.W woodward

Combined protection and control system
CSP2-F Feeder protection
CSP2-L Cable/line differential protection

Table of contents

1 Introduction 7
1.1 Signs and abbreviations used 7
1.2 Concept of the SYSTEM LINE. 9
1.2.1 Basic unit CSP2 11
1.2.2 CMP 1 display and operating unit 12
1.3 SYSTEM LINE - Overview 13
1.3.1 Overview of functions, CSP2 14
1.3.2 CSP2-F as field management system for feeder protection 16
1.3.3 CSP2-L as a field management system for line differential protection 17
1.3.4 CSP2-T25 as a field management system for transformer differential protection 18
1.4 Information on the manual 19
2 Hardware - Construction and Connections 21
2.1 Basic unit CSP2 21
2.1.1 Dimensions and Connection diagrams 22
2.1.2 LED-displays of the CSP2 26
2.1.3 Control outputs of the power circuit (XA1, X1) 28
2.1.4 Current measuring (X2) 38
2.1.5 Digital Inputs (X3) 47
2.1.6 Auxiliary Voltage Supply (X4) 51
2.1.7 Voltage measurement (X5) 53
2.1.8 Signal relay outputs (X6) 63
2.1.9 Communication interfaces 66
2.1.9.1 FO-Interface (X7) 69
2.1.9.2 FO-Interface (X8) 72
2.1.9.3 RS232 PC-interface (X9) (in preparation). 73
2.1.9.4 CAN-BUS-interfaces ($\mathrm{X} 10 / \mathrm{X} 11$) 74
2.1.9.5 RS485-interface (X12) 75
2.2 Operating and display unit CMP1 77
2.2.1 CMP dimensions 78
2.2.2 Dimensional drawing of the front door cutout 79
2.2.3 LED-displays of the CMP1 80
2.2.4 Auxiliary voltage supply for CMP 1 82
2.2.5 CAN-communication connection between CMP1 and CSP2 84
2.2.6 RS232-Communication connections between PC (Laptop) and CMP1 85
3 Operation via CMP 1 86
3.1 Key elements on the CMP1 front plate 86
3.2 Functions of the keys and key switches 86
3.2.1 Key-operated switches and mode of operations. 87
3.2.1.1 MODE 1 (local operation/control) 88
3.2.1.2 MODE 2 (local operation/parameterising) 88
3.2.1.3 MODE 3 (remote operation/control) 89
3.2.2 Direct selection keys of the CMP1 90
3.2.2.1 Key »DATA« (main menu) 91
3.2.2.2 Key »Hand-Symbok (start page SINGLE LINE) 92
3.2.2.3 Key »INFO« (non-coded display text for LED displays). 93
3.2.3 Menu guidance 94
3.2.3.1 Keys »UP/DOWN« 94
3.2.3.2 Keys »RIGHT/LEFT《 95
3.2.3.3 Structure of the main menu 97
3.2.4 Parameter setting via CMP1 118
3.2.4.1 Keys »+/-« 118
3.2.4.2 Key »ENTER« 119
3.2.4.3 Sub-menu "Save functions" 119
3.2.4.4 Key "C《 120
3.2.4.5 Example: Setting of protection parameters 120
3.2.4.6 Example: Setting of system parameters 124
3.2.5 Controlling switchgear viaCMP1 126
3.2.5.1 CONTROL MODE 126
3.2.5.2 TEST MODE (without interlocking) 126
3.2.5.3 Keys »ON/OFF« 127
3.2.5.4 Keys »Emergency OFF《 127
3.2.5.5 Example: controlling in CONTROL MODE 127
3.2.5.6 Example: controlling in TEST MODE - Caution: Danger to Life 129
3.2.6 Pop-up window 131
4 Operation via SL-SOFT. 134
4.1 Records of the CSP2 134
4.2 Standard version 136
4.3 Optional additional functions 138
4.3.1 Evaluation of disturbancy records (Data recorder) 138
4.3.2 SL LOGIC 140
5 Main menu of the CSP2 142
5.1 Menu measurement values. 143
5.2 Menu statistics 149
5.3 Menu event recorder 152
5.4 Menu fault recorder 165
5.5 Menu "Disturbance recorder" 169
5.6 Menu status 173
5.7 Menu Parameter (Settings of the CSP2) 176
5.7.1 System parameters (set) 177
5.7.1 . 1 Field settings (Feeder ratings) 177
5.7.1.2 Controls 181
5.7.1.2.1 Control times 181
5.7.1.2.2 Interlocking 182
5.7.1.3 Digital inputs 184
5.7.1.4 Signal relay (Output relays) 195
5.7.1.5 LED assignment 210
5.7.1.6 Disturbance recorder 212
5.7.1.7 Communication 215
5.7.1.7.1 IEC 60870-5-103 215
5.7.1.7.2 PROFIBUS DP 218
5.7.1.7.3 MODBUS RTU 219
5.7.1.7.4 CAN-BUS (Variant configuration to the CSP2-multi device communication) 221
5.7.1.8 Resetting functions (counters) 223
5.7.1.9 Statistical Data 224
5.7.1.10 Logic 225
5.7.1.10.1 Performance Description - General Product Outline 225
5.7.1.10.2 Definition of Terms. 227
5.7.1.10.3 SL-LOGIC Modules 228
5.7.1.10.4 Ascertaining of Logic Functions (Circuit Equations) 230
5.7.1.10.5 Ascertaining of the logic function for the pickup condition(s) - DNF 233
5.7.1 1 10.6 The Disjunctive Normal Form (DNF) 234
5.7.1.10.7 Debouncing Supervision 235
5.7.1. 10.8 Input Functions and Output Signals 237
5.7.1.10.9 Parameter 238
5.7.1.10.10 Programming of Logic Functions via the CMP 239
5.7.2 Protection parameter (protection parameter sets) 246
5.7.2.1 (Protection-) parameter set switch-over and trigger acknowledgement. 248
5.7.2.2 Phase current differential protection $\mid d>$ 251
5.7.2.3 Phase time overcurrent protection $|>,|\gg,| \ggg$ 264
5.7.2.4 Earth overcurrent protection le>, le>> 278
5.7.2.5 Unbalanced load protection $12>$, $12 \gg$ 288
5.7.2.6 Overload protection with thermal replica $\vartheta>$ 291
5.7.2.7 Automatic reclosing (AR) 294
5.7.2.8 Control circuit supervision (CCS) 300
5.7.2.9 Over/under-frequency protection $\mathfrak{f 1 > / < , ~ 千 2 > / < , ~} \mathfrak{\mathrm { C }}>/<, \mathfrak{f} 4>/<$ 303
5.7.2.10 Overvoltage protection $U>, U \gg /$ undervoltage protection $U<, U \ll$ 307
5.7.2.1 1 Residual voltage monitoring Ue>, Ue>> 312
5.7.2.12 Power/reverse power protection $\mathrm{P}>, \mathrm{P} \gg, \mathrm{Pr}>, \mathrm{Pr} \gg$ 314
5.7.2.1 3 Circuit Breaker Failure (CBF) protection 317
5.7.2.14 Voltage transformer supervision (VTS) 319
5.8 Service Menu 321
5.9 Self-test menu 329
5.10 Set LCD menu 334
5.11 Device selection menu (Variant 2 of multi-device communication) 335
6 Control Technique 337
6.1 Basics 337
6.2 Switchgear control via CSP2 338
6.2.1 Functions of the CSP2 switchgear control 338
6.2.2 Recognition of switchgears and display indications 340
6.2.3 Controllability of switchgears 345
6.2.4 Sequence of a control process 346
6.2.5 Control sites 348
6.2.5. 1 Locking between local and remote control 348
6.2.5.2 Local operation and control via CMP1 348
6.2.5.3 Remote control via digital inputs depending on the switching authorization 349
6.2.5.4 Control commands via digital inputs independent of switching authorizations 349
6.2.5.5 Remote control via SCADA system 350
6.2.6 Supervision functions for switchgear control 351
6.2.7 Logging of the switch actions 353
7 Interlockings 356
7.1 General locking guidelines (extract from VDE 0670-7) 356
7.2 Interlocking functions of the CSP2 357
7.2.1 Interlocking at feeder level. 357
7.2.1.1 Internal interlock matrix for interlocking at feeder level 357
7.2.1.2 Interlocking with faulty switch position 358
7.2.1. 3 Interlocking in double operation (anti-pumping) 358
7.2.1.4 Interlocking when sending control commands during a control process 358
7.2.1.5 Interlocking with protection trips 358
7.2.1.6 Interlocking with active parameter "Trip acknowledge" 359
7.2.1.7 Interlocking through supervision functions (digital input functions) 359
7.2.1.8 Interlockings in remote control via digital inputs (DI functions) 359
7.2.2 Interlockings at station level 360
7.2.2. 1 Interlocking via input functions. 360
7.2.3 Interlocking affer external load shedding (DI-function) 360
7.2.4 Release of interlockings in DBB systems (Dl-function) 360
7.2.5 Interlockings via programmable logic functions (SL-LOGIC) 362
7.2.6 Interlocking via SCADA system or CMP 1 363
8 Communication 365
8.1 Overview 366
8.2 Protocol type IEC 60870-5-103 366
8.3 Protocol type PROFIBUS DP 367
8.4 MODBUS RTU-Protocol 369
8.5 Communication examples 369
8.5.1 Physical linking via fibre optic FO (star coupler) 369
8.5.1. 1 Illustration example star-coupler 370
8.5.2 Physical connection (link) via RS485 370
8.5.3 Physical connection (link) via RS232 371
8.6 CSP2 Multi-device communication 372
8.6.1 Variants of the CSP2 multi-device communication 372
8.6.2 Prerequisites for multi-device communication 373
8.6.2.1 CAN-BUS System (hardware prequisistes) 374
8.6.2.2 Bus capability of the operation and display unit CMP1 375
8.6.2.3 Selection of the variant via parameter setting of the CSP2 377
8.6.2.4 Assignment of the CSP2-CAN appliance numbers (ids) 377
8.6.2.5 Setting of the CMP 1 -CAN device-numbers (ld) 377
8.6.3 Exchange of devices in the CAN-BUS system 379
8.6.3.1 Exchange of a CMP 1 379
8.6.3.2 Exchange of a CSP2 379
9 Projecting (design) 380
9.1 Design of protection transformers 382
9.2 Configuration of the switchboard 384
9.2.1 Examples of field configuration 384
9.2.1.1 Feeder configurations for single bus-bar systems (SBB) 384
9.2.1.2 Bus section panel for single bus-bar systems (SBB) 386
9.2.1.3 Feeder configurations for double bus-bar system (DBB). 387
9.2.1.4 Bus coupler panel for double bus-bar systems (DBB) 388
9.2.2 Checklist as projecting assistance and plant documentation 389
9.2.3 Example for Programmable Logic Equations (SL-LOGIC) 390
9.3 Specific applications in feeder protection 399
9.3.1 Line protection 399
9.3.2 Bus-bar protection with backward interlocking 400
9.3.3 Calculating the tripping times 401
9.3.4 Calculations on the thermal replica 402
9.3.5 Setting example, unbalanced load protection 404
9.4 Special applications for cable/line differential protection 405
9.4.1 Application examples 405
10 Commissioning 407
10.1 Transport 407
10.2 Connection of the auxiliary voltage 407
10.3 Connection of the measurement circuits 408
10.4 Connection of the digital inputs and signal relays 408
10.5 Connection of the control and signal circuits 408
10.6 Secondary protection tests of the protection functions 408
10.7 Test with secondary transformer current (only CSP 1-B and CSP2-L/sec. test) 409
10.7.1 OK test with load 409
10.7.2 Tripping parameter I I_{d} 409
10.7.3 Test with transformer primary current (primary test) 410
10.8 Primary test 411
10.9 Maintenance 412
11 Technical data 413
11.1 Auxiliary voltage 413
11.1.1 Voltage supply CMP1 413
11.1.2 Voltage supply CSP2 413
11.1.3 Buffering of the auxiliary voltage supply 413
11.1.4 Fuse Protection 413
11.2 Measurement inputs 414
11.2.1 Current measurement inputs 414
11.2.2 Voltage measurement inputs. 414
11.2.3 Measurement precision 415
11.3 Digital inputs (function/report inputs) 415
11.4 Outputs 416
11.4.1 Output outlets 416
11.4.2 Signal relays 416
11.5 Communication interfaces CSP2 417
11.6 System data and test specifications 419
11.6.1 General provisions 419
1 1.6.2 High-voltage tests (EN 60255-6 [11.94]) 419
1 1.6.3 EMC tests for immunity to interference 419
1.6.4 EMC tests for disturbance transmission 420
11.6.5 Mechanical stress 420
11.6.6 Type of enclosure 420
11.6.7 Climatic stress 420
11.6.8 Environmental tests 421
11.7 Dimensions and weights. 421

Appendix

Check list
Setting lists
Setting lists system parameter set Setting lists protection paramter set
Fax back form
Order form

1 Introduction

1.1 Signs and abbreviations used

AC Alternating Current

Ag Silver (Lat. agentum, see periodic system of elements)
AR Auto Reclosing
average
Backward: Index for current protection functions for backward device
Bus Bar
Bayonet Fibre Optic Connector
British Standard
Commissioning: putting systems or parts of systems into operation
CAN-BUS line: $\mathbf{H}=$ High
CAN-BUS line: $\mathbf{L}=$ Low
Cin Beaker
CHAR
CHP Tripping characteristic curve

Station Serial interface Basic unit for bus bar differential protection system

CSP2-F3 Basic unit for feeder and control system (Type of device: 3 controllable switching elements)
CSP2-F5 Basic unit for feeder and control system (Type of device: 5 controllable switching elements)
CSP2-L Basic unit for line differential protection system (Type of device: 3 controllable switching elements)
CT Current Transformer
DC Direct Current
DEFT DEF $/$ NITE T/ME: Tripping after a definite set time
DFFT Digital \mathbf{F} ast \mathbf{F} ourier Transformation
DI Digital Input
DIN Deutsches Institut für \mathbf{N} ormung: German Norming Institute
DSS Double bus-bar system
EINV EXTREMELY INVERSE: IDMT characteristic (current-dependent tripping curve) according to IEC Norm
EN European \mathbf{N} orm
e-n \quad Former designation for the transformer winding to determine the residual voltage Ue
ESD Electro-Static Discharge
ESS Single bus-bar system
EVT Earth Voltage Transformer: da-dn windings (formerly: e-n windings) of the voltage transformers
F
FB
FF Fuse Failure (Voltage Transformer Supervision)
FO \quad Fibre Optic
FT Fast Trip: Index in the AR function
GND GROUND: joint return line
IEC International Electrotechnical Commission
INV INVERSE: current-dependent tripping characteristic
IP 54 Type of enclosure
L Formula abbreviation for inductivity
LCD Liquid Crystal Display
LED Light Emitting Diode
LINV LONG TIME INVERSE: Inverse characteristic (current-dependent tripping characteristic) to IEC norm

max	Index for "Maximum figure" in the statistical data
MMI	Man Machine Interface
MTA	Maximum \mathbf{T} orque Angle
MV	Medium Voltage
Ni	Nickel
NINV	NORMAL INVERSE: Inverse characteristic (current-dependent tripping characteristic) to IEC norm
OL	Output L: power output for winding drive
OM	Output \mathbf{M} : power output for motor drive
PC	Personal Computer
PE	Protective Earth
PLC	Programmable Logics Controller
Q	Identification of operating equipment for switchgear in the mean voltage to IEC norm
RESI	Angle at resistance-earthed mains star point (mean voltage)
RxD	Signal line (Receive)
SCADA	Substation Control And Data Acquisition System
SCI	Serial Communication Interface: Communication to the counter-station in CSP2-L
SG	Switch Gear
SIN	SINUS: Angle in isolated mains star point (mean voltage)
SL-SOFT	SYSTEM LINE SOFT: operation and evaluation software for the SYSTEM LINE devices
SOLI	Angle with rigidly earthed mains star point (mean voltage)
SOTF	Switch On To Fault: Switch-on protection in current protection functions
SRAM	Static Read Access Memory: voltage fail-safe memory
TCS	Trip Circuit Supervision
TxD	Transmission to Device
VBG	Vereinigte Berufs-Genossenschaften (United Professional Associations): Accident Prevention Directives
VDE	Verband Deutscher Elektrotechniker (Association of German Electrical Engineers)
VDEW	Vereinigung Deutscher Elektrizitäts-Werke (Association Of German Electricity Companies)
VINV	VERY INVERSE: IDMT characteristic (current-dependent tripping characteristic) to IEC norm
VT	Voltage Transformer

1.2 Concept of the SYSTEM LINE

The task of the protecting technique is to guarantee safe operation of the electrical energy systems by use of protective equipment specific to the operating plant, which quickly and selectively separates the operating device affected from the electric mains if dangerous states occur.

However, higher demands are increasingly being made of the protective systems in use today and based on digital engineering. Although the protection of the operating device continues to be in the foreground, the course of centralisation has made it necessary to expand the individual protective systems to form communicating units of an overall system (system technique). This means that each switchboard of a switchgear can be monitored and operated from the central station control technique via the protective system with specific communications systems.

The SYSTEM LINE (SL) is a product line for high-quality digital protection of electrical equipment in combination with extended functions for complex applications in the medium-voltage area!

System idea and history

In medium-voltage engineering, there are typical applications such as feeder protection, line differential protection, bus bar protection etc. Each of these applications has a variety of specific functions, which were only covered in the past by the combination of a number of devices with individual functions. These solutions were costintensive and connected with considerable technical efforts.
The objective in the development of the SYSTEM LINE was to generate a high-quality protection and control system integrating numerous functions in one system and thus taking over practically all the tasks for a specific application, e.g. for feeder protection.

The devices of the SYSTEM LINE combine all the benefits provided by modern digital engineering to fulfil the variety of complex demands made of it on the part of the electrical supply utilities and industry.
Tasks entailing the protection of operating plant, supervision of the system, detection and provision of measured values and messages for cases of operation, recording and evaluating measured values and messages for distur-
bances, control and locking functions as well as various possibilities of communication are to be mentioned here as being of great importance.
The internal modular setup of hardware and software permits flexible inclusion of extensions and customers' requirements according to needs.

Alongside the consistent use of digital engineering, high availability thanks to permanent self supervision of the devices, high functionality and flexibility as well as ergonomically designed user interfaces (MMI) are in the foreground as the system idea. In this way, the SYSTEM LINE is not only used in new systems, but is also outstandingly suitable for existing switchgear (retrofiting), as the connection of the protection and control systems can be done independent of the manufacturers of switchboards and switchgear.

The systems of the SYSTEM LINE thus have a high costreducing potential as a central unit. For operators of MV systems, this leads to a reduction of costs in planning, material, installation and in commissioning of the switchgear.

Realisation

The protection and control systems of the SYSTEM LINE have been implemented as "two-device solutions". Such a system comprises, on the one hand, a CSP basic device, in which all the functions and interfaces necessary for operation have been integrated, on the other hand a CMP display and operating unit, which is used as a "manmachine interface" (MMI).
The communication between the two devices is done via a CAN field bus system.
The CSP basic device can be fitted directly in the low-voltage niche of a cubicle without a further auxiliary relay thanks to the robust and protected construction, thus reducing the wiring to a minimum. Stand alone operation of the CSP without the CMP display and monitoring unit is equally as possible as connection of SCADA-system via optical or electrical interfaces.

The communication ability is increased by the coupling of the CSP devices via the internal CAN system bus Imultidevice communication). Access to the CSP/CMP systems via a centrally arranged PC, making use of the SL-SOFT application soffware, thus enables comfortable operation (reading of data, securing of disturbance records as well as [remote] parameterisation of the connected devices).

The local operation of the protection and control system is done via the separate CMPI display and operating unit, which is installed in the cubicle door. Here, quick access to the operating data of the switchgear, local parameterisation of the SYSTEM LINE devices and the local control of switchgear is in the foreground.
Due to the high type of enclosure (IP 54) of the front (foil keyboard) of the display and operating unit, the CMP1 can even be used in an environment with a high degree of pollution.

Change of generation

The first generation of the SYSTEM LINE comprised the

- CMP1/CSP1-F feeder protection and control system,
- CMP1/CSPI-L cable line differential protection as well as
- CMPI/CSPI-B bus bar differential protection
and asserted itself on the market for seven years after its introduction in 1996.
Extended market requirements led to a consistent further development of the hardware and soffware of the systems in the year 2000, resulting in a change of generation for the basis devices of the feeder and line differential protection systems.
The result was an optimised feeder protection and control system CSP2-F and a line differential protection CSP2-!! which was extended by a control system!

Change of generation CSPI-F/L \Rightarrow CSP2-F/L

CSP2-F

CSP2-L

- Reduction of weight
- New CSP2 housing (synthetic material)
- Optimized circuit design
- Raise of high-range voltage level to 70 V for digital inputs
- Optimized access to the system interface
- Galvanically decoupled of power outputs
- Wide-range powersupply for aux. control voltage
- Provision of easy choice of direct/indirect control of switching devices
- Circuit supervision of all power outputs
- Extended comunication options (SCADA communication and CSP2-mutiple device communication)
- Raise of accuracy of measuring functions
- Integration of extended memory for disturbance recordings
- Elimination of protocol converter CSK 1-P (PROFIBUS DP) by integration in CSP2
- Integration of control functions analog to CSP2-F3
- Integration of voltage measuring
- Display of additional measuring values
- Integration of AR function
- Integration of additional protection functions
- Raise of numbers of digital inputs

Table 1. 1: Overview, change of generation CSP1 \Rightarrow CSP2

1.2.1 Basic unit CSP2

The CSP2 basic device is an integrated protection and control system for installation in the low-voltage compartment of the circuit breaker (mounting plate construction). The basic module, which is autarkically ready for operation, contains the entire protection and control technique.

The CSP2 is offered for various applications (several types of devices). For each type of devices, there are corresponding output classes to match individual requirements or necessities:

- feeder protection and control system: CSP2-F3 and CSP2-F5
- cable /line differential protection and control system: CSP2-L1 and CSP2-L2

After selection of the scope of performance for the application in question, each of these devices can be adapted individually to the primary and secondary technique of the field in question (configuration).

Figure 1. 1: Basic device of the feeder protection and control system CSP2-F5
The CSP2 basic unit excel thanks to the following particular properties:

- compact construction in robust plastic housing with IP 50 type of enclosure,
- extensive protection and control functions,
- intuitive menu guidance,
- wide-range power pack for auxiliary voltage supply to the device (AC or DC)
- wide-range power pack for auxiliary voltage supply for digital inputs (AC or $D C$)
- wide-range power pack for auxiliary voltage supply (DC),
- various working ranges (high/low voltage area) for digital inputs,
- flexible administration of the inputs and outputs,
- galvanic de-coupling of the power circuits,
- stand-alone operation without display and operating unit CMP1 possible,
- connection of control technique with various types of protocols via optical or electrical interfaces
- various PC communication interfaces: CAN-BUS; RS232,
- various SCADA communication interfaces: FO; RS485,
- disturbance recorder with many features for PC/laptop; optionally with extended non-volatile memory,
- extensive self-supervision (hardware and soffware),
- available in two differing types
- maintenance free.

1.2.2 CMP1 display and operating unit

The CMP1 display and operating unit is integrated into the front door of the cubicle as a complete and favourably priced user interface (MMII). It informs the operating personnel about the current status of the switchboard by displaying all the relevant measured data, messages and parameters. There is the possibility of reading out data, making parameterisations and also controlling switchgears of the field.

Figure 1.2: CMP1-1 display and operating unit
The CMP1 excels thanks to the following properties:

- flat and compact design,
- wide-range power pack (AC or DC),
- large, automatically background-illuminated LCD graphic display (128×240 pixel) with:
- display of a configurable feeder single line,
- display of switch positions, measured values and operating information,
- protocolling of events with real-time stamp,
- protocolling of fault events with effective values,
- extensive commissioning support and
- varied test possibilities.
- foil keyboard with IP 54 type of enclosure for the front side,
- multi-coloured function keys for menu guidance, control and in "danger off function"
- two key-operated switches to stipulate the modes of operation:
- local/remote operation and
- standard operation/parameterisation
- 11 multi-coloured LED's (parameterisable)
- integrated message relays for system error indication
- CAN interface for connection with the CSP2 and
- $2 \times$ RS 232 interfaces for operation via PC/Laptop (front side and bottom edge of the device).

The connection to the CSP2 basic module is done via a three-cored, screened CAN-BUS line, which is easy to wire together with the voltage supply.
The CMPI has a large graphic display, on which a single line diagram informs you about the state of the field at all times.
All the settings and switching actions can also be carried out via the CMP1 display and operating unit.

1.3 SYSTEM LINE - Overview

In the following overview, the individual performance classes of the devices available in the SYSTEM LINE are explained according to their application.

	Transformator differential protection and control system CSP2-T
Performance class	Description
CSP2-T25	The combined transformer differential protection and control system CSP2-T25 is especially developed for two winding transformers and is able to control up to 5 switching devices (2 circuit breakers, disconnectors and earthing switch). The number of measuring inputs comprises 4 voltage inputs (ULI, UL2, UL3, Ue), 7 current inputs (ILIWI, IL2W1, IL3W1, ILIW2, IL2W2, IL3W2, le) and 2 inputs for temperature sensors.
Feeder protection and control system CSP2-F	
Performance class	Description

The combined protection and control system CSP2-F is for all feeder applications with single and double busbar systems, which call for extended protection and control functions.
CSP2-F3 The number of measuring inputs comprises 4 voltage inputs $\left(U_{11}, U_{12}, U_{13}, U_{E}\right)$ and 4 current inputs $\left(I_{11}, I_{12}, I_{13}, I_{\mathrm{E}}\right)$ which are needed to realise extensive protection and measuring functions.
CSP2-F3 is intended for control of up to 3 switching devices (1 circuit breaker, disconnectors and earhting switches) and are for recognizing up to 5 switching devices.

CSP2-F5
CSP2-F5 represents the most capable variant of the CSP2-System. Compared to CSP2-F3 it is possible to control and recognize 5 switching devices $(2$ circuit breakers, disconnectors and earthing switches). The number of measuring inputs is equal to CSP2-F3.

Cable/Line differential protection and control system CSP2-L

Performance class	Description
The digital Cabel-/Line differential protection and control system is used as main protection for	
cables and lines. Accordingly, faults have to be cleared fast and phase selectively so that oper-	
ating devices will be disconnected at both ends. Therefore it is necessary to connect a protection	
unit at both ends of the cable/line. Communication between the two protection units will be	
done by optical fibres. One complete cable/line differential protection system consists of two	
basic units (CSP2) and two operating units (CMP) which will be used for local control of switch-	
ing devices (per system: 1 circuit breaker, disconnectors and earthing switches)	
The maximum length of a protected cable/line is about 2 km .	

Table 1.1: Overview of the SYSTEM LINE product line

1.3.1 Overview of functions, CSP2

No.	Protection functions	ANSI	CSP2-F3	CSP2-F5	CSP2-L1	CSP2-L2	CSP2-T25
1	Overcurrent directional/non-directional	51/67	-	-	-	-	-
2	Shortcircuit current directional/non-directional	50/67	\bullet	\bullet	\bullet	\bullet	\bullet
3	Earth current directional/non-directional	$50 \mathrm{~N} / 51 \mathrm{~N} / 67 \mathrm{~N}$	\bullet	\bullet	\bullet	\bullet	\bullet
4	Restricted Earh Fault	64REF	-	-			\bullet
5	Differential	87	.	.	Cable	Cable	Transformer
6	Overload protection with thermal replica	49	-	-	-	-	\bullet
7	Overload protection with temperature sensors	49	-			-	\bullet
8	Residual voltage	59N	\bullet	\bullet	\bullet	\bullet	\bullet
9	Over-/Undervolage	27/59	\bullet	\bullet	\bullet	\bullet	\bullet
10	Over/Underfrequency	81	\bullet	\bullet	.	.	\bullet
11	Automatic Reclosing (AR)	79	\bullet	\bullet	-	-	\bullet
12	Power/Reverse Power	32F/B	\bullet	\bullet			*
13	Negative phase sequence current (1_{2})	46	\bullet	\bullet	-	-	-
14	Control circuit supervision lincl. trip circuit)	$74 T \mathrm{C}$	\bullet	\bullet	\bullet	\bullet	\bullet
15	Circuit breaker failure (CBF)	50/62BF	\bullet	\bullet	\bullet	\bullet	\bullet
16	Lock out function	86	\bullet	\bullet	\bullet	\bullet	\bullet
17	Reverse interlocking	-	\bullet	\bullet	\bullet	\bullet	\bullet
18	Voltage transformer superision (fuse failue)		\bullet	\bullet	\bullet	\bullet	\bullet
19	Swith on to fault (SOTF)		\bullet	\bullet	\bullet	\bullet	\bullet
20	AR fast trip	-	\bullet	\bullet	\bullet	\bullet	\bullet
21	AR-Start by Non-Corresponding of CB		\bullet	\bullet	\bullet	\bullet	\bullet
22	Programmable protection logic (i.e. function/blocking/trip blocking)		-	-	-	-	-
23	Parameter switch		-	-	-	-	\bullet
24	Disturbace recorder (Optionally with extended memory		-	-	-	-	-

Table 1.2: Overview of functions of the CSP2 types of devices

No.	Control functions	CSP2-F3	CSP2-F5	CSP2-L1	CSP2-L2	CSP2-T25
1	No. of controllable switching devices	3	5	3	3	5
2	No. of switching devices that can be shown on the graphic display	5	5	5	5	5
3	No. of power outputs for control of circiut breakers (Contol coils of circuit breakers)	2	3 (4)	2	2	4
4	No. of power outputs for control of motor-driven switching devices (i.e earthing isolators and disconectors)	2	4 (3)	2	2	3
5	No. of signal relays	6	10	6	6	6
6	No. of configurable digital inputs	22	26	22	22	26
7	Command outputs with defined switching and operation times	\bullet	\bullet	\bullet	\bullet	\bullet
No.	Supervision functions	CSP2-F3	CSP2-F5	CSP2-L1	CSP2-L2	CSP2-T25
1	Fault/differential position	\bullet	\bullet	\bullet	\bullet	\bullet
2	Withdrawal of the circuit breaker	\bullet	\bullet	\bullet	\bullet	\bullet
3	Circuit breaker ready	\bullet	\bullet	\bullet	\bullet	\bullet
4	Programmable interlocking conditions at feeder level	\bullet	\bullet	\bullet	\bullet	\bullet
5	Interlocking of switching devices at station level by SCADA system	\bullet	\bullet	\bullet	\bullet	\bullet
No.	Programmable logic functions	CSP2-F3	CSP2-F5	CSP2-L1	CSP2-L2	CSP2-T25
1	32 programmable logic equations	\bullet	\bullet	\bullet	\bullet	\bullet
2	32 input variables per logic function	\bullet	\bullet	\bullet	\bullet	\bullet
3	1 time element per logic output	\bullet	\bullet	\bullet	\bullet	\bullet

Table 1. 1: Outline CSP2 control, monitoring and programmable logic functions

The CSP2 is a combined protection and control system with various integrated functions for use in medium-voltage cubicles. Alongside the most important protective functions, this system has also combined extended functions such as:

- measurement,
- supervision,
- switchgear control/interlocking and
- communication
in a way suitable for use in a medium-voltage panel.

Figure 1.3: CSP2 as a field management system
With regard to operational safety and immunity from disturbance, the SYSTEM LINE corresponds to the high requirements of protective systems for the energy distribution.

The CSP2 system is used in systems of energy distribution (electricity supply utilities, node stations, substations), energy generation (hydroelectric power plants, wind-driven power stations, combined heat and power stations (CHP) and industrial systems. As a field management system, this system can be used as a component part of fully automated systems.

The CSP2/CMP1 systems can be connected to a SCADA systems or automation systems via optional interfaces (electrical or optical). The data transmission is optionally via the IEC 60870-5-103 types of protocol or PROFIBUS DP + Modbus. Through connection of a PC/laptop, the SL-SOFT application software can be used to build up a second communication level. The connection of the individual systems via a field bus system makes device log-in from one central place possible (CSP2 multi-device communication).

1.3.2 CSP2-F as field management system for feeder protection

Feeder protection is a partial discipline of the overall mains protection technique, as its main task comprises the protection of the feeders to the operating equipment connected to the mains such as transformers, motors, generators and bus-bars. Depending on the value and the importance, these electrical equipments is protected by separate systems specifically tailor made to match them (e.g. generator protection, bus bar differential protection), with feeder protection being able to take on certain backup protection functions as a rule.

With the various expansion levels (output classes) of the CSP2-F the protection requirements and control tasks of simple feeders right down to double bus bar systems are covered.

Figure 1.4: Feeder protection and control system, CSP2-F

1.3.3 CSP2-L as a field management system for line differential protection

To protect important feeder cables and overhead lines, the CSP2-L two-end differential protection is used.
A complete differential protection system comprises one CSP2-L basic unit and one CMP1 operating unit at each end of the cable or overhead line to be protected. The communication between the CSP2-L partner devices of the stations is done by fibre optic. The integrated control, interlocking and monitoring functions extend the CSP2-
L/CMP1 system to form a combined protection and control system with which up to three switchgears can be controlled.
In addition to the differential protection as the main protection function, the CSP2-L has these backup protection functions: directional/non directional overcurrent time protection, directional/non directional earth overcurrent protection, overload protection with thermal replica, supervision of the residual voltage, under/over voltage protection, voltage transformer supervision, control circuit supervision, switch-on to fault protection (SOTF), backward interlocking and automatic reclosing (AR).

Figure 1.5: Cable/line differential protection and control system CSP2-L

1.3.4 CSP2-T25 as a field management system for transformer differential protection

With the high performance management system, two-winding transformers can be protected and operated completely.

A complete differential protection system comprises one CSP2-T25 basic unit and one operating unit CMP1. The integrated control, interlocking and monitoring functions extend the
CSP2-T25/CMP1 system to form a combined protection and control system with which up to 5 switchgears can be controlled.
In addition to the transformer differential protection as the main protection function, the CSP2-T has the following backup protection functions: directional/non directional overcurrent time protection, directional/non directional earth overcurrent protection, overload protection with thermal replica, supervision of the residual voltage, under/over voltage protection, voltage transformer supervision, control circuit supervision, switch-on to fault protection (SOTF), backward interlocking and automatic reclosing (AR).

Figure 1.6: CSP2-T25 transformer differential protection and control

1.4 Information on the manual

Scope of function

This manual entails the complete scope of all CSP2 types for the CSP2-F3 and CSP2-F5 feeder protection and also for the required two devices CSP2-L1 and CSP2-L2 two-end differential protection. As the CSP2-L cable/line differential protection and control system matches the functionality of the CSP2-F3 in large parts, corresponding remarks have been added for the availability of functions and parameters in all the tables.

Structure of the manual

- Chapter 1 "Introduction"

Explanation of the general alignment of the SYSTEM LINE.

- Chapter 2 "Hardware - set-up and connections"

Here, there is an extensive description of the hardware of the CSP2 basic device and the CMP1 display and operation unit with important information on installation and connection of the devices. Reference is merely made to relevant parameter settings and software functions are only explained to the extent necessary for understanding with regard to the hardware.
Extensive explanations on the software functions are given in Chapter 5 "Main menu of the CSP2"!

- Chapter 3 "Operation via CMP1" and Chapter 4 "Operation via SL-SOFT application software"

In these chapters, the operation of the CSP2 basic unit via the CMP1 on the one hand and via the SL-SOFT operating software on the other hand is described.
In Chapter 3, the functions of the individual operation element keys are extensively described and the meaning of the operation modes are explained. As an example, the mode of procedure for the operation, control and parameter setting via the CMP1 is presented and visualised via screenshots/display shots.
Chapter 4 contains a rough description of the SL-SOFT operating and evaluating software for the operation and parameter setting of the CSP2 basic device. An extensive description of this application software is available in the form of a separate document, which can be demanded if required.

- Chapter 5 "Main menu of the CSP2"

The structure of this chapter is analogous to the structure of the menus in the CSP2. Here, all the software functions are extensively described on the basis of the parameters listed and their settings.

- Chapter 6 "Control" and Chapter 7 "Locking of switchgears"

These chapters extensively concern themselves with the control and locking functions in the CSP2. Information on existing norms and general directives supplement this important subject!

- Chapter 8 "Communication"

The various possibilities of communication with the protection and control systems of the SYSTEM LINE make this chapter necessary. Here, general information on the individual data protocol types for connection of station control techniques and on PC communication are in the foreground. Examples of connections round this chapter off. The variants for physical connection (interfaces) of the CSP2 to the communication systems have been described in Chapter 2.
Detailed information is also available in separate documents. They contain general descriptions and well as the data point lists on the individual types of protocol corresponding to the CSP2.

- Chapter 9 "Projecting" and Chapter 10 "Commissioning"

These chapters contain information on the handling and realisation of SYSTEM LINE projects. Tools are presented as projecting assistance and plant documentation, as are specific applications and general information on commissioning.

- Chapter 11 "Technical Data"

Important information on the hardware of the CSP2 and CMP1

General

- In general, contexts covering more than one area and information on plausibility are stated as ATTENTION,

NOTE or REMARK in each chapter!

- The graphical quick user guides used in this manual are to increase the user-friendliness and facilitate orientation. The graphical quick user guides stop on the third menu level at the latest and are therefore not always complete. As individual graphical quick user guides cannot be produced for each type of device. The device with the most features is portrayed as a rule. Not every functionality portrayed in the graphical quick user guides is therefore always available in every device type. The precise possibilities of setting can be seen from the enclosed tables ("see Chapter xxx").
- The appendix contains
- Checklist for the CSP2-F3
- Setting lists of the system and protection parameters
- Fax template addressed to: RRGZDG. With this, you can send us your suggestions for supplements and optimisation of this manual!
- Type key for the order form of the SL systems
- For the CSP I-B bus bar differential system, a separate manual is available. The mentioning of the CSPI-B in this manual is merely for the completeness of overview portrayals.

2 Hardware - Construction and Connections

2.1 Basic unit CSP2

In the following the hardware components of the connection of the basic device CSP2 to the periphery are described and the function of the LEDs explained.

Figure 2. 1: Top view CSP2-F5

Line-cross sections of the measurement inputs

- Terminals of the current measurement inputs: max. $2 \times 2.5 \mathrm{~mm}^{2}$, bzw. $1 \times 4 \mathrm{~mm}^{2}$
- All other terminals:
max. $1 \times 2.5 \mathrm{~mm}^{2}$

2.1.1 Dimensions and Connection diagrams

(Dimensions in mm)

Figure 2.2: Dimensions of the CSP2

Figure 2.3: Connection diagram CSP2-F5

Figure 2.4: Connection diagram CSP2-F3

Figure 2.5: Connections CSP2-L

2.1.2 LED-displays of the CSP2

Description
The CSP2 has five LEDs on the case top side by which important system operation and multiple messages can be displayed. The LEDs of the CSP2 are principally independent of the LEDs of the CMP1 and cannot be configured!

Figure 2.6: LEDs of the CSP2

LEDs of the CSP2				Available in CSP2-		
	Description	LED Display				
Function		$\begin{aligned} & 50 \\ & 000 \\ & 000 \end{aligned}$		L	F3	F5
System OK	No internal fault, CSP2 is in operating mode	green	-	-	-	-
System OK.	System fault	red	-	-	-	-
Alarm	General activation (general protective activation or alarm signal by a supervision function)	red	-	-	-	-
Trip	General trip (general protective trip)	red	-	-	-	-
Selftest	Initialisation phase : Signals the start-up phase of the CSP2 (system restart) after voltage connection at terminal strip X4.	green	-	\bullet	\bullet	\bullet
Contr. Error	Signals fault of a switching device (e.g. exceeding of the control time) can be reset via the CMPI	red	-	-	\bullet	\bullet

Table 2. 1: Overview LEDs

Attention

The LED "System OK" of the CSP2 relates exclusively to the self-supervision of the protection and control system CSP2!

The LED "System OK" of the CMP1 relates to the self-supervision of the protection and control system CSP2 and/or the display and operation unit CMP1

Note

In case of a system fault message via the LED "System OK" of the CMP1, a check has to be carried out at any rate to find out if the LED of the CSP2 also reports the system fault! If this is not the case, disturbed communication between CSP2 and CMP1 or a defect in CMP1 can be assumed. Protection and supervision functions as well as remote-control and communications functions thus continue to be fully operational!

2.1.3 Control outputs of the power circuit (XA1, X1)

Description

As a combined protection and control system, the CSP2 is able to switch MV-switchgears. The control wires for the drives of the switchgears can in this case either be directly connected to terminal board X1 ("Direct control") or switched by the corresponding auxiliary relays which are driven by CSP2 ("indirect control").

Figure 2.7: Detail view control outputs

Voltage supply of the power circuit
The power circuit of the CSP2 disposes of several control output OM (Output motor) and OL (Output coil), which have been constructed as short-circuit-proof relay contacts. Thus a galvanic decoupling to the periphery is guaranteed for the unswitched state.
For the control of the switchgears, the CSP2 requires an auxiliary voltage supply (auxiliary control voltage), which is connected to terminals X1.1 and X1.2. This auxiliary control voltage will be switched through when sending a control command (or trip command) via the power circuit of the CSP2 on the contact-terminals of the corresponding control outputs. Direct voltages in the range of $18-280 V$ DC may be used (see Chapter "Technical Data"). In this way the electrically controllable switchgears can be connected directly and without additional uncoupling levels.

Attention

If there is only an AC voltage at disposal, it is absolutely necessary that a rectifier be connected ahead! Should a smoothing capacitor additionally be used for rectifying the alternating voltage, the smoothed voltage, in accordance with the characteristics of he capacitor, may be at the level of he alternating voltage amplitude. Thus the peak value of the alternating voltage used must not exceed 280V! The cable line of the power outputs from and to the switchgear must not exceed 30 m . The line length of the lines between the power outputs circuits and the switching device (back and forth) must not exceed 30 m .

Drive variants for MV-switchgears

According to the mistaked switchgears of the medium voltage panel there are two different types regarding the drive type of the switchgears:

- L-Typ: switchgears with "coil drive" (e.g. circuit breakers)
- M-Typ: switchgears with "motor drive" (e.g. disconnecting switches, earthing switches)

Switchgears with coil drive (L-type)
For the control of a circuit breaker (CB1) two control outputs (OL) are required in each case. The control output OL1 serves for giving the "OFF-command", the control output OL2 for giving the "CB-ON-command".

Definition of terms

A "CB OFF-command" for a circuit breaker may be sent as a trip command from a protection function or as a controlled OFF control command from CMP1, a SCADA-System or via an active digital input! An "ONcommand" for a circuit breaker can be sent as an auto reclosing command of an effective AR-function or as a controlled ON-command from CMP 1, of the SCADA system or via an active digital input!

Attention

"OFF-Command" from effective protection functions can only be given at the control outputs OLI and OL3!

Power Circuit of the CSP2

Figure 2.8: Power circuit breaker control (L-type))
Applications with two electrically controllable circuit breakers via the CSP2 can only be realized with a CSP2-F5. For the second circuit breaker (CB2) the control output OL3 is used for giving the "OFF-command", and the control terminals OM4.3 (X1.23) and OM4.4 (X1.24) of the control output OM4 for giving the "ON-command". In this case, the terminals OM4.1 (X1.21) and OM4.2 (X1.22) must be bridged. (see Remark ** in the connection table or ill. 1.7.

Note

When resetting the power outputs for the control coils of circuit breakers, high induction voltages are created at the terminals. These might have negative influences on the power circuit of the CSP2. In order to eliminate these disturbing influences, the control coils of the power circuit breakers must be provided with corresponding relief measures. State of the art is the use of free wheeling diodes, which shortens the developing induction voltages immediately (free-wheeling circuit).
Relief measured must in general always be provided at the location of occurrence of the disturbing influences, in this case, therefore, directly at the terminals of he control coils.

Switchgears with motor drive (M-type)

The motor drives of $M V$-switchgears are as a rule constructed as direct current series-wound machine. For the connection of these series wound motors to the CSP2, four terminals per control output (OM) are provided:

- The field winding (excitation) is generally connected to terminals $O M x .1$ and $O M x .2$.
- The armature coil is connected to terminals $O M x .3$ and $O M x .4(!)$.
(Example see Fig. 2.9: field winding: X1.9 and X1.10; armature winding: X1. 11 and X1.12)!

Note

If the drive motor has only two terminals, the motor will only be connected to the terminals of "armature winding" (OMx. 3 and $O M x .4$) of the CSP2. The "series circuit terminals" $O M x .1$ and $O M x .2$) in this case must be bridged at the CSP2.

Variants of switchgear control for motor driven switchgears (M-type)
The CSP2 makes possible via an easily makeable bridging connection of the additional terminal X1A a selection between direct and indirect controlling for motor-driven switchgears (M-Type).

Direct switchgear controlling

For switchgears (M-type) whose motor drives are controlled directly from CSP2, the rotation change-over of the motor (anti-clockwise, clockwise) must be taken into account. For this, the polarity inversion at the armature winding of the drive motor (rotation change-over for the closing or opening of the MV -switchgear) will be carried out automatically at the corresponding terminals of the CSP2 (OMx. 3 and $O M \times$.4) when the next control command is given!

Note

The polarity present at the terminals (OMx.3/OMx.4) is dependent on the activated control commands ON or OFF!

If e.g. a control command for switching on of the connected switchgear in Fig.2.9 is activated, terminal X1. 12 has the negative potential of the auxiliary control voltage. In this case, an internal auxiliary relay contact bridges the terminals X 1.10 with X 1.11 and thus provides for the series connection of the field winding with the armature winding. Here the motor must be connected in such a way, that the switchgear moves at the indicated polarity to the "ONPosition" (clockwise rotation of motor: closing of the switchgear).

Power circuit of the CSP2

Figure 2.9: Direct switchgear control (M-type) - switching-on of switchgear

When thereupon an OFF-control command occurs, the negative potential changes from terminal X 1.12 to X 1.11 and an internal relay contact now bridges the terminals $\mathrm{X1.10}$ with XI .12 (anti-clockwise motor run: opening of the switchgear)

Figure 2.10: Direct switchgear control (M-type) - switching-OFF of switchgear

The polarity inversion applies only for the control circuits (OM1 to OM4) provided for the motor drives. At the control outputs for the circuit breaker (CB 1: OL1 and OL2) in general no polarity inversion is carried out! For applications with a second circuit breaker (CSP2-F5), likewise no polarity inversion applies for the control outputs OL3 and OM4 (terminals OM4.3 and OM4.4). By the internal allocation of the control output OM4 (ON-command) to the second circuit breaker (CB2), the polarity inversion is prevented by software.

Indirect switchgear controlling

This variant is provided for switchgears whose motor drives are controlled via auxiliary relays and thus are 'indirectly' controlled (see Fig. 2.11).
Therefore, a polarity inversion at the terminals OMx .3 and OMx.4 must not occur! When giving the control commands ON/OFF, thus no polarity inversion occurs at the terminals of the CSP2.
The anticlockwise or clockwise rotation of the motor for closing or opening the switchgear is carried out by the corresponding controlling of the motor (e.g. "H-circuit connection") via the auxiliary relays K 1 for OFF or K 2 for ON .

Figure 2.11: Indirect switchgear control (M-type)I

Note
The indirect control must on principle be applied too, when the switchgear to be controlled is driven via the control coils, however does not possess a trip coil and thus is no intended for a trip-off by protective functions (example: disconnector with compressed air cylinders).

Overview: Variants of the switchgear control (direct/indirect)
According to the control of motor-driven switchgears (M-type) used, corresponding terminals are to be bridged in terminal row XA I. By this terminal connection the required polarity inversion occurs at direct switchgear control for the M-type - not at indirect control. For the control of circuit breakers (L-type) the connections of terminal board XAI are without significance.

Choice of the Control Method for Control Outputs OM 1 to OM4				Available in CSP2-		
Terminal Strip XIA	Direct Control	Indirect Control	Note	L	F3	F5
XIA. 1			Bridge wiring : Terminal bridges to be wired from external !	-	-	-
XIA. 2	,	,		-	-	-
XIA. 3		\square		-	-	-
XIA. 4				-	-	-
X1A. 5				-	-	-
X1A. 6		,		-	-	\bullet
X1A. 7	-			-	-	-

[^0]

Table 2.3: Terminal Assignment of the Control Outputs for Direct Control
*) The drive motor must be so connected that the switchgear is driven to the ON position at the indicated polarity. At these terminals the CSP2 changes the polarity internally when the switchgear is to be driven into the OFF position.
**) According to the field configuration can this control output be configured as CB2 (L-type) control coil output command $O N$. The control coil must be connected to terminals X1.23 and X1.24. The terminals X1.21 and X1. 22 must then be bridged.

Indirect Control of the Control Outputs OLI to OL4						Available in CSP2-		
Terminal Strip X1	internal name	Switching Device Type	Description	Polarity	Polarity change	L	F3	F5
X1.1	LA-	U_{H}	Aux. Control Voltage (DC !)	-	-	-	-	\bullet
X1.2	LA+			+	-			
$\times 1.3$	OL 1.1	OFF Coil (L-Type)	OFF Command for CB 1	+	-	-	\bullet	\bullet
X1.4	OL 1.2			-	-			
$\times 1.5$	OL 2.1	ON Coil (L-Type)	ON Command for CB 1	+	-			
X1.6	OL 2.2			-	-			
$\times 1.7$	OL 3.1	OFF Coil (L-Type)	OFF Command for CB2	+	-	-	-	-
X1.8	OL 3.2			-	-			
X1.9	OM 1.1	Motor Drive (M-Type)	Aux. Relay for SGX OFF	+	-	\bullet	\bullet	\bullet
X1.10	OM 1.2			-	-			
X1.11	OM 1.3		Aux. Relay for SGX ON	+	-			
X1.12	OM 1.4			-	-			
X1.13	OM 2.1		Aux Relay for SGXOFF	+	-	-	-	-
X1.14	OM 2.2	Motor Drive	Aux. Relay for SGX OfF	-	-			
X1.15	OM 2.3	(M-Type)	Aux. Relay for SGX ON	+	-			
X1.16	OM 2.4			-	-			
$\times 1.17$	OM 3.1	Motor Drive (M-Type)	Aux. Relay for SGX OFF	+	-	-	-	\bullet
X1.18	OM 3.2			-	-			
X1.19	OM 3.3		Aux. Relay for SGX ON	+	-			
X1.20	OM 3.4			-	-			
X1.21	OM 4.1	Motor Drive (M-Type)	Aux. Relay for SGX OFF	+	-		-	-
$\times 1.22$	OM 4.2			-	-			
X1.23	OM 4.3		Aux. Relay for SGX ON	+	-			
X1. 24	OM 4.4	ON Coil of CB2 (L-Type)	or ON Command for CB2	-	-			

Table 2.4: Terminal Assignment of the control outputs for indirect control
**) According to the field configuration this control output can be configured as CB2 (L-type) control coil output command ON . The control coil must be connected to terminals $\mathrm{X1.23}$ and $\mathrm{X1}$.24. The terminals $\mathrm{X1.21}$ and X1. 22 must then be bridged.

Assignment: Switchgears - control outputs

According to the application (field configuration), the electrically controllable switchgears must be assigned to corresponding control outputs. For this, the succession as shown by the following examples must be adhered to:

Examples CSP2-F3 or CSP2-L:

1. In case of applications with only one circuit breaker (single bus bar):

- switchgear 1 (SG1): circuit breaker (control outputs OL. 1, OL.2)
- switchgear 2 (SG2): disconnect 1 (control output OM. 11
- switchgear 3 (SG3): earthing switch (control output OM. 2)

2. In case of applications with only one circuit breaker (withdrawable truck/single bus bar):

- switchgear 1 (SG1): circuit breaker (control outputs OL.1, OL.2)
- switchgear 2 (SG2): withdrawable truck of a CB (control output OM. 1)
- switchgear 3 (SG3): earthing switch (control output OM. 2))

Examples CSP2-F5:

3. In case of applications with only one circuit breaker (double bus bar):

- switchgear 1 (SG1): circuit breaker (control outputs OL. 1, OL.2)
- switchgear 2 (SG2): disconnect 1 (control output OM. 1)
- switchgear 3 (SG3): disconnect 2 (control output OM. 2)
- switchgear 4 (SG4): earthing switch (control output OM.3)

4. In case of applications with two circuit breakers (double bus bar):

- switchgear 1 (SG1): circuit breaker 1 (control outputs OL. 1, OL.2)
- switchgear 2 (SG2): circuit breaker 2 (control outputs OL.3, OM4.3 and OM4.4)
- switchgear 3 (SG3): disconnect (control output OM. 2)
- switchgear 4 (SG4): earthing switch (control output OM.3)

5. In case of applications with two circuit breakers (withdrawable truck/double bus bar):

- switchgear 1 (SG1): circuit breaker 1 (control outputs OL.1, OL.2)
- switchgear 2 (SG2): circuit breaker 2 (control outputs OL.3, OM4.3 and OM4.4)
- switchgear 3 (SG3): withdrawable truck of a CB1 (control output OM. 2)
- switchgear 4 (SG4): withdrawable truck of a CB2 (control output OM. 2)
- switchgear 5 (SG5): earthing switch (control output OM.3)

Supervision functions for the power circuit

- Short-circuit supervision of the control outputs.
- Protection from destruction of the power circuit due to wrong polarization of the auxiliary control voltage (in this case, however, no output of a control command is possible).
- Supervision for presence of auxiliary control voltage.
- Supervision of the control outputs (see chapter. "Control circuit supervision CCS")
- Supervision for internal semiconductor short circuit

Heeding the protective function "Control Circuit Supervision (CCS)"

This protective function serves to increase the availability of swichgears. Here the control circuits of the switchgears connected to the CSP2 are cyclically tested for disconnection. When a disturbance is detected, it will immediately be reported by the CSP2.
For the Control Circuit Supervision (CCS) to be able to monitor the control circuits efficiently, attention must be paid while projecting that no auxiliary contacts whatsoever of the switchgears can disconnect the control circuits! Some switchgear manufacturers, however, insert disconnector contacts into the control circuits of the switchgears (e.g. in the case of power circuit breakers) in order to prevent repeated trip of the control coils (anti-pumping) when a faulty check back signal of the switchgear occurs.

Note

The CSP2 prevents an "anti-pumping" behaviour by a consequent supervision of each individual switching operation (see chapter "Control Times")! Consequently, the above mentioned disconnector contacts may in general be omitted when connecting switchgears to the CSP2!

Should disconnector contacts be present after all, they have to be bridged over by a resistance (approx. $1 \mathrm{k} \Omega, 2 \mathrm{~W}$) so that the supervision current generated by $\operatorname{CSP} 2(5 \mathrm{~mA})$ can flow when executing the control circuit supervision.
(For more details see chapter "Control Circuit Supervision")

2.1.4 Current measuring (X2)

Description

The CSP2 disposes of four current measurement inputs: Three for measuring the phase currents $I L 7, I L 2, I L 3$ and one for the earth current measurement $l e$. Each current measurement input is provided with three terminals. Thereby it is possible to connect current transformers with a secondary nominal current of 1 A or 5 A . The adaptation of the secondary nominal value can be done by parameter selting.

Note
For phase current measurement all phase current transformers must have the same secondary nominal current!
The earth current input can either be used as measurement input for a separate earth current transformer (ring core transformer) or is switched into the sum path of the phase current transformers (Holmgreen circuit).

- ring core transformer: for the earth current path another nominal current can be selected than for the phase current paths.
- The settings of the field parameter "CT sec" and "ECT sec" for the secondary nominal current (1 A or 5 A) of phase and earth current path must be equal!

Figure 2.12: Detail of current measurement inputs

Current Measuring Inputs				Available in CSP2-	
Terminal No.	Secondary Rated Transformer current	Primary Measured Quantity	Measuring Range	L	F3 F5
X2.1	1A				
X2.2	5A	Phase currrent ILI	$0 . . .40 \times 1 N$	\bullet	- -
X2.3	N				
X2.4	1A				
X2.5	5A	Phase current IL2	$0 . . .40 \times 1 /$	-	- -
$\times 2.6$	N				
X2.7	1A				
X2.8	5A	Phase current ll3	$0 . . .40 \times 1 / n$	-	- -
X2.9	N				
X2.10	1A				
X2.11	5A	Earth current le	$0 . .20 \times 1 N$	\bullet	- -
X2.12	N				

Table 2.5: Connection of the current measuring inputs

In the following, different connection modes for phase as well as earth current transformers are shown and ex-

 plained.Heeding the power direction when connecting the current transformers In many applications of the CSP2 direction-dependent protective functions are of vital importance. Here, it is necessary to define the power direction definitely in or to use them as a criterion for protection tripping in the case of a fault (e.g. with meshed mains or with the line differential protection system CSP2-L).

Wrongly interpreted power direction by the CSP2 has also consequences for the signs of the displayed measurement values!

Note

In order to correct a wrongly interpreted power direction without a time and money consuming change of wiring, the CSP2 disposes of two field parameters independent of each other (see chapter "Field Parameters"|:

- "CT dir": three-pole correction (three measurement inputs) of the phase position for the phase current paths
- "ECT dir": one-pole correction (one measurement input) of the phase position for the earth current path.
via which the power direction for the CSP2 can be adapted equipment-internally.

Attention

The CSP2 interprets a power direction as positive when:

- the secondary current of a current transformer "flows in" at the terminals of the measurement input for 1 A or 5 A and "flows out" at terminal " N " and
- the field parameter "CT dir" and "ECT dir" have the settings O° (default settings)!

The primary power direction supposed in the following illustrations (reference-arrow direction of the primary phase current [$[7$) a corresponding secondary power direction will result, which is depicted by the reference-arrow direction of the secondary phase current $M 17$ '.

Note
The circuits for connecting the current transformer have in each case been so arranged that the primary power direction on the secondary side of CSP2 will be interpreted as positive with the settings "CT dir = $0^{\prime \prime}$ as well as "ECT dir = O"

Figure 2.13: Connection of current transformers with different secondary nominal currents and earthing of the secondary terminal S1 or S2

Earthing of the secondary coils of current transformers

The secondary coil of a current transformer must be earthed one-sided according to Standard IEC60044. This serves on the one hand as a measure of protection, as in the case of a breakdown of the coil insulation between the primary and the secondary side the mains-side voltage would occur at the secondary side. Consequently, the operation personnel would be endangered. On the other hand, a defined reference point for the measurable quantities is created and inductive interference voltages voltages are conducted to earth.
The secondary terminals S1 or S2 can be earthed optionally (see fig. 2.13). However, this depends on the standards of the different switchboard manufactorers!

Note

When using the Holmgreen circuit as well as the V-circuit and selecting the current transformer secondary terminals (S1 or S2), the right polarity must be chosen when connecting the current transformer to the CSP2.

Three-phase measurement of the phase currents (without earth current measurement)
The three-phase measurement of the phase currents $\lfloor 11, \underline{L} 2$ and $\lfloor 13$ is carried out via three separate current transformers. Depending on the secondary nominal current of the current transformer, the transformer secondary terminals must be connected to the measurement inputs for 1 A or 5 A .

The earthing of the secondary winding can optionally be carried out at S1 or S2. The secondary power direction will not be changed thereby.

Example:

Current transformers with secondary nominal current of 1 A and earthing of the transformer secondary terminals S2.

Figure 2.14: Three-phase current measurement:

[^1]Three-phase measurement of the phase currents (with earth current measurement: ring core transformer)
For applications in which also the earthing current le must be regarded as a criterion, the earth current detection can occur via a direct measurement by a ring core transformer (high precision). The secondary terminals of the ring core transformer must be connected according to the secondary nominal value $(1 \mathrm{~A} / 5 \mathrm{~A})$ to the terminals of the fourth current measurement input of the CSP2.

Note

The earth current measurement via ring core transformer is based on the detection of the sum current resulting from the phase currents in the line: $\underline{L L} 7+\underline{I L} 2+\underline{I L} 3=\underline{I}$ e. In the case of an earth fault, this sum is unequal zero! Thus, when using a ring core transformer, attention must be paid that the shielding of the line at the open end will again be returned by the ring core transformer, as otherwise the sum formation would also consider the current in the shielding. Due to this, however, earth faults, in which the error current flows through the shielding, would not be discovered by the ring core transformer!

The earthing of the secondary terminals can also here be carried out optionally at S 1 or S 2 . The secondary power direction is not changed thereby.

Example:

Current transformers with secondary nominal current of 1A and earthing of the transformer secondary terminals S1

Figure 2.15: Three-phase current measurement:

[^2]Three-phase measurement of the phase currents (with earth current measurement: Holmgreen circuit) If no ring core transformer is available for the detection of the earth current, the fourth current measurement input can be placed in the sum path of the phase currents by simple wiring of the measurement inputs of the CSP2. The geometrical addition formation occurs here by the creation of a sum current path of the phase currents.

Remark

In comparison to the ring core transformer, the measurement of the earth current via the Holmgreen circuit is a little less precise, as here the transfer errors of all three phase current converters add up unfavourably. When using a ring core transformer, however, only its own tolerances have an influence on the measurement.

When using the Holmgreen circuit, the earthing of the current transformer secondary side can on principle also be carried out at the secondary terminals S 1 or S 2 . However, if the not earthed secondary terminals (correspondingly S2 or S1) are connected with the wrong polarity to the current measurement inputs (1A or 5A) of the CSP2, the CSP2 will interpret a reverse power direction. This will influence direction-dependent protective functions and the polarity signs of the measurement values displayed.

Attention

In order to correct a wrongly interpreted power direction without a costly and time consuming wiring change, the CSP2 disposes of two field parameters independent from one another:

- "CT dir": three-pole correction of the phase position for the phase current paths and
- "ECT dir": one-pole correction of the phase position for the earth current path.
via which the power direction can be adapted in the CSP device internally.
Also the following examples for the Holmgreen circuit show wiring for connection of the current transformer where the CSP2 interprets as positive the power directions for the field parameter settings "CT dir $=O^{\circ}$ "as well as "ECT dir $=0^{\circ}$ ".

Example a):

Current transformer with secondary nominal current of 5A and earthing of the transformer secondary terminals S 1 .

Figure 2.16: Three-phase current measurement:

[^3]
Example b):

Current transformer with secondary nominal current of 5 A and earthing of the transformer secondary terminals S 2 .

Figure 2.17: Three-phase current measurement:

- current transformer with secondary nominal current of 5A
- with earth current detection by Holmgreen circuit
- with earthing of the current transformer secondary terminals S2

Two-phase measurement of the phase currents (V-circuit)

Applications where only two current transformers are available for current detection require the so called "V-circuit", in which two of the three phase currents are directly measured via the transformers. The measurement of the third phase current results from the geometrical addition of the two other phase currents.

Example:

Measurement of the phase currents ILI and IL3 with calculation of the phase current IL2 via the V-circuit
For a three wire system with a balanced or unbalanced load applies that the geomerrical addition of the phase currents

$$
\underline{I} L 1+\underline{l} L 2+\underline{l} L 3=0
$$

at any time equals zero! Thus results for the phase current IL2

$$
\underline{\lfloor } L 1+\underline{L} L 3=-\underline{\lfloor } L 2
$$

a) View of the primary side

b) view of the secondary side

Figure 2.18: a) primary phase currents IL1, IL2, IL3 according to amount and phase position
b) secondary phase currents IL1', IL2', IL3' according to amount and phase position

On the secondary side there are only two secondary phase currents available (here ILI' and IL3') whose phase position is in conformity with the corresponding primary currents. By the connection of the secondary circuits of both current transformers (V-circuit) a current path ($\left(122^{\prime}\right)$ is formed which conducts the geometrical addition of the two secondary phase currents ILI I' and IL3' (see Fig. 2.18):

$$
\begin{aligned}
& \underline{L L} 2^{\prime}=\underline{I L} 1^{\prime}+\underline{L L} 3^{\prime} \\
& =\ddot{u}_{1} l l 1+\ddot{U}_{3}\left\lfloor L 3 \quad \text { with: } \ddot{u}_{1}=\ddot{u}_{3}=\ddot{u}:\right. \text { current transformation ratio of the current transformers } \\
& =\ddot{u}(\underline{L} 1+\underline{L} L 3) \quad \text { with: }\lfloor L 1+\underline{L} L 3=-\underline{\varrho} \mid 2 \\
& =-\ddot{~ I L 2}
\end{aligned}
$$

and represents the available value of the primary phase current $\lfloor 12$ correctly according to the amount.
Concerning the phase position, however, the sum current path IL2 formed in this way shows a phase shift of 180° ! The correction of this phase shift must be carried out by a corresponding wiring of the measurement inputs of the CSP2 so that the CSP2 detects the correct phase position of the primary phase current II2 (for this, see the following illustration for the V -circuit).

Attention

The V-circuit can only be used under the condition that the mains can be considered earth faultless. Provided that, the protective functions as e.g. power direction protection $(P>, P \gg, \operatorname{Pr}>, \operatorname{Pr} \gg)$ and unbalanced load protection $||2>| ,2 \gg)$ can be applied. According to the setting of the pickup value of the unbalanced load protection this protective function could also create an alarm at an earth fault and perhaps lead to trip, as then the sum of the phase currents does not equal zero!
As with the V-circuit no real but only a simulated mains star point exists, also the earth over current time functions le> and le>> are only usable via a separate earth current detection with a ring core transformer (see Fig. 2.20)!

The earthing of the current transformer secondary side can entail the same problems in the V -circuit regarding the detection of the power direction as with the Holmgreen circuit. Also in this respect two circuits are given as examples for which the CSP2 recognizes the positive power direction when the field parameter "CT dir $=O^{\circ}$ " has been set.

Example a):

Current transformer with secondary nominal current of 5A and earthing of the transformer secondary terminals S 1 .

Figure 2.19: Two-phase current measurement:

- current transformer with secondary nominal current of 5A
- without earth current detection
- with earthing of the current transformer secondary terminals SI

When using the V -circuit, an earth current detection is only possible via a direct measurement by a ring core transformer. The definition of the earth current via the phase conductors (see Holmgreen circuit) is not possible! The connection of a ring core transformer occurs independently of the V-circuit.

Example b):

Current converter with secondary nominal current of 5 A and earthing of the transformer secondary terminals S 2 .

Figure 2.20: Two-phase current measurement by V -circuit:

- current transformer with secondary nominal current of 5A
- with earth current detection via wire ring core transformer
- with earthing of the current transformer secondary terminals S2

2.1.5 Digital Inputs (X3)

Description

The CSP2 disposes of optic decoupled inputs with own return lines. These inputs serve for the detection of switchgear positions, further cubicle messages or signals from external protective functions (e.g. Buchholz relays at the transformer, backward interlocking etc.). The number of the inputs depends on the extension level of the CSP2 used. The inputs are provided with bridge rectifiers for all specified auxiliary voltage ranges of AC and DC (see chapter "Technical Data"). A bounce control of the input signals is realized by software. The debounce control time can be set for each input separately from 0 to $60,000 \mathrm{~ms}$. Changes in the logic states are recorded with real-time stamps in the non-volatile event recorder.

Figure 2.21: Detail digital inputs

Detection of the switchgear positions
For each switchgear which is to be detected by the CSP2, there are at least two digital inputs provided, one as check back signal for the position ON and the other for the position OFF. This makes possible the detection and display of a fault or an intermediate position. For switchgears like circuit breakers additionally further digital inputs can be used for the states »circuit breaker ready" »spring charged« »circuit breaker removed«.

Switching logic of the digital inputs

The switching logic (open/closed current principle) can be parameterized individually for each input. In this case it will be parameterized if the input shall be recognized as active with or without voltage applied. (For more details see chapter "Digital Inputs).

Operation ranges - response thresholds
Moreover, it is possible to set the response threshold for each of the inputs in two operation ranges (high/low) (For precise threshold values see chapter "Technical Data").

Attention Danger!

For changing the pick-up threshold of a digital input, the cover plate must be taken off. Due to this, there is the danger of getting an electric shock as live parts are no longer protected against touch.

The opening of the device for changing the thresholds of the digital inputs must only be carried out if the device is free of voltage (dead) by specialized/trained personel.

Attention has to be paid that all voltage sources that are connected to the CSP2 are switched off.

- Measurement voltage,
- Auxiliary voltage (power supply)
- Auxiliary voltage of the digital inputs,
- Auxiliary voltage of the power outputs and
- Auxiliary voltages of the signal relay circuits.

The corresponding safety regulations must be observed under any circumstances!

The digital inputs must be connected to the plug-in terminals of row X3. All inputs are combined in several groups. Each group disposes of a common return wire (COM) so that messages fom several voltage sources with different potentials can be processed separately. All inputs are galvanically uncoupled from the CSP device.

The position messages of the switchgears SG1 to SG5 are firmly assigned to the inputs of the first group (DI 1 to Dl 10). The definition of the switchgears SG1 to SG5 as e.g. circuit breakers, disconnectors, switch disconnectors or earthing switches depends on the field configuration in each case. All further digital inputs can be assigned with "input functions", which start the function defined for them, when they are activated.

Examples:

- Assignable field messages (MCB trip, spring charged etc.),
- External protective functions (backward interlocking, blocking etc.,
- Messages from external protective gears (TRIP, Alarm) and
- User-defined messages ("Function 7" to "Function 10")

Digital Input					Available in CSP2-		
DI Groups	Terminal No.	DI-No.	Function Assignment	Description	L	F3	F5
	$\times 3.1$	DII	${ }_{\text {,"SGI Signal O" }}$	Position Switching Device 1: OfF	\bullet	-	\bullet
	$\times 3.2$	DI2	"SG1 Signal I"	Position Switching Device 1: ON	\bullet	-	\bullet
	$\times 3.3$	DI3	${ }^{\text {"SG2 Signal O" }}$	Position Switching Device 2: OfF	\bullet	-	\bullet
	$\times 3.4$	DI4	${ }^{\text {"SG2 Signal I" }}$	Position Switching Device 2: ON	\bullet	-	\bullet
	$\times 3.5$	DI5	${ }^{\text {„S }}$ SG3 Signal 0"	Position Switching Device 3: OfF	\bullet	-	\bullet
Group	$\times 3.6$	DI6	${ }^{\text {"SG3 Signal I" }}$	Position Switching Device 3: ON	\bullet	-	\bullet
	$\times 3.7$	DI7	"SG4 Signal O"	Position Switching Device 4: OFF	\bullet	-	\bullet
	$\times 3.8$	DI8	${ }^{\text {„S }}$ SG4 Signal I"	Position Switching Device 4: ON	\bullet	-	\bullet
	$\times 3.9$	DI9	"SG5 Signal 0"	Position Switching Device 5: OfF	\bullet	-	\bullet
	$\times 3.10$	DIIO	${ }^{\text {„SG5 Signal I" }}$	Position Switching Device 5: ON	\bullet	-	\bullet
	$\times 3.11$	COMI		Common return wire of group 1	\bullet	-	\bullet
	X3.12	DII 1	„Input Function"	assignable	\bullet	-	\bullet
	X3.13	DI12	„Input Function"	assignable	\bullet	-	\bullet
	X3.14	DII3	"Input Function"	assignable	\bullet	-	\bullet
	X3.15	DI14	"Input Function"	assignable	\bullet	-	\bullet
Group 2	X3.16	DI15	"Input Function"	assignable	\bullet	\bullet	\bullet
	X3.17	DII6	"Input Function"	assignable	\bullet	\bullet	\bullet
	X3.18	D117	"Input Function"	assignable	\bullet	\bullet	\bullet
	X3.19	DII 8	"Input Function"	assignable	\bullet	\bullet	\bullet
	$\times 3.20$	COM2		Common return wire of group 2	\bullet	-	\bullet
	$\times 3.21$	DII9	,Input Function "	assignable	\bullet	-	\bullet
	$\times 3.22$	DI20	"Input Function"	assignable	\bullet	-	\bullet
Group 3	$\times 3.23$	D121	"Input Function"	assignable	\bullet	-	\bullet
	$\times 3.24$	D122	"Input Function"	assignable	\bullet	\bullet	\bullet
	$\times 3.25$	COM3		Common return wire of group 3	\bullet	-	\bullet
	$\times 3.26$	D123	„Input Function "	assignable		-	\bullet
	$\times 3.27$	D124	"Input Function"	assignable	-	-	\bullet
Group 4	X3.28	DI25	"Input Function"	assignable	-	-	\bullet
	$\times 3.29$	DI26	"Input Function"	assignable	-	-	\bullet
	$\times 3.30$	COM4	-	Common return wire of group 4	-	-	\bullet

Table 2.6: Connection list of the digital inputs at CSP2-F5

COM: Common return wire of a Dl-group.
Group 1: The digital inputs of this Dl-group (DII to DIIO) are reserved for the check back signals (ON/OFF position) of the switchgear to be detected and war not available for variable configuration. The allocation is firmly fixed by the field configuration.
Group 2...4: The allocation is variably configurable for user-defined additional functions ("Input functions")

Figure 2.22: Connection of the digital inputs of a group

Each digital input provides two voltage ranges for the activation:

- Low-range: 18 to 110 V DC or AC
- High-range: 70 to 300 V DC or 68 to 250 V AC

The switch-over onto the other range in each case occurs via a jumper, which is placed on the top side of the device and is accessible after removal of a cover plate (default: open $=$ high). In this way each input can be switched individually insensitive to interference voltages.

Attention

Especially when using applications with long unshielded signal wires which are led from the periphery to the digital input, inductive or capacitive coupling can cause undesired activation of the digital input. Thus the default setting is always preset at the high range (jumper).
In general, when projecting there should be paid attention to the fact that only shielded wires are used for long signal lines in order to avoid the antenna effect, which would otherwise be created!
Should only unshielded lines be available (specially in old systems), the following measures are to be taken to eliminate the above mentioned EMC problems:

- The contacts for signals to the digital inputs must be available as changeover contact (periphery) so that in the unswitched state the normally closed contact conducts the signal line to the same potential as that of the common return wire (see fig. 2.22). Thereby the arising antenna effect will be eliminated.
- Use of a decoupling relay
- Wiring of the digital inputs with corresponding RC-elements

2.1.6 Auxiliary Voltage Supply (X4)

Voltage supply
The auxiliary voltage supply for the CSP2 will be connected to the plug-in terminals X4. The wide-range power pack of the CSP2 as well as of the CMP1 makes a special setting of the voltage level superfluous. The auxiliary voltage must only be in the admissible range of

- 19 to 395 V DC or
- 22 to 280 V AC.

The auxiliary voltage input is provided with its own rectifier so that polarity faults are impossible. The terminals X4.1 and X 4.2 as well as X 4.3 and X 4.4 are internally bridged. Therefore the terminal block X 4 can also serve as power supply connection for the CMP1.

Figure 2.23: Detail equipment auxiliary voltage supply

Earthing
The separately constructed screw-type terminals X4.5 and X4.6 serve for reliable earthing of the system. It is recommended to lead a conductor of 4 to $6 \mathrm{~mm}^{2}$ cross section from the earthing screw on a possibly direct way to a common earth connection point.

Note

With regard to the earthing connection as well as the connection of the auxiliary supply voltage, the corresponding regulations must be observed.

Figure 2.24: Connection of auxiliary voltage/earthing

Auxiliary Voltage Supply of the CSP2				Available in CSP2-		
Terminal No.	Connection of Supply Voltage	Description	Note	L	F3	F5
X4.1	L-	Aux. voltage -/ \approx for the CSP2	Internally bridged:	-	-	-
X4.2	L-	Aux. voltage $-/ \approx$ for the CMP1	Parallel Supply for the CMP 1	-	-	-
X4.3	L+	Aux. voltage $+/ \approx$ for the CSP2	Internally bridged:	-	-	\bullet
X4.4	L+	Aux. voltage $+/ \approx$ for the CMP1	Parallel Supply for the CMP 1	-	-	-
X4.5	PE	Earthing terminal for the CSP2	Internally bridged:	-	-	-
X4.6	PE	Earthing terminal for the CMP 1	Parallel Supply for the CMP1	-		-

Table 2.7: Terminal allocation of the auxiliary voltage supply

2.1.7 Voltage measurement (X5)

Description

The CSP2 is equipped with four voltage measurement inputs. Three are for the detection of the line-to-line voltages $\underline{U} 12, \underline{U} 23, \underline{U} 31$ or of the phase voltages $\underline{U} L 1, \underline{U} L 2, \underline{U} L 3$ and one for the detection of the residual voltage \underline{U} e. Each measurement channel is completely galvanically decoupled and equipped with two connections which are connected to the plug-in terminal strip X5 .

Note

For measurement of line-to-line voltages all phase voltage transformers must possess the same secondary nominal voltage! The residual voltage Ue can either be measured directly by the series connection of the three e-n-windings of the phase voltage transformer or be calculated from the measured phase voltages.

- Direct measurement (e-n-windings): for the residual voltage measurement channel other nominal voltages can be selected than for the phase voltage measurement channels.
- Calculatory determination:

The fourth voltage measurement channel is not necessary!

Figure 2.25: Voltage measurement inputs

Terminal No.	Voltage measuring inputs					Available in CSP2-					
	Measurement LN		Measurement LL		Measuring range						
	Wiring of the measuring inputs	Primary measured quantity	Wiring of the measuring inputs	Primary measured quantity		L	F3)			
X5.1	Line Conductor L1	Phase voltage UL1	Line Conductor L1	Line-to-line voltage U12	$0 . .230 \mathrm{~V}$	-	-	\bullet			
X5.2	Neutral Conductor		Line Conductor L2								
$\times 5.3$	Line Conductor L2	Phase voltage UL2	Line Conductor L2	Line-to-line voltage U23	$0 . .230 \mathrm{~V}$	- -		-			
X5.4	Neutral Conductor		Line Conductor L3								
$\times 5.5$	Line Conductorl3	Phase voltage Ul3	Line conductor L3	Line-to-line voltage U31	O... 230 V	-	-	\bullet			
$\times 5.6$	Neutral Conductor		Line Conductor L1								
$\times 5.7$	da (formerly „e")	Residual Voltage Ue			$0 . .230 \mathrm{~V}$	- -					
X5.8	dn (formerly , $\mathrm{n}^{\prime \prime}$)										

Table 2.8: Terminal allocation for voltage measurement

Earthing of the secondary windings of voltage transformers;
The secondary winding of a voltage transformer must be earthed one-sided according to the standard of IE600442. On one hand, this serves as a protective measure, as in case of a breakdown of the coil insulation between the primary and the secondary side, the mains-side voltage would occur at the secondary side. Consequently, the operating personnel would be endangered. On the other hand, a defined reference point for the measurable quantities will be created from the measurement technique standpoint by the earthing of the secondary windings, and inductive interference voltages will be earthed. The earthing of the secondary terminals must be carried out, as a rule, according to the circuit examples as follows:

Considerations of the rotation field direction of the impressed mains voltage
The mains voltages provided by energy supply utilities have a constant amplitude in normal operation as well as a fixed frequency (mains quality) and carry as a rule a clockwise rotation field. However, there are regions in which the mains field rotates anti-clockwise.
Depending on the rotation field direction of the mains voltages, the phase voltages $\underline{U} L 1, \underline{U} L 2, \underline{U} L 3$ as well as the line-to-line voltages $\underline{U} 12, \underline{U} 23, \underline{U} 31$ lline to line voltages) thus have the following phase positions:
a)

Figure 2.26: Phase position of the phase and line-to-line voltages in
b)

a) the clockwise rotation field
b) the anti-clockwise rotation field

The phasor diagram in general presents a time snap-shot of the rotating voltage vectors. Here the position of the voltage vectors corresponds to the phase displacements of the individual voltages in relation to each other. The rotation direction of the voltage vectors proceeds in electrical engineering anti-clockwise and is defined as "mathematically positive".
The sinusodial wave form of the phase voltages $u_{\text {IN }}(t)$ and line-to-line voltages $u_{\| I}(t)$ result from the phasor diagram of the voltage vectors.

A comparison of both systems shows that in the anti-clockwise rotation field the wave form of the phase voltages $\underline{U} L 2, \underline{U} L 3$ (and thus also their line-to-line voltages $\underline{U} 23, \underline{U} 31$) in relation to the clockwise rotation field (phase sequence: (phase sequence: $L 1 \rightarrow L 2 \rightarrow L 3$) result in the phase sequence: $L 1 \rightarrow L 3 \rightarrow L 2$.

Note

In the case of the anti-clockwise rotation field of the mains voltages the changed phase sequence has an effect on certain protective functions and the display of measurement values!

Figure 2.27:
a) clockwise rotation field vector diagram:

- instantaneous display of the rotating voltage vectors for $t=0$ - wave form of the phase and line-to-line voltages

Figure 2.28
a) anti-clockwise rotation field vector diagram:

[^4]
"Measurement of the phase-to-neutral voltage $L N$ " or "Measurement of the line-to-line voltage $L L$ " at the measurement

 locationMedium voltage systems are in general configured as three-wire systems. According to quantity and type of the voltage transformers used, either a secondary four-wire system or three-wire system can develop at the measurement location (mounting point of the voltage transformers).

A secondary four-wire system can only be constructed with three single-pole insulated phase voltage transformers, in which the secondary measurement coils $(a-n)$ are earthed at the terminals n so that an image of the star point results. This serves for direct measurement of the phase voltages $\underline{U} L 1, \underline{U} L 2, \underline{U} L 3$ (measurement $L N$).

A secondary three-wire system can either be derived from the four-wire system (no connection of the n-wire to the CSP2) or be realized by use of two double-pole insulated line-to-line voltage tranformers in V-circuit. In case of the three-wire system, the line-to-line voltages $\underline{U} 12, \underline{U} 23, \underline{U} 31$ are measured directly (measurement LL).

Remark

In case of unearthed systems (three-wire system with star point not neutral earthed) the "Measurement LN" is not to be recommended, as the secondary-side star point is no image of the primary-side star point. Due to this degree of liberty of the measurement system the phase voltages can turn into any values although the line-to-line voltages are fully in the normal range. False tripping by over- or under-voltages as well as inconsistent measurement values due to a high harmonics content by the circling star point could be the consequence.

Setting of the voltage transformer ratios in the CSP2
For a correct calculation of the secondary voltage measurement values by their corresponding primary values, it is necessary to set the transformation ratio of the voltage transformer in the CSP2.
The setting of the (always the same) transformation ratio of the phase voltage transformer is carried out in the threepole method (three measurement inputs) via the common field parameter "VT pri." for the primary line-to-line nominal voltages, and "VT sec." for the secondary nominal line-to-line voltages.

The setting of the (always the same) transformation ratio of the voltage transformer for earth fault detection (earth voltage transformer) is carried out in single-pole method (one measurement input) via the field parameter "EVT pri" for the primary nominal line-to-line voltages, and "EVT sec" for the secondary nominal voltages of the auxiliary windings for earth fault detection (da -dn).

Attention

Usually transformer manufacturers indicate the transformation ratios of a voltage transformer with two secondary measurement windings in the following way:
prim. line-to-line voltage $/ \sqrt{ } 3$: sec. line-to-line voltage (da- $/ \sqrt{ } 3$: sec. line-to-line voltage (da -dn$) / 3$

Example: voltage transformer with two secondary auxiliary windings with different transformation ratios concerning the secondary measurement windings
$10 \mathrm{kV} / \sqrt{ } 3$: sec. $100 \mathrm{~V} / \sqrt{ } 3: 115 \mathrm{~V} / 3$

When setting the primary nominal voltage as well as the secondary nominal voltages of the voltage transformer, the factors " $1 / \sqrt{ } 3^{\prime \prime}$ and "3"must not be included!
These factors are taken into account automatically via the software of the CSP2 according to the setting of the field parameter "VT con" for the measurement circuit of the phase voltage transformers (measurement LN or LL) as well as the field parameters "EVT con" depending on the processes for detecting the residual voltage (direct measurement or calculatory determination based on the measured phase voltages).

Example: Settings of the field parameter for the above mentioned voltage transformers

"VT prim	10000"	„EVT prim	=	10000"
"VT sec	$=100^{\prime \prime}$	„EVT sec	=	115"
„VT con	$=Y / \Delta / V^{\prime \prime}$	„EVT con		calculate/open $\Delta^{\prime \prime}$

Attention

The measurement ranges of the voltage measurement inputs lie in each case between 0 and 230 V . Should e.g. voltage transformers with a secondary nominal voltage of 230 V be used, the setting of the field parameters "EVT sec" would have to be 230 V! This means, however, that overvoltages will not be detected any more by the CSP2!
For the application of the voltage protection functions $U>$ and $U \gg$ this signifies a reduction of the maximum setting of the response values on $1 \times$ Un! Would the response values be selected higher, the active protective steps would never be able to trip!

As a rule, the voltage transformers possess, however, secondary nominal voltages of 100 respectively 110 \checkmark so that a detection of overvoltages is possible without problems.

Detection of the residual voltage Ue
Direct measurement of the residual voltage Ue
For a direct measurement of the residual voltage Ue, three voltage transformers must be present which dispose each of an additional measurement coil (da - den, former designation: e-n) for earth fault detection. These auxiliary windings are connected in series (open delta connection) and led to the fourth voltage measurement input of the CSP2. The direct measurement of the residual voltage is thus independent from the measurement of the phase or line-to-line voltages (measurement LN respecively measurement LL)!

Calculatory determination of the residual voltage Ue
When using voltage transformers with only one measurement winding $(a-n)$ each, the residual voltage cannot be measured directly! However, there is the possibility to calculate the residual voltage Ue from the measured phase voltages ULI I, UL2, UL3. This requires, however, a secondary four-wire system (measurement LN) to which the voltage measurement inputs of the CSP2 will have to be connected in star connection!

Secondary four-wire system (measurement LN): three-phase measurement of the primary phase voltages
The three-phase measurement of the phase voltages $\underline{U} L 1, \underline{U} L 2, \underline{U} L 3$ occurs via three single-pole insulated phase voltage transformers whose measurement windings ($a-n$) are connected to the corresponding measurement inputs of the CSP2.
The line-to-line voltages $\underline{U} 12, \underline{\cup} 23, \underline{U} 31$ in this case are calculated from the phase voltages!
Wiring of the measurement inputs of the CSP2
For a three-phase measurement of the phase voltages, the measurement inputs of the CSP2 must be connected in "star connection" to the four wire secondary system.

Example a):

Three-phase voltage transformer with only one secondary measurement winding ($a-n$) each

Figure 2.29: Three-phase voltage measurement

- three single-pole insulated voltage transformers: four wire secondary system
- wiring of the measurement inputs: "star connection"
- no auxiliary windings (da-dn) for earth fault detection!

