unit CSP2-F/-L:
$6,5 \mathrm{~kg}$
Base unit CSP2-T:
$6,9 \mathrm{~kg}$
Base unit CSP 7-B:
$13,0 \mathrm{~kg}$
$2,8 \mathrm{~kg}$

CAN communication cable
Length: 4 m

7

Order form

* Please leave box empty if option is not required (no extra charge).
' the complete feeder protection and control system consists of one base unit (CSP) and one indication and operating unit (CMP).
${ }^{2}$ Wave length: 850 nm ; phase diameter (core/sleeve): 62,5/125 $\mu \mathrm{m}$ multimode; plug type: type FH-ST, range: up to 2 km .
${ }^{3}$ in preparation!
$\left.\begin{array}{|l|c|c|}\hline \begin{array}{l}\text { Indication and operating unit } \\ \text { for protection and control systems }\end{array} & \text { CMP 1 - } & \text { 1 } \\ \text { Front plate IP 54; key switches, LC- Display, control buttons, } \\ \text { wide range power supply: AC and DC }\end{array}\right)$

* Please leave box empty if option is not required (no extra charge).
' the complete cable/line differential protection system consists of two base units (CSP) and two indication and operating units (CMP), (each end of line: one CSP and one CMP).
${ }^{2}$ Wave length: 850 nm ; phase diameter (core/sleeve): 62,5/125 mm multimode; plug type: type FH-ST, range: up to 2 km .
${ }^{3}$ in preparation

Base unit (single device) of transformer differential protection and control CSP2- system		CC		
Application: 2-winding transformers;				
Current and voltage protection functions, measuring functions,				
monitoring functions, automatic reclosing, disturbance				
recording, programmable logic functions,				
control functions, up to 5 recognizable devices (display),				
wide range power supply: AC and DC				

Control (direct/indirect)	
of max. $\mathbf{5}$ switching elements - DC driven (2 CB/isolator/earthing	T25

switch)

* Please leave box empty if option is not desired (no extra charge)

1 the complete feeder protection and control system consists of one base unit (CSP) and one indication and operation unit (CMP)
${ }^{2}$ Wave length: 850 nm ; phase diameter (core/sleeve): 62.5/125 $\mu \mathrm{m}$ multimode; plug type: type $\mathrm{FH}-\mathrm{ST}$, range: up to 2 km availability: on request

This Manual undergoes continuous further development and is subject to changes.
We reserve the right to include such changes in future editions of the manual, without prior notice.

W woodward

Woodward Kempen GmbH

Krefelder Weg 47 • D - 47906 Kempen (Germany)
Postfach 100755 (P.O.Box) • D - 47884 Kempen (Germany)
Phone: +49 (0) 21521451
Internet
www.woodward.com

Sales

Phone: +49 (0) 2152145216 or 342 • Telefax: +49 (0) 2152145354 e-mail: salesEMEA_PGD@woodward.com

Service

Phone: +49 (0) 2152145614 • Telefax: +49 (0) 2152145455 e-mail: SupportEMEA_PGD@woodward.com

[^0]: Table 2.4: Outline CSP2-statistical data