Detection of the residual voltage Ue
With this circuit no direct measurement of the residual voltage Ue is possible, as here the voltage transformers do not have secondary measurement windings ($\mathrm{da}-\mathrm{dn}$) for earth fault detection! However, the CSP2 can determine the residual voltage by calculation of the geometrical addition of the measured phase voltages.

Required settings of the field parameters and protective parameters (should the latter be necessary):

Four wire secondary system					Available in CSP2-		
Parameter		Adjustment	Note	Classed as	L	F3	F5
Field Parameter	VT con	"Y"	Measuring of phase voltages	Compulsory!	-	-	-
	EVT con	"geometrical addition"	Computation of Ue	Compulsory!			
Protection Parameters (U>, U>>, U<, U<<)	Measurement	"Voltage LN"	Pick-up value of active protection function, refers to phase voltages	Optionally	-	-	\bullet
		"Voltage LL"	Pick-up value of active protection function, refers to line-to-line voltages	Recommend.			

Table 2.9: Parameter settings in "star connection" without measurement of the residual voltage Ue

Example b):

Three-phase voltage transformer with two secondary measurement windings ($a-n$ and $d a-d n$) each

Figure 2.30: Three-phase voltage measurement:

- three single-pole insulated voltage transformers: four wire secondary system
- wiring of the measurement inputs: "star connection"
- with auxiliary windings (da-dn) for earth fault detection

Detection of the residual voltage Ue
With this circuit the residual voltage U e is measured directly via the open delta connection of the auxiliary windings (da - dn). However, alternatively the CSP2 can determine the residual voltage by calculation of the geometrical addition of the measured phase voltages.

Required settings of the field parameters and if necessary protective parameters:

Four wire secondary system (measurement of Ue)					Available in CSP2-		
Parameter		Adjustment	Note	Classed as	L	F3	F5
Field parameter	VTT	"Y"	Measurement of phase voltages	Compulsory!	-	-	-
	EVTT	"Open Delta"	Direct measurement of Ue	Recommend.			
		"geometr. in addition"	Calculation of Ue	Alternatively			
Prot. parameter (U>, U>>, U<, U<<)	Measurement	"Voltage LN"	Pick-up value of the active protection function refers to phase voltages	Optionally	\bullet	-	\bullet
		"Voltage LL"	Pick-up value of the active protection function refers to line-to-line voltages	Recommend.			

Table 2.10: Parameter settings in "star connection" with measurement/calculation of the residual voltage Ue

Secondary three-wire system (measurement LI): three-phase measurement of the primary line-to-line voltages The three-phase measurement of the line-to-line voltages $\underline{U} 12, \underline{U} 23, \underline{U} 31$ occurs via three single-pole insulated phase voltage transformers whose measurement windings ($a-n$) are connected to the corresponding measurement inputs of the CSP2.
The phase voltages $\underline{U} L 1, \underline{U} L 2, \underline{U} L 3$ in this case cannot be calculated from the line-to-line voltages $\underline{U} 12, \underline{U} 23, \underline{U} 31$, as here the CSP2 has no reference point for the phase voltages!

Wiring of the measurement inputs of the CSP2
For a three-phase measurement of the phase voltages, the measurement inputs of the CSP2 must be connected in "delta connection" to the secondary three-wire system.

Example a): Three-phase voltage transformer with only one secondary measurement winding ($a-n$) each

Figure 2.31: Three-phase voltage measurement:

- three single-pole insulated voltage transformers: three-wire secondary system
- wiring of the measurement inputs: "star connection"
- no auxiliary windings (da-dn) for earth fault detection!

Detection of the residual voltage Ue
A calculation of the residual voltage $U e$ is not possible here!
Required settings of the field parameters and if necessary protective parameters:

Three wire secondary system					Available in CSP2-		
Parameter		Adjustment	Note	Classed as	L	F3	F5
Field Parameters	VT con	${ }^{\prime \prime} \Delta^{\prime \prime}$	Measurement of line-to-line voltages	Compulsory!	-	-	-
Protect. Parameters (U>, U>>, U<, U<<)	Measurem.	„Voltage LL"	Pick-up value of the active protection function refers to line-to-line voltages	Compulsory!	-	-	-
Protect. Parameters Ue>, Ue>>1	Function	„inactive"	Protection elements must not be activated, they are ineffective!	Compulsory!	\bullet	-	-
Protect. Parameters (non-direct.: le>, le>>)	Ue Block	„inactive"	Ue must not be used as additional trip criterion because Ue cannot be identified!	Compulsory!	-	-	\bullet
Protect. Parameters (directional: le>, le>>)	Direction	„inactive"	Ue must not be used as criterion for defining the direction, because Ue cannot be identified !	Compulsory!	-	-	\bullet

Table 2.11: Parameter settings in "delta connection" without measurement/calculation of the residual voltage Ue

Example b) Three-phase voltage transformer with two secondary measurement windings (a-n and da-dn) each

Figure 2.32: Three-phase voltage measurement:

- three single-pole insulated voltage transformers: three-wire secondary system - wiring of the measurement inputs: "delta connection"
- no auxiliary windings (da-dn) for earth fault detection!

Detection of the residual voltage Ue
With this circuit the residual voltage U e is measured directly via the open delta connection of the auxiliary windings ($d a-d n$)!
A calculation of the residual voltage Ue from the phase voltages is not possible here!

Required settings of field parameters and protective parameters

Three wire secondary system (measurement of Ue)					Available in CSP2-	
Parameter		Adjustment	Note	Classed as	L F3	F5
Field Parameters	VT con	" $\Delta^{\prime \prime}$	Measurement of line-to-line voltages	Compulsory!	- -	-
	EVT con	"Open Delta"	Direct measurement of Ue	Compulsory!		
Protect. Parameters ($U>, U \gg, U<, U \ll 1$	Measurem.	„Voltage LL"	Pick-up value of the active protect. function refers to line-to-line voltages	Compulsory!	- -	\bullet

Table 2.12: Parameter setting for "Delta Connection" with measurement of the residual voltage Ue

Secondary three-wire system (measurement Ll): two-phase measurement of the primary line-to-line voltages In this case the secondary three-wire system is formed only by two two-pole insulated voltage transformers, in which the secondary measurement windings ($a-b$) are connected in "V-connection" to the corresponding measurement inputs of the CSP2! In this way the line-to-line voltages $\underline{U} 12$ and $\underline{U} 23$ can be measured directly. The calculation of the third line-to-line voltage $\underline{U} 31$ is carried out indirectly via the measurement of the geometrical addition of the line-to-line voltages $\underline{U} 12$ and $\underline{\underline{U}} 23$, which has been formed by the two (V-circuit) measurement windings.
The phase voltages $\underline{U} L I, \underline{U} L 2, \underline{U} L 3$ also in this case cannot be calculated from the line-to-line voltages $\underline{U} 12, \underline{U} 23$, $\underline{U} 37$, as here the CSP2 has no reference point for the phase voltages!

Wiring of the measurement inputs of the CSP2
For a two-phase measurement of the line-to-line voltages, the measurement inputs of the CSP2 must be connected in "delta connection" to the three wire secondary system.

Example: Two line-to-line voltage transformers with only one secondary measurement winding (a-b) in V-connection each

Figure 2.33: Two-phase voltage measurement:

- two two-pole insulated voltage transformers: three wire secondary system
- wiring of the measurement inputs: "delta connection"
- no auxiliary windings (da-dn) for earth fault detection!

Detection of the residual voltage Ue
A calculation of the residual voltage U e is not possible here!
Required settings of the field parameters and protective parameters:

Three wire secondary system (V-connection)					Available in CSP2-		
Parameter		Setting	Remark	Classed as	L	F3	F5
Field Parameters	VT con	"V"	Measurement of the line-to-line voltages	Compulsory!	\bullet	-	-
Protect. Parameters (U>, U>>, U<, U<<)	Measurem.	"Voltage LL"	Pick-up value of the active protect. function refers to the line-to-line voltages	Compulsory!	-	-	-
Protect. Parameters (Ue>, Ue>>)	Function	„inactive"	Protection steps must not be activated, they are ineffective !	Compulsory!	\bullet	-	-
Protect. Parameters (non-direct.: le>, le>>)	Ue Block	„inactive"	Ue must not be used as additional trip criterion because Ue cannot be identified!	Compulsory!	-	-	\bullet
Protect. Parameters (directional: le>, le>>)	Direction	„inactive"	Ue must not be used as criterion for defining the direction, because Ue cannot be identified !	Compulsory!	-	-	\bullet

Table 2.13: Parameter settings in "delta connection" without measurement/calculation of the residual voltage Ue

2.1.8 Signal relay outputs (X6)

Description

The signal relays serve for further processing (parallel wiring) of messages or protective functions (e.g. backward interlocking). Each signal relay is provided with a potential-free changeover contact, i.e. a further processing as normal closed contact or normal open contact only depends on the connecting.
All signal relays can be parameterised variably with up to 16 defined output messages. The output messages connected to a signal relay are linked by $O R$-operation, i.e. if one of these functions becomes active, the relay switches the contacts.

Figure 2.34: Detail view of signal relays

The following illustration shows the signal relays with their contact assignment:

Figure 2.35: Connections of the signal relay of CSP2-F5

Attention

A direct controlling of switchgears (e.g. trip of a circuit breaker) via the signal relay contacts should be avoided because of the electrical dimensioning of the changeover contacts (pay attention to max. switching capacity of the signal relay contacts!! and the longer response time of the signal relay!

Table 2.14: Contact assignment of the signal relays

2.1.9 Communication interfaces

Overview
The SYSTEM LINE disposes of a high compatibility for connection of the different communication levels ISCADA respectively multi-device communication). For this purpose the basic unit CSP2 offers a number of different (partly optional) communication interfaces via which data can be exchanged with the periphery.

		Communication Optio	: Inferfaces	d Data Protoc			$\begin{aligned} & \text { ailab } \\ & \text { CSP } \end{aligned}$	
			Design of Plug		Type			
				only CSP2-F	only CSP2-L			
X7	FO1/TxD	FOC up to 2 km (CSP2-L: optionally up to 25	$\mathrm{BFOC} 2,5 \mathrm{ST}{ }^{\text {® }}$)	IEC 60870-5-103	SCl communication with	\bullet	o	o
	FO1/RxD	km)		MODBUS RTU	oppos. station (CSP2-L)			o
					IEC 60870-5-103			
X8	$\begin{aligned} & \mathrm{FO} 2 / \mathrm{TxD} \\ & \mathrm{FO} 2 / \mathrm{RxD} \end{aligned}$	FOC up to 2 km	BFOC 2,5 (ST ${ }^{\text {® }}$)	PROFIBUS DP	MODBUS RTU	o	o	o
					PROFIBUS DP			
X9	RS232*	Electrical	9-pole D-SUB	SEG Protocol	SEG Protocol	*	*	*
$\times 10$	CAN1	Electrical	9 -pole D-SUB	Internal System Bus	Internal System Bus	-	-	-
$\times 11$	CAN1	Electrical	9 -pole D-SUB	Internal System Bus	Internal System Bus	-	-	-
				IEC 60870-5-103	IEC 60870-5-103			
$\times 12$	RS485	Electrical	9-pole D-SUB	MODBUS RTU	MODBUS RTU	o	o	o
				PROFIBUS DP	PROFIBUS DP			

Table 2.15: Summary of Communication Options in the CSP2
o optional

* in preparation

[^5]Primary communication level: CSP2 - SCADA
At the primary communication level the SCADA is in the foreground. According to region and application there exist at present different philosophies for data exchange which with respect to the degree of demand for safety, data redundancy and information content require different types of protocol.

In the CSP2 four types of data protocol are provided at present:

- IEC 60870-5-103
- PROFIBUS DP
- MODBUS RTU

Note

The devices of the SYSEM LINE contain only the communication interface (hardware) ordered on the basis of according to the order form as well as an adapted software of the CSP2 adjusted to the desired data protocol for connection to the SCADA-system. The SCADA-system is not included in the scope of delivery.

Physical connection of the CSP2 to the computer of the SCADA-system
For the physical connection (interfaces) of the devices to the computer of the SCADA-system the customer either desires electrical or fibre optic communications. In order to fulfill both requirements here too, the CSP2 can either be equipped with an electrical RS485 interface or alternatively with a transmit and receive module for the connection of two fibre optics (FO).

Attention

Depending on the type of device (CSP2-F or CSP2-L) of the desired type of protocol and the physical interface variant, the data transfer to the SCADA occurs either via the interfaces X7, X8 or X12 (see table 2.15)!

Remarks to the communication variant "Profibus DP/RS485 respectively FO"
By opening the cover of the inspection access, three LED-displays become visible which give information about the status of communication between master and slave. This is e.g. very useful at the commissioning of CSP2/CMP1systems in order to control the communication to the connected automatization system.

Functions of the LED-displays in the inspection access
Only after recognizing a connected PROFIBUS-Master, the two green LEDs (1 and 2) light up. If an internal disturbance occurs, the LED "Error" (3) lights up red.

- LED 1: This LED is permanently lit green when the communication connection between the CSP2 (slave) and the automatisation system (master) has been established.
- LED2: This is a temporary display. The LED only lights up green when master and slave have exchanged data.
- LED 3: When the auxiliary supply voltage is switched to the CSP2, the LED "Error" begins to light, as the communication has not yet been established. Only when the boot phase of the CSP2 has been finished and the communication to the automatisation system functions correctly, the LED "Error" goes off.

Figure 2.37: Opened inspection access CSP2

Secondary communication level: CSP2-PC/Notebook (in preparation)
On the secondary communication level operation of the CSP2/CMP1-systems can be carried out via the PC-software SL-SOFT. For this, the PC/notebook can be directly connected to the correspondingly provided R232interface of the CSP2 via a zero-modem cable.

Note

The required parameter settings for the different communication variants are treated in detail in chapter
"Main menu of the CSP2".

2.1.9.1 FO-Interface (X7)

Description

The optional interface X7 is provided for connecting two fibre optics (FO) to the CSP2, one of which serves as a transmission line (FO1/TxD), the other as a receiving line (FO $1 / R_{x D}$):

FO 1: "Fibre Optic 1" (identification of the upper FO-module (see Figure 2.36))
RxD: "Receive of Data"
TxD: "Transmission of Data"

Attention

According to the different types of devices, interface $X 7$ is used

- feeder protection CSP2-F for the communication to SCADA-system
- as line differential protection CSP2-L for communication with the partner device (CSP2-L at the other end of the line)
(see table 2.15) !

Interface $X 7$ for SCADA communication in feeder protection CSP2-F
In the feeder protection system the interface $X 7$ serves for connecting the CSP2 to a central computer of the SCADAsystem via fibre optic (FO).
Table 1.5 "Overview of the communication option in CSP2" shows that via interface X7 only the data telegrams of the following protocol types can be processed:

- IEC 60870-5-103
- MODBUS RTU
(communication option PROFIBUS DP: see chapter. "FO-interface X8" !)

Figure 2.38: CSP2 interface X7

Interface X7 for device-device communication in line differential protection system CSP2-L
In the cable/line differential protection system the necessary data exchange between the two devices (CSP2-L) takes place via two fibre optics (FO) (transmit/receive). Here the interface $X 7$ serves in each case for the connection of the fibre optics (FO) for device-device communication between the two devices CSP2-L.

Figure 2.39: CSP2-l: Device-device communication interface X7

Range of the FO (fibre optic)-module and max. FO-length
In general the maximum range depends on the minimum transmission and reception power of the FO-module at which the input or output signals can still be detected. As the minimum transmission and reception power is in a reciprocal relationship to the total attenuation of the communication distance, it results in a maximum line attenuation from which the maximum FO-length (single length) can be calculated via the specific fibre optic attenuation.

The maximum total attenuation ($\kappa_{\text {GES }}$) of the communication distance depends on:

- the specific attenuation (Θ) and the length of the line fibre used (the technical data (in $\mathrm{dB} / \mathrm{km}$) of the manufacture has to be taken into account),
- the transmission method of the fibre optic signals and thus the kind of line fibre used (multimode or monomode),
- the attenuation of the connection plugs ($\kappa_{1}=$ max. 1 dB for a plug connection),
- the attentuation ($\kappa_{2}=$ max. 0.3 dB) due to aging of LED
- the attenuation $\left(\kappa_{3}\right)$ due to the number (N) of the splices on the fibre optic distance (depending on the quality of the implementation, an additional attenuation of up to 1 dB per splice must be taken into account).

For determining the max. FO-length for each distance, the following formula can be used as an approximation:

$$
I_{\text {FOMax }}=\left(\kappa_{\text {Total }}-\kappa_{1}-\kappa_{2}-N \times \kappa_{3}\right) / \Theta
$$

Max. FO-length (device types CSP2-F3/-F5 and CSP2-L1)

For the device types of the feeder protection CSP2-F3/-F5 and the type CSP2-L1 of the line differential protection, the same FO-module (multimode method) is used for interface X 7 .
From the minimum transmission and reception performance, a maximum total attenuation of the communication distance of 10 dB results for his FO -module.

Example:
Supposing the FOs have been mounted without splices, and without taking into account the attenuation for the end plug connections (e.g. $2 \times 0.85 \mathrm{~dB}$) and the attenuation by LED-aging effects (e.g. $0,3 \mathrm{~dB}$), a maximum line attenuation of 8 dB exists.
Commercial fibre optics (multi-mode fibers) in general show a specific attenuation between 3 and 4 dB so that the max. line length of the FOs is between 2.7 and 2.0 km .

Max. FO-length (device type CSP2-L2)
For device types CSP2-L2 of the line differential protection, an FO-module is used for the interface X7 that processes the optical signals via monomode method with which higher ranges can be achieved.
From the minimum transmission and reception performance, a maximum total attenuation of the communication distance of 9 dB results for this FO-module.

Example:
Supposing the FOs have been mounted without splices, and without taking into account the attenuation for the end plug connections (e.g. $2 \times 0.85 \mathrm{~dB}$) and the attenuation by LED-aging effects (e.g. 0.3 dB), a maximum line attenuation of 7 dB exists. Commercial fibre optics (multi-mode fibers) in general show a specific attenuation between 0.35 and 0.5 dB so that the max. line length of the $F O$ is between 20 and 14 km.
(For more details see chapter "Technical Data")

2.1.9.2 FO-Interface (X8)

Fibre optic (SCADA)
The optional interface X8 is also provided for connecting two fibre optics (FO) to the CSP2, one of which serves for transmission ($\mathrm{FO} 2 / \mathrm{T}_{\times \mathrm{D}}$), the other for receiving data (FO2/R×D):

FO2: "Fibre Optic 2" (identification of the upper module (see Figure 2.36))
RxD: "Receive of Data"
TxD: "Transmission of Data"
Via interface X8 only data protocols for the SCADA communication can be transmitted. (see Table 2.15)!

Figure 2.40: CSP2: SCADA communication X8

Attention

- Feeder protection CSP2-F:
- Line differential protection CSP2-L:

Due to special hardware prerequisites for using PROFIBUS DP as data protocol, the SCADA communication can only be realized via interface X8!

As the interface X 7 at CSP2-L in general is reserved for the device-device communication, SCADA-system can only be attached via interface X 8 .

Note

The FO-module used for interface X8 is the same as the FO-module of the interface X7 for devices CSP2-F3/-F5 and CSP2-L1!

2.1.9.3 RS232 PC-interface (X9) (in preparation)

PC-interface with RS232 protocol
With the 9-pole D-sub-plug a PC/laptop can directly be connected via a zero-modem cable. For exchange of data with the CSP2, the operation software SL-SOFT (parameter setting and evaluation software) is required.

PIN	Function
2	TxD
3	RxD
5	Ground
Socket housing	Shielding

Attention

The maximum line length of the zero-modem cable is 5 m ! The line should in any case dispose of a shielding in order to avoid interference effects.

Figure 2.41: CSP2: PC-interface RS232 (in preparation)

2.1.9.4 CAN-BUS-interfaces (X10/X11)

CAN-BUS communication between CSP2 and CMP1
Two 9-pole D-sub-sockets are provided for communication between CMP1 and CSP2. Both connectors of the CANBUS are internally feeded through so that the CSP2 can be connected without any problem to a bus system (multidevice communication).
Optionally both sockets linterfaces can be used as input or output.

PIN	Function
2	CAN - "Low"-level
7	CAN - "High"-level
6	Ground and shielding
Socket housing	Shielding

CAN-BUS multi-device communication for PC attachment
In order to be able to attach a stationary PC to the CSP/CMP systems, a CAN-fieldbus network can be constructed, in which up to 16 CSP/CMP systems can be included in. When the CSP2 is the last device in a CAN-BUS system, the bus must be terminated with a resistance of 120Ω at the plug left free across the terminals 2 and 7 . The can bus cables that are delivered with the CSP devices (for the communication between CSP2 and CMP1) are equipped with the terminating resistor at each end.
For building a multi-device communication according to variant 1 or variant 2 (see chapter "CSP2 multi-device communication), the resistances must be removed from the corresponding spots of the cases so that they are still only existent at the start and at the end of the CAN-BUS.

Figure 2.42: CSP2: CAN-BUS-interfaces (internal system bus)

Note

When using only one CMP1 within the CAN-BUS system, a corresponding setting via the parameter "single CMP" (single CMP) in the CSP2 must be carried out (for details see chapter "CAN-BUS").

2.1.9.5 RS485-interface (X12)

SCADA-interface

The physical connection of the CSP2/CMP1 systems to a SCADA system can optionally (use order form) also be carried out in an electrical version via an RS485-bus system. For this, the optional interface X12 is provided at the CSP2. Independent of the unit type of the CSP2 all available data protocol types can be transmitted.

PIN	Function	
1 and plug housing	Earthing/Shielding	
3	$R \times D / T \times D-P$	l.High"-level)
(5)	DGND (Ground)	(neg. potential of the supply voltage)
(6)	VP	(pos. potential of the supply voltage)
8	$\mathrm{RxD} / \mathrm{TxD}-\mathrm{N}$	(,2Low"-level)

Due to its simple wiring and the high transmission rates the communication via RS485 is used most.

Construction of the bus system

The communication to a higher level control system (e.g. automation system with PLC) is carried out here via a shielded twisted pair cable with 9-pole SUB-D plugs. For the multi-device communication, the can-bus is feed-through (parallel wiring) in order to ensure that the communication to SCADA still works if one device is fauly

Attention

The implementation of the wiring must correspond to the valid recommendations and regulations in order to prevent transmission problems already in the beginning!

It is possible to buy can-bus cables that offer the possibility to switch the terminal resistors on and off (please refer to (please refer to the illustration on the next page).

Data protocol	Terminal Resistances	
	$R 1$	$R 2$
IEC 60807-5-103	120Ω	750Ω
MODBUS TU	120Ω	750Ω
PROFIBUS DP	220Ω	390Ω

Table 2.16: Wiring and bus termination for the RS-485 transmission

Up to 31 CSP2 devices can be included into one bus system. The line used for data transmission should be shielded in order to prevent disturbance interferences.

Data transmission rates and maximum line length
The maximum length (range) of an R-485 bus system is dependent on the transmission rate (see table 2.17):

Transmission rate of a RS485 bus-system

Transmission rate (Kbaud)	$9.6-93.75$	187.5	500	1500	12000
Range of transmission (m)	1200	1000	400	200	100

Table 2.17: Range of transmission depending on the transmission rate

Figure 2.43: Wiring and bus termination for the RS-485 communication

Attention

The installation and wiring must correspond to the valid recommendations and regulations in order to prevent transmission problems!

2.2 Operating and display unit CMPI

In the following the connections and communication interfaces of the operation and display unit CMP1 will be explained.

Figure 2.44: Front plate CMP1-120

2.2.1 CMP dimensions

Figure 2.45: Dimensional drawing of CMP1-1 for feeder protection (all dimensions in mm)

* When using a cable channel, approx. 50 mm space must be left at the cabinet bottom for the sub-D plug
2.2.2 Dimensional drawing of the front door cut-out

Figure 2.46: Dimensional drawing of the front door cutout for CMP1 (all dimensions in mm)

2.2.3 LED-displays of the CMP 1

Description
At the front of the CMP1 there are 11 two-coloured (red/green) light emitting diodes (LEDs) for display of messages at the disposal of the operator.
These LEDs are separated into two blocks: the upper block consisting of 3 LEDs, and the lower block consisting of 8 LEDs. On one LED up to 5 functions can be assigned (parameterized). They can be selected from the lists of input and output messages according to requirements.

Figure 2.47: LEDs of the CMP1

Upper LED block

For these three LEDs there is no clear text available. The CMP 1, however, is provided with a slide-in strip (foil), which in the default version of the CMP1 shows the following explanations texts for the LEDs of the upper block concerning the standard configuration:

LED 1: „SYSTEM OK"
LED 2: „ALARM"
LED 3: „TRIP"

Attention

The message "SYSTEM OK" refers to the self-supervision of the protection and control systems CSP2 and/or to the display and operation unit CMP1.

In the case of alteration of the standard configuration of these LEDs and the explanations required therefore, this slide-in strip can be replaced or labled by the user.

Lower LED block
By pressing the hot key "INFO", the clear text information for the functions (input and/or output messages) assigned on the LEDs of the lower block appears on the display. The clear text shown on the display always refers to the last activated or still active function.

LED acknowledgment

According to the parameterizing, the LED displays can be defined as "status display" or as "acknowledgeable". An acknowledgeable LED lights up until it is acknowledged by the operator (via key " C " of the CMP1, via DI or the SCADA system). If the LED is defined as "status display", the LED goes off at the moment the status of the function changes from active to inactive.
(For more details see chapter "LED assignment")

2.2.4 Auxiliary voltage supply for CMP 1

Auxiliary voltage/relay output
The connection to the CMP1 has to be realized via a plug whose terminals provide the device with the auxiliary voltage supply ($L+, L-)$ and the earthing (PE). Via the terminal board there is, moreover, the possibility to process further (parallel wiring) the message "System ok" for the CMP1.

Figure 2.48: Connections of the CMPI

Figure 2.49: Plug in terminal strip of the CMP1

Assignment of the terminal strip CMP 1				Available in CMP 1 -	
Terminal No.	Contacts	Note	Description	12X	22X
1	NO	Normally open	Signal relay output : 》System OK« *	\bullet	\bullet
2	NC	Normally closed			
3	COM	Common			
4			Not used	-	-
5	L +		Connection of aux. voltage supply (wide-range : AC or DC)	\bullet	\bullet
6	L-				
7	PE		Earthing/Shielding	-	-

* The CMP1 message "System ok" refers either to the total system CSP2/CMP1 or only to the CMP1. Should the signal relay output be set or if the LED at the CMP1 lights up red for "System ok", the user must at any rate ascertain whether also the LED at the CSP2 lights up red for "System ok".

Example: disturbed communication between CSP2 and CMP1
In this case the LED at the CMP1 lights up red (the signal relay output is set). The LED at the CSP2, however, still lights up green. This means that the CSP2 continues to function correctly.

2.2.5 CAN-communication connection between CMP1 and CSP2

The PIN assignment of the CAN interface of the CMP1 corresponds to the CAN interfaces at the CSP2 (see chapter "CAN BUS Interfaces ($\times 10 / X 111$ "). At both ends of the built up CAN BUS cables there is a terminal resistance firmly soldered (at the case of the connectors).

Attention

The CAN connection cable for communication between CMP1 and CSP2 must not exceed 100m

Figure 2.50: CAN connection between CSP2 and CMP1

Note

The CAN connection cable for communication between CMP1 and CSP2 is contained in the scope of delivery, but not the cable for a multi device connection.

2.2.6 RS232-Communication connections between PC (Laptop) and CMP 1

The PIN assignment of the RS232 interface of the CMP1 corresponds to that of the CSP2 (see chapter "R232 interface (X9)|(in preparation)").

Figure 2.51 : Serial connection between PC (Laptop) and CMP1

Note

For connection of a PC or laptop to the CMP1, a zero modem cable is required, which, however, is not included in the scope of delivery.

3 Operation via CMP1

The operation of the switchboard and all inputs which are necessary for the local operation can be carried out via the CMP1. The user entries are carried out via the keys of the CMP. Check-back signals and status displays are visible on the large and background-illuminated LC-display. The display shows the position of the switchgears in graphical form, messages as text and parameters and measurement values in tabular form.

3.1 Key elements on the CMP1 front plate

Figure 3.1: Front plate CMP1-1

3.2 Functions of the keys and key switches

The CMP1 disposes of several control elements for the control and parameter setting of the basic unit CSP2. With the help of the key-operated switches a selection can be made between the different operational modes. The direct selection keys make a direct jump to certain menu pages possible. The navigation through the menu is carried out via corresponding menu guidance keys (arrow keys) with which the cursor is moved and subsequent pages can be called up. Changes of parameter settings can be carried out via two separate keys (+/- keys).
For the local control, control keys (1/0) are available with which the switchgears in the control mode can be switched on and off. For danger off/emergency off (please refer to figure 3.1) of the power circuit breaker(s) in an emergency, two separate keys are provided, which have to be pressed at the same time.

3.2.1 Key-operated switches and mode of operations

With the two key switches the operation mode of the CSP2-system is selected. According to the key switch position, they enable or lock the access to data and parameters or controlling switchgears and thereby secure the system against unauthorized access and controlling.
Four different position combinations can be set. Three of those will be used to set the individual mode of operations (MODE). The key switch combination "Remote control/parameter setting" is no operation mode and thus functionless. If it is set unintentionally, a message pops up in the display with the request for correction.

Meaning of the key switch positions						Available in CSP2-		
Operating Element	Key Position	MODE 1 (Local Operation/ Controlling)	MODE 2 (Local Operation/ Param.Setting)	MODE 3 (Remot.Operation/ Controlling)	No Operating Modes (No Function)	L	F3	F5
Key Switch 1	Vertical	-	-	-	-	-	-	-
(upper one)	Horizontal	-	-	\bullet	-	-	-	-
Key Switch 2	Vertical	-	\bullet	-	\bullet	-	-	\bullet
(lower one)	Horizontal	-	-	-	-		-	-

Table 3. 1: Overview of the operating modes

Figure 3.2: Overview over operation modes

3.2.1.1 MODE 1 (local operation/control)

Figure 3.3: local operation/control

In order to control switchgears from the local side, MODE 1 has to be selected (for the key switch position please refer to fig. 3.3). Only in MODE 1 the menu item "control" appears at the bottom of the display. Via the navigation (arrow keys) keys the control menu has to be entered. Within the control mode switchgears can be selected and switched.

Caution

Extern control commands which are sent via a SCADA or received via digital inputs of the CSP2, will not be in MODE 1!

Note

Extern locking commands which are sent via SCADA or received via digital inputs of the CSP2, will in MODE 1 be taken in account by the CSP2 and could possibly block the local control command!

The principle steps of carrying out a control command is described in detail in chapter "Example of carrying out control command".

3.2.1.2 MODE 2 (local operation/parameterising)

Figure 3.4: Local operation/parameterising
In order to read out and change parameters, MODE 2 has to be selected (for the key switch position please refer to Fig. 3.4).

Note

In MODE 2 switchgears can not be switched via the CMP (in MODE 2 there is no menu item "control" visible!).

Note

The "How to do" of Parameter changings is shown in form of examples in chapter "Eyample of a control process" and "Example: Setting of system parameters".
If the lower key-switch is set into the "control = horizontal" position before the parameter changes are saved/confirmed, all changes are rejected.

3.2.1.3 MODE 3 (remote operation/control)

Figure 3.5: Remote operation/control

In MODE 3 the reading of data is in principle possible via the menu keys of the CMP1. Locally, parameters and switchgear positions can only be read out but not changed. The only exception thereto is the function "Emergency off", which is always permitted and does no take into account any field and system locking field and system lockings.

MODE 3 must be selected when switchgears have to be controlled (switched) remotely, e.g. SCADA system or via digital inputs.
If no SCADA system is connected, this key switch position for this can be used to lock CSP2/CMP1 against an unauthorized changes of parameters or switchgear positions.

3.2.2 Direct selection keys of the CMP 1

Figure 3.6: Direct selection keys of the CMP1

There is also the possibility to change between these main pages by using the keys "RIGHT/LEFT" arrow key. However, a corresponding note always appears at the bottom of the display of the present menu page.

3.2.2.1 Key »DATA" (main menu)

Main menu

By pressing key "DATA" the page of the main menu pops up in n the display of the CMP1. The main menu consists of multiple sub-menus. There functions can be divided in principle in the following four groups:

1. Display/recording of data and events during the operation of the system (e.g. "Measurement values").
2. Display of status parameters during the operation of the plant (e.g. I/O status "Dis").
3. Action parameters for functions to initiate certain processes (e.g. reset function: "Event recorder" and
4. Configuration of the CSP2/CMP1 systems via setting parameters (system parameter and protection parameters).

The following assignment of the sub-menus to their functions makes clear that some sub-menus can fulfill several of the above mentioned functions:

Sub-menus for display/recording of operational and measurement data

- "MEASUREMENT" , in which the present measurement values can be read, VALUES"
- "STATISTICS" , in which the present (calculated) statistical measurement values can be read
- „EVENT RECORDER" , in which the last 50 operation events have been stored,
- „FAULT RECORDER" , in which the last 5 faults (activations) with the according measurement values have been saved,
- "SERVICE" for display of date, time, the operational hours of the CSP2 as well as the present software versions of CSP2 and CMP1.

Sub-menus with status displays

- "STATUS" , which the status (active/inactive) of the individual digital inputs with indication of the assigned input function and the statuses of the signal relay are displayed.
- „DISTURBANCE , in which the information on the recording data generated for disturbances are RECORDER" shown with indication of the status of the present action (e.g. "wait" or "saving",
- "SELECT DEVICE" (device selection) in which in a multi-device communication (with only one CMP1 and several CSP2) the connection with the selected CSP2 is displayed.

Sub-menus with action parameters for functions

- „DISTURBANCE , in which the information on the disturbance data generated for disturbances are RECORDER" saved with the possibility to start recording the disturbance values manually via the action parameter "man.trigger".
- "SELF TEST" , in which the hardware components of the CSP2 and CMP1 can be tested,
- "DEVICE SELECTION" , in which in case of a multi-device communication the connection to the CSP2 to be selected can be carried out via CAN-BUS.

Sub-menus with setting parameters for CSP2 configuration

- "SERVICE"
, in which the date as well as the time of the internal clock of the CSP2 can be seen.
- "PARAMETER" , in which further sub-menus with settings for system parameters and protection parameters are displayed.

Note

In chapter "Structure of the main menu" the complete menu tree of the main menu is shown. A detailed description of the functions of the individual sub-menus is contained in chapter "Main menu of the CSP2".

Foot line of the main menu
Change to the start page "SINGLE LINE" can be effected via the foot line of the main menu.

3.2.2.2 Key »Hand-Symbol" (start page SINGLE LINE)

Start page "SINGLE LINE"
Independent of the operation mode setting, the activation of the key, on which the hand symbol is shown, calls up the single line. In the upper quarter of the display the start page shows the present measurement values for the phase currents, among them the feeder control picture of the field configuration with the present switchgear positions. If operational mode MODE 1 is set, the menu item "operate" (appears below the single line), via which the CONTROL MODE is accessable.

Note

If the keys of the CMP1 are not actuated for approx. 10 min., the SINGLE LINE appears automatically in the display and serves as a permanent message! At the same time the background illuminated display is darkened.

Single Line

The single line is a single-pole illustration of the present cubicle and shows its field configuration. All connected switchgears are shown with their titles and the present switch position. The following switch positions can be shown:

- switchgear is "OFF",
- switchgear is "ON",
- switchgear is in "INTERMEDIATE POSITION"
- switchgear in "FAULTY POSITION"
switching operation not terminated or simultaneous missing of the positions check back signals for OFF and ON, and simultaneous reporting of the switch positions for OFF and ON.
a)

b)

c)

d)

Figure 3.7: Single lines for the four different switch positions:
a) earthing open
b) earthing closed
c) earthing switch in intermediate position
d) earthing switch in faully position

Menu item "operate"

By calling up this page, one access the CONTROL MODE in which the switchgears can be locally lie. via the control keys of the CMP1) controlled (for more details see chapter "CONTROL MODE")!

Foot line of the start page SINGLE LINE
Change to the page INFO or to the main menu (DATA) can be effected via the foot line of the main menu.

3.2.2.3 Key »INFO« (non-coded display text for LED displays)

Device status
Via key "INFO" it is possible to jump from any submenu in the menu tree to the page INFO. The INFO page shows on the display the text information of the input or output messages assigned to LEDs 4 to 11 (lower LED block). The corresponding text information appears in each case at the same height at which the LED has been placed (for more details see chaper "LED placement").

Menu item" (return)
Via this line it is possible to jump back to the menu item of the menus from which the key INFO was pressed.

3.2.3 Menu guidance

For navigation the the menu structure of the CSP2 the CMP1 disposes of the keys »UP/DOWN«-arrow keys and the keys »RIGHT/LEFT <-arrow keys.
Dependend on the different mode of operations, the keys, however, continue to take over important tasks lexamples hereto can be found in chapter "Example: control in the CONTROL MODE as well as in the chapters for example parameter setting).

3.2.3.1 Keys »UP/DOWN"

These two triangular keys with arrows on them serve for

- up and down movement of the dark cursor bar for selection of menu items,
- call-up of the different event messages in the menu "Event recorder",
- call-up of the different fault messages in the menu "Fault recorder" and
- call-up of the switchgears to be controlled in the CONTROL MODE, and also TEST MODE. Here the selected switchgear is marked by a circle marker which surrounds the symbol of the switchgear.

Figure 3.8: Examples for selection objects via keys »UP/DOWN« arrow keys"

Note

- The selection possibility of menu items or switchgear symbols is partly dependent on the operation mode!
If a selection via the keys »UP/DOWN« is possible, a corresponding symbol ltwo arrows pointing up and down) appears in the middle of the foot line. If e.g. in MODE 1 a parameter page of the sub-menu "OVERCURRENT I>" is called up, the different parameter lines can only be selected when change to MODE 2 is carried out via the lower key-operated switch. Only then the corresponding symbol appears in the foot line.
- If these keys are pressed only temporarily, the cursor bar or the circle marker jumps from the present menu item or switchgear symbol to the next (by key »UP«) or the previous item (by key »DOWN«). If the keys are held pressed, the cursor bar or the circle marker surround the symbols of the subsequent or previous line or switchgear at a cycle of one second.

3.2.3.2 Keys »RIGHT/LEFT"

Also the »RIGHT/LEFT« arrow keys" serve on the one hand as call-up and selection keys of the menu guidance and on the other hand, however, also as execution key for certain functions.

The key »RIGHT« is used for

- call-up of the subsequent menu page (if available)
- call-up of a sub-menu or for
- selection of decimal digits in a parameter setting process or as
- execution key for action parameters.

The key »LEFT« serves either for

- call-up of the previous menu page or for
- selection of decimal digits in a parameter setting process.

Call-up of the subsequent or the previous menu page
The foot line indicates principally if the menu offers further pages for call-up. For this, a symbol in the form of a little arrow point directed to the »RIGHT« appears in the »RIGHT« part of the foot line. Consequently, this symbol is not shown in the foot line of each last page of a sub-menu. By moving the cursor bar to the foot line (key UP) and pressing key »RIGHT« the selected sub-menu is opened.

The call-up of the previous page is effected in the same way, only that here the key »LEFT« must be pressed. The arrow point directed to the left in the foot line indicates the possibility of leafing back.

Call-up of sub-menus

If on one menu page sub-menus are displayed, in each case a symbol (small arrow point to the right) in the submenu item indicates that a call-up is possible via pressing the key »RIGHT«.

Selection of decimal digits in the parameter setting process
If in MODE 2 a parameter is changed, the setting of which is indicated as a number value, the keys »RIGHT/LEFT《 are required to select the decimal digit to be changed (see chapter "Example: parameter setting of protection parameters").

Figure 3.9: Examples for call-up and selection functions of the keys »RIGHT/LEFT«

Executing keys for action parameters
Dependent on the operating mode set and the selected action parameters, the CSP2 carries out the corresponding action when pressing the key »RIGHT«. In MODE 1, such an action can be e.g. the manual starting of a data recording with the "DISTURBANCE RECORDER". In MODE 2 the function of key »RIGHT« changes when e.g. after a parameter change in the sub-menu "SAVE FUNKTION" has to be stored. The storing is then effected by pressing key »RIGHT《, when then serves as execution key (see chapter "Example; setting of system parameters.

Examples: "Reset functions" or "man. trigger" for manual starting of a data recording with the "Disturbance recorder".

Figure 3.10: Examples for execution pressing the arrow key »RIGHT"

3.2.3.3 Structure of the main menu

The following screenshots show the sub-menues of the main menu. Via the »UP/DOWN« arrow keys and $» R I G H T / L E F T$ « arrow keys any menu page independent of the operational modes set can be called up (read data).

Note

The menu pages of the CSP2-L that are different from those of the CSP2-F are schown separately!

Menu tree of the sub-menu "MEASUREMENT" (CSP2-F)

Menu tree of the sub-menu "STATISTIC" (CSP2-F)

Menu tree of the sub-menu "STATISTIC" (CSP2-L)

Menu tree of the sub-menu "EVENT RECORDER"

Menu tree of the sub-menu "FAULT RECORDER" (CSP2-F)

Menu tree of the sub-menu "FAULT RECORDER" (CSP2-L)

Menu tree of the sub-menu "PARAMETER" (Part 3b)

Menu tree of the sub-menu "PARAMETER" (Part 4a: CSP2-L)

Note
The protection functions $|>,|\gg| e>$,, $l e \gg$, thermical replica, $A R, C C S$ and CBF do not differ from CSP2-F to CSP2-F (shown as follows).

Menu tree of the sub-menu "PARAMETER" (Part 7)

Menu tree of the sub-menu "SERVICE"

Menu tree of the sub-menu "SELF TEST"

Menu tree of sub-menu "LCD - SETTINGS"

3.2.4 Parameter setting via CMP1

Parameter setting means the change of parameters and can be carried out locally via the operating keys of the CMP1. As parameters there are at disposal in the CSP2

- system parameters as well as
- protection parameters
(see chapter "main menu of the CSP2" for more details).
Before a parameter setting process can be carried out, first the corresponding operating mode (MODE 2) must be set. Subsequently, the parameter to be changed must be called up via the keys for menu guidance (keys »UP/DOWN« and »RIGHT/LEFT«l. By pressing the keys »+/-« the desired setting can then be effected. However, the CSP2 only works with the new seltings when these have been saved. The activation of the saving process is carried out in the sub-menu "Save function" which must be called up by the key "ENTER". Here are still other possibilities available for the handling of parameter changes beside the storage option.

Depending on the present menu page, the keys »RIGHT/LEFT«, »ENTER« and »C« take over continuation tasks.

Attention

- In case of system parameter changes (e.g. digital inputs or signal relays), the CSP2 must be rebooted due to the configuration alteration of the hardware. This means hat the system is not ready for operation for the run-up time of 10 s .
- The saving of parameter changes requires time. Thus it is sensible to first enter all changes and then store them jointly. During the saving process the LED "System OK" can go off or light up red. The saving process is finished when the LED lights up green again.
- If no keys are actuated for 10 min , all unsaved changes will be automatically rejected. This time corresponds to the "Screensaver-time" after which the background illumination of the display goes off when non of the control elements have been activated.

3.2.4.1 Keys "+/-《

If a parameter is selected by the keys for menu guidance (MODE 2), its setting can be changed via the keys »+/«. The settings themselves can be values or functions.

Thus the activation of

- key »+" results in the increase of a numerical value or in the selection of the next function from a list of functions.
- key $\gg \ll$ in the decrease of the numerical value or in the selection of the immediately previous function from a list of functions.
(See chapter "Example: Setting of protection parameters")

3.2.4.2 Key "ENTER"

ENTER

The key »ENTER« is an action key with which different functions are assigned. The functions to be executed depend on the operation mode as well as on the present menu page shown in the display.

Functions of key »ENTER«:

- Call-up of the sub-menu "SAVE FUNCTION" for handling a parameter change (MODE 2).
- Back to the parameter that has been changed in the sub-menu for handling a parameter change in MODE 2)
- Call-up of the CMP1 menus "CAN DEV. NO. CONFIG", in which by using the CAN-BUS multi-device communication the necessary settings are carried out (see chapter "Bus capability of the operation and display unit CMP7"I,
- Executing key for saving the changed settings (see chapter "Bus capability of the operation and display unit CMP1") and
- Call-up of the main menu (only in MODE 1 and MODE 3)

3.2.4.3 Sub-menu »Save functions"

After finishing of all parameter changes, these have to be saved in the CSP2. For this, the sub-menu "SAVE FUNCTION" is called up by pressing key „ENTER«. The called up menu page offers the possibility to:

Figure 3.11: Sub-menu "SAVE FUNCTION" for handling of parameter changes

- Save changes
- Return, discard changes
- Discarding all changes
- Access to the internal service menu (password required)

```
-> press key »RIGHT<
-> press key »ENTER«
-> press key »C<
mpress key »LEFT<
```


3.2.4.4 Кеу »С"

©

The key »C« serves for:

- Discarding of parameter changes and re-establishes the originally saved numerical value or function (see submenu "SAVE FUNCTION" for handling the parameter changes in MODE 2").
- Execution key for deleting of saved disturbance files data and
- Resetting of acknowledgeable LEDs and signal relays (not in sub-menu "SAVE FUNCTION".

3.2.4.5 Example: Setting of protection parameters

In the following example a parameter setting process for the protection function "OVERCURRENT $\mid \gg$ " in the protection parameter set 1 is carried out. Therein are changed a numerical value of a parameter as well as a parameter which is to be set via a function selection. Subseqently the changes in CSP2 are saved.

The individual steps of the entire parameter setting process are explained step by step by images of the required keys and the results shown by screenshots.

How to change a parameter
14s step
Setting of MODE 2 (operation mode: Local/Parameter setting) via the key switches of the CMP1.
$2^{\text {nd }}$ step
Call-up of the main menu via the direct selection key »DATA«. The page of the main menu shows a list of sub-menus that can be called up from here. At the call-up of this page, the last called-up sub-menu is automatically preselected by the cursor bar.

Note

At each call-up of a sub-menu or a new page, the symbol of an hour-glass appears lin order to indicate that the system is busy) in the right lower corner of the display (this also applies to all activated action parameters).

3^{d} step

Move cursor bar via the keys »UP/DOWN« to the menu line "Parameters".
$4^{\text {th }}$ step
Call up sub-menu "Parameter" by pressing key »RIGHT«.
$5^{\text {h }}$ step
After call-up of sub-menu "Parameter", the cursor bar is positioned into the menu line "Parameter set" by pressing keys »UP/DOWN«. By pressing key »RIGHT« the sub-menu "Para. switch" is called up.
$6^{\text {th }}$ step
Move cursor bar to menu line "Parameter set 1 " by pressing keys »UP/DOWN«.
$7{ }^{\text {b }}$ step
Call up sub-menu "Prot. para." by pressing key „RIGHT«.
$8^{\text {th }}$ step
By pressing keys »UP/DOWN« move cursor to menu item "l>>".
9 ${ }^{\text {h }}$ step
By pressing key »RIGHT« call up sub-menu "High set overcurrent l>>".
$10^{\text {th }}$ step
By pressing keys »UP/DOWN« move cursor bar to menu item "Function".

$17^{\text {th }}$ step

Now the first element (foward) of the protection function l>> shall be configured as "acive". Therefore, the parameter "Function" must be set from at present "inactive" to "active"!

The present setting of the parameter "Function" shows at first the setting "inactive". By pressing key "+", the next following setting from the function list for the setting of this parameter is shown. This is the setting "active".
$12^{\text {th }}$ step
Now the parameter for the triggering delay time "tl>>F" shall be set!
By pressing key »DOWN« move the cursor bar to the menu item "tl>>F".
$13^{\text {th }}$ step
When preselecting parameters by numerical value settings, always the $3^{\text {rd }}$ decimal digit is preselected automatically. By pressing keys »RIGHT/LEFT«, the corresponding decimal digits of the numerical value indication can be preselected.
By pressing key »+«, the numerical value of the preselected decimal digit is increased; decreased by key »-«. If key "+" or key "-« is held pressed, the numerical value is increased/decreased automatically by "7" at the rhythm of half a second. An increase of the numerical value to more than "9" leads automatically to an incremental overrun into the next higher decimal digit, and a decrease of the number value to under "O" to a decremental overflow.

The change of the numerical value from 1000 to 450 has to be carried out in two steps. At first, the $3^{\text {rd }}$ decimal digit is set to the value "4" by pressing key »-巛. The decremental overflow results automatically in a "disappearance" of the $4^{\text {th }}$ decimal digit in the display.
$14^{\text {th }}$ step
Now the second decimal digit must be set to the value "5". Thus, at first, it is preselected by pressing key »RIGHT«.
$15^{\text {th }}$ step
The desired numerical value is set by operating key »+« accordingly.
$16^{\text {th }}$ step
Now the parameter changes must be saved! For this, at first the sub-menu "SAVE FUNCTION" is called up by pressing key »ENTER«.
$17^{\text {h }}$ step
In order to carry out the savings, now key »RIGHT« must be pressed. After approx. 1.5 seconds a "pop-up window" (see chapter "Pop-up messages") appears with the message "Parameter set switched".

Now the changed settings of both parameters are save and the CSP2 works with the new settings!
$18^{\text {th }}$ step
The pop-up window "Parameter set switched" remains in the display either as long as MODE 2 is left or until any operating key element of CMP1 is pressed!
By switch-over of the lower key-operated switch to the horizontal position a change from MODE 2 to MODE 1 is effected again (only then MODE 3 can be set, if required).

The parameter setting process is completed now. If no further keys are actuated for 10 min , the display changes automatically to the start page SINGLE LINE.

Attention

If a parameterising process is interrupted, i.e. if for 10 min no operating key is pressed, all changes effected up to then and not stored yet will be discarded!

Figure 3.12: Example: Changing a protection parameter: Protection function $1 \gg$

3.2.4.6 Example: Setting of system parameters

In the now following example, a setting procedure for the "Field settings" in the system parameter set is carried out. Also here a numerical value of a parameter is changed as well as a parameter which must be set via a function selection are changed. Subsequently, the changes are saved in the CSP2.

The different steps of the entire parameter setting procedure will be explained and shown by help of screenshots of the required keys and of the resulting indications of the display.

Procedure for parameter setting
$1^{4 t}$ step to 4^{h} step
Same as procedure for "Selting of protection parameters"
5^{h} step
By pressing key »UP《 move cursor bar to the menu item "Field settings).
$6^{\text {th }}$ step
By pressing key »RIGHT« call up sub-menu "Feeder ratings".
$7{ }^{\prime}$ step
By pressing key »UP« accordingly, move cursor bar to parameter line "VT pri".
$8^{\text {th }}$ step and 9^{h} step
By pressing key »LEFT« several times, the cursor moves to the first decimal digit.

$10^{\text {h }}$ step

By pressing key »+« accordingly, set the desired numerical value for the primary nominal value of the voltage transformer, here: from 10000 to 20000.
$17^{\text {th }}$ step
Now the measuring circuit for voltage measurements shall be set from " Y " to „ $\bar{\Delta}$ ".
For this, at first parameter "VT con" is preselected by pressing key "DOWN«.

$$
12^{\text {h }} \text { step }
$$

By pressing key "+«, the setting " Δ " is selected from the function selection for this parameter.
$13^{\text {th }}$ step
Now the parameter changes must be saved. For this, the sub-menu "SAVE FUNCTION" is called up via key "ENTER".
$14^{\text {h }}$ step
In order to execute the saving process, key »RIGHT« must be pressed now. After about 1.5 seconds a pop-up window appears (see chapter 3.3 "Pop-up messages") with the message "rebooting System".

Note

Contrary to the saving action during the setting of protection parameters, the system is to be rebooted, as the change of system parameters has an influence on the hardware configuration of the CSP2 and thus requires an initialisation of the systems. The system restart is initiated automactically.
$15^{\text {h }}$ step
The pop-up window message "rebooting System" remains in the display until the booting procedure is completed!

By switching of the lower key switch into the horizontal position, MODE 2 is left and MODE 1 is activated (only then also MODE 3 can be set, if necessary).

The parameter setting procedure is now completed.

Attention

If a parameter setting procedure is aborted, i.e. if for 10 minutes none of the operating keys is pressed, all changes previously made and which have not been saved yet will be discarded.

END
Figure 3.13: Example of setting system parameters, field settings

3.2.5 Controlling switchgear viaCMP 1

The control of a switchgear signifies a controlled initiated switching action which may be executed locally via the CMPI.

The execution of a control action can either be carried out in the CONTROL MODE (by taking into account all on feeder- and station-level interlockings) or ongoing in the TEST MODE (without interlockings).

3.2.5.1 CONTROL MODE

For security reasons the execution of a switch action can only be executed in the CONTROL MODE so that no unintended switch actions can be done. The CONTROL MODE itself is only accessible in MODE 1 via call-up of menu item "operate". Only then switchgears can be preselected and switched.

Taking into account the field interlockings
Switching actiones will only be executed if no internal interlocking conditions have been violated. The internal interlockings (field interlockings) are separately determined depending on the field configuration of each controllable switchgear and are deposited in the data file "sline.sl" for the single line image. Interlocking conditions can be determined separately for switching on and/or switching off of a switchgear.

Attention

If a switching command is invalid or violates an interlocking condition, the switching action will not be executed.

Note

When assigning LEDs, one LED should principally be assigned to interlocking violations. For this, the output function "Interlock" (see chapter "interlocking techniques").
Additionally, an entry in the event recorder is generated (same message text as that of the output function) which protocols this switching attempt.

3.2.5.2 TEST MODE (without interlocking)

In the CONTROL MODE the TEST MODE can be called up by placing the lower key switches into the vertical position.
The TEST MODE is provided for a test of the controllable switchgears. For the commissioning, it is sometimes necessary to switch the switchgears without interlocking. This is especially useful when the plant is still without voltage (dead) on the bus-bar or not yet completely equipped with switchgears.

Attention: Danger to life!

- In this test mode all switch positions can be changed without any interlocking.
- These switching actions are completely free and are not subject to any interlocking!

Due to the special danger it must be emphasized again here that in the TEST MODE no interlockings are active any more. Then it is e.g. possible to switch the earthing switch when the circuit breaker is in the on position. Switching actions in this mode may only be carried out by authorized personnel with exact knowledge of the plant environment and under consideration of all relevant safety measures.

The TEST MODE can be left with one change of the key switch position or by pressing a direct selection key. Thereafter, the interlockings will become active again. Moreover, the switchgears must not be left in a position that violates an interlocking condition when leaving the TEST MODE.

3.2.5.3 Keys »ON/OFF«

By pressing the keys »ON/OFF« the controllable switchgears can be switched on and off in the CONTROL MODE (and TEST MODE).

3.2.5.4 Keys »Emergency OFF«

The two keys »EMERGENCY OFF«serve for switching off the circuit breakers) in case of emergency. For this, both keys must, however, be actuated at the same time. The switching off occurs independently of the set mode of operation and without taking into account possible active interlockings for the power circuit breakers.

3.2.5.5 Example: controlling in CONTROL MODE

In the following example the fundamental procedure for controlling a switchgear is shown. All necessary steps for switching an earthing switch are shown and explained.

Procedures for controlling switchgears
$7^{\text {st }}$ step
Calling up MODE 1 (operation mode: Local/Control) via the key switches of the CMP 1 .
2 nd step
Setting of the start page SINGLE LINE via the direction selection key »SINGLE-LINE".
$3^{\text {rd }}$ step
In MODE 1 the menu item "operate" is displayed on the display which serves for the call-up of the CONTROL MODE. This menu item is first to be selected by actuating key »UP«.
$4^{\text {th }}$ step
The CONTROL MODE is now entered by pressing key »RIGHT«.

$5^{\text {th }}$ step

The selection of the switchgear to be controlled is carried out by pressing the keys »UP/DOWN«. Here the cursor, which is in the foot line changes to a circle marker which surrounds the switchgear.

If in a cubicle several switchgears are controllable, the circle marker jumps to the next switchgear symbol when the key »UP" is pressed anew.
$6^{\text {th }}$ step
When key »ON« is pressed, the earthing switch is switched on. Here the switch leaves the defined position »OFF«, and changes over in to the intermediate position which is signified by an unclosed thin centre line (display indication 5). When reaching the end position $\geqslant \mathrm{ON}$ « (display screenshot 6) the switch action is completed.
$7{ }^{\text {b }}$ step
If all switch actions to be executed are completed, the CONTROL MODE should be left again for reasons of security protection against unauthorized switching. This can be effected by pressing of the direct selection keys »SINGLELINE" or »DATA«.

Figure 3.14: Example of a control procedure via CMPI in CONTROL MODE

3.2.5.6 Example: controlling in TEST MODE - Caution: Danger to Life

the following example shows the controlling of switchgears for test purposes (without interlockings):
Procedure for switchgear controlling without interlockings
1st step to $4^{\text {h }}$ step
Are executed in the same way as the switchgear controlling in CONTROL MODE!
$5^{\text {h }}$ step
As soon as the CONTROL MODE is called up, the lower key switch is moved to the vertical position in order to call up the TEST MODE.

In the display there appears automatically the information "COMMISSIONING MODE, no interlock!" in order to show that all switch actions from now on are effected without taking account of the interlockings.

Caution: Danger to life

```
\(\sigma^{\text {th }}\) step to \(10^{\text {h }}\) step
```

The switching on and off of the switchgears is carried out in the same way as control in CONTROL MODE and can be executed at will.

Attention

Before TEST MODE is left, it is imperative to see to it that the switchgears are not in a position that violates interlockings!

Step "y"

The TEST MODE will be left and turned back into the CONTROL MODE by switching over of the lower key switch into the horizontal position.

Step "z"
The CONTROL MODE again can be left in the usual way via the direct selection keys »SINGLE-LINE" or »DATA«.

Figure 3.15: Example of a control procedure via CMP1 in TEST MODE (without interlockings)

3.2.6 Pop-up window

Pop-up windows show system messages which are popped up in for certain processes in order to inform the user about the status or the further action for operating the CSP2. In this case, each time a black backgrounded window appears on the present menu page with the text of the corresponding system message. Pop-up windows appear at the following system messages:

- Set up of the communication between CSP2 and CMP1

During the boot phase (system restart) of the CSP2/CMP1 systems, the pop-up windows appear in the as shown in Fig. 3.16. The second and third windows appear alternatively until the communication between CSP2 and CMP1 is established. Thereafter, the CMP1 reads the data from the CSP2.

Figure 3.16: Pop-up windows at setup of communication

- Interruption of the communication between CSP2 and CMP1

In case of a communication interruption between CSP2 and CMP1 during the operation, the following two windows are shown alternatively.

Figure 3.17: Pop-up windows at communication interruption

- Activation of the action parameters, e.g. when resetting counter:

Figure 3.18: Pop-up windows at handling of parameter changes

- Handling of parameter changes: e.g. Discarding or saving protection parameters and system parameters (rebooting system)

Figure 3.19: Pop-up windows at abort of the parameter setting procedure

- Abort of a parameter setting process

A parameter setting process is aborted, when e.g. during the parameter setting the mode of operation is changed from MODE 2 to MODE 1 or when for about 10 min no operating key has been pressed any more.

Figure 3.20: Pop-up windows e.g. at setting of undefined mode of operations

- Prompting for aborting

If a non-defined mode of operation (e.g. remote control/parameter setting) is set, this will be brought to the attention of the user by the following message:

Figure 3.21 : Pop-up windows e.g. at setting of undefined mode of operations

4 Operation via SL-SOFT

The objective of the SL-SOFT parameter setting and evaluation software is to give the user a quick and comfortable access to parameters and data of the combined protection and control system CSP2/CMP1. Underlying tasks such as the read-out of data, parameter setting and the preparation and treatment of data/parameter sets records can be implemented with the standard version.
Optional additional functions take on further tasks such as the evaluation of disturbance recorder (dsb files).

Note

For the detailed description of the SL-SOFT a separate manual "SLS 2.0 SYSTEM LINE SOFT" parameterisation and evaluation" is available.

Figure 4.1: Connection example CSP2/CMP - PC via RS 232

4.1 Records of the CSP2

The data sets of the CSP2 principally comprise two files, on which the device configuration is based with regard to the application:

- "sline.sl" and
- "parameter.csp"

The file names "sline" and "parameter" are factory designations, which can be adapted individually by the user. The data endings "*.sl" and "*.csp" must however be kept.
"sline.s|"
On the one hand, this file contains data for the Single-line for the display of the field configuration on the LCD of the CMPI; on the other hand, the field interlocking conditions stipulated by an internal locking matrix.

Note

When logging into a CSP2 with SL-SOFT the file "sline.sl" can merely be copied or overwritten by loading a different "*.sl" file. Opening and editing this file is however currently not possible.

"parameter.csp"

In this file, the four protection parameter sets and the system parameter set have been put together into one parameter file. This parameter file is dependent on the type of device (e.g. CSP2-F3, CSP2-F5 or CSP2-L) and on the CSP2 device soffware version. Loading of a parameter file into a CSP type of device not provided for it is prevented by a plausibility check.

Note

In the processing of protection and system parameters, it is necessary to open the file "parameter.csp" to start with. The corresponding parameter set can then be called and changed via a selection. This process is the same for ONLINE MODE as for OFFLINE MODE, in which either a parameter file which has already been stored is called or a new record is generated.
Individual parameter records cannot be stored separately or loaded into the CSP2 for security reasons, but always only via the complete parameter file!

Figure 4.2: Copying the "sline.sl" file

Figure 4.3: Opening the parameter file "parameter.csp" in OFFLINE MODE

4.2 Standard version

The standard version of the SL-SOFT (»SYSTEM LINE SOFT<) permits simple menu-controlled evaluation and parameter setting of the CSP2 devices and runs on every IBM compatible PC/notebook with the Windows 95/98/ME/XP or Windows NT/2000 operating systems.
Communication to the CSP2/CMP1 system (online operation) is done via the RS232 interface or via the internal CAN BUS.
SL-SOFT permits operation by mouse (Windows standard/surface) and has a user-guided window technique. The menu tree of SL-SOFT is based on the menu structure of the CSP2/CMP1, in order to simplify navigation through the various menus.

The SL-SOFT can be switched-over between german and english language.

Features of the basic version (SL-Soff without Data Recording)

- Available for all CSP2 devices (not CSP 1-B) of the SYSTEM LINE,
- Online/offline operation
- Integrated language switch-over (German/English)
- Device log-in via individual and multiple device communication
- Comfortable data access by window technique,
- Menu-guided sufface,
- Read-out of all available data,
- Cyclic read-out of the measuring values,
- Read out of the status of the inputs and outputs,
- Parameter setting of all device-specific configuration data,
- Plausibility checks,
- Copying and deletion of the data sets,
- Preparation of parameters in offline mode,
- Archiving of records,
- Print-out of parameters and data with various print options,
- Further processing of the measuring values (recording, display),
- Commissioning support (e.g. differential and stabilisation values in the CSP2-L) and function support,
- Triggering off disturbancy records (manual triggering)
- Synchronization with PC time.

Figure 4.4: Overview in ONLINE MODE (Example: Menu "Data")

Figure 4.5: Overview in OFFLINE MODE (Example: Menu "Field settings" in the system parameter set)

Figure 4.6: Overview in OFFLINE MODE (Example: Menu "Overcurrent l>" in protection parameter set 1)

4.3 Optional additional functions

In addition to the standard version, SL-SOFT provides optional additional features, which increase the functionality of the overall system. This includes the "data recorder" as well as the configuration programmes "SL-DRAW" (production of single lines incl. field interlocking logic) and "SL-LOGIC" (configuration of the protection and control functions on the basis of a PLC functionality).

The additional functions can be taken into consideration on the basis of the type key of SL-SOFT in ordering.

4.3.1 Evaluation of disturbancy records (Data recorder)

The "data recorder" is a software tool (programme), with which the disturbancy records generated by the disturbancy recorder of the CSP2 can be evaluated.
In order to be able to evaluate the disturbancy records saved in the CSP2 via the data recorder, they must be copied onto a hard drive or floppy disk (PC/laptop) in the online mode of the SL-SOFT by the single "Drag and Drop" method.

When a stored disturbance record file is called up, all the analogue channels (measured values) and all the digital channels detected during the recording can be shown as oscillographic curves. The resolution of the analogue measured values is automatically adapted to the maximum values detected, with the result that complicated calibration is not necessary.

In order to use the Data recorder, an extended version (optional) of the SL-SOFT has to be installed. This means, the data recorder is not a separate programme. If the extended version of the SL-SOFT (optional) is installed the data recorder can be called up via the "Data recorder icon" within the SL-SOFT start menu. |Start \rightarrow Programme \rightarrow System Line_V2 \rightarrow Data Visualizer)

Scope of function and output of the "data visualize"

- Evaluation of the disturbance records, oscillographic curves, editing-capability
- Extensive functions for evaluation (zoom, display of individual measuring values with time stamp etc.)
- Import and export of data records in ASCII and COMTRADE format

Figure 4.7: Optional additional function: data rvisualize

4.3.2 SL LOGIC

By using the SL-LOGIC up to 32 customer specific logic functions are programmable. By this the functionality of the CSP devices is widely extended. For additional information please refer to the SL-SOFT manual.

System Line Soft - Logic

File Parameters Windows ?

Figure 4.8: SL LOGIC

4.3.3 Configuration of Single-Line-Diagrams via SL-DRAW

The full-version of the application software SL-SOFT contains a sub-menu called SL-DRAW. This is intended to be used for the configuration of the graphic representation of a single-line diagram as well as for programming the field interlockings. A database provides a number of various symbols for creating individual graphics for single-line diagrams. For that purpose standardized symbols of the switching devices and also a toolbox with usual elements for drawing are available.
Special configuration menus make the assignment of the switching symbols used, and plausibility checks which inhibit false parameter assignments. Once all the switching devices have been assigned, the field interlocking conditions can be programmed.

Figure 4.9: SL Draw

5 Main menu of the CSP2

Main menu of the CSP2

The main menu of the combined protection and control system CSP2/CMP1 offers the following sub-menus:

- measurement
- statistics
- event recorder
- fault recorder
- disturbance recorder
- I/O status
- service
- self test
- LCD setting and
- device selection

Within these sub menus only data can be read out or certain menu items (action parameter) be activated in order to execute certain procedures.

Additionally to the read-out of data, within the sub-menu

- parameters

Settings of parameters of the protection, control and other functions can be changed. This menu accesses the parameter file "parameter.csp" (see chapter "operation via SL-SOFT") which contains the system parameter set and the four protection parameter sets.

In the following chapters the individual menus including their sub-menus are presented and their functions explained. A detailed listing of all parameters as well as their setting possibilities, in conjunction with general explanations for certain conditions, shall contribute to the understanding of the functions of the CSP2.

5.1 Menu measurement values

The CSP2 offers the user measurement values which inform about the operational status of the MV-panel. Measurement values can be locally shown and read out at the display of the operation and display unit CMP1. By using a SCADA-system or an automatizing system, the measurement values are transmitted as data points (telegrams) of the corresponding protocol type. The measurement values made available by the CSP2 are on the one hand based on the

- measurement and on the other hand
- on calculation.

Measuring Values							Available in CSP2-		
				Dete	tion				
Quantity measured (Indication)	Description	Range of Values	Unit		$\begin{aligned} & \frac{1}{0} \\ & \frac{0}{0} \\ & \frac{U}{0} \\ & \hline \end{aligned}$	Note	L	F3	F5
ILI	Phase Currents		A	\bullet	-	Instant.value (Effective value)	\bullet	\bullet	\bullet
IL2			A						
IL3			A						
le	Earth Current		A	-	-	Instant.value (Effective valuet)	\bullet	-	-
12	Unbalanced Current		A		\bullet	Instant.value (Effective value) of the negative phase sequence system			
ULI	Phase Voltages		V	\bullet	-	Instant.value (Effective value)	\bullet	-	\bullet
UL2			V						
UL3			V						
U12	Line-to-Line Voltages (Interlinked Voltages)		V	-	-	Instant.value (Effective value)	-	-	\bullet
U23			V						
U31			V						
Ue	Residual Voltage		V	\bullet	\bullet	Instant.value (Effective value)	\bullet	-	-
f	Frequency		Hz	-	-	Instant.value (Effective value)	\bullet	-	-
P	Active Power		kW	-	\bullet	Instant.value (Effective value)		\bullet	\bullet
Q	Reactive Power		kVA	-	-	Instant.value (Effective value)	-	-	-
$\cos \varphi$	Power Factor	$-1 \ldots+1$	-	-	\bullet	Instant.value (Effective value)	-	\bullet	-
Wp+	Positive Active Energy		kWh	-	-	Counting value	-	-	-
Wp-	Negative Active Energy		kvar	-	\bullet	Counting value	-	-	-
Wq+	Positive Reactive Energy		kWh	-	\bullet	Counting value	-	-	-
Wq-	Negative Reactive Energy		kvarh	-	\bullet	Counting value	-	\bullet	-
Э	Thermal Capacity	0... 200 \%	\%		-	Instantaneous value	-	-	-
\dagger	Time until trip of protective function $\vartheta>$		s		-	Instantaneous value	-	-	-
$l_{\text {d }} \mathrm{L}^{1}$	Differential Currents		A		-	Instant.value (Effective value)	\bullet	-	-
$\mathrm{I}_{\mathrm{d}}^{\mathrm{L}} \mathrm{L}$			A		\bullet		\bullet	-	-
$l_{\text {d }}^{\text {d }}$ L 3			A		\bullet		\bullet	-	-
$\mathrm{I}_{5} \mathrm{~L} 1$	Stabilising Currents		A		-	Instant.value (Effective value)	\bullet	-	-
$\mathrm{I}_{\text {s }} \mathrm{L} 2$			A		\bullet		\bullet	-	-
$\mathrm{I}_{\text {s }} \mathrm{L} 3$			A		-		\bullet	-	-
mL 1	Transient Stabilizing Factors (Degree of transient stabilisation)		-		-	Instantaneous value	\bullet	-	-
mL 2			-		\bullet		\bullet	-	-
mL 3			-		\bullet		-	-	-

Table 5.1: Overview of Measuring Values

Direct measuring of measurement values
Via the analogous measurement value (measurement channel) of the CSP2, the measurement value for phase currents and phase- or line-to-line voltages are directly measured. According to the measurement circuit used, the CSP2 receives corresponding analogous measurable values. These time continuous measurement signals digitalized by the CSP2 (via Sample \& Hold) in order to:

- calculation of the protection algorithms (protection functions),
- display oscillographic curves within the data recorder (disturbance recorder),
- record in the fault recorder (instantaneous fault recording at the time of a protection trip),
- digital indication at the display of the CMP1,
- data exchange with the SCADA-system,
- calculate measuring values based on measured values.

Remark

The determination of the time intervals for sampling the analogous measurement values is designated as "sampling rate key" and dependent on the type of device of the CSP2 (see chapter "Disturbance recorder").

The following quantities can be measured directly dependent on the measuring circuit used.

Direct Detection of Measuring Quantities											Available in CSP2-		
	Description	Unit	Analogue Quantity Measured (Input Variable)	Measuring Circuit							L	F3	
				Current				Voltage					
Quatity Measured (Indication)							$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { Di } \end{aligned}$			$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \grave{0} \\ & 0 \end{aligned}$			F5
ILI	Phase Current	A	$i_{11}(t)$	\bullet	\bullet	\bullet	-	-	-	-	\bullet	\bullet	\bullet
\|L2		A	$i_{12}(t)$										
IL3		A	$\mathrm{i}_{13}(t)$										
le	Earth Current	A	$i_{\text {le }}(t)$	-	\bullet	-	\bullet	-	-	-	-	-	\bullet
ULI	Phase Voltages	V	$u_{11}(t)$	-	-	-	-	\bullet	-	-	\bullet	-	\bullet
UL2		V	$u_{12}(t)$	-					-		\bullet	\bullet	\bullet
UL3		V	$u_{13}(t)$	-	-	-	-		-	-	\bullet	\bullet	\bullet
U12	Line-to-Line Voltages	V	$u_{12}(t)$	-	-	-	-		\bullet	-	\bullet	-	-
U23		V	$\mathrm{U}_{23}(t)$	-	-	-	-			.	\bullet	-	\bullet
U31		V	$U_{31}(t)$	-	-	-	-			-	-	-	-
Ue	Residual Voltage	V	$u_{e}(t)$	-	-	-	-	-	-	\bullet	-	\bullet	\bullet

Table 5.2: Direct Measured Values

Calculated measuring values

Additionally to the directly measured values for current and voltage, further operational values/signals are of importance for operation and supervision of an MV (medium voltage) system (e.g. input/output of active power, power factor etc.). Such measurement values, however, cannot be measured directly but must be derived (calculated) from the directly measured quantities.

Depending on the used measurement circuit for directly measurable quantities (currents and voltages), there exist corresponding generally valid formulas for calculation of the calculated measurable quantities. These formulas are considered in the CSP2 individually by a suitable algorithm which is deposited in the software of the processor. The selection of the algorithm to be used is determined via the setting (parmeterizing) of the field settings (parameters) regarding the measurement circuits for voltages. This is of special importance in the case of calculated measuring values which are calculated from the combination of the directly measurable quantities.

Remark

In general, three-phase phase current measuring by the CSP2 is used (see chapter "current measurement $(X 2)^{\prime \prime} \mid$ so that no separate parameter is necessary. The different measurement circuits refer to the additional measurement of the earth current as well as on the earthing of the secondary side of the current converters.

Example: Calculation of the derived measurable quantity "Active power P".

Measurement circuit "current": Holmgreen connection

The three phase currents are measured phase selectively by the CSP2 as analogous measurement values (input variable) $i_{11}(t), i_{12}(t), i_{13}(t)$.

Measurement circuit "voltage": star connection

The three phase voltages are measured phase selectively by the CSP2 as analogous measurement values (input variable) $u_{11}(t), u_{12}(t), u_{13}(t)$.

Setting of the field parameters for the measurement circuit of the voltages:
"VT con = Y"

Generally valid formula for calculating the active power output for the above mentioned combination of the current and voltage measurement:
$P=U_{\mathrm{t} 1} I_{\mathrm{t} 1} \cos \left(\varphi_{\mathrm{ut} 1}-\varphi_{\mathrm{tl}}\right)+\bigcup_{\mathrm{t} 2} I_{\mathrm{l} 2} \cos \left(\varphi_{\mathrm{ut} 2}-\varphi_{\mathrm{t} 2}\right)+\bigcup_{\mathrm{l} 3} \mathrm{I}_{\mathrm{l} 3} \cos \left(\varphi_{\mathrm{u} 13}-\varphi_{\mathrm{t} 3}\right)$

Note
If instead of the "star connection" e.g. the "delta connection" were used for voltage measurement, the setting of the field parameters would have to be " $V T$ con $=\Delta$ " as then not the phase voltages but the line to line voltages are measured. For this case the formula of the "Aron connection" is applicable:

$$
P=U_{23} I_{11} \cos \left(\varphi_{\mathrm{U} 23}-\varphi_{\mathrm{t} 1}\right)+U_{31} I_{\mathrm{t} 2} \cos \left(\varphi_{\mathrm{U} 31}-\varphi_{\mathrm{l} 12}\right)
$$

Calculation of Derived Quantities

Calculation of Derived Quantities												Available in CSP2-		
			Meas	uring	Cir	ircuit								
		Cur	rent			Voltage								
Quantity Measured (Indication) Display	$\begin{gathered} \frac{0}{0} \\ \frac{1}{\otimes} \\ \frac{D}{c} \end{gathered}$	$\begin{aligned} & \text { © } \\ & \text { む } \\ & \text { ह } \\ & \frac{0}{1} \end{aligned}$		$\begin{aligned} & \bar{U} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$			$$	Analogue Quantities Measured \|Input Variable)	Calculation Formula		Note	L	F3	F5
$l_{\mathrm{d}} \mathrm{L}$ 2	-	-	\bullet	-	-	-	-	$\mathrm{i}_{12 \mathrm{~A}}(t), \mathrm{i}_{12 \mathrm{l}}(t)$	Operation: $I_{d 12}=\left\|\left\|I_{12 A}\right\|-\left\|I_{L 2}\right\|\right\|$ Fault: $\quad I_{\mathrm{d} 12}=\left\|\left.\right\|_{\mathrm{L} 2 \mathrm{~A}}-\mathrm{I}_{\mathrm{L} 2 \mathrm{~B}}\right\|$		Information from Partner Device	\bullet	-	-
$l_{\text {d }}$ L3	-	-	\bullet	-	-	-	-	$\mathrm{i}_{13 \mathrm{~A}}(t), \mathrm{i}_{13 \mathrm{~B}} \mathrm{l}^{(t)}$	Operation: $I_{d 13}=\left\|\left\|I_{L 3 A}\right\|-\left\|I_{L 3 B}\right\|\right\|$ Fault: $\quad I_{d 13}=\left\|I_{L 3 A}-I_{L 3 B}\right\|$		Information from Partner Device	\bullet	-	-
$\mathrm{I}_{\mathrm{S}} \mathrm{L} 1$	-	-	\bullet	-	-	-	-	$i_{114}(t), i_{113}(t)$	Operation: $I_{S U 1}=\sqrt{ }\left(I_{L 1 A} \times I_{L 1 B}\right) \times$ $\cos \alpha$ Fault: $I_{S U 1}:=0$		Information from Partner Device	\bullet	-	-
$\mathrm{l}_{\mathrm{s}} \mathrm{L} 2$	-	-	\bullet	-	-		-	$i_{12}(t), i_{12}(t)$	Operation: $I_{S 12}=\sqrt{ }\left(I_{L 2 A} \times I_{L 2 B}\right) \times$ $\cos \alpha$ Fault: $I_{S 12}:=0$		Information from Partner Device	\bullet	-	-
$1_{\text {c }}$ L3	-	-	\bullet	-	-	-	-	$\mathrm{i}_{13 \mathrm{~A}}(t), \mathrm{i}_{13 \mathrm{~B}}(t)$	Operation: $I_{S 13}=\sqrt{ }\left(I_{L 3 A} \times I_{L 3 B}\right) \times$ $\cos \alpha$ Fault: $I_{S 13}:=0$		Information from Partner Device	\bullet	-	-
mL1	\bullet	-	\bullet	-	-	-	-	$i_{114}(t), ~ i_{113}(t)$: Information from er Device	\bullet	-	-
mL2	-	-	\bullet	-	-	-	-	$\mathrm{i}_{124}(t), \mathrm{i}_{12}(t)$			18: Information from er Device	\bullet	-	-
mL3	\bullet	-	\bullet	-	-	-	-	$\mathrm{i}_{13 \mathrm{~A}}(t), \mathrm{i}_{13 \mathrm{~B}}(t)$: Information from er Device	\bullet	-	-

Table 5.3: Derived Quantities (Computed)

Counters as calculated quantities

Note

The energy counters ($\mathrm{Wp}+, \mathrm{Wp}$-, $\mathrm{Wq}+$ and Wq -) are limited to $2^{31}(=2,147,483,648) \mathrm{kWh}$ or kvarh.
Example:
For a medium voltage panel with 65 kV and $1000 \mathrm{~A}(65 \mathrm{MW}$ power) a recording duration of 2.1 year is possible.
The overflow of a counter is indicated by a corresponding message in the event recorder (e.g. "Overflow: Wp+"). Additionally, the output function "Overflow: Wp+" becomes active. This function can be further processed by a signal relay and/or displayed by a LED. The data point lists of the different data protocol lists likewise dispose of a corresponding message which is transmitted to the SCADA-system.

The display of the CMP1 shows the measurement values as abolute values:

Figure 5.1: Menu "Measurement values" in the display of the CMP1 (Example CSP2-F)

When using the SL-SOFT, the measurement values can either be displayed as absolute values or as relative values.

Figure 5.2: Menu „Measurement values" - SL-SOFT (Example CSP2-F)

5.2 Menu statistics

In this menu the so-called "statistical data" can be read out which give information about the load flow for defined periods of time during the operation of the MS-panel.

Statistical data are cyclically calculated maximum and medium values of directly measured and calculated measurement values. The calculation of statistical data occurs each time after a settable time interval " Δt ". If the time interval is e.g. set to 60 minutes, the calculation and display of the statistical values occurs each time after 60 min, i.e. the individual statistical values are updated every 60 minutes.

Additionally, within a day (24 h) a so-called synchronization instant "hh:mm:ss" can be defined at which the calculation of the statistical data can be restarted. By the definition of a synchronization instant it is possible to calculate and display the maximum or medium load flow per calendar day from 00:00 to 24:00.

Figure 5.3: Example synchronization instant
(The setting of the corresponding parameters can be implemented as described in chapter "Statistical Data").
The set time interval and the defined synchronization instant are valid for all statistical quantities.
The statistical measurement values are also available as data points in the different protocol types and can be send to the SCADA-system.

Example: transmitted information in the data point of the protocol IEC 60870-5-103

- measurement value,
- time intervals in minutes (period of time which was used as basis for the calculation of the maximum and medium values),
- serial cycle number (e.g. all values designated Nr. 30 belong to a block)
- time stamp of the measurement (standardized).

The measurement value detection in this way makes possible the reduction of the measurement values via the protocol and thus increases the effectivity of the data transfer.

The display indication of the CMP1 shows the statistical values as absolute values of the CSP2-F

Figure 5.4: Menu "Statistic" in the display of the CMP 1 (Example CSP2-F)

When using the operation soffware SL-SOFT, the statistical values can either be displayed as absolute values or as relative values.

3 System Line Soft - Statistic

Figure 5.5: Menu "Statistic" - SL-SOFT (Example CSP2-F)

Statistical Data				Available in CSP2-		
Statistic Quantity	Description	Unit	Calculation (Update)	L	F3	F5
11.1 max	Max. Current Value in Outer Conductor L1	A	Cyclic via " $\Delta t^{\prime \prime}$ or "Synchronizsation Instant "	\bullet	-	\bullet
1 L max	Max. Current Value in Outer Conductor L2	A		\bullet	\bullet	\bullet
1 L 3 max	Max. Current Value in Outer Conductor L3	A		\bullet	\bullet	\bullet
$1 L \mathrm{lavg}$	Average Current Value in Outer Conductor L1	A		\bullet	\bullet	\bullet
\|L2avg	Average Current Value in Outer Conductor L2	A		\bullet	\bullet	\bullet
IL3avg	Average Current Value in Outer Conductor L3	A		\bullet	\bullet	\bullet
ULI max	Max. Value of Phase Voltage L1-N	V		\bullet	\bullet	\bullet
UL2 max	Max. Value of Phase Voltage L2-N	V		\bullet	\bullet	\bullet
UL3max	Max. Value of Phase Voltage L3-N	V		\bullet	\bullet	\bullet
ULlavg	Average Value of Phase Voltage L1-N	V		\bullet	\bullet	\bullet
UL2avg	Average Value of Phase Voltage L2-N	V		\bullet	\bullet	\bullet
Ul3avg	Average Value of Phase Voltage L3-N	V		\bullet	\bullet	\bullet
U12max	Max. Value of Line-To-Line Voltage L1-L2	V		\bullet	\bullet	\bullet
U23max	Max. Value of Line-To-Line Voltage L2-L3	V		\bullet	\bullet	\bullet
U31max	Max. Value of Line-To-Line Voltage L3-LI	V		\bullet	\bullet	\bullet
U1 2avg	Average Value of Line-To-Line Voltage L1-L2	V		\bullet	\bullet	\bullet
U23avg	Average Value of Line-To-Line Voltage L2-L3	V		\bullet	\bullet	\bullet
U3lavg	Average Value of Line-To-line Voltage L3-L1	V		\bullet	\bullet	\bullet
Fmax	Max. Frequency Value	Hz		\bullet	-	\bullet
Favgt	Average Frequency Value	Hz		\bullet	\bullet	\bullet
Pmax +	Max. Posit. Active Power Value	kW		-	\bullet	\bullet
Pmax -	Negat. Active Power Value	kW			\bullet	\bullet
Pavg +	Average Posit. Active Power Value	kW		-	\bullet	\bullet
Pavg -	Average Negat. Active Power Value	kW		-	\bullet	\bullet
Qmax +	Max. Posit. Reactive Power Value	kVA		-	\bullet	\bullet
Qmax -	Max. Negat. Reactive Power Value	kVA		-	\bullet	\bullet
Qavg +	Average Posit. Reactive Power Value	kVA		-	\bullet	\bullet
Qavg -	Average Negat. Reactive Power Value	kVA		-	\bullet	\bullet
${ }_{\text {d }} \mathrm{L} 1$ max	Max. Differential Current in Outer Conductor L1	A		\bullet	-	-
$1_{\text {d }} \mathrm{L}$ 2max	Max. Differential Current in Outer Conductor L2	A		\bullet	-	-
$1_{d} 13$ max	Max. Differential Current in Outer Conductor L3	A		\bullet	-	-
$1_{s} 11$ max	Max. Stabilising Current in Outer Conductor L1	A		\bullet	-	-
$\mathrm{I}_{\mathrm{s}} \mathrm{L} 2$ max	Max. Stabilising Current in Outer Conductor L2	A		\bullet	-	-
$\mathrm{I}_{\mathrm{s}} \mathrm{L} 3$ max	Max. Stabilising Current in Outer Conductor L3	A		\bullet	-	-
mLImax	Max. Transient Stabilizing Factor in Outer Conductor L1	-		\bullet	-	-
ml2max	Max. Transient Stabilizing Factor in Outer Conductor L2	-		\bullet	-	-
ml3max	Max. Transient Stabilizing Factor in Outer Conductor L3	-		\bullet	-	-

[^6]
5.3 Menu event recorder

The event recorder records up to 50 events referring to the corresponding medium voltage panel. These include protection, control, parameter setting and self-test events. Beside the name of an event also further data are saved which permit more exact conclusions from the event. The event recorder works according to the FIFO-principle (First-ln-FistOut). This means that the first 50 events are saved into the memory of the event recorder. The $51^{\text {th }}$ event then overwrites the oldest event in the memory. Thus it is guaranteed that always the last 50 events are fail-safely ready to be called up.

Note

The available event messages depend on the different types of devices CSP2-F and CSP2-L.

Scope of saved information

Each event is recorded in the event recorder according to a certain structure, i.e. additionally to the message ("what" happened) information is delivered which enables an assignation of the message to the total context.

Structure of an event

Event Data	Messages	Description	Example	Note
Serial number	"XXXXXXX"	Serial number of the event from commissioning onwards	„1111"	
Fault No.	"X"	Fault number $=$ Event assignment to a specific fault	"4"	Event message is to assign to fault no. "4" (protective trip)
(Time stamp)	$\begin{aligned} & \text { "XX.XX.XXXX" } \\ & \text { "XX:XX:XX,XXX" } \end{aligned}$	Date and time (accuracy in the millisecond range) of the event	$\begin{gathered} 28.03 .2002 \\ 15: 43: 22,333 \end{gathered}$	dd.mm.yyy hh:mm:ss,sss
Module (Cause of the event massage)	"Control Logic"	Messages from the control and	"Digital Input"	Event message was generated via a digital input
	"Digital Input	interlocking of incoming messages from digital inputs		
	"Param. Setting"	Change of a parameter setting		
	„IEC 870-5-103"	Messages from the SCADA-system with protocol type IEC 60870-5-103)		
	"Recorder"	Messages from the fault recorder (fault recorder function)		
	System	Internal device messages		
	Protection	Messages from internal and external protective functions		
	Logic	Messages from programmable Logic functions		
Code	See table "Messages in the Event Recorder"	Event message	"Control Interlocking 1《	Interlocking of control via the active digital input (DI function: "Control Interlocking 1")
Info State of the event)	"coming"		»inactive«	Interlocking has been inactivated by de-activating the digital input (DI function: „Control Interlocking 1")
	"going"			
	"send"	Signal „Temporary Line Fault" : wipe signal		
	„Parameter set 1 "			
	"Parameter set 2"			
	„Parameter set 3"			
	"Parameter set 4"			
	"active"			
	„inactive"			
	"OFF"			
	"ON"			
	"DIFF"			
	"Fault"			
	„Removed"			

Table 5.5: Structure event messages

The event recorder can be read out via the display and operation unit CMP1 or the parameter setting and evaluation software SL-SOFT. both displays are equivalent and show the same contents.

EUENT RECORDER
Event no.
Fault no.
27.03 .2003
10: $34: 02.649$
Module:
Protection
Code:
UK block. freq.
Info:
coming

Figure 5.6: Screenshot of the information to be called up out of the "EVENT RECORDER"

Figure 5.7: Informations to be called up from the event recorder by means of the SL-Soft

Event Messages										Available in CSP2-		
		INFO (Information on the Event)							せ			
CODE (Event Messages)	MODULE (Event Source)	Status (of the Event)						$\begin{aligned} & \overline{0} \\ & .0 \\ & .0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	L	F3	F5
Local Parameter	Param. Setting		ing			-	-	-		-	-	-
Plausibility	Param. Setting	Incoming								\bullet	-	-
Switchover P-Set	Param. Setting	Param. Set 1	Param. Set 2	Param. Set 3	Param. Set 4					\bullet	-	-
Default Values	Param. Setting	coming		going			-			-	-	-
Interlock	IEC 870-5-103	coming		going			-			-	-	-
Fault Recorder	Recorder	coming		going			-			-	-	-
System Start	System	coming		going			-			-	-	-
Acknowledgem.	System	coming		going			-			-	-	-
Calibrat. Mode	System	coming		going			-			-	-	-
Commissioning	System	coming		going			\bullet			-	-	-
Test Mode	System	coming		going			-			-	-	-
Self-Test, Alarm	System	coming		going			-			-	-	-
Self-Test, Fault	System	coming		going			-			-	-	-
Current Circ. Superv.	System	coming		going			-			-	-	-
Voltage Supervision	System	coming		going			-			-	-	-
Rotat. Field Supervision	System	coming		going			-			-	-	-
LED-Test	System	coming		going			-			-	-	-
Relay-Test	System	coming		going			-			-	-	-
Self-Test	System	coming		going			-		-	-	-	-
Overflow: Wp+	System	coming		going			\bullet		\bullet	-	-	-
Overflow: Wp-	System	coming		going			-		-	-	-	-
Overflow: Wq+	System	coming		going			-		-	-	-	-
Overflow: Wq-	System	coming		going			\bullet		\bullet	-	-	-
Protection, Active	Protection	coming		going			-		-	-	-	-
General Alarm	Protection	coming		going			-		-	\bullet	-	-
Alarm L1	Protection	coming		going			-		-	\bullet	-	-
Alarm L2	Protection	coming		going			\bullet		-	\bullet	-	-
Alarm L3	Protection	coming		going			-		-	\bullet	-	-
Alarm N	Protection	coming		going			-		-	\bullet	-	-
General Trip	Protection	coming		going			-		-	-	-	-
Trip L1	Protection	coming		going			-		-	-	-	-
Trip L2	Protection	coming		going			-		-	\bullet	-	-
Trip L3	Protection	coming		going			-		-	\bullet	-	-
Trip N	Protection	coming		going			-		-	\bullet	-	-
Prot. Signal, Active	Protection	active		inactive			-			\bullet	-	-
Prot. Signal, Fault	Protection	coming		going			-			\bullet	-	-
Ph Fault forward	Protection	coming		going			\bullet			\bullet	-	\bullet
Ph Fault backward	Protection	coming		going			-			-	-	-
Earth Fault forward	Protection	coming		going			-			-	-	-
Earth Fault backward	Protection	coming		going			-			\bullet	-	-
Function l>F	Protection	active					\bullet		-	\bullet	-	-
Function $1 \gg F$	Protection	active					-		-	-	-	-
Function $1 \ggg F$	Protection	active					\bullet		-	-	-	-
Function $1>B$	Protection	active					-		-	-	-	-
Function $1 \gg B$	Protection	active					\bullet		-	\bullet	-	-
Function $\mid \ggg B$	Protection	active		inactive			\bullet		-	-	-	\bullet

Table 5.6: Messages in the event recorder

5.4 Menu fault recorder

The "Fault recorder" saves data which are related to a trip (also-called "Fault" or "Disturbance". The memory of the fault recorder guarantees the recording of up to 5 disturbances.
At first the protective trip is recorded in the fault recorder as a fault event. For each disturbance event the measurement values at the time of the tripping (instantaneous recording of the fault values) are additionally recorded in form of absolute values.

For the duration of the recording and saving of disturbance events in the fault recorder is blocked. Incoming fault event during a recording will, however, not be rejected but sequentially processed (recorded) so that also in case of several disturbance events in sequence a complete documentation is guaranteed.

Structure of a Fault Event Message			
Data of the fault event	Description	Example	Note
Serial number	Serial number of the fault from commissioning onwards	„24"	
Fault number		${ }^{\prime} 3^{\prime \prime}$	
(Time stamp)	Date and and time (accuracy in the millisecond range) of the event	$\begin{gathered} 23.02 .2002 \\ 11: 35: 44.556 \end{gathered}$	dd.mm.yyy hh:mm:ss,sss
Module	Source of the fault	"Protection"	
Code	Fault event	"Trip l>F"	

Table 5.7: Structure of a Fault Event Message

Instantaneous Fault Values			Available in CSP2-		
Fault Data	Description	Display	L	F3	F5
Serial number	Serial number from commissioning onwards	XXXX	\bullet	-	\bullet
Fault number	Fault number of the stored record (max. 5)	$1 . .5$	-	-	-
(Time stamp)	Date and time (accuracy in the millisecond range) of the event	dd.mm.yyyy hh:mm:ss,sss	-	\bullet	\bullet
Module	Source of the fault		-	-	-
Code	Fault Event		\bullet	\bullet	\bullet
ILI	Effective phase current value at the instant of the fault	A	\bullet	-	-
IL2	Effective phase current value at the instant of the fault	A	\bullet	\bullet	\bullet
IL3	Effective phase current value at the instant of the fault	A	-	-	-
le	Effective earth current value at the instant of the fault	A	\bullet	-	\bullet
Theta	Thermal capacity ϑ)	\%	\bullet	-	-
t theta	Time until trip of the protection function $\vartheta>$	s	-	-	\bullet
12	Effective current value in the opposite system at the instant of the fault	A	-	-	-
ULI	Effective phase voltage value at the instant of the fault	kV	\bullet	\bullet	\bullet
UL2	Effective phase voltage value at the instant of the fault	kV	\bullet	-	-
UL3	Effective phase voltage value at the instant of the fault	kV	\bullet	\bullet	\bullet
Ue	Effective residual voltage value at the instant of the fault	kV	\bullet	-	-
U12	Effective line-to-line voltage value at the instant of the fault	kV	-	-	-
U23	Effective line-to-line voltage value at the instant of the fault	kV	-	-	-
U31	Effective line-to-line voltage value at the instant of the fault	kV	\bullet	-	\bullet
P	Effective active power value at the instant of the fault I	kW	-	-	-
Q	Effective reactive power value at the instant of the fault I	kVAr	-	\bullet	\bullet
$\cos \varphi$	Power factor at the instant of the fault	-1... 1	-	-	-
F	Frequency at the instant of the fault	Hz	\bullet	-	\bullet
\|dLl	Differential current ILI	A	-	-	-
ldL2	Differential current IL2	A	-	-	-
IdL3	Differential current IL3	A	\bullet	-	-
IsLI	Stabilising current IL 1	A	\bullet	-	-
IsL2	Stabilising current IL2	A	-	-	-
IsL3	Stabilising current IL3	A	\bullet	-	-
mL 1	Transient stabilising factor in outer conductor L1	-	\bullet	-	-
mL 2	Transient stabilising factor in outer conductor L2	-	\bullet	-	-
mL3	Transient stabilising factor in outer conductor L3	-	\bullet	-	-

Table 5.8: Measurement value instantaneous recording of the fault recorder

The FAULT RECORDER can either be read out via the display and operation unit CMP1 or via the SL-SOFT. Both displays are equivalent and show the same contents.

Figure 5.8: Screenshots of the Fault Recorder Displayed at the CMP1 (Example: CSP2-F)

Figure 5.9: Screenshots of the Fault Recorder (SL-SOFT)

Figure 5.10: Screenshots of the instantaneous fault values responding to the disturbance event (SL-Soft)

Remark

The menu "FAULT RECORDER" is a separate menu and thus detached from the menv "Disturbance recorder". The differences are explained in the next chapter.

5.5 Menu „Disturbance recorder"

Contrary to the fault recorder, which only saves the fault events and records the relevant measurement values at the time of tripping (instantaneous fault recording), the disturbance recorder function makes possible the recording of limited time histories of analogous and digital channels.

For each protection trip (Disturbance/fault) on the one hand there occurs a recording in the fault recorder. Additionally, in case of an actively parameterised disturbance recorder function, the CSP2 generates a disturbance record file. The standard version of the CSP2 disposes of a memory with a total recording length of 10 s . As an optional additional function an extended non-volatile memory area with a total recording length of 50 s can be provided.

Remark

The function of the disturbance recorder can be adapted individually to each application. For this, there is a separate sub-menu provided in the menu "Parameter", in which the settings can be done (see chapter "disturbance recorder").

The possibilities of settings refer to:

- activation of the disturbance recorder function and setting of the "trigger event" (Start of disturbance recording),
- number of the sampling points for the total recording length of an disturbance record,
- number of the measuring points for the recording length of the pre-history for the trigger event,
- selection of the storage medium in which the disturbance recorder files are to be deposited,
- where to save the disturbance records on.

Statusdisplay and action parameter

The menu "Disturbance recorder" disposes on the one hand of a status display which informs about the present status of the function and on the other hand it disposes of a menu item by which the recording can be restarted manually.
"File info"
Here all relevant data ("File no. xy"/"Name"/"Time"/"Date"/"Size") for each of the stored disturbance record files are contained. The file size is shown in Bytes.

Figure 5.11: Menu „Disturbance recorder"
"State: waiting/start/saving" (status parameters)
this is a status display of the disturbance value recording. The display "State: waiting" signalizes, that the disturbance recorder is ready to be started. When the disturbance value recorder is started lactivation of the menu "man trigger"), the display changes for about 1.5 s to "State: Start". Thereafter, the CSP2 starts saving the disturbance record file into the storage medium provided. During the storing, this is signalized by the display "State: saving". After termination of the saving process, the display of the CMP changes again to the readiness status "State waiting").
"Man. trigger" (menu item)
By activation of this menu item, the disturbance recording is started manually. This can either be executed via the menu guidance of the CMP1 or via SL-SOFT.

Figure 5.12: Manual trigger of the disturbance recorder via CMP1

The menu "Disturbance Recorder" can also be accessed via the SL-SOFT.

Figure 5.13: Screenshot of the "Disturbance Recorder" (SL-SOFT)

A manual trigger can be started (within the SL-SOFT) by clicking the button "Trigger" with the left hand mouse key.
Deleting of a disturbance record file is also possible. The pop-up window "Delete OK" informs that the deleting procedure was executed successfully.

Figure 5.14: Manual trigger of the disturbance recorder via the "SL-SOFT"

Saving of disturbance recorder files

The disturbance record files saved in the CSP2 can only be evaluated by the optionally available data recorder of the SL-SOFT. For this, the data files, however, must be saved (copied) beforehand by the CSP2 on a hard drive or floppy disk of the local PC/laptop. The copying is carried out by simple "drag \& drop" of the *. dsb-file from the left part of the "Disturbance recorder" - window into the right part of the window (your local hard drive) with the left hand mouse key as shown in Fig. 5.15.

Figure 5.15: Storing of disturbance recorder data via SL-SOFT

Remark

The size of a disturbance record file depends on the setting parameters of "Sample n" and "Pre-trigger" (see chapter "disturbance recorder"), which define the duration of the recording. Thus the saving of a disturbance record file on the PC/notebook can take several seconds. A status bar in the foot line of the SL-SOFT shows the progress of the file transfer.

5.6 Menu status

Within the status menu, the status of the signal outputs (signal relays), function inputs (digital inputs) and logic outputs are shown within the corresponding sub-menus.

In this way on the one hand the wiring can be checked without great effort during the mounting of the cubicle, and on the other hand the function tests can be checked in the scope of a commissioning.

Input status
Each digital input is displayed with its assigned No. and input function. The actual state of each input is indicated within the corresponding check box.

Output Status

The No. and actual state (Relay closed/not closed) of each signal relay is shown within the submenu Signal Relays.

Logic

Each output state of a logic equation is shown and in addition to that the assigned functions.

Remark

As up to 16 output messages can be assigned on each signal relay, for reasons of clarity the display of these output messages in the display of the CMP1 is renounced. When using the operation software SL-SOFT, however, the assigned output messages can be displayed!

Figure 5.16: Menu "I/O status" in the display of the CMP1

Operation via SL-SOFT

The access to menu "I/O Status" via the operation software SL-SOFT enables a more detailed display of the digital inputs and the signal relays. Additionally to the data that can be shown in the display of the CMP1, the window of the SL-SOFT shows also the parameterized DH-logic as well as the set rebounce time for each of the digital inputs. For the signal relays the same is valid, as for each of them additional parameters like Relay Logic, Minimum holding time and Acknowledgement are displayed.

Figure 5.17: Menu "Status" (Digital Inputs) - SL-SOFT

Figure 5.18: Menu „Status" (Signal (Output) relays) - SL-SOFT

Figure 5.19: Menu „Status" (Logic) - SL-SOFT

5.7 Menu Parameter (Settings of the CSP2)

Description

In this chapter, the individual parameters and their settings are explained with their effects on the total system. All the parameters belonging to a function are put together in a parameter group. The tabular list of the individual parameters within the parameter group has been matched to the menus of the CMP1.
A parameter group belongs either to the system parameter set or to a protection parameter set. The CSP2 has 4 switchable protection parameter sets, each of which entails the complete scope of the protection functions designated for the corresponding type of appliance.
This means that depending on the type of appliance differing parameters can partly be available in the CSP2.

Explanations of the table set-up

Example

Rated field settings ${ }^{1}$						Available in CSP2-		
Parameter ${ }^{2}$	Description ${ }^{3}$	Settings/Setting Range ${ }^{4}$	Description ${ }^{5}$	Pre-setting. ${ }^{\circ}$	Step range ${ }^{7}$	L	F3	F5
CT pri	Rated primary current of the phase CTs	1...50,000 A		1000 A	1 A	\bullet	\bullet	\bullet
VT con	Connection mode (treatment) of the phase VTs	Y	Star	Y	-	\bullet	-	\bullet
		Δ	Delta					
		no VTs	no U-measuring					
		V	V-connection					

Table 5.9: Example of a Parameter Table
${ }^{1}$ Name of the parameter group
${ }^{2}$ Short designation of the parameter as it appears in the CMP1 display
${ }^{3}$ Parameter description
${ }^{4}$ Setting range and/or term of the selection available
5 Description of setting range or selection

- Default setting
${ }^{7}$ Step range within the setting range for numerical values

5.7.1 System parameters (set)

The System parameters entail settings with regard to:

- field settings,
- controls: switch control times, interlockings (via SCADA and CMP1),
- assignment of the digital inputs,
- assignment of the signal relays,
- assignment of logic functions,
- assignment of the LED's,
- fault recorder
- communication: IEC 60870-5-103; PROFIBUS-DP and CAN-BUS,
- resetting of functions and the
- statistical parameters.

Note

When saving amended system parameters, there is automatically a re-boot of the CSP/CMP system!

5.7.1.1 Field settings (Feeder ratings)

Description

This parameter group contains all the principal settings concerned with the measurement of current, voltage and frequency and depend on the transmission ratio of the transformers, their physical arrangement and measurement circuits and on the existing mains frequency.

Parameters

" f_{N} " (nominal frequency)
The setting of the nominal frequency can be " 50 Hz " or " 60 Hz ". It defines the reference value for a measured overor underfrequency in the "Frequency protection" protection parameter group.
"CT pri" (Primary nominal value of the current transformer)
This parameter defines the primary nominal current of the existing current converters.
"CT sec" (Secondary nominal value of the current transformer)
This parameter defines the secondary nominal current of the existing current tranformers to 1 A or 5 A .
"CT dir" (Polarity of the current transformer - important for directional protection!)
With the settings " $0^{\circ "}$ or " $180^{\circ "}$ " the user has the possibility of joint alteration of direction for the phase currents. An amendment of the default setting, " $0^{\circ "}$ can become necessary if protective functions with a directional feature are used and all three current transformers have erroneously been connected with the wrong polarity. The current indicators determined are calculatorily turned 180° by the CSP2.

Remark

If the Holmgreen circuit is used to detect the earth current, the parameter "ECT dir" must be selected according to the setting of the parameter "CT dir"!

If the phase currents are detected via the V connection (2-phased current measurement), the determination of the earth current is only possible via a direct measurement with a ring core transformer!
"ECT prim" (Primary nominal value of the earth current transformer)
This parameter defines the primary nominal current of the existing earth current transformer (ring core transformer). If the earth current detection is done via the Holmgreen connection, the primary value of the phase current transformer (CT pri) must also be entered here.
"ECT sec" (Secondary nominal value of the earth current transformer)
This parameter defines the secondary nominal current of the existing earth current transformer (ring core transformer) to 1 A or 5 A . If the earth current detection is done via the Holmgreen connection, the secondary value of the phase current transformer (CT sec) must be entered here.
"ECT dir" (polarity of the earth current transformer - important for directional protection!)
With the settings " 0° " or " 180° " the operator has the possibility of turning the current vector by 180 degrees (change of sign), without modification of the wiring. This means, the current indicator determined is calculatorily turned 180° by the CSP2.
A modification of the default setting " 0 " can become necessary in earth current detection via:

- Ring core transformers: and connection with polarity the wrong way round
- Holmgreen connection: and connection of all phase current converters with polarity the wrong way round
"VT pri" (primary nominal value of the voltage transformers)
This parameter defines the primary nominal voltage of the existing voltage transformer.
"VT sec" (secondary nominal value of the voltage transformers)
This parameter defines the secondary nominal voltage of the existing voltage converters.
"VT con" (kind of connection of the voltage transformers)
This parameter has to be set in order to ensure the correct assignment of the voltage measurement channels in the CSP2 to the secondary terminals of the transformer (Y, Δ or V connection). With the setting »no $V T_{\text {« }}$ there is no voltage measurement.
"VT loc" (measurement location of the voltage transformers)
This parameter considers the physical arrangement (measurement location) of the voltage transformers, which can be fits on the bus bar side ("VT loc = Busbar": above the CB) or on the feeder side ("VT loc = Line": underneath the CB). Settings:
"Busbar": The voltage measurement acts as a criterion for the effectivity of the under-voltage protection functions $(U<, U \ll)$ parametered as "active" regardless of the position of the CB. Even with the CB open, the under-voltage protection functions are effective. The consequence is a switch-on blockade of the CB with a under-voltage on the bus bar. In this way, switching the CB onto a bus bar with under-voltage is prevented.
"Line": With this setting, the voltage measurement merely acts as a criterion for the undervoltage protection functions $(\mathrm{U}<, \mathrm{U} \ll)$. parametered as "active" when the CB is closed. The under-voltage protection functions are not effective if the CB is open. The consequence is that the CB-On command is carried out. If an under-voltage is then measured (detected) at the closed CB on the bus bar, the CB trips after the set delay time. Switching the CB onto a bus bar with undervoltage is thus possible in this way.

Remark

Depending on the application, the setting "VT loc = Line" can also be selected with voltage transformers connected to the bus bar. However, the above mentioned states of affairs must be considered!

Attention

The setting "VT loc = Busbar" with voltage transformers connected to the feeder side must be avoided at all costs, as no voltage measurement is possible with the CB open. However, the under-voltage protection is effective and interprets the lack of voltage measurement as an under-voltage trip. In this way, the CB cannot be switched on via the CSP2; if at all, the manually.

"EVT con" (measurement of the residual voltage)

The parameter »EVT con« stipulates the way in which the residual voltage is to be detected:
Settings:
"geometr.SUM": The detection of the residual voltage Ue is done calculatorily via the formation of the geometrical sum: $\sum \underline{U}_{1: N}=\underline{U}_{11}+\underline{U}_{12}+\underline{U}_{13}$ of the measured phase voltages $\underline{U}_{11}\left(\underline{U}_{11, N}\right), \underline{U}_{12}\left(\underline{U}_{22 N}\right)$ and $\underline{U}_{13}\left(\underline{U}_{13 N}\right)$, which must be connected in star connection (VT con = Y to the voltage measurement inputs for this purpose. The residual voltage Ue can only be calculated from the phase voltages.
"open delta": This setting can be selected if the residual voltage Ue is measured directly. The prerequisite is three phase voltage transformers, each of which has an en winding. The e-n windings are connected in series to the measurement input for the residual voltage (open delta). In this, the primary and secondary nominal values of the phase voltage transformers are to be considered (EVT pri/EVT sec) with regard to the e-n winding.

Remark

If the V -connection is used (2 -phased voltage measurement) neither the direct measurement nor the calculatory determination of the residual voltage Ue are possible!
"disabled": There is no detection of the residual voltage Ue.
"EVT pri" (Primary nominal value of the voltage transformers)
This parameter defines the primary nominal voltage of the existing voltage transformers, which is only to be taken into account in the direct measurement of the residual voltage Ue ("EVT con = open delta").
"EVT sec" (Secondary nominal value of the e-n winding of the voltage transformers)
This parameter defines the secondary nominal voltage from the e-n windings of the existing voltage transformers, which is only to be taken into account in the direct measurement of the residual voltage ("EVT con = open delta").

Rated field settings						Available in CSP2-		
Parameter	Description of the parameter	Setting/ Setting Range	Description of the parameter setting	PreSetting	Step Range	L	F3	F5
f_{N}	Rated frequency	50 Hz		50 Hz	-	\bullet	\bullet	-
		60 Hz						
CT prim.	Rated primary current of the phase CTs	1...50,000 A		1000 A	1 A	\bullet	\bullet	\bullet
CT sec	Rate secondary current of the phase CTs	1 A		1 A	-	\bullet	\bullet	-
		5 A						
CT dir	Polarity (direction) of the phase CTs	0°		0°	180°	\bullet	\bullet	-
		180°						
ECT prim.	Rated primary current of the earth CTs	1...50,000 A	*	1000 A	1 A	-	\bullet	\bullet
ECT sec	Rated secondary current of the earth CTs	1 A	**	1 A	-	\bullet	\bullet	\bullet
		5 A						
ECT dir	Polarity (Direction) of the earth CT	0°		0°	180°	\bullet	\bullet	-
		180°						
VT prim.	Rated primary voltage of the VTs	$1 . . .500,000 \mathrm{~V}$		1000 A	1 V	\bullet	\bullet	\bullet
VT sec	Rated secondary of the VTs	$1 . . .230 \mathrm{~V}$		1 V	1 V	-	-	-
VT con	Connection mode (treatment) of the phase VTs	Y	Star Connection	Y	-	\bullet	\bullet	\bullet
		Δ	Delta Connection					
		no VT	No U-Measurement					
		V	V-Connection					
VT loc	Physical arrangement (Local) of the V Ts	Busbar	Busbar	Feeder	-	-	-	\bullet
		Line	In the Feeder					
EVT con	Determination (treatment) of the residual voltage	Open Δ	Series Connection of the e-n Wndings	open Δ	-	\bullet	\bullet	-
		geometr.SUM	$\Sigma \underline{U}_{-N}=\underline{U}_{11}+\underline{U}_{12}+\underline{U}_{13} \text {, }$ only for setting : ${ }^{\prime} \mathrm{VT}=\mathrm{Y}^{\prime \prime}$					
		none	No Ue Measurement					
EVT prim.	Rate primary voltage of the VT e-n winding	$1 . .500000 \mathrm{~V}$	Only relevant for setting : "EVT con = open $\Delta^{\prime \prime}$	10000 V	1 V	\bullet	\bullet	\bullet
EVT sec	Rated secondary voltage of the VT e-n winding	$1 . . .230 \mathrm{~V}$	Only relevant for setting "EVT con = open $\Delta^{\prime \prime}$	1 V	1 V	\bullet	\bullet	\bullet

Table 5.10: Field parameter

* Has to be equal to the nominal prim. value of the phase CT when in Holmgreen connection.
** Has to be equal to the nominal sec. value of the phase CT when in Holmgreen connection.

5.7.1.2 Controls

Description
The parameter menu "Controls" contains the two sub-menus "Control Timing" and "Interlocking". The sub-menu "control times" is used to parameter the control times for the individual switchgears. In the sub-menu "Interlocking", blocking commands for individual or all switchgear can be set or cancelled by parameter setting.

5.7.1.2.1 Control times

Description

The control times are supervision times for the executing of switching actions and are composed of the switching times and follow-up times.
As a function of the field configuration and the assignment of the switchgears to the control outputs, the control times can be set accordingly.
Switchgear 1 (SG1) is a circuit breaker as a rule, with the disconnector (e.g. SG2, SG3, SG4) and the earthing switch (e.g. SG5) being defined as switchgear below. The circuit breaker is actuated via the control outputs (coil outputs) OL1 »OFF« and OL2 »ON«. The set control time ts for SG1 acts directly on the circuit breaker via the control outputs.

Switchgears SG2, SG3, SG4 and SG5 (disconnector or earthing switch) are actuated via the control outputs (motor outputs) $O M 1, O M 2, O M 3$ and $O M 4$ and activated for the period set in each case with a corresponding control command. If a second circuit breaker is used as SG2 (e.g. for a double bus-bar system) control output OL3 is used for the coil actuation control command »SG2-OFF«, output OM4 for SG2-ON. In this case, the set control time ts of switchgear SG2 (circuit breaker 2) acts on the control outputs OL3 or OM4.

Parameters

Switch time "ts SGX"
All the control commands issued are limited as regards time. If a control command is not positively acknowledged after the time set li.e. check back signal for the position of the switchgear to be controlled is not done within the set switching time), the switchgear in question is recognised as being in a faulty position and the command is terminated. The control times can be set separately from 80 to $50,000 \mathrm{~ms}$ for the individual control outputs.

Follow-up times "tr ON" and "tr OFF"

A switch command with follow-up time is used to conclude a switching process safely or to fix a switchgear in its final position. For this, the disconnector/earthing switch is »pushed on" a little after the receipt of the new check back signal if a follow-up time has been set. This means that the drive motor remains switched on after the check back signal is present (check-back signals are present due to imprecise adjustment of the limit switch, but the contacts of the switchgear are not yet in the required final position) for the duration of the set follow-up time.
In this, "tr on" is the follow-up time for the command issue SGX to switch on and "tr off" the follow-up time for the command issue SGX to switch off. The follow-up times can be set separately from 0 to $5,000 \mathrm{~ms}$ for the individual control outputs.

Control Times							Available in CSP2		
Switching time/ follow up time		Description	Setting range	Possibly Application	Control output	Default	L	F3	F5
SGI	\|s SGI	Switching time for SGI	$80-50,000 \mathrm{~ms}$	Circuit breaker Q0	OLI, OL2	200 ms	\bullet	\bullet	\bullet
	Ir ON	Follow up time ON for SGI	0-5000ms			0 ms			
	tr OFF	Follow up time OFF for SGI	0-5000ms			0 ms			
SG2	ts SG2	Switching time for SG2	80-50,000ms	e.g. Isolator Q1 or 2nd CB Q02 *	$\begin{gathered} \mathrm{OMI} \\ \text { or } \\ \text { (OL3, OL4) } \end{gathered}$	10,000 ms	\bullet	\bullet	\bullet
	tr ON	Follow up time ON for SG2	0-5000ms			1000 ms			
	tr OFF	Follow up time OFF for SG2	$0-5000 \mathrm{~ms}$			1000 ms			
SG3	ts SG3	Switching time for SG3	80-50,000ms	e.g. Isolator Q2	OM2	10,000 ms	-	\bullet	\bullet
	tr ON	Follow up time ON for SG3	0-5000ms			1000 ms			
	Ir OFF	Follow up time OFF for SG3	0-5000ms			1000 ms			
SG4*	ts SG4	Switching time for SG4	80-50,000ms	e.g. Isolator Q9	OM3	10,000 ms		-	\bullet
	tr ON	Follow up time ON for SG4	0-5000ms			1000 ms			
	tr OFF	Follow up time OFF for SG4	0-5000ms			1000 ms			
SG5*	ts SG5	Switching time for SG5	80-50,000ms	e.g. Earthing switch Q8	OM4	10,000 ms		-	\bullet
	Ir ON	Follow up time ON for SG5	0-5000ms			1000 ms			
	tr OFF	Follow up time OFF for SG5	0-5000ms			1000 ms			

Table 5. 11 : Control Times and follow up times

* only for CSP2-F5

5.7.1.2.2 Interlocking

Description

The control of switchgears can be prevented by certain interlocking commands. These interlocking commands linterlocking markers) can be sent or cancelled either by SCADA via the data telegrams of the various types of protocols or directly by a CMP parameter setting (further details in Chap. 5.7.1.2.2 "Interlocking"). The set interlocking markers block control commands made either by the CMPI via digital inputs or by the SCADA-system. The status of an interlocking marker is displayed by the displays "active" or "inactive".

Important

When the communication between CSP2 and the SCADA-system is interrupted, it is possible to reset "active" interlocking markers via the CMP1. Precondition for this, however, is that MODE 3 (Local Operation/Parameter Setting) is selected.

Parameter

"All SG"
All the control commands are blocked (if the function is set to active).
"SGl off"
Only the control command for switching off switchgear 1 (SG1) are blocked (if the function is set to active).
"SG 1 on"
Only the control commands for switching on switchgear 1 (SG1) are blocked (if the function is set to active).
"SG2 off"
Only the control commands for switching off switchgear 1 (SG2) are blocked (if the function is set to active).
"SG2 on"
Only the control commands for switching on switchgear 2 (SG2) are blocked (if the function is set to active).
"SG3 off"
Only the control commands for switching off switchgear 2 (SG3) are blocked (if the function is set to active).
"SG3 on"
Only the control commands for switching on switchgear 3 (SG3) are blocked (if the function is set to active).
"SG4 off"
"Only the control commands for switching off switchgear 3 (SG4) are blocked (if the function is set to active).
"SG4 on"
Only the control commands for switching on switchgear 4 (SG4) are blocked (if the function is set to active).
"SG5 off"
Only the control commands for switching off switchgear 4 (SG5) are blocked (if the function is set to active).
"SG5 on"
Only the control commands for switching on switchgear 5 (SG5) are blocked (if the function is set to active).

Interlocking					Available in CSP2-		
Parameter	Setting/Setting Range	Description of Parameter Setting	Pre-setting	Step range	L	F3	F5
All SG	active	Any issued control command will be blocked	inactive		\bullet	\bullet	\bullet
	inactive	Only the field and system interlockings apply					
SG1 off	active	Every OFF command for SG1 will be blocked	inactive		\bullet	\bullet	\bullet
	inactive	Only the field and system interlockings apply					
SGI on	active	Every ON command for SG1 will be blocked	inactive		\bullet	\bullet	\bullet
	inactive	Only the field and system interlockings apply					
SG2 off	active	Every OFF command for SG2 will be blocked	inactive	-	\bullet	-	\bullet
	inactive	Only the field and system interlockings apply					
SG2 on	active	Every ON command for SG2 will be blocked	inactive		\bullet	\bullet	\bullet
	inactive	Only the field and system interlockings apply					
SG3 off	active	Every OFF command for SG3 will be blocked	inactive	-	\bullet	\bullet	\bullet
	inactive	Only the field and system interlockings apply					
SG3 on	active	Every ON command for SG3 will be blocked	inactive	-	\bullet	\bullet	\bullet
	inactive	Only the field and system interlockings apply					
SG4 off	active	Every OFF command for SG4 will be blocked	inactive	-	\bullet	\bullet	\bullet
	inactive	Only the field and system interlockings apply					
SG4 on	active	Every ON command for SG4 will be blocked	inactive	-	\bullet	\bullet	\bullet
	inactive	Only the field and system interlockings apply					
SG5 off	active	Every OFF command for SG5 will be blocked	inactive		\bullet	-	\bullet
	inactive	Only the field and system interlockings apply					
SG5 on	active	Every ON command for SG5 will be blocked	inactive		-	\bullet	\bullet
	inactive	Only the field and system interlockings apply					

Table 5.12: Interlocking: Blocking via SCADA and CMP1

5.7.1.3 Digital inputs

Description

Depending on the type of device and capability, the CSP2 provides a certain number of digital inputs. They are used to detect processes in the periphery via signal lines and to initiate certain actions on the part of the CSP2 via the input functions assigned to the digital inputs.
The digtial functions can be assigned to digital inputs (input functions):

- protection functions,
- check back signals,
- field and
- supervision messages as well as
- remote control and interlocking functions for switchgears.

Parameters

"Dl x" (fixed or assigned input functions)
The digital inputs are divided into firmly assigned (group 1) and freely (from the catalogue of the input functions see Annex) assignable inputs (remaining groups). By means of the CMP1, the input functions can be assigned to the digital inputs.

A digital input can be activated according to two (parameter setting) principles:

1t setting: "active 1" (working current principle)

A digital input becomes active if a potential difference above the pick-up threshold of the digital input exists at its terminal compared with the "COMx" return line. The pick-up threshold can be set separately for each DI via a coding plug.
$2^{\text {nd }}$ setting: "active $0^{" ~(i d l l e ~ c u r r e n t ~ p r i n c i p l e) ~}$
If necessary, the logics of each digital input can be inverted. The input would accordingly be active if no potential difference between the terminal of the digital input and its return line "COMx" exists (example of application: »Fuse fail $A V$ / $)$.

Debouncing time

The debouncing time states the interval of time after which the input accepts a new change of status at the earliest. An individual anti-beat time can be set for each input if the incoming signal shows a bouncing behaviour. This function is sensible if the input source does not supply a defined status transition. In the use of an debouncing time, the reaction time of the system is extended, as quick sequences of real alterations of state at an input are recognised more slowly as a function of the set debouncing time.
For applications with a time delay, debouncing times of up to $60,000 \mathrm{~ms}$ can be set. The minimum reaction time of the digital inputs amounts to 50 ms .

Note

A set debouncing time acts on the one hand as a delay time for the activation, on the other hand as a delay time for the deactivation of a digital input!
Example: set debouncing time $=5000 \mathrm{~ms}$
Activation of the DI : The signal must exist on the terminal for at least 5000 ms in order to activate the DI!
Deactivating the D : If the signal goes off, the Dl is only deactivated after 5000 ms .

Digital Inputs (DI-Group 1-fixed allocation)					Available in CSP2-		
D-Gruppe	DI-No	Parameters	Setting/ Setting Range	Description	L	F3	F5
Group 1 (fixed)	DI 1	DI 1 (fixed function)	"SGI Signal O"	Position switch. device 1: Off	\bullet	\bullet	\bullet
			"active 1"	Open circuit principle			
			"active 0 "	Closed circuit principle			
			„inactive"	Out of function			
			0...60,000ms	Debouncing time			
	DI 2	DI 2 (fixed function)	"SGl Signal I"	Position switch. Device 1: ON	\bullet	\bullet	\bullet
			"active 1"	Open circuit principle			
			"active 0 "	Closed circuit principle			
			„inactive"	Out of function			
			0...60,000 ms	Debouncing time			
	DI 3	DI 3 (fixed function)	„SG2 Signal 0"	Position switch. Device 2: OfF	\bullet	\bullet	\bullet
			"active 1"	Open circuit principle			
			"active 0 "	Closed circuit principle			
			„inactive"	Out of function			
			0...60,000 ms	Debouncing time			
	DI 4	DI 4 (fixed function)	„SG2 Signal I"	Position switch. device 2: ON	\bullet	\bullet	-
			"active 1"	Open circuit principle			
			"aktiv O"	Closed circuit principle			
			„inaktiv"	Out of function			
			0...60,000 ms	Debouncing time			
	DI 5	DI 5 (fixed function)	„SG3 Signal 0"	Position switch. device 3: OfF	-	\bullet	\bullet
			"active 1"	Open circuit principle			
			"active 0 "	Closed circuit principle			
			„inactive"	Out of function			
			0...60,000 ms	Debouncing time			
	DI 6	DI 6 (fixed function)	"SG3 Signal ।"	Position switch. device 3: ON	\bullet	\bullet	\bullet
			"active 1"	Open circuit principle			
			"active 0 "	Closed circuit principle			
			„inactive"	Out of function			
			0...60,000 ms	Debouncing time			
	DI 7	DI 7 (fixed function)	„SG4 Signal 0"	Position switch. device 4: OFF	\bullet	\bullet	\bullet
			"active 1"	Open circuit principle			
			"active 0 "	Closed circuit principle			
			„inactive"	Out of function			
			0...60,000 ms	Debouncing time \dagger			
	DI 8	DI 8 (fixed function)	"SG4 Signal I"	Position switch. device 4: ON	\bullet	\bullet	\bullet
			"active 1"	Open circuit principle			
			"active 0 "	Closed circuit principle			
			„inactive"	Out of function			
			0... 60.000 ms	Debouncing time			
	DI 9	DI 9 (fixed function)	„SG5 Signal 0"	Position switch. device 5: OfF	\bullet	\bullet	\bullet
			"active 1"	Open circuit principle			
			"active 0 "	Closed circuit principle			
			„inactive"	Out of function			
			0...60.000 ms	Debouncing time			
	DI 10	DI 10 (fixed function)	„SG5 Signal I"	Position switch. Device 5: ON	\bullet	\bullet	\bullet
			"active 1"	Open circuit principle			
			"active 0 "	Closed circuit principle			
			„inactive"	Out of function			
			0...60.000 ms	Debouncing time			

Table 5.13: Fixed Allocation of digital inputs - DI Group 1

Digital Inputs (Variable Allocation for DI Groups 2 to 4 - Here: Exemplarily for Group2)					Available in CSP2-		
DI-Group	$\begin{aligned} & \text { Dr } \\ & \text { No. } \end{aligned}$	Parameters	Setting/Setting Range	Description	L	F3	F5
Group 2 \|variabel)	DI 11	DI 11 \|function can be assigned)	Displayed text of the as signed input function	To be chosen from catalogue (Annex)	-	\bullet	-
			,active l"	Open circuit principle			
			,active $\mathrm{O}^{\prime \prime}$	Closed circuit principle			
			,.inactive"	Out of function			
			$0 . .60 .000 \mathrm{~ms}$	Debouncing time			
	DI 12	DI 12 ffunction can be assigned)	Displayed text of the as signed input function	To be chosen from catalogue (Annex)	-	\bullet	\bullet
			„active $1^{\prime \prime}$	Open circuit principle			
			"active $0^{\prime \prime}$	Closed circuit principle			
			"inacive"	Out of function			
			$0 . . .60 .000 \mathrm{~ms}$	Debouncing time			
	DI 13	DI 13 (function can be assigned)	Displayed text of the as signed input function	To be chosen from catalogue (Annex)	-	-	-
			„active ${ }^{\text {" }}$	Open circuit principle			
			„active $\mathrm{O}^{\prime \prime}$	Closed circuit principle			
			,inactive"	Out of function			
			0...60.000ms	Debouncing time			
	D 14	DI 14 Ifunction can be assigned)	Displayed text of the as signed input function	To be chosen from catalogue (Annex)	-	\bullet	-
			"active 1"	Open circuit principle			
			"active $0^{\prime \prime}$	Closed circuit principle			
			,inactive"	Out of function			
			$0 . . .60 .000 \mathrm{~ms}$	Debouncing time			
	DI 15	DI 15 (function can be assigned)	Displayed text of the as signed input function	To be chosen from catalogue (Annex)	-	\bullet	-
			„active 1"	Open circuit principle			
			"active $\mathrm{O}^{\prime \prime}$	Closed circuit principle			
			,inactive"	Out of function			
			0...60.000ms	Debouncing time			
	DI 16	DI 16 (function can be assigned)	Displayed text of the as signed input function	To be chosen from catalogue (Annex)	-	\bullet	\bullet
			„active ${ }^{\prime \prime}$	Open circuit principle			
			„active $\mathrm{O}^{\prime \prime}$	Closed circuit principle			
			,"inactive"	Out of function			
			$0 . .60 .000 \mathrm{~ms}$	Debouncing time			
	DI 17	DI 17 (function can be assigned)	Displayed text of the as signed input function	To be chosen from catalogue (Annex) (Annex)	-	-	-
			„active ${ }^{\prime \prime}$	Open circuit principle			
			„active $0^{\prime \prime}$	Closed circuit principle			
			"inactive"	Out of function			
			0...60.000ms	Debouncing time			
	DI 18	DI 18 function can be assigned)	Displayed text of the as signed input function	To be chosen from catalogue (Annex)	\bullet	-	-
			"active 1"	Open circuit principle			
			„active 0 "	Closed circuit principle			
			,"nactive"	Out of function			
			$0 . . .60 .000 \mathrm{~ms}$	Debouncing time			

Table 5.14: Variable assignment of digital inputs - DI Group 2 (by way of example)
Number of the digital inputs available depends on the device type and the capability class of the CSP2 standard design.

Assignable input functions (DI functions)

In order to increase the functionality of the CSP/CMP system, the user has a variety of input functions at his disposal. For this, one input function is to be assigned to one digital input (DI) (parameter setting). The activation of such an input function is done via the activation of the corresponding digital input (DI) onto which this function has been assigned.

Note

- Each DI can only be assigned to one input function
- Input functions can be multiply assigned.

Description (input functions in case of activation)!
The activation of an input function is done by the activation of the digital input onto which the input function has been assigned. Depending on the type of the input function, certain processes are initiated by the CSP2.

Processing (module)
Each activated input function is followed by a certain action, the effects of which refer to the various modules of the CSP2. These are modules for control/locking functions, monitoring/reports or protective functions etc.

Assignment

The input functions for the detection of the switch position feedbacks (»SG1 Signal «« to »SG5 Signal O«) have been firmly assigned to the first 10 digital inputs (DI group 1), i.e. the first 10 DI's cannot be assigned with other input functions. (Examples of switchgear assignment can be found in the "Field configuration" chapter).
From DI 11, the digital inputs can be assigned with each of the assignable input functions.

Contents of display

The momentary switchgear positions (»SG1 Signal k to »SG2 Signal O«) are shown in the display of the CMP1. If a switchgear position changes, the check back signals are transmittted into the CSP via the firmly assigned digital inputs (»SG1 Signal I« to "SG2 Signal O«). The single line (single-pole graph) of the CMP is actuated on the base of the first ten digital inputs.
In this, two position check back signals independent of one another must be provided for each switchgear le.g. for switchgear 1: »SG1 Signal I< and »SG1 Signal O«. Consequently, there are four possible states for the switchgear positions of each switchgear:

1. "Switchgear closed": »SG1 Signal $\ll=$ active, "SG1 Signal $0 \ll=$ inactive«
2. "Switchgear open": "SGI Signal $k=$ inactive, "SGI Signal $0 \ll=$ active«
3. "Intermediate position": "SG1 Signal $\mathrm{k}=$ inactive, "SG1 Signal $0 \ll=$ inactive«
4. "Faulty position": "SG1 Signal $\ll=$ active, "SG1 Signal $0 \ll=$ active"

In addition, only the »CB1 removed« (or. »CB2 removedk) input functions influence the display of the symbols for the power switch(es):
5. "CB1 removed $=$ = active: symbol for CB 1 goes off
6. „CB2 removedk = active: symbol for CB2 goes off

All the other input functions cannot be shown on the display of the CMP!

Flashing code

Each input function can be displayed by assignment to a LED of the CMP and possesses its functionality according to a certain colour or flashing code:
$r=$ red
$f_{r}=$ flashing red
$g=$ green
$\mathrm{fg}=$ flashing green

Acknowledgement

Each input function is only active as long as the corresponding digital input is active. An acknowledgeability therefore does not refer to the input function itself, but merely to the LED to which the input function is assigned. Further, an LED cannot be acknowledged as long as the input function and thus the digital input is still active.

If the acknowledgement (LED Quit) is set to:
trip: \quad This means that only trips have to be acknowledged.
alarm: \quad This means that trips and alarms have to be acknowledged.
all: $\quad \quad \quad$ This means that the LED has to be acknowledged for all input functions leven those who are not acknowledgeable like "SG1 on")
none: not assigned
For non-acknowledgeable input functions, the LED goes off or changes its colour when the function is no longer active.
If the output function is acknowledgeable, the LED continues to light up even after deactivation of the function. Resetting the LED can be done with the "C« key on the CMPI, via a digital input with the assigned input function »Acknowledgement« or via an acknowledgement command from the SCADA-system.

Example: Acknowledgeable input function "Fuse fail AV"

When this input function becomes active (column Remark: "Dl active"), the LED onto which this input function has been placed lights up red. As long as the DI activating this input function is still active, the LED cannot be acknowledged. If the DI and thus the input function becomes inactive, the LED can now be acknowledged. The LED goes off after the acknowledgement.
In addition, the LED acknowledgeability for this input function depends on the setting of the LED parameter "LEDQuit".

Input Functions (for digital Inputs anad Logic Outputs)								Available in CSP2-		
Input Function (Displayed Text)	Description	Processing (Module)	0 0 0 0 0 0				Display Note	L	F3	F5
„n.a."	Not assigned (i.e. without function)	-	\bullet	-	-	-	-	\bullet	-	\bullet
„SGI Signal I"	Position check-back signal for „Switchgear 1 ON"	Interlocking/ Supervision		\bullet	-	-	DI active Dl inactive	-	-	\bullet
"SG1 Signal 0"	Position check-back signal for „Switchgear 1 OfF"	Interlocking/ Supervision		\bullet	-		DI active DI inactive	-	-	-
„SG2 Signal I"	Position check-back signal for „Switchgear 2 ON"	Interlocking/ Supervision		\bullet			DI active DI inactive	-	\bullet	\bullet
„SG2 Signal O"	Position check-back signal for „Switchgear 2 Off"	Interlocking/ Supervision		\bullet			DI active Dl inactive	-	-	-
„SG3 Signal I"	Position check-back signal for „Switchgear 3 ON"	Interlocking/ Supervision		\bullet	-		DI active DI inactive	\bullet	\bullet	-
„SG3 Signal O"	Position check-back signal for „Switchgear 3 OfF"	Interlocking/ Supervision		\bullet			DI active DI inactive	-	\bullet	\bullet
„SG4 Signal I"	Position check-back signal for „Switchgear 4 ON"	Interlocking/ Supervision	-	\bullet	-	-	DI active DI inactive	\bullet	\bullet	\bullet
„SG4 Signal O"	Position check-back signal for „Switchgear 4 OFF"	Interlocking/ Supervision		\bullet		-	DI active Dl inactive	-	\bullet	\bullet
"SG5 Signal I"	Position check-back signal for „Switchgear 5 ON"	Interlocking/ Supervision	-	\bullet	-	.	Dl active DI inactive	\bullet	\bullet	\bullet
„SG5 Signal 0"	Position check-back signal for "Switchgear 5 OFF"	Interlocking/ Supervision		\bullet			DI active DI inactive	-	-	-
„Prot. blocked"	Blocking of those protective functions which have the "Ex Block" parameter in position »active«	Protection	\bullet			fr	DI active Dl inactive	\bullet	\bullet	\bullet
„AR blocked"	External blocking of the AR function	Protection	\bullet			fr	DI active DI inactive	-	-	\bullet
„AR Start"	Start of the AR function triggered by an external protect. trip via a DI function (e.g. „Protective Trip 1").	Protection	\bullet			$f r$	DI active DI inactive	-	\bullet	\bullet
„AR sync.check"	For connection of an external synchronisation check relay. If the related setting is activated in the AR parameter group, the $C B$ is only re-connected within an AR sequence if this digital input is in "active« position.	Protection	-	-		fr	Dl active Dl inactive	\bullet	\bullet	-
„Rev interlock"	Signal input for setting up a protection concept with „Rear Interlocking". This input is connected with output "Protective Activation X" of a lowerlevel protection facility. When the input is active, individual steps of the overcurrent protection functions can be interlocked if their parameters „Rear Interlock. «are set to »active".	Protection	\bullet	-	-	fg	Dl active DI inactive	-	-	\bullet
„Ext CB fail"	Trip signal of external protective facilities llower-level protective facilities which signal „Circuit Breaker Failure«) incl. OFF command to the local CB.	Protection	\bullet		-	r	Dl active DI inactive	-	\bullet	\bullet
„Alarm: Prot. 1"	External protective signal: Activation of an external protective facility (for any protective facility).	Protection	\bullet			f	Dl active Dl inactive	\bullet	\bullet	\bullet
„Trip: Prot. 1 "	Trip signal of external protective facilities (for any protective facility) incl. OFF command to the local CB. (Activation of the AR function only if a digital input with „AR Start" has been assigned and was activated).	Protection	-		\bullet	r	Dl active	-	\bullet	-
„Device Reset"	External resetting signal for resetable LED indications and signal relays.	LED Display/ Signal Relay	\bullet			fg	Dl active DI inactive	\bullet	\bullet	\bullet
„Fuse fail VT"	Failure indication of a single-pole autom. fuse for external VTs . Voltage measuring is recognized of being interrupted and all active protective functions for voltage, frequency and power are blocked (ineffective).	Supervision/ Protection	\bullet		\bullet	r	Dl active Dl inactive	-	\bullet	-

Input Functions (for digital Inputs anad Logic Outputs)								Available in CSP2-		
Input Function (Displayed Text)	Description	Processing (Module)	$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{n} \\ & 0 \\ & : 5 \\ & 5 \\ & 0 \\ & \frac{c}{w} \end{aligned}$			Display Note	L	F3	F5
„DBB connect."	The cross coupling of a double bus bar system is applied and the interlocking of switching devices connected at the bus bars is neutralised. (As long as the cross coupling is applied, the bus bars are synchronous).	Interlocking	\bullet	-	-	g	Dl active Dl inactive	-	-	\bullet
"Function 1"	Message of user defined „Function 1"	Message	\bullet	-		r	DI active DI inactive	-	-	\bullet
„Function 2"	Message of user defined „Function 2"	Message	\bullet	-		r	DI active DI inactive	-	-	\bullet
"Function 3"	Message of user defined „Function 3"	Message	\bullet	-		r	DI active DI inactive	-	-	\bullet
"Function 4"	Message of user defined „Function 4"	Message	\bullet	-	-	r	Dl active DI inactive	-	-	\bullet
"Function 5"	Message of user defined „Function 5"	Message	\bullet	-	-	-	DI active DI inactive	-	-	\bullet
"Function 6"	Message of user defined „Function 6"	Message	\bullet	-	-	r	DI active DI inactive	-	-	\bullet
"Function 7"	Message of user defined „Function 7"	Message	\bullet	-	-	g	DI active DI inactive	-	-	\bullet
"Function 8"	Message of user defined „Function 8"	Message	\bullet	-	-	g	Dl active DI inactive	-	-	\bullet
"Function 9"	Message of user defined „Function 9"	Message	\bullet	-	-	g	DI active DI inactive	-	-	-
"Function 10"	Message of user defined „Function 10"	Message	\bullet	-	-	g	DI active DI inactive	-	-	\bullet
"Ext prot.act"	Indication as to supervision of external protective devices	Supervision	\bullet	-	-	$\frac{g}{r}$	Dl active DI inactive	-	-	-
„Alarm: Temp."	External protection signal: Activation of an external protection device (mainly for temperature monitoring facility)	Protection	\bullet	-	-	fr	DI active DI inactive	-	-	-
„Trip: Temp."	Trip signal of external protection devices (mainly for temperature monitoring facility) incl. an OFF command to the local CB. (Activation of the AR function only with additional assignment and activation of a digital input with "AR Start")	Protection	\bullet	-	\bullet	r	Dl active DI inactive	-	-	\bullet
„Alarm: Buchh."	External protection signal: Activation of an external protection device (mainly for Buchholz protection facility)	Protection	\bullet	-	-	fr	Dl active DI inactive	-	-	\bullet
„Trip: Buchh."	Trip signal of external protection devices (mainly for Buchholz protection facility) incl. an OFF command to the local CB. (Activation of the AR function only with additional assignment and activation of a digital input with "AR Start")	Protection	\bullet	-	\bullet	r -	Dl active DI inactive	-	-	-
„Trip: Diff."	Trip signal of external protection devices (mainly for differential protection facility) incl. an OFF command to the local CB. (Activation of the AR function only with additional assignment and activation of a digital input with "AR Start")	Protection	\bullet	-	\bullet	r -	Dl active Dl inactive	-	-	\bullet
"Alarm: Imped."	External protection signal: Activation of an external protection device (mainly for distance protection facility)	Protection	\bullet	-		fr	Dl active DI inactive	-	-	\bullet

Input Functions (for digital Inputs anad Logic Outputs)								Available in CSP2-		
Input Function (Displayed Text)	Description	Processing (Module)	$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \\ & .0 \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{n} \\ & 0 \\ & : 5 \\ & 5 \\ & 0 \\ & \frac{c}{w} \end{aligned}$		LED 0 0 0 ㄴ ㅡㅡㅇ	D-Display Note	L	F3	F5
"Trip: Imped."	Trip signal of external protection devices (mainly for distance protection facility) incl. an OFF command to the local CB.	Protection	\bullet	-	-	r -	Dl active DI inactive	-	-	\bullet
"Fuse fail VC"	Message signalling failure of the autom. fuse for the control voltage (e.g. of the power circuits)	Protection	\bullet	-	-	r	$\begin{aligned} & \text { DI active } \\ & \text { DI inactive } \end{aligned}$	\bullet	-	\bullet
"Fuse fail Ven"	Message signalling failure of the autom. fuse for the residual voltage	Protection	\bullet	-	\bullet	r	DI active DI inactive	-	-	\bullet
"HH-fuse trip"	Message signalling HH-fuse trip	Protection	\bullet	-	-	r	$\begin{aligned} & \text { DI active } \\ & \text { DI inactive } \end{aligned}$	-	-	\bullet
„Ext. CB trip."	Message signalling failure of external circuit breaker	Protection	\bullet	-	-	r	DI active DI inactive	-	-	\bullet
„SG1 block."	Blocking of the ON/OFF control for switching device 1 (Exception: „EMERGENCY OFF" /AR/Protective trip function for the CB)	Interlocking	\bullet	-	-	$f r$	DI active DI inactive	\bullet	-	\bullet
„SG2 block."	Blocking of the ON/OFF control for switching device 2	Interlocking	\bullet	-	-	fr	DI active DI inactive	-	-	\bullet
„SG3 block."	Blocking of the ON/OFF control for switching device 3	Interlocking	\bullet	-	-	fr	$\begin{aligned} & \text { DI active } \\ & \text { DI inactive } \end{aligned}$	-	-	\bullet
„SG4 block."	Blocking of the ON/OFF control for switching device 4	Interlocking	\bullet	-	-	fr	DI active DI inactive	-	-	\bullet
„SG5 block."	Blocking of the ON/OFF control for switching device 5	Interlocking	\bullet	-	-	fr	$\begin{aligned} & \text { Dl active } \\ & \text { DI inactive } \end{aligned}$	-	-	\bullet
"SG23 block."	Blocking of the ON/OFF control for switching devices 2 and 3	Interlocking	\bullet	-	-	fg	DI active DI inactive	-	-	\bullet
„SG234 block."	Blocking of the ON/OFF control for switching devices 2, 3 and 4	Interlocking	\bullet	-	-	fg	$\begin{aligned} & \text { DI active } \\ & \text { DI inactive } \end{aligned}$	-	-	\bullet
„SG2345 block."	Blocking of the ON/OFF control for switching devices 2, 3, 4, and 5	Interlocking	\bullet	-	-	fg	DI active DI inactive	-	-	\bullet
"Alarm: Motor"	External protection signal: Activation of an external protection device (mainly for motor protection facility)	Protection	\bullet	-	-	fr	$\begin{aligned} & \text { DI active } \\ & \text { DI inactive } \end{aligned}$	-	-	\bullet
"Trip: Motor"	Trip signal of external protection devices (mainly for motor protection facility) incl. an OFF command to the local CB. (Activation of the AR function only with additional assignment and activation of a digital input with "AR Start")	Protection	\bullet	-	-	r -	DI active DI inactive	-	-	\bullet
"Ctrl blocked 2"	Blocking of the ON/OFF control for all electrical controllable switching devices	Interlocking	\bullet	-	-	fg	$\begin{aligned} & \text { DI active } \\ & \text { DI inactive } \end{aligned}$	-	-	\bullet
"Ext CB1 off"	External disconnection of CB 1 , irrespectively of the CMP key switch position: Local Operation/Remote Operation. When function „Ext CB1 OFF" is active, the control commands for reconnection of CB1 are blocked.	Control	\bullet	-	\bullet	r	Dl active DI inactive	-	-	\bullet
"Ext CB1 on"	External connection of CB1. Condition for this: Release command from the control system "Release CBI ON" has been issued and the CMP key switch is in position "Remote Operation".	Control	\bullet	-	-	fg	Dl active DI inactive	-	-	\bullet
„SGlon block. 1"	Blocking of the ON control for switching device 1	Interlocking	\bullet	-	-		DI active DI inactive	-	-	\bullet
"SGl on block.2"	Blocking of the ON control for switching device 1	Interlocking	\bullet	-	-	fg	$\begin{aligned} & \text { DI active } \\ & \text { Dl inactive } \end{aligned}$	-	-	\bullet

Input Functions (for digital Inputs anad Logic Outputs)								Available in CSP2		
Input Function (Displayed Text)	Description	Processing (Module)		$\begin{aligned} & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & i \\ & \vdots \\ & 3 \\ & 0 \\ & \vdots \end{aligned}$		$\begin{aligned} & \text { LED } \\ & \\ & 0 \\ & 0 \\ & 0 \\ & \frac{v}{\infty} \end{aligned}$	Display Note	L	F3	F5
"Alarm: Prot.2"	External protection signal: Activation of an external protection device (for any protection facility)	Protection	-	-	-	$f r$	Dl active Dl inactive	-	-	\bullet
"Trip: Prot.2"	Trip signal of external protection devices (for any protection facility) incl. an OFF command to the local CB. (Activation of the AR function only with additional assignment and activation of a digital input with "AR Start")	Protection	-	-	-	r	DI active DI inactive	-	-	-
„Alarm: Prot.3"	External protection signal: Activation of an external protection device (for any protection facility)	Protection	-	-	-	$f r$	Dl active Dl inactive	-	-	\bullet
"Trip: Prot.3"	Trip signal of external protection devices (for any protection facility) incl. an OFF command to the local CB. (Activation of the AR function only with additional assignment and activation of a digital input with "AR Start")	Protection	-	-	-	r -	Dl active DI inactive	-	-	-
"Alarm: Prot.4"	External protection signal: Activation of an external protection device (for any protection facility)	Protection	\bullet	-	-	$f r$	Dl active Dl inactive	-	\bullet	\bullet
„Trip: Prot.4"	Trip signal of external protection devices (for any protection facility) incl. an OFF command to the local CB. (Activation of the AR function only with additional assignment and activation of a digital input with "AR Start")	Protection	-	-	-	r	Dl active DI inactive	-	-	-
"Alarm: Prot.5"	External protection signal : Activation of an external protection device (for any protection facility)	Protection	-	-	-	$f r$	DI active DI inactive	-	-	-
"Trip: Prot.5"	Trip signal of external protection devices (for any protection facility) incl. an OFF command to the local CB. (Activation of the AR function only with additional assignment and activation of a digital input with "AR Start")	Protection	-	-	-	r	Dl active DI inactive	-	-	\bullet
"Alarm: Prot.6"	External protection signal : Activation of an external protection device (for any protection facility)	Protection	\bullet	-	-	$f r$	Dl active Dl inactive	-	\bullet	\bullet
"Trip: Prot.6"	Trip signal of external protection devices (for any protection facility) incl. an OFF command to the local CB. (Activation of the AR function only with additional assignment and activation of a digital input with "AR Start")	Protection	-	-	-	r	Dl active DI inactive	-	-	\bullet
"Bypath 1 CB off"	Information to the CSP that the CB has been operated directly by an external OFF command (i.e. independently of the CSP2). (This message is necessary to prevent reconnection by the active AR function when "NC-Start = active")	Protection/ Supervision	-	-	-	$f r$	Dl active Dl inactive	-	-	-
"Bypath 1 CB on"	Information to the CSP that the CB has been operated directly by an external ON command (i.e. independently of the CSP2). (This message is necessary to activate the SOTF function and for blocking the AR function temporarily.)	Protection/ Supervision	-	-	-	fg	Dl active Dl inactive	-	\bullet	\bullet
"Bypath 2 CB off"	Information to the CSP that the CB has been operated directly by an external OFF command (i.e. independently of the CSP2). (This message is necessary to prevent reconnection by the active AR function when "NC-Start = active")	Protection/ Supervision	\bullet	-	-	$f r$	Dl active Dl inactive	-	\bullet	-

Input Functions (for digital Inputs anad Logic Outputs)								Available in CSP2-		
Input Function (Displayed Text)	Description	Processing (Module)	$\begin{aligned} & 0 \\ & 00 \\ & 0 \\ & 0 \\ & .0 \\ & \sim \\ & 4 \end{aligned}$	$\begin{aligned} & \frac{1}{0} \\ & 0 \\ & 0 \\ & 0 \\ & i \\ & i \\ & 5 \\ & 0 \\ & 0 \\ & i \end{aligned}$			Display Note	L	F3	F5
"Bypath 2 CB on"	Information to the CSP that the CB has been operated directly by an external ON command (i.e. independently of the CSP2).	Protection / Supervision	\bullet	-	-	fg	Dl active DI inactive	-	\bullet	-
"Load-Shedding"	Information to the CSP that the CB has been operated directly by an external OFF command (i.e. independently of the CSP2). (This message is necessary to block the active AR function during load-shedding. When the "Load-Shedding" function is active, control commands for reconnection of the CB are blocked).	Protection / Supervision	\bullet	-	\bullet	r	Dl active DI inactive	-	\bullet	\bullet
"S-Cmd SGI on"	On-Command for switchgear 1 - inclusive checking of the field interlockings (key switch position at the CMP "local operation" or "remote operation")	Control	\bullet	-	-	fg	Fct. active Fct. inactive	-	-	-
"S-Cmd SG1 off"	Off-Command for switchgear 1 -inclusive checking of the field interlockings (key switch position at the CMP "local operation" or "remote operation")	Control	\bullet	-	-	fg	Fct. active	-	\bullet	\bullet
"S-Cmd SG2 on"	On-Command for switchgear 2 - inclusive checking of the field interlockings (key switch position at the CMP "local operation" or "remote operation")	Control	\bullet	-	-	fg	Fct. active Fct. inactive	-	\bullet	-
"S-Cmd SG2 off"	Off-Command for switchgear 2 - inclusive checking of the field interlockings (key switch position at the CMP "local operation" or "remote operation")	Control	\bullet	-	-	fg	Fct. active	-	\bullet	-
"S-Cmd SG3 on"	On-Command for switchgear 3 - inclusive checking of the field interlockings (key switch position at the CMP "local operation" or "remote operation")	Control	\bullet	-	-		Fct. active Fct. inactive	-	\bullet	-
"S-Cmd SG3 off"	Off-Command for switchgear 3 - inclusive checking of the field interlockings (key switch position at the CMP "local operation" or "remote operation")	Control	\bullet	-	-	fg	Fct. active	-	\bullet	\bullet
"S-Cmd SG4 on"	On-Command for switchgear 4 - inclusive checking of the field interlockings (key switch position at the CMP "local operation" or "remote operation")	Control	\bullet	-	-	fg	Fct. active Fct. inactive	-	\bullet	-
"S-Cmd SG4 off"	Off-Command for switchgear 4 - inclusive checking of the field interlockings (key switch position at the CMP "local operation" or "remote operation")	Control	\bullet	-	-	fg	Fct. active	-	\bullet	-
"S-Cmd SG5 on"	On-Command for switchgear 5 - inclusive checking of the field interlockings (key switch position at the CMP "local operation" or "remote operation")	Control	\bullet	-	-		Fct. active Fct. inactive	-	-	-
"S-Cmd SG5 off"	Off-Command for switchgear 5 - inclusive checking of the field interlockings (key switch position at the CMP "local operation" or "remote operation")	Control	\bullet	-	-	fg	Fct. active	-	\bullet	-

Table 5.15: Digital input functions - overview

CAUTION:

* Due to the standardized software, the CSP shows also input functions which are not supported by the device.

5.7.1.4 Signal relay (Output relays)

Description

Depending on the type of device, the CSP2 provides a certain number of signal relays. Signals and processes which can be detected by the CSP2 are available to the user via the potential-free contacts of the signal relays for further processing (parallel wiring).

Parameters

"(assignable functions)"

Up to 16 output messages can be assigned to each of the signal relays (terminal row X6). A relay picks up when at least one of the assigned functions is active (OR connection). The required output function(s) is (are) selectable from the catalogue (table) for the assignable output messages.
(Number of signal relays available for the concerned CSP2 type in question - see Chap. 2.1.8 Signal relay outputs (X6).)

Minimum holding time "t min"

If the assigned output function becomes inactive again, the release of the relay is delayed by a settable minimum holding time tmin. The minimum holding time tmin is the time for which the relay picks up at least, with the result that wipers can also be detected securely. (see Fig. 1.7)

For each signal relay, a separate setting is possible whether it is put out of function (inactive), whether it picks up when one of the assigned output messages is active (working current principle) or whether it picks up when none of the assigned output messages is active (idle current principle).

	No active output function	At least one active output function
Normal closed	Relay picked-up	Relay released
Normal open	Relay released	Relay picked-up

Table 5.16: Relay position according to the assigned functions and the parameterised operating principle
"Quitt." (relay acknowledgement)
In general, the acknowledgeability of a signal relay depends upon the output messages assigned. The acknowledgeability is pre-defined for each individual output message (similar to the colour and flashing code for input or output messages.
With the parameter "Quitt." each signal relay can be configured separately as "acknowledgeable"; i.e. even if the assigned output function, which is generally not acknowledgeable, changes back to the "inactive" status, the relay continues to be picked up until it is acknowledged. The acknowledgement can be done via the key "C« on the CMP1, a digital input or via SCADA and effects all the signal relays as well as LED's.

Figure 5.20: Acknowledgement of signal relays and minimum holding time

Default setting of the signal relays (output relays)

The signal relay K 11 has been firmly assigned to the »System OK« output message and designed as a »working current relay". It picks up if the device shows no internal errors. The »minimum holding time t min« is set to zero ("t min = 0 ms"). The relay acknowledgement "Quitt." has been set as "inactive".
The signal relay K12 has been pre-configured with the "General alarm" output message ("working current principle", " \dagger min = 1000 ms"; "Quitt. = inactive).
The report relay K13 has been pre-configured with the "General trip" output message ("working current principle", " \dagger $\min =1000$ ms"; "Quitt. = inactive).

No output messages have been assigned on the other signal relays by: RRGZDG

Etc.
Table 5.17: Variable assignment of output messages

Assignable output messages

Output messages are used to display system and operational signals via LED's and on the other hand to provide these signals for external further processing (potential-free contacts for parallel wiring) via signal relays.

It is distinguished between two kinds of output messages:

- Push-through functions
"Push-through" functions are input functions (DI functions) which are also available as output messages. In this, the input messages are provided as signals in order to be able to further process proceedings in the peripheral devices (e.g. "Spring CB1 ok"). The signal texts of the push-through functions are the same as those of the corresponding input functions.
- Internal output messages

These messages are activated internally by the CSP2 by evaluation of certain events. For example, such events are connected with the evaluation of measurement variables for application for protection functions (e.g. "Trip: $\left.\mid>F^{\prime \prime}\right)$, with control switchgears concerned with the internal locking logic (e.g. "Interlock") or with the CSP/CMP self-supervision (e.g. "System ok").

Description

The Description column shows the event that activates the output message. All available output messages are shown into detail in table 5.18. For the push-through functions, corresponding references to the description of the input functions are made.

LED (acknowledgement, flashing code)

Blink code

Each output message can be assigned on a LED. In case of its activation it lights up or flashes according to the predefined colour that is assigned to the output function.
$r=$ red
$\mathrm{fr}=$ blinking red
$\mathrm{g}=$ green
$\mathrm{fg}=$ blinking green

Acknowledgement

Each output message is only active as long as the conditions for activation are fulfilled. These conditions differ for each output message and are explained in the Description column. An acknowledgeability therefore does not refer to the output function itself, but merely to the LED (or the signal relay) to which the output message is assigned. Further, an LED or a signal relay cannot be acknowledged as long as the output message is still active.

LED acknowledgement

For the works setting of the LED acknowledgement "LED-Quit = trip" some of the output messages also possess the possibility of acknowledgeability corresponding to their functionality. If a different setting of this parameter is selected with regard to the LED acknowledgeability (e.g. "LED-Quit = all"), the acknowledgeability of the LED is based on the setting then selected. For "LED-Quit = all" for example, this means that all the output messages placed onto this LED can be acknowledged (see Chapter "LED acknowledgement").
For non-acknowledgeable output messages, the LED goes off or changes its colour when the message is no longer active.
If the output message is acknowledgeable, the LED also continues to light up after deactivation of the function. A resetting of the LED can be done via the »C« key on the CMP1, via a digital input with the assigned input function »Acknowledgement« or via an acknowledgement command from the SCADA-systems.

Signal relay acknowledgement
see description of the signal relay parameter "Quitt.".
Example 1: Acknowledgeable output message "Trip L1" (push-through function)

When this output message (here: push-through function) becomes active (Column remark: "Dl active"), the LED onto which this output message has been assigned lights up red. As long as the DI activating this push-through function is still active, the LED cannot be acknowledged. If the DI and thus the push-through function becomes inactive, the LED can now be acknowledged. After the acknowledgement, the LED goes off.
Over and above this, the LED acknowledgeability or signal relay acknowledgeability for these output messages (here: push-through function) depends on the setting of the LED parameter "LED-Quit" and on the setting of the signal relay parameter "Quitt.".

Example 2: Acknowledgeable output message "Trip I>F" (internal output message)

When this output message (here: internal output message) becomes active (here: via the protection element $I>F$), the LED onto which this output message has been assigned lights up red. As the output message "Trip l>F" is however only active for the duration of the tripping command for the trigger coil of the CB , the LED acknowledgeability or signal relay acknowledgeability for these internal output messages depends on the setting of the LED parameter "LEDQuit" or on the setting of the signal relay parameter "Quitt.".

Output Messages (for LED's, Signal Relays and for Input Elements of the Logic)							Available in CSP2-		
		$\stackrel{\square}{8}$				--Display			
(displayed text)	Description			+		Note	F3	F5	L
„n.a."	Not assigned	-	-			-	\bullet	-	\bullet
"System OK"	Message signalling state of the CSP system; at works assigned to signal relay K1 1 and LED 1 (default) Note: »Self-Test Relay" K1 1 functions normally as »working current relay" and picks-up when function "System OK« is active. This only is seemingly a contradiction to term "normal closed Logic« for a self-test relay which is picked up in released conditions (System OK) and drops in case a fault occurs in the system. In technical respect both versions are operating in the same way.	\bullet	-		9	Operation Failure	\bullet	-	\bullet
"General alarm"	Message signalling protective alarm (internally or via DII; at works assigned to signal relay K12 and LED 2	\bullet			fr	-	-	-	\bullet
"General trip"	Message signalling a protective trip linternally or via DII; at works assigned to signal relay K13 and LED 3	\bullet		\bullet	r	-	-	-	\bullet
„Alarm: L1"	Protective activation in phase L1	-			fr		\bullet	-	\bullet
„Alarm: L2	Protective activation in phase L2	\bullet	-	-	fr	-	\bullet	\bullet	\bullet
${ }_{\text {„Alarm: L3 }}$	Protective activation in phase L3	\bullet			fr	-	\bullet	-	\bullet
„Alarm: N	Protective activation in phase N	\bullet			fr	-	\bullet	\bullet	\bullet
„Trip: L1"	Protective trip in phase L1	\bullet		\bullet	r	-	\bullet	-	\bullet
„Trip: L2"	Protective trip in phase L2	\bullet		\bullet	r	-	\bullet	-	\bullet
${ }^{\prime \prime}$ Trip: L3	Protective trip in phase L3	\bullet		\bullet	r		-	-	\bullet
„Trip: N"	Protective trip in phase N	\bullet		\bullet	r	-	\bullet	-	\bullet
„Protect. active"	Message signalling that one of the internal protective functions is set to "active« or an "Input Protection Function" (e.g. "Protect. Trip 1") is assigned to a digital input.	\bullet	-		9	Protection active Protection inacive	-	-	-
„Alarm: Prot. 1 "	Message of the active input function with the same name	-	\bullet	-	f	Fct. active Fct. inactive	-	-	\bullet
„Alarm: Trip. 1"	Message of the active input function with the same name	-	\bullet	\bullet	r	Fct. active Fct. inactive	-	-	\bullet
„Prot. blocked"	Message of the active input function with the same name	-	\bullet		fr	Fct. active Fct. inactive	-	-	\bullet
"Ctrl. blocked 1"	Message of the active input function with the same name	-	\bullet		fg	Fct. active Fct. inactive	-	-	\bullet
„Alarm: $1>\mathrm{F}^{\prime}$	Overcurrent activation in forward direction or non-directional	\bullet			fr		-	\bullet	\bullet
„Trip: $1>$ F $^{\prime \prime}$	Overcurrent trip in forward direction or non-directional	\bullet		\bullet	r	-	\bullet	-	-
"Alarm: $1 \gg \mathrm{~F}^{\prime \prime}$	Short-circuit activation in forward direction or non-directional	\bullet	-		fr	-	\bullet	-	\bullet
"Trip: l>>F"	Short-circuit trip in forward direction or non-directional	-		\bullet	r	-	\bullet	\bullet	\bullet
"Alarm: l>>>F"	Maximum short-circuit activation in forward direction or non-directional	\bullet			fr	-	\bullet	\bullet	
"Trip: l>>>>"	Maximum short-circuit trip in forward direction or non-directional	\bullet		-	r	-	-	-	-
„,Alarm: $1>$ B"	Overcurrent activation in backward direction or non-directional	\bullet	-		fr	-	\bullet	\bullet	-
${ }^{\prime}$ Trip: $1>\mathrm{B}^{\prime \prime}$	Overcurrent trip in backward direction or non-directional	\bullet		\bullet	r	-	-	-	\bullet
"Alarm: $1 \gg B^{\prime \prime}$	Short-circuit activation in backward direction or non-directional	\bullet	-		fr	-	-	-	-
"Trip: $1 \gg \mathrm{~B}^{\prime \prime}$	Short-circuit trip in backward direction or non-directional	-	-	-	r	-	\bullet	-	\bullet
"Alarm: $1 \ggg$ B"	Maximum short-circuit activation in backward direction or non-directional	\bullet	-	-	fr	-	\bullet	\bullet	-
"Trip: l>>>B"	Maximum short-circuit trip in backward direction or non-directional	\bullet		-	r	-	\bullet	-	
„Alarm: le>F"	Earth fault alarm in forward direction or non-directional	\bullet	-	-	fr	-	\bullet	-	\bullet
"Trip: le>F"	Earth fault trip in forward direction or non-directional	-		-	r	-	\bullet	-	\bullet
"Alarm le>>F"	Short-circuit to earth activation in forward direction or non-directional	\bullet			fr	-	\bullet	-	\bullet
"Trip: le>>F"	Short-circuit to earth trip in forward direction or non-directional	-		-	r	-	\bullet	-	\bullet
„Alarm: le>B"	Earth fault activation in backward direction or non-directional	\bullet			fr	-	-	-	\bullet

		$\stackrel{\mathscr{\sigma}}{6}$				Display			
(displayed text)	Description	$\begin{aligned} & 5 \\ & \frac{5}{3} \\ & \frac{2}{3} \\ & 0 \\ & 0 \\ & 0 \\ & 00 \\ & 0 \end{aligned}$			$\begin{aligned} & \stackrel{0}{8} \\ & 0 \\ & \text { 立 } \\ & \dot{-i} \end{aligned}$	Note	F3	F5	L
,"Trip: le>B"	Earth fault trip in backward direction or non-directional	-		\bullet	r		\bullet	\bullet	\bullet
, „,Alarm: le>>B"	Short circuit to earth alarm in backward direction or non-directional	\bullet	-		f	-	-	-	\bullet
„Trip: le>>B"	Short circuit to earth trip in backward direction or non-directional	\bullet	-	\bullet	r	-	\bullet	\bullet	\bullet
„Alarm: $12>$ "	Unbalanced load alarm, 1st stage	\bullet	-		f	-	\bullet	\bullet	*
„Trip: 12>"	Unbalanced load trip, 1st stage	\bullet	-	\bullet	r	-	\bullet	\bullet	*
„Alarm: 12>>"	Unbalanced load activation, $2^{\text {nd }}$ stage	\bullet	-	-	fr	-	\bullet	\bullet	*
„Trip: $12 \gg{ }^{\text {c }}$	Unbalanced load trip, $2^{\text {nd }}$ stage	\bullet	-	\bullet	r	-	\bullet	\bullet	*
„Alarm: \gg "	Overload activation	\bullet	-		f	-	\bullet	\bullet	\bullet
„Trip: $\vartheta>$ "	Overload trip	-		\bullet	r		\bullet	-	\bullet
„Trip: Idiff>"	Differential protection trip, 1 st stage (only for differential protection system)	\bullet	-	\bullet	r	-	-		\bullet
„Trip: Idiff>>"	Differential protection trip, 2nd stage (only for differential protection system)	\bullet	-	\bullet	r	-	-		\bullet
"Alarm: U>"	Overvoltage alarm, 14stage	\bullet	-	-	f	-	\bullet	\bullet	\bullet
„Trip: U>"	Overvoltage trip, 1^{44} stage	\bullet		-	r	-	\bullet	-	\bullet
„Alarm: U>>"	Overvoltage alarm, $2^{\text {nd }}$ stage	\bullet	-		fr	-	\bullet	-	\bullet
„Trip: U>>"	Overvoltage trip, $2^{\text {nd }}$ stage	\bullet		\bullet	r	-	-	-	\bullet
"Alarm: U<"	Undervoltage alarm, 1st stage	\bullet	-		$f r$	-	\bullet	-	\bullet
„Trip: U<"	Undervoltage trip, 1st stage	\bullet		\bullet	r	-	-	-	\bullet
„Alarm: U<<"	Undervoltage alarm, $2^{\text {nd }}$ stage	\bullet	-	-	fr	-	\bullet	-	-
,"Trip: U<<"	Undervoltage trip, $2^{\text {nd }}$ step	\bullet	-	\bullet	r	-	\bullet	\bullet	\bullet
„Alarm: Ue>"	Residual voltage alarm, 1^{4} stage	\bullet	-		fr	-	\bullet	\bullet	\bullet
,"Trip: Ue>"	Residual voltage trip, $1^{\text {s }}$ stage	\bullet	-	\bullet	r	-	\bullet	-	\bullet
„Alarm: Ue>>"	Residual voltage alarm, $2^{\text {nd }}$ stage	\bullet	-		$f r$	-	-	-	\bullet
„Trip: Ue>>"	Residual voltage trip, $2^{\text {nd }}$ stage	\bullet		\bullet	r	-	-	-	\bullet
„U< block.freq."	Message signalling blocking of the frequency protection at undervoltage conditions ($\mathrm{U}<\mathrm{U}$ BF)	\bullet	-	-	$f r$	-	\bullet	\bullet	*
"Alarm: fl"	Frequency alarm, $1^{4 /}$ stage	\bullet	-	-	fr	-	\bullet	\bullet	*
"Trip: fl"	Frequency trip, $1^{\text {4 }}$ stage	\bullet		\bullet	r	-	-	\bullet	*
"Alarm: $\ddagger 2$ "	Frequency alarm, $2^{\text {nd }}$ stage	\bullet	-	-	fr	-	\bullet	\bullet	*
"Trip: f2"	Frequency trip, $2^{\text {nd }}$ stage	\bullet	-	\bullet	r	-	\bullet	\bullet	*
„Alarm: $\ddagger 3{ }^{\prime \prime}$	Frequency alarm, $3^{\text {d }}$ stage	\bullet			fr	-	\bullet	\bullet	*
„Trip: f3"	Frequency trip, $3^{\text {d }}$ stage	\bullet		-	r	-	-	\bullet	*
"Alarm: 4 "	Frequency alarm, $4^{\text {th }}$ stage	\bullet	-	-	f	-	-	\bullet	*
"Trip: f4"	Frequency trip, 4th stage	\bullet		\bullet	r	-	\bullet	\bullet	*
${ }^{\text {„Alarm: Pr> }}$ "	Reverse power alarm, 14 stage	\bullet			f	-	-	-	*
„Trip: Pr>"	Reverse power trip, 1" stage	\bullet	-	\bullet	r	-	\bullet	-	*
${ }_{\text {„Alarm: }}$ Pr>>"	Reverse power alarm, $2^{\text {nd }}$ stage	\bullet	-	-	f	-	\bullet	\bullet	*
"Trip: Pr>>"	Reverse power trip, $2^{\text {nd }}$ stage	\bullet		-	r	-	\bullet	-	*
${ }^{\text {„Alarm: }}$ P>"	Power alarm, 1^{3} stage	\bullet	-	-	fr	-	\bullet	\bullet	*
„Trip: P>"	Power trip, $1^{4 /}$ stage	\bullet	-	\bullet	r	-	\bullet	\bullet	*
„Alarm: P>>"	Power alarm, $2^{\text {nd }}$ stage	\bullet	-	-	fr	-	\bullet	\bullet	
„Trip: P>>"	Power trip, $2^{\text {nd }}$ stage	\bullet	-	-	r	-	-	\bullet	*
„AR blocked"	Message of the active input function with the same name	-	\bullet	\bullet		Fct. active Fct. inactive	-	\bullet	\bullet
„AR in progress"	Message signalling that an AR cycle is active	-	-	-	fr	-	\bullet	-	
„AR start"	Message of the active input function with the same name	-	-		fr	Fct. active	\bullet	\bullet	\bullet

Output Messages (for LED's, Signal Relays and for Input Elements of the Logic)

		$\begin{aligned} & \widetilde{0} \\ & \stackrel{0}{0} \end{aligned}$				Display			
Output Function (displayed text)	Description		$\begin{aligned} & 0.0 \\ & 0 \\ & 5 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 5 \\ & 0 \end{aligned}$			Note	F3	F5	L
					-	Fct. inactive			
„AR sync.check"	Message of the active input function with the same name	-	\bullet	-	$f r$	Fct. active Fct. inactive	-	\bullet	-
"AR maintanance"	Maintenance message when the AR meter has reached the $1^{\text {st }}$ maintenance reading	\bullet	-	-	fr	-	-	-	\bullet
"AR maint.block"	Maintenance message when the AR meter has reached the $2^{\text {nd }}$ maintenance reading	-	-	\bullet	r	-	-	-	\bullet
"Alarm: CCS"	Message signalling that the protective function "CCS (control circuit supervision)< has detected a fault in the control circuits of the controllable switching devices (interruption).	\bullet	-	-	r	-	-	\bullet	\bullet
„Alarm: CBF"	Message signalling that the protective function »CBF (circuit breaker failure protection)« has recognized trip of the local CB.	\bullet	-	-	r	-	-	\bullet	-
"Ext CB fail"	Message of the active input function with the same name	-	\bullet	-	r	Fct. active Fct. inactive	-	\bullet	\bullet
"Fuse fail VT"	Message of the active input function with the same name	-	\bullet	-	r	Fct. active Fct. inactive	-	\bullet	-
"Alarm: VTS"	Message signalling that the protective function »VTS /voltage transformer supervision)« has detected a fault in the VT circuits.	\bullet	-	-	r	-	-	-	-
"Fuse fail AV"	Message of the active input function with the same name	-	-	-	r	Fct. active Fct. inactive	-	-	-
„Alarm:Powercirc."	Message signalling that the CSP has detected an internal fault within the power circuits of the control outputs.	\bullet	-	-	r	-	-	-	-
${ }_{\text {"Pos.SGI on" }}$	Position indication message of switching device 1; active when switching device 1 is in On-Position.	\bullet	-	-	r	On-Pos.	-	-	-
"Pos.SG2 on"	Position indication message of switching device 2; active when switching device 2 is in On-Position.	\bullet	-	-	r	On-Pos.	-	\bullet	-
"Pos.SG3 on"	Position indication message of switching device 3; active when switching device 3 is in On-Position.	\bullet	-	-	r	On-Pos.	-	-	-
"Pos.SG4 on"	Position indication message of switching device 4; active when switching device 4 is in On-Position.	\bullet	-	-	r	On-Pos.	-	-	-
"Pos.SG5 on"	Position indication message of switching device 5 ; active when switching device 5 is in On-Position.	\bullet	-	-	r	On-Pos.	-	-	-
"CB1 ready"	Message of the corresponding active input funktion	-	\bullet	-	g	Fct. active Fct. inactive	-	-	\bullet
"CB2 ready"	Message of the corresponding active input funktion	-	\bullet	-	g	Fct. active Fkt. inactive	*	\bullet	*
					r	Fct. inactive			
"Cmdl SGl on"	Message of the active input function with the same name	-	\bullet		fg	Fct. active Fct. inactive	-	\bullet	-
"Cmdl SGl off"	Message of the active input function with the same name	-	\bullet	-		Fct. active Fct. inactive	-	\bullet	-
${ }_{\text {"Cmd2 }}$ SG1 on"	Message of the active input function with the same name	-	\bullet	-		Fct. active Fct. inactive	-	\bullet	-
"Cmd2 SGI off"	Message of the active input function with the same name	-	\bullet			Fct. active Fct. inactive	-	-	-
${ }^{\text {"Cmd SG2 on" }}$	Message of the active input function with the same name	-	\bullet	-		Fct. active Fct. inactive	-	\bullet	-
"Cmd SG2 off"	Message of the active input function with the same name	-	\bullet	-		Fct. active Fct. inactive	-	\bullet	-
"Cmd SG3 on"	Message of the active input function with the same name	-	\bullet			Fct. active Fct. inactive	-	\bullet	\bullet

Output Messages (for LED's, Signal Relays and for Input Elements of the Logic)

		$\stackrel{』}{\stackrel{\aleph}{\infty}}$				Display			
Output Function (displayed text)	Description		0 0 5 5 5 0 0 0 5 5 3 3			Note	F3	F5	L
„Trip: Diff."	Message of the active input function with the same name	-	-	\bullet	r	Fct. active Fct. inactive	-	\bullet	\bullet
„Alarm: Imped."	Message of the active input function with the same name	-	-		f	Fct. active Fct. inactive	\bullet	-	\bullet
„Trip: Imped:"	Message of the active input function with the same name	-	\bullet			Fct. active Fct. inactive	-	\bullet	\bullet
"Fuse fail VC"	Message of the active input function with the same name	-	-	\bullet	$\begin{aligned} & \text { r } \\ & - \end{aligned}$	Fct. active Fct. inactive	-	-	\bullet
"Fuse fail Ven"	Message of the active input function with the same name	-	\bullet	\bullet	r	Fct. active Fct. inactive	-	\bullet	\bullet
${ }^{\text {"HH fuse trip" }}$	Message of the active input function with the same name	-	-	\bullet	$\begin{aligned} & \text { r } \\ & - \end{aligned}$	Fct. active Fct. inactive	-	-	\bullet
"Ext. CB trip"	Message of the active input function with the same name	-	\bullet	\bullet	r	Fct. active Fct. inactive	-	\bullet	\bullet
"SG1 block."	Message of the active input function with the same name	-	\bullet		fr	Fct. active Fct. inactive	-	\bullet	\bullet
„SG2 block."	Message of the active input function with the same name	-	\bullet	-	fr	Fct. active Fct. inactive	-	\bullet	-
"SG3 block."	Message of the active input function with the same name	-	-		fr	Fct. active Fct. inactive	\bullet	-	\bullet
„SG4 block."	Message of the active input function with the same name	-	\bullet	-	fr	Fct. active Fct. inactive	\bullet	-	\bullet
"SG5 block."	Message of the active input function with the same name	-	\bullet		fr	Fct. active Fct. inactive	-	-	-
"Overflow: WP+"	Message of a counter overflow of positive active energy	\bullet	-	-	fg		\bullet	\bullet	-
„Overflow: WP-"	Message of a counter overflow of negative active energy	\bullet	-	-	fg		-	-	
"Overflow: WQ+"	Message of a counter overflow of positive reactive energy	\bullet	-	-	fg		-	\bullet	-
${ }_{\text {„Overflow: }}{ }^{\text {WO-„ }}$	Message of a counter overflow of negative reactive energy	-	-	-	fg		-	-	-
„SG23 block."	Message of the active input function with the same name	-	\bullet	-		Fct. active Fct. inactive	-	-	\bullet
„SG234 block."	Message of the active input function with the same name	-	-		fg	Fct. active Fct. inactive	-	-	-
„SG2345 Interl."	Message of the active input function with the same name	-	\bullet	-	fg	Fct. active Fct. inactive	-	\bullet	\bullet
"Alarm: Motor"	Message of the active input function with the same name	-	\bullet		fr	Fct. active Fct. inactive	-	-	\bullet
„Trip: Motor"	Message of the active input function with the same name	-	\bullet	\bullet		Fct. active Fct. inactive	-	\bullet	\bullet
"Ctrl. blocked 2"	Message of the active input function with the same name	-	\bullet		$\begin{aligned} & \mathrm{fg} \\ & \hline- \end{aligned}$	Fct. active Fct. inactive	-	\bullet	-
,SCADA: Cmd out 1"	Message signalling an unsafe SCADA command, i.e. the signal relay is controlled by a command issued by the control system (SCADA)	\bullet	-		fg		-	-	\bullet
"SCADA: Cmd out 2"	Message signalling an unsafe SCADA command, i.e. the signal relay is controlled by a command issued by the control system (SCADA)	\bullet	-	-	fg	-	-	-	\bullet
"SCADA: Cmd out 3"	Message signalling an unsafe SCADA command, i.e. the signal relay is controlled by a command issued by the control system (SCADA)	\bullet	-	-	fg	-	-	-	-
"SCADA: Cmd out 4"	Message signalling an unsafe SCADA command, i.e. the signal relay is controlled by a command issued by the control system (SCADA)	\bullet	-	-	fg	-	-	-	\bullet

Table 5.18: List of output messages

* Due to the standardised sofftware, the CSP shows also input functions which are not supported by the device.

User-defined functions (»Function 1 « to »Function 10 «)
User-defined function is used to designate an arbitrary functional process in the MV cubicle, which is merely to be reported or displayed (LED) by the CSP/CMP system.
In this, this user-defined function provides a signal (»message/signal $X_{«}$), via an auxiliary contact, the signal being fed to the CSP2 via a digital input.

LED display of the user-defined function (message/signal X):

- The input functions must be assigned to one of the digital inputs. Colour or flashing code of the LED's have already been allocated to these input functions (see table above).
- After this, the selected input function must be assigned onto a LED.

Further processing of the user-defined function (Signal X) via signal relay:
Many input functions are also available as output messages (push-through functions). For further parallel processing (in a PLC or a conventional SCADA-system) the output message corresponding to the input function (»Function 1 « to »Function $10 \ll 1$ can be assigned to an output relay. In this way, the signal of message X is again available via the potential-free contacts of the signal relay.

Figure 5.21: User defined functions as output messages.

5.7.1.5 LED assignment

Description

To display important system and operating messages/signals via the display and operating unit CMP1, the user has 11 LED's at his disposal. The corresponding signals are available as input functions and output messages and can be selected from the lists (tables) and assigned to the LED's depending on the application.
Up to 5 signals (input functions and/or output messages) can be assigned on each LED. If one of these functions becomes active, the LED in question lights up according to the colour and flashing code which is firmly defined for each input function and output message (see tables on input functions and output messages).

Meaning of the colours

- red:
- blinking red:
- blinking green:
- green:
- not lighting up:
general trip (e.g. trip, fuse fail, spring not charged)
general alarm report (e.g. protective alarm)
interlocking reports (e.g. interlocking from extern)
normal operation signal/message (e.g. spring charged)
no or normal operation message/signal

Parameters

"Quit LED" (LED acknowledgement)
Generally, the acknowledgeability of a LED depends on the assigned output or input message. The acknowledgeability is firmly pre-defined for each individual output message and input function (similar to the colour and flashing code for an input or output message).
With the parameter "Quit LED" the LED's can be set as "acknowledgeable", i.e. even if the assigned output function, which is generally not acknowledgeable, changes back to the "inactive" status, the LED lights up (flashes) until it is acknowledged.
Acknowledgement can be done via the key "C« on the CMP1, a digital input or via the SCADA-system and effects equally on all LED's and also on signal relays.

"(Assignment of function)"

Here, you state whether the required LED function is to be taken from the input or output list. Up to 5 signals can be assigned to each of the 11 variably configurable LED's. However, in assignment, you ought to consider that only the last of a number of signals incoming onto an LED is displayed. When called up by the "INFO" key (on the CMPI) the plain information signal text) of the current function at the time is shown on the display. If no function is active, the first assigned function is shown (on the display).

Attention

In the assignment of a number of different signals on a joint LED, ensure that there are no functional overlaps depending on the colour/flashing code and function of the input function or output message to be placed. For this reason, some functions should be assigned separately. This particularly applies for the "CBx removed" and " $C B x$ ready" input functions.

LEDs (variable assignment - by way of example)				Available in CSP2-		
LED Names	Parameters	Setting	Description	L	F3	F5
LED 5	Quit LED	"None"	There is no reset of the LED indication necessary for messages	\bullet	\bullet	\bullet
		„All"	LED indications have to be reset for all messages affer change of status			
		„Alarm"	Reset of LED indication for trip and alarm signals (e.g. „Trip: $1>F^{\prime \prime}$ or "Alarm: $\left\|>F^{"}\right\|$			
		„Trip"	Reset of LED indications for trip signals (e.g. "Trip: $1>$ F")			
	(Functions/Messages can be assigned)	,Input"	These settings define whether an in-			
		„Output"	put or output function is to be assigned			
		"Text of assigned function/message"	To be chosen from the catalogue (Annex)			
	(Functions/Messages can be assigned)	,Input	These settings define whether an input or output function is to be assigned			
		„Output				
		,Text of assigned function/message "	To be chosen from the catalogue (Annex)			
	(Functions/Messages can be assigned)	,Input	These settings define whether an input or output function is to be assigned			
		„Ouput				
		,,Text of assigned function/message "	To be chosen from the catalogue (Annex)			
	(Functions/Messages can be assigned)	,Input	These settings define whether an input or output function is to be assigned			
		„Output				
		$\begin{aligned} & \text { "Text of assigned } \\ & \text { function/message " } \end{aligned}$	To be chosen from the catalogue (Annex)			
	\|Functions/Messages can be assigned)	"nput"	These settings define whether an input or output function is to be assigned			
		"Output"				
		"Text of assigned function/message "	To be chosen from the catalogue (Annex)			

Table 5.19: LEDs which can be configurated variably with max. 5 user specific assignments
The remaining LED's are configured according to the same scheme.

5.7.1.6 Disturbance recorder

Description

The function of the disturbance recording interpolates the oscillographic curves of the analog channels (currents/voltages) on the basis of defined sample points and saves them as a file in an internal memory of the CSP2. Alongside the analog channels, digital channels are recorded. The evaluation is done via the optional available"data recorder" of the SL-SOFT.
The duration of recording of a disturbance sequence depends on the type of device (CSP2-F or CSP2-L), the mains frequency used $f_{\text {Mains }}\left(f n=50 / 60 \mathrm{~Hz}\right.$) and the set quantity of samples (,ssample $n /$ duration ${ }^{\prime}$) for the entire recording.

Sample points - duration of disturbance recording
As a matter of principle, the sample rate per mains period $T_{\text {Mais }}$ for the device variants of the SYSTEM LINE is defined as follows:

- CSP2-F: 24 sample points per line period

$$
24 / T_{\text {Mains }}=n / T_{\text {Rea. }}
$$

- CSP2-L: 32 sample points per line period

$$
32 / T_{\text {Moins }}=n / T_{\text {Rec }}
$$

In the CSP2-L cable/line differential protection system, this generally results in a shorter maximum period of recording (factor 0.75) than in CSP2-F.

The period of recording $T_{\text {Rec }}$ of a disturbance record in CSP2-F generally results in:

$$
\begin{aligned}
T_{\text {Rec. }} & =(n / 24) \times T_{\text {Mains }} \\
& =(n / 24) \times 1 / f_{\text {Mains }} \\
& =(n / 24) \times 1 / \mathrm{fn} \\
& =\text { sample } n /(24 \times \mathrm{fn})
\end{aligned}
$$

As a function of the mains frequency $f_{\text {Maiss }}$ the period of recording with a nominal frequency of $f n=60 \mathrm{~Hz}$ is reduced by a factor of 0.83 . The setting of the nominal frequency f_{n} is done in the "Parameter/Field parameter" menu.

Parameters

"Sample n/duration" (number of sample points for total period of recording)
This parameter states the total number of sample points which are to apply for the recording of a disturbance record. The overall duration of the individual disturbance records then results from the above mentioned formula for $T_{\text {Rec }}$ If the duration for the disturbance records is stated by the user, the sampling rate to be set is calculated from:

- CSP2-F: with 24 sample points per line period

Duration $n=\quad T_{\text {Rec. }} \times 24 \times f n$

- CSP2-L: with 32 sample points per line period

$$
\text { Duration } n=T_{\text {Rec }} \times 32 \times f n
$$

"Pre-trig" (number of sample points for the pre-history of the trigger event)
Here, the number of sample points for the recording of the pre-history is set, i.e. incidents before the trigger event ("T. source"). The duration of the recording for the pre-history then results as:
$T_{\text {peretig }}=$ pre-rrig $/(24 \times f n)$

Attention

The set number of sample points for the recording of the pre-history (pre-trig) is always a subset of the total number of sample points (sample n/duration)! For this reason, the following must be observed in setting:

!!! $\mathrm{T}_{\text {Pre tig }}<$ Duration n !!!

Example: CSP2-F at $f n=50 \mathrm{~Hz}$: sample $n=12,000$; pre trigger $=3,000$
The overall period of recording according to the formula above is: $T_{\text {Rec }}=10,000 \mathrm{~ms}$. The period of the recording of the pre-history results as $T_{\text {pertig }}=2,500 \mathrm{~ms}$. This means that of the overall recording period of $10,000 \mathrm{~ms}$ a recording period of $2,500 \mathrm{~ms}$ is used for the pre-history, with the result that only 7500 ms remain for the recording from the trigger incident up to the end of the recording.

"Trigger" (Trigger event)

This parameter states the event for which the disturbance recording is to be started. The start of the recording thus depends upon the trigger event. The trigger incident can be a protective alarm or a protective trip, in which their downward or upward slope (e.g. "pi.up on" or "pi-up re") can additionally be selected for the start of the disturbance recording.
As an alternative to the internal trigger events, the disturbance recording can also be externally started via an active digital input (external trigger event) with the assigned input function "Trig. dist.rec". For this, the parameter is to be set to "Trigger = change DI". Only recognition of an upward slope of the digital input starts the disturbance recording.

The disturbance recording can also be started manually, in addition to other trigger events. This is done by activation of the menu parameter "Man. trigger" (see Main menu/disturbance recorder) via the CMP1 or via the SL-SOFT.
If the disturbance recording is exclusively to be done manually, the setting "Trigger = inactive" must be set.

"Storage" (memory medium)

Standard versions of the CSP2-F and CSP2-L are provided with an internal memory (Int.RAM) the storage sizes of which are designed for a max. total recording time $T_{\text {Rec max }}$:

- CSP2-F: max. total recording time $T_{\text {Rec max }}=10,000 \mathrm{~ms}$
- CSP2-L: max. total recording time $T_{\text {Rec max }}=3,500 \mathrm{~ms}$

It is, however, also possible to save several fault recordings of shorter recording time but the sum of the respective total recording time, i.e. $10,000 \mathrm{~ms}$ or $3,500 \mathrm{~ms}$, cannot be exceeded.
An extended fail-safe memory area is available as option for the CSP2 standard version (option "K" in the Order form). Here the memory is designed for several disturbance recordings with a total recording time of about 50,000 ms.
For this option, the setting "Storage $=$ ROM Card" must be selected.
"auto del" (treatment of the saving of disturbance records)
Each memory medium only has a limited storage capacity. If the storage medium is full, no more disturbance records can be saved. This applies for the setting "auto del = inactive".
However, in order always to be able to save the current record, the setting "auto del = aktiv" must be selected. Storage of the disturbance record files is now done with the FIFO principle (First In - First Out). The storage of the current disturbance record overwrites the oldest disturbance record files still stored.

Fault Recorder					Available in CSP2-		
Parameters	Setting/ Setting Range	Description	Presetting.	Step Range	L	F3	F5
Sample n	32... 12000	Number of measuring points, starting from the trigger event	1800	1	\bullet	\bullet	\bullet
Pre-trig	0... 10000	Number of measuring points prior to the trigger event	240	1	\bullet	\bullet	\bullet
T. Source	"pi.up on"	Start of fault value recording with incoming message for „Protective Alarm" (pick up value)	"trip on"		\bullet	\bullet	\bullet
	"pi.up re"	Start of fault value recording with outgoing message for "Protective Alarm" (pick up value)					
	"trip on"	Start of fault value recording with incoming message for "Protective Trip"					
	„trip rel"	Start of fault value recording with outgoing message for "Protective Trip"		-			
	„Input fct."	External start of fault value recording (no internal trigger events) via active digital input (DI) "Fault Recorder ON"					
	„inactive"	Start of the fault value recording only possible via menu parameter "Man. Tigger" (CMPI or SL-SOFTI					
Storage	„Int. RAM"	Internal volatile storage of the CSP2 \|Standard Version)	„Int. RAM"		\bullet	\bullet	-
	„RAM Card"	Internal non-volatile extended storage of the CSP2 (optional)		-			
	"FLASHRAM"	(for use in: RRGZ DGonly)					
auto del	"active"	Storing of fault recording files until store is full, afterwards the FIFO principle applies!	"active"		\bullet	\bullet	\bullet
	„inactive"	Storing of fault recording files until store is full, afterwards there is no recording possible!					

Table 5.20: Parameters for function of the fault recorder

5.7.1.7 Communication

5.7.1.7.1 IEC 60870-5-103

Description

The CSP2 optionally has a standardized serial interface to the SCADA-system matching the VDEW recommendation. Communication to a SCADA-system is done either via a fibre optic connection or alternatively via an electrical RS 485 interface and is based on the normed transmission protocol IEC 60870-5-103.
This transmission contains normed telegrams such as general protection alarms, measured values and disturbance records in the "compatible area". In addition, a freely definable transmission area ("private range") exists for nonnormed signals (messages), in which information, e.g. on controls and measured values, can be transmitted.

Note

Upon request, a data protocol list (data point list) of all telegrams is available. As to the General Protocol Description the IEC Norm 60870-5-103 refers.

Efficient data transmission

The IEC 60870-5-103 protocol is an "event-controlled" transmission protocol in which the individual data points do not have to be addressed directly by the host computer. The host computer merely requests that the CSP2 transmits data. The CSP2 then decides which data it transmits to the host computer.
If the complete number of data points were always transmitted with each inquiry of the host computer, this would overburden the host computer and the bus system and would additionally be inefficient.

In order to guarantee a quick and efficient data exchange, the protocol provides the following mechanism, which is anchored in the norm:

Classification of the data points to avoid redundant telegrams on the data bus!
"Data of Class 1": This category entails all the data points of the "Signals" list and certain data points of the "Measurement" list (measured figures belonging to a trip). Such data have a high transmission priority, as they give decisive information about the operating status of the switchgear. The transmission of these data points is however only done in the change of status of a signal as soon as the host computer inquires it.
"Data of Class 2": This category contains data points of the "Measurement" list. They change frequently, but only possess a low transmission priority. A transmission to the host computer takes place cyclically if no higher-priority data ("signals") are ready for transmission. A transmission cycle is completed when all the data ready for transmission have been transmitted by the CSP2.

Parameters

"I.-block" (Information blocking)

With this, a blocking of the transmission is possible if e.g. the SCADA is not to be burdened with redundant information during commissioning or testing. The CSP2 replies to the cyclic inquiry telegrams of the host computer with a reply telegram, which merely signalizes intact communication of the CSP2.
"t respo" (Supervision time: reply cycle of the CSP2 to the host computer)
With this, the maximum break time t respo. is stated in which the CSP2 must react to an inquiry telegram of the host computer. If there is no reply telegram from the device within this period, the CSP2 rejects the inquiry. In this case, the host computer recognizes a communication disturbance on the part of the CSP2 and must inquire again.

" \dagger call" (Supervision time: inquiry cycle of the host computer to CSP2)

Transmission disturbances are only reported by the device after the expiry of a supervision time t call. If there is no inquiry telegram from the host computer within this period, the host computer recognizes a communication disturbance on the part of the host computer. The SCADA computer has to start a new inquiry.

"Baud rate" (data transmission rate to the host computer)

The data transmission rate can be changed between the two fixed values 9,600 or 19,200 Baud. The data transmission rate to be set depends upon the hardware of the host computer and is stated by the manufacturer of the SCADA-system.

"Slave-ID" (Device number)

The device ID with which the SCADA-system identifies each device must be assigned once per station, as otherwise no unambiguous assignment of the signals in the overall system is possible. Assignment of the device address can only be done in cooperation with the SCADA-system.
" t wait" (Idle period between transmission and receipt)
In particular bus systems with RS 485 hardware expect an idle time on the bus after each transmission of a telegram. This idle time is needed as the CSP2 must switch from the "transmit" to the "receive" direction after each transmission and must guarantee an idle time between the receipt of a telegram from the host computer and the reply telegram of the CSP2.
If this idle time is not parameterized, this can lead to communication disturbances (data collision) between the CSP2 and the SCADA used.

Parameters for transmission reduction for "Class 2" data":

Data of "Class 2" are divided into three groups: "cyclic measured values", values with regard to "revision data" and "statistical data". For each group, a separate parameter is provided, via which the transmission frequency can be set with regard to the inquiry cycles.
"pr VCPQF" (transmission priority for cyclic measured values)
This parameter states the frequency (priority) with regard to the inquiry cycles with which the cyclically recorded measured values are to be transmitted to the host computer.

"pr com" (transmission priority for revision data)

This parameter states the frequency (priority) with regard to the inquiry cycles with which the figures for the revision data (e.g. number of switching cycles) are to be transmitted to the host computer.

"pr stat" (transmission priority for statistical data)

This parameter states the frequency (priority) with regard to the inquiry cycles with which the statistical measured values are to be transmitted to the host computer. The statistical measured values are calculated cyclically as a function of the calculation interval " $\Delta t^{\prime \prime}$ (see parameter: "Statistical data") and can only be transmitted again after the expiry of the calculation interval.

"DataRed." (data reduction)

Depending on the setting of this parameter, the quantity of "Class 2" data to be transmitted (only "cyclic measured values", "statistical measured values" and "counters for revision data") can additionally be reduced.
Settings:
"active": This means a supervision of the data changes. Merely the data which havechanged since the last transmission cycle are transmitted. This supervision is effective for the "cyclic measured values", the "statistical measured values" and the "counters for revision data". If the data are unaltered, the CSP2 transmits individual values upon inquiry.
"inactive": With this setting, the data are transmitted with each inquiry cycle, regardless of whether their value has changed or not.

Example 1:

"pr VCPQF = 1": The cyclically measured values are transmitted with each inquiry cycle
"pr coun $=3 ": \quad$ The counters for the revision data are only transferred with every third inquiry cycle!
"pr stat $=0$ ": The statistical measured figures are not transmitted at all!
"DataRed = active": Only the data of the "cyclic measurement values" and the "counters for revision data" which have changed since the last inquiry cycle are transmitted!

Example 2:

"pr VCPQF = 1": \quad The cyclically recorded measured values are transmitted with each inquiry cycle!
"pr coun $=3^{\prime \prime}$: The counters for the revision data are only transferred with every third inquiry cycle!
"pr stat $=2$ ": The statistical measured values are only transmitted with every other inquiry cycle and after the expiry of the calculation interval " $\Delta t^{\prime \prime}$!
"DataRed = inaktiv": data of the "cyclic measurement values" and the "counters for revision data" are transmitted regardless of an alteration, but depending on the transmission priority parameterized in each case.

Protocol Type IEC 60870-5-103					Optionally in CSP2-		
Parameters	Setting / Setting Range	Beschreibung	Presetting	Step Range	L	F3	F5
I.-block	"active"	Information blockade is effective	„inactive"		\bullet	\bullet	\bullet
	„inactive"	Information blockade is out of function					
\dagger respo.	10...1000ms	Max. hold time before the CSP2 sends a response telegram to the host computer	500 ms	1 ms	\bullet	\bullet	\bullet
† call	200...600000ms	Max. hold time before the host computer sends an inquiry telegram to the CSP2	240000 ms	1 ms	\bullet	\bullet	\bullet
Baud Rate	$\begin{aligned} & \text { "9600" } \\ & \\ & \\ & \hline 192000 " \end{aligned}$	Used data transmission rate [bit/s]	19200	-	\bullet	\bullet	\bullet
Slave Id.	1... 254	Device address which can be issued individually	1	1	-	-	-
\dagger wait	4...150ms	Hold time before each newly sent telegram	4 ms	1 ms	\bullet	\bullet	\bullet
pr UIPQF	0... 100	Transmission priority of "Cyclic Measuring Values"	1	1	\bullet	\bullet	\bullet
pr coun.	0... 100	Transmission priority of "Counting Values for Revision Data"	3	1	\bullet	\bullet	\bullet
pr stat.	0... 100	Transmission priority of "Statistical Data"	2	1	-	\bullet	-
Datared.	"active"	Data transmission only when changing the "Cyclic Measuring Values", "Statistical Measuring Values" or „Counting Values for Revision Data"	„inactive"		-	\bullet	\bullet
	"inaktiv"	Data is transmitted at each inquiry cycle, independent of changing the "Cyclic Measuring Values" or "Counting Values for Revision Data"					

Table 5.21: Parameters for configuration of the IEC 60870-5-103 data protocol

5.7.1.7.2 PROFIBUS DP

Description
Communication of the CSP2/CMP1 system and the Protocol Profile PROFIBUS DP to a SCADA (Master) system is realized either via fibre optic (FO) or alternatively via an electrical interface $R S 485$; this is based on standard EN 50170/2.

Note

On request a General Protocol Description and a Data Protocol List (data point list) are available as separate manuals.

Parameter

"P_DP_No"
This parameter defines the id (slave no.) for the slave device connected (CSP2).
"t call" (Supervision time: Inquiry cycle of the automation system to the CSP2)
Disruptions of communication are only signalled by the CSP2 after the monitoring time t call. has elapsed. If the automation system does not send an inquiry telegram during this time, the CSP2 concludes that the automation system is the source for the communication failure. The signal "SCADA Comm. Active" is then reset.

Protocol type PROFIBUS DP					Optionally in CSP2-		
Parameters	Setting Range	Description	Presetting	Step Range	L	F3	F5
P_DP_No.	0... 126	ID number of the Slave (CSP2) connected	„1"	1	-	-	-
\dagger call	200... 240000 ms	Max. hold time before the automation system sends an inquiry telegram to the CSP2	„24000 ms"	1 ms	\bullet	\bullet	\bullet

Table 5.22: Parameters for configuration of the Data Protocol PROFIBUS DP

5.7.1.7.3 MODBUS RTU

Description

Communication of the CSP2/CMP1 system and the protocol profile MODBUS RTU to a SCADA (Master) system is realized either via fibre optic (FO) or alternatively via an electrical interface RS 485.

Note

On request a General Protocol Description and a Data Protocol List (data point list) are available as separate manuals.

Parameter

"Parity" (Recognition of communication errors)
It is possible that the last data bit is followed by a parity bit which is used for recognition of communication errors. The paraty bit ensures that with even parity ("EVEN") always an even number of bits with valency " 1 " or with odd parity ("ODD") an odd number of „1" valency bits are transmitted. But it is also possible to transmit no parity bits (here the setting is "Parity = None").
"Stop Bit" (End identification feature of the data byte)
The end of a data byte is terminated optionally by one or two Stop-Bits.
"Baudrate" (Data transmission rate to the host computer)
The data transmission rate can be chosen from the five given values [bit/s]. Adjustment of the data transmission rate depends on the hardware of the host computer and is stated by the manufacturer of the control system.

"timeout" (Supervision time: Reply cycle of the CSP2 to the host computer)

Here the max. hold time "timeout" is stated during which the CSP2 has to response after receipt of an inquiry telegram from the host computer. If there is no reply telegram from the device sent within this time, the CSP2 discards the inquiry. In this case the host computer concludes that the CSP2 is the source for the communication failure and has to repeat the inquiry.

"t call" (Supervision time: Inquiry cycle of the Host computer to the CSP2)

Communication errors are only signalled by the CSP2 after the supervision time t call has elapsed.
If the host computer does not send an inquiry telegram during this time, the CSP2 concludes that the host computer is the source for the communication failure. The signal "SCADA Comm.Active" is then reset.
"Dev.-Addr" (Device address)
The device address by which the SCADA-system (Master) identifies each of the devices (Slave) ought to be assigned only once per bus system because otherwise a clear assignment of messages within the entire system is not possible. The device address can only be allocated together with the SCADA-system.

Protocol type MODBUS RTU					Optionally in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	L	F3	F5
Parity	„even"	In the data byte an even number of bits is transmitted with valence " 1 "	"Even"	-	-	\bullet	-
	"odd"	In the data byte an odd number of bits is transmitted with valence " 1 ".					
	„none"	There is no parity bit transmitted in the data byte					
Stop Bit	„1"	Number of Stop-Bits in the data byte is 1	${ }^{11}{ }^{1}$	-	\bullet	\bullet	\bullet
	"2"	Number of Stop-Bits in the data byte is 2					
Baud Rate	„1200"	Used data transmission rate [bit/s]	"9600"	-	\bullet	\bullet	-
	„2400"						
	„4800"						
	"9600"						
	"19200"						
timeout	$\begin{gathered} 50 \ldots \\ 1000 \mathrm{~ms} \end{gathered}$	Max. idle time before the CSP2 sends a response telegram to the host computer	"900 ms"	1 ms	\bullet	-	\bullet
t call	200... 600000 ms	Max. idle time before the host computer sends an inquiry telegram to the CSP2	"240000 ms"	1 ms	\bullet	\bullet	\bullet
slave ID	1... 247	Device address (Slave) in the bus system	${ }^{\prime \prime}{ }^{\prime \prime}$	1	\bullet	-	-

Table 5.23: Parameters for Configuration of the Data Protocol MODBUS RTU

5.7.1.7.4 CAN-BUS (Variant configuration to the CSP2-multi device communication)

Description

Multi device communication means, that the CSP basic units are connected via CAN-Bus (for details please refer to chapter CSP-multi-device communication). This way it is possible to change parameters and to read out values from a central point respectively PC/Notebook. For this the PC/Notebook has to be connected only to one CMP of the bus systems via the "multi device communication" a secondary communication level, beside the primary (communication to SCADA) can be established.

The "multi device communication" can be realised in two different ways:

- Variant 1: Each of the CSP's has its own operation and control unit CMP1 (within the bus-system)
- Variant 2: There is only one operation and control unit CMPI but multiple basic units "CSP" within the bus-system

Variant 1

Here each CSP2 has its own display- and operating unit CMP1. Because the CSP (basic units) are connected among one another via can-bus, it is possible to access via "System Line Soff" each of the basic units (CSPs) by establishing a RS232 connection (zero modem connection) to any of the operation and control units (CMP) (Please refer to chapter "Multi device communication" for details). The entire span of the SL-SOFT can now be used for operation of the CSP2 devices.

Variant 2

Consequence for local operaton via CMP: Because there is only one operation and control unit CMP1 available within the bus system, operation and control - as a consequence of that - can be carried out only sequential. Thus it is necessary to log into the device that is to be accessed via the menu item "Select device" (Please refer to chapter "Select device" /Variant 2 of the "Multi device communication").
Even though there is only one CMP within the bus-system it is also possible to establish a "Multi device communication" that is a secondary communication level.

Important

The CMP1 always communicates with one CSP2 only! Log in into another CSP2 is only possible via the CMP1 menu and hence it is time consuming. Therefore attention has to be paid during the projecting phase that vital functions, such as "Emergency Off", are redundant (e.g. an additional separate button for the CB).

For logging the CMP1 into any of the CSP2 devices of the CAN-BUS track the menu "Device Selection" is to be used. Access to menu "Device Selection" is only possible if the multi device communication is configurated as described under "Variant 2".

Note

The menu item „Act. CAN Dev. No.: " shows the existing CAN device number of the CSP2 or of the CSP2/CMP1 system-. This ID is only updated after changes of the parameter "CAN Device No." have been stored.

Parameter

"CAN Device-No."
In the CAN-BUS track of the multi device communication up to 16 CSP2/CMP1 systems can be embedded. This parameter is used for adjusting the "CAN ID" in the CSP2.

Note

If a CMP1 communicates with the CSP2 during a parameter setting, then the CAN Device No. of the CMP1 is automatically updated to the new CAN Device No. of the CSP2.

"Single CMP"

If there is only one operaton and control unit CMP 1 within the entire bus system, this parameter is to be set to "Single CMP = Yes" else to "Single CMP = No".
For going into detail:

- Setting "Single CMP = No" refers to variant 1, where each of the CSP's has its own CMP1.
- Setting "Single CMP = Yes" refers to variant 2, where is only a common operation and control unit for all CSP's.

Table 5.24: CSP2 Parameters for Configuration of the CSP2 Multi-Device Communication

5.7.1.8 Resetting functions (counters)

Description
The reset function enables the operator to reset the counters to zero or to delete records after commissioning or maintenance.

Parameters

"SWG counter"

The number of counted switching cycles of the electrically controlled switchgears is reset to zero.
„/^2 counter"
The added short-circuit currents of the circuit breaker(s) are reset to zero.
„Event Recorder"
With this, the saved event list is deleted.
"Fault Recorder"
With this, the saved fault record log file is deleted.
"Operating Hour Counter"
Here, the operating hours counter of the CSP2 is reset to zero.

„AR Counter"

The AR counter is reset to zero).
"Thermal Replica"
By resetting the »thermal replica« function, the interpolated temperature is set to the starting value (first start). In this way, for example, a motor in emergency operation can be restarted after an overload trip.
"Energy Counter"
The energy counter is set to zero.

5.7.1.9 Statistical Data

Description

The statistical data include the calculated maximum and average values of the measured values. They are cyclic calculated after a settable interval. In addition to that a starting point (starting point of the synchronisation) can be parametrized.
The starting point of the synchronisation (please refer to Table 5.2.5-hour, minute, second) determines the moment at which the calculation of the maximum and average values is started independent of the set time interval Δt.
Thence forward recalculation of the stastical data is done according to the set time interval Δt. The synchronisation (hour, minute second) is executed daily. (after 24 hours)

Parameter

Calculation interval " $\Delta t^{\prime \prime}$
The setting of this parameter defines the duration of the interval of time in which the statistical measured values are to be calculated.
Recommendation: Quarters of hours (900 s).
Synchronisation time "hour : minute : second"
These parameters state the point in time of the first synchronisation. This synchronisation is done once a day after the point in time firstly set for the parameterisation. For a daily average value, for example, it could be imaginable that the synchronisation time is placed at 12:00:00 midday or midnight.

Statistical Parameters						Available in CSP2-		
Parameters	Setting Range	Description	Note	Presetting	Step Range	L	F3	F5
$\Delta \dagger[s]$	$1 \ldots 86400$ s	Computation interval for maximum values and average values	Recommend. 900	60 s	1 s	\bullet	\bullet	\bullet
Hour [h]	O... 24 h	Setting of the timer for synchronisation of the statistical measurement	Start of the measurement intervals	00 h	1 h	\bullet	\bullet	\bullet
Minute [min]	$0 . .60$ min	Setting of the timer for synchronisation of the statistical measurement	Start of the measurement intervals	00 min	1 min	\bullet	\bullet	\bullet
Second [s]	$0 \ldots 60$ s	Setting of the timer for synchronisation of the statistical measurement	Start of the measurement intervals	00 s	1 s	-	\bullet	\bullet

Table 5.25: Setting of statistical parameters

5.7.1.10 Logic

5.7.1.10.1 Performance Description - General Product Outline

By using the SL-LOGIC up to 32 logic functions can be realized via the logic modules specified in chapter 3 limiting value detection and counting functions are in the planning stage as an extension, that will be available as input elements.

Figure 5.22: SL-LOGIC Performance Outline

Note

An Example for an »Programmable Switch Over Sequence« can be seen in chapter »Projecting".

The following illustration shows in detail the performance range and the interaction between control unit and the logic. For further explanations and more specified information please see the following chapters of this description.

Figure 5.23: SL-LOGIC Detailed Overview

Important

- Do not refeed any output signal back into the associated (the same) logic equation as input element.

5.7.1.10.2 Definition of Terms

For all the circuits shown in this Manual applies: All switches and contacts are shown in neutral position. Circuit inputs are marked with the letters E1,E2, ...En logic-/circuit outputs are marked with "Y" (Y1 , Y2, ...Yn).

The switching states are defined as follows:
" 1 "or "H" High): is related to a closed switch (=positive logic)
" O " or "L" (Low): is related to an open switch (=positive logic)
The correlation between input and output variables is described in Truth Tables

A (Switch)	Y
0 (L) (open)	$\mathbf{0}$ (L) (Off)
1 (H) (closed)	$\mathbf{1}$ (H) (On)

Table 5.26: Positive Logic

Term	Meaning
$/$	Negation (NOT)
$*$	Conjunction (AND)
+	Disjunction (OR)
Input Elements - E1 E2 En	Circuit Inputs
Logic Equation	Circuit Equation
Output Elements Y1, Y2, ...Yn	Circuit Outputs

Table 5.27: Definition of Terms

5.7.1.10.3 SL-LOGIC Modules

The functional range covers the logic functions "AND", "OR" and "NOT" (only for negation of the input elements), with downstream timer.

Further functions, such as Limiting Value Monitoring or Counter might be realized in future software versions in additional function blocks, i.e. they are not included in the "Programmable Logic".

Figure 5.24: Logic Concept

Negation (NOT)

Fig 3.5. 1: Logic Symbol Negation

Table 5.28: Truth Table Negation

Conjunction (AND)

Figure 5.25: Logic Symbol Conjunction

E1	E2	Y
$0(L)$	$0(L)$	$\mathbf{0}(L)$
$0(L)$	$1(H)$	$\mathbf{0}(L)$
$1(H)$	$0(L)$	$\mathbf{0}(L)$
$1(H)$	$1(H)$	$\mathbf{1}(H)$

Table 5.29: Truth Table Conjunction

Disjunction (OR)

Figure 5.26: Logic Symbol Disjunction

$E 1$	$E 2$	Y
$0(L)$	$0(L)$	$\mathbf{0}(\mathbf{L})$
$0(L)$	$1(H)$	$\mathbf{1}(H)$
$1(H)$	$0(L)$	$\mathbf{1}(H)$
$1(H)$	$1(H)$	$\mathbf{1}(H)$

Table 5.30: Truth Table Disjunction

5.7.1.10.4 Ascertaining of Logic Functions (Circuit Equations)

Before setting up a logic function (circuit equation), the function definition (mostly available in text form) has to be analized thoroughly. In order to convert the task required into a logic function (circuit equation) there are three different methods possible:

The logic function (circuit equation) can be set up either based on

- the circuit diagram (variant 1) or
- the logic flow chart (variant 2) or
- the truth table (variant 3)

The ascertained logic function (circuit equation) has now to be converted into the Disjunctive Normal Form (DNF), (the exception is variant 3, where the Disjunctive Normal Form can be directly read off from the Function-/Truth table.

Important

When logic functions (circuit equation) are being set up it is essential to put the associated disjunctions into brackets, because disjunctive connections (AND) have a higher priority than conjunctive connections (OR).

Figure 5.27: Ascertaining and Input of Logic Functions (Circuit Equation)

Variant 1: Setting up a logic function based on the wiring diagram

When the wiring diagram is used for setting up a logic function (circuit equation), the following basic principles have to be considered:

- Series connection of contacts means conjunction (AND)
- Parallel connection of contacts means disjunction (OR)

Figure 5.28: Wiring Diagram

The logic function (circuit equation) results from the series connection of the two circuitries " Y l" and " $Y 2$ " (see figure 4.2)
$Y 3=Y 1 * Y 2=(/ E 1+E 2+/ E 3) *(/ E 1+E 2+E 3)$

Variant 2: Setting up a logic function base on the logic flow chart

If a required function is converted into a logic flow chart, the logic or circuit equation can be read off directly from this plan and by using the suitable means it is then to be converted into the Disjunctive Normal Form (see chapter 4.1 to 4.4)

Figure 5.29: Single Line diagram

Note
For this example the logic equation is available in the Disjunctive Normal Form (DNF).

[^7]Variant 3: Setting up the Logic function based on the truth table

Line	E1	E2	E3	Y
1	0 (L)	O (L)	O (L)	0 (L)
2	0 (L)	0 (L)	1 (H)	0 (L)
3	0 (L)	1 (H)	0 (L)	0 (L)
4	1 (H)	O (L)	0 (L)	0 (L)
5	0 (L)	1 (H)	1 (H)	1 (H)
6	1 (H)	O (L)	1 (H)	1 (H)
7	1 (H)	$1(H)$	O (L)	1 (H)
8	1 (H)	1 (H)	1 (H)	1 (H)

Table 5. 31: Example For Setting Up The Logic Function (Wiring Equation)

Basically applies that the columns have to be gated conjunctively (AND) and the rows disjunctively (OR)

5.7.1.10.5 Ascertaining of the logic function for the pickup condition(s) - DNF

If the logic function (circuit equation) shall be ascertained for the Pickup Condition(s), then

- the terms for the lines have to be determined firstly (AND conjunctions)
- and the result, the finished logic equation, is obtained by
- AND-gating in the truth table all the elements of a line for which the output is marked by an "H" (logical state " 1 "). Elements that have the logical state " O " have to be negated and Elements that have the logical state " 1 " must not be negated.
- And then these lines (with output marking H respectively " 1 ") to be OR-gated.

```
Line 5: Y = /El*E2*E3
Line 6: Y = E * * E2*E3
Line 7: Y = E1*E2*/E3
Line 8: Y = E1 *E2*E3
```

And so the logic function (circuit equation) for the Pickup Condition is as follows:
$Y=(/ E 1 * E 2 * E 3)+(E 1 * / E 2 * E 3)+(E 1 * E 2 * / E 3)+(E 1 * E 2 * E 3)$

5.7.1.10.6 The Disjunctive Normal Form (DNF)

If a complete Truth/Function Table is available then the Disjunctive Normal Form (DNF) of the logic function (circuit equation) can be directly read off (see chapters 4.3.1-4.5)

Optimization of the logic functions by way of the Quine-MC Cluskey Method

There are two methods for minimizing the logic functions (circuit equations):

- The Karnaugh Veitch diagram. (A graphic method which, however, can only be used for a few input elements)
- The Quine-McCluskey method. This method can be used both manually and with suitable software tools.

Note

For the Quine-McCluskey method there are software tools available and with these tools optimization of logic functions (circuit equation) can be carried out over the PC.

5.7.1.10.7 Debouncing Supervision

Figure 5.31: Debouncing Supervision
Important (see fig. 6.1)

- Do not feed back any output messages as input elements to the associated (the same) logic equation.

The logic function enables to generate many events with only very short intervals (direct feedback without significant time delay and assignment of input functions to the output of logic functions).

A continuous, rapid event generation stresses the system inadmissible and is monitored by an integrated two-step monitoring function, the debouncing supervision.

Normally the logic operates in a 10 ms -cycle. If the number of signal changes exceeds the threshold of 125 Hz , the first step of the debouncing supervision is responding and reduces the cycle to 100 ms . If now the number of signal changes exceeds the threshold of 125 Hz , the second step of the debouncing supervision is responding (Logic debouncing supervision 2) and reduces further the cycle to 500 ms .

Reductions of the cycle times are reset if the thresholds are undershot (10% hysteresis) .
Activating of the debouncing supervision is signalled through respective messages. Additionally a pop-up window appears on the CMP.

Merely with regard to the time accuracy the duly function is impaired.

Figure 5.32: Debouncing Supervision

5.7.1.10.8 Input Functions and Output Signals

In order to utilize the entire performance range of the SL-LOGIC we have updated and extended the list of input functions and output messages (e.g. by further functions for the detection of switching device positions). The individual functions are specified in the related tables, chapter »Digital Inputs" (input functions) or chapter
"Signal Relays" (output signals) of the CSP2-Manual.

Important Note

- Maximal one free selectable input function can be assigned to each function output of a logic function.
- Logic outputs can also be used as input elements for logic equations. Therefore the messages loutput messages) "Logicfct. .xy" are available.
- Together with the newly implemented logic we have added some new Input Functions to the related list and existing input functions have been modified accordingly le.g. new input functions for detection of switching device positions).

For controlling the switching devices via the logic, new Control Functions have been implemented for the control of SG1 to SG5. As input functions these control functions do not depend on the "LOCAL/REMOTE« switching position. The switching authorization »REMOTE«, can still be realized via the input functions "Cmdl SGx ON" respectively "Cmdx SGx Off".

Note

- For the List of Input functions please refer to chapter "Digitale Inputs".
- For the List of Output messages please refer to chapter "Signal Relays".

5.7.1.10.9 Parameter

Note

Modifying the Logic (system parameters) will result in a rebooting of the system.

"Function"

For activating or deactivating the entire logic, the logic parameter "Function=Active/Inactive" can be used. This parameter can be activated via the CMP of the SL-SOFT. After the activating process the system is rebooted (about 10 s).

"Mode"

The logic output of each logic equation can be influenced by a preceding time step. Via parameter "Mode" the following functions are available:

- "Op./Rel.d": Pickup- and Release time delay (can be retriggered) or:
- "Op.d/Pulse.d": Impulse time (cannot be retriggered)
"t7"
The pickup delay of a logic output of a logic equation is determined by this time stage parameter.
"t2"
Within the mode "Op./Rel.d" the release delay of a logic output of a logic equation is determined by this time stage parameter. Within the mode "Op.d/Pulse.d" this parameter determines the impulse time (pulse duration).
„Function output"
- Maximal one free selectable input function can be assigned to each function output of a logic function. " The assignment of a function is not mandatory.
- Logic outputs can be used as input elements for further logic equations. For this purpose the output messages "Logicf fct.xy" are available.

"Equation"

Within the Submenu »Equation« the input elements of the logic equations and the way of gating are parmetrizeable.

SL-LOGIC						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting.	Step Range	Tolerance	L	F3	F5
Function	"active"	LOGIC activated	„inactive"			\bullet	\bullet	\bullet
	„inactive"	LOGIC deactivated						
Mode	"Op./Rel.d "	pickup/release delay (can be retriggerd)		-		\bullet	\bullet	\bullet
	„Op.d/Pulse.d "	impulse time (cannot be retriggerd)						
	None		none					
$\dagger 1$	$0 . .500$ s	pickup time delay		10 ms		\bullet	\bullet	\bullet
		Mode "Op./Rel.d": release time delay						
†2	$0 . .500 \mathrm{~s}$	Mode "Op.d/Pulse.d": Impulse time lpulse duration)		10 ms		-	\bullet	\bullet
Function output		one input function can be assigned				-	\bullet	\bullet
Equation		max. 32 input elements and the way of gating				-	\bullet	\bullet

Table 5.32: Setting parameters SL-LOGIC

5.7.1.10.10 Programming of Logic Functions via the CMP

For activating or deactivating the entire logic, the logic parameter "Function Active/Inactive" can be used. This parameter can be activated via the CMP.

Figure 5.33: Menu Logic

Menu structure of the SL-LOGIC

Figure 5.34: Menu Tree SL-LOGIC

Input of the logic function (circuit equation) via the CMP

Firstly the circuit/logic equations have to be ascertained and then to be converted into the Disjunctive Normal Form (DNF). See chapters 3 and 4.

Function »Local Operation/Parameter Assignment« in »MODE 2« is to be selected by using the key switch of the CMP.

Now the circuit/logic equations can be entered in menu »LOGIC« according to fig. 7.2.
By pressing keys »ENTER« and »RIGHT« the information is stored and only after this process is completed, the equations are accepted by the system. Thereafter the system is restarted.

Time stages

The logic output of each logic equation can be influenced by a preceding time step. Via parameter "Mode" the following functions are available:

- Pickup- and Release time delay (can be retriggered) or:
- Pulse duration (cannot be retriggered)

Pickup- and Release time delay (can be retriggered) (mode "Op./Rel.d")

Time step parameter:
Pickup time: $\quad \dagger 1=0-500 \mathrm{~s}$ step range: 10 ms
Release time: $\quad \mathrm{t} 2=0-500 \mathrm{~s}$ step time: 10 ms

- Change of status from "O" to „1" (Low to High) of a logic output becomes only effective after time delay " +7 " (= pickup delay).
- Change of status from „1" to "0" (High to Low) of a logic output becomes only effective after time delay " +2 " (= release delay).

Figure 5.35: Pickup- and Rrelease Time Delay

In mode „Pulse duration" (cannot be retriggered) (Mode "Op.d/Pulse.d") the following applies
Time stage parameter:
Pickup time: $\quad t 1=0-500 \mathrm{~s}$ step range: 10 ms
Impulse time: $\quad+2=0-500 \mathrm{~s}$ step range: 10 ms

- If the pickup requirement for a logic output is met, the signal „ 1 "- (High) is applied after the time defined by " 11 " for the time defined by +2

Setting $\mathrm{tl}=0 \mathrm{~ms}, \mathrm{t} 2>0 \mathrm{~ms}$

Setting $\mathrm{fl}>0 \mathrm{~ms}, \mathrm{t} 2>0 \mathrm{~ms}$

Input

Output

Figure 5.36: Impulse

Plausibility

During the input/parameterization of the logic functions they are checked for their plausibility. The following has to be strictly observed:

- There must be no empty elements between the input elements.
- An equation is considered plausible when all elements used are entered completely and there are no blanks

If there is an infraction of the plausibility then the setting data is rejected.
Example 1: Plausibility check OK

Figure 5.37: Plausibility OK

Example 2: Implausible data - There are blanks between the elements

Figure 5.38: Plausibility Blanks

Example 3: Implausible data - Incomplete logic equation

Figure 5.39: Plausibility - Incomplete Logic Equation

Any implausible data is rejected by the CSP2.

Figure 5.40: Message About Plausibility Error

Test/Status Information

The initial status of the logic can be viewed over the CMP. The »STATUS« menu includes three submenus : »Digital Inputs«, »Relays« and »Logic«.

Figure 5.41: CMP Status Menu

The present status "active/inactive" of each logic output of a logic function can be viewed in the menu »LOGIC«. The input function allocated to the specific logic output is also displayed.

Figure 5.42: CMP Status Of the Logic Outputs

5.7.2 Protection parameter (protection parameter sets)

By the protection parameters all settings are considered:

- for protection functions available for the specific CSP2 type.

Note

For saving of changed protection parameters it is not necessary to reboot the system! After about 3 s the changed parameters are taken over by the CSP2 (saved).

The CSP2 has 4 protection parameter sets. Each protection parameter set contains the complete number of protection functions for the type of device in question.
All the protection functions work according to the parameters set in the active protective parameter set. If needed, a switch-over to a different protection parameter set is possible. In this way, four different protection sets can be saved in the memory of the CSP2.
Each protection parameter set can be modificated in the background without influencing the running protection and control functions. A modificated parameter set, even if only one single parameter has been altered, only becomes active when the alteration of the parameter set has been confirmed (saved) at the end of the processing.

Further down the protection functions and their operating principle are explained and there are terms used like "active", "inactive", "effective"and "ineffective". We would like to explain those terms in detail to ensure a proper understanding.

Each stage of a protection function can be put into function by setting the parameter "Function" to "active"! This guarantees that in the event of a fault the protection stage recognizes an activation, i.e. it is effective, provided that, of course, all necessary requirements for the protection functions are met. One of these requirements for the effectiveness of protection functions would be, for instance, blocking of the entire protection via an active digital input (DI function : "Prot. Block."). This means that although the parameter of e.g. protection function $\Delta>F$ is set to "active", it cannot recognize any activation - so it is "ineffective"!
The frequency protection set to "active" is another example. This protection function can only become "effective", i.e. recognize an activation, as long as the voltage at the measuring inputs does not drop below the adjusted threshold (parameter "U BF" of the frequency protection).

Definition of terms:

- "inactive": Generally this protection function is put out of function. For that purpose the parameter in the protective stage has to be set to "Function = inactive". The protective function cannot recognize any activation!
- "active": Generally this protective function is put into function. For that purpose the parameter in the protective stage(s) has to be set to "Function = active". Whether the protection function is able to recognize an activation depends on its specific requirements.
- "effective": By using the setting "Function = active" of the protection stage the function has firstly to be energized and only then after all essential requirements of the protection function have been met, this function is able to recognize an activation, i.e. it is "effective".
- "ineffective": At first this protective function is put into function by the setting "Function = active" of the protection stage. The protection function, however, cannot recognize any activation because it is either blocked (by, for instant, an active digital input with DI function "Prot. Block.") or, perhaps, another applying requirement is not met (e.g. lacking measuring quantities).

Blocking of the protection via digital input (DI function "Prot. Block. ")
Via the active digital input "Prot. Block". only those protective stages are blocked which parameters "ex Block." are set to "active" !

Important

It is essential that activation of a temporarily protection blocking is displayed on the CMP1. For this the output function "Prot. Active" has to be assigned to a LED (LED "green" = activated protection and "red" = "blocked" protection).
When this output function is allocated it has to be considered that with an assigned input (protection) function, as for instance, "Trip. Prot 1", the output function "Protect.active" is still activated, dispite the activated digital input "Prot. Block.".

5.7.2.1 (Protection-) parameter set switch-over and trigger acknowledgement

Description

For applications in which the protection parameters must be adapted to temporarily amended operational conditions by active protection functions, up to four protection parameter sets can be parameterized and switched over to the active parameter set if need be.

The protection parameter set switch-over can be done in three different ways (see Figure 1.9):

- Local switching over via the CMP1 in MODE 2,
- Remote switching over via a digital input (DI function: „P-Set Sw. Over") in MODE 3 or via
- Remote switching over via a data telegram of the SCADA-system in MODE 3 or
- By using the SL-SOFT.

Figure 5. Possibilities of switching over the protection parameter set

Parameters

"Active Set"

This parameter displays the number of the currently active protection parameter set (1, 2, 3 or 4). It is further used for protective parameter set switch-over via the CMP 1. However, the selting of the parameter "Paraswitch = allowed" must be selected and saved beforehand.

Note

The number shown in the display of the CMP1 for the current protection parameter set is only updated after the switch-over of the protection parameter set when the page is called up in again (this can be carried out by scrolling backwards and forwards). On the other hand, the CSP2 is already working with the new parameter set!

"Paraswitch"

This parameter stipulates whether a switch-over of the protection parameter sets is to be made possible or not. In addition, a separation of the way in which the switch-over of the protection parameter sets is to take place can be done.
Settings:
"not allowed": a switch-over of the protection parameter set is not possible!
"allowed": In this setting, a switch-over of the protection parameter set via

- The CMPI key switch: ("local/parameter setting") MODE 2 or via
- SCADA is possible (CMP key switch: "Remote operation"): MODE 3.
"via DI": A switch-over of the protection parameter set is only possible via a digital input placed with the
"Switch p-set" input function (prerequisite: CMP key switch "Remote operation").
A manual switch-over is not possible in the active status of the digital input.
From the four existing protective parameter sets, two between which switching over is possible depending upon the status of the digital input can be selected.
For this, the respective code number (1 to 4) for the protection parameter sets to be switched over is to be set in the following parameters:
"Dl inactive"
Here, the number of the protection parameter set which is valid (active) with an inactive digital input
"Switch p-set" is entered.

"Dl active"

Here, the code of the protection parameter set which is valid (active) with an active digital input "Switch p-set" is entered.

„trip ack." (Trip acknowledgement)

A trip acknowledgement can be activated via this parameter. If the parameter is parameterized with "trip ack = active", the circuit breaker can only be switched on again after a trip following an acknowledgement via the key "C" on the CMP, the digital input "quit" or via the SCADA.

With the setting "trip ack =inactive" the circuit breaker can be switched on again directly (i.e. without an acknowledgement) after a protection trip.

Parameter sets					Available in CSP2-		
Parameters	Settings	Description	Presetting	Step Range	L	F3	F5
Active Set	„1"	ID number display of active parameter set and input field for switching over via CMP1	„1"	1	-	\bullet	-
	„2"						
	„3"						
	"4"						
Paraswitch	"Not Permitted"	No switch-over action possible	"Not Permitted"	-	\bullet	\bullet	\bullet
	"Not Permitted"	Switching over: Possible viaCMP1 or control system					
	„Via DI"	Switching over: Possible via digital input only (Dl-function "Switch. Over P-Set")					
DI inactive	„1"	"Protect. Parameter Set 1" is active, if DI is inactive	„1"	1	-	\bullet	-
	„2"	"Protect. Parameter Set 2" is active, if DI is inactive					
	${ }_{13 \prime}{ }^{\prime \prime}$	"Protect. Parameter Set 3" is active, if DI is inactive					
	"4"	"Protect. Parameter Set 4" is active, if DI is inactive					
DI active	„1"	"Protect. Parameter Set 1" is active, if Dl is active	"2"	1	\bullet	-	\bullet
	"2"	"Protect. Parameter Set 2 " is active, if DI is active					
	„3"	"Protect. Parameter Set 3" is active, if Dl is active					
	"4"	"Protect. Parameter Set 4" is active, if DI is active					
Trip ack.	"active"	A protection trip has to be reset either via button "C" at the CMP, the DI "Reset" or via SCADA before the CB can be reconnected	„inactive"	-	-	\bullet	-
	„inactive"	After a protection trip the CB can be re connected without reset					

Table 5.33: Switching over of parameter sets and trip acknowledge

5.7.2.2 Phase current differential protection Id>

Description

The phase current differential protection function $|d\rangle$ is used for a selectively and quick disconnection of faulty cables and overhead lines. The protection principle "Phase Current Differential Protection" is based on the balance of the phase currents flowing between the beginning and end of a line.
This protection principle is realized by two CSP2-L systems, communicating via a fibre optic connection and exchanging relevant data (measured values of the detected phase currents at line ends). This data is sent across a pair of fibre optics to the opposite station. The transmission track is continuously supervized and the transmission length of the information blocks is measured. After about 8 ms the CSP2-L of station A receives a new information block of the CSP2-L of station B and vice versa.
Dependent on the CSP2-L device type, the possible range differs between approx. 2 km (CSP2-LI) and approx. 20 km (CSP2-L2).

By comparing the signals of two CSP2-L systems a reliable protection can be achieved, i.e. a line is only being disconnected it is definitely faulty. By this the zone of protection is exactly limited and provides a really fast protection with a min. tripping time of 25 ms .

In some cases it will be necessary to reduce the pick-up sensitivity of the differential protection function. Operational based interference effects, which are considered not to be faults within the zone of protection, can be suppressed by suitable stabilizing measures.

Definition of Terms

Term	Explanation	
Through Current I_{D}	The through current I_{0} represents physically the energy flowing through the object being protected during operation and in the event of failure. I_{0} cannot be measured directly.	
Stabilizing Current $I_{\text {S }}$	The stabilizing current I_{s} is a calculated auxiliary quantity, which detects the energy flowing through the object being protected in a calculatory way and is used as X-component for fixing the operating point in the diagram of the pick-up characteristic (Is: X-axis).	
Differential Current I_{d}	The differential current I_{d} is the current resulting from the on- and off flowing currents measured on both ends of the line. I_{d} is used as Y-component for fixing the operating point in the diagram of the pick-up characteristic ($\\|_{d}$: Y-axis).	
Operational Based Fault Current	The operational based fault current reflects the portion of the measured differential current which is not caused by a fault of the object being protected, but by a systematic faults (e.g. different transformer properties).	
Pick-Up Current ${ }_{\text {I }}$	The pick-up current I_{a} is defined by the course of the pick-up characteristic and is increased temporarily by stabilizing measures due to the dynamic rise of the characteristic.	
Basic Pick-Up Characteristic	The basic pick-up characteristic segregates the operating section from the section the trip has occurred and it is the dependence criteria between pick-up current and stabilizing current. This interdependence can be adjusted.	
Stabilisation	The general term "Stabilization" covers all those measures by which the differential protection is made more resistant to false tripping. Thus "Stabilization" means to lower the activation sensitivity of the protection function without blocking it completely. Stabilization measures have to be taken against systematic faults (parameter settings of the basic pick-up characteristic) and against faults caused by transient processes (temporary dynamic rise of the basic pick-up characteristic). The stabilizing factors $\mathrm{d}[\mathrm{m}]$ and m serve for a temporary rise of the basic pick-up characteristic during transient processes. The quantity for rising the basic pick-up characteristic, which was caused by the transient stabilization factor m, can be reduced via the attenuation factor k.	
Transient Stabilising Factor m	The transient stabilizing factor is the indicator for detection of transients by the transient monitor and is computed by the degree of detected transients.	
Stabilising Factor d[m]	The absolute quantity for rising the basic pick-up characteristic dependent on the transient stabilizing factor m (condition: $\mathrm{m} \neq 0$).	
Attenuation Factor k	Reduction of the relative quantity for rising the basic pick-up characteristic dependent on the transient stabilizing factor m (condition: $\mathrm{m}>0$).	
Sensitivity	Ability of a protection facility to react on relatively insignificant disturbances (protective activation).	

Table 5.34: Definition of Terms Regarding Phase Current Differential Protection Id

Principle of the phase current differential protection

Electrical items to be protected as, for instance, cable and overhead lines, are classed as passive quadripoles. The energy conducted through the object to be protected is very significant when considering the discrimination balance between operational based faults and actual faults. When viewing the power balance of passive quadripoles (quadripole theory for an analysis of the transmission behaviour of linear networks), reduction of a (phase) current balance in relation to the impressed mains voltage is feasible.

The protection principle Phase Current Differential Protection is founded on the selective phase comparison between the measured phase currents $\underline{L I} I_{A^{\prime}} \leq L L_{A^{\prime}} I L 3_{A}$ at the beginning of line (Index "A") and the measured phase currents $\underline{I} L I_{B^{\prime}}$ $\underline{L} L 2_{B^{\prime}} I L 3_{B}$ at the end of the line (Index " $B^{\prime \prime}$).
Here the measuring values measured at one ride (CSP2-L at the beginning of the line) are sent across fibre optics to the opposite ride (CSP2-L at the end of the line) as reference information (signal comparison) and will there be compared with the isochronously acquired measuring values - and vice versa.

Figure 5.43: Protection principle of the current differential protection system illustrated by the example of a two-sided fed line

Comparison is carried out by measuring the phase current difference between the criteria

- Absolute value and
- Phase angle

The outcome of the analysis is the calculation of a stabilizing current I_{s} and of a respective differential current I_{d} which form an operating point in the basic pick-up characteristic diagram (separating the operating range from the tripping range) (X-axis: stabilizing current, Y-axis : differential current). A pick-up current value I_{a} is related to each stabilizing current I_{s}; the pick-up current value is defined by the course of the basic pick-up characteristic.

Note

The pick-up characteristic and its purpose is explained in detail later on in this chapter (under stabilizing measures).

When referring to operational based faults it is assumed that nearly all the energy (or phase current) fed at the beginning of the line - minus the minor electric losses caused by systematic faults - "flows off" at the end of the line. The energy flowing through is physically represented by the bias current I_{D}.
In case of an actual fault only some of the high level (fault-) energy (or short-circuit current I_{k}) flows to the end of the line, most of it flows to the point where the fault occurred within the zone of protection. Compared to normal operation, the bias current I_{D} is then far smaller or even zero, in case of a fault within the protection zone.

In both cases the bias current I_{D} represents merely the physical value of the energy flowing through the protected object and thus I_{D} cannot be measured directly. For the pick-up characteristic, however, an auxiliary quantity is needed by which the through flowing energy (current) is calculated and so contributes to an exact definition of the operating point in the characteristic diagram (X-axis). This auxiliary quantity is known as stabilising current I_{s}.

Algorithm for calculating the protective criterion "Differential Current I ${ }_{d}$ "
According to the calculation of the differential current I_{d} and the stabilizing current I_{s} from the fundamental harmonic of the phase currents at both line ends an operating point in the characteristic diagram is formed. If this operating point is within the tripping range (fault), the differential current element Id> picks-up. In case the operating point is within the operating range (normal operation), the protection system is not activated.
Calculation of the differential current I_{d} and the stabilizing current I_{s} is different for the two cases!
$1^{\text {t }}$ case: Normal operation (faultless state or faults occurred outside the protection zone): $-90^{\circ}<\alpha<90^{\circ}$ Because of the systematic faults, the current vectors I_{A} and I_{B} at both line ends deviate only little with regard to their phase position and their values lphase angle difference between the phase currents I_{A} and I_{B} at the line ends). In physical respect this means a high bias current I_{D}. The stabilising current I_{s}, i.e. the calculatory equivalent of the bias current, is calculated according to the following formula:
$\Rightarrow I_{S}=\sqrt{I_{A} \times I_{B}} \times \cos (\alpha)$
In case where the phase current values differ considerably, the stabilising current I_{S} is limited to the smaller value of the two currents \underline{I}_{A} bzw. $I_{B}: I_{S} \leq \operatorname{Min}\left[\left|\underline{I}_{A}\right|,\left|\underline{I}_{B}\right|\right]$

For an operational based fault the differential current can be detected by using the approximation $\left|L_{-1}\right| \approx I_{d}$, so that the scalar subtraction of the phase currents I_{A} and I_{B} is sufficient for calculation of the differential current. |Approximation with $\left|I_{d}\right|=$ value of the geometric subtraction of the phase currents I_{A} und I_{B},
\Rightarrow Calculation of the differential current $I_{\mathrm{d}}: \quad \quad I_{\mathrm{d}}=\left|\left|I_{-A}\right|-\left|\left.\right|_{-B}\right|\right|$

Figure 5.44 Operational based fault: scalar subtraction of the phase currents
$2^{\text {nd }}$ case: \quad Actual fault (fault within the protection zone) : - $90^{\circ}<\alpha<90^{\circ}$
If a fault occurs within an object to be protected there are considerable deviations of the phase angle and in some cases of the values of phase currents Λ_{A} and I_{B} at the line ends. That means if such large deviations of the phase currents are detected by measuring and comparing the phase currents, it can be concluded that the bias current I_{D} is only low. The stabilizing current I_{S} can be set to zero.
\Rightarrow Evaluation of the stabilizing current $I_{s}: \quad I_{s}:=0$
As to detection of the differential current I_{d} here it is not possible to compute according to the approximation applying for an operational based fault, a geometric substraction of the phase currents I_{A} and I_{B} has to be used for calculation instead.
\Rightarrow Calculation of the differential current I_{d} :

Figure 5.45: Actual fault: geometric substraction of the phase currents

The formulas shown above are based on the 50 or 60 Hz vectors of the Fourier analysis. Signs "A" and "B" at both line ends indicate the protection devices CSP2-L. The trip function is triggered as soon as a pick-up current I_{a}, defined by the trip characteristic, (range above the basic pick-up characteristic), is exceeded by the differential current I_{d} of the related stabilizing current I_{s}.

Stabilizing

In order to secure a max. selectivity, i.e. to prevent false tripping in case of normal operation, the differential protection has to be stabilized against

- Systematic faults and against
- Faults caused by transient processes (CT saturation, line circuit closings)

Measurement of the differential current is falsified by these faults, meaning that at times a considerable differential current is measured at the secondary side which does not exist at the primary side.
Stabilization against systematic faults is realized by appropriate adjustment of the static characteristic.
Stabilization against transient processes is achieved by a temporary dynamic rise of the static characteristic.

Important

By stabilization measures the CSP2-L is always made insensitive against nuisance protection trippings!

Stabilization against systematic faults

In practice and even at normal operation, systematic faults can lead to fault currents (differential current I_{d}). Such a fault current is measured as differential current l_{d}, although a line fault has not occurred.
Systematic faults are the result of interferences like

- errors of angle and value caused by the CTs used as well
- poor adaptation of the nominal CT values to the operating currents of the lines
and the pick-up current $I_{\text {a }}$ of such fauls has to be duly considered. Thus the quantity of the resulting fault current depends on operational conditions and basically on the bias current I_{0}.

A thorough study of the individual interferences and their effects as fault current is represented in the typical tripping characteristic (real fault current characteristic). In the diagram (s. fig. 5.27) the real fault current (differential current I_{d} I to be expected is shown above the stabilizing current I_{s}. With an increasing bias current I_{0} (and consequently increase of the stabilizing current I_{s}) the influence of systematic faults is becoming higher.

Figure 5.46: Typical pick-up characteristic in comparison to a physical caused primary fault current line

When a fault occurs within the protective zone, the measured differential current I_{d} accumulates beyond the operational caused fault current. Therefore the tripping characteristic has to be above the real fault current characteristic by the ratio of the desired sensitivity. This course of the tripping characteristic can be approximated by a simplified characteristic constisting of two linear sections (I and III.
The higher the tripping curve is adjusted, the higher the permissible differential current I_{d}, whereas a low adjusted characteristic means highest sensitivity. If the values set in the tripping curve lie below the real fault current characteristic, then the systematic faults stated before can cause false trippings.

The static tripping curve of the differential current protection function in the CSP2-L defines the relative segregation between tripping range and operating range and is represented by two lined-up straight-line sections with different gradients.

The initial point and end point of the straight-line sections are defined by setting parameters:

- $I_{\alpha}\left[I_{s 0}\right]$: defines the tripping current I_{a} for a stabilizing current of $I_{S}=0$
- $I d\left[I_{s 1}\right]$: defines the tripping current I_{a} for a stabilizing current of $I_{S}=2 \times \ln$ and
- $I_{d}\left[I_{52}\right]$: defines the tripping current I_{a} for a stabilizing current of $I_{S}=10 \times \ln$

Figure 5.47: Basic pick-up characteristic

If the tripping current I_{a} would be set very sensitively, nuisance tripping could be caused by merely systematic interferences. Hence with increasing bias current I_{D} the tripping current I_{a} has to be changed to a higher value. This correction is realized by adjusting the static tripping characteristic above the $l_{d}\left[I_{s 0}\right] ; I_{d}\left[I_{s_{1}}\right] ; I_{d}\left[I_{s 2}\right]$ parameters which determine the gradients in the characteristic sections (see Fig. 5.27).

Stabilisation against transient processes

The two straight lines/gradient sections (I and III) are to be considered as an interpolation for static states. In reality, however, the differential current can be increased by certain transient effects without a fault having occurred within the protection zone. Consequently it is necessary to employ stabilising measures also against transient behaviour which may lead to false tripping. By these stabilizing measures the differential protection function in the CSP2-L is not blocked but merely de-sensitized in correlation with the detected events. At higher current faults, however, the protection function always leads to tripping.

Detection of transients by the transient monitor
The transient monitor of the CSP2-L monitors the line to be protected and the CT circuits for transient behaviour of the phase currents. This transient behaviour can be evoked by

- Charging processes when voltage is switched on and
- Saturation of the CT

The procedure for detection of transients is as follows: In the real course of the phase currents $\operatorname{IL} \mathrm{I}^{\prime}, \underline{I} L 2^{\prime}, \underline{I} L 3^{\prime}$ measured at the secondary side, the max. gradient factor $\Delta i / \Delta t$ is defined within a half-wave and its peak value (phase current amplitude) $i_{\text {max }}$ is measured. For detection of the transient both quantities are put into relation and are then evaluated. For an all sinusoidal phase current the ratio from max. gradient factor to phase current amplitude of the half-wave is $={ }^{\prime \prime} 1$ ".

For the example shown in Fig.5.28 then applies: $\frac{|-\Delta i / \Delta t|_{\max }}{i_{\max }}=1\left[\frac{1}{s}\right]$.
The chronological course of the phase current is distorted by its higher-frequent components, caused by transient processes (e.g. circuit-closing). Consequently there is a higher value for the max. gradient factor in a half-wave than for a relevant all sinusoidal basic harmonic with identical amplitude.

For the example shown in Fig. 5.28 then applies: $\frac{|-\Delta i / \Delta t|_{\max }}{i_{\max }}>1\left[\frac{1}{s}\right]$.

Figure 5.48: Example: Detection of CT saturation by the transient monitor

Note

The change of signs, caused by negative half-waves, is considered for the transient evaluation by a corresponding correction.

For evaluation of the criterion gradient factor $\Delta i / \Delta t$ an auxiliary quantity $m_{\text {lcal }}$ is ascertained by the local CSP2-L lat the beginning and end of the line), which is in proportion to the ratio of the max. gradient factor to the phase current amplitude of the half-wave

For the example shown in Fig. 5.28 then applies: $m_{\text {local }} \sim \frac{|-\Delta i / \Delta t|_{\max }}{\mathrm{i}_{\max }}$
and, dependent on the transient prosesses, may take on different values.
Based on the ascertained ratio of the gradient factor $\Delta i / \Delta t$ to the phase current amplitude of the half-wave a relevant value is calculated for $m_{\text {lcoal }}$.

For the example shown in Fig. 5.28 the result for an all sinusoidal phase current is
$\left|-\frac{\Delta i}{\Delta t}\right|_{\text {max }}[s] \leq i_{\text {max }} \Rightarrow m_{\text {local }}=0$!
For the example shown in Fig. 5.28 the result for a phase current with higherfrequent quantities is

$$
\left|-\frac{\Delta i}{\Delta t}\right|_{\max }[s]>i_{\max } \Rightarrow m_{\text {local }}>0!
$$

Equivalent to the phase currents the locally ascertained values for the auxiliary quantities $m_{\text {lcoal } A}$ und $m_{\text {lcoal } B}$ are transmitted across fibre optic conductors to the opposite station. The transient stabilizing factor m is calculated as follows by differential formation of the ascertained auxiliary quantities $m_{l \text { load } A}$ and $m_{l \text { lcal } B}$ at the line ends (A and B):

$$
m=\left|m_{\text {local } A}-m_{\text {local } B}\right|
$$

Note

The transient stabilizing factor m is the indicator for detection of transients and is a calculated quantity! The value of the transient stabilizing factor m is entered into the calculation algorithm for the dynamic increase of the static tripping characteristic, by which the sensitivity of the differential protection function is reduced temporarily.

By transmission of the local values of the auxiliary quantities $m_{l \text { loal } A}$ and $m_{\text {leal } B}$ the transient stabilising factor is separately calculated in both of the two CSP2-L devices. The dynamic rise of the characteristic is then based on the respective result.

For: $m \neq 0 \Rightarrow$ temporary dynamic rise of the static tripping characteristic!

Dynamic rise of the static tripping characteristic by means of stabilizing factors (transient characteristic)
In order to prevent false tripping caused by transient processes, there are two adjustable stabilizing factors provided in the CSP2-L. By these factors the tripping characteristic is temporarily risen dynamically when a transient process is detected so that the operational range is extended. The stabilizing factors concerned are the transient stabilizing facfor m, and the stabilizing factor $d(m)$, a factor dependent on m :

- $\quad d[m]$ absolute rise of the static tripping characteristic for $m \neq 0$ by the value set for $d(m)$ but independent on the value ascertained for m.
- m : relative rise of the static tripping characteristic for $m>0$ by the value calculated for $m(m$ is a calculated value if is not adjustable).

To enable fine adjustment during the stabilizing procedure against transient processes, the CSP2-L is provided with an adjustable attenuation factor k in order to reduce the rise of the static tripping characteristic, caused by the transient stabilizing factor m.

- \quad : In addition to the shift of the tripping characteristic by the fixed factor $d[\mathrm{~m}$] (in case of a calculated $m>0$) the tripping characteristic can be additionally shifted (dynamically) by way of the factor k. If k is set to 0 , this dynamic increase is deactivated. If k is set to 1 the increase is maximum (please refer to fig. 5.30)

Hence if a transient process is detected ($\mathrm{m}>0$), it is switched over to the transient characteristic by the CSP2-L, i.e. the static tripping characteristic is shifted in direction higher trip values in correlation with the intensity of the transient processes which falsify the measurement.
First of all the static tripping characteristic $=f(\mid d[\mid s 0] ; I d[\mid s 1] ; I d[l s 2])$ is shiffing by the absolute value adjusted by $\mathrm{d}(\mathrm{m})$: Characteristic $=f\left(I d\left[[\mid s 0]^{\prime} ; \operatorname{ld}[\mid \mathrm{s} 1]^{\prime} ; \operatorname{ld}[\mid s 2]^{\prime}\right)\right.$. Dependent on the calculated value of the transient stabilizing factor m and adjustment of the shifting factor $k(0<k<1)$, the characteristic will be further shifted: Characteristic $=f\left(1 d d[1 s 0]^{\prime \prime}\right.$; $\mathrm{ld}[\mid \mathrm{s} 1]^{\prime \prime} ; \operatorname{ld}[\mathrm{ls} 2]^{\prime \prime} \mid$. This additional shifting is proportional to $k \times m$!

Figure 5.49: Dynamisc accentuation of the basic characteristic

Important

- Parameter setting „ $k=l^{\prime \prime}$: here the characteristic is shifted by the calculated value of the transient stabilizing factor m !
- Parameter setting „ $k=0$ ": here the characteristic is only shifted by the value of $\mathrm{d}[\mathrm{m}]$! There is no additional shifting according to the calculated value of m !
- Parameter settings "d[m]= $0^{\prime \prime}$ and „ $k=0^{\prime \prime}$: the resulting static tripping characteristic is a "static" one. The static basic characteristic is used, for instance, to realize a very sensitive protection function for very short lines and very high rated CTs.

Note

Shifting of the static tripping characteristic by the stabilizing factor is only temporary, i.e. if the transient stabilizing factor drops to value $m=0$, then the transient characteristic changes back to the static tripping characteristic.
In the event of line circuit closing when the static tripping characteristic is also temporary dynamically shifted, the absolute shifting portion is maintained for 120 ms (recommended value for a charging current period) by means of the stabilizing factor $d(m)$. The relative shifting portion by the transient stabilizing factor m is not considered here.

Unstabilized high set differential current protection Idiff>>

Irrespectively of the set static tripping characteristic and stabilizing factors $\mathrm{d}(\mathrm{m})$ and m , a pick-up value for a max. differential current Idiff>> can be adjusted and results in undelayed tripping when exceeded. This protection stage is referred to as high-current differential stage Idiff>> and only trips upon faults within the protection zone.

Figure 5.50: Unstabilised high current differential step Idiff>>

Parameters

"Function"

The differential protection function is generally activated with the setting "Function = Active". But this differential current protection function can only become active if it is not blocked.
"ex Block"
If the protective parameter "ex Block = Active" is set and this digital input is activated, the differential current protection function is blocked.
"tripbloc" (Blocking the circuit breaker (CB) OFF command)
Here only the OFF command for the CB is blocked. The signals "Trip XY" and "General Trip" are, however, generated after the tripping delay time has elapsed. These messages are available as output messages for LED indication, for processing via signal relay or as signals (data points) for communication with the control system.
"Id(IsO)", "Id(Is 7$)^{\prime \prime}$ and "Id(Is2)" (Parameters for definition of the static tripping characteristic)
As to the differential current protection function the static tripping characteristic is defined by three points:
" $I d(I S O)^{\prime \prime}$: this parameter defines the pick-up value for the differential current Id if the stabilising current is zero: " $I_{S}=O^{\prime \prime}$ linitial point of the first straight line section of the static tripping characteristic).
" $|d||s\rangle)^{\prime}$ ": this parameter defines the pick-up value for the differential current Id if the stabilising current is twice the rated current: " $I_{S}=2 \times \ln$ " (break point of the basick pick-up characteristic).
"Id(ls2)": this parameter defines the pick-up value for the differential current ld if the stabilising current is ten times the rated current: " $I_{S}=10 \times \ln$ " (second point for defining the second straight line section of the basic pick-up characteristic).
"d(m)" (stabilizing factor)
When transient processes, such as CT saturation or external fault are detected, the static tripping characteristic is risen by factor $d(m)$ for stabilizing purposes.
" k " (attenuation factor for dynamic rise of the static tripping characteristic by the transient stabilizing factor m) The portion of the dynamic rise, evoked by the transient stabilizing factor m, is reduced by the adjustable shifting factor k. This way it is possible to adjust a rise of the characteristic more precise.

"AR Id>" (automatic reclosing)

Function "Automatic Reclosing" can be activated by the differential protection stage Id> after a protective trip. The relevant setting is " $A R=$ Active". In standard setting " $A R=$ Inactive" there is no automatic reclosing after a protective trip has occurred.
"Idiff>>" (unstabilized set high differential current stage)
When this pick-up threshold for the differential current is exceeded, an undelayed, instantaneous tripping is activated, which is independent on the stabilizing function.
"AR Id>>" (automatic reclosing)
Function "Automatic Reclosing" can be activated by the high set differential current stage Idiff>> after a protection trip. The relevant setting is "AR = Active". In standard setting " $A R=$ Inactive" there is no automatic reclosing after a protection trip has occurred.
"Confirm.." (fault acknowledgement by the partner device)
There is the option of two different tripping modes.
Adjustments:
"active": The trip command to the local CB is only released after the fault has been acknowledged by the partner device.
"inactive":The trip command to the local CB is released immediately and sent to the opposite station
"l>> back" (automatic activation of the back-up protection)
In cases where the SCl communication with the partner device fails (disruption of the fibre optic connection or failure of the opposite station), the short-circuit protection function l>> can be activated automatically as back-up protection. The relevant setting for an automatic activation of the back-up protection is "l>> back = Active". In the event of an automatic activation, the two protection stages $\mid \gg F$ and $l \gg B$ are activated, no matter how their parameter "Function" is adjusted. In such a case and if the communication with the opposite station is disrupted, the protection stages $1 \gg F$ and $1 \gg B$ function as back-up protection. If the parameters "Function" of the short circuit protection stages $l \gg F$ and $l \gg B$ are set to "Active", then these protection stages are always active, irrespectively of the differential protection.

Note

If the "Automatic Activation of the Back-up protection" is set to "Active", (I>> Back-up = active"), the parameter settings for the back-up protection function $\mid \gg$ have to be co-ordinated with the electrical items to be protected so that false tripping can be prevented in case the $l \gg$ stages are activated automatically.
"I> back" (automatic activation of the back-up protection)
In cases where the FO communication to the partner device fails (disruption of the fibre optic connection or failure of the opposite station), the overcurrent protection function l> can be activated automatically as back-up protection. The relevant setting for an automatic activation of the back-up protection is "l>Back-Up = Active". In the event of an automatic activation, the two protection stages $\mid>F$ and $l>B$ are activated no matter how their parameter "Function" is adjusted. In such a case and if the communication with the partner device is disrupted, the protection stages $1>F$ and $I>B$ function as back-up protection. If the parameters "Function" of the overcurrent protection stages $\mid>F$ and $I>B$ settings within the Idiff menu are set to "Active", then these protection stages are always active, irrespectively of the differential protection.

Note

If the "Automatic Activation of the Back-up protection" is set to "Active", (1> back = active"), the parameter settings for the back-up protection function $I>$ have to be co-ordinated with the electrical item to be protected so that false tripping can be prevented in case the $l>$ stages are activated automatically.

Phase Current Differential Protection						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Pre-Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	Differential protection function is activated	„inactive"			\bullet	-	-
	„inactive"	Differential protection function is de-activated						
ex Block.	"active"	Differential protection function is ineffective when the DI "Protect. Block." is active	„inactive"	-		-	-	-
	„inactive"	Differential protection function is effective irrespectively DI „Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is blocked	"inactive"	-		-	-	-
	„inactive"	OFF command to the local $C B$ is issued						
Id(IsO)	$0.1 \ldots 1 \times \ln$	Starting point of the static tripping characteristic when $\mathrm{l}=0$	$0.0 \times \mathrm{ln}$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or 1\% I_{N}	\bullet	-	-
$\mathrm{ld}(1 \mathrm{~s}$] $)$	$0.2 \ldots 2 \times \ln$	Breaking point of the static tripping characteristic when $\mathrm{Is}=2 \times \ln$	$0.0 \times \ln$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or 1\% I_{N}	\bullet	-	-
Id(Is2)	$2.0 \ldots 8 \times \ln$	Value of the static tripping characteristic when $\mathrm{Is}=$ $10 \times \ln$	$2.0 \times \mathrm{ln}$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or 1\% I_{N}	\bullet	-	-
$d(m)$	$0 \ldots 8 \times \ln$	Stabilizing factor for rise of the static tripping characteristic; only at $\mathrm{m} \neq \mathrm{O}$!	$0.0 \times \ln$	$0.001 \times \ln$		\bullet	-	-
k	0... 1	Shifting factor for reducing the relative transient characteristic rise; only at $\mathrm{m}>0$!	0.0	0.001		\bullet	-	-
AR Id>	"active"	Trip of the ld> stage starts an AR	"inactive"	-		-	-	-
	„inactive"	Trip of the ld> stage cannot start an AR						
Idiff>>	$2.0 \ldots 30 \times \ln$	Unstabilized high current differential stage : Pick-up value of the differential current with reference to the rated current	$2.0 \times \ln$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or 1\% I_{N}	\bullet	-	-
AR Id>>	"active"	Trip of the ld \ggg stage starts an AR	„inactive"	-		\bullet	-	-
	„inactive"	Trip of the Id>> stage cannot start an AR						
confirm	"active"	Tripping only occurs if the fault was also detected and acknowledged by the protect. device of the partner device (other end of the line)	"active"	-		\bullet	-	-
	„inactive"	Tripping occurs without fault acknowledgement by the partner device						
1>back-up	"active"	When communication with the partner device is disrupted: Auto. activation of protect. function $\mid>$ as back-up protection (both stages: $\mid>F$ and $\mid>B$, irrespectively of setting of their "Function'" parameter		-		-	-	-
	„inactive"	When communication with the partner device is disrupted: No auto. activation of the back-up protection l>>	„inactive"					
I>>back-up	"active"	When communication with the partner device is disrupted: Auto. activation of the protect. function l>> as back-up protection (both stages: l>>F and $l \gg B$, irrespectively of the setting of their "Function" parameter		-		\bullet	-	-
	„inactive"	When communication with the partner device is disrupted: No auto. activation of the back-up protection l>>	„inactive"					

Table 5.35: Phase current differential protection Id

5.7.2.3 Phase time overcurrent protection $1>, 1 \gg$, $1 \ggg$

Description

The time phase overcurrent protection in CSP2 is split up into the following three phase current protection functions:

- Over current protection $1>$
- Short-circuit protection l>>
- High set short-circuit protection l>>>

The following table gives an overview of the number of protection stages of the protection functions available depending upon the type of device (CSP2-F or CSP2-LI), the possibility of parameterizable direction decisions for the tripping of the circuit breaker as well as the available tripping characteristics:

Time Overcurrent Protection Functions				Available in CSP2-		
Protective Function	Protect. Step	Directional Criterion for Tripping	Trip Characteristic	L	F3	F5
Overcurrent Protection I>	$1>F$	Forward or non-directional	DEFT/INV	\bullet	\bullet	\bullet
	$1>B$	Backward or non-directional				
Short-Circuit Protection I>>	$1 \gg$ F	Forward or non-directional	DEFT	\bullet	\bullet	\bullet
	$1 \gg B$	Backward or non-directional				
High set Short-Circuit Protect. l>>>	$1 \ggg$ F	Forward or non-directional	DEFT		\bullet	\bullet
	1>>>B	Backward or non-directional				

Table 5.36: Overview, phase time overcurrent protection functions

Parameters

In the parameter setting of the time overcurrent protection a large possibility of variation of the setting parameters results. After the selection of the tripping characteristic and determination of the direction, only the relevant parameters appear in the display.

Characteristic angle "MTA" ("Maximum Torque Angle") for directed time overcurrent protection
With this entry, the angle between phase current and reference voltage, which corresponds to the normal forward direction, can be set. Regardless of the connection of the voltage transformer, the CSP2-F always uses the following reference variables to determine the direction of energy flow:

	Reference Quantities
Phase Current	Reference Voltage for Directional Determination
ILI	U23 (Line-to-line voltage between phase L2 and phase L3)
IL2	U31 (Line-to-line voltage between phase L3 and phase L1)
IL3	U 2 (Line-to-line voltage between phase L1 and phase L2)

Table 5.37: Reference voltages for directional determination

These reference voltages ensure a clear detection of direction on the basis of the faulless voltages in a singlephased short circuit.

Note

If the fault is close to the measurement point, the reference voltage can collapse and a direction decision is thus no longer possible. In this case, the CSP2 has recourse to the last measured value of the corresponding reference voltages, which is available for 10 s .

If the measured angle deviates from the set characteristic angle by more than $\pm 90^{\circ}$, the protection detects a reverse direction. For each of the three protective functions, a separate angle can be set.

Figure 5.51: Characteristic angle MTA

"Function"

With the setting "Function = active" the corresponding level of the time overcurrent protection functions is generally set into function. The protection stage can however only be effective if it is not blocked.

"ex block"

This parameter can only become effective in connection with a digital input onto which the input function "Prot. blocked" has been assigned. With an active status of this digital input, the levels of the protective functions which are set to "ex block = active" are blocked!
"tripbloc" (blockage of the OFF command for the circuit breaker)
Only the switch-off command to the circuit breaker is blocked. After the expiry of the tripping delay time, a "Trip:XY" message and the message "General trip" are nevertheless generated and are available for the communication to the SCADA as output messages of the LED display, the further processing via signal relays or as reports (data points). The trip blockage can, for example, be used for detection of direction without a trip command to the circuit breaker (only display).

"rev lock" (backward locking)

Each element can be temporarily blocked from external via a joint digital input (DI) with the assigned input function "rev lock«. That is to say, as long as the digital input is active, all the protection stages with parameters set to "rev lock = active" are blocked (ineffective).
"Direction" (direction decision: with/without)
With this parameter the direction decision for a protection tripping can be activated separately for each level in the event of a fault.
Settings:
"active": The protective stages marked with the index "F" only trip in a forward direction!
The protective stages marked with the index "B" only trip in a backward direction!
"inactive":The protection stages are tripping without directional feature (undirected protection)

Note

If all six parameters "direct." are set to »inactive«, the CSP2-F has six time overcurrent stages independent of one another without a directional feature.
"char X" (tripping characteristic)
For the protective functions of the time overcurrent protection the following tripping characteristics are available (classification to BS 142/ DIN EN 60255-3):

DEFT (Definite Time Characteristic): available for all stages of time overcurrent protection $|>F,|>B,|\gg F,| \gg B$, $1 \ggg F$ and $1 \ggg B$

- "DEFT": current-independent tripping delay after a defined time.

Figure 5.52: Independent tripping characteristic (DEFT)

INV (Inverse Time Characteristic): only available for time overcurrent protection $1>F$ and $\mid>B$
For current-dependent tripping delay (INV) the CSP2 calculates the tripping time in the normed inverse tripping characteristics as a function of the amount of overcurrent.

- "NINV": Normal Inverse (Type A)
- "VINV": Very Inverse (Type B)
- "EINV": Extremely Inverse (Type C)
- "LINV": Long Time Inverse (Type D)

Figure 5.53: Normal inverse (NINV)

Figure 5.55: Extremly Inverse (EINV)

Figure 5.54: Very Inverse (VINV)

Figure 5.56: Long Time Inverse (LINV)

The protection can be adapted to the specific mains conditions and applications with these characteristics. The adjustable tripping delay (e.g. " $\mid>F^{\prime \prime}$) in the DEFT characteristic as well as the characteristic factor (time multiplier, e.g. "t char F") for the INV characteristics can be adjusted in wide ranges with fine pitches.

Phase current threshold of the protection element (e.g. " $\mid>F^{\prime \prime}$ ")
In the current-independent tripping characteristic (DEFT) and also in the current-dependent tripping characteristic (INV) the protection stage stimulates as soon as the measured current exceeds this set value in at least one phase. The tripping delay in the DEFT characteristics depends on the excess of current in the event of a fault. It is calculated by the CSP2 via the characteristic as a function of the amount of overcurrent. The tripping delay in the DEFT characteristic is not based on the amount of the overcurrent, but on an adjustable time, e.g. "t $\mid>$ F".
In protection stages with direction detection and active directional function, the protection only trips if the current flows in the corresponding direction and is larger than the set threshold.

Tripping delay of the protection stage for DEFT characteristic (e.g. " $\mid>F^{\prime \prime}$)
For the tripping characteristic according to the DEFT characteristic, this parameter determines the tripping delay time of the protection stage by a defined time requirement (independent of current).

Characteristic factor - only for INV characteristics (e.g. "t char F")
With the characteristic factor the required characteristic is determined from the group of curves of the INV characteristic (NINV, VINV, EINV or LINV), according to which the current-dependent tripping delay of the protective stage is to be calculated.

Reset time - only for INV characteristics (e.g. "t rst F")
The tripping time calculation always considers the highest of the measured phase currents and is permanently adapted to the current measured current values. That is to say, if the set current threshold is exceeded, a dynamic timer is started for the tripping delay time, the counting speed of which depends on the overcurrent. So that the dynamic tripping time is not restarted every time the current fluctuates around the threshold point ("pecking fault"), a reset time can be set. In this case, the tripping timer is stopped when the current drops below the pick-up value. If it rises above the threshold shortly after, the tripping timer continues with the counter reading recorded. The CSP2 only deletes the tripping timer when the current is lower than the threshold time for longer than the set reset time. With an independent characteristic (INV) no reset time can be set. Here, the tripping time is always reset when the current drops below the threshold in all three phases.
"AR" (Automatic Reclosing)
Each threshold of the time overcurrent protection can activate the "automatic reclosing" after a protection tripping. For this, the setting "AR = active" must be selected. With the default setting "AR = inactive" no AR is carried out after the protective tripping.

"AR-FT" (AR fast trip)

This parameter is used to activate a fast trip of the CB if the AR has been started in the event of a permanent fault, without the set general delay time of the protection stage that gives an alarm (e.g. " $t>F^{\prime \prime}$) being considered.
Settings:
"active": The AR fast trip can become effective. The delay time of the activated protection element is not considered.
„,inactive":The AR fast trip is ineffective. In the event of a permanent fault, the CB is tripped taking the delay time of the activated protection element into account.

Tripping delay of the AR fast trip (e.g. "t $t>F F T^{\prime}$ ")
Via this parameter, a delay time for the AR fast trip can be set separately for each current protection stage.

Note

If a tripping delay time for the $A R$ fast trip "t 1 >FFT" is used, ensure that this setting is selected smaller than the general delay time of the protection stage (e.g. " $t>F^{\prime \prime}$), as otherwise the CB would react according to the general delay, the tripping delay time for the CB conforms to the " $t \gg B \mathrm{IF}^{\prime \prime}$ for the time the AR fast trip is effective, it does not conform to the tripping delay time (e.g. "t $\dagger>F^{\prime \prime}$) of the activating protection stage!

!!! † ا>FFT $\boldsymbol{+}$ I>F!!!

"FT at sh" (temporal position of the AR fast trip)
This parameter determines after how many auto reclosing attempts the fast trip is carried out.
Settings:
" $0^{\prime \prime}$: |Fast trigger after stimulation of an AR-capable protection function
In the event of a fault, the first tripping of the CB is after the set delay time for the AR fast tripping \dagger IDFFT. If the fault still exists during the first automatic reclosing attempt ($1^{\text {th }}$ shot), the CB trippings after the general delay time of the protection stage (e.g. " $t>\nabla^{\prime \prime}$).
„1": (Fast tripping in the first automatic repeat switch-on attempt)
In the event of a fault, the first trigger of the CB is after the general delay time of the protection stage (e.g. "t $\Delta F^{\prime \prime}$). After the expiry of the first break time (e.g. for a phase error: f DPI) there is the first automatic reclosing attempt. If the fault continues to exist, the CB now trippings after the set tripping delay time for the AR fast tripping $t \mid$ DFFT.
"2": (Fast tripping in the second automatic reclosing attempt)
In the event of a fault, the first tripping of the CB is after the general delay time of the protection stage le.g. "t $\Delta F^{\prime \prime}$). After the expiry of the first break time (e.g. for a phase error: \dagger DPI) there is the first automatic reclosing attempt ($1^{\text {ts }}$ shot). If the fault continues to exist, the CB now also trippings affer the general delay time of the protection stage. After the expiry of the second break time (t DP2) there is the second automatic reclosing attempt (2 $2^{\text {nd }}$ shot). If the fault still exists now the CB trips affer the set tripping delay time for the AR fast tripping " $t \mid>F F T^{\prime \prime}$ ".
"3" bis " 6 ": The fast tripping is analogous to setting "2" only at the automatic reclosing attempt (shot)
is carried out after the $3 \ldots 6$ th AR-attempt.
Note
For settings exceeding " 1 ", attention must be paid to the fact that the AR function is accordingly set as "multishot" that means that the number of shots is to be set within the AR-submenu.
For multi-shot $A R$ applications, specific circuit breakers must be used, possessing corresponding energy
stores in order to guarantee the automatic reclosing in a short time!

"SOTF" (Switch On To Fault - fast trip)

This parameter is used to activate a fast trip when switching the CB onto a faulty operating electrical equipment, without the set delay time of the activated protection stage (e.g. " $t>F^{\prime \prime}$) having to be waited for. The following block diagram makes the general way of working of the SOTF function clear:

Figure 5.57: Operating principle of the SOTF-Function

Note

The SOTF fast trip is not to be confused with the AR fast trip! Both functions work independent of one another. Merely the blocking time t rec the AR function has an influence on the function of the SOTF fast trip, as the latter is only to become effective when the CB is switched onto a fault via a controlled command and not via an $A R$! If parameterized, a fast trip during a running $A R$ is controlled via the $A R$ fast trip (see parameter "AR-FT" etc.).

Trip delay time of the SOTF fast trip (e.g. " $\dagger \mid>F S O$ ")
For the SOTF function a separate tripping delay time can also be set.

Attention

When using a trip delay time for the SOTF fast trip " $t \mid>F S O$ " please ensure that this setting is selected shorter than the general delay time (e.g. " $t>F^{\prime \prime}$) of the protection level (e.g. " $t \mid>F^{\prime \prime}$), as otherwise the CB would trip after the general trip delay time of the activated protection stage.

```
!!! tl>FSO < tl>F !!!
```

Overcurrent protection stage: I>F (Forward direction or non-direction)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
MTA	$0^{\circ} \ldots 355^{\circ}$	Typical angle between phase current and reference voltage	45°	$1{ }^{\circ}$	$\pm 3^{\circ}$	\bullet	\bullet	\bullet
Function	"active"	$1>F$ stage is put into function	"active"	-		\bullet	\bullet	\bullet
	"inactive"	$1>F$ stage is put out of function						
ex block	"active"	I>F stage is ineffective when DI „Protect. Block." is active				\bullet	\bullet	\bullet
	„inactive"	\|>F stage is effective irrespectively of the DI „Protect. Block." state.	„inactive"					
trip bloc	"active"	OFF command to the local CB is being blocked	, inactive"			\bullet	\bullet	\bullet
	„inactive"	OfF command to the local CB is being issued						
rev lock	"active"	I>F stage is ineffective when the DI "Backw. Interl." Is active				\bullet	\bullet	\bullet
	„inactive"	IDF stage is effective irrespectively of the DI "Backw. Inter." state "	"inactive"					
direct.	"active"	$\mid>F$ stage trips in forward direction only (directional)	„inactive"			\bullet	\bullet	\bullet
	„inactive"	I>F stage trips in both directions (non-directional)						
char F	"DEFT"	DMT characteristic	"DEFT"			\bullet	\bullet	\bullet
	"NINV"	INV characteristic (normal inverse)						
	"VINV"	INV characteristic (very inverse)						
	„EINV"	INV characteristic (extremely inverse)						
	"LINV"	INV characteristic (long time inverse)						
I>F	$011 \ldots 5 \times \ln$	Pick-up value of the overcurrent related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	$1 \times 1 n$	$0.001 \times \mathrm{ln}$	$\pm 3 \%$ of the adjustment value or 1\% I_{N}	\bullet	\bullet	\bullet
$\dagger 1>F$	$\begin{gathered} 30 \ldots 300000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay; for DEFT characteristics only	1000 ms	1 ms	$\begin{gathered} \text { DEFT } \\ \pm 1 \% \text { or } \pm 20 \\ \mathrm{~ms} \end{gathered}$	\bullet	\bullet	\bullet
t char F	0.052	Characteristic factor; for INV characteristics only	1.0	0.01	$\begin{gathered} \text { NV } \\ \pm 5 \% \text { NINV } \\ \pm 7.5 \% \\ \text { VINV, LINV } \\ \pm 10 \% \text { EINV } \end{gathered}$	\bullet	\bullet	\bullet
\dagger rst F	0... 60000 ms	Reset time for intermittent phase faults; for INV characteristcs only	1000 ms	1 ms	only INV $\pm 1 \%$ of the adjustment value	\bullet	\bullet	\bullet
AR	"active"	By trip of the $1>F$ stage the $A R$ is started		-		\bullet	\bullet	\bullet
	„inactive"	By trip of the $1>\mathrm{F}$ stage the AR cannot be started	„inactive"					
AR-FT	"active"	AR instantaneous trip is put into function				\bullet	\bullet	\bullet
	"inactive"	AR instantaneous trip is put out of function	„inactive"					
† l>FFT	0... 10000 ms	Trip time delay for AR instantaneous trip	0 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet
FT at sh.	"0"	AR instantaneous trip at the first protect. trip via step I>F	"0"	1		\bullet	\bullet	\bullet
	„1"	AR instantaneous trip at the first auto. reconnection attempt after a failure has occurred						
	„2"	AR instantaneous trip at the second auto. reconnection attempt after a failure has occurred						
	„3"	AR instantaneous trip at the third auto. reconnection attempt after a failure has occurred						
	„4"	AR instantaneous trip at the fourth auto. reconnection attempt after a failure has occurred						
	„5"	AR instantaneous trip at the fifth auto. reconnection attempt after a failure has occurred						

	"6"	AR instantaneous trip at the sixth auto. reconnection attempt after a failure has occurred						
SOTF	"active"	SOTF function is put into active state	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
$\dagger 1>F S O$	$\begin{gathered} 30 \ldots 300,00 \\ 0 \mathrm{~ms} \end{gathered}$	Trip time delay for the SOTF function	100 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet

Table 5.38: Setting parameters of the I>F stage

Overcurrent protection stage: I>B (Backward direction or non-direction)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Function	"active"	$1>B$ stage is put into function				\bullet	\bullet	\bullet
	„inactive"	$1>B$ stage is put out of function	"inactive"					
ex block	"active"	I>B stage is ineffective when DI "Protect. Block." is active	"inactive"	-		\bullet	\bullet	\bullet
	„inactive"	\|>B stage is effective irrespectively of the DI „Protect. Block." state.						
trip bloc	"active"	OFF command to the local CB is being blocked	„inactive"			-	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
rev lock	"active"	I>B stage is ineffective when the DI „ Backw. Interl." Is active	„inactive"	-		\bullet	\bullet	-
	„inactive"	I>B stage is effective irrespectively of the DI "Backw. Inter.\|" state "						
direct.	"active"	I>B stage trips in backward direction only (directional)	„inactive"	-		\bullet	\bullet	-
	„inactive"	$1>B$ stage trips in both directions (non-directional)						
char B	"DEFT"	DMT characteristic	"DEFT"	-		\bullet	\bullet	-
	"NINV"	INV characteristic (normal inverse)						
	"VINV"	INV characteristic (very inverse)						
	"EINV"	INV characteristic (extremely inverse)						
	"LINV"	INV characteristic (long time inverse)						
$1>$ B	$0.1 \ldots 5 \times \ln$	Pick-up value of the overcurrent related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	$1 \times \mathrm{N}$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or 1\% I_{N}	\bullet	\bullet	\bullet
$t \mid>B$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay; for DEFT characteristics only	2000 ms	1 ms	$\begin{gathered} \text { DEFT } \\ \pm 1 \% \text { or } \pm 20 \\ \mathrm{~ms} \end{gathered}$	\bullet	\bullet	-
t char B	0.052	Characteristic factor; for IMT characteristics only	0.2	0.01	$\begin{gathered} \text { INV } \\ \pm 5 \% \text { NINV } \\ \pm 7.5 \% \\ \text { VINV, LINV } \\ \pm 10 \% \text { EINV } \end{gathered}$	\bullet	\bullet	\bullet
\dagger rst B	$\begin{gathered} 0 \ldots 60,000 \\ \mathrm{~ms} \end{gathered}$	Reset time for intermittent phase faults; for IMT characteristcs only	1000 ms	1 ms	only INV $\pm 3 \%$ of the adjustment value	\bullet	\bullet	-
AR	"active"	By trip of the $1>B$ stage the $A R$ is started		-		-	\bullet	\bullet
	„inactive"	By trip of the $1>B$ stage the $A R$ cannot be started	„inactive"					
AR-FT	"active"	$A R$ instantaneous trip is put into function		-		\bullet	\bullet	-
	„inactive"	$A R$ instantaneous trip is put out of function	„inactive"					
$\dagger 1>B F T$	$\begin{gathered} 0 \ldots 10,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for AR instantaneous trip	0 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet
FT at sh.	${ }^{\prime} \mathrm{O}{ }^{\text {a }}$	$A R$ instantaneous trip at the first protect. trip via stage $\mid>B$	${ }^{1} 0^{\prime \prime}$	1		\bullet	-	-
	„1"	AR instantaneous trip at the first auto. reclosing attempt						
	"2"	AR instantaneous trip at the second auto. reclosing attempt						
	"3"	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state	„inactive"	-		\bullet	-	-
	„inactive"	SOTF function is put into inactive state						
$\dagger 1>B S O$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for the SOTF function	100 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet

Table 5.39: Setting parameters of the $1>B$ stage

Short-circuit protection stage: I>>F (Forward direction or non-direction)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
MTA	$0^{\circ} \ldots 355^{\circ}$	Typical angle between phase current and reference voltage	45°	$1{ }^{\circ}$	$\pm 3^{\circ}$ of the adjustment value	\bullet	\bullet	-
Function	"active"	$1 \gg F$ stage is put into function		-		\bullet	-	\bullet
	"inactive"	$1 \gg$ stage is put out of function	„inactive"					
ex block	"active"	l>>F stage is ineffective when DI "Protect. Block." Is active				\bullet	\bullet	\bullet
	„inactive"	\|>>F stage is effective irrespectively of DI "Protect. Block." state	„inactive"					
trip bloc	"active"	OFF command to the local CB is being blocked				\bullet	\bullet	\bullet
	"inactive"	Off command to the local CB is being issued	„inactive"					
rev. lock	"active"	l>>F stage is ineffective when the DI "Backw. Interl." is active		-		\bullet	\bullet	\bullet
	„inactive"	\| \gg F stage is effective irrespectively of the DI "Backw. Inter." state	„inactive"					
direct.	"active"	$\mid \gg$ F stage trips in forward direction only (directional)	„inactive"			\bullet	\bullet	\bullet
	„inactive"	$\mid \gg$ F stage trips in both directions (non-directional)						
$1 \gg F$	$0.1 \ldots 40 \times \ln$	Pick-up value of the overcurrent related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	$2 \times \mathrm{ln}$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or 1% I_{N}	\bullet	\bullet	\bullet
$\dagger 1 \gg F$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only	1000 ms	1 ms	$\underset{\mathrm{ms}}{ \pm 1 \% \text { or } \pm 20}$	\bullet	\bullet	-
AR	"active"	By trip of the l>>F stage the AR is started	„inactive"			\bullet	\bullet	\bullet
	"inactive"	By trip of the $1 \gg F$ stage the $A R$ cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function	„inactive"			\bullet	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function						
$\dagger 1 \gg F F T$	$\underset{\mathrm{ms}}{0 \ldots 10,000}$	Trip time delay for AR instantaneous trip	0 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet
FT at sh.	${ }^{\prime} 0^{\prime \prime}$	AR instantaneous trip at the first protect. trip via stage $1 \gg F$	"0"	1		\bullet	\bullet	\bullet
	${ }^{17}$	AR instantaneous trip at the first auto. reclosing attempt						
	${ }^{2 \prime}{ }^{\prime \prime}$	AR instantaneous trip at the second auto. reclosing attempt						
	${ }^{3} 3^{\prime \prime}$	AR instantaneous trip at the third auto. reclosing attempt						
	${ }^{4 \prime}$	AR instantaneous trip at the fourth auto. reclosing attempt						
	${ }^{5 \prime}{ }^{\prime \prime}$	AR instantaneous trip at the fifth auto. reclosing attempt						
	" $0^{\prime \prime}$	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state	„inactive"			\bullet	-	\bullet
	"inactive"	SOTF function is put into inactive state						
$\dagger 1 \gg F S O$	$\begin{gathered} 30 \ldots 300000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function	100 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet

Table 5.40: Setting parameters of the $1 \gg$ F stage

Short-circuit protective stage: I>>B (Backward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Function	"active"	$1 \gg B$ stage is put into function		-		\bullet	-	-
	„inactive"	$1 \gg B$ stage is put out of function	„inactive"					
ex block	"active"	l>>B stage is ineffective when DI „Protect. Block." Is active				-	\bullet	-
	„inactive"	\|>>B stage is effective irrespectively of the DI "Protect. Block." state	„inactive"					
trip bloc	"active"	OFF command to the local CB is being blocked				\bullet	\bullet	-
	„inactive"	OFF command to the local is being issued	„inactive"					
rev lock	"active"	l>>B stage is ineffective when the DI "rev lock" is active		-		\bullet	\bullet	\bullet
	„inactive"	\|>>B stage is effective irrespectively of the DI "rev lock" state	„inactive"					
direct.	"active"	\|>>B stage trips in backward direction only /directional)		-		\bullet	\bullet	\bullet
	„inactive"	$1 \gg B$ stage trips in both directions (non-directional)	„inactive"					
$1 \gg B$	$0.1 \ldots 40 \times \ln$	Pick-up value of the overcurrent related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	$2 \times \ln$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or 1\% I_{N}	-	\bullet	\bullet
$t \mid \gg B$	$\begin{gathered} 30 \ldots 300000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for DEFT characteristics only	1000 ms	1 ms	$\begin{gathered} \pm 1 \% \text { or } \pm 20 \\ \mathrm{~ms} \end{gathered}$	\bullet	\bullet	\bullet
AR	"active"	By trip of the $1 \gg B$ stage the $A R$ is started		-		\bullet	-	\bullet
	„inactive"	By trip of the $1 \gg B$ stage the $A R$ cannot be started	„inactive"					
AR FT	"active"	$A R$ instantaneous trip is put into function		-		\bullet	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function	„inactive"					
$\dagger 1 \gg$ BFT	0... 10000 ms	Trip time delay for AR instantaneous trip	0 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet
FT at sh.	"0"	AR instantaneous trip at the first protect. trip via stage $\mid \gg B$	"O"	1		\bullet	\bullet	-
	${ }^{1} 1{ }^{\prime \prime}$	$A R$ instantaneous trip at the first auto. reclosing attempt						
	„2"	AR instantaneous trip at the second auto. reclosing attempt						
	${ }_{13 \prime}$	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	„5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		\bullet	-	\bullet
	„inactive"	SOTF function is put into inactive state	"inactive"					
$\dagger 1 \gg B S O$	$\begin{gathered} 30 \ldots 300000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function	100 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet

Table 5.41: Setting parameters of the $1 \gg B$ stage

Max. short-crcuit protection stage: I>>>F (Forward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting.	Step Range	Tolerance	L	F3	F5
MTA	$0^{\circ} \ldots 355^{\circ}$	Typical angle between phase current and reference voltage	45°	1°	$\pm 3^{\circ}$ of the adjustment value	-	\bullet	\bullet
Function	"active"	l>>>F stage is put into function	„inactive"			-	\bullet	\bullet
	"inactive"	$1 \ggg F$ stage is put out of function						
ex block	"active"	$1 \ggg$ F stage is ineffective when DI "Protect. Block."	„inactive"	-		-	\bullet	\bullet
	„inactive"	l>>>F stage is effective irrespectively of the DI "Protect. Block." state						
trip bloc	"active"	OFF command to the local CB is being blocked	„inactive"	-		-	\bullet	\bullet
	„inactive"	OFF command to the local $C B$ is being issued						
rev lock	"active"	l>>>F stage is ineffective when the DI "rev lock" is active	„inactive"	-		-	\bullet	\bullet
	„inactive"	l>>>F stage is effective irrespectively of the DI "rev lock" state						
direct.	"active"	$1 \ggg$ F stage trips in forward direction only (directional)	„inactive"	-		-	\bullet	\bullet
	„inactive"	$1 \ggg$ F stage trips in both directions (non-directional)						
$1 \ggg F$	$0.1 \ldots 40 \times \ln$	Pick-up value of the overcurrent related to the rated current Disengaging ratio 97% or $0.5 \% \mathrm{x} \ln$	$5 \times \ln$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or 1\% I_{N}	-	\bullet	\bullet
$t \mid \ggg F$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only	500 ms	1 ms	$\begin{gathered} \pm 1 \% \text { or } \pm 20 \\ \mathrm{~ms} \end{gathered}$	-	\bullet	\bullet
AR	"active"	By trip of the l>>>F step the AR is started	„inactive"	-		-	-	-
	„inactive"	By trip of the l>>>F step the AR cannot start						
AR-FT	"active"	$A R$ instantaneous trip is put into function	„inactive"	-		-	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function						
$\dagger 1 \ggg$ BFT	$\begin{gathered} 0 \ldots 10,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for AR instantaneous trip	0 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	-	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via stage l>>>F	"O"	1		-	\bullet	\bullet
	„1"	AR instantaneous trip at the first auto. reclosing attempt						
	"2"	AR instantaneous trip at the second auto. reclosing attempt						
	${ }^{\prime \prime} 3^{\prime \prime}$	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state	"inactive"	-		-	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
$t 1 \ggg$ FSO	$\begin{gathered} 30 \ldots 300000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function	100 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	-	\bullet	\bullet

Table 5.42: Setting parameters of the $1 \ggg F$ stage

Max. short-circuit protection stage: I>>>B (Backward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Function	"active"	$\mid \ggg B$ stage is put into function				-	-	-
	„inactive"	$1 \ggg B$ stage is put out of function	„inactive"					
ex block	"active"	।>>>B stage is ineffective when DI "Protect. Block." is active		-		-	\bullet	-
	"inactive"	\|>>>B stage is effective irrespectively of the DI „Protect. Block." state	"inactive"					
Trip-Block.	"active"	OFF command to the local CB is being blocked				-	-	-
	„inactive"	OFF command to the local CB is being issued	„inactive"					
rev lock	"active"	l>>>B stage is ineffective when the DI "rev lock" is active		-		-	\bullet	\bullet
	„inactive"	l>>>B stage is effective irrespectively of the Dl "rev lock" state	„inactive"					
direct.	"active"	l>>>B stage trips in backward direction only (directional)	„inactive"	-		-	\bullet	-
	„inactive"	l>>>B stage trips in both directions (non-directional)						
$1 \ggg B$	$0.1 \ldots 40 \times \ln$	Pick-up value of the overcurrent related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	$5 \times \ln$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or 1\% I_{N}	-	\bullet	\bullet
$\dagger \mid \ggg B$	$\begin{gathered} 30 \\ . .300,000 \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only	500 ms	1 ms	$\begin{gathered} \pm 1 \% \text { or } \pm 20 \\ \mathrm{~ms} \end{gathered}$	-	\bullet	\bullet
AR	"active"	By trip of the $1 \ggg B$ stage the $A R$ is started		-		-	-	\bullet
	„inactive"	By trip of the $1 \ggg B$ stage the AR cannot be started	„inactive"					
AR-FT	"active"	$A R$ instantaneous trip is put into function		-		-	\bullet	-
	„inactive"	$A R$ instantaneous trip is put out of function	„inactive"					
$\dagger 1 \ggg B F T$	0...10,000 ms	Trip time delay for AR instantaneous trip	0 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	-	-	\bullet
FT at sh.	"0"	AR instantaneous trip at the first protect. trip via stage l>>>B	"O"	1		-	\bullet	\bullet
	„1"	$A R$ instantaneous trip at the first auto. reclosing attempt						
	„2"	AR instantaneous trip at the second auto. reclosing attempt						
	„3"	AR instantaneous trip at the third auto. reclosing attempt						
	„4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		-	\bullet	-
	„inactive"	SOTF function is put into inactive state	„inactive"					
$\dagger 1 \ggg B S O$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function	100 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	-	\bullet	\bullet

Table 5.43: Setting parameters of the $1 \ggg$ B-stage

5.7.2.4 Earth overcurrent protection le>, le>>

The earth overcurrent protection in the CSP2 is split into the following two earth current protection functions:

- Earth overcurrent protection le>
- Earth short-circuit protection le>>

The following table gives an overview of the number of protection stages of the protection functions available depending upon the type of device (CSP2-F or CSP2-L), the available tripping characteristics as well as the possibility of adjustable direction decisions for the tripping of the circuit breaker:

Functions of the time earth-overcurrent protection				Available in CSP2-		
Protective Functions	Protect. stage	Directional Criterion for Tripping	Trip Characteristic	L	F3	F5
Earth-Overcurrent Prot. le>	$l e>F$	Forward or non-directional	DEFT/INV	\bullet	\bullet	\bullet
Earrh-Overcurrent Prot. le>	$l e>B$	Backward or non-directional				
Earth-Short-Circuit Prot. le>>	$l e \gg$ F	Forward or non-directional	DEFT	\bullet	\bullet	\bullet
	le>>B	Backward or non-directional				

Table 5.44: Detailed view of the time earth-overcurrent protective functions

Attention

For a correct determination of the residual voltage, the correct measurement method (e-n winding or calculatory determination) must be assigned by the parameter "EVT on" in the field "field settings" in the parameter group of the residual voltage supervision.

Parameters

In parameterizing the earth overcurrent protection a large possibility of variation of the setting parameters results. After the selection of an earthing method directional, determination of direction and the tripping characteristic, only the relevant parameters appear on the display.

"Earthing" (selection of the earthing method for protection)

As in the phase time overcurrent protection, a pre-setting for direction detection is also necessary in earth excess current time protection. Two parameters exist in the first stage of the earth overcurrent protection (le>F) for the detection of the direction of the earth overcurrent protection. Via these parameters, the kind of system (parameter: "earthing"), on the other hand the size of the characteristic angle to be set (Parameter: "MTA") can be parametrized.
To start with, the parameter "earthing" determines the earhing method existing in the system, i.e. the kind of mains used.

Note

Parameter "earthing" is only available once per parameter set and applies jointly for protective functions le> and le>>! This parameter ("Earthing") is contained in the parameters of protection function le>!

The following four earthing method are distinguished:

- Mains with isolated star point
- Mains with earth fault compensation
- Mains with solidly earthed star point
- Mains with resistance-earthed star point

1. Mains with isolated star point (setting: "earthing: SIN", "MTA (fixed): -90")

Figure 5.58: Phase positions of residual voltage and sum currents in isolated grid with short to earth $\mid \sin \varphi$)

By determining the reactive current component I_{C} via the $\sin \varphi$ setting and subsequent comparison with the residual voltage Ue , the CSP2-F decides whether the line to be protected has a short to earth. If the line is free of earth faults the capacitive component $I_{C}(a)$ of the sum current is 90° ahead of the residual voltage.
With a line with a short to earth, the capacitive component $I_{C}(b)$ drags behind the residual voltage by 90°.
2. Compensated mains (setting: "earthing: COS", "MTA (fixed): 180")

Figure 5.59: Phase positions of residual voltage and sum currents in compensated grid with short to earth ($\cos \varphi$)

In compensated mains, no statement about the direction of the short to earth can be made from the reactive current component, as the reactive component of the earth current depends on the degree of compensation of the mains. To determine the direction, the ohmic component of the sum current ($\cos \varphi$ setting) is used.

In lines free of earth faults, active current components and residual voltage are in-phase, while the ohmic component in a line with an earth fault is in the anti-phase to the residual voltage.
Thanks to an efficient digital filtering, all the harmonics are suppressed. In this way, for example, the uneven harmonics in existence in an electrical arc fault do not impair the protective function.
3. Mains with solidly earthed star point (setting: "earthing: SOLI", "MTA: adjustable")

Most faults in a solidly earthed mains mainly have an inductive character. This is why the characteristic angle between current and voltage at which the highest sensitivity of the measurement is achieved has been selected at 110° ahead of the zero voltage U_{0}.

Figure 5.60: Characteristic angle in a solidly earthed mains (SOLI)
4. Mains with resistance-earthed star point (setting: "eathing: RESI", "MTA: adjustable")

Figure 5.61: Characteristic angle in resistance-earthed mains (RESI)

In a resistance-earthed mains, most of the faults mainly have an ohmic character with a slight inductive component. This is why the characteristic angle has been set at 170° ahead of the zero voltage U_{0} for these kind of mains. The reaction area of the directional element has been set in each case by turning the current vector on the characteristic angle by $\pm 90^{\circ}$.

"MTA" (Characteristic angle for the earthing method in directional protection)

The determination of direction is based on the measurement principle for the angle measurement between the relevant earth current component and the residual voltage. In this, various characteristic angles "MTA" (Maximum Torque Angle), which are stated by the type of mains, result.
When the direction determination has been activated ("direct. = active"), various setting areas or firmly fixed values for the characteristic angle MTA result as a function of the kind of star point treatment (Parameter: "earthing"):

- In "solidly" and "resistance-earthed" mains, the size of the characteristic angle can be set (MTA = variable).
- For "isolated" and "compensated" mains, the size of the characteristic angle MTA is fixed, i.e. the CSP2 calculates internally with a fixed angle ("SIN $=-90^{\circ} ; \mathrm{COS}=180^{\circ}$. It states the default angle between the earth current component and the residual voltage Ue in the event of a fault with »forward« flowing fault energy. If the measured angle deviates from this characteristic angle by more than $\pm 90^{\circ}$, the protection element detects "backward direction".

Note

Each stage of the protective functions le> and le>> have an individual "MTA". parameter, i.e. each protective stage operates with the angle adjusted for its "MTA" parameter.
"Function"
With the setting "Function = active" the corresponding phase of the earth overcurrent protection functions is generally set into function. The protection element can however only be effective if it is not being blocked.

"ex block"

This parameter can only become effective in connection with a digital input (DI), onto which the "Prot. block. " input function has been placed. With an active status of this digital input, the phases of the protective functions which have been parametered with "ex Block = aktiv" are blocked!
"tripbloc" (blockage of the OFF command for the power switch)
Only the switch-off command to the circuit breaker is blocked. After the expiry of the tripping delay, a "Trip: XY" message and the message "General trip" are nevertheless generated and are available for the communication to the SCADA as output messages of the LED display, the further processing via signal relays or as messages (data points). The tripping blockage can, for example, be used for detection of direction without a tripping command to the circuit breaker (only display).

"rev. lock." (reverse locking)

Each element can be temporarily blocked from external via a common digital input (DI) with the assigned input function »rev. lock.". That is to say, as long as the digital input is active, all the protection elements with the setting "rev lock $=$ active" are blocked (ineffective).

"direct." (direction decision)

With this parameter, the direction decision for a protective tripping can be activated separately for each stage in the event of a fault. For example, the earth overcurrent protection can be set directional, but the earth short-circuit protection can be left non-directional.

Settings:

"active": The protective stages marked with the index "F" only trip in a forward direction! The protective stages marked with the index "B" only trip in a backward direction! "inactive":The protective stages trigger in the event of a fault without regard for the direction of flow of energy (non-directional)!

Note

If all four direction parameters are set to »inactive«, the CSP2-F has four earth overcurrent elements independent of one another without a direction decision.
"Ue Block" (blocking the protection stage in dependence of the residual voltage Ue)
If this parameter is configured as active, this stage of the earth overcurrent time protection only becomes active if a measured residual voltage Ue exceeds a certain pick-up value. This pick-up value is to be configured by the parameter "Ue>" of the protection stage Ue>. For this it is not necessary to activate the protection stage Ue>.
The residual voltage $U e$ is thus used as an additional protection criterion for the earth overcurrent time protection.

Tripping characteristic (e.g. "char F")
(analogous to overcurrent time protection)
Earth current pick-up value of the protection stage (e.g. "le>F")
In the current-independent tripping characteristic (DEFT) and in the current-dependent tripping characteristic (INV) the protection stages pick-up as soon as the measured earth current exceeds this set value. The tripping delay time on the INV characteristics is a function of the overcurrent in the event of a fault. It is calculated by the CSP2 via the characteristic as a function of the size of the earth overcurrent. The tripping delay time in the DEFT characteristic is not based on the amount of the overcurrent, but on a settable time e.g. " t le>F".
In protection stagess with direction detection and active direction function, the protection only picks-up if the current is flowing in the direction in question and is larger than the threshold.

Tripping delay time of the protection stage for DEFT characteristic (e.g. " + le>F")
(analogous to overcurrent time protection)
Characteristic factor - only for INV characteristics (e.g. "t char F")
(analogous to overcurrent time protection)
Reset time (e.g. "t rst F")
(analogous to overcurrent time protection)
"AR" (Automatic reclosing)
(analogous to overcurrent time protection)

```
"AR-FT" (AWE fast trip)
(analogous to overcurrent time protection)
```

Tripping delay time of the AR fast trip (e.g. "t le>FFT")
(analogous to overcurrent time protection)
"FT at sh" (AR fast trip position)
(analogous to overcurrent time protection)
"SOTF" (Switch On To Fault - fast trip)
(analogous to overcurrent time protection)
Trigger delay time of the SOTF fast trip (e.g. " $+1>F S O$ ")
(analogous to overcurrent time protection)

Earth-overcurrent protection stage: le>F (Forward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Earhing	"SOL"	System with solidly earthed star point (MTA = variable)	"SOLI"	$1{ }^{\circ}$	$\pm 5^{\circ}$ of the adjustment value at I_{E} $>1.0 * 1_{\mathrm{N}}$ and $\mathrm{U}_{\mathrm{E}}>5 \% \mathrm{U}_{\mathrm{N}}$	\bullet	\bullet	\bullet
	„RESI"	System with resistanceearthed star point (MTA = variable)		$1{ }^{\circ}$	$\begin{aligned} & \pm 5^{\circ} \text { of the } \\ & \text { adjustment } \\ & \text { value at } I_{E} \\ & >1.0 * I_{N} \text { and } \\ & U_{\mathrm{E}}>5 \% \mathrm{U}_{\mathrm{N}} \end{aligned}$			
	"COS"	System with earth fault compensation (MTA $=180^{\circ}$, fixed)			$\begin{aligned} & \pm 5^{\circ} \text { af } I_{E}{ }^{*} \\ & \cos \varphi>20 \% \\ & I_{N} \text { and } U_{E}> \\ & 10 \mathrm{~V} \end{aligned}$			
	"SIN"	System with isolated star point $M T A=-90^{\circ}=270^{\circ}$, fixed)			$\begin{gathered} \pm 5^{\circ} \text { at } \mathrm{I}_{\mathrm{E}}{ }^{*} \\ \operatorname{sin\varphi }>20 \% \\ \mathrm{I}_{\mathrm{N}} \text { and } \mathrm{U}_{\mathrm{E}}> \\ 10 \mathrm{~V} \end{gathered}$			
MTA	$0^{\circ} \ldots 355^{\circ}$	Typical angle between earth current component and residual voltage (can only be adjusted when earthing = SOLI or RESI")	110°	$1{ }^{\circ}$		\bullet	\bullet	\bullet
Function	"active"	$l e>F$ stage put into function				\bullet	\bullet	\bullet
	"inactive"	le>F stage put out of function	"inactive"					
ex block	"active"	le>F stage is ineffective when DI „Protect.Block." is active				\bullet	\bullet	\bullet
	„inactive"	le>F stage is effective irrespectively of the DI "Protect. Block." state	„inactive"					
trip bloc	"active"	OFF command to the local CB is being blocked				\bullet	\bullet	\bullet
	"inactive"	OFF command to the local CB is being issued	"inactive"					
rev. lock	"active"	le>F stage is ineffective when DI „rev. lock" Is active				\bullet	\bullet	\bullet
	„inactive"	le>F stage is effective irrespectively of the DI "rev. lock" state	„inactive"					
direct.	"active"	$l e>$ F stage trips in forward direction only (directional)				\bullet	\bullet	\bullet
	"inactive"	$l e>$ F stage trips in both directions (non-directional)	„inactive"					
Ue lock	"active"	le $>\mathrm{F}$ stage is only effective if the residual voltage protection Ue> or Ue>> is activated		-		\bullet	\bullet	\bullet
	„inactive"	le $>F$ stage is effective no matter whether the residual voltage protection Ue> or Ue>> is activated or not	„inactive"					
char F	"DEFT"	DEFT Definite time characteristic	"DEFT"			\bullet	\bullet	\bullet
	"NINV"	INV characteristic (normal inverse)						
	„VINV"	INV characteristic (very inverse)						
	„EINV"	INV characteristic (extremely inverse)						
	„LINV"	INV characteristic (long time inverse)						
$l e>F$	0.01 ... $20 \times \ln$	Pickup value of the overcurrent related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	$0.5 \times \ln$	$0.001 \times \mathrm{ln}$	$\pm 3 \%$ of the adjustment value or $0.3 \% I_{N}$	\bullet	\bullet	\bullet
\dagger le>F	$\begin{gathered} 50 \ldots \mathrm{~ms} \\ \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only	5000 ms	1 ms	$\begin{gathered} \text { DEFT } \\ \pm 1 \% \text { or } \pm 20 \\ \mathrm{~ms} \end{gathered}$	\bullet	\bullet	\bullet
t char F	0.052	Characteristic factor, for INV characteristics only	1.0	0.01	$\begin{gathered} \text { INV } \\ \pm 5 \% \text { NINV } \\ \pm 7.5 \% \\ \text { VINV, LINV } \\ \pm 10 \% \text { EINV } \end{gathered}$	\bullet	\bullet	\bullet

\dagger rst F	$\begin{gathered} 0 \ldots 60,000 \\ \mathrm{~ms} \end{gathered}$	Reset time for intermittent phase faults, for INV characteristics only	0 ms	1 ms	only INV $\pm 3 \%$ of the adjustment value	\bullet	\bullet	\bullet
AR	"active"	By trip of the le $>F$ step the $A R$ is started	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	By trip of the le>F step the AR cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function	„inactive"	-		\bullet	\bullet	-
	„inactive"	AR instantaneous trip is put out of function						
\dagger le>BFT	$\begin{gathered} 0 \ldots 10,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for AR instantaneous trip	0 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	-	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via stage le $>F$	"O"	1		-	\bullet	\bullet
	„1"	AR instantaneous trip at the first auto. reclosing attempt						
	"2"	AR instantaneous trip at the second auto. reclosing attempt						
	„3"	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state	„inactive"	-		\bullet	\bullet	-
	„inactive"	SOTF function is put into inactive state						
$\dagger \mathrm{le}>\mathrm{FSO}$	$\begin{gathered} 50 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function	100 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet

Table 5.45: Setting parameters for earth-overcurrent protection le>F

Earth-overcurrent protection stage: le>B (Backward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Function	"active"	$l e>B$ stage is put into function	„inactive"			\bullet	\bullet	\bullet
	"inactive"	$l e>B$ stage is put out of function						
ex block	"active"	$l e>B$ stage ineffective when DI „Protect. Block." is active	"inactive"	-		\bullet	\bullet	\bullet
	„inactive"	le>B stage is effective irrespectively of the DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked	„inactive"			\bullet	\bullet	\bullet
	"inactive"	OFF command to the local CB is being issued						
rev. lock	"active"	le>B stage is ineffective when the DI ,„rev. lock" is active	„inactive"	-		\bullet	\bullet	-
	„inactive"	le>B stage is effective irrespectively of the DI "rev. lock" state						
direct.	"active"	le>B stage trips in backward direction only (directional)	„inactive"	-		\bullet	\bullet	\bullet
	"inactive"	le>B stage trips in both direction (non-directional)						
Ue lock	"active"	le $>B$ stage is only effective if the residual voltage protection Ue> or Ue>> is activated	„inactive"	-		\bullet	-	-
	„inactive"	le $>B$ stage is effective no matter whether the residual voltage protection Ue> or Ue>> is activated or not						
char B	„DEFT"	DEFT Definite time characteristic	"DEET"	-		\bullet	\bullet	\bullet
	"NINV"	INV characteristic (normal inverse)						
	"VINV"	INV characteristic (very inverse)						
	"EINV"	INV characteristic (extremely inverse)						
	"LINV"	INV characteristic (long time inverse)						
$l e>B$	0.01... $20 \times \mathrm{ln}$	Pickup value of the overcurrent related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	$0.5 \times \mathrm{ln}$	$0.001 \times \mathrm{ln}$	$\pm 3 \%$ of the adj. value or $0.3 \% I_{N}$	\bullet	\bullet	\bullet
\dagger le>B	$\begin{gathered} 50 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only	5000 ms	1 ms	$\begin{gathered} \pm 1 \% \text { or } \pm 20 \\ \mathrm{~ms} \end{gathered}$	\bullet	\bullet	\bullet
t char B	0.052	Characteristic factor, for INV characteristics only	1.0	0.01	$\begin{gathered} \text { INV } \\ \pm 5 \% \text { NINV } \\ \pm 7.5 \% \\ \text { VINV, LINV } \\ \pm 10 \% \text { EINV } \end{gathered}$	\bullet	\bullet	\bullet
t ist B	$\underset{\mathrm{ms}}{0 \ldots . .60,000}$	Reset time for intermittent phase faults, for INV characteristics only	0 ms	1 ms	only INV $\pm 3 \%$ of the adjustment value	\bullet	\bullet	\bullet
AR	"active"	By trip of the le $>B$ stage the $A R$ is started	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	By trip of the le>B stage the $A R$ cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function						
\dagger le>BFT	$\underset{\mathrm{ms}}{0 \ldots . .10,000}$	Trip time delay for AR instantaneous trip	0 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet
FT at sh	"0"	$A R$ instantaneous trip at the first protect. trip via stage le> B	${ }^{\prime} 0^{\prime \prime}$	1		\bullet	\bullet	\bullet
	„1"	AR instantaneous trip at the first auto. reclosing attempt						
	${ }^{2 \prime}{ }^{\prime \prime}$	AR instantaneous trip at the second auto. reclosing attempt						
	${ }^{3 \prime}{ }^{\prime \prime}$	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state	„inactive"			\bullet	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
\dagger le>BSO	$\underset{\mathrm{ms}}{50 \ldots 300,000}$	Trip time delay for SOTF function	100 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet

Table 5.46: Setting parameters for earth-overcurrent protection le>B

Earth short-circuit protection stage: le>>F (Forward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
MTA	$0^{\circ} \ldots 355^{\circ}$	Typical angle between earth current component and residual voltage (can only be adjusted when earthing = SOLI or RESI")	110°	1°		\bullet	\bullet	\bullet
Function	"active"	$l e \gg F$ stage is put into function				\bullet	\bullet	\bullet
	„inactive"	$l e \gg F$ stage is put out of function	"inactive"					
ex block	"active"	le>>F stage ineffective when DI "Protect. Block." is active		-		\bullet	\bullet	\bullet
	„inactive"	le>>F stage effective irrespectively of the DI "Protect. Block." state	"inactive"					
tripbloc.	"active"	OFF command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued	„inactive"					
rev. lock	"active"	le>>F stage ineffective when DI „rev. lock" is active				\bullet	\bullet	\bullet
	„inactive"	le>>F stage effective irrespectively of the DI "rev. lock" state	„inactive"	-				
direct.	"active"	$l e \gg F$ stage trips in forward direction only (directional)		-		\bullet	\bullet	\bullet
	„inactive"	$l e \gg F$ stage trips in both directions (non-directional)	„inactive"					
Ue lock	"active"	le>>F stage is only effective if the residual voltage protection Ue> or Ue>> is activated				\bullet	\bullet	-
	„inactive"	le>>F stage is effective no matter whether the residual voltage supervision Ue> or Ue>> is activated or not	"inactive"	-				
$l e \gg F$	$0.01 \ldots 20 \times \ln$	Pick-up value of the overcurrent related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	$1.0 \times \mathrm{ln}$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or $0.3 \% I_{N}$	\bullet	\bullet	\bullet
\dagger le>>F	$\begin{gathered} 50 \\ \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only	1000 ms	1 ms	$\begin{gathered} \pm 1 \% \text { or } \pm 20 \\ \mathrm{~ms} \end{gathered}$	-	\bullet	\bullet
AR	"active"	By trip of the le>>F stage the AR is started		-		\bullet	-	\bullet
	„inactive"	By trip of the le>>F stage the AR cannot be started	„inactive"					
AR-FT	"active"	AR instantaneous trip is put into function		-		\bullet	\bullet	\bullet
	„inactive"	$A R$ instantaneous trip is put out of function	"inactive"					
$\dagger l e \gg F F T$	$\begin{gathered} 0 \ldots 10,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for AR instantaneous trip	0 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via stage le>>F	"0"	1		\bullet	\bullet	\bullet
	„1"	AR instantaneous trip at the first auto. reclosing attempt						
	"2"	AR instantaneous trip at the second auto. reclosing attempt						
	${ }^{\prime \prime}{ }^{\prime \prime}$	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing altempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state				-	\bullet	-
	„inactive"	SOTF function is put into inactive state	"inactive"					
t le>>FSO	$\begin{gathered} 50 \ldots 300,00 \\ 0 \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function	100 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	-	\bullet	\bullet

Table 5.47: Setting parameters of the earth short-circuit protection le>>F

Earth short-crcuit protection stage: le>>B (Backward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Function	"active"	$l e \gg B$ stage is put into function				\bullet	\bullet	\bullet
	„inactive"	$l e \gg B$ stage is put out of function	"inactive"					
ex block	"active"	le>>B stage ineffective when DI "Protect. Block." is active	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	le>>F stage effective irrespectively of the DI "Protect. Block." state						
trip bloc	"active"	OFF command to the local CB is being blocked	„inactive"			\bullet	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
rev. lock	"active"	le>>B stage ineffective when DI „rev. lock" is active	"inactive"	-		\bullet	-	\bullet
	„inactive"	le>>B stage effective irrespectively of the DI "rev. lock" state						
direct.	"active"	le>>B stage trips in backward direction only (directional)	„inactive"	-		\bullet	\bullet	-
	„inactive"	$l e \gg B$ stage trips in both directions (non-directional)						
Ue lock	"active"„inactive"	le>>B stage is only effective if the residual voltage protection Ue> or Ue>> is activated	"inactive"	-		\bullet	-	\bullet
		le>>B stage is effective no matter whether the residual voltage supervision Ue> or Ue>> is activated or not						
$l e \gg B$	$0.01 \ldots 20 \times \ln$	Pick-up value of the overcurrent related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	$1.0 \times \ln$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or $0.3 \% I_{N}$	\bullet	\bullet	-
\dagger le>>B	$\begin{gathered} 50 \\ \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only	1000 ms	1 ms	$\begin{gathered} \pm 1 \% \text { or } \pm 20 \\ \mathrm{~ms} \end{gathered}$	\bullet	\bullet	\bullet
AR	"active"	By trip of the le>>B stage the $A R$ is started	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	By trip of the le>>B stage the AR cannot be started						
AR-FT	"active"	$A R$ instantaneous trip is put into function	„inactive"	-		\bullet	\bullet	-
	„inactive"	AR instantaneous trip is put out of function						
\dagger le>>BFT	$\begin{gathered} 0 \ldots 10,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for AR instantaneous trip	0 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	-
FT at sh	"O"	AR instantaneous trip at the first protect. trip via stage le>>B	"O"	1		\bullet	\bullet	\bullet
	${ }^{11}$	$A R$ instantaneous trip at the first auto. reclosing attempt						
	"2"	AR instantaneous trip at the second auto. reclosing attempt						
	"3"	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	$A R$ instantaneous trip at the fitth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state	„inactive"	-		\bullet	-	-
	„inactive"	SOTF function is put into inactive state						
t le>>BSO	$\begin{gathered} 50 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function	100 ms	1 ms	$\begin{aligned} & \pm 1 \% \text { or } \\ & \pm 20 \mathrm{~ms} \end{aligned}$	\bullet	\bullet	\bullet

Table 5.48: Setting parameters of the earth short-circuit protection le>>B

5.7.2.5 Unbalanced load protection $12>$, $12 \gg$

Description

Asymmetrical loads or single-phased phase failures cause a displacement of the current phase system. This unbalance generates a negative phase current vector I_{2}, (counter-system of the symmetrical current components) which induces inadmissible heating in motor and generator rotors (double frequency).

Adjustment to the generator
To adjust to the type of generator in question, two important generator nominal value are needed from the manufacfurer:

1. The permanently permissible unbalanced load K_{2} relative to the nominal current I_{N} of the generator

$$
\mathrm{K}_{2}=\mathrm{I}_{25} / I_{\mathrm{N}}
$$

This is normally stated as a $\%$, with I_{25} being the permanently admissible unbalanced load current.
2. The construction-dependent generator constant $K_{\text {, }}$

$$
\mathrm{K}_{1}=\mathrm{K}_{2}^{2} x+\text { char }
$$

For generators with air cooling, the following values are customary:

Generator Power	$<100 \mathrm{MVA}$	$<20 \mathrm{MVA}$
Constant permissible unbalanced load K_{2}	approx. $8 \ldots 10 \%$ of I_{N}	approx. 20% of I_{N}
Generator constant K_{1}	$5 \ldots 30$	$\ldots .60$

Tabelle 5.1: Generator Characteristic Quantities

Further values can be seen from DIN 57530 part 1/VDE 0530 part 1.

The maximum permissible time $t_{\text {pem }}$ of the negative sequence current I_{2} results as:

$$
{ }^{\dagger}{ }_{\text {perml }}=\frac{\dagger \text { char }}{(12 / 12 \gg)^{2}-1}
$$

$$
\text { with: } \dagger \text { char }=K_{1} / K_{2}^{2}
$$

Figure 5.62 Tripping characteristics

"Function"

With the setting "Function = active" the corresponding stage of the negative sequence protection is generally set into function. The protection stage can however only be effective if it is not blocked.
„ex block"
This parameter can only become effective in connection with a digital input onto which the input function "Prot block." has been assigned to. With an active status of this digital input, the stages of the protective functions which are set to "ex block = active" are blocked!
"tripblo" (blockage of the OFF command for the circuit breaker)
Only the switch-off command to the circuit breaker is blocked. After the expiry of the tripping delay, a "Trip XY" message and the message "General trip" are nevertheless generated and are available for the communication to the SCADA as output messages of the LED display, the further processing via singal relays or as messages (data points). The tripping blockage can, for example, be used for recognition of direction without a tripping command to the circuit breaker (only display).
"char" (tripping characteristic - only 12>> element)
On the second stage of the unbalanced load protection I2>> the tripping characteristic can be selected as a DEFT or INV characteristic. For the INV characteristic, a tripping curve ("INV") is available.
The first stage of the unbalanced load protection 12> always trips after the DEFT characteristic, an INV characteristic cannot be selected here.

Negative sequence threshold of the protection stage (e.g. "I2>")
The negative sequence protection (current unbalance protection) recognizes asymmetrical loads of the electrical equipment connected. For this, the CSP2 examines the symmetry of the current vectors with the principle of »dividing into symmetrical components«. An inadmissible negative sequence exists if the angle or amplitude of the current vector deviate from the symmetrical position in such a way that 12 exceeds a threshold. The negative phase sequence supervision is designed two-staged.

Tripping delay time of the protection stage for DEFT characteristic (e.g. " $+12>$ ")
For the tripping characteristic according to the DEFT characteristic, this parameter determines the tripping delay of the protection stage by statement of a defined time (independent of current).
"t char" (Characteristic curve factor - only for INV characteristics of the 12>> stage)
With the characteristic factor the required characteristic can be selected from the group of curves of the INV characteristic "INV", according to which the current-dependent tripping delay time of the protection stage is to be calculated.

Load unbalance protection 12> (${ }^{\text {st }}$ stage)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting.	Step Range	Tolerance	L	F3	F5
Function	"active"	$12>$ stage is put into function	„inactive"				\bullet	\bullet
	"inactive"	$12>$ stage is put out of function						
ex block	"active"	12>stage ineffective when DI „Protect. Block." is active	,"inactive"	-		-	\bullet	\bullet
	„inactive"	12> stage is effective irrespectively of the DI "Protect. Block." state						
trip bloc	"active"	OFF command to the local CB is being blocked	„inactive"				\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
12>	$\underset{\ln }{0.01 . . .0 .5 \times}$	Pick-up value of the unbalanced load related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	"0.1 $\times 1 \mathrm{ln}{ }^{\text {c }}$	$0.001 \times \mathrm{ln}$	$\pm 3 \%$ of the adjustment value or 1% I_{N}	-	\bullet	-
† 12>	$\begin{gathered} 100 \ldots 300,0 \\ 00 \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only	„2000 ms"	1 ms	$\pm 1 \%$ of the adj. value or $+20 \mathrm{~ms}$	-	\bullet	\bullet
Load unbalance protection 12>> ($2^{\text {nd }}$ stage)						Available in CSP2-		
Function	"active"	$12 \gg$ step is put into function	„inactive"				\bullet	\bullet
	"inactive"	$12 \gg$ step is put out of function						
ex block	"active"	\|2>> step ineffective when DI „Protect. Block." is active	„inactive"	-		-	\bullet	\bullet
	„inactive"	\|2>> step is effective irrespectively of the DI "Protect. Block." state						
trip bloc	"active"	OFF command to the local CB is being blocked	„inactive"			-	\bullet	\bullet
	"inactive"	OFF command to the local CB is being issued						
char	"DEFT"	DEFT characteristic	"NV"			-	\bullet	\bullet
	"NV"	INV characteristic						
\|2>>	$\underset{\ln }{0.01 \ldots}$	Pick-up value of the unbalanced load related to the rated current Disengaging ratio 97% or $0.5 \% \times \ln$	"0.15 x $\ln { }^{\prime \prime}$	$0.01 \times \mathrm{ln}$	$\pm 3 \%$ of the adjustment value or 1% I_{N}		\bullet	\bullet
† \|2>>	$\begin{gathered} 1000 \ldots 300, \\ 000 \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only	„1000 ms"	1 ms		-	\bullet	\bullet
t char	300...3600	Characteristic factor, for INV characteristic only	„1000"	1	$\pm 1 \%$ of the adj. value or $\pm 20 \mathrm{~ms}$ (DEFT) $\pm 7.5 \% \text { (INV) }$		\bullet	\bullet

Table 5.49: Setting parameters for unbalanced load protection

5.7.2.6 Overload protection with thermal replica $\vartheta>$

Description

The thermal overload protection in the CSP2 for transformers, generators and supply lines has been designed according to IEC 255-8 (VDE 435 T301).
In the device, a complete thermal replica function has been implemented as a single-heat model of the electrical equipment to be protected, taking the preceeding load into account. The protective function has been designed sin-gle-phased with a warning threshold.
For this, the CSP2 calculates the thermal load of the electrical equipment connected on load side from the existing measurement values and the set parameters. With knowledge of the thermal constants, a deduction can then be made of the temperature of the electrical equipment (interpolated).

Parameters

"tau w." (warming time constant)

The time constant sets the heating properties in the thermal model. The rule of thumb is that with constant current the temperature of the behaviour equipment has reached its final value after the time corresponding to 5 times the constant. As heating and cooling normally work with different time constants, they can be set separately. The CSP2 automatically recognizes whether there is heating or cooling by the current and the temperatures derived from it. In the case of heating, a forecast tripping time "ty" is displayed in the "Measurement< menu.
"tau C" (cooling time constant)
The time constant sets the cooling properties in the thermal model.

"Function"

With the setting "Function = active" the thermal overload protection is generally set into function. The protection stage can however only be effective if it is not blocked.

„ex block"

This parameter can only become effective in connection with a digital input onto which the input function "Prot block." has been assigned. With an active status of this digital input, the stages of the protection functions which are set to "ex block = active" are blocked!
",tripbloc" (blocking the OFF command for the circuit breaker)
Only the switch-off command to the circuit breaker is blocked. After the expiry of the tripping delay, a "Trip XY" message and the message "General trip" are nevertheless generated and are available for the communication to the SCADA-system as output messages of the LED display, the further processing via signal relays or as messages (data points).

" \uparrow Alarm" (overload alarm)

A warning stage, which can be set as a percentage, enables a timely detection of temperature-critical processes. The default setting is " ϑ Alarm" $=80 \%$ ".
"|b>" (thermally admissible permanent current - basic current)
The setting of this parameter states the threshold of the overload current at which the CSP2 must not trip. Generally, this is the maximum admissible operating current for electrical equipment, in which the additional influential variables for the heating have been included (e.g. heat loss by the transformer oil or by air convection).
The product of current and overload factor (K.I I_{B}) defines the set threshold of the overload current at which the CSP2 must not trip. The settings of the overload characteristics refer to this overall factor K. I_{B}.

"K" (overload factor)

This constant is to be multiplied by the basic current. The overload factor is a constant which, multiplied by the basic current I_{B}, defines the maximum admissible thermal threshold for the electrical equipment. Normally, the admissible heating is 10% above the basic factor, thus making the overload factor: $K=1.1$.

Remark

To calculate the temperature equivalent, only the basic current I_{B} is used, with $I^{2} \sim \vartheta$. With the constant K the activation point $\left(K \cdot I_{B}\right)$ is determined and the tripping time "tو" calculated. This tripping time is shown in the display as a menu parameter ("DATA/MEASUREMENT") and states the time to the trip of the circuit breaker. The temperature equivalent $\vartheta[\%]$ is shown as a measured value in percent " $\vartheta=X \%$ " likewise as a menu parameter under ("DATA/Measurement").

Example

A setting of the nominal current with $I_{B}=0.8 . I_{N}$ and selection of an overload factor $K=1.1$
110% reserve) results in a activation point of $0.88 I_{N}$.

Overload protection with thermal image $\vartheta>$						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
tau w	5...60,000 s	Warming-up time constant of the component (see data sheet of the component)	10 sec	1 s		\bullet	\bullet	\bullet
tau c	5...60,000 s	Cooling-down time constant of the component (see data sheet of the component)	10 sec	1 s		\bullet	\bullet	\bullet
Function	"active"	$\vartheta>$ stage is put into function		-		\bullet	\bullet	-
	„inactive"	$\vartheta>$-stage is put out of function	„inactive					
ex block	"active"	$母>$ stage is ineffective when DI "Protect. Block." is active		-		\bullet	-	\bullet
	„inactive"	$\vartheta>$ stage is effective irrespectively of the DI "Protect. Block." State	„inactive"					
trip bloc	"active"	OFF command to the local CB is being blocked in case of overload				\bullet	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued in case of overload	„inactive"					
ϑ Alarm	50..100\%	Activation value for overload alarm (in per cent)	80\%	1\%	$\pm 1 \%$	-	\bullet	-
lb>	$0.5 \ldots 2.4 \times \ln$	Pick-up value for the max. permissible thermal continuous current (basic current) related to the rated current Disengaging ratio 97% or $1 \% \mathrm{x} \ln$	$1 \times \ln$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value or 1\% I_{N}	\bullet	-	\bullet
K	0.8...1.2	Overload factor	1	0.01		\bullet	-	\bullet

Table 5.50: Setting parameters for thermal overload protection

Heating, cooling constants
τ is the time in which the temperature of the operating equipment to be protected has reached 63% of the stationary operating temperature after switching on. This time constant is stated in the data sheet of the electrical equipment as a rule. If τ is unknown, the following rule of thumb is to be used:

With constant current $/$ about 63% of the final temperature has been reached after $t=\tau$. After a time of $t=5 \tau$ the final temperature has practically been reached (99\%).

Attention

The heating time constant and the cooling time constant are equal for cables and transformers without external cooling, whereas they greatly differ from one another for motors!

Tripping characteristic with initial load
Characteristic with complete memory function. The heating caused by the current before the overload happens is taken into account for the thermal replica of the electrical equipment to be protected.

Figure 5.63: Example of a heating with constant current

Note

Further details on the calculation and on the thermal model are listed in the annex. (Calculation, thermal replica)
${ }_{\text {ausl. }}=\operatorname{tau}_{w} \cdot \ln \frac{\left(\frac{1}{K \cdot|\mathrm{l}\rangle}\right)^{2}-\left(\frac{I_{\text {bef }}}{K \cdot|\mathrm{~b}\rangle}\right)^{2}}{\left(\frac{1}{\mathrm{~K} \cdot \mid \mathrm{b}>}\right)^{2}-(\mathrm{K} \cdot \mathrm{lb}>)^{2}}$
। = impressed current
lb> = refer to table
K = refer to table
$\mathrm{I}_{\text {bef }}=$ load current before

5.7.2.7 Automatic reclosing (AR)

Description

The Automatic reclosing (AR) is mainly used for overhead line systems. If a short-circuit occurs here, for example because a branch hits the line, an arc can be caused.
If the arc finds favourable peripheral conditions (supply of energy, length etc.) it can continue stable burning for a while. As a result of a short interruption of the current supply, the arc quenches. It does not re-ignite when the voltage is switched on again, as the primary source of ignition no longer exists (branch has burnt out in the meantime or fallen). After the reclosing, the line can mainly be operated again without faults. Thanks to a quick auto reclosing, the loss of the supply of energy is minimized.

Definition of Terms

"/Current-) protective functions able to initiate an $A R^{\prime \prime}$
These are all those current protective functions which are able to initiate the AR function when adjusted accordingly. In detail these are the followoing stages:

- CSP2-F: $|>F,|>B,| \gg F$, $| \gg B$, $1 \ggg F$, $1 \ggg B$, $l e>F$, $l e>B$, $l e \gg F$ and $l e \gg B$,
- CSP2-L: $|>F,|>B,| \gg F$, $| \gg B$, $l e>F$, $l e>B$, $l e \gg F$, $l e \gg B, \mid d>$ and $\mid d \ggg$.

"AR cycle"

The AR cycle starts as soon as the AR function is activated and stops when the blocking time $t_{\text {rec }}$ has elapsed.

The start of the Automatic reclosing in the CSP2 can be done by:

- each individual stage of the AR-capable (current) protection functions $|>,|\gg,|\ggg,|e>,|e \gg| d$,$\rangle and | d \ggg$ or
- an external signal (active digital input: "AR Start") or
- an undefined circuit breaker trip event (non-correspondence function).

For longer (or permanent) faults, a fast trip function coupled to the AR function can be set in each individual stage of the current protection functions of the CSP2. The parameter "AR-FT" must be set as active in the current protection level selected. The parameter "FT at sh" (fast trip position - can be set from " 0 " to " 6 ") enables placement of the time of the fast trip within the AR cycles, i.e. before or after each attempt at a auto reclosing (shot). The setting "O" means a fast trigger before the first attempt at auto reclosing, the setting " 6 " a fast trip after the last attempt at auto reclosing. A further parameter in each current level can set a delay time for the fast trip (Example: $\Delta>$ F-stage: " $\dagger \mid>F F T^{\prime \prime}=100$ ms).

Parameters

„Function"
With the setting "Function = active" the AR function is generally set into function. The AR function can however only be effective if it is not blocked.

„ex block"

This parameter can only become effective in connection with a digital input onto which the input function "AR blocked" has been assigned to. With an active status of this digital input, the AR function is blocked if the parameter "ex block = active" has been set!

"ex $A R^{\prime \prime}$

If this parameter is set as active, the $A R$ function can also be started from externally. The prerequisite is that the trip signal of the external protection system is connected to a digital input and has been assigned to a corresponding input function which results in a trip via the CSP2 if it is activated. A series of input functions is available for this purpose e.g. "Trip: Prot. 1 (to 6)", "Trip: Temp.", "Trip: Diff." etc.
Parallel to the trigger signal of the external protection device, a further signal which is to effect the start of the $A R$ must be assigned onto a digital input with the input function "AR-Start".

Attention

Only if both signals activate the digital inputs at the same time can the AWE be executed!

"Syncheck" (Synchronity check)

After the start of an $A R$ cycle (complete time from start to blockage of the $A R$ function via the blocking time trec) a synchronity check can be set as an additional condition for the attempt at auto reclosing of the $A R$ function in the CSP2. For this, the parameter "Syncheck" must be active. A release of the switch-on command after the expiry of the break time $t_{D P}$ or $t_{D E}$ is then only given with an active status of the digital input "AR-Syncheck" and taking the set synchronisation time t Syncheck into account. The signal for the digital input is generated by an external synchronicity control relay e.g. if:

- the voltages in front of and behind LS are synchronous (synchronicity control) or
- no voltage exists in front of and behind the CB (dead bar).

"t syncro" (Synchronization time)

After the expiry of each break time $t_{D P}$ or $t_{D E}$ a timer is started, the time window t syncro of which can be parametered. Within this set time, the synchronicity signal must have been generated and have activated the digital input "ARSyncheck". As soon as the digital input has been set, the timer is stopped and the switch-on command released. In the most unfavourable case (synchro check signal only arrives shortly before the expiry of the time) the time is extended up to the auto reclosing by the set synchronization time tsyncro. If the timer nevertheless stops, i.e. if the synchro check signal does not exist within the time window tsyncro, the release for the issue of the switch-on command is blocked and the blocking time t rec starts.

NC-Start (non-correspondence function: undefined circuit breaker trip)
If the CB switched on is not switched off on the basis of a controlled command (either via the CMP, the control technique or a digital input), but goes to the "Off position" by a so-called undefined CB event (non-correspondence position, e.g. tripping by strong vibrations, failure of the mechanics etc.), there is the possibility of starting the AR function automatically. For this, the "NC-Start" parameter must be set as active.

Note

In cases in which the CB can additionally be switched off by external switches, protective relays etc. directly and thus independent of the CSP2, the CSP2 would interpret this process as an undefined CB event (NC position) and immediately initiate an AR. In order to avoid this, the CSP2 must be given the information that this is not an undefined CB incident and a start of the AWE function is blocked via an active digital input "Bypass CB off". This information can be an auxiliary contact of the external switch or a trip signal of the external protection relay connected onto the above mentioned digital input.

Atrention

The digital input "Bypass X CB off" must be activated at least simultaneously with the digital input for the position check-back signal "SG 1 Signal O" (CB OFF position).

"Shots" (auto reclosing attempts)

With this parameter the maximum number of shots for auto reclosing in each start of the AR function is to be set. I.e. in the event of a permanent fault, the $A R$ module will execute the set number of attempts for auto reclosing before the AR function is blocked via the blocking time t rec. Maximum 6 shots are possible via the CSP2.
" t F" (fault time)
The fault time t_{F} states a period of time in which an $A R$ start can become effective at all via the stages of the $A R$ capable (current) protection functions. The timer starts at the same time as the exceeding of the threshold (protection alarm). As soon as the tripping is done, the timer is stopped and the AR function is started. The time is also reset if the protection alarm is so short that it does not lead to a trip. If the timer does stop, i.e. if the trip signal is not available within the time window \dagger wirk, the $A R$ function is not even started.
A reason for this can be that the fault time t_{F} has been set shorter than the tripping delay time of the activated protection function!

Attention

This reason inevitably leads to the fact that the time t_{f} must always be selected longer than the longer tripping delay time of the active protection functions which can start the AR function!

Dead times (e.g. "t DP1" or "t DEI")
After the start of the AR function the timer starts for the first dead time t DPI or t DEI before the first switch-on command is issued. If the fault still exists, this leads to a repeat protection tripping, after whitch the timer is started immediately for the second dead time DP2 or DE2. Thus, the dead times defines the waiting period between a protection trip and the following attempt at repeat switching-on by the AR.
If the AR function has been started by a level of the protection functions $|>,| \gg$ or $\mid \ggg$ or also by an undefined CB incident, the dead time is based on $\dagger D P$ (phase error dead time); if the start is done by one of the protection levels of le> or le>>, accordingly to $\dagger D E$ (earth fault dead time).
In accordance with the maximum number of attempts at auto reclosing, there are 6 dead timer, which can be parameterized individually.

Attention

The release of a auto reclosing command by the AR-function depends, amongst other things, on the check back signal (OFF position) of the circuit breaker. I.e. the auto reclosing command can only be executed protection if the CSP2 has recognized the "SG1 Signal O" check back signal affer the protection trip! As a result, the dead times must be selected in such a way that they are larger that the control time of the circuit breaker needed for the change of position from "CB ON" to "CB OFF"!

!!! Dead time $t_{D P}$ or $t_{D E}>$ control time $t_{s G G 1}!!!$

"t rec" (reclaim time)

The end of the $A R$ cycle is initiated by the reclaim time t rec. While the timer for the reclaim time is running, a repeated start of the $A R$ function is blocked.
The timer is started if:

- the set number of auto reclosing attempts ("Shots") has been reached and the $A R$ was unsuccessful
- or after a successful $A R$
- or if a ON or OFF control command is issued (either via the CMP, SCADA or a digital input) to the circuit breaker.
- other active protection functions such as $\mathrm{U}<, \mathrm{U}>$ etc. during an AR cycle lead to a trip.

Attention

During a permanent fault, only one $A R$ cycle should be started so that the mechanics of the circuit breaker are not overstressed.
The operating time " $t F$ " has to be set longer than the reclaim time " t rec" and thus longer than the longest delay time of the AR-capable current protection stage in order to prevent a (further/second) AR-cycle (after the first has failed that could be initiated by a controlled command.

```
!!! Reclaim time \(\boldsymbol{t}_{\text {rec }}>\) fault time \(\boldsymbol{t}_{\boldsymbol{F}}>\) longest tripping delay time \(\boldsymbol{t}_{\boldsymbol{\prime}} \quad\) !!!
```


"Alarm No." (counter)

This counter counts all the auto reclosing attempts (shots) of all AR cycles and outputs an alarm report (first warning stage) when the set final counter value has been reached.
Resetting of this counter is not automatic, but must be done manually by parameter setting (MODE 2)
"DATA/Parameter/Reset Functions/AR Counter".
"Block No." (counter)
This counter also counts all the auto reclosing attempts (shots) of all $A R$ cycles and outputs an alarm message (second warning level) when the set final counter value has been reached.
Resetting of this counter is simultaneous with the resetting of the counter "Alarm No.".

Automatic reclosing (AR)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Function	"active"	AR is put into function				\bullet	\bullet	\bullet
	„inactive"	$A R$ is put out of function	„inactive"					
ex block	"active"	AR is ineffective when DI "Protect. Block." is active				\bullet	\bullet	\bullet
	„inactive"	AR is effective irrespectively of the DI "AR Protect. Block" state	„inactive"	-				
ex AR	"active"	AR start if the DI "AR Start" is active and at the same time a protective trip occurs via an active digital input, e.g. "Protect. Trip 1").	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	AR start via digital input „AR Start" is out of function						
Syncheck	"active"	AR start only if DI „AR Sy. Check" (synchronizing check signal) is within time frame "t syncheck"	„inactive"	-		\bullet	-	-
	„inactive"	AR start without synchronisation check signal						
NC Start	"active"	AR start when CB is in non-correspondence position	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	No AR start when CB is in non-correspondence position						
† syncheck	$\underset{\mathrm{ms}}{10 \ldots 100,000}$	Synchronizing time (-frame) for a synchronized AR start	$\begin{gathered} 100,000 \\ \mathrm{~ms} \end{gathered}$	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet
shots	$1 . . .6$	Maximum number of reclosing attempts which could be carried out	1	1		\bullet	\bullet	\bullet
\dagger F	$\begin{gathered} 10 \ldots 10,000 \\ \mathrm{~ms} \end{gathered}$	Fault time (fault definition time) for start of the AR function (for AR start via internal current protective functions only)	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet
† DP 1	$\begin{gathered} 100 \ldots 200,000 \\ \mathrm{~ms} \end{gathered}$	Dead time between 1 st protect. trip and the first reclosing attempt in case of phase faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet
+ DP2	$\begin{gathered} 100 \ldots 200,000 \\ \mathrm{~ms} \end{gathered}$	Dead time between 2 nd protect. trip and the second reclosing attempt in case of phase faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet
+ DP3	$\begin{gathered} 100 \ldots 200,000 \\ \mathrm{~ms} \end{gathered}$	Dead time between 3rd protect. trip and the third reclosing attempt in case of phase faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet
+ DP4	$\begin{gathered} 100 \ldots 200,000 \\ \mathrm{~ms} \end{gathered}$	Dead time between 4th protect. trip and the fourth reclosing attempt in case of phase faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet
+ DP5	$\begin{gathered} 100 \ldots 200,000 \\ \mathrm{~ms} \end{gathered}$	Dead time between 5th protect. trip and the fifth reclosing attempt in case of phase faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet
+ DP6	$\begin{gathered} 100 \ldots 200,000 \\ \mathrm{~ms} \end{gathered}$	Dead time between 6th protect. trip and the sixth reclosing attempt in case of phase faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet
† DE 1	$\begin{gathered} \text { 100...200,000 } \\ \mathrm{ms} \end{gathered}$	Dead time between 1 st protect. trip and the first reclosing attempt in case of earth faults	100 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet
† DE2	$\begin{aligned} & 100 \ldots . \ldots 200,000 \\ & \mathrm{~ms} \end{aligned}$	Dead time between 2nd protect. trip and the second reclosing attempt in case of earth faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet

† DE3	$\begin{aligned} & 100 \ldots 200,000 \\ & \mathrm{~ms} \end{aligned}$	Dead time between 3rd protect. trip and the third reclosing attempt in case of earth faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	-	-	\bullet
† DE4	$\begin{aligned} & 100 \ldots 200,000 \\ & \mathrm{~ms} \end{aligned}$	Dead time between 4th protect. trip and the fourth reclosing attempt in case of eartzh faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	-	\bullet	\bullet
+ DE5	$\begin{aligned} & 100 \ldots 200,000 \\ & \mathrm{~ms} \end{aligned}$	Dead time between 5th protect. trip and the fifth reclosing attempt in case of earth faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	-	-	\bullet
t DE6	$\begin{aligned} & 100 \ldots . . .200,000 \\ & \mathrm{~ms} \end{aligned}$	Dead time between 6th protect. trip and the sixth reclosing attempt in case of earth faults	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	-	-	\bullet
† REC.	$\begin{aligned} & \text { 100... } 300,000 \\ & \mathrm{~ms} \end{aligned}$	Reclaim time for AR start	$10,000 \mathrm{~ms}$	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	-	\bullet
Alarm No.	1...65,535	AR counter as first alarm stage when inspection work at the CB is done	1000	1	1	\bullet	-	\bullet
Block. No.	1...65,535	AR counter as second alarm stage when inspection work at the CB is done	65,535	1	1	\bullet	\bullet	\bullet

Table 5.51: Parameter setting „Automatic Reclosing"

5.7.2.8 Control circuit supervision (CCS)

Description

The control circuit supervision entails not only the supervision of the tripping circuit of a connected circuit breaker, but all the control outputs of the circuit breaker from the CSP2 (internal) as well as the control circuits of the connected switchgears (external). The supervision is done according to the closed circuit principle and for normal operation presupposes closed control circuits for switching the electrically controlled switchgears on and off. For the control circuit to be tested, the relay contacts are closed to start with. Then, a current impulse of 5 mA is fed into the control circuit from a separate source of energy.
If an interrupted control circuit is detected, there is a corresponding alarm generated, which is available for display and evaluation via the CMP/CSP system or the SCADA. A detected CCS fault remains active as a signal until eliminated and is not overwritten by the testing of the other control circuits.

Initiation of the control circuit supervision in fault-free operation:

- The supervision of the entire control circuits is done cyclically as a function of the setting of the time interval via the parameter "CCS main".
- After a control command has been given, the control circuit assigned to this control command is tested before switching, i.e. switching of the corresponding relay contacts of the power circuit.
- Before an ON control command is issued to the circuit breaker, the tripping circuit of the CB is tested in order to guarantee that the CB can also trip in the event of switching onto a fault.

Initiation of the control circuit supervision in operation with faults:

- If the control time set for a switchgear is exceeded in a switching action, a CCS test is initiated straight away.
- If the CCS is activated (parameter setting), an CCS test is initiated immediately.
- In acknowledgement of an CCS alarm, the control circuit determined to be faully is examined again.
- When a fault found in the CB trip circuit is eliminated and acknowledged, a complete CCS test is held before the next switch-on command for the circuit breaker.

Switching capacity of the switchgears
In the switchgear control by the CSP2 please ensure that the consumpted switching capacity of the drives ION/OFF coils of the circuit breakers, motors) does not exceed the maximum switching capacity of the control outputs of the CSP2 (see Chapter "Technical Data").

Supervision functions of the control circuit supervision (CCS)

- Loss of control auxiliary voltage
- The control auxiliary voltage LA+/LA- for the power circuits is permanently supervised for failure. A failure of this auxiliary voltage is detected immediately as a signal and processed accordingly (message to host computer and display via CMPI).
- Cable break in control circuit and
- Short-circuit in control circuit.

CSP2

Figure 5.64: Principle of control circuit supervision (CCS)

Breaking contacts in the control circuits

In order to be able to make use of the control circuit supervision for the circuit breaker in the use of CB auxiliary contacts in front of the tripping coil, a resistor must be arranged on the feed-in side of the auxiliary contacts -see Figure 5.45. This auxiliary contact interrupts the feed of energy to the tripping coil if the CB has been switched off successfully and protects the coil against thermal overload in permanently available switch-off commands. After this interruption, no closed circuit (principle) supervision would be possible any more. Here, the projected resistor however permits a small test current. In this way, it is possible to examine the tripping coil for breakage even if the CB has been switched off. The resistor must be surge voltage resistant, as the switch-off voltage
$u=U_{v}+L_{A} d i / d t$
with: U_{v} : supply voltage of the power outputs
L_{A} : inductivity of the tripping coil
drops via it.

Attention

The resistor must be sufficiently dimensioned for this voltage! As a rule, a resistor with $1 \mathrm{k} \Omega / 2 \mathrm{~W}$ is sufficient.

Parameters

"Function"

With the setting "Function = active" the control circuit supervision (CCS) is generally set into function. The CCS function can however only be effective if it is not blocked.
"ex Block"
This parameter can only become effective in connection with a digital input onto which the input function "Prot. block." has been assigned to. With an active status of this digital input, the levels of the protection functions which are set to "ex Block = active" are blocked!

"CCS Main Test"

In the CCS main test, all the control circuits are checked cyclically. With the parameter "CCS main " the time interval after which the main test is to be done is set.

"SGX"

Depending on the type of device and application (field configuration) of the CSP2 device, a varying number of switchgears can be electrically controlled via the CSP2 and thus monitored by the CCS. The parameters "SG1" to "SG5" can be used for separate setting of whether the CCS is to act on the individual control outputs or not.

Note

Of the parameters "SG1" to "SG5" only those which have been defined for electrically controllable switchgears are displayed as parameterizable.

Control Circuit Supervision (CCS)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Function	"active"	CCS is put into function	"inactive"			-	-	-
	"inactive"	CCS is put out of function						
Ex Block	"active"	CCS function is ineffective when DI „Protect. Block." is active	„inactive"	-		\bullet	-	\bullet
	„inactive"	CCS function is effective irrespectively of the DI "Protect. Block." state						
CCS main	3... 200 h	Setting of the time interval for a cyclic CCS test of all control outputs	"6 h"	1 h	$\pm \underset{h}{ \pm 2 \min _{h} \text { per }}$	-	\bullet	\bullet
SG1	"active"	CCS function checks the SG1 control output	"active"	.		\bullet	-	\bullet
	„inactive"	CCS function does not check the SG1 control output						
SG2	"active"	CCS function checks the SG2 control output	„inactive"			\bullet	\bullet	-
	"inactive"	CCS function does not check the SG2 control output						
SG3	"active"	CCS function checks the SG3 control output	„inactive"			\bullet	\bullet	-
	„inactive"	CCS function does not check the SG3 control output						
SG4	"active"	CCS function checks the SG4 control output	„inactive"					-
	"inactive"	CCS function does not check the SG4 control output						
SG5	"active"	CCS function checks the SG5 control output	„inactive"					\bullet
	„inactive"	CCS function does not check the SD5 control output						

Table 5.52: Setting parameters of the control circuit supervision (CCS)

5.7.2.9 Over/under-frequency protection $\mathbf{f} \mathbf{1}>/<, \mathrm{f} 2>/<, \mathrm{f} 3>/<, \mathrm{f} 4>/<$

Description

The frequency measurement is based on a time measurement between the zero passages of the recorded voltages of the first and third measurement channel (X5.5, X5.6). As a function of the voltage measurement circuit selected (Y connection or Δ or V -connection), the recorded voltage is then either the phase voltage U_{13} (Y -connec-tion) or the line to line voltage U_{31} (Δ or V-connection). The frequency is calculated on base of the period interval. In order to suppress transient disturbances and fluctuations in the display, the frequency measurement is carried out with a quadruple measurement repetition.
The frequency protection has been designed four-staged, and each stage can be set as an under-frequency or overfrequency stage.

Parameters

"U BF" (measurement voltage threshold to the blockade of the frequency protection)
As the determination of the existing mains frequency results from the measurement of the mains voltage, it may not exceed a threshold, as otherwise no unambiguous frequency determination is guaranteed and this can lead to faulty trips (e.g. when starting a generator). This threshold is set via the parameter "U BF". So if this threshold is fallen short of in one of the phases $L 1, L 2$ or $L 3$ or if one (or more) phases fail, the frequency protection is blocked (ineffective) as a function of the parameters "UBF" and " $\dagger B F^{\prime \prime}$.
"t BF" (blockade delay time of the frequency protection)
If a measurement voltage drops below the threshold defined by "U BF", the frequency protection is only blocked after the expiry of a blockade delay time $\dagger B F$ (ineffective).
The blockade delay time $t B F$ must be faster than the activation time of the frequency protection. For this reason, the parameter " $t \mathrm{BF}$ " is fixed at 50 ms and cannot be altered.
"t block" (blockade persistence duration of the frequency protection)
The blockade persistence period states how long the frequency stages are to be blocked after the measurement voltage has been switched (mains recovering time). In this way, a pre-activation of the frequency protection after switching the measurement voltage is to be prevented. However, this period is only started when all three measurement voltages exceed the threshold $U B F$.

Note

The settings of the parameters:

- " U BF": measurement voltage threshold for blocking the frequency protection
- " $\dagger B F^{\prime \prime}$: delay time until the blockade of the frequency protection and
- "t block": blockade persistence period of the frequency protection
apply for all four stages of the frequency protection together!

Example

System Parameter			
	VT - Connection	U_{N}	
$U B F=0.5 U_{N}$	Y	100 V	$\begin{aligned} & U_{\text {siback }} \text { by } U_{I N} \leq 50 \mathrm{~V} \\ & \mathrm{U}_{\text {Resese }} \text { by } U_{I N} \geq 55 \mathrm{~V} \end{aligned}$
$U B F=0.8 U_{N}$	Δ	100 V	$\begin{aligned} & U_{\text {block }} \text { by } U_{U 1} \leq 80 \mathrm{~V} \\ & U_{\text {Reapose }} \text { by } U_{U} \geq 88 \mathrm{~V} \end{aligned}$

Figure 5.65: Blocking of the frequency protection

"Function"

With the setting "Function = active" the corresponding stage of the frequency protection is generally set into function. The protection stage can however only be effective if it is not blocked.

"ex block"

This parameter can only become effective in connection with a digital input onto which the input function "Prot block." has been assigned to. With an active status of this digital input, the stages of the protection functions which are set to "ex block = active" are blocked!
„tripbloc" (blockage of the OFF command for the circuit breaker)
Only the switch-off command to the circuit breaker is blocked. After the expiry of the trip delay, a "Trip: XY" signal and the signal "General Trip" are nevertheless generated and are available for the communication to SCADA as output messages of the LED display, the further processing via signal relays or as messages (data points).

Threshold of the protection stage (e.g. "fl")
Four protection stages (switching points) are available for the frequency protection. Each stage can be set either as an over-frequency ($f_{>}$) or under-frequency supervision ($f<$). Whether a level acts as $f_{>}$or as $f_{<}$depends on whether the set value is above or below the selected nominal frequency fn. For this, the nominal frequency must be set in the "DATA\Parameter\Field settings" pre-settings: "fn". A separate delay time exists for all the stages.
In order to avoid false tripping and false interpretations of the frequency stages, no values can be set in a blocked area ranging to $\pm 0.2 \%$ of f_{N}.

Tripping delay time of the protective stage (e.g. "t fi")
A separate trip delay time can be set for each of the four protection stages. This parameter determines the trip delay of the protection stage through setting a defined time.

Frequency protection (Common parameters for all stages)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
U BF	$0.1 \ldots 1 \times$ Un	Lower threshold value of the measuring voltage for blocking the frequency protection. 10\% Hysteresis.	$0.1 \times$ Un	$0.001 \times U n$	$\pm 1 \%$ of the adjustment value or $0.5 \% U_{N}$	-	\bullet	\bullet
t BF	50 ms	Delay time for blocking the frequency protection	Fixed	-		-	-	-
t block	$\begin{gathered} 100 \ldots \\ 20,000 \mathrm{~ms} \end{gathered}$	Persistance duration for blocking the frequency protection	2000 ms		$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	-	-	-
Frequency Protection - $\mathbf{1}^{\text {st }}$ stage						-	\bullet	\bullet
Function	"active"	1 st frequency stage is put into function		-		-	\bullet	-
	„inactive"	1 st frequency stage is put out of function	„inactive"					
ex block	"active"	Function of $1^{\text {st }}$ frequency stage is ineffective when DI: „Protect. Block." is active		-		-	\bullet	-
	„inactive"	Function of $1^{s 4}$ frequency stage is effective irrespectively of the DI „Protect. Block." state	„inactive"					
tripbloc	"active"	OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued	„inactive"					
$f 1$	$40 \ldots 70 \mathrm{~Hz}$	Pick-up value of the 1^{s} frequency stage as absolute value Disengaging ratio for under frequency 99.8% of the adjustment value Disengaging ratio for over frequency 100.2% of the adjustment value	51 Hz	0.01 Hz	$\begin{aligned} & <0.05 \text { of } \\ & \text { rated } f_{N} \end{aligned}$	-	\bullet	\bullet
+fl	$\begin{gathered} 100 \ldots \\ 300,000 \mathrm{~ms} \end{gathered}$	Trip time delay of the $1^{\text {st }}$ frequency stage	100 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 40 \mathrm{~ms}$	-		
Frequency Protection - $2^{\text {nd }}$ stage						-	\bullet	\bullet
Function	"active"	$2^{\text {nd }}$ frequency stage is put into function		-		-	\bullet	\bullet
	„inactive"	$2^{\text {nd }}$ frequency stage is put out of function	„inactive"					
ex block	"active"	Function of $2^{\text {nd }}$ frequency stage is ineffective when DI: „Protect. Block." is active		-		-	\bullet	\bullet
	„inactive"	Function of $2^{\text {nd }}$ frequency stage is effective irrespectively of the DI "Protect. Block." state	„inactive"					
tripbloc	"active"	OFF command to the local CB is being blocked		-		-	-	\bullet
	„inactive"	OFF command to the local CB is being issued	„inactive"					
f2	$40 \ldots 70 \mathrm{~Hz}$	Pick-up value of the $2^{\text {nd }}$ frequency stage as absolute value Disengaging ratio for under frequency 99.8% of the adjustment value Disengaging ratio for over frequency 100.2% of the adjustment value	52 Hz	0.001 Hz	$\begin{aligned} & <0.05 \text { of } \\ & \text { rated } f_{N} \end{aligned}$	-	\bullet	-
t f2	$\begin{gathered} 100 \ldots \\ 300,000 \mathrm{~ms} \end{gathered}$	Trip time delay of the $2^{\text {nd }}$ frequency stage	100 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 40 \mathrm{~m}$	-	-	\bullet
Frequency Protection - $3^{\text {rd }}$ stage						-	\bullet	\bullet
Function	"active"	$3^{\text {rd }}$ frequency stage is put into function		-		-	\bullet	-
	„inactive"	$3^{\text {rd }}$ frequency stage is put out of function	„inactive"					
ex block	"active"	Function of $3^{\text {rd }}$ frequency stage is ineffective when DI: „Protect. Block." is active		-		-	\bullet	-
	„inactive"	Function of $3^{\text {rd }}$ frequency stage is effective irrespectively of the DI „Protect. Block." state	„inactive"					
tripbloc	"active"	OFF command to the local CB is being blocked		-		-	-	-
	„inactive"	OFF command to the local CB is being issued	„inactive"					

$f 3$	40...70 Hz	Pick-up value of the $3^{\text {td }}$ frequency stage as absolute value Disengaging ratio for under frequency 99.8% of the adjustment value Disengaging ratio for over frequency 100.2% of the adjustment value	49 Hz	0.001 Hz	$\begin{aligned} & <0.05 \text { of } \\ & \text { rated } f_{N} \end{aligned}$	-	\bullet
t f3	$\begin{gathered} 100 \ldots \\ 300,000 \mathrm{~ms} \end{gathered}$	Trip time delay of the $3^{\text {rd }}$ frequency stage	100 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 40 \mathrm{~m}$	-	
Frequency Protection - $\mathbf{4}^{\text {th }}$ stage						-	\bullet
Function	"active"	$4^{\text {th }}$ frequency stage is put into function		-		-	\bullet
	„inactive"	$4^{\text {th }}$ frequency stage is put out of function	"inactive"				
ex block	"active"	Function of $4^{\text {th }}$ frequency stage is ineffective when DI: „Protect. Block." is active		-		-	\bullet
	„inactive"	Function of $4^{\text {th }}$ frequency stage is effective irrespectively of the DI "Protect. Block." state	"inactive"				
tripbloc	"active"	OFF command to the local CB is being blocked		-		-	\bullet
	„inactive"	OFF command to the local CB is being issued	„inactive"				
¢4	$40 . .70 \mathrm{~Hz}$	Pick-up value of the 4^{h} frequency stage as absolute value Disengaging ratio for under frequency 99.8% of the adjustment value Disengaging ratio for over frequency 100.2% of the adjustment value	48 Hz	0.001 Hz	$\begin{aligned} & <0.05 \text { of } \\ & \text { rated } f_{N} \end{aligned}$	-	\bullet
t $\dagger 4$	$\begin{gathered} 100 \ldots \\ 300,000 \mathrm{~ms} \end{gathered}$	Trip time delay of the $4^{\text {th }}$ frequency stage	100 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 40 \mathrm{~m}$		\bullet

Table 5.53: Setting parameters for frequency protection (over-/under-frequency)

5.7.2.10 Overvoltage protection $U>, U \gg /$ undervoltage protection $U<, U \ll$

Description

The voltage protection functions in the CSP2, which are phase selective, are designed as two-stage overvoltageand undervoltage protection. If the CSP2 system is connected to a four-wire system with star point, the line conductor or phase voltages can optionally be set as threshold for the voltage protection. If the voltage measurement circuits of the CSP2 are switched in delta connection, only the line conductor voltage can be evaluated in the protection.

Parameters

"Measurement" (selection of the voltage protection criterion)
As a function of the kind of voltage measurement circuit (Y, Δ or V-connection) the line conductor or the phase voltage can be selected as a protection criterion for both the over-voltage as also for the under-voltage protection. The pick-up values of the individual protection stages are adjusted as relative values, related to the rated quantity Un. Dependent on the setting of parameter "Measurement", the rated quantity Un is either defined as line conductor voltage ULI (line-to-line voltage) or phase voltage ULN.

Settings:

"Voltage LN": The pick-up value is related to the phase voltages. In this case the factor to be adjusted is also put in without considering factor „ $\sqrt{ }{ }^{\prime \prime}$.
"Voltage LL": The pick-up value is related to the line-to-line voltages. In this case the factor to be adjusted is also put in without considering factor " $\sqrt{ } 3$ ".

"Function"

With the setting "Function = active" the corresponding stage of the voltage protection functions is generally set into function. The protection stage can however only be effective if it is not blocked.

"ex block"

This parameter can only become effective in connection with a digital input onto which the input function "tripbloc" has been assigned to. With an active status of this digital input, the stages of the protection functions which are set to "ex block = active" are blocked!
"tripbloc" (blockage of the OFF command for the circuit breaker)
Only the switch-off command to the circuit breaker is blocked. After the expiry of the tripping delay, a "Trip XY" signal and the signal "General trip" are nevertheless generated and are available for the communication to SCADA as output messages of the LED display, the further processing via report relays or as reports (data points).
"Pick-Up Value" (e.g. "U>")
Two stages (U>/U>>, U</U<<) with separately set tripping delays are available for each of the over and undervoltage protection.
"Tripping delay time" (e.g. „t U>")
If a threshold is exceeded in at least one phase and after the expiry of the tripping delay, the trip or signal takes place.

Remark on the voltage monitoring

The kind of connection of the voltage transformers is selected in the "Field settings parameter " $V T$ con" menu. Depending on the measuring circuit, a selection can be made between star, delta, V-connection and no measurement (Voltage Measurement). The primary nominal voltage "VT prim" and the secondary nominal voltage "VT sec" are likewise set in the "Feeder ratings" menu.

Examples for setting of the threshold for voltage protection functions

Attention

All adjustable thresholds $U<, U \ll, U>$ and $U \gg$ of the voltage protection functions are related to the adjustments of the parameter "Measurement" in the menu "Voltage Protective Functions"!
$1^{\text {st }}$ Measuring of the voltage in star connection (Y):

Figure 5.66: Star Connection ("Y")

Example I: If the default setting of the pick up refers to line-to-line-voltage ULL I
Field parameter: "VT Treatm. $=Y^{\prime \prime}$ (Star connection: Measuring of the line-to-line voltages)
"VT prim. $=6000$ V" (primary line-to-line voltage)
${ }^{\text {"VT sec }}=100 \mathrm{~V}$ " (secondary line-to-line voltage)
Protect. parameter: „Measuring = Voltage LL" (Un = VT sec)
The pick-up value for the first stage of the undervoltage protection function $U<$ is to be set to 50% of the line-to-line voltage Uu!!
\Rightarrow Setting of the pick-up value: " $U<=0.5 \times U n "$

Example 2: If the default setting of the pick-up value refers to the phase voltage ULN
Field parameter: "VT Treatm. $=Y^{\prime \prime}$ (Star connection: Measuring of the phase voltages)

$$
\text { "VT prim. }=6000 \text { V" (primary phase voltage) }
$$

$$
\text { "VT sec. }=100 \mathrm{~V} \text { " (secondary phase voltage) }
$$

Protect. parameter: "Measuring = Voltage LN" (Un = VT sec/ $\sqrt{ } 3)$
The pick-up value for the first stage of the undervoltage protection function $U<$ is to be set to 50% of the phase voltage ULN!
\Rightarrow Setting of the pick-up value: " $U<=0,5 \times U n "$
$2^{\text {nd }}$ Measuring of the voltage in delta connection (Δ):

Figure 5.67: Delta connection („, $\Delta^{\prime \prime}$)

Example: If the default setting of the pick-up value refers to line-to-line-voltage ULL
Field parameter: "VT Treatm. $=\Delta$ " (Delta connection: Measuring of the line-to-line voltages)
"VT prim. $=6000$ V" (primary line-to-line voltag)
"VT sec $=100 \mathrm{~V}$ " (secondary line-to-line voltage)
Protect. parameter: "Measuring = Voltage LL" (Un = VT sec)
The pick-up value for the first stage of the undervoltage protection function $U<$ is to be set to 50% of the line-to-line voltage Ulu!
\Rightarrow Setting of the pick-up value: "U<=0.5 \times Un"

Note

The setting "Measuring = Voltage $L N$ " is not permitted in delta connection because in this connection only line-to-line voltages can be measured!

Overvoltage protection U> (1st stage)

Available in CSP2-

Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance
evaluate (Measur- ing)	Inactive	No voltage measuring	"Measuring แL"		
	Voltage LN	Measuring of the phase voltages			
	Voltage LL	Measuring of the line-to-line voltages			
Function	"active"	U> stage is put into function	„inactive"		
	"inactive"	U> stage is put out of function			
ex block	"active"	U> stage is ineffective when the DI "Protect. Block." is active	„inactive"	-	
	„inactive"	U> stage is effective irrespectively of the DI "Protect. Block" state			
tripbloc	"active"	Off command to the local CB is being blocked	„inactive"		
	„inactive"	Off command to the local CB is being issued			
U>	0.01 ... $2 \times$ Un	Pick-up value of the 1 st overvoltage stage related to the rated voltage Disengaging ratio 97% of the adjustment value or $0.5 \% \times U n$	„1.1 x Un"	$0.001 \times$ Un	$\pm 2 \%$ of the adjustment value or $1.5 \% U_{\mathrm{N}}$
t U >	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay	„200 ms"	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$

- - -

Table 5.54: Setting parameters for overvoltage protection

Undervoltage protection $\boldsymbol{U}<$ (1 st step)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
evaluate (Measuring)	Inactive	No voltage measuring	"Measuring LL"			\bullet	\bullet	\bullet
	Voltage LN	Measuring of the phase voltages						
	Voltage LL	Measuring of the line-to-line voltages						
Function	"active"	$U<$ stage is put into function	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	$U<$ stage is put out of function						
ex block	"active"	U< stage is ineffective when the DI „Protect. Block." Is active		-		\bullet	\bullet	-
	„inactive"	U< stage is effective irrespectively of the DI "Protect. Block" state	„inactive"					
tripbloc	"active"	Off command to the local CB is being blocked	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	Off command to the local CB is being issued						
U<	0.01... $2 \times$ Un	Pick-up value of the 1st undervoltage stage related to the rated voltage Disengaging ratio 103% of the adjustment value or 0.5\% xUn	${ }^{\prime} 0.9 \times$ Un"	$0.001 \times$ Un	$\pm 2 \%$ of the adjustment value or $1.5 \% U_{N}$	\bullet	\bullet	\bullet
+ U<	$\begin{gathered} 30 \ldots 300000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay	„200 ms"	1 ms	$\pm 1 \%$ of the adjustment value or ± 20 ms	-	\bullet	\bullet
		Undervoltage Protection $\mathbf{U} \ll\left(2^{\text {nd }}\right.$ step)				Available in CSP2-		
Function	"active"	$U \ll$ stage is put into function	„inactive"	-		\bullet	\bullet	\bullet
	„inactive"	$U \ll$ stage is put out of function						
ex block	"active"	U<< stage is ineffective when the DI "Protect. Block." is active		-		-	\bullet	\bullet
	„inactive"	U<< stage is effective irrespectively of the DI "Protect. Block" state	„inactive"					
tripbloc	"active"	Off command to the local CB is being blocked	„inactive"	-		\bullet	-	\bullet
	„inactive"	Off command to the local CB is being issued						
U<<	$0.1 \ldots 2 \times$ Un	Pick-up value of the 2nd undervoltage stage related to the rated voltage Disengaging ratio 103% of the adjustment value or 0.5% xUn	"0.8 \times Un"	$0.001 \times$ Un	$\pm 2 \%$ of the adjustment value or $1.5 \% \mathrm{U}_{\mathrm{N}}$	\bullet	\bullet	\bullet
+ U<<	$\begin{gathered} 30 \ldots 300000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay	„100 ms"	1 ms	$\pm 1 \%$ of the adjustment value or ± 20 ms	\bullet	\bullet	\bullet

Table 5.55: Setting parameters for undervoltage protection

5.7.2.11 Residual voltage monitoring Ue>, Ue>>

Description

The residual voltage Ue (also called star-point voltage) is a measure for the displacement of the star point from its normal position in a symmetrical system (earth potential). In isolated mains the residual voltage is a variable for recognition of shorts to earth. Although a defined star point does not physically exist in such a system, this "fictitious" point can be monitored. The residual voltage determined is compared with the set threshold. The function is twostaged.

Measurement method

The detection of the residual voltage Ue can be done either by a direct measurement via a separate voltage measurement input (connection of the e-n coils) or by calculation via the calculation from the phase voltages.

Note

Depending on the measurement method selected, the corresponding settings must be made under "Parameter/Field settings". Explanations, see parameter description:
"EVTcon" (measurement of the residual voltage)
"EVTprim" (primary nominal value of the earth current transformer)
"EVTsec" (secondary nominal value of the e-n coil of the voltage transformers)

Parameters

"Function"
With the setting "Function = active" the corresponding stage of the residual voltage protection functions is generally set into function. The protection level can however only be effective if it is not blocked.

"ex block"

This parameter can only become effective in connection with a digital input onto which the input function "Prot block. " has been assigned to. With an active status of this digital input, the stages of the protection functions which are set to "ex block = active" are blocked!
"tripbloc" (blockage of the OFF command for the circuit breaker)
Only the switch-off command to the circuit breaker is blocked. After the expiry of the tripping delay time, a "trip XY" signal and the signal "General trip" are nevertheless generated and are available for the communication to SCADA as output messages of the LED display, the further processing via signal relays or as messages (data points).

Residual voltage threshold of the protection stage (e.g. "Ue>")
For the residual voltage supervision, two stages (UE>, UE>>/ with separately set delay times are available. If the set value is exceeded (e.g. "Ue>") the protection stage is activated.

Trip delay of the protection stage (e.g. "t Ue>")
After the expiry of the set delay time (e.g. "t Ue>") a trip command is issued to the circuit breaker. The residual voltage supervision is however merely used as a warning as a rule and is not planned for the tripping of the circuit breaker. Separate settings are possible for both stages.

Residual voltage supervision: Ue> (1st stage)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Function	"active"	Ue> stage is put into function				\bullet	\bullet	\bullet
	„inactive"	Ue> stage is put out of function	„inactive"					
ex block	"active"	Ue> stage is ineffective when the DI „Protect. Block." is active		-		\bullet	-	-
	„inactive"	Ue> stage is effective irrespectively of the DI "Protect. Block" state	„inactive"					
tripbloc	"active"	Off command to the local CB is being blocked				\bullet	-	\bullet
	„inactive"	Off command to the local CB is being issued	"inactive"					
Ue>	0.01... $2 \times$ Un	Pick-up value of the residual voltage related to its rated value which is defined by the rated field data Disengaging ratio 97% of the adjustment value or $0.5 \% x$ Un	$0.1 \times$ Un	0.001	$\pm 2 \%$ of the adjustment value or $0.5 \% U_{N}$	\bullet	\bullet	\bullet
† Ue>	$\begin{gathered} 30 \\ \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay	200 ms	1 ms	$\pm 1 \%$ of the adjustment value or ± 20 ms	\bullet	\bullet	\bullet
	Residual voltage supervision: Ue>> (2nd stage)						ilabl SP2	
Function	"active"	Ue>> stage is put into function		-		\bullet	\bullet	-
	„inactive"	Ue>> stage is put out of function	„inactive"					
ex block	"active"	Ue>> stage is ineffective when the DI "Protect. Block." is active		-		\bullet	-	-
	„inactive"	Ue>> stage is effective irrespectively of the DI "Protect. Block" state	„inactive"					
tripbloc	"active"	Off command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	Off command to the local CB is being issued	„inactive"					
Ue>>	0.01... $2 \times$ Un	Pick-up value of the residual voltage related to its rated value which is defined by the rated field data Disengaging ratio 97\% of the adjustment value or $0.5 \% \times U n$	$0.2 \times$ Un	0.001	$\pm 2 \%$ of the adjustment value or $0.5 \% U_{N}$	\bullet	\bullet	\bullet
† Ue>>	$\begin{gathered} 30 \\ \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay	100 ms	1 ms	$\pm 1 \%$ of the adjustment value or ± 20 ms	\bullet	\bullet	-

Table 5.56: Setting parameters for residual voltage

5.7.2.12 Power/reverse power protection $\mathrm{P}>, \mathrm{P} \gg$, $\mathrm{Pr}>$, $\mathrm{Pr} \gg$

Description
This protection function is based on the three-phased active power. If the current transformers are star connection, the three-phased active power results from the sum of the power in each phase. If the voltage transformers are in a delta connection, the CSP2 determines the active power according to the principle of the Aron circuit (see annex) from two currents $\left(I_{L 1}\right.$ and $\left.I_{13}\right)$ and two line-to-line voltages $\left(U_{12}\right.$ and $\left.U_{32}\right)$.

Function

By the setting "Function = active", the respective stage of the power protection or reverse power protection is put into function, but the protective step can only be effective if it is not blocked!

"ex block"

This parameter can only be activated in correlation with a digital input where the input function "Protection Block." is assigned to. When this digital input is activated, all those stages of the protective functions are blocked which are parameterised with "ex block = active".

"tripbloc"

Here only the OFF command to the circuit breaker is blocked. But after the trip time delay has elapsed, the messages "Trip: XY" and "General Trip" are generated which are available as output messages for LED indications, for processing via signal relays or as messages (data points) for communication with the SCADA-system.

Threshold of the protective stage (e.g. "P>")
The directional power protection in the CSP2 is based on supervision the active power and its power direction. The reference direction of the active power is pre-defined and is positive from the busbar side to the feeder side lactive power output). In opposite direction (active power input), a negative active power is then measured. The stages for the power direction (forward or reverse) are of two-staged and have separately adjustable trip delays. Thus it is possible that one stage is set for Warning and the other one for Tripping. The pick-up value always refers to the adjusted rated power P_{N}.

Trip time delay of the protection stage (e.g. „t $P>$ ")
For each of the protective stages a separate trip delay can be adjusted. This parameter determines the trip delay of the protection stage by a specified time.

Protection power and reverse power (common parameters for all stages)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Pn	$\begin{gathered} 1 . . .50,000,000 \\ \text { kW } \end{gathered}$	Rated Power	17300	1 kW		-	\bullet	\bullet
Reverse power protection Pr> (1st stage)						-	\bullet	\bullet
Function	"active"	$\mathrm{Pr}>$ stage is put into function		-		-	\bullet	\bullet
	„inactive"	Pr> stage is put out of function	„inactive"					
ex block	"active"	Pr> stage is ineffective when the DI „Protect. Block." is active		-		-	\bullet	-
	„inactive"	Pr> stage is effective irrespectively of the DI "Protect. Block" state	„inactive"					
tripbloc	"active"	Off command to the local CB is being blocked	„inactive"	-			\bullet	\bullet
	„inactive"	Off command to the local CB is being issued						
Pr>	0.1...0. \times Pn	Pick-up value of the Pr> stage related to the rated power Disengaging ratio 97% of the adjustment value or $0.5 \% \times P n$	"0.05 x Pn"	$0.001 \times \mathrm{Pn}$	$\pm 3 \%$ of the adjustment value bzw $0.5 \% P_{N}$	-	\bullet	\bullet
\dagger Pr>	$\begin{aligned} & \text { 100...300,000 } \\ & \text { ms } \end{aligned}$	Trip time delay of the $\mathrm{Pr}>$ stage	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$			
Reverse power protection Pr>> (2nd stage)						-	\bullet	\bullet
Function	"active"	$\mathrm{Pr} \ggg$ stage is put into function	„inactive"	-		-	\bullet	\bullet
	„inactive"	$\mathrm{Pr} \gg$ stage is put out of function						
ex block	"active"	Pr>> stage is ineffective when the DI „Protect. Block." is active		-		-	\bullet	\bullet
	„inactive"	Pr>> stage is effective irrespectively of the DI "Protect. Block" state	„inactive"					
tripbloc	"active"	Off command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	Off command to the local CB is being issued	„inactive"					
Pr>>	$0.01 \ldots 0.5 \times \mathrm{Pn}$	Pick-up value of the Pr>> stage related to the rated power Disengaging ratio 97% of the adjustment value or $0.5 \% \times \mathrm{Pn}$	"0.1 x Pn"	$0.001 \times \mathrm{Pn}$	$\pm 3 \%$ of the adjustment value bzw $0.5 \% \mathrm{P}_{\mathrm{N}}$	-	\bullet	\bullet
† Pr>>	$\begin{gathered} 100 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay of the Pr>> stage	500 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	-	\bullet	\bullet
Power protection P> (1st stage)						-	\bullet	\bullet
Function	"active"	$P>$ stage is put into function				-	\bullet	\bullet
	„inactive"	$P>$ stage is put out of function	„inactive"					
ex bloc	"active"	P> stage is ineffective when the DI „Protect. Block." is active		-		-	-	-
	„inactive"	$\mathrm{P}>$ stage is effective irrespectively of the DI "Protect. Block" state	„inactive"					
tripbloc	"active"	Off command to the local CB is being blocked		-		-	-	\bullet
	„inactive"	Off command to the local CB is being issued	„inactive"					
$P>$	0.01... $2 \times \mathrm{Pn}$	Pick-up value of the $P>$ stage related to the rated power Disengaging ratio 97% of the adjustment value or $0.5 \% \times P n$	${ }^{1} 1.0 \times \mathrm{Pn}{ }^{\prime}$	$0.001 \times \mathrm{Pn}$	$\pm 3 \%$ of the adjustment value bzw $0.5 \% P_{N}$	-	\bullet	\bullet
$\dagger \mathrm{P}>$	$\begin{gathered} \text { 100...300,000 } \\ \mathrm{ms} \end{gathered}$	Trip time delay of the $\mathrm{P}>$ stage	1000 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	-		

Function	"active"	$P \gg$ stage is put into function	"inactive"	-			\bullet	\bullet
	„inactive"	$P \gg$ stage is put out of function						
ex block	"active"	P>> stage is ineffective when the DI „Protect. Block." is active		-		-	\bullet	\bullet
	„inactive"	P>> stage is effective irrespectively of the DI "Protect. Block" state	„inactive"					
tripbloc	"active"	Off command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	Off command to the local CB is being issued	„inactive"					
P>>	0.01... $2 \times \mathrm{Pn}$	Pick-up value of the P>> stage related to the rated power Disengaging ratio 97% of the adjustment value or $0.5 \% \times P n$	"1.2 P Pn"	$0.001 \times \mathrm{Pn}$	$\pm 3 \%$ of the adjustment value bzw $0.5 \% \mathrm{P}_{\mathrm{N}}$		\bullet	\bullet
\dagger P>>	$\begin{gathered} \text { 100... } 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay of the $\mathrm{P} \gg$ stage	500 ms	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	-	-	-

Table 5.57: Setting parameters of the protection for power and reverse power

5.7.2.13 Circuit Breaker Failure (CBF) protection

Description

The CSP2 protection and control system has an integrated, single-staged circuit breaker failure protection (CBF). The "current flow zero« principle is used as the criterion for a circuit breaker failure.
After a protection trip, the CSP2 expects the current to have dropped below a set zero current threshold "I CBF" within the parameterized switch-off time " $t C B F$ " for the power switch.
At the expiry of half of the set switch-off time " $t C B F^{\prime \prime}$ the CSP2 compares the measured current with the set zerocurrent threshold "I CBF". If the current value is above the zero-current threshold at this time, a second OFF command is issued to the circuit breaker. After expiry of the complete switch-off time, the measured current is again compared with the zero-current threshold. If the measured current value is then again higher than the set zero-current threshold, the CSP2 reports a local circuit breaker failure ("CBF alarm")! The protection therefore detects if a switch-off command to a local circuit breaker has not been performed correctly.

In order to protect the switchgear according, a command can now be given to the circuit breaker of the superior protection device (CSP2). For this, a signal relay with the output messages "CBF-Alarm" is to be assigned. The contact of this signal relay is then to be wired to a digital input (which is assigned to the input function "CB-failure"). If a circuit breaker failure of the local protective device is detected, the circuit breaker of the superior protection device is switched off without a delay via its digital input.
Accordingly a digital input for processing of an external circuit breaker failure signal from an inferior circuit breaker can be provided in the local CSP2. In such a case, there is an undelayed trip command to the local circuit breaker from the local CSP2.

Parameters

"Function"
With the setting "Function = active" the Circuit Breaker Failure (CBF) is generally set into function. The protection stage can however only be effective if it is not blocked.

"ex block"

This parameter can only become effective in connection with a digital input onto which the input function "Protection block. " has been assigned to. With an active status of this digital input, the levels of the protection functions which are set to "ex Block = active" are blocked!
"tripbloc" (blockage of the OFF command for the circuit breaker)
The CBF-module reports the circuit breaker failure, but there is no second OFF command to the circuit breaker.
Switch-off time "t CBF"
If, after the expiry of this time, the current flowing through the circuit breaker is not under the zero-current border "ICBF", the CSP2 gives a "CBF-Alarm" message.

Note

The monitoring time " $t C B F$ " should always be selected longer than twice the parameterable control time of the power switch:

!!! \boldsymbol{t} CBF > $2 \times$ ts !!!

In this way, a second trip impulse onto the circuit breaker is guaranteed!

Zero-current threshold "I CBF"

If the current falls below the set threshold "I CBF" within the time interval " \dagger CBF" the CSP2 detects a faultless trip of the circuit breaker.

After an OFF command for the circuit breaker, the current in all three phases must drop below the zero-current threshold so that the CBF protection interprets the circuit breaker as being in the on-position (successful switch command).

Circuit breaker failure protection (CBF)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Function	"active"	CBF is put into function				\bullet	\bullet	\bullet
	„inactive"	CBF is put out of function	"inactive"					
ex block	"active"	CBF is ineffective when the DI "Protect. Block." is active		-		-	-	\bullet
	„inactive"	CBF is effective irrespectively of the DI "Protect. Block" state	„inactive"					
tripbloc	"active"	Second OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	Second Off command to the local CB is being issued	„inactive"					
† CBF	$\underset{\mathrm{ms}}{100 \ldots 10000}$	Time delay until alarm message "Alarm: CBF" is issued	„200 ms"	1 ms	$\pm 1 \%$ of the adjustment value or $\pm 20 \mathrm{~ms}$	\bullet	\bullet	\bullet
1 CBF	O...0.1x\|n	Threshold value for detection of the zero current when a CBF occurs	$0.0 \times \mathrm{ln}$	$0.001 \times \ln$	$\pm 3 \%$ of the adjustment value bzw $1 \% I_{N}$	-	\bullet	\bullet

Table 5.58: Setting parameters for the crcuit breaker failure protection

5.7.2.14 Voltage transformer supervision (VTS)

Description

Faults on the secondary side circuit of voltage transformers (e.g. wire break to the secondary or e-n winding of a voltage transformer or MCB trip of a voltage transformer or fuse etc.) cause faults in the protective functions, in which the voltage is used as an (additional) decision criterion for a tripping of the circuit breaker.
For this reason, a supervision of the voltage transformer circuits has been integrated in the CSP2-F, in order to give alarm messages "General Alarm" and e.g "Alarm:VTS") under the above mentioned circumstances and, if parameterized, to switch the circuit breaker off and to block affected active protection functions.

Blockage of concerned effective protection functions

Phase-selective protection functions in which the failure of a phase would lead to a faulty tripping of the circuit breaker are blocked in activating of the voltage transformer supervision function (VTS). In the CSP2-F, this applies to the under-voltage protection $(\mathrm{U}<, \mathrm{U} \ll)$ as well as the frequency protection, as the frequency protection results from the measurement of voltage.
In protection functions which make use of the voltage as a decision criterion, but in which the failure of only one phase does not impair the function, there is no blocking. This applies e.g. for over current time protection with directional feature, earth over current time protection with directional feature, as the direction decision in the event of a fault is done via the phase voltages still in existence, from which the necessary reference variables are determined, when the VTS is activated (e.g. over current).
Protective functions which generally only trip when a threshold is exceeded are also not blocked. This applies e.g. for power and reverse power protection, over voltage protection, residual voltage protection and overffequency protection.

Prerequisites and mode of function

The voltage transformer supervision (VTS) compares the measured residual voltage Ue from the e-n coil with the calculated residual voltage Ue from the three phase voltages measured directly. However, the following prerequisites must be fulfilled for this:

- Measurement connection for phase voltages: in star connection (field parameter: „VTcon = $Y^{\prime \prime}$)
- Measurement connection for residual voltage: open delta connection (field parameter: „EVTcon = open Δ^{\prime})

If a difference of more than 10% from the nominal figure of the residual voltage Ue defined via the field parameters "EVTprim" and "EVTsec" is detected, a fuse drop or a broken conductor is deduced.

Limitations with regard to the use of the voltage transformer supervision (VTS)

- cannot be used for voltage transformers with primary high-voltage fuses.
- cannot be used if no e-n coil is connected, as then no comparison between measured and calculated residual voltage Ue is possible.
- in use of a three-poled $M C B$ in the voltage measurement circuits. In this case, there cannot be a one-pole fuse trip, as all three phases are switched off at the same time due to the mechanical coupling and the complete measurement voltage drops to zero. The best thing possible is a conductor breakage supervision. For this, the auxiliary contact of the three-poled MCB can be connected directly to a digital input to the CSP2, in order to signalize the fuse trip. This digital input is then to be configured with the input function "Fuse Fail $V T$ ".

Note

The input function "Fuse Fail VT" (Dlfunction) works independent of the internal protection function " Voltage Transformer Supervision (VTS) "!

Parameters

"Function"
With the setting "Function = active" the voltage transformer supervision (VTS) is generally set into function. The VTS function can however only be effective if it is not blocked.
"ex block"
This parameter can only become effective in connection with a digital input onto which the input function "Prot block." has been assigned to. With an active status of this digital input, the stages of the protection functions which are set to "ex block = active" are blocked!

"tripbloc" (blockage of active protection functions)

In the parameterising "tripbloc = active " the switch-off command for the circuit breaker which would be issued after the expiry of the set tripping delay time t FF is blocked. Nevertheless, the "General trip" signal is generated and is available for the communication to SCADA as an output function of the LED display, the further processing via signal relays or as messages (data points).
"t CCS" (tripping delay time)
Via the parameter t CCSa delay time until the issue of an OFF command to the circuit breaker can be adjusted. Only after the expiry of the set trip delay time " t CCS" are the other effective protection functions concerned by the voltage measurement (under-voltage protection and frequency protection) blocked.

Voltage Transformer Supervision (VTS)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Presetting	Step Range	Tolerance	L	F3	F5
Function	"active"	VTS is put into function				\bullet	\bullet	-
	„inactive"	VTS is put out of function	„inactive"					
ex block	"active"	VTS stage is ineffective when the DI „Protect. Block." is active		-		\bullet	\bullet	\bullet
	„inactive"	VTS stage is effective irrespectively of the DI "Protect. Block" state	„inactive"					
tripbloc	"active"	Off command to the local CB is being blocked		-		\bullet	\bullet	-
	„inactive"	Off command to the local CB is being issued	„inactive"					
t VTS	$\begin{gathered} 10 \ldots 20,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay	„200 ms"	1 ms	$\pm 1 \%$ of the adjustment value or ± 20 ms	\bullet	\bullet	-

Table 5.59: Setting parameters for voltage transformer supervision

5.8 Service Menu

In the "Service" menu, important device data for the CSP2/CMP1 system and revision data for the MV switchgears of the cubicle are displayed. These data entail:

- Date and time,
- Type of device and software version and
- Revision data for switchgears (counters).

Figure 5.68: "Service data" on the display of the CMP1

Figure 5.69: "Service data" SL-SOFT

The following table gives information about the available service data in the menu service.

Service-Data					Available in CSP2-		
Data	Display/Unit	Description	Update	Note	L	F3	F5
Date	ii.mm.tt	Year, month, day	Daily	Adjustable	\bullet	\bullet	\bullet
Time	hh:mm	Hours and minutes	Every minute	Adjustable	\bullet	\bullet	\bullet
TYPE	CSP2-XX	Type of CSP2-device	When software is upgraded	Type of communication protocol provided by CSP2 device	\bullet	\bullet	-
SW-TYPE	1.0	IEC, Profibus	When software is upgraded	Type of communication protocol provided by CSP2 device	\bullet	\bullet	\bullet
	2.0	Modbus	When software is upgraded				
MAIN	V.xx.xx.xx/xxxx	Software Version standard of the CSP2 main program	When software is upgraded	Main processor (CSP2)	\bullet	\bullet	\bullet
DSP	V.xx.xx.xx/xxxx	Software Version standard of the CSP2-protection programs	When software is upgraded	Digital signal-processor (CSP2)	\bullet	\bullet	\bullet
CMP	V.xx.xx.xx/xxxx	Software Version standard of the CMPI processors	When software is upgraded	Main processor (CMPI)	\bullet	\bullet	\bullet
Modem-connect		Data of the modems used		Remote communication via modem	\bullet	\bullet	\bullet
Op. Hours	H	Counter of the CSP2 operating hours	Every hour	Operating data of the CSP2 (can be reset)	\bullet	\bullet	\bullet
AR tot.	Serial No.	Total of all AR attempts since commissioning or since the latest reset of the counter	After each AR attempt	Counter values of ARs (can be reset)	\bullet	\bullet	\bullet
success.		Total of the successful AR attempts since commissioning or since the latest reset of the counter	After an AR cycle has finished		\bullet	\bullet	\bullet
unsuccess.		Total of the unsuccessful AR at tempts since commissioning or since the latest reset of the counter			\bullet	\bullet	\bullet
Op SG 1	Serial No.	Number of operating cycles of switching device 1	After each complete switching action of the respective switching device	Revision data for switching devices (can be reset)	\bullet	\bullet	-
Op SG 2		Number of operating cycles of switching device 2			\bullet	\bullet	\bullet
Op SG 3		Number of operating cycles of switching device 3			\bullet	\bullet	\bullet
Op SG 4		Number of operating cycles of switching device 4			\bullet	\bullet	\bullet
Op SG 5		Number of operating cycles of switching device 5			\bullet	\bullet	\bullet
Il SWG 1	kA	Sum of short-circuit currents switched by the CB1 (SG1)	Protective trip by CBI (SG1)	Revision data for circuit breakers (can be reset)	\bullet	\bullet	\bullet
ᄃ1 SWG2	kA	Sum of short-circuit currents switched by the CB2 (SG2)	Protective trip by CB2 (SG2)				\bullet

Table 5.2: Detailed View - Service Data
"Date" and "Time"
The CSP2 has a clock module, which generates the date and time display. The date is displayed in the "Year.Month. Day" format; the time in the "Hours : Minutes" format.

Note
The clock module is fed by a lithium battery, which has a service life of about 10 to 15 years. Replacement of the battery is quick and simple via the review shaft.

The displays for date and time can be changed as follows:

- Display and operating unit CMP1: Each individual decimal place of the date and time display in MODE 2 (local operation/parameterization),
- SL-SOFT:
- SCADA: Synchronization of the date and time of the CSP2 to the time of the connected PC/laptop and
Synchronization of the date and the time of the CSP2 to the time of the connected host computer.

Alteration of the date and time display via the CMP1

Via the CMP1 operating and display unit, each value of the date and time display can be changed individually. However, this is only possible in MODE 2 (local operation/parameterization). In comparison with the other parameter setting processes, it is not necessary to save the changes, as the clock module of the CSP2 takes on each new setting immediately. (A storage process could possibly take too long, meaning that the "new" setting would no longer be up to date.)

The following illustration shows the mode of procedure with the example of setting the time (minutes) (setting of the date is analogous).

Figure 5.70: Setting the time (minutes) via CMP1

Synchronization of date and time via the SL-SOFT
Using SL-SOFT, it is possible to synchronize the date and time of the CSP2 to the corresponding values of the connected PC/notebook. The CSP2 takes over the current values of the PC or laptop. The synchronization is carried out in the menu ""Service" under "Set date/time".

Remark

Date and time are not saved in the data sets (parameter file "parameter.csp") of the CSP2. For this reason, the synchronisation is not done in the parameter setting mode of the SL-SOFT, but in the normal operation mode in the sub-menu "Set date/time", within the menu service.

Figure 5.71: Synchronization of date and time via SL-SOFT
Synchronization of date and time via SCADA
The various types of protocol for communication with SCADA possess specific data telegrams which are transmitted cyclically in order to synchronize the date and time of the CSP2 devices connected to the SCADA.
Such a data telegram contains the new date as well as the new time as a date set to be transmitted.
Further information about the time synchronization can be seen from the data point lists for the protocol types in question (separate documentation).
"Type" (type of device) and "MAIN", "DSP", "CMP" (status of software version)
The identification of the type of device and the display of the soffware version status of CSP2 and CMP1. This identification should be stated in inquiries.

"Op. hours" (operation hours counter)

This display refers to the sum total of hours in which the CSP2 was in operation. In interruptions of the supply of auxiliary voltage for the CSP2, the current counter value is saved. The operation hours counter is therefore not automatically reset, but continues counting with the saved value in a subsequent commissioning.
A reset of the operation hours counter can however be done manually either via the CMP1 or via the SL-SOFT:

1) Display and operation unit CMP1: Menu "Parameter/Reset Functions" in MODE 2 (local operation/parameter setting).

For this, the parameter "Operation hours counter" is available in the "Parameter/Reset Functions" menu and resets the counter by selection and subsequent pressing of the key "RIGHT" (here as an execution key).
2) Operating software SL-SOFT: Menu "Parameter/Reset Functions" in parameter setting mode of SL-SOFT (log into the system parameter set)

In the menu "Reset functions" the operating hours meter can be reset by the (SL-SOFT) parameter "Op.hours".

Revision data

The counter values are used as revision data and permit a deduction of the functional stress of the switchgears, thus enabling a revision of the switch devices as required. The revision data are generated by the following counters:

- "AR tof"
- "success"
- "unsucc"
- "Op. SG1 to "Op. SG5"
- $\Sigma / S G 1$ and $\Sigma / S G 2$
(Resetting is done in the menu "Reset functions" analogous to the reset of other counters and functions).
"AR tot." (Total AR value)
This counter totals the AR attempts (shots) held regardless of whether they were successful or not.
"success" (number of successful AR attempts per AR cycle)
Here, only the number of AR attempts (shots) needed for successful switching on again are totalled, i.e. the circuit breaker remains switched on (short-term fault).

Example: Parameter "Shots $=4^{\prime \prime}$; successful auto reclosing at the 4^{h} AR attempt.
The counter consequently shows:

- "AR tot $=4$ "
- "success = 1"
- "unsucc = 3"
"unsucc." (number of unsuccessful AR attempts per AR cycle)
Here, only the number of AR attempts (shots) implemented with unsuccessful AR is totalled, i.e. in which the last auto reclosing attempt of an AR cycle did not lead to a permanent switch-on of the circuit breaker (longer-term or permanent fault).

Example: Parameter "Shots = 5"; no auto reclosing after the $5^{\text {th }}$ AR attempt
The counter consequently shows:

- "AR tot = 5"
- "success = 0"
- "unsucc $=5$ "
"Op. SG 1 to "Op. SG5" (counter for switching cycles)
For each of the five detectable switchgears, a separate counter is available, counting the switching cycles implemented in each case. It is of no importance whether the switchgears are controlled electrically or mechanically.
$\Sigma /$ SG1 and $\Sigma /$ SG2 (counters for summation of the currents in protection tripping)
These two counters total the short-circuit currents switched by the circuit breaker in each case at the time of any protection tripping (also DI functions).
The main contacts of a circuit breaker are particularly highly stressed by the switch off of high short circuit currents in protective tripping (contact burn by arcing). This means that circuit breakers must be maintained and revisioned more frequently as a rule than other switchgears. The value of counters $\Sigma \mid$ SG1 and $\Sigma \mid$ SG2 are therefore of great importance as revision data.

Remark

The counter values of $\Sigma \mathrm{I}$ SG1 and $\Sigma \mathrm{I}$ SG2 should be reset after each revision.

5.9 Self-test menu

With the self-test, functions the CSP2 and CMP1 can be tested. Each test function is shown on the display during its execution via Pop up windows. These test functions are executable at any time with the exception of the relay test without switching authorization (change of the mode of operation to MODE 2).

Figure 5.72: Menu "Self-test" in the display of the CMP1

Below, the displays are shown and commented separately in the order of their appearance for each test function.
Relay test
With the "Relay test", the function of the signal relays of the CSP2 can be checked. All the signal relays are put into alarm state in order. In the automatic test sequence the signal relay for the "System OK" system message (works setting) opens first. After this, all the other output relays pick up in the correct order and then open jointly after this. At the end of the test, the "System OK" signal relay picks up again.

Attention

Before the execution of a relay test, ensure that no external functions such as circuit breaker failure or "CB transfer trip" take-on are forwarded by the activation of the report relay!

Figure 5.73: Implementation of the "relay test"

Memory test

The CMPI display and operating unit has RAM and ROM memories, the capacity and function of which can be checked by a memory test. The result is displayed.

Figure 5.74: Execution of the "memory test"

Lamp test

The two-colour light-emitting diodes (LED) on the CMP1 are lighted up red and green if they are activated accordingly. After the end of the LED test, the displays return to the menu from which the self test was started.

Figure 5.75: Execution of the "lamp test"

Display test
The display of the CMP1 is illuminated alternately light and dark, with the result that faulty pixels become visible immediately.

Figure 5.76: Execution of the "display test"

Keyboard test

With the keyboard test all the operating element (keys and key switches) of the CMP1 can be tested. The test is done by sequential pressing of the individual operating keys and the key switches. After each pressing of an operating element, the result of the test can be seen on the display. By operating the elements during the test, no functions are executed. The operating keys for the "Emergency OFF" function can also be tested in this way.

Attention

The function "Emergency OFF" is not in function during the test!
Operating the key "LEFT (arrow)" ends the keyboard test (which is why this key should be checked at the end). If the operation mode is changed (via the key switches) during the test process, a corresponding message pops up and requests for correction; only then can the test be ended and a different MODE set.

Figure 5.77: Execution of the "keyboard test"

Font test
All the displayable fonts are shown.

Figure 5.78: Execution of the "font tests"

Restart

The CMP1 is reset, i.e. it interrupts the communication to the CSP2 and reconnects again. If the connection is successfully brought about, the SINGLE LINE start page, in which the current single line is displayed, pops up.

Figure 5.79: Execution of the "restart"

Note

The "Self-Test" functions can not be carried out via the SL-SOFT. (The "Self-Test" menu is not part of the SLSOFTI

5.10 Set LCD menu

Display backlight
The CMPI display and operating unit has a background-illuminated LC display. The backlight can be adapted to the situation with regard to the light conditions in the cubicle surrounding. For this, the Brightness and Contrast settings of the display can be altered.

Figure 5.80: "Set LCD" menu in the display of the CMP1

The display backlight automatically goes on when the first key is pressed and goes off if no operating key is used for a duration of about 10 min .

Parameters

Display Adjustments

Parameters	Description	Setting Range	Presetting	Step Range
Brightness	Change of the display backlight	$0 \ldots 100$	92	1
Contrast	Contrast Change	$0 \ldots 100$	2	1

Table 5.3: Setting parameters of the Display

Remark

The parameter settings are changes in the "LCD-settings" CMP menu.

Note

The "LCD-settings" menu is not part of the SL-SOFT. The parameters of this menu therefore can not be set via SL-SOFT.

5.11 Device selection menu (Variant 2 of multi-device communication)

The term "Multi-device communication" describes the connection of the CSP2 devices amongst one another via the internal CAN-BUS to a bus-system line (see Chap. "CSP2 Multi-device communication").

The CSP2/CMP1 system offers two variants of multi-device communication, which can be realized and used in different ways:

- Variant 1: the CAN-BUS system entails the same number of CSP2 as CMP1 devices
- Variant 2: the CAN-BUS system contains only one CMP1 for the whole quantity of CSP2 devices

The local operation of the CSP2 devices in the CAN-BUS system is done in Variant 2 of the multi-device communication merely via a common CMP1 display and operating unit. As the CMP1 can always only communicate with a single CSP2, operation of the CSP2 devices can only be done sequentially.

Attention

The CMP1 always only communicates with one CSP2! Log-in to another CSP2 is only done via the menu control of the CMP1 and therefore requires time. In projecting, please therefore ensure that important functions such as "Emergency OFF" are implemented redundantly (e.g. additional separate key for the power circuit breaker).

The log-in of the CMP1 into an arbitrary CSP2 of the CAN-BUS line is done via the "Select device" menu. Access to the "Select device" menu for its part is only possible if multi-device communication-system has been correctly installed and parameterized as Variant 2. This setting is done in the CSP2 in the "CAN-BUS" menu via the parameter: "single $C M P=$ yes" (see Chap. "CAN-BUS").

Note

The "Select device" menu item is not shown on the display if the corresponding CSP2 has been parameterized for Variant 1 (Parameter: "single CMP = no")!

Figure 5.81: "Select device" menu in the display of the CMP1 (Variant 2)

Connecting a CSP2 of the CAN-BUS system

The following screenshots describe the mode of procedure for logging into any CSP2 of the CAN-BUS system via the common CMP1. The change of communication is done in the MODE 1 mode of operation.

1 st step:
Call up the "MAIN MENU"
2nd step:
Select and call up the "Select device" menu via the keys of the menu guidance.
3rd step:
Select the corresponding menu item which marks the CSP2 to be selected on the basis of the CAN device number stated.

4th step:
Push the "RIGHT (arrow)" key as the execution key in order to initiate the change in communication.
5th step:
The change in communication to the selected CSP2 requires a few seconds. During this time, the customer pop-up windows appear in the display. After a successful build-up of the communication, the SINGLE LINE start page of the selected CSP2 device appears. The process has been completed.

Figure 5.82logging into another CSP-system via the "Select device"-menu (Variant 2)

6 Control Technique

To the ongoing tasks of protection devices belong increasingly also the control functions for the MV-switchgears, which include in general circuit breakers, switch disconnectors, disconnectors as well as earthing switches.

MV switchgears can be switched mechanically locally. If the MV switchgears moreover dispose of electrically controllable drives, an operation (control) can also be carried out via a combined protection and control system. Depending on the switching and interlocking scheme, it is then possible to execute the control from different control locations. Frequently, several control sites are used in parallel for the operation of plants:

- "locally" (on site) via CMP or
- switching station (SCADA/remote control system or via a
- conventional remote-control stand (conventional wiring)

According to the needs, a control system can be composed of simple switches as e.g. push-button switches or acknowledgement switches or is constructed as a complex control system. These systems contain an extensive logic which examines the switching command for admissibility before each passing of a command. At the control site, the switching state of the corresponding switchgear must be perfectly recognizable at any time. For this, optical and electro-mechanical position indicators (checkback signals) are used. Signal lamps as optical position indicators could also be combined to one device, the acknowledgement switch.

In order to prevent faulty operations, locking functions have to be provided, which can be constructed mechanically or electrically. Electrical lockings can either be regulated via the interrupter contacts in the control circuits (hardware) or, when using combined protection and control systems, by the SYSTEM LINE via the software /see chapter 7: "Interlocking" (interlocking technique).

6.1 Basics

Switching actions on the MV-level constitute important interventions into the energy supply, and faulty operations could entail considerable danger conditions for humans and electrical equipment. Thus the regulations for switching actions are subject to standards and directives to guarantee the plant safety.

Standards and directives:

- DIN EN 50110-1/VDE 0105 part 1: "Operation of electrical power installations"
- DIN EN 50179/VDE 0101: "Erection of heavy-Current installations with rated voltage of more than 1 kV
- DIN VDE 0670: "A.c. switchgears voltages of more than 1 kV"

DIN 40719:
"Switching documentation" |

- VBG 4: "Electrical installations and equipment"

Safety in switching systems

Clearing, earthing and short circuiting according to DIN 57105/VDE 0105 are prerequisites for permission to work near live parts. Here, the following 5 rules must imperatively be adhered to:

- Clearing!
- Safeguarding against switching on again!
- Ascertaining that no voltage is present!
- Earthing!
- Safeguarding live parts in proximity against touch!

Switchgears must on the one hand be provided with disconnect points and on the other hand be equipped with earthing switches in order to lead off to earth immediately possibly resulting voltage potentials in the cleared means of operation.
Faulty operations in switchgears constitute a special danger for the personnel and the electrical equipment. This is especially true for the opening of a current-conducting circuit by a disconnector or for switching on an earthing switch onto live system parts.

6.2 Switchgear control via CSP2

The CSP2 of the SYSTEM LINE takes over multiple control and interlocking tasks according to device type and application. Additionally to the mere control functions, the CSP2 disposes of further extensive functions for display, message, supervision and safeguarding of switching actions. Moreover, each switching action is logged into the event recorder so that conclusions can be drawn to past operation events.

The drive components of the switchgears (motors, control coils) can directly (or indirectly via auxiliary relays) be connected to the control outputs of the CSP2 (see chapter "Control outputs of the power circuit (XIA, XI").

The switchgear positions are shown within the display of the CMP (single line). Extensive supervision functions deliver information about the state and positions of the switchgears and thus maximum operational availability of the electrical equipment is guaranteed.

The ability of executing of control and interlocking-commands depends on the switching authorization and can be carried out optionally via the operation and display unit CMP1 via SCADA or via digital inputs.

Remark

Also the "automatic reclosing" of the circuit breaker via the AR function is to be interpreted as a control process. The AR is also subject to all active locking and supervision functions!

6.2.1 Functions of the CSP2 switchgear control

For switchgear control, additionally to the mere control functions, the CSP2 disposes of additional functions for guarantee of the safety of switch actions as well as for increasing the availability of MV switchgears:

- detection of switchgears,
- display and signalizing of switchgear states,
- control of switchgears,
- supervision of swichgears and switch actions,
- logging in of the switching action in the event recorder
- locking of switchgears on the field and/or station levels.

Control Functions			Available in CSP2-		
Function	Description	Note	L	F3	F5
Detection and visval display of switchgears	Number of switchgears which can be detected	Detection of the switch positions via two aux. contacts (ON/OFF) of the switchgears (Signal lines of the individual messages)	5	5	5
	Number of switching devices which can be displayed	OFF position of the switchgears shown as symbol	-	-	\bullet
		ON position of the switchgears shown as symbol	-	\bullet	-
		"Switching Device in Intermediate Position«	-	\bullet	\bullet
		"Switching Device in Fault Position«	\bullet	\bullet	-
Control of switchgears	Number of switchgears which are controlled via the CSP2			3	5
	Power outputs for control coil (circuit breaker : L-Type)	ON/OFF - separate controllable (in Duplex systems an OM4 can be used as second CB)	1	1	1 (2)
	Power outputs for motor control learthing switch disconnector: M-Type)	Clockwise/Anticlockwise running is separate controllable	2	2	4 (3)
	Signal relay	"non-confirmed command (no check-back-signal)" via the SCADA-system; e.g. for release purposes etc.	6	6	10
	Digital inputs	"Remote" control by means of parallel wiring	22	22	26
	SCADA (optionally) visually: FOC electrically: RS485	"Remote" control via SCADA	\bullet	\bullet	\bullet

Table 6.1: Indicating and Control Functions in the CSP2

6.2.2 Recognition of switchgears and display indications

The recognition of switchgears occurs by the messages about their switch positions at the CSP2. By this information, the CSP2 is e.g. able to show symbolically the available switchgears on the display of the operation and display unit CMP1 and to generate messages about the state of the individual switchgears loutput messages for LEDs and signal relays, messages to SCADA).

Note

Detected switchgears must not imperatively be controllable via the CSP2. Controllable switchgears, however, must in each case also be detected!

Detection of switch positions

For safe detection of the switch position, always two auxiliary contacts of a switchgear are required.
An auxiliary contact closes at switch position "OFF", the other closes at switch position "ON". The signal lines of the auxiliary contacts must be wired to the CSP2 in each case via a digital input as single messages. The digital inputs themselves have been assigned corresponding input functions which are necessary for the further processing of the single messages.

Single-messages:

- Digital input "SGX Signal O": Signal line of the auxiliary contact for message "Switchgear X open".
- Digital input "SGX Signal I": Signal line of the auxiliary contact for message "Switchgear X closed".

Out of the two separate single messages in the CSP2 now results a so-called double message which has a higher information content than a single message. The status evaluation (active/inactive) results in four possibilities which are interpreted by the CSP2 accordingly. In this way, additionally to the defined switching states "ON" and "OFF" also the intermediate positions:

- »Intermediate position« (both check back signals ON and OFF missing) as well as the
- "Faully position« (position check back signals ON and OFF will be reported at the same time)
of the switch are supervized and separately reported.
Consequently, here are four possible states for the position messages of a switchgear:
- "Switch ON": "SGX Signal I" = active and "SGX Signal O" = inactive
- "Switch OFF": "SGX Signal I" = inactive and "SGX Signal O" = active)
- "Intermediate position": "SGX Signal I" = inactive and "SGX Signal O" = inactive
- "Faulty position": "SGX Signal I" = active and and "SGX Signal O" = active

Attention

For the detection of the switch position of a switchgear always two separate auxiliary contacts (single messages each) are recommended! When using a single message for detecting the switch positions, no intermediate positions and faulty positions can be detected. Supervision of the delay time ltime between issue of the command and check back message of the intended switch position), however, can also be effected with a single-pole message.

Example: Detection of a circuit breaker (CB)

Figure 6.1: Principle for detection of switchgears

Remark

The first block of the digital inputs is provided for the detection of the position messages for switchgears and possesses a common return line COM1 which conducts the corresponding negative potential. The terminal of this return line is situated on the second terminal board of the CSP2.

Graphical indication of the switchgears in the display
The positions backfeed messages of the different switchgears can be displayed on the LC graphic display of the CMP1 by a single-line diagram.

The graphic symbols of all frequently used switchgears are based on the standard IEC 617 and DIN 40900, and can be selected by configuration from a library. From the individual symbolic switchgears a specific field configuration is established in graphic form. In addition to individual switchgears, also measuring values can be indicated by the state indications of the switchgears on the LC graphic display.

The following table shows a list of the available symbols:

Switching device	Designation	Symbol Representation according to IEC 617, DIN 40900	Type of symbol
Circuit Breaker	$\begin{gathered} \hline \text { Q0 } \\ \text { Q01 } \\ \text { Q02 } \end{gathered}$	\rangle^{\star}	Controllable/detectable switching device
Isolating Switch	$\begin{gathered} \text { Q1, Q2, Q3, Q4 } \\ \text { Q9, Q91, Q92 (Abgang) } \end{gathered}$	\rangle^{1}	Controllable/detectable switching device
Earthing Isolator	$\begin{gathered} \text { Q5, Q8 (ESS) } \\ \text { Q81, Q82 (DSS) } \end{gathered}$	${ }_{=}^{k}$	Controllable/detectable switching device
Load break switch	$\begin{aligned} & \text { Q10 } \\ & \text { Q11 } \end{aligned}$	$j^{\frac{1}{b}}$	Controllable/detectable switching device
CB Rack	Q93, Q94	1	Controllable/detectable switching device
Fuse	-		Fixed Symbol
Capacitive Measuring	-	$\xrightarrow{-1}$	Fixed Symbol
Transformer (2 Winding)	-	\oint	Fixed Symbol
Transformer (3 Winding)	-		Fixed Symbol
Generator	-	(1)	Fixed Symbol
Motor	-	$\frac{1}{M}$	Fixed Symbol
Feeder	-	$\stackrel{\rightharpoonup}{\nabla}$	Fixed Symbol
Voltage Transformer	-	$\frac{1}{0}$	Fixed Symbol
Current Transformer	-	ϕ	Fixed Symbol

Table 6.2: Symbols for the single line diagram

Examples of switchgears symbols in the display of the CSP2
Each positon change of the detected switchgears can be observed by a change of the corresponding symbols on the display of the CMPI. In the following, the symbol for each displayable switchgear the symbols of the four possible switch positions are shown:

Circuit breaker not withdrawable
a)

b)

c)

d)

Figure 6.2: Symbols of the four different circuit breaker position messages:

Circuit breaker with withdrawable unit (not withdrawn)
a)

b)

c)

d)

Figure 6.3: Symbols of the four different circuit breaker position messages:
a) CB open
b) $C B$ closed
c) $C B$ in differential position
d) $C B$ in faulty position

Circuit breaker with withdrawable unit (withdrawn)
a)
b)
c)
d)

Figure 6.4: Symbols of the four different circuit breaker position messages:
a) $C B$ open
b) CB closed
c) $C B$ in differential position
d) $C B$ in faulty position

Load break switch
a)

b)

c)

d)

Figure 6.5: Symbols of the four different load-break switch position messages:
a) load-break switch open
b) load-break switch closed
c) load-break switch in differential position
d) load-break switch in faulty position

Disconnector
a)
b)
c)
d)

Figure 6.6: Symbols of the four different disconnector switch position messages:
a) load-break switch open
b) load-break switch closed
c) load-break switch in differential position
d) load-break switch in faulty position

Withdrawable unit for circuit breaker
a)
b)
c)

Figure 6.7: Symbols of the four different position messages for withdrawable unit:
a) withdrawable unit open
b) withdrawable unit closed
c) withdrawable unit in differential position and withdrawable unit in faulty position

Earthing switch

Figure 6.8: Symbols of the four different earthing switch position messages:
a) earthing switch open
b) earthing switch closed
c) earthing switch in differential position
d) earthing switch in faulty position

6.2.3 Controllability of switchgears

MV switches can be detected by the CSP2 via their auxiliary contacts. If suitable drives (coil drives or motor drives) are available, the detected switches can be additionally controlled.

Prerequisites: Hardware

Additionally to the detection of the switch position via the check back messages, the drive components for ON and OFF switching must be connected to the control outputs of the CSP2. According to the type of switchgear, these can be control coils, servo motors or auxiliary relays. In general, the following allocations of the CSP2 power outputs to the switchgears are valid:

- OL1 (circuit breaker Q0 or Q01 switch-off coil),
- OL2 (circuit breaker Q0 or Q01 switch-on coil),
- OL3 (circuit breaker Q02 switch-off coil only CSP2-F5),
- OM4 (circuit breaker Q02 switch-on coil only CSP2-F5),
- OMI (disconnector switch/earthing switch),
- OM2 (disconnector switch/earthing switch),
- OM3 (disconnector switch/earthing switch),
- OM4 disconnector switch/earthing switch or circuit breaker Q02 switch-off coil: only CSP2-F5)

The control outputs are supplied by a separate control auxiliary voltage (DC) which is connected to the CSP2 and will be switched through to the corresponding control output at the issue of the command. The wiring expenditure, especially in case of several controllable switches, is considerably reduced thereby. (Details see in chapter "Control outputs of the power circuit (XA1, XI $)^{\prime \prime}$.

Perequisites: configuration (soffware)
A switchgear controllable via the CSP2 must be taken into account for the device configuration.

- Determination which type on the switchgear no. (example: SGI = power circuit breaker)
- Determination switch designation (display indication) on the switchgear no. (example: $S G 1=Q 0$)
- Determination control output (hardware output) on the switchgear no. (example: SG1 = OL1, OL2)
- Establishing the locking conditions (field interlocking) separately for the on and off switching of the controllable switchgear. For this, the position messages of the other detected switches are used for the blocking of commands via AND/OR logic functions.
- Setting of the control time (switching time and, if necessary, press-out times) for running time supervision of the switchgear (see chapter "Control times").

Attention

The issue of a certain control command as e.g. "Cmd SGI on" (Dl-function) refers always to the switchgear no. (here: SG1). In many applications the switchgear 1 (SG1) is a circuit breaker with the assigned control circuits OL1 and OL2 (hardware outputs). When using a load-break switch instead of the circuit breaker, the switchgear no. SG1 refers to the load-break switch. As this switchgear, however, in general disposes of a motor drive, a control output for motor drives (e.g. OM1) must be assigned when configuring the switchgear no. SG1. Consequently, the terminals of the drive motor must be connected to the terminals for the assigned control output (e.g. OMI).

6.2.4 Sequence of a control process

After issuing a control command for a switchgear, at first the switching authorization for the control site will be checked by the CSP2:

- checking for switching authorization (set mode of operation)
- checking for termination of a preceding switching action
- checking for active interlocking functions
- checking of the control circuit by control circuit supervision CCS (when active)
- checking of a defined end position of the switchgear

Checking the switching authorization

According to the control site from which the command was issued, the CSP2 checks whether the correct mode of operation was selected via the key switches of the CMP1. For remote control via digital inputs or a SCADA-system, the mode of operation MODE 3 is required! In case of local control, the control command anyway can only be issued if beforehand MODE 1 was set and called up via the menu item "operate" (control) of the CONTROL MODE.

Checking for termination of a preceding switching action

Switching actions will always be carried out sequentially! An issued control command will only be processed by the CSP2, if a preceding initiated switching action has been terminated without disturbance. In this way erroneous operation of switchgears are prevented and dangerous conditions avoided!

Checking for active interlocking functions

Issued control commands are blocked by active interlockings. Interlockings can be configured and activated in different ways (see chapter "Interlocking technique"). If a control command is issued for a locked switchgear, it will not be executed. This "interlocking violation" can be displayed by the output message "Interlock") via an LED or processed further via a signal relay.

Checking of the control output by the "control circuit supervision CCS"

Before the execution of a switching action, the control output required for the control process is checked by the protection function "control circuit supervision CCS" for interruption. This occurs only, if this protection function was set to active (see chapter "Control circuit supervision CCS").

Checking for a defined end position of the switchgear
A defined end position of a switchgear describes the position check-back messages "switchgear ON" and "Switchgear OFF". This switching action is, however, ignored by the CSP2 (without message), if e.g. in case of a circuit breaker in position 'ON' a control command 'on'" is issued.
If the "intermediate differential position exists, it can be assumed that the switchgear either is just performing a switching action or that it is faulty. In case of a reported "faulty position", it must be assumed that a fault of the switchgear exists.
In the cases "intermediate position" and "faulty position", the issued control command is not executed. However, a corresponding entry into the event recorder as well as the activation of the output messages "Interlock" and "swichgear fail" (switchgear faulty as collective messages) occurs.

As far as the above mentioned checks of an execution of the switch action allow, the control process is executed as follows:

- closing of the internal relay contacts
- switching through of the auxiliary control voltage
- start of the running-time supervision (control lines)
- activation of the status message "SG moving" (intermediate position of switchgear)
- feedback message of the intended switch position
- resetting of the power control output
- change of the switch symbol in display (corresponding to the present switch position). According to the actual switchgear position.
- Resetting the control output

With the closing of the internal relay contacts, the negative potential $(-)$ of the auxiliary control voltage has already been connected to the corresponding terminal of the control output. Subsequently, the switching through of the positive potential (+) to the control output is carried out.

Attention

For auxiliary control voltage only a direct voltage (DC) can be used! (see chapter "Technical data")

Start of the running-time supervision

For the correct implementation of a switching action (switching on or off), each switchgear requires a minimum time indicated by the manufacturer data sheet of the switchgear. With the initiation of the control process, a timer is started in the CSP2 which supervises the switch running time of the switchgear.

Note

This timer is parameterizable for the switching time ts (and must be adapted to the switch running time (see chapter "control times". The switching time for circuit breakers is in general about 150 ms , so that the default setting of the CSP2 for the switching time "ts = 200 ms" is sufficient.
In case of motor-driven disconnecting switches, the switch running times vary according to manufacturer, so that the indication on the data sheet must at any rate be taken account of!

For the setting of the switching time ts in general the following formula applies:

!!! ts $\boldsymbol{>} \boldsymbol{t s}{ }_{\text {switchgear }}!!!$

If the check back message of the intended switch position occurs within the set switching time ts, a correct execution of the switching action is assumed.
Should the switching action, however, takes more than the set time ts, i.e. if the position feedback message occurs later or even does not arrive at all, a fault in the switchgear can be assumed. Thereupon the CSP2 carries out an entry into the event recorder, the output message "switchgear fail" is activated and a corresponding message is sent to the SCADA-system.

Activation of the status message "SG moving" (switchgear in intermediate position)
During the switching action the switchgear moves first from the defined switch position (on or off) into intermediate position. As soon as the CSP2 recognizes the intermediate position, the output message "SG moving" is activated and a corresponding message is sent to the SCADA-system.

Check back signal of the intended switch position
If the switchgear is in the intended end position (ON or OFF), this position is backfeed reported to the CSP2 via the two digital inputs (check back signals).

Resetting the control outputs

After recognizing the new switch position by the check back signals, the power output is reset. By the deactivation of the power output, the galvanic separation of the switchgear from the CSP2 is re-established.

Change of the switch symbol in the display
The switch symbol in the display changes as soon as a new status regarding the switch position is recognized. During the switching action the display indication changes first from the"on" or "off" symbol to the symbol of the "intermediate position". When the defined end position of the switchgear is reached, the symbol indicates accordingly position "ON" or "OFF".

The control process for the switching action is now terminated!

6.2.5 Control sites

Under the designation "control site=location" the site is to be understood from which the control commands can be issued. Essentially, here the local and the remote control must be distinguished. In the case of local control, the control site is represented by the operation unit CMP1 which is situated directly on the cubicle and thus "on site".

Contrary to this is the remote control, where there is a longer distance between the control site and the switchgears. The remote-control site can on the one hand be a SCADA-system, and on the other hand also a parallel wired control room (e.g. a motor control stand) in a separate room or building. The parallel wiring requires the use of digital inputs of the CSP2.

The switch symbols of the single line diagram in the display always show the present state of the switchgears.

6.2.5.1 Locking between local and remote control

For the different switching authorizations (allocation of the switching authorization), two different operation modes are existing. A conflict between local and remote control is prevented by the position of the upper key- switch.

For the control of the individual switchgears, the following operation modes are available:

- MODE 1 "Local operation and control« control only via operating keys of the CMP1
- MODE 3 多
»Remote operation and contro/《
possible!
control only possible via serial interface to the SCADA-system or via digital inputs of the CSP2!

6.2.5.2 Local operation and control via CMP 1

Switching actions via the CMP1 are only possible in "control mode" of the operation MODE 1. Via the menu guidance keys of the display and control unit CMP1, the switchgear to be controlled is selected in the single line diagram by a circle marker and switched by the control keys »ON« and »OFF«. These two keys are exclusively reserved for this purpose.

Note

A detailed description of the local control of switchgears is contained in the chapter "switchgear control via CMP]".

6.2.5.3 Remote control via digital inputs depending on the switching authorization

Conventional signal lines can be connected to digital inputs of the CSP device. Furthermore input functions (DIfunctions) have to be assigned to the digital inputs in order to execute the switching actions (from remote site).

Attention

In the case of longer signal lines (>3 m), it is imperative to use shielded conductors to avoid possible voltage coupling which could lead to an uncontrolled activation of the digital inputs.

For the switchgear control via digital inputs the following Dl-functions are available:

- "Cmdl SGl on"
- "Cmdl SGl off"
- "Cmd2 SG1 on"
- "Cmd2 SG1 off"
- "Cmd SG2 on"
- "Cmd SG2 off"
- "Cmd SG3 on"
- "Cmd SG3 off"
- "Cmd SG4 on"
- "Cmd SG4 off"
- "Cmd SG5 on"
- "Cmd SG5 off"
- "Ext CBl off"
- "Ext CBI on" (only in connection with SCADA enable command)

Attention

Digital inputs for control commands ON are in general processed edge controlled by the CSP2! Digital inputs for control commands OFF are in general processed edge controlled by the CSP2!
This means that the switch-off of a switchgear has a higher priority than a switch-on.
Example: a circuit breaker is switched on via a digital input with the Dlfunction "Cmdl SGI ON". It is assumed that the signal line for this DI carries potential continually and thus the DI continues to be active. The command ON thus is still present. If now a signal for switch-off is sent via another DI (Dlfunction "Cmdl SG1 OFF"), the switch-on command still present is ignored by the CSP2 and the switch-off of the circuit breaker is executed.

In the opposite case, a switch-on command cannot overwrite a present switch-off command!

6.2.5.4 Control commands via digital inputs independent of switching authorizations

In order to be able to control - independent of the switching authorization (local/remote) - 10 new control commands were added to the system. These input functions can also be assigned to digital inputs.

- "S-Cmd SG1 on"
- "S-Cmd SG1 off"
- "S-Cmd SG2 on"
- "S-Cmd SG2 off"
- "S-Cmd SG3 on"
- "S-Cmd SG3 off"
- "S-Cmd SG4 on"
- "S-Cmd SG4 off"
- "S-Cmd SG5 on"
- "S-Cmd SG5 off"

6.2.5.5 Remote control via SCADA system

For the remote control of the switchgears via SCADA-system, likewise MODE 3 (remote operation/control) must be selected.
Remote control via SCADA and via the digital inputs have equal rights, as both control sites can be considered as remote control sites. The Dl-function

- "Ext. CB 1 on"
is the only exception, as here the switch-on of the circuit breaker is only executed when beforehand a corresponding enable command was issued by the SCADA-system.

With the above limitation, the control commands can in general be sent and executed either via the serial interface for the SCADA-system (e.g. IEC 60870-5-103-Protocol) or via digital inputs.

Note

In MODE 3, a switchgear control via the CMP1 is not possible, as the call-up of the CONTROL MODE is prevented by the fade-out of the line "operate".

6.2.6 Supervision functions for switchgear control

Supervision functions serve for the increase of availability of MV-switchgears. The CSP2 disposes of a group of different functions for status supervision of switchgears as well as for supervision of switching actions.

	Monitoring Functions	Available in CSP2-		
Function	Description	L	F3	F5
Supervision of Switch Positions	Supervision of ON/OFF signals for the switching device position check-back messages (display symbols, LED indications)	\bullet	\bullet	\bullet
Digital Monitoring Functions	Processing of signals issued by the switching device or the panel	-	-	-
Control times	Supervision of the CB, isolator or earthing switch operating times	\bullet	\bullet	\bullet
Supervision of Control Circuits CCS	Protective function	\bullet	\bullet	\bullet
Circuit Breaker Failure Protection CBF	Protective function	-	\bullet	\bullet

Table 6.3: Supervision functions in the CSP2

Supervision of the switch positions
The optical display of the present switch positions is effected mainly via the display (see chapter "detection of switchgears").
Additionally, according to the switch position, certain output messages are activated which can be assigned to LEDs or signal relays. The following output messages are available:

- "Pos SG1 on"
- "Pos SG 1 off"
- "Pos SG 1 fail"
- "Pos SG1 diff"
- "Pos SG2 on"
- "Pos SG2 off"
- "Pos SG2 fail"
- "Pos SG2 diff"
- "Pos SG3 on"
- "Pos SG3 off"
- "Pos SG3 fail"
- "Pos SG3 diff"
- "Pos SG4 on"
- "Pos SG4 off"
- "Pos SG4 fail"
- "Pos SG4 diff"
- "Pos SG5 on"
- "Pos SG5 off"
- "Pos SG5 fail"
- "Pos SG5 diff"

For detailed descriptions of these output messages see chapter "Output relays".

Digital supervision functions
Cubicles and switchgears dispose of auxiliary contacts by which certain events can be signalized. The signal lines of the auxiliary contacts can be led to digital inputs which themselves can be assigned to corresponding input functions (DI-functions) in order to initiate suitable processes by the CSP2.

The monitoring functions include:

- "SF6 Alarm"
- "CB1 removed"
- "CB2 removed"
- "CB1 ready"
- "CB2 ready"
- "Fuse fail VT"
- "Euse fail AV"
- "CSS Alarm"
- "Ext prot act."
- "Fuse fail VC^{\prime}
- "Fuse fail VEN"
- "Fuse fail $\mathrm{HH} \mathrm{H}^{\prime}$
- "Ext CB trip"
- "Bypath 1 CB on"
- "Bypath 1 CB of"
- "Bypath2 CB on"
- "Bypath2 CB of"
- "Load shedding"

Not each of these DI-functions when activated leads automatically to the initiation of an action by the CSP2.
Some of the supervision functions serve only for messages and can be further processed in conjunction with signal relays and other digital inputs.
(For a detailed description of the above Dlfunctions see chapter " digital inputs".

Control times

Switch operating times are monitored in the CSP2 via the set control times (see chapter "control times". These are separately settable for each switchgear and when exceeded, activate the following output messages:

- "Switchgear fail" (common message)
- "SGl timeout"
- "SG2 timeout"
- "SG3 timeout"
- "SG4 timeout"
- "SG5 timeout"

If one of these output messages becomes active due to a control time being exceeded, all switching commands are blocked. Only after establishment of the defined end positions (On or Off) for all switchgears of the field and the acknowledgement (key "C", via SCADA or digital input "Quit" (acknowledgement) can a renewed switching attempt be performed again.
(For a detailed description of the above mentioned input functions see chapter "signal relays".

Control circuit supervision CSS

This is a protection function which serves for monitoring the control inputs for interruptions. Here, the internal power circuit of the CSP2 as well as the external switching circuits of the periphery connected to the CSP2 are checked (see chapter "control circuit supervision CSS").

Protection against circuit breaker failure CBF
Also the circuit breaker failure protection is a protective function which in case of an activated protection trip monitors the switch-off of the circuit breaker and the dying down of the fault current related thereto (see chapter "circuit breaker failure protection".

6.2.7 Logging of the switch actions

Each switching action, switch position change or supervision message is logged into the event recorder with a storage depth of 50 events (first in, first out) for subsequent analysis and evaluation. Information like e.g. switchgear, switching command source (local/remote), switch result, time stamp etc. is recorded.

Switch actions having an influence on other functions of the CSP2, generate corresponding entries in the event recorder which refer to events leading further. If e.g. a switching action for a circuit breaker is carried out, this has an influence on the protection functions. When e.g. switching the CB on or off, the AR-function is temporarily blocked. This AR-blockade is reported by the message "AR blocked" via the event recorder. Information "event on" (info comes) and "event off" (info goes) designates the begin and also the end of the period of active AR-blockade (see examples).
events related to protective tripping can further give information by the evaluation of disturbance records.

Examples for the logging of switching actions:

Figure 6.9: Switch-off of the circuit breaker via key "off" (key with a "zero-symbol" on it) of the CMP1

File Parameters Windows

	\square Eventrecorder								
	50 Events								
	No．	Distur．．	Date	Clock	Modul	Code	Information		\triangle
	1259	0	22．01．2004	10：01．49．976	Protection	AR：blocked	coming		
	1260	0	22．01．2004	10：01．49．987	Parameterizing	Param．on Site	going		
¢ Status	1261	0	22．01．2004	10：01．58．916	System	Device Reset	coming		
¢－Service	1262	0	22．01．2004	10：02．13．891	Control Logic	Ctrl by CMP	send		
－Parameter	1263	0	22．01．2004	10：02．14．126	Control Logic	Switchgear 1	Closed		
可 System parameter	1264	0	22．01．2004	10．02．34．381	Protection	Alam．l＞F	coming		
\square Protection sets	1265	0	22．01．2004	10：02．34．384	Protection	General alarm	coming		
S Switchable protection sel	1266	0	22．01．2004	10：02．34．387	Protection	Alarm：L1	coming		
（T）Protection set 1	1267	18	22．01．2004	10：02．34．449	Control Logic	CB off by Prot．	send		
（－P Protection set 2	1268	18	22．01．2004	10：02．34．453	Protection	Trip：ldifl＞	coming		
¢ Protection set 3	1270	18	22．01．2004	10：02．34．462	Protection	General tip	coming		
\＃Protection set 4	1271	18	22．01．2004	10：02．34．470	Protection	Trip：L1	coming		
	1272	18	22．01．2004	10：02．34．691	Control Logic	Switchgear 1	Open		
	1273	18	22．01．2004	10：02．34．708	Logic	Logic fot． 1	coming		
	1274	18	22．01．2004	10：02．35．238	Protection	Alarm：L2	coming		
	1275	18	22．01．2004	10：02．35．240	Protection	Alorm：L3	coming		
	1276	18	22．01．2004	10：02．35．280	Protection	Trip：L2	coming		
	1277	18	22．01．2004	10：02．35．283	Protection	Trip：L3	coming		
	1278	18	22．01．2004	10：02．36．043	Protection	Alarm：l＞F	going		
	1280	18	22．01．2004	10：02．36．053	Protection Protection	Trip：｜diff＞ General alarm	going		
	1281	18	22．01．2004	10：02．36．059	Protection	General trip	going		
	1282	18	22．01．2004	10：02．36．062	Protection	Alarm：L1	going		
	1283	18	22．01．2004	10：02．36．065	Protection	Alarm：L2	going		
	1284	18	22．01．2004	10：02．36．068	Protection	Alarm：L3	going		
	1285	18	22．01．2004	10：02．36．070	Protection	Trip：L1	going		
	1286	18	22.01 .2004	10：02．36．072	Protection	Trip：L2	going		
	1287	18	22．01．2004	10：02．36．075	Protection	Trip：L3	going		
	1288	0	22．01．2004	10：02．46．060	Logic	Logic fot． 1	going		
	1290	0	22．01．2004	10：35．58．661 10：36．03．691	System Control Logic	Device Reset Ctrl．by CMP	coming send		
	1291	0	22．01．2004	10：36．03．918	Control Logic	Switchgear 1	Diff．Position		
	1292	0	22．01．2004	10：36．03．929	Control Logic	Switchgear 1	Closed		\square
$4 \square$						New read			
Program									
Ready								CSP2．LV	3.00 .00
	© 잣	匈綮	3 16010					－ B 3（0） 5	10：28
团Post－it（®）Software ．．．	G：\｛poolltran	W．．．	C：\Dokumen	d．．．${ }^{\text {In }}$ 5＿15	，if－Paint	（C）Posteingang－Mic	（3）System	N $\triangle \omega^{*}$ 回	

Figure 6．10：Switch－on of the circuit breaker via key＂on＂（key with a＂l－symbol＂on it）of the CMP1

Figure 6.11: Switch-off of the circuit breaker via key "Emergency off" of the CMP1

7 Interlockings

Faulty switching actions which lead to arc short-circuits can be avoided by interlocking. The interlocking is to be constructed in such a way that it is effective in all switching actions, regardless of the control position implementing them.
Interlocking of devices prevent inadmissible switching actions. Simple field-related interlockings take into account that, for example, disconnecting switches are not switched with the circuit breaker in on-position or that circuit breakers cannot be switched on if auxiliary energy is missing (spring not changed or low gas pressure). Plant-related lockings check across a number of fields, e.g. the coupling position or the position of the bus-bar earthing switch.

Mechanical lockings

Simple interlocking tasks within a switching field interlocking on feeder level can be solved mechanically with blocking pawls by, for example, contact of the connecting rod assembly for the earthing switch by cutting off being prevented with the circuit breaker switched on. Combined switchgears such as a disconnecting switch with an integrated earthing switch (three-position switch) are interlocked against one another by their mechanical set-up.

Electrical interlockings

The most variable use, in particular in system interlockings (interlocking on station level), is possible with electric interlocking. It either intervenes into the control circuits directly by interrupting the operating circuits with the help of relays or electronic circuits or locks switching actions via blocking magnets.

7.1 General locking guidelines (extract from VDE 0670-7)

Interlockings between various devices and components are necessary for safety and practicality. The following stipulations are mandatory for main current circuits:

1. Insulation enclosed switchboards with removable parts:
removing or insertion of a circuit breaker, switch disconnector or relay may only be possible if this switching device is switched off. Operation of a circuit breaker, switch disconnector or relay may only be possible if this switching device is in the operating, disconnecting, outer, test or earthing position. It may not be possible to switch a circuit breaker or a relay on in the operating position without this switchgear having been connected to the auxiliary current circuit.
2. Insulation enclosed switchboards without removable parts, with disconnecting switch: Interlockings prevent disconnecting switches from being operated under inadmissible conditions [see VDE 0670 part 2]. Operation of a disconnecting switch designed for switching only in a current-free condition may only be possible if the circuit breaker, load break switch or the relay in question has been switched off. Operation of a circuit breaker, switch or relay may only be possible if the disconnecting switch in question is either in the opened or in the closed position.

The inclusion of additional or other interlockings is to be agreed between manufacturers and operators. The manufacturer shall give all the necessary information about the nature and function of the interlockings.
We recommend interlocking earthing switches with a short-circuit switch-on capability under the nominal surge current of the circuit with the disconnecting switches in question. Devices integrated in the main current circuits, faulty operation of which can cause damage, or which are used to maintain the disconnection during maintenance work, are to be provided with possibilities of blocking (e.g. padlocks).

Note

As far as possible, mechanical interlockings (emergency operability) are to be prefered.

7.2 Interlocking functions of the CSP2

Alongside the switchgear control, the interlocking/release of switchgears is an integral component of the control technique in medium voltage.
The interlockings prevent the unauthorized switching of the switches for conditions not safe for operation and thus protect against far-reaching damage to persons and property.

Interockings are used for:

- safety against unintentional faulty operation
- operational safety
- plant safety and
- personal safery.

In addition to the switching authorizations, the control sovereignty can also be controlled and assigned via switchgears interlockings from "local" or "remote".

Attention

All internal and external protection trippings as well as the "Danger off" function are not subject to any kind of external locking commands.
Internal protection functions: external protection blockade and backward interlocking!

Many supervisions and lockings customary in medium-voltage technique are deposited as a default in the CSP2 (s. Table of the input functions in Chap. "Digital Inputs").

Each locking violation during the control processes is written in the event recorder as "interlocking violated" and can be displayed by LED or assigned on signal relays for further processing as assignable output messages "Interlock".

In medium voltage, a distinction is made between interlocking at "Feeder level" and interlocking at "Station level".

7.2.1 Interlocking at feeder level

The lockings are only subject to the specific signals of the switch field. This includes not only the interlockings of the switchgears amongst one another, but also the consideration of monitoring reports such as "CB ready" or "CB removed".

7.2.1.1 Internal interlock matrix for interlocking at feeder level

With the internal interlock matrix, the admissibility and thus the execution of a switch command is checked as a function of the position signals (state information) of the switchgears. The interlock matrix is configured according to customers' requirements. Depending upon the switching command, up to five "OR connected" conditions can be checked. Each "OR connected" condition for its part can contain up to five "AND connected" position check back signals (state information) of the switchgears. If one of the conditions is fulfilled, the switching command is discarded.

7.2.1.2 Interlocking with faulty switch position

As soon as one of the supervised switchgear remains in an inadmissible switch position (intermediate position or faulty position), all the control processes are blocked.

Exception

Tripping commands of internal and external protection trips and "Emergency Off" function.

7.2.1.3 Interlocking in double operation (anti-pumping)

Repeated control commands such as switching a switchgear on twice, are not ewecuted by the CSP2 (antipumping).

Exception

Tripping commands of internal and external protection trips and control commands for "CB OFF" (the OFF commands are also sent if the circuit breaker is in the OFF position.)

7.2.1.4 Interlocking when sending control commands during a control process

In the CSP2 only one control processes at a time is executed until the check back signals report of the switchgear are available. Other control commands issued during this time are rejected.

Exception

If a protection trip takes place during a control command issue (e.g. for a disconnector or earthing switch), the command issue for the disconnector or earthing switch is stopped and the protection trip executed.

7.2.1.5 Interlocking with protection trips

Protection trips can be launched by

- internal protection functions of the CSP2 or by
- external protection trips via digital inputs of the CSP2.

As soon as a protective tripping is available as "active", no circuit breaker can be switched on. Disconnectors and earthing switches can be controlled.

The following Dl-functions block, as long as they are active, the switching on of the CB:

- "Trip: Prot. 1 "
- "Trip: Prot.2"
- „Trip: Prot. $3^{"}$
- „Trip: Prot.4"
- "Trip: Prot.5"
- "Trip: Prot.6"
- "Trip: Temp"
- „Trip: Buchh"
- „Trip: Diff"
- "Trip: Imped"
- "Trip: Motor"
(please refer to chapter "Digital Inputs" / table of input functions)

7.2.1.6 Interlocking with active parameter "Trip acknowledge"

If the parameter "Quit trips." (tripping acknowledgement) is parameterized as "active", control is only possible again after acknowledgement of the previous protection tripping which is no longer available.

7.2.1.7 Interlocking through supervision functions (digital input functions)

In the CSP2 some input functions have been implemented as supervision functions: In assignment of these functions, their status is automatically considered in intended control processes for the circuit breaker and, if applicable, the plug-in.

- "CB1 ready" (blocking of the control command, if the DI-function is assigned, but inactive),
- "CB2 ready"
- "CB1 removed" (blocking of the control command, if the DI-function is assigned, but inactive),
- "CB2 removed" (blocking of the control command, if the DI-function is active),
(blocking of the control command, if the DI-function is active)
(see list of input functions in the Chap. "Digital inputs")

7.2.1.8 Interlockings in remote control via digital inputs (DI functions)

For the external control commands, the switching authorisation (upper CMP key switch) can only be granted in the »REMOTE CONTROL« mode. The following control functions are available as input functions:

- "Cmdl SGI on"
(taking the interlockings into account)
- "Cmdl SG 1 on" (taking the interlockings into account)
- "Cmd2 SG1 on" (taking the interlockings into account)
- "Cmd2 SG 1 on" (taking the interlockings into account)
- "Cmd SG2 on" (taking the interlockings into account)
- "Cmd SG2 on" (taking the interlockings into account)
- "Cmd SG3 on" (taking the interlockings into account)
- "Cmd SG3 on" (taking the interlockings into account)
- "Cmd SG4 on" (taking the interlockings into account)
- "Cmd SG4 on" (taking the interlockings into account)
- "Cmd SG5 on" (taking the interlockings into account)
- "Cmd SG5 on"
- "Ext CB1 on"
- "Ext CB1 off"
(taking the interlockings into account)
(only implemented with approval command by station control (IEC 60870-5-103) and taking the interlockings into account) (without taking the interlockings into account)
(see list of input functions in the Chap. "Digital inputs")

Note

Indices in the function designations (signal message text) permit unambiguous multiple use of a control function.

Attention

The OFF control commands have higher priority than the ON control commands. As long as an OFF control command is available (voltage level detection for DII, ON control commands which have been sent are not processed for the corresponding switchgear by the CSP2. An available ON control command (voltage edge detection for DII can be overwritten by an OFF control command at any time.

7.2.2 Interlockings at station level

For interlocking, signals from other switchboards or common signals are also used. Alongside the detection of busbar earthers, the switch positions of coupling and feed switches, for example, can block certain control processes in the individual fields.

7.2.2.1 Interlocking via input functions

The implementation of the plant lockings in conventional technique (parallel wiring) can be implemented across the entire plant by means of contact lines. For this, various input functions are available to the user for the locking of individual or a number of switchgears, blocking the control regardless of the switching sovereignty:

- "Crrl blocked 1"
- "Crrl blocked 2"
- "SG1 block"
- "SG2 block"
- "SG3 block"
- "SG4 block"
- "SG5 block"
- "SG23 block"
- "SG234 block"
- "SG2345 block"
- "SG1 on block 1"
- "SG1 on block 2"
(see list of input functions in the Chap. "Digital inputs"):
Indices in the function designations (signal message text) permit unambiguous multiple use of an interlocking function.

7.2.3 Interlocking after external load shedding (DI-function)

If the circuit breaker is switched off by an external load shedding, in which the OFF command goes directly from the external source to the circuit breaker and is thus issued parallel to the control circuits of the CSP2, additional assignment of the "Load shedding" input function prevents a switch-on of the circuit breaker by a control command (also AR). The switch-on interlocking is active as long as the digital input has been set.

7.2.4 Release of interlockings in DBB systems (DI-function)

As a matter of principle, the switchgears on the bus-bars in a double bus-bar system (DBB) should be interlocked against one another in order to avoid asynchronous bus-bar coupling and thus an overload of the switchgears by compensatory currents. As a rule, this is done via the configuration of the internal interlocking matrix. However, there are operating states in which a bus-bar coupling is admissible or desirable:

- e.g. to permit interruption-free changes of bus-bars,
- to guarantee a discharge supply via two bus-bars in order to increase the short-circuit power and
- to achieve a higher availability of the switchboard.

However, the prerequisite for this is a synchronicity check of the voltages on the bus-bars.
The input function:

- "DBB connect" (release of the double bus-bar coupling)
can be used for this in order to enable a coupling of the double bus-bar via a defined pair of switchgears (see figure 7.1) in one switchboard. For this, a signal line (release signal either from a synchronization relay or from the inserted coupling cubicle) is guided onto a digital input, which is assigned with the " DBB connect" input function. The issue of the release signal activates the function "DBB connect", which for its part sets the interlocking conditions configured via the internal interlock matrix with regard to the switchgears on the bus-bar out of function. (see list of input functions in the Chap. "Digital inputs")

There are three versions of field configuration of double bus-bar systems considered by the CSP2 with regard to the switchgears (pairs of switching devices) on the bus-bar:

1. Q01 with Q93 and Q02 with Q94 (circuit breaker removable, with Q93, Q94 as plug-ins)
2. Q01 and Q02 (circuit breaker)
3. Q1 and Q2 (bus-bar disconnector)

Field configuration 2 |

Figure 7.1: Field configurations of double bus-bar systems (DBB)

7.2.5 Interlockings via programmable logic functions (SL-LOGIC)

Customer-specific interlockings on station level could be realised by using the programmable logic functions (SLLOGIC) which are in the scope of CSP2 functionality. The effordable logic equations are to be configured matching the adequate input elements, time delay of the logic output and also the functional configuration of the logical output.

The input elements of the logical equations are to be chosen from the list of output messages.
(see list of output elements of chapter "Alarm relays")
To give an interlocking command, the logic output of the equation

- „Logic fct. 1 "
- „Logic fct. 2
- „Logic fct. 32"
has to be configured with an interlocking function which considers one switching device or several or all devices
- "Crrl. blocked 1"
- "Ctr. blocked 2"
- "SG1 block"
- "SG2 block"
- "SG3 block"
- "SG4 block"
- "SG5 block"
- "SG23 block"
- "SG234 block"
- "SG2345 block"
- "SG1 on block 1"
- "SG1 on block 2"
(see list of input functions of chapter. "Digital Inputs")

Note

Chapter „Programmable logic functions (SL-LOGIC) gives conclusion about the common way of programming the logical equations.

Attention

Interlockings via programmable logic functions are active independent of the switching authorization (Local/Remote).

7.2.6 Interlocking via SCADA system or CMP 1

As an extension, the CSP2 has fail-safe stored and device-internal interlock markers for all controllable switchgears, which can be set or reset via SCADA or the parameter setting via the CMP1. All the switchgears can be locked separately for each control device or generally for all control processes in this way.
The markers can be changed via the control technique independent of the switching sovereignty. Consideration of the switching sovereignty (CMP key switch for local/remote control) can be done within the SCADA system.

In parameterisation mode (mode 2, local operation and control, parameter setting), the interlocking markers can be set or deleted via the CMP1 or via the SL-SOFT. In this way, an internal interlocking can be realized if the control technique fails or in certain operating conditions of the plant. In this way, also temporary switchboard interlockings during a construction phase can be realized without wiring being necessary. In this mode, the markers cannot be set via SCADA.

In the sub-menu "Interlocking" of the CSP2, the current status of the internal interlock markers is displayed. If the status of an interlock marker is "active", there is an interlocking of the control command(s) for the switchgears in question.

Figure 7. 1: status display of the interlocking markers

The set markers are available on the one hand as assignable output messages for the LED display and further processing by signal relays (see list of output messages in Chap. "Signal relay'):

- "All SGl"
- "SGl off"
- "SG2 off"
- "SG2 on"
- "SG3 off"
- "SG3 on"
- "SG4 off"
- "SG4 on"
- "SG5 off"
- "SG5 on"

On the other hand, a corresponding entry is registered in the event recorder if a marker has been set via the SCADA or the local paramete setting (MODE 2):

- "Interlock: CMP" (report that a marker has been set via the CMPI)
- "Interlock: SCADA" (report that a marker has been set via the SCADA)

In the "Interlockings" sub-menu of the CSP2, the current status of the internal interlock markers is displayed. If the status of an interlock marker is active, there is an interlock of the control command(s) for the switching device(s) in question.

8

Communication

SCADA communication
The CSP2 is a high-quality digital protection and control system for many applications in the medium voltage range. Additionally to a multitude of protection functions, it combines the measurement, supervision and control of switchgears in one system. All relevant information of the medium voltage panel is processed by the CSP2/CMP1 system and made available to a master system on mains level.
The control technique constitutes the central subarea of the system technique and takes over functions like the following at the master level:

- controlling,
- interlocking,
- measurement, displays
- signalizing,
- counters (e.g. operation hours)

SCADA leads via a quick fault detection and high operational safety to a high availability of the switchboard and, moreover, results in cost reductions regarding operation personnel by its simple construction.
The required communication between the master computer of the SCADA-system (station level) and the protection/control system (field level) is effected via different protocol variants (type of the data protocol) and means of transmission (type of the physical connection) the application of which is subject world-wide to different standards.

Operation software for single and multiple-device communication (secondary communication level)
Due to the limited information transmission of the SCADA connection (e.g. via IEC 60870-5-103), a second information level is offered by many protection device manufacturers to make possible a redundant evaluation of the devices.
This redundant evaluation is carried out in the CSP2 by application of the operation software SL-SOFT. The required communication distance between the PC/notebook and the CMP/CSP systems can either be executed as single- or multi-device communication.

The connection of the PC/notebook via the internal system CAN bus, renders this second information level accessible to the user.

In the following, the different communication possibilities are shown and general explanations of the different variants regarding the primary and secondary communication levels given.

8.1 Overview

The tabular overview below gives information about the different possibilities of communication of the primary and secondary communication levels of the CSP2/CMP1 systems

Communication Options of the CSP2/CMP 1 -Systems		
Protocol Types	Phys. Lacing (Serial Interface)	Applications
IEC 60870-5-103	FO	SCADA communication
	RS485	
PROFIBUS DP	FO	SCADA communication
	RS485	
MODBUS RTU	FO	SCADA communication
	RS485	
DNP 3.0*	FO	SCADA communication
	RS485	
CAN-BUS	CANI	Single device communication CSP2 - CMP1
	CAN 1: Variant 1	Multi device communication: one CMP1 - several CSP2
	CAN 1: Variant 2	Multi device communication: several CMP1 - several CSP2

Table 8. 1: List of Communication Interfaces

8.2 Protocol type IEC 60870-5-103

This protocol IEC 60870-5-103 is very common in the European region and used predominantly by energy supply utilities.

Structure

This protocol is distinguished from the information transmission in two areas: the standardised "compatible range", in which the type of function is defined according to the protection task of the field management system (e.g. line differential protection, transformer differential protection or time overcurrent protection), and the "private range", in which the individual device functions (control commands), messages and measurement values are defined which exceed the compatible range and cannot be assigned to any single protection task.

8.3 Protocol type PROFIBUS DP

Note

In case of using the data protocol type "Profibus DP" it is not possible to apply CSP2 multi device communication.

The connection of the combined protection and control systems CSP2/CMP1 with the SCADA system via the communication variants PROFIBUS DP is based on Standard EN 501702.
The data protocol PROFIBUS DP is the most frequently used communications protocol in industrial bus systems due to its high transmission speed, efficiency and the optimised and thus lower connection costs. It is especially suitable for the communication between the decentralised periphery devices (field level) and the different automation systems (station level).

The linking of the CSP2 systems with PROFIBUS DP enables the inclusion of medium voltage applications in the automation world like building or process control engineering.
By further processing in industrial communication systems, the detected data of the field level are rendered more transparent for the most different applications and can also be processed further e.g. in energy management systems of higher level inter-connected systems.

Extent of the functions of PROFIBUS DP

Output data of the CSP2 slaves:

- information on device version,
- measurement values,
- switch positions,
- device status,
- time and date,
- status of the digital inputs of the device
- protection status messages and
- number of switching cycles.

Input data of the CSP-slaves:

- control of the switch elements,
- switch-over of parameter sets,
- resetting and acknowledging of messages,
- setting of date and time
- control of the signal relay.

Figure 8.1: Primary communication level with PROFIBUS DP

8.4 MODBUS RTU-Protocol

This data protocol is predominantly used in Far East, Latin America, Eastern Europe as an industial bus-system in order to connect automation-systems.
Usually the automation-system manufactor offers a corresponding driver (library) within the standard scope of delivery.

Structure

Compared to others (e.g. IEC 60870-5-103, the Modbus RTU Protocol is built up rather simple).

8.5 Communication examples

As shown as follows multiple connection types - field management system CSP2 to SCADA - can be realized. The physical connection of the CSP/CMP-systems to the SCADA system is flexible. Thus customized communication solutions/connectionscan be realized.

8.5.1 Physical linking via fibre optic FO (star coupler)

Figure 8.2: Linking via optical waveguide (LWL)

8.5.1.1 Illustration example star-coupler

Figure 8.3: Illustration example 1 - star-coupler

Figure 8.4: Illustration example 2 - star-coupler

8.5.2 Physical connection (link) via RS485

Figure 8.5: Linking via RS 485 (indirectly)

8.5.3 Physical connection (link) via RS232

Figure 8.6: Communication via RS232

8.6 CSP2 Multi-device communication

The term "multi-device communication" means connection of several CSP2 (CMP1) systems among each other via a communication bus (CAN) and enables in this way operation of the individual CSP2-devices (slaves) from a central site (PC/CMP1).
According to the customer needs, the CSP/CMP-system offers two types of multi device communication. For details please refer to the next chapter ("Variants of the CSP2 multi-device communication").

For the realization of a multi-device communication, certain prerequisites must be fulfilled in the construction of the bus-system and in the device configuration to guarantee communication capability of the bus. In general, the CSP2/CMP1-systems are correspondingly configured and marked before delivery during the project processing in the scope of the technical pre-clarification, so that the mounting and commissioning can be effected without problems.

Note

Should it become necessary at a later time, however, to exchange individual CSP2- or CMPI-devices le.g. due to a construction change of the switching system), the procedures mentioned in the following chapters must be observed.

Note

In case of using the data protocol type "Profibus DP" it is not possible to apply CSP2 multi device communication.

By using converters or modems, a remote communication can be constructed which e.g. makes possible a remote paramete setting of the individual CSP2 (CMP1)-systems.

8.6.1 Variants of the CSP2 multi-device communication

Possibilities of using the multi-device communication:

- Operation of the CSP2-devices via a PC by using the operation software SL-SOFT from a central site (variants 1 and 2)
- Operation of the CSP2-devices via a single CMP1 (only variant 2)

Variant 1

Here, each CSP2 disposes of an own operation and display unit CMP1. A PC can be connected with an R232interface of any CMP1 via the constructed CAN BUS system. By using the operation software SL-SOFT, the individval CSP2-devices can be separately pre-selected when a communication connection between any CMP1 and a PC/laptop has been established correspondingly. Now the full extent of the SL-SOFT is available for operation of the CSP2-devices.

Variant 2

The main purpose of this variant is the reduction of the number of CMP1-devices. The local access to the CSP2devices in the CAN-BUS distance is effected here by a joint operation and display unit CMP1 via the menu "Select device".

Attention - danger to life!

The CMP1 communicates always only with one CSP2! The pre-selection (logging into a device) into another CSP2 occurs only via the menu guidance of the CMP1 and thus requires time. Hence that it must be ensured during the projecting that important functions such as "Emergency off" are constructed redundantly (e.g. additional separate push button for the circuit breaker).

Also in this variant, a PC/notebook can be connected with the CMP1 so that the CSP2-devices can be operated from a central site.

Figure 8.7: Variants of the CSP2 multi-device communication

8.6.2 Prerequisites for multi-device communication

For the multi device communication a corresponding bus-system has to be built up and the devices have to be parametrized accordingly.

Hardware

- Build up the CAN-BUS-system between the CSP2/(CMPI)-Systems,
- Build up the connection between the PC/laptop (SL-SOFT) and the CAN-Bus-system.

Device configuration

- bus capability of the operation and display unit(s) CMP1,
- selection of the variant for multi-device communication,
- assignment of the CAN-device numbers.

8.6.2.1 CAN-BUS System (hardware prequisistes)

The construction of the bus system via the internal CAN-BUS-system can be realized in a simple and costeffective way.
Each CSP2 disposes of two parallel CAN-interfaces which are required for the construction of the CAN-BUS system. The interface X 10 (socket) is required (as usual) for the communication between CSP2 and CMP1. The second CAN-interface X9 (plug) is in each case connected with the interfaces X9 of the other CSP2-device (parallel wiring).

Attention

- The length of the CAN-BUS system must not exceed 100 m (inclusively branch lines to the CMP)
- During the installation of the bus-system, it is to make surre, that both ends of the bus-line are terminated with a terminal resistor. Otherwise the multi device system doesn't work due to reflexions (signals).

Variant 1: several CMP1 and several CSP2

Figure 8.8: CAN-BUS-system variant 1 - CSP2 multi-device communication

Variant 2: Single CMP1 and multiple CSP2

Figure 8.9: CAN-BUS system - variant 2 of the CSP2 multi-device communication

8.6.2.2 Bus capability of the operation and display unit CMP 1

The connection of the CSP2/CMP1-systems via the CAN-BUS requires the adaptation of the individual CSP2- and CMP1-devices. For the operation and display units CMP1, this means that they will become "bus-capable" by parameter setting.

Procedure:

1 st step:
The CMP1 is first separated from the CAN-BUS system.
2nd step:
Rebooting the CMP1 by switching off and on of the supply voltage of the CMP1
3rd step:
As soon as the window "rpc communication timeout" pops up, the CMP-menu "CAN DEV. NO. CONFIG" is to be called up by pressing key "ENTER".

4th step:
Now the setting for parameter "BUS" is to be set to "yes". The parameter setting process is the same as for the parameterizing the CSP2-device (see chapter "Parametrizing via CMP1" (parameterising via CMP1)).

5th step:
The CMP1 is now to be (again) connected to the CAN-BUS.

Attention

When using variant 1, it must be insured before the CMP1 is reconnected to the CAN-BUS that the set CAN-device number of the CMP1 matches that of the corresponding CSP2-device!
When using variant 2, the CAN-device number of the CMP1-device must match that of one of the connected CSP2-device (see chapter "Assignment of the CMP1-CAN device- numbers").

Setting of bus capability of the operation and display unit CMP 1:

Figure 8.10: Setting of bus capability of the CMP1

8.6.2.3 Selection of the variant via parameter setting of the CSP2

The CSP2-devices must be adapted to the selected variant for multi-device communication. This occurs via the parameter setting of each CSP2-device in the submenu "CAN-BUS".
(For setting the variant, see chapter "CAN-BUS multi-divice communication")

8.6.2.4 Assignment of the CSP2-CAN appliance numbers (ids)

Independent of the variant of the CSP2-multi-device communication, different CAN-device numbers must be set for any CSP2-devices part of the CAN-BUS system. Maximally 16 CSP2-devices can be connected with the CAN-BUS system. Thus only the numbers 1 to 16 can be set as CAN-ids.
(For setting the CAN-device number, see chapter "CAN-BUS multi-appliance communication")

Atrention

For the included CSP2-device different CAN-devices numbers must be set!

8.6.2.5 Setting of the CMP 1-CAN device-numbers (Id)

The connection of the CSP2/CMP1-systems via the CAN-BUS requires adaptation of the individual CSP2- and CMP1-devices. For the operation and display unit(s) CMP1, this means that their CAN-device number(s) must be set by parameterizing in dependence of the selected variant for multi-device communication.

Variant 1: The CAN-device number of the CMP1 must be the same as that of the corresponding CSP2-device!
Variant 2: The CAN-device number of the CMP1 must be the same as that of that CSP2-device that it is connected to, within the bus system.

Procedure:

1 st step:
The CMP1 is first to be separated from the CAN-BUS system.

2nd step:

Rebooting the CMP1 by switching off and on of the supply voltage of the CMP1

3rd step:

As soon as the window "rpc communication timeout" pops up, the CMP-menu "CAN DEV. NO. CONFIG" is called up by pressing key »ENTER«.

4th step:
Setting of operation mode MODE 1 (both key switches in vertical position).
5th step:
Now the setting for parameter "act. CAN dev. no." is parameterized to the desired CAN-appliance number. The parameter setting process is the same as for parameterizing the CSP2-device (see chapter "parameterizing via CMP"

6th step:
By pressing the key »ENTER«, the new setting is saved in the CMP1
7th step:
The CMP1 is now connected with the CAN-BUS system, and the CMP1 establishes the connection with the CSP2 with the same now set CAN-device number of the CMP1.

The following illustration shows the procedure for setting the CMP1 CAN-device number (Id).

Figure 8.11: Setting of CMP1 CAN device number (id)

Note

The menue item "cur. CAN dev. no.:" shows the actual "CAN-Device Number of the CMP1". This menue item is only updated after saving the parameter changes.

8.6.3 Exchange of devices in the CAN-BUS system

Should it become necessary to exchange individual CSP2- or CMP1-device in the CAN-BUS system, e.g. due to modifications of the switchboard, the device to be exchanged must first be separated from the CAN-BUS system and from the supply voltage of the devices, and then dismounted.

In the following, the further procedure for exchanging a CMP1 and a CSP2 are explained separately.

8.6.3.1 Exchange of a CMP 1

1st step:

Check respectively setting of the bus capability of the CMPI-device.

2nd step:

Check respectively setting of the required CAN-device number (id) of the CMP1-device.
Both steps are executed in the CMP1-menu "CAN DEV: NO.CONFIG" (see chapter "Bus capability of the operation and display unit CMP1")

3rd step:
Connection of the CMP1 to the CSP2.

8.6.3.2 Exchange of a CSP2

1st step:

Check respectively setting of the selected variant for CSP2 multi-device communication.

2nd step:

Check respectively setting of the required CAN-device number of the CSP2-device.
Both steps are executed in the submenu "CAN-BUS" of the CSP2 (see chapter "CAN-BUS").
3rd step:
Connection of the CSP2 to the CAN-BUS system.

$9 \quad$ Projecting (design)

Applications

As already mentioned in the Chapter "Introduction", there are various applications for the area of protection technique on the medium-voltage level:

- Feeder protection
- Cable/line differential protection
- Bus-bar differential protection
- Transformer differential protection
- Motor protection
- Generator protection
- Distance protection
- Mains decoupling etc.

The SYSTEM LINE series of products currently comprises the following types of equipment:

- Combined feeder protection and control system CSP2-F
- Combined cable/line differential protection system CSP2-L
- Bus-bar differential protection system CSPI-B

Variety of differing demands

Due to the world-wide use of these systems, the devices have been designed with high flexibility and functionality with regard to integration in switchboards made by various manufacturers. The international differences include, for example:

- standards and guidelines with regard to plant safery,
- mains topology (kinds of mains, e.g.: neutral point connection),
- protection concepts,
- concepts for switchgear control and interlocking,
- communication connections to SCADA (types of protocol, phys. interfaces) and
- use of switchboards and switchgears of various manufacturers.

But there are also differing requirements made of the protection and control systems to be used within one region on the part of the mains and switchboard operators. Here, the use of various operating equipment and the differing functions for the operation of the switchboard are in the foreground:

- Type of switchboard (e.g. gas-insulated or vacuum switchboards, single or double bus-bar systems)
- Differing protection concepts le.g. use of DEFT or INV tripping characteristics, directional or non-directional protection, signal comparison protection etc.)
- Variety of differing field configurations le.g. use of mechanically or electrically controllable switchgears such as circuit breakers, switch disconnector, disconnecting switches and earthing switches).
- Variety of differing functions (e.g. switchgear, field and plant interlockings, signal and supervision functions, measurement functions etc.),
- Differing SCADA and automation systems (protocol types, phys. interfaces) for communication with the field level
- and many more besides.

Device selection and configuration
On the basis of the above mentioned variety, we cannot talk of standardized applications in the closer sense of the term. For this reason, there are also no universal devices with generally valid parameter sets, the parameter settings of which match for each application. This is why each application must be engineered specific to the customer, with the result that all the requirements are fulfilled. For this, the correct type and capability of device must be selected to start with.

Project handling
Due to the complexity of projects with combined protection and control systems, : RRGZDG has a project handling for projects of the SYSTEM LINE series of devices. The project handling is designed as follows:

- Assistance in the selection of the correct type of device and the corresponding capability,
- technical clarification in advance to integrate the CSP/CMP system into the switching plant (upon request, in a projecting discussion),
- production of a checklist with information on the field configuration for each individual type of switchboard,
- configuration of the CSP devices before delivery,
- if requested: protection tests and commissioning of the CSP/CMP systems on site and also
- if requested: customer coaching for the devices of the SYSTEM LINE
- telephone consultancy and after-sales service.

9.1 Design of protection transformers

An important integral part of each protective function is the transformer, which form the foundation for a protection by quick and most precise provision of the measurement values possible. The transformers are to selected to match the primary values and the load. Mismatches lead to lack of precision and, in the worst case, to malfunctions of the protection.
The protective transformers convert the primary values of current and voltage into physically separated, standardized secondary values (1/5 A, 100/110 V). Thanks to the transmission properties of the transformers, the connected devices are simultaneously and effectively protected against short-circuits and over voltages.

Explanations of terms

Rated current intensity	Matching the primary and secondary current values stated on the rating plate. Examples of standardized primary nominal currents: $50 \mathrm{~A}, 100 \mathrm{~A}, 150 \mathrm{~A}, 200 \mathrm{~A}$, $300 \mathrm{~A}, 400 \mathrm{~A}, 600 \mathrm{~A}, 800 \mathrm{~A}, 1000 \mathrm{~A}$.
	Standardized secondary nominal currents: $1 \mathrm{~A}, 5 \mathrm{~A}$
Ratio between primary and secondary rated current,	
is stated as an unreduced fraction	
ki $=11 / I 2=\mathrm{N} 2 / \mathrm{Ni} 1$	
Product of the square of the secondary nominal current and the nominal burden, unit	
in VA	

For the design of current transformers, it holds:

- Adaptation of the primary nominal current of the operating equipment to be protected (e.g. nominal transformer current $=80 \mathrm{~A}$, nominal transformer current $=100 \mathrm{~A})$,
- design of the secondary nominal current $1 \mathrm{~A} / 5 \mathrm{~A}$ to match the measurement lines and the input variables of measurement and protection devices,
- calculation of the nominal burden on the basis of the power consumption of the connected devices and the measurement lines and
- class precision and overcurrent factor to the peripheral conditions (e.g. more precise measurement, better determination of distance in the short circuit, costs).

Examples of the power consumption of measurement lines (each 10 m double line, copper):

Cross-section (in mm^{2})	Nominal secondary current 1 A	Nominal secondary current 5 A
1.5	0.24 VA	6 VA
2.5	0.14 VA	3.6 VA
4	0.09 VA	2.2 VA
6	0.06 VA	1.5 VA
10	0.04 VA	0.9 VA

Table 9. 1: Examples of power consumption of measurement lines

Attention

The secondary current circuit of a current transformer may never be opened in operation, but always kept short-circuited. Otherwise, there is the risk of overvoltages and inadmissible heating.

9.2 Configuration of the switchboard

Field configuration (Single line diagram and field interlockings)
The graphic display of the field configuration (single line), the diagram assignment of switchgears and the interlocking conditions (field interlocking) are produced with a specific software programme and stored in the CSP2 system configuration file "Sline.sl". This configuration file can be loaded or copied into the CSP2 in online mode of the operating software SL-SOFT and copied onto the local storage medium of the PC/notebook.

9.2.1 Examples of field configuration

Most switchboards in medium-voltage have either

- double bus-bar systems (DBB) or
- single bus-bar systems (SBB).

Thus the switchboard configuration depends on the bus-bar system, the number of detectable and, if need be, controllable switchgears and the field interlocking conditions connected with this.

Below, some examples of switching field configurations are shown for the above mentioned bus-bar systems.

9.2.1.1 Feeder configurations for single bus-bar systems (SBB)

a)

b)

Figure 9.1: al feeder with $C B$, isolator and earthing switch b) feeder with withdrawable CB and earthing switch
a)

b)

Figure 9.2: a) Transformer feeder: withdrawable CB and earthing switch b) Transformer feeder: $C B$, isolator and earthing switch
a)

b)

Figure 9.3: a) Motor feeder: withdrawable CB and earthing switch b) Generator feeder withdrawable CB and earthing switch

9.2.1.2 Bus section panel for single bus-bar systems (SBB)

a)

Figure 9.4: a) Bus section panel: withdrawable CB b) Bus section panel: withdrawable CB
a)

9.2.1.3 Feeder configurations for double bus-bar system (DBB)

Figure 9.6: a) Feeder: CB, disconnector and earthing switch b) Feed-in field: CB and disconnector
a)

b)

Figure 9.7: a) Feeder: withdrawable CB's and earthing switch
b) Generator Feeder: CB, bus-bar and feeder disconnection
9.2.1.4 Bus coupler panel for double bus-bar systems (DBB)

Figure 9.8: a) Bus coupler panel: CB with HH fuse and disconnector b) Bus coupler panel: withdrawable CB and earthing switch

9.2.2 Checklist as projecting assistance and plant documentation

The checklist for the devices of the SYSTEM LINE is an elementary instrument for projecting of applications in which the CSP2/CMP1 combined protection and control systems are used. The checklists contain all the relevant information on the configuration of a type of switchboards and are used over and above the projecting phase, as plant documentation.

For each type of device of the SYSTEM LINE there is a separate checklist available:

- Checklist CSP2-T,
- Checklist CSP2-F3,
- Checklist CSP2-F5 and
- Checklist CSP2-L.

Projecting phase

As a rule, the configuration of the CSP2/CMP1 systems is done before delivery of the devices. For this, technical clarification is necessary:

- selection of the suitable capability class of the type of device,
- stipulation of the individual ancillary voltages,
- stipulation of the transformer ratios,
- stipulation of the measurement circuits for current and voltage measurement,
- stipulation of the active protective functions,
- if need be, stipulation of the version of the SCADA communication,
- configuration of the individual switchboard types lyype of the bus-bar, graphic of the single line, number of detectable and controllable switchgears, field interlockings)
- stipulation of the plant interlockings,
- stipulation of the assignment of switchgears and the control outputs of the CSP2,
- stipulation of the direct or indirect control of the switchgears,
- stipulation of the assignment of DI functions onto the digital inputs,
- stipulation of the assignment of output messages onto the signalt relays and
- stipulation of the assignment of input functions (DI functions) and output messages onto the LED's.
- stipulation of the assignment of logic equations.

This information is entered in the checklist, thus forming the basis for the device configuration (parameter setting).

Note

We would recommend doing the technical clarification in a projecting discussion between the user and the SYSTEM LINE project manager. The above mentioned technical information must be subject to being unambiguous.

Plant documentation

The checklists contain not only the detailed technical information, but also general information on:

- order handling,
- switchboards and
- remarks on amendments during the projecting phase.

When the devices are supplied, the checklist generated for each type of switchboard is supplied. In this way, the user is given an extensive documentation on the secondary engineering used in connection with the switchboard.

Note

In the annex, there is a "blank checklist" of a CSP2-F5.

9.2.3 Example for Programmable Logic Equations (SL-LOGIC)

Specification of the required task - programming example of a customer specific switching - over sequence "The feeder panel of a 10 kV single bus bar system consists of a circuit breaker, an isolating switch and an earthing switch. All three switching devices are electrically controllable by the combined protection and control system CSP2. It is intended to project a switching-over sequence where the feeder is automatically switched over from the supply mode to earthing of the panel within 20 s . When in remote operation this switching-over process shall either be initiated via a signal line from an external common control room (parallel wiring) or from the station control system (e.g. by using the protocol type acc. to IEC 60870-5-103). Initiation of this process, however, should only be possible upon a release signal from the common control room (signal line). The switching-over sequence shall be stopped/interlocked by an external, conventional »EMERGENCY OFF« input element if a pushbutton is pressed or when the signal line is interrupted. Operating status »Supply" and "Earthing" have to be signalled to the common control room."

Figure 9.9: Configuration Of The Feeder Panel

Interpretation and realization of the required task

Based on the conventional task description the Input Elements and Logic Outputs needed for the SL-LOGIC function have firstly to be defined i.e. they have to be named and the logic status to be allocated (" 0 " or " 1 ").
To achieve this the elements available in the CSP2 have to be assessed first and then co-ordinated to the task required.

Initial situation

The output is fed by the feeder, i.e. the earthing switch is open whereas the isolating switch and the CB are closed. This is indicated by the following Input Elements and their allocated logic status ("O" or " 1 "):

$$
\begin{array}{lll}
\text { "Pos. SG1 ON" }=1 & \text { (circuit breaker QO), } & =>\text { "E1" (input element) } \\
\text { ",Pos. SG2 ON" }=1 & \text { (isolating switch Q9), } & \Rightarrow \text { "E2" (input element) } \\
{ }^{\text {PN }}
\end{array}
$$

By analyzing the respective switching device positions, the signal of the operational status »Supply« is generated. Since such an application-orientated signal is not available in the CSP2 as predefined output message, it has to be generated by a logic output of a logic equation:
,"Logic fct.1" = "1" => "Y1" (Logic output without assignment)

Operational mode and release of the switching-over sequence

As basic condition for initiating the process, the feeder should be in mode »Remote Operation«. Hence the upper key switch on the CMP1 has to be put into the horizontal position. By this the output signal "Remote Operation" supplied by the CSP2 - is activated. This signal is used as additional input element. Then the logical status applies to the requirement:
"Remote Operation" = „" $=>$ "E4" (input element)
Before the switching-over process is started, a "Release" command from the external common control room is additionally required. A digital input has to be used with an assigned input function which is only processed as signal. For that purpose input function "7", for instance, is available in the CSP2. Logic status " 1 " will be assigned when the necessary condition is met:
„Function 7" = „1" => "ES" (input element)
When actuated the external »EMERGENCY OFF« facility is to interlock the switching-over sequence against activation. Over conventional wiring this signal is led to a digital input with signal "function 6" assigned to. The closed circuit principle is used for supervision of cable breaks, and so the logic status " O " is assigned to the input element for the SL-LOGIC function:
„Function $6^{\prime \prime}={ }^{\prime}$ O" $^{\prime \prime}=>$ "Eb" (input element)

Command for activating the switching-over sequence.

The automatic switching-over process (switching sequence) shall either be activated via a digital input, e.g. the input "Function 8" or the station control system (SCS), for example, "Scada CMD. out 2". In order to meet the activating conditions the logic statuses and their input elements should be as follows:
"Function $8 "={ }^{1 "}$ " $=>$ "ET" (input element)
"Scada CMD.out 2 = „1" => "E8" (input element)
The commands have to be $O R$-gated because they can be given optionally. To achieve this, a logic equation is needed with a logic output only used as auxiliary variable for processing:
„Logic fct.2" = „1" => "Y2" (logic output without assignment)

Automatic switching-over procedure

As soon as all a/m conditions are met and the switching-over command is issued, the switching-over procedure is initiated. Firstly the circuit breaker (CB) has to be switched off. Then the respective input elements to be linked in a logic equation and the logic output assigned with control function "S-ComX. SDI Off" (input function). Taking into account the logic status, this logic output is as follows:
„Logic fct.3" \rightarrow „S.ComX. SG 1 OFF" $={ }_{\text {, }} 1$ " $=>$ "Y3" (logic output with assignment) (Switch-command)

After the circuit breaker has reached the "OFF position", a timer is started which in terms of time monitors the further process until it is completed (earthing). For this timer, however, a separate equation has to be used because logic output "Logic fct. 3 " is to induce opening of the circuit breaker without a time component. Therefore the input element of this timer is the logic output "Logic fct. 3 ":
„Logic fct. 4 " = „1" => "Y4" (logic output without assignment)
Now the isolating switch Q9 is to be opened. Its de-activation is generated through a further logic function by linking the input element for the "OFF signal" of the CB:
„Pos. SG1 OFF" = „1" => "EQ" (input element)
with the output of the logic equation for the monitoring time "Logic fct.4".

This logic equation provides the output where the control function for opening the isolating switch is assigned to: "Logic fct.5" \rightarrow "S ComX. SG2 OFF" $={ }_{„ 1 "}=>$ "Y5" (logic output with assignment) (Switch-OFF-command for SG2)

As soon as the isolating switch is opened, the earthing switch shall close and here the related check-back signal of the position is used as input element:

$$
\text { "Pos. SG2 OFF" }={ }_{„} 1 "=>~ " E 10 " \text { input (element) }
$$

Important

When projecting it is essential to consider a minimal dead time of 700 ms between the position check-back signal of a switching device (exception the CB) and the subsequent control command.
Should an extra running time "tn ON/OFF" be adjusted for the power output of the switching device, then this time has to be added to the minimal dead time:

$$
t P=700 \mathrm{~ms}+\mathrm{tn} \mathrm{ON} / \mathrm{OFF}
$$

In order to guarantee this dead time, an additional logic equation has to be used. As input elements this equation ought to have the position check-back signal of the isolating switch "Pos. SG2 OFF" as well as the property of the preceding logic output "Log. funct.5". The timer is then to be adjusted according to the mode used for the ONdelayed activation of the logic output. After the dead time has elapsed and the position check-back signal for the open isolating switch was received (AND), the ON- command for the earthing switch should be issued. For this purpose the logic output is assigned with the function "S ComX. SG3 ON":
„Logic fct.6" \rightarrow "S ComX. SG3 ON" = „1"> "Y6" (logic output with assignment)
As soon as the earthing switch is activated for earthing the feeder, the circuit breaker has to be closed, but only when it is ensured that the earthing switch is in a definite position. As input element for this switching sequence (new logic equation), the position check-back signal of the earthing switch is being used:
${ }^{\prime P}$ Pos. SG3 ON" = „1" => "El l" (input element), as well as the preceding logic output "Logic funct.6" (AND).
Here, too, the dead time has to be considered accordingly, i.e. for the timer of logic equation "Y6" a time delay has to be set. The output of this logic equation is assigned with the input function "SComX. SG1 ON":
"Logic fct. 7 " \rightarrow "S ComX. SG3 ON" $={ }_{" 1 "}=>$ "Y7" (logic output with assignment) (Switch-ON-command for SG3)

Indication of operating state "Earthing"

After the switching-over sequence is completed, the switching devices of the feeder are in the operational state "Earthing". To enable signalling of this operating state it is necessary to link the following input elements in a further logic equation:
„Pos. SG1 ON" = 1 (CB Q0), => "El" (input element)
"Pos. SG2 OFF" = 1 (lsolating switch Q9), => "E1O" (input element)
"Pos. SG3 ON" $=1$ (Earthing switch Q8) => "E 17 " (input element)
The resulting logic output can then, for instant, be assigned to a signal relay for further processing:
"Logic fct.8" $={ }_{„ 1} 1$ => "Y8" (logic output without assignment)

Preparing the truth table

By using the input elements and output elements as defined above, a table (truth table) can be set up where the relation between the logic outputs and their input elements is clearly reflected. Based on this truth table it is possible to set up the logic equations in Disjunctive Normal Form (DNF). But these logic equations would include terms in Full Conjunction (i.e. each of the terms comprises the complete number of existing input elements). In order to keep the logic equations as "lean" as possible, only those input elements relevant for the respective logic output should be assigned with the logic state " O " or " 1 ", all other input elements should be assigned with a " x ", to be interpreted as an "optional array". Easier still, to leave the relevant square in the truth table vacant.

Note

"Optional arrays" mean a higher transparency of the truth table and reduce the number of logic equations. The truth table should not be set up to the whole extension because the number of combinations possible depends on the input elements and these can be numerous (often >10). The number of possible combinations can be computed as follows:

$$
N=2^{n}
$$

$\mathrm{N}=$ Number of combinations (logic equations)
$\mathrm{n}=$ Number of input elements
It is advisable to list only combinations of logic outputs with the logic state " 1 ".

For this example the truth table is as follows:

Input Elements											Logic Outputs							
											$\begin{aligned} & \stackrel{0}{\Sigma} \\ & \stackrel{Z}{2} \end{aligned}$	$\begin{aligned} & @ \\ & \stackrel{0}{\Sigma} \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{0}{\Sigma} \end{aligned}$		$\begin{aligned} & \text { " } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \bar{c} \\ & \vdots \\ & i \end{aligned}$	$\begin{aligned} & = \\ & \bar{\delta} \\ & \bar{U} \\ & 0 \\ & \dot{E} \\ & \underset{U}{i} \\ & = \end{aligned}$	$\stackrel{\otimes}{\stackrel{1}{+}}$
			" ${ }^{\text {¢ }}$				$\begin{aligned} & \text { え } \\ & \text { 亏̀ } \end{aligned}$							$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				
	$\begin{aligned} & \text { ᄃ } \\ & \underset{\sim}{0} \\ & 0 \\ & \dot{0} \\ & 0 \end{aligned}$						$\begin{aligned} & \dot{\xi} \\ & \dot{y} \\ & \dot{ভ} \\ & \dot{U} \\ & \vdots \end{aligned}$		$\begin{aligned} & \tilde{O} \\ & 0 \\ & 0 \\ & \dot{0} \\ & \dot{o} \end{aligned}$		$\begin{aligned} & = \\ & \frac{U}{4} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & \text { in } \\ & \text { U } \\ & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { U } \\ & 0.0 \\ & 0 . \\ & \hline \end{aligned}$		
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8
1	1	1									1							
						1						1						
							1					1						
			1	1	0						1	1	1					
													1	1				
								,						1	1			
									1						1	1		
										1						1	1	
1									1	1								1

Table 9.2: Truth Table

Note

- The abbreviations for the input elements E1...E1O and for the logic outputs Y1 ...Y8 do not exist in the CSP2! They are only used for more transparency and as abbreviations when preparing the logic equations and the technical documentation.
- To ensure that an input element is recognized and processed by the CSP2, it has to be assigned with a signal from the List of Output messages.
- Optionally the Logic Outputs can either be processed as a mere signal (,Logic fct.xy") or they can be applied with a Function. For realizing this a function out of the List of Input Functions has to be assigned to a logic output.
- In the double framed squares of the table the results of the individual terms for the respective logic output are stated.
- Logic Outputs, too, can be used as Input elements for another logic equations.

Timers are always part of the logic outputs and can consequently be considered in the truth table.

Setting up of logic equations

The individual logic equations can now be read off of the truth table:
$\begin{array}{ll}\mathrm{Y} 1=\mathrm{E} 1 * E 2 * E 3 & \text { (Logic equation } 1 \text { in DNF) }\end{array}$
$Y 2=E 7+E 8 \quad$ (Logic equation 2 in DNF)
Y3 $=E 4 * E 5^{*} / E 6^{*} Y 1^{*}$ Y2 (Logic equation 3 in DNF)
$Y 4=Y 3$
Y5 $=$ E9*Y4 (Logic equation 5 in DNF)
$Y 6=E 10 * Y 5$
(Logic equation 6 in DNF)
Y7 = E11*Y6 (Logic equation 7 in DNF)
$\mathrm{Y} 8=\mathrm{E} 1 * \mathrm{E} 10 * \mathrm{E} 11 \quad$ (Logic equation 8 in DNF)

Setting up of the logic flow chart based on the logic equations.

A logic flow chart can now be prepared on the ascertained logic equations as listed above.

Change-Over Automatic: Feeding -> Earthing

Figure 9.10: Example "Switching-Over Sequence" : Logic Flow Chart

Efficient utilization of the SL-LOGIC reduction with regard to the number of logic equations

The logic flow chart is to optimize in such a way that for realisation of the user-specific functions as few as possible logic equations are needed, i.e. certain parts of the circuitry/logic equations shall be eliminated and their input elements then be integrated in the subsequent logic equation.

The example shows that the auxiliary variable " $Y 2$ ", for instance, can be eliminated. This means that the subsequent logic equation "Y3" (i.e. the one processed as input element in the internal state variable "Y2") does not receive the internal state variable "Y2" as input element, but the input elements "E6" and "E7", from which the internal state variable "Y2" was generated. For the logic equation "Y3", the conversion has to has to be in a Disjunctive Normal Form (DNF), because a logic equation can only be entered as DNF into the CSP2. The converted logic equation is then as follows:

```
Y3 = E4*E5*/E6* Y1 *Y2
    =E4*E5*/E6*(E7+E8)*Y1
    =E4*E5 */E6*E7*Y1+E4*E5*/E6*E8*Y1 (Logic equation 3 in DNF)
```


Attention

When logic equations can be cut down this always means an extension of the whole circuitry! It should be duly taken into account that the number of input elements for the subsequent logic equation(s) (into which the input elements of the eliminated logic equation merge) does not exceed 32, because one logic equation can only process 32 input elements.
Only those logic equations are permitted to be eliminated which were introduced as internal state variables and are not needed as signal ("Logic fct.xy") or as function (assignment of an input function).

Optimization of logic equations according to "Quine-McCluskey"

In many cases it is possible to optimize (simplify) the logic equations originated from the functions required. Especially with regard to a number of input elements >5 it is advisable to have an update carried out automatically. There are different software programs available and some of them can even be obtained free of charge (freeware) of the internet.

For the current example an automatic update is not necessary. It is, for instance, not possible to further simplify the logic equation for " $Y 3$ ".

Adaptation of the logic equations

Due to elimination of the logic equation for " $Y 2$ " it becomes necessary to change numbering of the logic equations accordingly:

$Y 1=E 1 * E 2 * E 3$	(Logic equation 1 in DNF)
$Y 2=E 4 * E 5 * / E 6 * E C^{*} Y 1+E 4 * E 5 * / E 6 * E 8 * Y 1$	(Logic equation 2 in DNF)
$Y 3=Y 2$	(Logic equation 3 in DNF)
$Y 4=E 9 * Y 3$	(Logic equation 4 in DNF)
$Y 5=E 10 * Y 4$	(Logic equation 5 in DNF)
$Y 6=E 11 * Y 5$	(Logic equation 6 in DNF)
$Y 7=E 1 * E 1 O^{* E 11}$	(Logic equation 7 in DNF)

Adaptation of the truth table

When logic equations are eliminated it becomes necessary to change truth tables and logic flow charts accordingly． For adapting the truth table，the column of the eliminated logic equation（here：equation Y2）and the lines showing the results of logic output＂Y2＂are to be taken out．Numbering is then simply to be corrected．

Input Elements											Logic Outputs						
											$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \text { Z } \end{aligned}$		$\begin{aligned} & @ \\ & \stackrel{0}{\Sigma} \end{aligned}$				$\stackrel{\text { ¢ }}{\stackrel{0}{C}}$
			＂				$\begin{aligned} & \text { 亏 } \\ & \vdots \\ & \vdots \end{aligned}$							$\begin{aligned} & \text { 島 } \\ & \text { 部 } \\ & \text { 문 } \\ & \hline \end{aligned}$			
							$\begin{aligned} & \dot{\xi} \\ & \dot{ভ} \\ & \dot{ভ} \\ & \underset{U}{u} \end{aligned}$	$\begin{aligned} & \stackrel{i}{0} \\ & \frac{0}{0} \\ & 0 \\ & \dot{0} \\ & \hline 0 . \end{aligned}$				$\begin{aligned} & \hat{N} \\ & \stackrel{H}{U} \\ & \stackrel{U}{\dot{D}} \\ & \underline{O} \end{aligned}$				$\begin{aligned} & \hat{0} \\ & \hat{U} \\ & \stackrel{U}{U} \\ & \dot{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{\hat{N}} \\ & \hat{U} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	Y1	Y2	Y3	Y4	Y5	Y6	$Y 7$
1	1	1									1						
			，	1	0	1					1	1					
			1	1	0		1				1	1					
												1	1				
								1						1			
									1					1	1		
										1					1	1	
1									1	1			1			1	1

Table 9．3：Updated Truth Table

Adaptation of the logic flow chart

The logic flow chart, too, has to be updated.

Change-Over Automatic: Feeding -> Earthing (after Elemination of "Logic fct. 2")

Figure 9.11: Updated Logic Flow Chart

9.3 Specific applications in feeder protection

The combined protection and control system has a number of various protection functions as well a far-reaching functions for digital inputs (DI functions) and signal relays (output messages). The combination of corresponding functions (parallel wiring of digital inputs and signal relays) makes it possible to implement specific applications in feeder protection.

9.3.1 Line protection

Directional overcurrent protection
The detection of direction increases the selectivity of the protection. The signal comparison of two CSP2 can implement a protection which only disconnects a line fed from both sides free if it is faulty itself.

Figure 9.12: Directional dependent protection

In this case, each CSP2 transmits its direction decision to the partner device. The tripping is only executed if the error on the cable/line is between the two CSP2 and is therefore recognised as an internal error by both protective devices.

Necessary settings

Protection 1:

- $\quad 1 \gg F$ active with protective block (active 0) and
- $\quad \mid \gg F$ alarm on signal relay.

Protection 2:

- $\quad 1 \gg F$ active with protective block (active O) and
- $\quad 1 \gg F$ alarm on signal relay.

9.3.2 Bus-bar protection with backward interlocking

Backward interlocking

Quick bus-bar protection: in a star network, a quick selective short-circuit protection can be done with a backward interlocking. If an error occurs in feeder 2 in this, protection devices 1 and 2 trip, as both detect the short-circuit current. But here, only protection 2 may trip, in order not to switch the entire bus-bar S off. Alongside a purely time staggering, this requirement can also be fulfilled via a backward interlocking. For this, the subordinate protection device must inform superior protection device 1 of its excitation and block it. This method can be quicker than a time staggering, as, for example with a fault on bus-bar S, relay 1 does not have to wait and see whether a subordinate protection can isolate the error beforehand.

Figure 9.13: backward interlocking

In all CSP2 device types, a binary input can be pre-programmed as a so-called " backward interlocking " (rev. lock). This input can be used to coordinate the protective functions in one field with those in other fields in order to increase the selectivity and speed of the overall protective system. The backward interlocking input can be regarded as a general external blocking and linked with other integrated protective functions. The cooperation of the backward interlocking with other protective functions can be made clear by the following two typical applications:

- Quick bus-bar protection by backward interlocking: with the backward interlocking, the overcurrent protection or short-circuit protection in the CSP2 can be used as a quick bus-bar protection in a radial system. In this case, current excitations from all the feeders of a bus-bar section are guided to the overcurrent protection used as a bus-bar protection as blocking signals. In the event of an error directly on a bus-bar and no blockages of other protective systems, the excess current protection can trip with a short tripping time depending on the staggered time.
- Differential protection by signal comparison: signal comparison via the backward interlocking can be used with double-sided feeding for device types CSP2-F3 and CSP2-F5 with the functionality of a line differential protection. In this case, each CSP2 transmits its direction decision to the other. Tripping is only activated if the fault is determined by both CSP2 as a forward-lying fault (fault is on the line between the two CSP2). The overcurrent protection can be used with or without external blocking.

9.3.3 Calculating the tripping times

The tripping times of the (current) dependent tripping curves (INV) are calculated according to the following relationship:

Tripping characteristics according to IEC 255-3 or BS 142:

$$
\begin{aligned}
& \text { Normal Inverse (NINV): } t=\frac{0,14}{\left(\frac{1}{1>}\right)^{0,02}-1} t \text { charF } / \mathrm{B}[\mathrm{~s}] \\
& \text { Very Inverse }(V I N V): ~ t=\frac{13,5}{\left(\frac{1}{1>}\right)-1}+\text { charF } / \mathrm{B}[\mathrm{~s}] \\
& \text { Extremely Inverse }(E / N V): t=\frac{80}{\left(\frac{1}{1>}\right)^{2}-1}+\text { charF } / \mathrm{B}[\mathrm{~s}] \\
& \text { Long Time Inverse (LINV): } \mathrm{t}=\frac{120}{\left(\frac{1}{1>}\right)-1}+\text { charF } / \mathrm{B}[\mathrm{~s}]
\end{aligned}
$$

```
with: t = tripping time
    t char F/B = time multiplier
    | = fault current
    |> = pick-up value current
```


9.3.4 Calculations on the thermal replica

Foundations of calculation
On the basis of the underlying homogenous body heating model, deductions can be made for a heat energy Q stored in the electrical equipment. With a constant current load and after a long time, a stationary condition is reached in which the electrical equipment temperature no longer increases. The heat fed per unit of time is equal to the amount of heat emitted by cooling (energy balance).

$$
Q_{\text {discharged }}=Q_{\text {suppllied }}
$$

The fed thermal energy and the temperature ϑ of the operating equipment in a stationary condition are proportional to the square of the phase current (e.g. ohmic losses and iron losses in the transformer):

$$
Q \sim 1^{2} \quad \text { or } \quad \vartheta \sim 1^{2}
$$

As the alarm value in the CSP2 is determined from $I_{B} \cdot k$, the following relationship applies:

$$
\vartheta n \cdot k^{2} \sim\left(I_{B} \cdot k\right)^{2}
$$

The temperature T actually existing in the operating equipment need not be known in this. The temperature is described in the thermal replica by the temperature equivalent ϑ (in \%). For a load with the maximum admissible operating current $k \cdot I_{B}$ the operating equipment reaches the maximum admissible operating temperature ϑ_{B} in a stationary condition. For this load, the temperature equivalent to $k^{2} \cdot 100 \%$ is defined:

$$
\vartheta(\%)=\frac{\left.\right|^{2}}{\left(k \cdot l_{B}\right)^{2}} \cdot 100 \%
$$

I.e.: with a load of $I=0.9 \times\left(k \cdot I_{B}\right)$ and $k I_{B}=1.2$ the temperature reaches 81% of the maximum admissible operating temperature according to the above definition. For electrical equipment loaded over and above the maximum operating current $\left(I>k \cdot I_{B}\right)$ following prior loading, the following course of temperature results:

Figure 9.14: Heating of electrical equipment

The temperature equivalent ($T=\vartheta$) runs according to an e-function. for $\left(\vartheta>\vartheta_{0}\right)$ it holds:

$$
\vartheta\left(t^{\prime}\right)=\vartheta_{0}+\left(\vartheta_{\max }-\vartheta_{0}\right) \cdot\left(1-e^{-\frac{t^{\prime}}{\tau}}\right)
$$

after conversion:

$$
\vartheta\left(t^{\prime}\right)=\vartheta_{\max }+\left(\vartheta_{0}-\vartheta_{\max }\right) \cdot e^{-\frac{t^{\prime}}{\tau}}
$$

if $\vartheta\left(t^{\prime}\right) \geq k^{2} \cdot 100 \%$ an alarm or trippingstage should be activated (trip).

The temperature after the time dt can be determined as:

$$
\vartheta_{1}=\vartheta_{\text {max }}+\left|\vartheta_{0}-\vartheta_{\text {max }}\right| \cdot e^{-\frac{d t}{\tau}}
$$

After the time 2.dt:

$$
\vartheta_{2}=\vartheta_{\text {max }}+\left(\vartheta_{0}-\vartheta_{\text {max }}\right) \cdot e^{-\frac{2 d t}{\tau}} \text { or } \vartheta_{2}=\vartheta_{\text {max }}+\left(\vartheta_{1}-\vartheta_{\text {max }}\right) \cdot e^{-\frac{d t}{\tau}}
$$

In general:

$$
\vartheta_{n}=\vartheta_{\text {max }}+\left(\vartheta_{n-1}-\vartheta_{\text {max }}\right) \cdot e^{-\frac{d t}{\tau}}
$$

In this way, a recursion formula is produced, in which, for a new calculation of the thermal equivalent ϑ_{n} :

- the last value $\vartheta_{m, 1}$,
- the stationary final value $\vartheta_{\max }$ with the present current,
- the set time constant τ and
- the time since the last calculation dt must be known.

Analogously, it holds for the temperature equivalent $\vartheta_{\text {max }}$:

$$
\vartheta\left(\left.\right|^{\prime}\right)=\frac{1^{2}}{\left.\mid k \cdot I_{B}\right)^{2}} \cdot 100 \%+\left(\vartheta_{0}-\frac{\left.\right|^{2}}{\left(k \cdot I_{B}\right)^{2}} \cdot 100 \%\right) \cdot e^{-\frac{t}{t}}
$$

with $\mathrm{I}=$ largest measured phase current.
In each new calculation step n the current temperature equivalent is determined as follows:

$$
\vartheta_{n}=\frac{I_{n}^{2}}{\left(k \cdot I_{B}\right)^{2}} \cdot 100 \%+\left(\vartheta_{n-1}-\frac{1_{n}^{2}}{\left(k \cdot I_{B}\right)^{2}} \cdot 100 \%\right) \cdot e^{-\frac{d t}{\tau}}
$$

with:

- I_{n} : largest measured phase current in the calculation step.
- dt: interval of time between the calculation steps.
- $\vartheta_{m i}$: temperature equivalent of the previous calculation step.

After the start of the protection programme (switching the auxiliary voltage on) no temperature equivalent $\vartheta_{m, 1}$, has yet been calculated. For this reason, the cold state of the electrical equipment to be protected is presupposed. But if the electrical equipment has already been loaded, it takes about three times as long as $\tau_{\text {neat }}$ with a constant load until the thermal equivalent corresponds to the actual conditions.

Differing time constants:
After the operating equipment has been switched off $\left(I_{n}=0\right)$ the temperature of the operating equipment, which aims towards $\vartheta_{n}=0$ (ambient temperature), drops. As the cooling generally does not happen with the same time constants as the heating (e.g. motors), a separate cooling time constant can be set in the CSP2.

For example: $\tau_{\text {cool }}=2 \cdot \tau_{\text {theot }}$
The conversion to the cooling or heating time constant therefore depends on the comparison of the measured current with the last current measured:

$$
\begin{aligned}
& I_{n} \geq I_{n-1} \Rightarrow \text { heating } \\
& I_{n}<I_{n-1} \Rightarrow \text { cooling }
\end{aligned}
$$

When the CSP2 is first switched on, there is a deduction to the cold state of the operating equipment.

The tripping criterion for the alarm or tripping phase of the thermal replica is:

$$
\vartheta_{\text {Tip }}>k^{2} \cdot 100 \%
$$

Determination of the effective values of the measured phase currents is done via the calculation of the root of the integral of the present current squares of a period. To calculate the thermal replica, the largest of the three phase currents is always used.

9.3.5 Setting example, unbalanced load protection

The following characteristics quantities are known:

Nominal generator current:	800 A
Transformer ratio:	$1000 / 5$
Permanently admissible unbalanced load $\mathrm{K}_{2}:$	12.5%
Thermal generator constant K_{1} :	$\mathrm{K}_{2}^{2} \times \dagger=8 \mathrm{~s}$

Firstly, there is the calculation of the nominal generator current relative to the secondary side of the transformer:

$$
I_{\text {Nsok }}=800 \mathrm{~A} \times 5 / 1000=4 \mathrm{~A}
$$

The permanently admissible out-of-balance current relative to the secondary side of the transformer is:

$$
\begin{aligned}
& I_{2 \text { Sek }}=K_{2} \times I_{\text {NSok }} \quad K_{2}=12.5 \% \\
& I_{2 \text { Sek }}=0.125 \times 4 \mathrm{~A}=0.5 \mathrm{~A}
\end{aligned}
$$

From this, the pick up value I_{25} of the unbalanced load current (relative to $I_{N}=5 \mathrm{~A}$) can be calculated:

$$
I_{2 \gg}=0.5 \mathrm{~A} / 5 \mathrm{~A}=0,1(10 \%)
$$

The time constant T for the selection of the tripping calculation can be calculated as follows:

$$
\begin{aligned}
& \mathrm{K}_{1}=8 \mathrm{~s} \quad \mathrm{~K}_{2}=12.5 \% \\
& \mathrm{~T}_{\text {CHAR }}=\mathrm{K}_{1} / \mathrm{K}_{2}^{2}=8 \mathrm{~s} / 0.125^{2}=512 \mathrm{~s} \approx 500 \mathrm{~s}
\end{aligned}
$$

For warning level $I_{2>}$ a somewhat lower value than $I_{2 \gg}\left(\right.$ e.g. 10%) is used. The set figure $I_{2,}$ is then calculated as follows:

$$
\begin{aligned}
& I_{2>}=10 \% \times I_{N} / \text { transformer ratio } / I_{\text {Neoc }} \\
& I_{2>}=\frac{0.1 \cdot 800 \mathrm{~A}}{\frac{1000}{5} \cdot 4 \mathrm{~A}}=0.064(6.4 \%)
\end{aligned}
$$

We recommend setting the delay time t_{w} for the unbalanced load warning stage to about 5 s .

9.4 Special applications for cable/line differential protection

Figure 9.15: Definition of protected zone

During operation the protection device checks continuously whether the incoming currents of one side always correspond to the outgoing currents on the other side. This check is carried out separately and independently for each phase.
If there is a difference in the balance of one or more phase currents, one can assume that there is a fault within the protected zone.

The main task of the differential protection is to differentiate between faults which lie within (internal) or outside (external) the protected zone. In case of internal faults the protection device (CSP2-L) must trip, in case of external faults there must not be any faulty tripping despite transformer saturation and transient disturbances.

9.4.1 Application examples

External fault
In case of a short circuit in the mains, the complete short-circuit current flows through the line. The difference between incoming and outgoing phase currents is small (ideally equal to zero):
$I_{A}-I_{B}=0$.
The differential protection function will not trip in this case. Switching-off could only happen via the over-current time protection functions ($|>,| \gg$) which can be activated in the CSP2-L as backup protection. These backup protection functions have the same functional scope as the corresponding over-current time protection functions of the CSP2-F and can alternatively be active either continuously or only upon interruption of the FO communication between the protection devices (CSP2-L) of the two stations.

Figure 9.16: External fault

Internal fault
In the case of an internal fault the current balance looks different. Here a deficit occurs in the sum total of the feeder currents; this deficit depends on the type of fault. A line short circuit, for example, is fed from both sides, although different in strength. However, this short-circuit current does not flow through the line, but into it from both mains sides. Consequently, the current balance shows a difference.

Figure 9.17: Internal fault (using the short circuit fed from two sides as an example)

With the direction of the reference arrows chosen above the current \underline{I}_{B} now flows in negative direction! The CSP2-L recognizes a current difference:
$\underline{I}_{A}-\underline{I}_{B}=I_{d}$
and will trip when $\left|\underline{I}_{d}\right|$ has exceeded the corresponding trip current \underline{I}_{A} (threshold value).

10 Commissioning

The following applications are used for Commissioning and to test the device functions. In order to avoid destruction of the device and to achieve faulless function, attention must be paid to the following:

- The auxiliary voltage(s) provided by the switchboard to supply the devices must match the nominal values of the auxiliary voltages stated. The auxiliary voltages of the devices include the supply voltage of CMP1 and CSP2, the supply voltage(s) of the digital inputs and also the auxiliary control voltage. Attention must be paid to the stated nominal ranges of the wide-range power pack. For the auxiliary control voltage, only one direct voltage may be used, attention being paid to its polarity when connecting to terminals $\mathrm{X1.1}$ and X 1.2 !
- The nominal field data of the CSP2 must be adapted to the primary and secondary nominal data of the connected transformer by parameter setting.
- The nominal frequency of the CSP2 must be adapted as a function of the mains frequency.
- The current and voltage transformer must be connected correctly.
- All control and input circuits must be connected correctly.
- Attention must be paid to a proper earthing of the device and the measurement circuits.
- The current transformer may not be operated with open secondary winding under any circumstances, but must be operated short-circuited in test or mounting.
- The working range of the digital inputs must be adapted to the auxiliary voltage used via the jumpers. The jumpers of the digital inputs may only be changed in a voltage-free and cleared condition.

10.1 Transport

The devices are supplied in foamed packaging for a flawless transport. The packaging is to be used for return and further deliveries. The devices are to be removed carefully and the mechanically flawless state is to be checked by a visual check. Specific components (e.g. the optical waveguide connection) are additionally protected by a separate packaging or by a stopper. Pay particular attention to this connection in unpacking and mounting.

10.2 Connection of the auxiliary voltage

After switching on the auxiliary voltage, all 5 LEDs on the CSP2 firstly light up green for a short time. During the starting phase, the LED "self-testк lights up. After the start has been completed, the "System Ok« LED lights up green and the corresponding signal relay is activated.

Attention

Before the device is connected to the auxiliary voltage, you must make sure that it matches the nominal auxiliary device voltage stated on the rating plate. If the device is bedewed, wait for at least two hours before switching on!

10.3 Connection of the measurement circuits

The current and voltage connections are to be connected according to the transformer data and the phase position on the device. The corresponding primary values and the type of connection (see "Parameters" chapter) of the converters are to be set In the sub-menu "Nominal field data" of the CSP2. The current and voltage values can be fed into the CSP2 with a corresponding test equipment as a secondary figure
(1 or $5 \mathrm{~A}, 100 / 110 \mathrm{~V}$) and controlled for a correct display via the overview of measured values. Due to the measurement precision of the CSP2, the secondary test device should be designed for this.
The current phase position and the phase sequence can be displayed with the help of the unbalanced load current and the power display.

10.4 Connection of the digital inputs and signal relays

By reading the I/O status, the wiring of the digital input and the signal relays can be checked for correctness of the connection and the signal polarity. After this, the parameterized functions can be displayed and checked via the event recorder, on the CMPI or PC and also by means of LED's.

10.5 Connection of the control and signal circuits

Attention

In order to avoid an undesired switching of switchgears, the control lines must be interrupted. After completion of the work, the control lines are to be connected again during the tests of the switch appliance control.

After connection of the switchgears to the CSP2, each switchgears can have its control function checked on the CMP1 (call of the CONTROL MODE in MODE 1). If the switchgear does not move or only partly moves after sending of the command and the CSP2 signalizes a faulty switchgear position, the control times in question (see "Parameters" chapter) must be adapted.
If a control command violates the field-internal or other lockings, the switching action may not be executed. In such cases, the CSP2 generates a number of messages. We recommend having such messages displayed via the LED's. If the control circuit supervision is used, attention should be paid to the fact that no auxilliary contacts of the switchgears are included in the control circuits.

10.6 Secondary protection tests of the protection functions

For a precise test of the protection functions, secondary test equipment of Class 1 with three-phased current and voltage sources as well as integrated timer functions are sensible. For individual protection functions, single-phased current or voltage sources are sufficient.
Due to the large number of protective functions of the CSP2, only the protective functions to be tested should be activated for the test in question, as otherwise a multiple alarm can result.

In a test in the high-current area, there must be a guarantee that the input circuits are not permanently thermally overloaded.
non-directional current protection
In order to check the non directional stages of the protective functions $|>,| \gg$ and $\mid \ggg$, single or three-phased currents, which activate a protective alarm when the amount of the alarm threshold is reached, are impressed on the secondary side. After the expiry of the stated tripping delay time, a tripping must take place. The measurement of the tripping must be done with a time, the measurement precision (measurement resolution) of which is better than 10 ms.
To check the tripping values, the current is lowered to a value below the alarm threshold until the alarm disappears.

Directional current protection

To check the directional current protection you need current and voltage sources with adjustable phase angle. During the test, the voltage values are kept constant, the phase currents are varied in amount and phase angle. For the test of the directional element in question, the other directional element should be deactivated.

Voltage protection

For this purpose, the measurement voltage is connected three-phased in star or delta connection depending on the parameters (see Chap. "Field settings"). After a check of the nominal voltage, the under or over-voltage values are started up and the delay time is measured. The setting ratio of the overvoltage must be larger than 0.97. For undervoltages, it must be lower than 1.03.

10.7 Test with secondary transformer current (only CSP 1-B and CSP2-L/sec. test)

Devices required:

- Adjustable current source with a setting range up to the double nominal current of the relays
- Ammeter of Class 1
- Source of auxilliary voltage matching the nominal supply voltage
- Power diode (10 A)
- Switchgear
- Measurement lines and tools

Attention

Before the secondary test is started, there should be a guarantee that the relay cannot carry out any switching actions in the switchboard (risk of switching off)!

10.7.1 OK test with load

In order to check the polarity of the transformers (connection), a load test is to be carried out with about 50% via each infeed/feeder. The prerequisite for this is that the fields via which the currents "flow in" and "out" are known. The sum of the currents flowing in is then, as a rule, equal to the sum of the currents flowing out and thus equal to the display of the stabilization current. The differential current must be zero in each case.

10.7.2 Tripping parameter $\mathrm{I}_{\mathrm{d} 1}$

To check the tripping thresholds, a current is to be impressed in phase LI lower than the set figure in each case. The current is now increased until the relay picks up.
The tripping threshold should match:
Different transformation ratios of the transformers have to be taken into account when testing the Idso threshold. In normal operation the transformation ratios are taken into account by the parametrized correction factor, within each device.
Example:
At one end of the line the transformer has a transmission ratio of $800 / 1$.
At the other end of the line the transformer has a transmission ratio of 100/1.
This causes different secondary currents. The secondary current at one end (second) of the line is eight times higher than the other end of the line busbar (protected zone). This is corrected by a correction factor within the field settings menu of each device, but for test purposes this factor/transmission ratio have to be regarded.
Referring to the example the current at the beginning of the line is to be set to eight times of the test current at the end of the line busbar (inversly proportional).
The test is then to be carried out analogously for phases L2 and L3 .
The various tripping threshholds are a function of the internal percentage assessment of the various fields.

Figure 10.1: Test circuit to check the differential and stabilization currents (example on the basis of the: RRGDG device CSP 1-B)

10.7.3 Test with transformer primary current (primary test)

In order to check the correct connection of the main current transformers and the internal measured values in question, the transformer must be in operation. In order to receive evaluation-capable measurement values, the fields should be loaded at least 50\%. The magnetizing current of the transformer results in a greater influence of the test result for lower load currents. Before the start of the test, please ensure that the tripping circuit of the differential protection relay is blocked and thus no undesired tripping takes place. During the test, for example, an overcurrent protection relay must protect a transformer against a possible fault.

Enclosed is an example of a transformer with various current feeds (in preparation).
$2 \times$ converters 200/1 A largest converter (corresponds to feed) $+2 \times$ feeder with transformer 40/1 A-

10.8 Primary test

In general, a test with currents and voltages can be carried out on the primary side of the transformers in the same way as the test on the secondary side. The extensive measurement and display transformers in the CSP2 also permit an extensive check of the functions in normal operation. Wrongly connected converters are displayed by unbalanced load current or residual voltage. The direction detection can be checked with the help of the power factor $\cos \varphi$ and on the basis of the active power and reactive power.

The following table provides first information on the connection check of the differential protection. In this, the figures refer to a symmetrical load: $1=/ L T==\|2==\| L 3$. In case of slightly asymetrical load the values can therefore deviate from the table. All the values are "approximate figures" as multiples of the load current.

Case	Differential current $I_{\text {diff }} / I_{N}$	Transient current I_{S} / I_{N}
1) All transformers correctly connected	0	1
2) One transformer connected in wrong polarity	1.33	0.66
3) Two transformers connected in wrong polarity	2.0	0
4) Three transformers connected in wrong polarity	2.0	0

Table 10.1: Guideline values for the differential and stabilization current display in the CSP 1-B with equipment free of fault current and differing converter connections

Explanations on the table

1) Correct connection

All the converters are connected correctly. This case is identical with the one in which either all the converters are connected wrongly or the energy flow direction has been reversed. However, no alterations on the connection of the converters are necessary.

2) One converter connected wrongly

This case is marked by a displacement of the current balance: about $1 / 3$ of the transient current is missing, although the CSP2-L recognises $2 / 3$ * I differential current. In the wrongly poled strand, the CSP2-L interprets input and output currents as if $1 / 3$ * I each flow into the »faulty« strand. This results in a differential current of $2 / 3$ * I.
3) and 4) Two or three converters are connected wrongly

These two cases cannot be distinguished on the basis of the display on the basis of the internal calculation. If three converters are connected wrongly, changing the "CT dir« parameter can eliminate the error in question without the wiring having to be altered. In order to localize all the other errors, either the complete converter wiring must be checked or the fault looked for with a suitable source of test current on the equipment free from voltage.

10.9 Maintenance

As a function of the customer's experience with digital protection devices, the operational safety and the importance of the system, a cyclic check of the devices should be done.

Essential features of the combined protection and control system CSP2/CMP1 are:

- extensive self-test functions,
- cyclic system check,
- parameters are resistant to aging,
- report via LED, report relay and communication,
- integrated backup protection functions such as power circuit breaker failure $C B F$,
- integrated controls,
- combined measurement functions and
- cyclic control circuit supervision

Maintenance intervals of 2 years are sufficient as a rule. In the maintenance test, all protection and control functions are to be checked with set values and tripping characteristics.

11 Technical data

11.1 Auxiliary voltage

Stipulated auxiliary voltages (EN 60255-6):
Direct voltages (DC): $\quad 24 \mathrm{~V}, 48 \mathrm{~V}, 60 \mathrm{~V}, 110 \mathrm{~V}, 220 \mathrm{~V}$
Alternating voltages (AC): $24 \mathrm{~V}, 100 \mathrm{~V}, 110 \mathrm{~V}, 230 \mathrm{~V}$
Over and above this, the power-pack covers the following customary auxiliary voltages (inter alia England) with a limited tolerance range:

- 240 VAC with the tolerance range $-20 \% /+15 \%$
- 254 VAC with the tolerance range $-20 \% /+10 \%$

The admissible voltage deviations refer to the stipulated nominal auxiliary voltages.

11.1.1 Voltage supply CMP1

Voltage range of the supply voltage	Power consumption in idle state	Maximum power consumption (at full load)
$19-395 \mathrm{~V} \mathrm{DC}$	5 W	8 W
$22-280 \mathrm{VAC}$		
(for frequencies: $40-70 \mathrm{~Hz}$)	5 VA	8 VA

11.1.2 Voltage supply CSP2

Voltage supply CSP2-F and CSP2-L

Voltage range of the supply voltage	Power consumption in idle state	Maximum power consumption (at full load)
$19-395 \mathrm{~V} \mathrm{DC}$	19 W	27 W
$22-280 \mathrm{VAC}$		
(for frequencies: $40-70 \mathrm{~Hz}$)	19 VA	27 VA

11.1.3 Buffering of the auxiliary voltage supply

Buffering time: $t \geq 50 \mathrm{~ms}$, with $\mathrm{Ue}<$ Uemin,
i.e. if the auxiliary voltage fails, the function of the device is guaranteed for at least 50 ms !

11.1.4 Fuse Protection

An MCB (miniature circuit breaker) which meets the following demands - min. 4A /slow acting - is to be used for 230 V AC voltage supply.

11.2 Measurement inputs

11.2.1 Current measurement inputs

Number	$3 \times$ phase currents, $1 \times$ sum current (for earth, e.g.: ring core converter)	
Measurement technique:	conventional transformer technique (other sensors in preparation)	
Nominal currents	1 A and 5	(parameter setting)
Measurement range		
Phase currents IL1, IL2, IL3:	$0 \ldots 40 \times 1$	(only AC),
Sum current le:	0 ... 20×1	(only AC)
Power consumption in current path: $\leq 0.1 \mathrm{VA}$		$\left(\mathrm{at} I=I_{N}\right.$)
Thermal load capacity		
Dimensioning surge current:	$250 \times I_{N}$	(dynamic half-oscillation)
Dimensioning short-time current:	$100 \times I_{\text {N }}$	(for 1 s)
Long-term load capacity:	$4 \times 1{ }_{N}$	

11.2.2 Voltage measurement inputs

Number	$3 \times$ phase voltage (measurement LL or LN) $1 \times$ residual voltage
Measurement technique:	conventional transformer technique (other sensors in preparation)
Nominal voltages:	$0 \ldots, 110 \mathrm{~V} \mathrm{AC}$
Measurement range:	$\leq 0.1 \mathrm{VA} \quad$ at $\mathrm{U}=\mathrm{U}_{\mathrm{N}}$
Power consumption:	$2 \times \mathrm{U}_{\mathrm{N}}$
Thermal load capacity Long-term load capacity:	$50 \mathrm{~Hz} ; 60 \mathrm{~Hz}$ (parameter setting)
Nominal frequencies:	

11.2.3 Measurement precision

Phase current measurement (at nominal frequency)
0.1 to $1.5 \times I_{\mathrm{N}}$:
$<0.5 \%$ of I_{N}
1.5 to $40 \times I_{N}$:
$<1.0 \%$ of the measured value

Earth current measurement (at nominal frequency)
$\begin{array}{ll}0.05 \text { to } 0.5 \times I_{N}: & <5.0 \% \text { of the measured value } \\ 0.5 \text { to } 20 \times I_{N}: & <2.5 \% \text { of the measured value }\end{array}$
Voltage measurement (at nominal frequency)
10 to $50 \mathrm{~V} \mathrm{AC}: \quad<1 \%$ of U^{\prime}
50 to 230 V AC: $\quad<1 \%$ of the measured value
Frequency influence
Current/voltage measurement: $\quad<2.0 \% / \mathrm{Hz}$
Frequency measurement
40 to $70 \mathrm{~Hz}: \quad<0.05 \%$ of f_{N}
Power measurement (effective output)
P :
$<3.0 \%$ of $\mathrm{P}_{\mathrm{N}} \quad$ the nominal output P_{N} results from the setting of the field parameters "CT prim" and "VT prim")

11.3 Digital inputs (function/report inputs)

Design: Opto-uncoupled inputs
Number
CSP2-F5: 26
CSP2-F3: 22
CSP2-L: 22
Input voltage range: $\quad 0$ to 300 V DC / 0 to 250 V AC
Threshold recognition
$\begin{array}{llrrr}\text { Low range (code plug plugged in): } & U_{L}= & 19 \text { to } 110 \mathrm{VDC} / & 19 \text { to } 110 \mathrm{~V} \mathrm{AC} \\ & U_{\text {Lon }} \geq & 19 \mathrm{VDC} / & 22 \mathrm{~V} \mathrm{AC} \\ & U_{\text {Loff }} \leq & 10 \mathrm{VDC} / & 13 \mathrm{~V} \mathrm{AC} \\ \text { High range (code plug open): } & U_{H}= & 110 \text { to } 300 \mathrm{VDC} / & 110 \text { to } 250 \mathrm{~V} \mathrm{AC} \\ & U_{\text {Hon }} \geq & 70 \mathrm{VDC} / & 85 \mathrm{~V} \mathrm{AC} \\ & U_{\text {Hoff }} \leq & 38 \mathrm{VDC} / & 50 \mathrm{~V} \mathrm{AC}\end{array}$
Input current (function of the input voltage)
Low range (code plug plugged in): $\mathrm{I}_{\text {Low }}<4 \mathrm{~mA} \mathrm{DC} / \quad 6 \mathrm{~mA} \mathrm{AC}$
High range (code plug open): $\left.\quad\right|_{\text {High }} ^{\text {Low }} \quad<4 \mathrm{~mA} \mathrm{DC} / \quad 14 \mathrm{~mA} \mathrm{AC}$
Debouncing time (parameterizable): $10 \ldots 60000 \mathrm{~ms}$ (per dig. input)

11.4 Outputs

11.4.1 Output outlets

Number of control outputs

Type of control outputs	CSP2-F5	CSP2-F3	CSP2-L
Control coils (OL)	$3(4)$	2	2
Motor outputs (OM)	$4(3)$	2	2

The following data apply for the outputs $O M$ and $O L$
Switching voltage (auxiliary control voltage):
Max. admissible long-term current:
Nominal switch peak current:
Max. switch output (function of switch voltage):
Current resistance:

18 to 280 V DC
17 A
$35 \mathrm{~A}(1 \mathrm{~s})$
17 A , with relief measures (free wheeling circuit) short-circuit resistant

11.4.2 Signal relays

Number
CSP2-F3/-L: $\quad 6$
CSP2-F5: 10
Switch voltages:
Max. alternating current: $\quad 250$ V AC
Max. direct current: $\quad 220$ V DC
Direct voltage: $\quad 24 \mathrm{~V}$ DC
with: $I_{\max }=0.12 \mathrm{~A}$ with ohmic load
with: $I_{\max }=0.06 \mathrm{~A}$ with inductive load: $L / R<50 \mathrm{~ms}$
with: $I_{\operatorname{mox}}=3.0 \mathrm{~A} \quad$ with inductive load

Switch power
Ohmic: $\quad 750$ VA AC / 72 W DC
Inductive:
300 VA AC / 45 W DC
Min. switch load:
$18 \mathrm{~V} / 2 \mathrm{~mA}$
Max. nominal load: 3 A
Switching current: $\quad 12 \mathrm{~A} \quad(16 \mathrm{~ms})$
Isolation: $\quad 4 \mathrm{kV}$
Contact material: $\quad \mathrm{AgNi}+\mathrm{Au}$
Contact service life: mechanical: 100×10^{6} switch cycles

11.5 Communication interfaces CSP2

PC interface (in preparation)

Number:
Type: 1

Designation:
Application:
Data transmission rate:
Physical connection:
Plug-in connection:
Property:
X9

RS232
Parameterisation by PC/laptop
19200 Baud (fixed)
electric
9-poled SUB-D (plug)
Galvanic separation via opto-coupler (2.5 kV)

System interfaces

Number: 2
Type:
Designations:
Application:
Basis data protocol:
Processor:
Physical connection:
Plug-in connection:
Property:

CAN-BUS
X10/CAN 1 (plug), X11/CAN 1 (socket)
CMP1/CSP2 communication and CSP2 multi-device communication CAN specification V 2.0 part B (extended frame) Siemens 80C167C on chip CAN module electric
9-poled SUB-D
Galvanic separation via opto-coupler (2,5 kV)

Optional FO interface (range up to about 2 km)

Number:
Type:
Designations:
Application:

Protocol types:

Data transmission rates:

Physical connection:
Plug-in connection:
Fibre type:
Number of fibres:
Core diameter:
Cladding diameter:
Wavelength:
max. attenuation:
max. line length:

1
Serial communication interface
X7(RxD)/X7(TxD) or X8(RxD)/X8(TxD)
CSP2-F: communication to SCADA,
CSP2-L: SCl communication to partner device (CSP2-L)
CSP2-F: IEC 60870-5-103, PROFIBUS DP or MODBUS RTU,
CSP2-L: : RRGZIG protocol (SCl communication)
IEC 60870-5-103: 9600 or 19200 baud (adjustable),
PROFIBUS DP: max. 5 MBaud (automatic baud rate recognition),
MODBUS RTU: 9600 or 19200 baud (adjustable)
Fibre optic (FO)
BFOC $2.5\left(\mathrm{ST}^{\circledR}\right)$
Multi-mode/multi-gradient fibre
2 fibres (Transmit[T]/Receive [R])
$62.5 \mu \mathrm{~m}$
$125.0 \mu \mathrm{~m}$
820-860nm
10 dB (relative to overall attenuation)
approx. 2 km (as a function of the line distance attenuation)

Optional FO interface (range up to about 20 km)

Number:

Type:
Designations:
Application:
Protocol type:
Physical connection:
Plug-in connection:
Fibre type:
Number of fibres:
Core diameter:
cladding diameter:
Wavelength:
max. attenuation:
max. line length:

1
Serial communication interface
X7(RxD)/X7(TxD) or X8(RxD)/X8(TxD)
CSP2-L: SCI communication to the partner device (CSP2-L)
CSP2-L: : RRGDG protocol (SCl communication)
Fibre optic(FO)
BFOC $2.5\left(\mathrm{ST}^{\circledR}\right)$
Mono-mode
2 fibres (Transmit[T]/Receive [R])
$9 \mu \mathrm{~m}$
$125 \mu \mathrm{~m}$
1300 nm
9 dB (relative to overall attenuation)
ca. 20 km (as a function of the line distance attenuation)

Optional SCADA interface

Number: 1
Type: RS 485
Designation: X12
Application:
Protocol types:
Data transmission rates:

Physical connection:
Plug-in connection:
Property:

SCADA communication
IEC 60870-5-103, PROFIBUS DP or MODBUS RTU
IEC 60870-5-103: 9600 or 19200 bps (adjustable),
PROFIBUS DP: max. 12 Mbps (automatic baud rate detection),
MODBUS RTU: 9600 or 19200 bps (adjustable)
Electric
9-poled, SUB-D (socket)
Galvanic separation via opto-coupler (2.5 kV)

11.6 System data and test specifications

11.6.1 General provisions

Basic specification	DIN EN 61000-6-2 [03/00]	Product norm	DIN EN 60255-6[11.94]
norm:	DIN EN 61000-6-3[12.01]		DIN EN 60255-3 [07.98]
			DIN EN 50178[04.98]

11.6.2 High-voltage tests (EN 60255-6 [11.94])

Voltage test
IEC 60255-5 [12/00]
All current circuits against other current
DIN EN 50178 [04.98] circuits and touchable suffaces.

Surge voltage test
IEC 60255-5 [12/00]
$5 \mathrm{kV} / 0.5 \mathrm{~J}, 1.2 / 50 \mu \mathrm{~s}$
High-frequency test
DIN EN 60255-22-1 [05.91] Within a current circuit 1 kV/2 s
$\begin{array}{lll}\text { Class } 3 & \text { Current circuit against earth } & 2.5 \mathrm{kV} / 2 \mathrm{~s}\end{array}$

11.6.3 EMC tests for immunity to interference

Resistance to interference against fast transient disturbance variables (Burst)
DIN IEC 60255-22-4 [10.93] Current supply, grid inputs
$\pm 4 \mathrm{kV}, 2,5 \mathrm{kHz}$
DIN EN 61000-4-4 [12/01]
Class 4
Other inputs and outputs
$\pm 2 \mathrm{kV}, 5 \mathrm{kHz}$
Resistance to interference against discharge of static electricity
DIN EN 60255-22-2 [05.97] Air discharge 8 kV
DIN EN 61000-4-2 [12/01]
Class 3
Contact discharge
6 kV
Resistance to interference against surge voltages
DIN EN 61000-4-5 [12/01] Within a current circuit 2 kV
Class 4
Current circuit against earth 4 kV
(only valid for cable lenght < 30 m)
Resistance to interference against high-frequency electromagnetic fields
DIN EN 61000-4-3 [12/01]
$10 \mathrm{~V} / \mathrm{m}$
Class 3
Resistance to interference against line-guided disturbance variables induced by high-frequency fields
DIN EN 61000-4-6 [12/01]
$10 \mathrm{~V} / \mathrm{m}$
Class 3
Resistance to interference against magnetic fields with energy-technical frequencies
DIN EN 61000-4-8 [12/01]
lasting
$100 \mathrm{~A} / \mathrm{m}$
Class $5 \quad 3$ sec. $1000 \mathrm{~A} / \mathrm{m}$

11.6.4 EMC tests for disturbance transmission

Radio interference supression
DIN EN 55011 [10.97]
Limit value Class B

Limit value Class B

11.6.5 Mechanical stress

Oscillation tests

DIN EN 60255-21-1[05.96] Oscillation fest for functionality Class 2

Long-term oscillation test

Shock and long-term shock tests
DIN EN 60255-21-2 [05.96] Shock test for functionality Class 1

Shock test for resistance capacity

Long-term shock test

Earthquake oscillation test
DIN EN 60255-2 1-3 [1 1.95] Single-axle earthquake oscillation test Class 2
$0.075 \mathrm{~mm}, 1.0 \mathrm{gn}, 1$ run in each direction
$2.0 \mathrm{gn}, 20$ runs in each direction
$5 \mathrm{gn}, 11 \mathrm{~ms}, 3$ impulses in each direction
$15 \mathrm{gn}, 11 \mathrm{~ms}, 3$ impulses in each direction
$10 \mathrm{gn}, 16 \mathrm{~ms}, 1000 \mathrm{impulses}$ in each direction and axis
7.5 / 3.5 mm
2.0 / 1.0 gn 1 run in each direction
$\begin{array}{ll}\text { Front area (CMP) } & \text { IP } 54 \\ \text { Protection and control terminals } & \text { IP } 20\end{array}$
Protection and control terminals
IP 20

11.6.7 Climatic stress

Temperature range

in storage / emergency operation	$-25^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
(max. 2 h , device must be in operation)	
Temperature range in operation	$-10^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C}$

in storage / emergency operation

Temperature range in operation

11.6.8 Environmental tests

Classification DIN EN 60068-1[03/95]	Climatic category	$10 / 055 / 56$
DIN EN 60721-3-3[09/95]	Classification of the environmental conditions	$3 \mathrm{~K} 6 / 3 \mathrm{~B} 1 / 3 \mathrm{C} 3 / 3 \mathrm{~S} 2 / 3 \mathrm{M} 4$
Test Ad: Cold		
DIN EN 60068-2-1[03/95]	Temperature Duration of load	$-10^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}$
Test Bd: Dry heat		16 h
DIN EN 60068-2-2[08/94]	Temperature	$55^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$
	Relative humidity Duration of load	650%
Test Cd: Moist heat (constant)		72 h
DIN EN 60068-2-3[12/86]	Temperature Relative humidity	$40^{\circ} \mathrm{C}$
	Duration of load	93%
Test Dd: Moist heat (cyclic)	Temperature	56
DIN EN 60068-2-30	Relative humidity	$55^{\circ} \mathrm{C}$
[O9/86]	Cycles (12 + 12 hours)	95%
		2

11.7 Dimensions and weights

device dimensions
Basic device CSP2-F:
Basic device CSP2-L:
Basic device CSP 1-B:
Display and operation unit CMP 1:

Weights (net)
Basic device CSP2-F: $\quad 4.9 \mathrm{~kg}$
Basic device CSP2-L: $\quad 4.9 \mathrm{~kg}$
Basic device CSP 7-B: $\quad 13.0 \mathrm{~kg}$
Display and operation unit CMP7: 2.8 kg

CAN connection line (cable set)
Length: 4 m

$$
\begin{aligned}
& \text { W } 367.8 \mathrm{~mm} \times H 263.9 \mathrm{~mm} \times \text { D } 138.4 \mathrm{~mm} \\
& \text { W } 367.8 \mathrm{~mm} \times H 263.9 \mathrm{~mm} \times D 138.4 \mathrm{~mm} \\
& \text { W } 368.0 \mathrm{~mm} \times H 447.0 \mathrm{~mm} \times \text { } \times 155.0 \mathrm{~mm} \\
& \text { W } 307.0 \mathrm{~mm} \times H 246.0 \mathrm{~mm} \times \text { } \times 55.0 \mathrm{~mm}
\end{aligned}
$$

Appendix

Checklist CSP2-F5

Project:

Feeder: Example

Table of contents

1 General information page
2 Order Processing
3 Information about the switchgear
4. Special data of the feeder
4.1 Protection functions
4.2 Communication interfaces
4.3 Assign the switchgears to the application
4.4 Single line and interlocking
4.5 Terminal plan of CSP2-F5
4.5.1 Power outputs
4.5.2 Current measurement inputs
4.5.3 Voltage measurement inputs
4.5.4 Voltage supply CSP2 and CMP1
4.6 Digital inputs
4.7 Signal relays
4.8 LED configuration
4.9 Programmable Logic Functions (SL-LOGIC)
5. Remarks
6. Documentation

7 Drawings

1. General information

Customer			
Street / P.O. Box			
Town			
Responsible		Tel.:	
		Tel.:	
		Fax:	
End customer			
Responsible		Tel.:	
		Fax:	
Responsible	Hr. Th. Hafermann	Tel.: +49 (0)2152/145-636	
	Hr. Th.Angenvoort (Substitute)	Tel.: $+49(0) 2152 / 145-614$	
		Fax: $+49(0) 2152 / 145-354$	

2. Order Processing

Woodward offer-number	
Offer dated	
Order dated	
Order confirmed at	
Woodward job-number	
Delivery date	

Use of types (Order form)	Pieces	Remarks
CSP2-F5		
CMP1-		

3. Information about the switchgear

Manufacturer	
Type of switchboard	
Location of switchboard	$\mathrm{Ur}=\mathrm{kV}$
Rated voltage of the busbar	$\mathrm{Ur}=\mathrm{kV}$
Operating voltage of the busbar	Ir $=\mathrm{A}$
Rated current of the busbar	$\mathrm{Ik}=\mathrm{kA}$
Short circuit current (l sec.) of the busbar	
Type of elect. network	Single \square
Busbar system	english
Language of the menus	Double \square

4. Special data of the feeder
5. 1 Switch field type

[^8]| ANSI-Code | Protection functions | | Nondirectional | directional | active | inactive | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51/(67) | time overcurrent protection | $(1>F, 1>B)$ | \square | \square | \square | \square | |
| 50/(67) | Short circuit protection | $(1 \gg F, \mid \gg B)$ | \square | \square | \square | \square | |
| 50/167) | High set short circuit protection | ($\mid \ggg$ F, $1 \ggg>$) | \square | \square | \square | \square | |
| 51G/(67G) | Earth fault protection | (le>F, le>B) | \square | \square | \square | \square | |
| 50G/(67G) | Earth short circuit protection | (le>>F, le>>B) | \square | \square | \square | \square | |
| 49 | Overload protection with thermal replica | $(\vartheta>, \vartheta \gg)$ | | | \square | \square | |
| 27 | Overvoltage protection | $(U>, U \gg)$ | | | \square | \square | |
| 59 | Undervoltage protection | $(\mathrm{U}<, \mathrm{U} \ll)$ | | | \square | \square | |
| 81 | Over-/Under frequency | $(f 1, f 2, f 3, f 4)$ | | | \square | \square | |
| $32 \mathrm{~F} / \mathrm{B}$ | Directional power protection | \| $\mathrm{P}>$, $\mathrm{P} \ggg$, $\mathrm{Pr}>$, $\mathrm{Pr} \ggg$) | | | \square | \square | |
| 46 | Negative phase sequence protection | ($\mid 2>, 12 \gg$) | | | \square | \square | |
| 59N | Residual voltage supervision | (Ue>, Ue>>) | | | \square | \square | |
| 79 | Automatic reclosing | (AR) | | | \square | \square | |
| | NON-corresponding CB position | (AR) | | | \square | \square | |
| | Fast trip | (AR) | | | \square | \square | |
| 50/62 BF | CB failure protection | (CBF) | | | \square | \square | |
| | Control circuit supervision | (CCS) | | | \square | \square | |
| | Fuse fail supervision (VT) | (FFS) | | | \square | \square | |
| | Backward interlocking | | | | \square | \square | |
| | Parameter set switching | | | | \square | | |
| 86 | Trip acknowledge | | | | \square | | |
| | | | | | | | |
| | External Protection (devices, type and manufacturer) | | | | | | |
| | Distance protection | | | | \square | | |
| | Motor protection | | | | \square | | |
| | Generator protection | | | | \square | | |
| | Transformer differential protection | | | | \square | | |
| | Line differential protection relay | | | | \square | | |
| | Other protection relays: | | | | \square | | |

4.3 Communication interfaces

Communication interface	Medium		Remarks
	Fibre optic	RS485	
IEC 60870-5-103 (SCADA communication)	\square	\square	
PROFIBUS DP (SCADA communication)	\square	\square	
MODBUS RTU (SCADA communication)	\square	\square	
CAN-BUS (CSP2 multi-device-communication)	\square		Multi device communication
No communication interface required	[

4.4 Assign the switchgears to the application

Switchgear No.	Switchgear	Switchgear		Internal symbol	External symbol	Remarks
		controllable	only recognizable			
SG1	Circuit breaker	区	\square	Q0		
SG2		\square	\square	Q_		
SG3		\square	\square	Q_		
SG4		\square	\square	Q_		
SG5		\square	\square	Q-		

Switching conditions for ON and OFF commands of controllable switchgears (description)		Single Line: Anlage_
Q0 (SG1) ON:	SG1-SG5 in in definite position and ...	
Q0 (SG1) OFF:	SG1-SG5 in definite position and ...	
Q0 (SG 1) Trip:		
Q0 (SG 1) Trip b		
Q0 (SG1) EMER	CY OFF:	
Q1 (SG2) ON:	SG1-SG5 in definite end position and	
Q1 (SG2) OFF:	SG1-SG5 in definite end position und ...	
Q2 (SG3) ON:	SG1-SG5 in definite end position and	
Q2 (SG3) OFF:	SG1-SG5 in definite end position and	
Q8 (SG4) ON:	SG1-SG5 in definite end position and	
Q8 (SG4) OFF:	SG1-SG5 in definite end position and ...	
Q9 (SG5) ON:	SG1-SG5 in definite end position and	
Q9 (SG5) OFF:	SG1-SG5 in definite end position and ...	

4.6 Termianl plan of CSP2-F5
4.6.1 Power outputs

TerminalNo.	Output No.	Description**		Remark
$\times 1.1$	LA-	Negative voltage supply for power outputs		
X1.2	LA+	Positive voltage supply for power outputs		
X1.3	OL 1.1	Positive control voltage for trip coil SG1 (Q0 / Q01 OFF)		
X1.4	OL 1.2	Negative control voltage for trip coil SG1 (Q0 / Q01 OFF)		
$\times 1.5$	OL 2.1	Positive control voltage for ON coil SGl (Q0 / Q01 ON)		
$\times 1.6$	OL 2.2	Negative control voltage for ON coil SG1 (Q0 / Q01 ON)		
$\times 1.7$	OL 3.1	Positive control voltage for trip coil SG2 (Q02 OFF)		
$\times 1.8$	OL 3.2	Negative control voltage for trip coil SG2 (Q02 OFF)		
X1.9	OM 1.1	Positive control voltage for motor excitation coil or OFF coil SG2	(Q_)	
X1.10	OM 1.2	Negative control voltage for motor excitation coil or OFF coil SG2	(Q_)	
X1.11	OM 1.3	Positive control voltage for ON direction of motor or ON coil SG2	(Q_)	
X1.12	OM 1.4	Negative control voltage for ON direction of motor or ON coil SG2	(Q_)	
X1.13	OM 2.1	Positive control voltage for motor excitation coil or OFF coil SG3	(Q_)	
X1.14	OM 2.2	Negative control voltage for motor excitation coil or OFF coil SG3	(Q_)	
$\times 1.15$	OM 2.3	Positive control voltage for ON direction of motor or ON coil SG3	(Q_)	
$\times 1.16$	OM 2.4	Negative control voltage for ON direction of motor or ON coil SG3	(Q_)	
X1.17	OM 3.1	Positive control voltage for motor excitation coil or OFF coil SG4	(Q_)	
$\times 1.18$	OM 3.2	Negative control voltage for motor excitation coil or OFF coil SG4	(Q_)	
X1.19	OM 3.3	Positive control voltage for ON direction of motor or ON coil SG4	(Q_)	
X1.20	OM 3.4	Negative control voltage for ON direction of motor or ON coil SG4	(Q_)	
X1.21	OM 4.1	Positive control voltage for motor excitation coil or OFF coil SG or bridge SG2	(Q_/ Q02)	
$\times 1.22$	OM 4.2	Negative control voltage for motor excitation coil or OFF coil SG5 or bridge SG2	(Q_/ Q02)	
$\times 1.23$	OM 4.3	Positive control voltage for ON direction of motor or ON coil SG5 or ON coil SG2	(Q_ / Q02 ON)	
X1.24	OM 4.4	Negative control voltage for ON direction of motor or ON coil SG5 or ON coil SG2	(Q_ / Q02 ON)	

Termian No.	Description			Anmerkung
	indirect control: Coil \square		direct (Motor) \square	
-	External bridge:		External bridge:	(external wiring!)
X1A. 1	-	X1A. 2	\square	
X1A. 2	X1A. 3	X1A. 1		
XIA. 3	X1A. 2	XIA. 4		
X1A. 4	-	X1A. 3	\square	
X1A. 5	X1A. 6	X1A. 7		
X1A. 6	X1A. 5	-		
X1A. 7	-	X1A. 5	\square	
* according to the kind of switchgear control there is a need of bridges!				
4.6.2 Current measurement inputs (Connection see case cover of CSP2)				
4.6.3 Voltage measurement inputs (Connecrtion see case cover of CSP2)				
4.6.4 Voltage supply CSP2 and CMP 1 (Connection see casecover of CSP2)				

Alarm relay		Description(of configured output messages * from K 14)	External source	External target	Remarks
Termina No.	Potential free contacts				
K11		System OK			System message (default setting)
X6. 1	Pedal contact	-			
$\times 6.2$	Closer (no)				
X6. 3	Opener (nc)	-			
K12		General alarm			General protection alarm (default setting)
$\times 6.4$	Pedal contact	-			
$\times 6.5$	Closer (no)	-			
$\times 6.6$	Opener (nc)	-			
K13		General trip			General protection trip (default setting)
$\times 6.7$	Pedal contact	-			
X6.8	Closer (no)	-			
$\times 6.9$	Opener (nc)	-	-		
K14				迷	
X6. 10	Pedal contact		L		
$\times 6.11$	Closer (no)		-		-
$\times 6.12$	Opener (nc)				
K15					
X6. 13	Pedal contact				
$\times 6.14$	Closer (no)				
X6. 15	Opener (nc)				
K16					
X6.16	Pedal contact				
$\times 6.17$	Closer (no)				
$\times 6.18$	Opener (nc)				
K17					
X6.19	Pedal contact				
$\times 6.20$	Closer (no)				
$\times 6.21$	Opener (nc)				
K18					
X6. 22	Pedal contact				
X6. 23	Closer (no)				

Alarm relay		$\begin{gathered} \text { Description } \\ \text { (of configured output messages * from K14) } \end{gathered}$	External source	External target	Remarks
Termina No.	Potential free contacts				
X6.24	Opener (nc)				
K19					
X6.25	Pedal contact				
$\times 6.26$	Closer (no)				
$\times 6.27$	Opener (nc)				
	K20				
X6.28	Pedal contact				
X6.29	Closer (no)				
X6.30	Opener (nc)				

[^9]4.8 LED configuration

LED	No.	Message text(of the configured functions*)	Configured as		Flashing code		LED Reset	Remarks
			Output function	Input function	Normal/OK	Alarm/failure		
1		System OK	\bullet	-	green	red	N	System message (default setting)
2	2.1	General alarm	\bullet	\bullet	-	red flashing	N	General prot. alarm (default setting)
2	2.2							
2	2.3							
2	2.4							
2	2.5							
3	3.1	General trip	\bullet	\bullet	-	red	Y	General prot. alarm (default setting)
3	3.2							
3	3.3							
3	3.4							
3	3.5							
4	4.1							
4	4.2							
4	4.3							
4	4.4		-					
4	4.5							
5	5.1							
5	5.2							
5	5.3							
5	5.4							
5	5.5							
6	6.1							
6	6.2							
6	0.3							
6	6.4							
6	6.5							
7	7.1							
7	7.2							
7	7.3							
7	7.4							

LED	No.	Message text (of the configured functions*)	Config Output function	ed as Input function	Fla Normal/OK	g code Alarm/failure	$\begin{gathered} \hline \text { LED } \\ \text { Reset } \end{gathered}$	Remarks
7	7.5							
8	8.1							
8	8.2							
8	8.3							
8	8.4							
8	8.5							
9	9.1							
9	9.2							
9	9.3							
9	9.4							
9	9.5							
10	10.1							
10	10.2							
10	10.3							
10	10.4							
10	10.5							
11	11.1							
11	11.2							
11	11.3							
11	11.4							
11	11.5							

4.9 Programmable Logic Functions (SL-LOGIC)
In order to realize customer specific functions by using programmable logic functions a description of all functions that should be realized has to be drawn up.
This can be done by the user either by
1 . text or
2 . a truth table or
3 . a circuit diagram or
4 . a logic flow chart or something like that.

6. Documentation and Drawings

Setting lists

Setting list System parameter set

Rated field data						Available in CSP2-		
Parameters	Description of the parameter	Setting/ Setting Range	Setting/ Setting Range	Setting	Step Range	L	F3	F5
f_{N}	Rated frequency	$\frac{50 \mathrm{~Hz}}{60 \mathrm{~Hz}}$			-	\bullet	\bullet	\bullet
CT prim.	Rated primary current of the phase CTs	1...50,000 A			1 A	\bullet	\bullet	-
CT sec	Rate secondary current of the phase CTs	1 A			-	\bullet	\bullet	\bullet
		5 A						
CT Direct	Polarity (direction) of the phase CTs	0°			180°	\bullet	\bullet	\bullet
		180°						
ECT prim.	Rated primary current of the earth CTs	1...50,000 A	*		1 A	\bullet	\bullet	\bullet
ECT sec	Rated secondary current of the earth CTs	1 A	**		-	-	\bullet	\bullet
		5 A						
ECT Direct	Polarity (Direction) of the earth CT	0°			180°	\bullet	\bullet	\bullet
		180°						
VT prim.	Rated primary voltage of the VTs	$1 . . .500,000 \mathrm{~V}$			1 V	\bullet	\bullet	-
VT sec	Rated secondary of the VTs	$1 . . .230 \mathrm{~V}$			1 V	\bullet	\bullet	\bullet
VTT	Connection mode (treatment) of the phase VTs	Y	Star Connection		-	\bullet	-	-
		Δ	Delta Connection					
		kein SpW	No U Measurement					
		V	V-Connection					
VT Local	Physical arrangement (Local) of the VTs	BB	Bus Bar		-	-	\bullet	-
		Outgoing	In the Outgoing					
EVTT	Determination (treatment) of the residual voltage	Open Δ	Series Connection of the e-n Wndings		-	-	-	-
		geometr.SUM	$\bar{\sum} \underline{U}_{1-N}=\underline{U}_{11}+\underline{U}_{12}+\underline{U}_{13},$ only for setting : ${ }^{\prime \prime} \mathrm{VTT}=\mathrm{Y}^{\prime \prime}$					
		none	No Ue Measurement					
EVT prim.	Rate primary voltage of the VT e-n winding	1...500,000 V	Only relevant for setting ${ }^{\text {"EVTT }}=$ open $\Delta^{\prime \prime}$		1 V	\bullet	\bullet	\bullet
EVT sec	Rated secondary voltage of the VT e-n winding	$1 . . .230 \mathrm{~V}$	Only relevant for setting ${ }^{\prime \prime} \mathrm{EVTT}=$ open $\Delta^{\prime \prime}$		1 V	\bullet	\bullet	\bullet

Control Times							Available in CSP2-		
$\begin{gathered} \hline \text { Switching } \\ \text { time/extra run. } \\ \text { time } \\ \hline \end{gathered}$		Description	Setting range	Possibly Used by	Control output	Pre-Setting	L	F3	F5
		Switching time for SG1			OL1, OL2	200ms	\bullet	\bullet	-
	tn ON	Extra running time ON for SG 1				0 ms			
	tn OFF	Extra running time OFF for SG1				0 ms			
SG2	ts SG2	Switching time for SG2			$\begin{gathered} \text { OMI } \\ \text { or } \\ \text { (OL3, OL4) } \end{gathered}$	10000 ms	\bullet	\bullet	\bullet
	tn ON	Extra running time ON for SG2				1000 ms			
	tn OFF US	Extra running time OFF for SG2				1000 ms			
SG3	ts SG3	Switching time for SG3			OM2	10000 ms	\bullet	\bullet	\bullet
	tn ON	Extra running time ON for SG3				1000 ms			
	tn OFF	Extra running time OFF for SG3				1000 ms			
SG4	ts SG4	Switching time for SG4			OM3	10000 ms		-	\bullet
	tn ON	Extra running time ON for SG4				1000 ms			
	tn OFF	Extra running time OFF for SG4				1000 ms			
SG5	ts SG5	Switching time for SG5			OM4	10000 ms	-	-	-
	tn ON	Extra running time ON for SG5				1000 ms			
	tn OFF	Extra running time OFF for SG5				1000 ms			

Interlocking					Available in CSP2-		
Parameters	Setting	Description of parameter setting	Setting	Step range	L	F3	F5
System	Active	Any issued control command will be blocked			\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					
SGl aus	Active	Every OFF command for SG1 will be blocked			\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					
SG1 ein	Active	Every ON command for SG1 will be blocked		-	\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					
SG2 aus	Active	Every OFF command for SG2 will be blocked		-	\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					
SG2 ein	Active	Every ON command for SG2 will be blocked		-	\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					
SG3 aus	Active	Every OFF command for SG3 will be blocked		-	\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					
SG3 ein	Active	Every ON command for SG3 will be blocked		-	\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					
SG4 aus	Active	Every OFF command for SG4 will be blocked			\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					
SG4 ein	Active	Every ON command for SG4 will be blocked		-	\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					
SG5 aus	Active	Every OFF command for SG5 will be blocked			\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					
SG5 ein	Active	Every ON command for SG5 will be blocked			\bullet	\bullet	\bullet
	Inactive	Only the field and system interlockings apply					

(variable allocation for DI Groups 2 to 4)					Available in CSP2-		
DI-Group	DHNr	Parameters	Settin	Description	L	F3	F5
Group 2 (variable)	DI 11	DI 11 /configurable function)		Signal message of the configured input function ?????	\bullet	\bullet	\bullet
			",active 1"	Open circuit principle			
			"active 0"	Closed circuit principle			
			„inactive"	Out of function			
		tb		Rebouncing time			
		DI 12 (configurable function)		Signal message of the configured input function ? ?? ? ?			
			"active 1"	Open circuit principle	-	-	\bullet
			"active $0^{\prime \prime}$	Closed circuit principle	-	-	-
			„inactive"	Out of function			
		tb		Rebouncing time			
		DI 13 (configurable function)		Signal message of the configured input function ट??̣? ?			
	DI 13		"active 1"	Open circuit principle	\bullet	\bullet	\bullet
	DI 13		"active 0"	Closed circuit principle	-	-	-
			„inactive"	Out of function			
		tb		Rebouncing time			
		DI 14 (configurable function)		Signal message of the configured input function ? ? ? ? ?			
	DI 14		"active 1"	Open circuit principle	\bullet	\bullet	\bullet
	DI 14		"active $0^{\prime \prime}$	Closed circuit principle	-	-	-
			„inactive"	Out of function			
		tb		Rebouncing time			
		DI 15 (configurable function)		Signal message of the configured input function ?????			
	DI 15		"active 1"	Open circuit principle	-	-	-
	DI 15		",active $0^{\prime \prime}$	Closed circuit principle	-	-	-
			„inactive"	Out of function			
		tb		Rebouncing time			
		DI 16 (configurable function)		Signal message of the configured input function ??? ? ?			
	DI 16		",active 1"	Open circuit principle	-	\bullet	-
	DI 16		",active 0"	Closed circuit principle	-	-	-
			„inactive"	Out of function			
		tb		Rebouncing time			
		DI 17 Iconfigurable function)		Signal message of the configured input function ?????			
	DI		"active 1"	Open circuit principle	-	-	-
	DI		"active $0^{\prime \prime}$	Closed circuit principle	-	-	-
			„inactive"	Out of function			
		tb		Rebouncing time			
		DI 18 (configurable function)		Signal message of the configured input function ????			
	DI 18		"active 1"	Open circuit principle	-	-	-
	DI		",active 0"	Closed circuit principle	-	-	-
			„inactive"	Out of function			
		tb		Rebouncing time			

Digital Inputs (variable allocation for DI Groups 2 to 4)					Available in CSP2-		
DI-Group	DI-Nr	Parameters	Settin	Description	L	F3	F5
Group 3 (variable)	DI 19	DI 19 (configurable function)		Signal message of the configured input function ? ?? ? ?		-	\bullet
			"active 1"	"active 1"			
			"active 0"	"active 0"			
			"inactive"	„inactive"			
		tb		Rebouncing time			
	DI 20	DI 20 (configurable function)		Signal message of the configured input function ? ?? ? ?		\bullet	\bullet
			"active 1"	"active 1"			
			"active 0"	"active 0"			
			",inactive"	„inactive"			
		tb		Rebouncing time			
	DI 21	DI 21 (configurable function)		Signal message of the configured input function ? ?? ? ?		\bullet	\bullet
			"active 1"	"active 1"			
			"active O"	"active O"			
			"inactive"	„inactive"			
		tb		Rebouncing time			
	DI 22	DI 22 (configurable function)		Signal message of the configured input function ? ? ? ? ?		\bullet	\bullet
			"active 1"	"active 1"			
			"active 0"	"active 0"			
			"inactive"	„inactive"			
		tb		Rebouncing time			
Group 4 (variable)	DI 23	DI 23 (configurable function)		Signal message of the configured input function ????		-	\bullet
			"active 1"	"active 1"			
			"active 0"	"active 0 "			
			"inactive"	"inactive"			
		tb		Rebouncing time			
	DI 24	DI 24 (configurable function)		Signal message of the configured input function ? ? ? ? ?		-	\bullet
			"active 1"	"active 1"			
			"active 0"	"active 0"			
			"inactive"	„inactive"			
		tb		Rebouncing time			
	DI 25	DI 25 (configurable function)		Signal message of the configured input function ????		-	\bullet
			"active 1"	"active 1"			
			"active 0"	"active 0"			
			"inactive"	„inactive"			
		tb		Rebouncing time			
	DI 26	DI 26 (configurable function)		Signal message of the configured input function ????		-	\bullet
			"active 1"	"active 1"			
			"active 0"	"active 0 "			
			"inactive"	„inactive"			
		tb		Rebouncing time			

Signal relay (variable assignment - by way of example)				Available in CSP2-		
Relay name	Parameters	Settin	Description	L	F3	F5
K 15	\dagger min		Minimum relay holding time	-	\bullet	\bullet
		"active 1"	Open circuit principle			
		"active 0"	Closed circuit principle			
		"inactive"	Out of function			
	Reset	"active"	Relay reset			
		"inactive"				
	(Functions can be assigned)		Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
K 16	\dagger min		Minimum relay holding time	-	\bullet	\bullet
		"active 1"	Open circuit principle			
		"active 0"	Closed circuit principle			
		"inactive"	Out of function			
	Reset	"active"	Relay reset			
		"inactive"				
	(Functions can be assigned)		Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			
			Text of the assigned output function			

LEDs (variable assignment - by way of example)				Available in CSP2-			
LED-Name	Parameters	Settin	Description	L	F3	F5	
LED 3 (Upper block)	Reset LED	"none"	There is no reset of the LED indication necessary for messages	\bullet	\bullet	\bullet	
		"all"	LED indications have to be reset for all messages after change of status				
		"Alarm"	Reset of LED indication for trip and alarm signals (e.g. „Trip: $\mid>F^{"}$ or ${ }_{\text {,Alarm: }}\left\|>F^{\prime \prime}\right\|$				
		"Trip"	Reset of LED indications for trip signals (e.g. "Trip: I>F")				
	\|Functions can be assigned)	„Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	\|Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			${ }^{\text {"Signal }}$ messages of the configured functions"				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
LED 4 (Upper block)	Quit LED	"none"	There is no reset of the LED indication necessary for messages	\bullet	-	-	
		"all ${ }^{\text {a }}$	LED indications have to be reset for all messages after change of status				
		"Alarm"	Reset of LED indication for trip and activation signals (e.g. "Trip: \|>F" or "Alarm:	>F")			
		"Trip"	Reset of LED indications for trip signals (e.g. "Trip: \|>F")				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	\|Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				

LEDs (variable assignment - by way of example)				Available in CSP2-			
LED-name	Parameters	Settin	Description	L	F3	F5	
LED 5 (Upper block)	Reset LED	"none"	There is no reset of the LED indication necessary for messages	\bullet	\bullet	\bullet	
		"all"	LED indications have to be reset for all messages after change of status				
		"Alarm"	Reset of LED indication for trip and alarm signals (e.g. „Trip: $\mid>F^{"}$ or ${ }_{\text {,Alarm: }}\left\|>F^{\prime \prime}\right\|$				
		"Trip"	Reset of LED indications for trip signals (e.g. "Trip: I>F")				
	(Functions can be assigned)	„Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	\|Functions can be assigned)	„Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	(Functions can be assigned)	„Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	\|Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
LED 6 (Upper block)	Quit LED	"none"	There is no reset of the LED indication necessary for messages	\bullet	-	-	
		"all ${ }^{\text {a }}$	LED indications have to be reset for all messages after change of status				
		"Alarm"	Reset of LED indication for trip and activation signals (e.g. "Trip: \|>F" or "Alarm:	>F")			
		"Trip"	Reset of LED indications for trip signals (e.g. "Trip: \|>F")				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				
	\|Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output				
		"Output"					
			"Signal messages of the configured functions"				

LEDs (variable assignment - by way of example)				Available in CSP2-		
LED-name	Parameters	Settin	Description	L	F3	F5
LED 9 (Upper block)	Reset LED	"none"	There is no reset of the LED indication necessary for messages	\bullet	\bullet	\bullet
		"all"	LED indications have to be reset for all messages after change of status			
		"Alarm"	Reset of LED indication for trip and alarm signals (e.g. „Trip: I>F" or „Alarm: $1>F^{"}$)			
		"Trip"	Reset of LED indications for trip signals (e.g. "Trip: I>F")			
	(Functions can be assigned)	„Input"	These settings define whether the function is assigned to an input or an output			
		"Output"				
			"Signal messages of the configured functions"			
	\|Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output			
		"Output"				
			"Signal messages of the configured functions"			
	(Functions can be assigned)	„Input"	These settings define whether the function is assigned to an input or an output			
		"Output"				
			"Signal messages of the configured functions"			
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output			
		"Output"				
			"Signal messages of the configured functions"			
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output			
		"Output"				
			"Signal messages of the configured functions"			
LED 10 (Upper block)	Quit LED	"none"	There is no reset of the LED indication necessary for messages	\bullet	-	
		"all ${ }^{\text {a }}$	LED indications have to be reset for all messages after change of status			
		"Alarm"	Reset of LED indication for trip and alarm signals (e.g. "Trip: \|>F" or "Alarm: $\mid>F^{"}$)			
		"Trip"	Reset of LED indications for trip signals (e.g. "Trip: \|>F")			
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output			
		"Output"				
			"Signal messages of the configured functions"			
	(Functions can be assigned)	„Input"	These settings define whether the function is assigned to an input or an output			
		"Output"				\bullet
			"Signal messages of the configured functions"			
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output			
		"Output"				
			"Signal messages of the configured functions"			
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output			
		"Output"				
			"Signal messages of the configured functions"			
	(Functions can be assigned)	"Input"	These settings define whether the function is assigned to an input or an output			
		"Output"				
			"Signal messages of the configured functions"			

Fault Recorder					Verfügbar im CSP2-		
Parameters	Setting/ Setting Range	Description	Setting	Step Range	L	F3	F5
Pre-trig	32... 12000	Number of measuring points, starting from the trigger event		1	\bullet	\bullet	\bullet
T. Source	0... 10000	Number of measuring points prior to the trigger event		1	\bullet	\bullet	\bullet
Storage	„pi.up on"	Start of fault value recording with incoming message for "Protective Alarm" (pick up value)		-	\bullet	-	\bullet
	„pi.up re"	Start of fault value recording with outgoing message for "Protective Alarm" (pick up value)					
	"trip on"	Start of fault value recording with incoming message for "Protective Trip"					
	„trip rel"	Start of fault value recording with outgoing message for "Protective Trip"					
	"Chang. DI"	External start of fault value recording (no internal trigger events) via active digital input (DI) "Fault Recorder ON"					
	„inactive"	Start of the fault value recording only possible via menu parameter "Man. Tigger" (CMP1 or SL SOFTI					
auto del	„Int. RAM"	Internal volatile storage of the CSP2 (Standard Version)		-	\bullet	\bullet	\bullet
	„RAM Card"	Internal non-volatile extended storage of the CSP2 (optional)					
	,"FLASHRAM"	(for use in Woodward only)					
	"active"	Storing of fault recording files until store is full, afterwards the FIFO principle applies!		-	\bullet	-	\bullet
	„inactive"	Storing of fault recording files until store is full, afterwards there is no recording possible!					

Protocol Type IEC 60870-5-103 (SLT-Communication)					Optionally in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	L	F3	F5
1.-block	"active"	Information blockade is effective			\bullet	\bullet	\bullet
	„inactive"	Information blockade is out of function					
\dagger respo.	10...1000ms	Max. hold time before the CSP2 sends a response telegram to the host computer		1 ms	\bullet	\bullet	\bullet
t call	200...600000ms	Max. hold time before the host computer sends an inquiry telegram to the CSP2		1 ms	\bullet	\bullet	\bullet
Baud Rate	$\frac{{ }^{\prime \prime 9600 "}}{{ }^{\prime \prime} 192000^{\prime \prime}}$	Used data transmission rate [bit/s]		-	\bullet	\bullet	\bullet
Slave Id.	1... 254	Device address which can be issued individually		1	\bullet	\bullet	\bullet
\dagger wait	$4 . .150 \mathrm{~ms}$	Hold time before each newly sent telegram		1 ms	\bullet	\bullet	\bullet
pr UIPQF	0... 100	Transmission priority of "Cyclic Measuring Values"		1	\bullet	\bullet	\bullet
pr coun.	0... 100	Transmission priority of „Counting Values for Revision Data"		1	\bullet	\bullet	\bullet
pr stat.	0... 100	Transmission priority of "Statistical Data"		1	\bullet	\bullet	\bullet
Datared.	"active"	Data transmission only when changing the "Cyclic Measuring Values", "Statistical Measuring Values" or "Counting Values for Revision Data"		-	\bullet	\bullet	\bullet
	„inaktiv"	Data is transmitted at each inquiry cycle, independent of changing the "Cyclic Measuring Values" or "Counting Values for Revision Data"					

Protocol Type PROFIBUS DP (SLT-Communication)					Optionally in CSP2-		
Parameters	Setting Range	Description	Setting	Step Range	L	F3	F5
P_DP_No.	0... 126	ID number of the Slave (CSP2) connected		1	\bullet	\bullet	\bullet
† call	200...240000ms	Max. hold time before the automation system sends an inquiry telegram to the CSP2		1 ms			

Protocol Type MODBUS RTU					Optional im CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	L	F3	F5
Parity	"Even"			-	\bullet	-	\bullet
	"Odd"						
	${ }_{\text {"None }}{ }^{\text {a }}$						
Stop Bit	„1"			-	\bullet	-	\bullet
	"2"						
Baud Rate	${ }^{\prime 1} 1200{ }^{\prime \prime}$	Used data transmission rate [bit/s]		-	-	-	-
	„2400"						
	"4800"						
	"9600"						
	"19200"						
timeout.	$\begin{gathered} 50 \ldots \\ 1000 \mathrm{~ms} \end{gathered}$	Max. hold time before the CSP2 sends a response telegram to the host computer		$1 \mu s$	\bullet	\bullet	\bullet
t call	200... 600000 ms	Max. hold time before the host computer sends an inquiry telegram to the CSP2		1 ms	\bullet	-	\bullet
Slave id	$1 . . .247$	Device address (Slave) in the bus system		1	\bullet	\bullet	\bullet

CAN-BUS (multi-device communication)					Optionally in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	L	F3	F5
CAN Device No.	1... 16	ID number of the CSP2 or the CSP2/CMP1 system		1	\bullet	\bullet	\bullet
single CMP	"Yes"	Setting for version 2 of the multi-device communication		-	\bullet	\bullet	\bullet
	${ }_{\text {„no" }}$	Setting for version 1 of the multi-device communication					

Statistical Parameters						Available in CSP2-		
Parameters	Setting Range	Description	Note	Setting	Step Range	L	F3	F5
$\Delta \dagger[\mathrm{s}]$	$1 . . .86400 \mathrm{~s}$	Computation interval for maximum values and average values	Recommend. 900		1 s	\bullet	\bullet	\bullet
Hour [h]	0... 24 h	Setting of the timer for synchronisation of the statistical measurement	Start of the measurement intervals		1 h	\bullet	\bullet	\bullet
Minute [min]	0... 60 min	Setting of the timer for synchronisation of the statistical measurement	Start of the measurement intervals		1 min	\bullet	-	\bullet
Second [s]	$0 . . .60$ s	Setting of the timer for synchronisation of the statistical measurement	Start of the measurement intervals		1 s	\bullet	\bullet	\bullet

Setting lists parameter protection CSP2

Parameter sets					Available in CSP2-		
Parameters	Settings	Description	Setting	Step Range	L	F3	F5
Paraswitch	"Not Permitted"	No switch-over action possible		-	-	-	-
	"Not Permitted"	Switching over: Possible viaCMP1 or control system					
	„Via DI"	Switching over: Possible via digital input only (Dl-function ,Switch. Over P-Set")					
DI inactive	${ }^{11} 1$	"Protect. Parameter Set 1" is active, if DI is inactive		1	-	\bullet	\bullet
	${ }^{2 \prime \prime}$	"Protect. Parameter Set 2" is active, if DI is inactive					
	${ }_{13} 3^{\prime \prime}$	"Protect. Parameter Set 3" is active, if DI is inactive					
	${ }^{\prime \prime} 4^{\prime \prime}$	"Protect. Parameter Set 4" is active, if DI is inactive					
DI active	${ }^{111}$	${ }^{\text {"Protect. Parameter Set 1" is active, if Dl is active }}$		1	-	-	-
	"2"	"Protect. Parameter Set 2" is active, if DI is active					
	${ }^{3 \prime}$	"Protect. Parameter Set 3" is active, if Dl is active					
	"4"	"Protect. Parameter Set 4" is active, if Dl is active					
Trip acknoledge	"active"	A protection trip has to be reset either via button "C" at the CMP, the DI "Reset" or via the station control system (SCS) before the CB can be reconnected		-	-	-	\bullet
	„inactive"	After a protection trip the CB can be re connected without reset					

Phase Current Differential Protection						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	Differential protection function is activated		-		\bullet	-	-
	„inactive"	Differential protection function is de-activated						
ex block.	"active"	Differential protection function is ineffective when the DI "Protect. Block." is active		-		\bullet	-	-
	"inactive"	Differential protection function is effective irrespectively DI „Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is blocked		-		-	-	-
	„inactive"	OFF command to the local CB is issued						
Id(lsO)	$0.1 \ldots 1 \times \ln$	Starting point of the static tripping characteristic when Is = 0		$0.001 \times \ln$		\bullet	-	-
Id (1s l)	$0.2 \ldots 2 \times \ln$	Breaking point of the static tripping characteristic when Is $=2 \times \ln$		$0.001 \times \ln$		\bullet	-	-
Id(Is2)	$2.0 \ldots 8 \times \ln$	Value of the static tripping characteristic when Is $=10 \times \ln$		$0.001 \times \ln$		\bullet	-	-
$d(m)$	$0 \ldots 8 \times \ln$	Stabilising factor for rise of the static tripping characteristic; only at $m \neq 0$!		$0.001 \times \ln$		\bullet	-	-
k	0... 1	Attenuation factor for reducing the relative transient characteristic rise; only at $\mathrm{m}>0$!		0.001		\bullet	-	-
AR Id>	"active"	Trip of the ld> stage starts an AR		-		\bullet	-	-
	„inactive"	Trip of the ld> step cannot start an AR						
\|diff>>	2.0.. $30 \times \ln$	Unstabilised high current differential stage: Pick-up value of the differential current with reference to the rated current		$0.001 \times \ln$		\bullet	-	-
AR Id>>	"active"	Trip of the ld>> stage starts an AR		-		\bullet	-	-
	„inactive"	Trip of the ld>> stage cannot start an AR						
confirm	"active"	Tripping only occurs if the fault was also detected and acknowledged by the protect. device of the partner device (other end of the line)		-		\bullet	-	-
	"inactive"	Tripping occurs without fault acknowledgement by the partner device						
I>back-up	"active"	When communication with the partner device is disrupted: Auto. activation of protect. function l>> as back-up protection (both stages: $1 \gg F$ and $l \gg B$, irrespectively of setting of their "Function" parameter)		-		\bullet	-	-
	„inactive"	When communication with partner device is disrupted: No auto. activation of the back-up protection l>>						
I>>back-up	"active"	When communication with the partner device is disrupted: Auto. Activation of the protect. function l> as back-up protection (both stages: $>F$ and $l>B$, irrespectively of the setting of their "Function") parameter		-		\bullet	-	-
	„inactive"	When communication with partner device is disrupted: No auto. activation of the back-up protection l>						

Overcurrent protection stage: I>F (Forward direction or non-direction)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
MTA	$0^{\circ} \ldots 355^{\circ}$	Typical angle between phase current and reference voltage		1°		\bullet	\bullet	\bullet
Function	"active"	$1>F$ stage is put into function		-		\bullet	\bullet	-
	„inactive"	$1>F$ stage is put out of function						
ex block	"active"	I>F stage is ineffective when DI „Protect. Block." is active		-		\bullet	\bullet	\bullet
	„inactive"	I>F stage is effective irrespectively of the DI „, Protect. Block." state.						
tripbloc	"active"	OFF command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
rev. Lock	"active"	I>F stage is ineffective when the DI „rev lock" Is active		-		\bullet	\bullet	-
	"inactive"	l>F stage is effective irrespectively of the DI "rev lock" state"						
direct.	"active"	I>F stage trips in forward direction only (directional)		-		\bullet	\bullet	\bullet
	„inactive"	I>F stage trips in both directions (non-directional)						
char F	"DEFT"	DEFT characteristic		-		\bullet	\bullet	\bullet
	${ }_{\text {"NINV }}{ }^{\text {N }}$	INV characteristic (normal inverse)						
	"VINV"	INV characteristic (very inverse)						
	"EINV"	INV characteristic (extremely inverse)						
	"LINV"	INV characteristic (long time inverse)						
$1>F$	$011 \ldots 5 \times \ln$	Pick-up value of the overcurrent related to the rated current		0,001 $\times 1 \mathrm{ln}$		\bullet	\bullet	\bullet
$\dagger 1>F$	$\begin{gathered} \hline 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay; for DEFT characteristics only		1 ms		\bullet	\bullet	\bullet
t char F	0.052	Characteristic factor; for IMT characteristics only		0.01		\bullet	\bullet	\bullet
\dagger rst F	0...60,000 ms	Reset time for intermittent phase faults; for IMT characteristcs only		1 ms		\bullet	\bullet	\bullet
AR	"active"	By trip of the I>F the AR is started		-		\bullet	\bullet	\bullet
	„inactive"	By trip of the l>F the AR cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function		-		\bullet	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function						
\dagger l $>$ FFT	0...10,000 ms	Trip time delay for AR instantaneous trip		1 ms		\bullet	\bullet	\bullet
FT at sh.	"0"	AR instantaneous trip at the first protect. trip via I>F		1		-	\bullet	\bullet
	"1"	AR instantaneous trip at the first auto. reclosing attempt after a failure has occurred						
	"2"	AR instantaneous trip at the second auto. reclosing attempt after a failure has occurred						
	„3"	AR instantaneous trip at the third auto. reclosing attempt after a failure has occurred						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt after a failure has occurred						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt after a failure has occurred						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt after a failure has occurred						
SOTF	"active"	SOTF function is put into active state		-		\bullet	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
$\dagger 1>F S O$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for the SOTF function		1 ms		\bullet	\bullet	\bullet

Overcurrent Protection Step: I>B (Backward direction or non-direction)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	I>B stage is put into function		-		\bullet	\bullet	\bullet
	„inactive"	$1>B$ stage is put out of function						
ex block	"active"	I>B stage is ineffective when DI "Protect. Block." is active		-		\bullet	-	\bullet
	„inactive"	I>B stage is effective irrespectively of the DI „ Protect. Block." state.						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
rev. lock	"active"	I>B stage is ineffective when the DI "rev lock" Is active		-		\bullet	\bullet	\bullet
	„inactive"	I>B stage is effective irrespectively of the DI "rev lock" state "						
direct.	"active"	\|>B stage trips in backward direction only (directional)		-		\bullet	\bullet	\bullet
	"inactive"	I>B stage trips in both directions (non-directional)						
char B	"DEFT"	DEFT characteristic		-		\bullet	\bullet	\bullet
	${ }^{\prime \prime} \mathrm{NINV}^{\prime}$	INV characteristic (normal inverse)						
	"VINV"	INV characteristic (very inverse)						
	"EINV"	INV characteristic (extremely inverse)						
	"LINV"	INV characteristic (long time inverse)						
$1>B$	$0.1 \ldots 5 \times \ln$	Pick-up value of the overcurrent related to the rated current		$0.001 \times \ln$		\bullet	\bullet	\bullet
$t \mid>B$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay; for DEFT characteristics only		1 ms		\bullet	\bullet	\bullet
t char B	0.052	Characteristic factor; for INV characteristics only		0.01		\bullet	\bullet	\bullet
\dagger rst B	0...60,000 ms	Reset time for intermittent phase faults; for IMT characteristcs only		1 ms		\bullet	\bullet	\bullet
AR	"active"	By trip of the I>B the AR is started		-		\bullet	\bullet	\bullet
	„inactive"	By trip of the l>B the AR cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function		-		\bullet	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function						
$t 1>B F T$	0...10,000 ms	Trip time delay for AR instantaneous trip		1 ms		\bullet	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via I>B		1		\bullet	\bullet	\bullet
	„1"	AR instantaneous trip at the first auto. reconne-ction attempt						
	"2"	AR instantaneous trip at the second auto. reclosing attempt						
	"3"	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fith auto. reclosing atlempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		\bullet	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
$\dagger 1>\mathrm{BSO}$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for the SOTF function		1 ms		\bullet	\bullet	\bullet

Short-Circuit Protection Step: I>>F (Forward direction or non-direction)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
MTA	$0^{\circ} \ldots 355^{\circ}$	Typical angle between phase current and reference voltage		1°		-	\bullet	\bullet
Function	"active"	$1 \gg F$ stage is put into function				\bullet	\bullet	\bullet
	„inactive"	$1 \gg F$ stage is put out of function						
ex block	"active"	I>>F stage is ineffective when Dl "Protect. Block." Is active		-		\bullet	\bullet	\bullet
	„inactive"	l>>F stage is effective irrespectively of DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	Off command to the local CB is being issued						
rev. lock	"active"	l>>F stage is ineffective when the DI " rev lock" is active		-		\bullet	\bullet	-
	„inactive"	l>>F stage is effective irrespectively of the DI "rev lock" state						
direct.	"active"	\| \gg F stage trips in forward direction only (directional)		-		\bullet	-	-
	„inactive"	l>>F stage trips in both directions (nondirectional)						
$1 \gg F$	$0.1 \ldots 40 \times \ln$	Pick-up value of the overcurrent related to the rated current		$0.001 \times \ln$		\bullet	\bullet	\bullet
$t \mid \gg F$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only e		1 ms		\bullet	\bullet	\bullet
AR	"active"	By trip of the $1 \gg F$ stage the AR is started		-		-	\bullet	\bullet
	„inactive"	By trip of the l>>F stage the AR cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function		-		\bullet	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function						
$\dagger 1 \gg F F T$	$\begin{gathered} 0 \ldots 10,000 \\ \mathrm{~ms} \\ \hline \end{gathered}$	Trip time delay for AR instantaneous trip		1 ms		-	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via stage l>>F		1		-	\bullet	-
	"1"	AR instantaneous trip at the first auto. reclosing attempt						
	„2"	AR instantaneous trip at the second auto. reclosing attempt						
	„3"	AR instantaneous trip at the third auto. reclosing atlempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		-	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
$\dagger 1 \gg F S O$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function		1 ms		\bullet	\bullet	\bullet

Short-Circuit Protective Step: I>>B (Backward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	$1 \gg B$ stage is put into function		-		\bullet	\bullet	\bullet
	„inactive"	$1 \gg B$ stage is put out of function						
ex block	"active"	l>>B stage is ineffective when DI „Protect. Block." Is active		-		\bullet	-	-
	„inactive"	l>>B stage is effective irrespectively of the DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		-	-	-
	„inactive"	OFF command to the local is being issued						
rev. lock	"active"	I>>B stage is ineffective when the DI "rev lock" is active		-		\bullet	\bullet	\bullet
	"inactive"	l>>B stage is effective irrespectively of the DI "rev lock" state						
Direction	"active"	\|>>B stage trips in backward direction only (directional)		-		-	-	-
	"inactive"	\|>>B stage trips in both directions (nondirectional)						
$1 \gg B$	$0.1 \ldots 40 \times \ln$	Pick-up value of the overcurrent related to the rated current		$0.001 \times \ln$		\bullet	\bullet	\bullet
$t \mid \gg B$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for DEFT characteristics only		1 ms		\bullet	\bullet	\bullet
AR	"active"	By trip of the l>>B stage the AR is started		-		-	\bullet	\bullet
	„inactive"	By trip of the $1 \gg B$ stage the $A R$ cannot be started						
AR FT	"active"	AR instantaneous trip is put into function		-		\bullet	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function						
$\dagger 1 \gg$ BFT	$\begin{gathered} 0 \ldots 10,000 \\ \mathrm{~ms} \\ \hline \end{gathered}$	Trip time delay for AR instantaneous trip		1 ms		\bullet	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via stage $1 \gg B$		1		-	\bullet	-
	"1"	AR instantaneous trip at the first auto. reclosing attempt						
	"2"	AR instantaneous trip at the second auto. reclosing attempt						
	„3"	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		\bullet	-	\bullet
	„inactive"	SOTF function is put into inactive state						
t $1 \gg$ BSO	$\begin{array}{\|c\|} \hline 30 \ldots 300,000 \\ \mathrm{~ms} \end{array}$	Trip time delay for SOTF function		1 ms		\bullet	\bullet	\bullet

Max. Short-Circuit Protection Step: I>>>F (Forward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
MTA	$0^{\circ} \ldots 355^{\circ}$	Typical angle between phase current and reference voltage		1°		-	-	\bullet
Function	"active"	$1 \ggg F$ stage is put into function		-		-	-	\bullet
	„inactive"	$1 \ggg$ F stage is put out of function						
ex block	"active"	l>>>F stage is ineffective when DI „Protect. Block."		-		-	-	-
	„inactive"	l>>>F stage is effective irrespectively of the DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
rev lock	"active"	l>>>F stage is ineffective when the DI "rev lock" is active		-		-	\bullet	\bullet
	„inactive"	l>>>F stage is effective irrespectively of the DI "rev lock" state						
Direction	"active"	l>>>F stage trips in forward direction only (directional)		-		-	\bullet	-
	„inactive"	l>>>F stage trips in both directions (nondirectional)						
$1 \ggg F$	$0.1 \ldots 40 \times \ln$	Pick-up value of the overcurrent related to the rated current		$0.001 \times \ln$		-	-	\bullet
$t \mid \ggg F$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only		1 ms		-	\bullet	\bullet
AR	"active"	By trip of the l>>>F step the AR is started		-		-	\bullet	\bullet
	„inactive"	By trip of the l>>>F step the AR cannot start						
AR-FT	"active"	AR instantaneous trip is put into function		-		-	\bullet	\bullet
	"inactive"	AR instantaneous trip is put out of function						
$\dagger 1 \ggg$ FIT	$\begin{gathered} 0 \ldots 10,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for AR instantaneous trip		1 ms		-	\bullet	\bullet
FT at sh	"O"	AR instantaneous trip at the first protect. trip via stage l>>>F		1		-	\bullet	-
	„1"	AR instantaneous trip at the first auto. reclosing attempt						
	"2"	AR instantaneous trip at the second auto. reclosing attempt						
	„3"	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		-	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
t $1 \ggg>$ FSO	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function		1 ms		-	\bullet	\bullet

Max. Short-Circuit Protection Step: I>>>B (Backward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	$1 \ggg B$ stage is put into function		-		-	-	-
	„inactive"	$1 \ggg B$ stage is put out of function						
ex block	"active"	$\mid \ggg B$ stage is ineffective when DI „Protect. Block." is active		-		-	-	\bullet
	„inactive"	l>>>B stage is effective irrespectively of the Dl "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
rev lock	"active"	\|>>>B stage is ineffective when the DI "rev lock" is active		-		-	\bullet	\bullet
	"inactive"	l>>>B stage is effective irrespectively of the DI "rev lock" state						
direct.	"active"	\|>>>B stage trips in backward direction only (directional)		-		-	-	\bullet
	„inactive"	\|>>>B stage trips in both directions (nondirectional)						
$\mid \ggg B$	$0.1 \ldots 40 \times \ln$	Pick-up value of the overcurrent related to the rated current		$0.001 \times \ln$		-	\bullet	\bullet
$\dagger \mid \ggg B$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \\ \hline \end{gathered}$	Trip time delay, for DEFT characteristics only		1 ms		-	\bullet	\bullet
AR	"active"	By trip of the l>>>B step the AR is started		-		-	\bullet	\bullet
	„inactive"	By trip of the l>>>B step the AR cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function		-		-	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function						
$\dagger 1 \ggg$ BIT	0...10,000 ms	Trip time delay for AR instantaneous trip		1 ms		-	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via stage l>>>B		1		-	-	\bullet
	"1"	AR instantaneous trip at the first auto. reclosing attempt						
	„2"	AR instantaneous trip at the second auto. reclosing attempt						
	${ }^{3} 3$	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		-	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
$\dagger 1 \ggg B S O$	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function		1 ms		-	\bullet	\bullet

Earth-Overcurrent Protection Step: le>F (Forward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Earthing	"SOLI"	System with solidly earthed star point (MTA = variable)		-		\bullet	\bullet	\bullet
	„RESI"	System with resistance-earthed star point (MTA = variable)						
	"COS"	System with earth fault compensation (MTA $=180^{\circ}$, fixed)						
	"SIN"	System with isolated star point MTA $=-90^{\circ}=270^{\circ}$, fixed)						
MTA	$0^{\circ} \ldots 355^{\circ}$	Typical angle between earth current component and residual voltage (can only be adjusted when earthing $=$ SOLI or RESI")		1°		\bullet	\bullet	\bullet
Function	"active"	le>F stage put into function		-		-	-	\bullet
	„inactive"	$l e>F$ stage put out of function						
ex block	"active"	le>F stage is ineffective when DI „Protect.Block." is active		-		-	\bullet	\bullet
	"inactive"	le>F stage is effective irrespectively of the DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
rev lock	"active"	le>F stage is ineffective when $\mathrm{DI}_{\text {„, rev lock" }}$ Is active		-		\bullet	\bullet	\bullet
	„inactive"	le>F stage is effective irrespectively of the DI "rev lock" state						
direct	"active"	le>F stage trips in forward direction only (directional)		-		\bullet	\bullet	\bullet
	„inactive"	le>F stage trips in both directions (non-directional)						
Ue block	"active"	le>F stage is only effective if the residual voltage protection Ue> or Ue>> is activated		-		-	\bullet	\bullet
	"inactive"	le>F stage is effective no matter whether the residual voltage protection Ue> or Ue>> is activated or not						
char F	"DEFT"	DEFT characteristic		-		-	\bullet	-
	${ }^{\text {"NINV" }}$	INV characteristic (normal inverse)						
	"VINV"	INV characteristic (very inverse)						
	"EINV"	INV characteristic (extremely inverse)						
	"LINV"	INV characteristic (long time inverse)						
$l e>F$	0.01...20 $\times \ln$	Pickup value of the overcurrent related to the rated current		$\begin{gathered} 0.001 x \\ \ln \end{gathered}$		\bullet	\bullet	\bullet
\dagger le $>$ F	$\begin{gathered} 50 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only		1 ms		\bullet	\bullet	\bullet
t char F	0.052	Characteristic factor, for INV characteristics only		0.01		\bullet	\bullet	\bullet
t ist F	$\begin{gathered} 0 \ldots 60,000 \\ \mathrm{~ms} \\ \hline \end{gathered}$	Reset time for intermittent phase faults, for INV characteristics only		1 ms		\bullet	\bullet	\bullet
AR	"active"	By trip of the le $>$ F stage the $A R$ is started		-		\bullet	\bullet	\bullet
	"inactive"	By trip of the le>F stage the AR cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function		-		-	\bullet	\bullet
	„inactive"	$A R$ instantaneous trip is put out of function						
\dagger le>FFT	$\begin{gathered} 0 \ldots 10,000 \\ \mathrm{~ms} \\ \hline \end{gathered}$	Trip time delay for AR instantaneous trip		ms		\bullet	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via stage le>F		1		-	\bullet	\bullet
	"1"	AR instantaneous trip at the first auto. reconnection attempt						
	"2"	AR instantaneous trip at the second auto. reclosing attempt						
	„3"	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		\bullet	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
\dagger le>FSO	$\begin{gathered} 50 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function		1 ms		\bullet	\bullet	\bullet

Earth-Overcurrent Protection Step: le>B (Backward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	le>B stage is put into function		-		\bullet	\bullet	\bullet
	"inactive"	le>B stage is put out of function						
ex block	"active"	le>B stage ineffective when DI „Protect. Block." is active		-		-	-	\bullet
	„inactive"	le>B stage is effective irrespectively of the DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
rev lock	"active"	le>B stage is ineffective when the $\mathrm{DI}_{\text {„ rev lock" }}$ is active		-		\bullet	\bullet	\bullet
	„inactive"	le>B stage is effective irrespectively of the DI "rev lock" state						
direct	"active"	le>B stage trips in backward direction only (directional)		-		\bullet	\bullet	\bullet
	"inactive"	le>B stage trips in both direction (non-directional)						
Ue block	"active"	le>B stage is only effective if the residual voltage protection Ue> or Ue>> is activated		-		\bullet	\bullet	\bullet
	„inactive"	le>B stage is effective no matter whether the residual voltage protection Ue> or Ue>> is activated or not						
char B	"DEFT"	DEFT characteristic		-		\bullet	\bullet	\bullet
	${ }^{\text {"NINV }}$	INV characteristic (normal inverse)						
	${ }_{\text {"VINV }}$	INV characteristic (very inverse)						
	"EINV"	INV characteristic (extremely inverse)						
	"LINV"	INV characteristic (long time inverse)						
$l e>B$	0.01...20 \times ln	Pickup value of the overcurrent related to the rated current		$0.001 \times \ln$		\bullet	\bullet	\bullet
\dagger le $>$ B	$\begin{gathered} 50 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only		1 ms		\bullet	\bullet	\bullet
t char B	0.052	Characteristic factor, for INV characteristics only		0.01		\bullet	\bullet	\bullet
\dagger rst B	0...60,000 ms	Reset time for intermittent phase faults, for INV characteristics only		1 ms		\bullet	-	\bullet
AR	"active"	By trip of the le>B step the AR is started		-		\bullet	-	\bullet
	„inactive"	By trip of the le>B step the AR cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function		-		\bullet	\bullet	-
	„inactive"	AR instantaneous trip is put out of function						
T le>BFT	0...10,000 ms	Trip time delay for AR instantaneous trip		1 ms		\bullet	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via stage le>B		1		\bullet	\bullet	\bullet
	„1"	AR instantaneous trip at the first auto. reclosing attempt						
	"2"	AR instantaneous trip at the second auto. reclosing attempt						
	"3"	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		\bullet	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
T le>BSO	$\begin{gathered} 50 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function		1 ms		\bullet	\bullet	\bullet

Earth Short-Circuit Protection Step: le>>F (Forward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
MTA	$0^{\circ} \ldots 355^{\circ}$	Typical angle between earth current component and residual voltage (can only be adjusted when earthing = SOLI or RESI")		1°		\bullet	\bullet	\bullet
Function	"active"	le>>F stage is put into function		-		\bullet	\bullet	\bullet
	„inactive"	le>>F stage is put out of function						
ex block	"active"	le>>F stage ineffective when DI „Protect. Block." is active		-		\bullet	\bullet	\bullet
	„inactive"	le>>F stage effective irrespectively of the DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
rev lock.	"active"	le>>F stage ineffective when DI „ rev lock" is active		-		\bullet	\bullet	\bullet
	"inactive"	le>>F stage effective irrespectively of the DI "rev lock" state						
direct	"active"	le>>F stage trips in forward direction only (directional)		-		\bullet	\bullet	\bullet
	„inactive"	le>>F stage trips in both directions (nondirectional)						
Ue block	"active"	le>>F stage is only effective if the residual voltage protection Ue> or Ue>> is activated		-		\bullet	\bullet	-
	„inactive"	le>>F stage is effective no matter whether the residual voltage supervision Ue> or Ue>> is activated or not						
$l e \gg F$	0.01.. $20 \times \ln$	Pick-up value of the overcurrent related to the rated current		$0.001 \times \ln$		\bullet	\bullet	\bullet
\dagger le>>F	$\begin{gathered} 50 \\ .300,000 \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only		1 ms		\bullet	\bullet	\bullet
AR	"active"	By trip of the le>>F step the AR is started		-		\bullet	-	\bullet
	„inactive"	By trip of the le>>F step the AR cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function		-		\bullet	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function						
\dagger le>>FFT	0...10,000 ms	Trip time delay for AR instantaneous trip		1 ms		\bullet	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via stage le>>F		1		\bullet	\bullet	-
	„1"	AR instantaneous trip at the first auto. reclosing attempt						
	"2"	AR instantaneous trip at the second auto. reconnection attempt						
	"3"	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		\bullet	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
t le>>FSO	$\begin{gathered} \hline 50 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function		1 ms		\bullet	\bullet	\bullet

Earth Short-Circuit protection Step: le>>B (Backward direction or non-directional)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	le>>B stage is put into function		-		\bullet	\bullet	\bullet
	„inactive"	le>>B stage is put out of function						
ex block	"active"	le>>B stage ineffective when DI „Protect. Block." is active		-		\bullet	\bullet	\bullet
	„inactive"	le>>F stage effective irrespectively of the DI "Protect. Block." state						
tripbloc	"active"	OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
rev lock	"active"	le>>B stage ineffective when DI „ rev lock" is active		-		-	\bullet	\bullet
	„inactive"	le>>B stage effective irrespectively of the DI "rev lock" state						
direct	"active"	le>>B stage trips in backward direction only (directional)		-		\bullet	\bullet	-
	„inactive"	le>>B stage trips in both directions (nondirectional)						
Ue block	"active"	le>>B stage is only effective if the residual voltage protection Ue> or Ue>> is activated		-		\bullet	\bullet	-
	„inactive"	le>>B stage is effective no matter whether the residual voltage supervision Ue> or Ue>> is activated or not						
$l e \gg B$	0.01...20 \times ln	Pick-up value of the overcurrent related to the rated current		$0.001 \times \ln$		\bullet	\bullet	\bullet
\dagger le>>B	$\begin{gathered} \hline 50 \\ .300,000 \mathrm{~ms} \\ \hline \end{gathered}$	Trip time delay, for DEFT characteristics only		1 ms		\bullet	-	\bullet
AR	"active"	By trip of the le>>B step the AR is started		-		\bullet	-	\bullet
	„inactive"	By trip of the le>>B step the AR cannot be started						
AR-FT	"active"	AR instantaneous trip is put into function		-		\bullet	\bullet	\bullet
	„inactive"	AR instantaneous trip is put out of function						
\dagger le>>BFT	0...10,000 ms	Trip time delay for AR instantaneous trip		1 ms		\bullet	\bullet	\bullet
FT at sh	"0"	AR instantaneous trip at the first protect. trip via stage le>>B		1		\bullet	-	\bullet
	"1"	AR instantaneous trip at the first auto. reclosing attempt						
	„2"	AR instantaneous trip at the second auto. reclosing attempt						
	„3"	AR instantaneous trip at the third auto. reclosing attempt						
	"4"	AR instantaneous trip at the fourth auto. reclosing attempt						
	"5"	AR instantaneous trip at the fifth auto. reclosing attempt						
	"6"	AR instantaneous trip at the sixth auto. reclosing attempt						
SOTF	"active"	SOTF function is put into active state		-		\bullet	\bullet	\bullet
	„inactive"	SOTF function is put into inactive state						
\dagger le>>BSO	$\begin{gathered} 50 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay for SOTF function		1 ms		\bullet	\bullet	\bullet

Load Unbalance Protection 12> (1st stage)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	$12>$ stage is put into function		-			\bullet	\bullet
	"inactive"	$12>$ stage is put out of function						
ex block	"active"	I2> stage ineffective when DI „Protect. Block." is active		-		-	\bullet	\bullet
	„inactive"	I2> stage is effective irrespectively of the DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
12>	$\begin{gathered} 0.01 \ldots 0.5 \times \\ \ln \\ \hline \end{gathered}$	Pick-up value of the unbalanced load related to the rated current		$0.001 \times \ln$		-	\bullet	\bullet
† 12>	$\begin{gathered} 100 \ldots 300,00 \\ 0 \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only		1 ms		-	\bullet	\bullet
Load Unbalance Protection I2>> (2nd stage)						Available in CSP2-		
Function	"active"	$12 \gg$ stage is put into function		-		-	\bullet	\bullet
	„inactive"	$12 \gg$ stage is put out of function						
ex block	"active"	I2>> stage ineffective when DI „Protect. Block." is active		-		-	\bullet	\bullet
	„inactive"	\|2>> stage is effective irrespectively of the $\mathrm{D} \mid$ "Protect. Block." state						
trip-block.	"active"	OFF command to the local CB is being blocked		-			\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
char	"DEFT"	DEFT characteristic				-	\bullet	\bullet
	${ }^{\text {INV }}$ "	INV characteristic						
\|2>>	$\begin{gathered} 0.01 \ldots 0.5 \times \\ \ln \\ \hline \end{gathered}$	Pick-up value of the unbalanced load related to the rated current		$0.001 \times \ln$		-	\bullet	\bullet
† 12>>	$\begin{gathered} 1000 \ldots 300,0 \\ 00 \mathrm{~ms} \end{gathered}$	Trip time delay, for DEFT characteristics only		1 ms		-	\bullet	\bullet
t char	300... 3600	Characteristic factor, for INV characteristic only		1		-	\bullet	\bullet

Overload Protection with Thermal Image $\vartheta>$						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
tau w	5...60,000 s	Warming-up time constant of the component (see data sheet of the component)		1 s		\bullet	\bullet	\bullet
tau c	5...60,000 s	Cooling-down time constant of the component (see data sheet of the component)		1 s		\bullet	\bullet	\bullet
Function	"active"	$\vartheta>$ stage is put into function		-		-	\bullet	\bullet
	„inactive"	$\vartheta>$-stage is put out of function						
ex block	"active"	$\vartheta>$ stage is ineffective when DI "Protect. Block." is active		-		-	\bullet	\bullet
	„inactive"	$\vartheta>$ stage is effective irrespectively of the DI "Protect. Block." State						
Trip-Block.	"active"	OFF command to the local CB is being blocked in case of overload		-		-	-	\bullet
	„inactive"	OFF command to the local CB is being issued in case of overload						
ϑ Alarm	50..100\%	Activation value for overload alarm (in per cent)		1\%		\bullet	-	\bullet
lb>	$0.5 \ldots 2.4 \times \ln$	Pick-up value for the max. permissible thermal continuous current (basic current) related to the rated current		$0.001 \times \ln$		\bullet	-	\bullet
k	0.8...1.2	Overload factor		0.01		\bullet	\bullet	\bullet

Automatic reclosing (AR)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	AR is put into function		-		\bullet	\bullet	\bullet
	„inactive"	$A R$ is put out of function						
ex block	"active"	AR is ineffective when DI „Protect. Block." is active		-		\bullet	\bullet	\bullet
	"inactive"	AR is effective irrespectively of the DI „AR" Protect. Block" state						
ex AR	"active"	AR start if the DI "AR Start" is active and at the same time a protective trip occurs via an active digital input, e.g. "Protect. Trip 1").		-		\bullet	-	\bullet
	"inactive"	AR start via digital input „AR Start" is out of function						
sync check	"active"	AR start only if DI „AR Sy. Check" (synchronizing check signal) is within time frame „t Sy. Check"		-		-	\bullet	-
	„inactive"	AR start without synchronisation check signal						
NC Start	"active"	AR start when CB is in non-correspondence position		-		\bullet	\bullet	\bullet
	„inactive"	No AR start when CB is in non-correspondence position						
t syncro	10...100,000 ms	Synchronizing time (-frame) for a synchronized AR start		1 ms		\bullet	\bullet	\bullet
shots	1... 6	Maximum number of reclosing attempts which could be carried out		1		\bullet	\bullet	\bullet
t F	10..10,000 ms	Fault time (fault definition time) for start of the AR function (for AR start via internal current protective functions only)		1 ms		\bullet	\bullet	\bullet
\dagger DP 1	100...200,000 ms	Dead time between 1 st protect. trip and the first reclosing attempt in case of phase faults		1 ms		\bullet	\bullet	\bullet
† DP2	100...200,000 ms	Dead time between 2nd protect. trip and the second reclosing attempt in case of phase faults		1 ms		\bullet	\bullet	\bullet
\dagger DP3	100...200,000 ms	Dead time between 3rd protect. trip and the third reclosing attempt in case of phase faults		1 ms		\bullet	\bullet	\bullet
† DP4	100...200,000 ms	Dead time between 4th protect. trip and the fourth reclosing attempt in case of phase faults		1 ms		\bullet	-	\bullet
† DP5	100...200,000 ms	Dead time between 5th protect. trip and the fifth reclosing attempt in case of phase faults		1 ms		\bullet	\bullet	\bullet
† DP6	100...200,000 ms	Dead time between 6th protect. trip and the sixth reclosing attempt in case of phase faults		1 ms		\bullet	-	\bullet
† DE 1	100...200,000 ms	Dead time between 1 st protect. trip and the first reclosing attempt in case of earth faults		1 ms		\bullet	-	\bullet
† DE2	100...200,000 ms	Dead time between 2nd protect. trip and the second reclosing attempt in case of earth faults		1 ms		\bullet	\bullet	\bullet
† DE3	100...200,000 ms	Dead time between 3rd protect. trip and the third reclosing attempt in case of earth faults		1 ms		\bullet	\bullet	\bullet
† DE4	100...200,000 ms	Dead time between 4th protect. trip and the fourth reclosing attempt in case of eartzh faults		1 ms		\bullet	-	\bullet
† DE5	100...200,000 ms	Dead time between 5th protect. trip and the fifth reclosing attempt in case of earth faults		1 ms		\bullet	\bullet	\bullet
† DE6	100...200,000 ms	Dead time between 6th protect. trip and the sixth reclosing attempt in case of earth faults		1 ms		\bullet	\bullet	\bullet
† block	$\begin{gathered} \hline 1000 \ldots 300,000 \\ \mathrm{~ms} \\ \hline \end{gathered}$	Blocking time for AR start		1 ms		\bullet	-	\bullet
Alarm No.	1... 65535	AR counter as first alarm stage when inspection work at the CB is done		1		\bullet	-	\bullet
Block. No.	1... 65535	AR counter as second alarm stage when inspection work at the CB is done		1		\bullet	\bullet	\bullet

Control Circuit Supervision (CCS)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	CCS is put into function		-		\bullet	\bullet	\bullet
	„inactive"	CCS is put out of function						
ex block	"active"	CCS function is ineffective when DI "Protect. Block." is active		-		\bullet	-	\bullet
	„inactive"	CCS function is effective irrespectively of the DI "Protect. Block." state						
CCS main	3... 200 h	Setting of the time interval for a cyclic CCS test of all control outputs		1 h		\bullet	-	\bullet
SG1	"active"	CCS function checks the SG1 control output		-		\bullet	\bullet	\bullet
	"inactive"	CCS function does not check the SG1 control output						
SG2	"active"	CCS function checks the SG2 control output		-		\bullet	\bullet	-
	„inactive"	CCS function does not check the SG2 control output						
SG3	",active"	CCS function checks the SG3 control output		-		\bullet	\bullet	\bullet
	„inactive"	CCS function does not check the SG3 control output						
SG4	"active"	CCS function checks the SG4 control output		-		-	-	\bullet
	„inactive"	CCS function does not check the SG4 control output						
SG5	"active"	CCS function checks the SG5 control output		-		-	-	\bullet
	„inactive"	CCS function does not check the SG5 control output						

Frequency Protection (Common Parameters for all Steps)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
U BF	$0.1 \ldots 1 \times$ Un	Lower threshold value of the measuring voltage for blocking the frequency protection		$0.001 \times$ Un		-	\bullet	\bullet
t BF	50 ms	Delay time for blocking the frequency protection	fixed	-		-	\bullet	\bullet
† block	$\begin{gathered} 100 \ldots 20,000 \\ \mathrm{~ms} \end{gathered}$	Persistance duration for blocking the frequency protection				-	\bullet	\bullet
Frequency Protection - 1 st stage						-	\bullet	\bullet
Function	"active"	1 st frequency stage is put into function		-		-	\bullet	\bullet
	„inactive"	1 st frequency stage is put out of function						
ex block	"active"	Function of 1st frequency stage is ineffective when DI: „Protect. Block." is active		-		-	\bullet	-
	„inactive"	Function of 1 st frequency stage is effective irrespectively of the DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
$f 1$	$40 \ldots 70 \mathrm{~Hz}$	Pick-up value of the 1st frequency stage as absolute value		0.001 Hz		-	\bullet	\bullet
+ f1	$\begin{gathered} 100 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay of the 1 st frequency stage		1 ms		-		
Frequency Protection - 2nd stage						-	-	\bullet
Function	"active"	2nd frequency stage is put into function		-		-	\bullet	\bullet
	„inactive"	2ndlst frequency stage is put out of function						
ex block	"active"	Function of 2nd frequency stage is ineffective when DI: „Protect. Block." is active		-		-	\bullet	\bullet
	„inactive"	Function of 2nd frequency stage is effective irrespectively of the DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
f2	$40 \ldots 70 \mathrm{~Hz}$	Pick-up value of the 2nd frequency stage as absolute value		0.001 Hz		-	\bullet	\bullet
+ f2	$\begin{gathered} 100 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay of the $2^{\text {nd }}$ frequency stage		1 ms		-	\bullet	\bullet
Frequency Protection - 3rd stage						-	-	\bullet
Function	"active"	3rd frequency stage is put into function		-		-	\bullet	\bullet
	„inactive"	3rd frequency stage is put out of function						
ex block	"active"	Function of 3rd frequency stage is ineffective when DI: „Protect. Block." is active		-		-	-	\bullet
	„inactive"	Function of 3rd frequency stage is effective irrespectively of the DI "Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
f3	$40 \ldots 70 \mathrm{~Hz}$	Pick-up value of the 3rd frequency stage as absolute value		0.001 Hz		-	\bullet	\bullet
t f3	$\begin{gathered} 100 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay of the 3rd frequency stage		1 ms		-		
Frequency Protection - 4th stage						-	\bullet	\bullet
Function	"active"	4th frequency stage is put into function		-		-	\bullet	\bullet
	„inactive"	4th frequency stage is put out of function						
ex block	"active"	Function of 4th frequency stage is ineffective when DI: „Protect. Block." is active		-		-	\bullet	-
	"inactive"	Function of 4th frequency stage is effective irrespectively of the DI „Protect. Block." state						
tripbloc.	"active"	OFF command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	OFF command to the local CB is being issued						
¢4	$40 \ldots 70 \mathrm{~Hz}$	Pick-up value of the 4th frequency stage as absolute value		0.001 Hz		-	\bullet	\bullet
† ¢ 4	$\begin{gathered} 100 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay of the 4th frequency stage			1 ms	-	\bullet	\bullet

Overvoltage Protection $\boldsymbol{U} \boldsymbol{>}$ (1st stage)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
evaluate (measuring)	Inactive	No voltage measuring				-	\bullet	\bullet
	Voltage LN	Measuring of the phase voltages						
	Voltage LL	Measuring of the line-to-line voltages						
Function	"active"	U> stage is put into function		-		\bullet	\bullet	\bullet
	„inactive"	U> stage is put out of function						
ex block	"active"	U> stage is ineffective when the DI "Protect. Block." is active		-		\bullet	\bullet	\bullet
	„inactive"	U> stage is effective irrespectively of the DI "Protect. Block" state						
tripbloc.	"active"	Off command to the local CB is being blocked		-		\bullet	-	\bullet
	„inactive"	Off command to the local CB is being issued						
U>	0.01... $2 \times$ Un	Pick-up value of the 1 st overvoltage stage related to the rated voltage		$0.001 \times$ Un		\bullet	\bullet	\bullet
t U>	$\begin{gathered} \hline 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay		1 ms		\bullet	\bullet	\bullet
Overvoltage Protection $\boldsymbol{U} \gg$ (2nd stage)						Available in CSP2-		
Function	"active"	U>> stage is put into function		-		\bullet	\bullet	\bullet
	„inactive"	$U \gg$ stage is put out of function						
ex block	"active"	U>> stage is ineffective when the DI „Protect. Block." is active		-		-	\bullet	\bullet
	„inactive"	U>> stage is effective irrespectively of the DI "Protect. Block" state						
tripbloc.	"active"	Off command to the local CB is being blocked		-		\bullet	-	\bullet
	„inactive"	Off command to the local CB is being issued						
U>>	0.01... $2 \times$ Un	Pick-up value of the 2nd overvoltage stage related to the rated voltage		$0.001 \times$ Un		\bullet	\bullet	\bullet
† U >>	$\begin{gathered} \hline 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay		1 ms		\bullet	\bullet	\bullet

Undervoltage Protection $\boldsymbol{U}<$ (1st stage)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
evaluate (measuring)	Inactive	No voltage measuring				\bullet	\bullet	\bullet
	Voltage LN	Measuring of the phase voltages						
	Voltage LL	Measuring of the line-to-line voltages						
Function	"active"	U < stage is put into function		-		\bullet	\bullet	\bullet
	„inactive"	$U<$ stage is put out of function						
ex block	"active"	U< stage is ineffective when the DI „Protect. Block." Is active		-		-	\bullet	\bullet
	„inactive"	U< stage is effective irrespectively of the DI "Protect. Block" state						
tripbloc.	"active"	Off command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	Off command to the local CB is being issued						
U<	$0.01 \ldots 2 \times$ Un	Pick-up value of the 1 st undervoltage stage related to the rated voltage		$0.001 \times$ Un		\bullet	\bullet	\bullet
\dagger U<	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay		1 ms		\bullet	\bullet	\bullet
Undervoltage Protection $\boldsymbol{U} \ll$ (2 $2^{\text {nd }}$ stage)						Available in CSP2-		
Function	"active"	$U \ll$ stage is put into function		-		\bullet	\bullet	\bullet
	„inactive"	$U \ll$ stage is put out of function						
ex block	"active"	U<< stage is ineffective when the DI „Protect. Block." is active		-		-	\bullet	-
	„inactive"	U<< stage is effective irrespectively of the DI "Protect. Block" state						
tripbloc.	"active"	Off command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	Off command to the local CB is being issued						
U<<	$0.1 \ldots 2 \times$ Un	Pick-up value of the 2nd undervoltage stage related to the rated voltage		$0.001 \times$ Un		\bullet	\bullet	\bullet
+ U<<	$\begin{gathered} 30 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay		1 ms		\bullet	\bullet	\bullet

Residual Voltage Supervision: Ue> (1st stage)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	Ue> stage is put into function				-	\bullet	\bullet
	„inactive"	Ue> stage is put out of function						
ex Block	"active"	Ue> stage is ineffective when the DI „Protect. Block." is active		-		\bullet	\bullet	\bullet
	"inactive"	Ue> stage is effective irrespectively of the DI "Protect. Block" state						
Tripbloc.	"active"	Off command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	Off command to the local CB is being issued						
Ue>	0.01... $2 \times$ Un	Pick-up value of the residual voltage related to its rated value which is defined by the rated field data		0.001		\bullet	\bullet	\bullet
† Ue>	$\begin{gathered} \hline 30 \\ \ldots 300,000 \\ \mathrm{~ms} \\ \hline \end{gathered}$	Trip time delay		1 ms		-	\bullet	\bullet
Residual Voltage Supervision: Ue>> (2nd stage)						Available in CSP2-		
Function	"active"	Ue>> stage is put into function		-		\bullet	-	\bullet
	„inactive"	Ue>> stage is put out of function						
ex Block	"active"	Ue>> stage is ineffective when the DI "Protect. Block." is active		-		-	-	\bullet
	"inactive"	Ue>> stage is effective irrespectively of the DI "Protect. Block" state						
tripbloc.	"active"	Off command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	"inactive"	Off command to the local CB is being issued						
Ue>>	0.01... $2 \times$ Un	Pick-up value of the residual voltage related to its rated value which is defined by the rated field data		0.001		\bullet	\bullet	\bullet
† Ue>>	$\begin{gathered} \hline 30 \\ \ldots 300,000 \\ \mathrm{~ms} \\ \hline \end{gathered}$	Trip time delay		1 ms		-	\bullet	\bullet

Protection Power and Reverse Power (Common Parameters for all Steps)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Pn	$\begin{gathered} 1 . .50,000,00 \\ 0 \mathrm{~kW} \end{gathered}$	Rated Power		1 kW		-	\bullet	\bullet
Reverse Power Protection Pr> (1st stage)						-	\bullet	\bullet
Function	"active"	Pr> stage is put into function		-		-	\bullet	\bullet
	"inactive"	Pr> stage is put out of function						
ex block	"active"	Pr> stage is ineffective when the $\mathrm{DI}{ }_{\text {„Protect. }}$ Block." is active		-		-	\bullet	\bullet
	"inactive"	Pr> stage is effective irrespectively of the DI "Protect. Block" state						
tripbloc.	"active"	Off command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	Off command to the local CB is being issued						
Pr>	0.1...0. \times Pn	Pick-up value of the Pr> stage related to the rated power		$0.001 \times \mathrm{Pn}$		-	\bullet	\bullet
\dagger Pr>	$\begin{gathered} 100 \ldots 300,0 \\ 00 \mathrm{~ms} \end{gathered}$	Trip time delay of the $\mathrm{Pr}>$ stage		1 ms		-		
Reverse Power Protection Pr>> (2nd stage)						-	\bullet	\bullet
Function	"active"	$\operatorname{Pr} \gg$ stage is put into function		-		-	-	\bullet
	"inactive"	$\mathrm{Pr} \gg$ stage is put out of function						
ex block	"active"	Pr>> stage is ineffective when the DI „Protect. Block." is active		-		-	-	\bullet
	„inactive"	Pr>> stage is effective irrespectively of the DI "Protect. Block" state						
tripbloc.	"active"	Off command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive ${ }^{\text {a }}$	Off command to the local CB is being issued						
Pr>>	$\begin{gathered} 0.01 \ldots 0.5 \times \\ \mathrm{Pn} \\ \hline \end{gathered}$	Pick-up value of the Pr>> stage related to the rated power		$0.001 \times \mathrm{Pn}$		-	\bullet	\bullet
+ Pr>>	$\begin{gathered} \hline 100 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay of the Pr>> stage		1 ms		-	\bullet	\bullet
Power Protection P> (1st stage)						-	\bullet	\bullet
Function	"active"	$\mathrm{P}>$ stage is put into function		-		-	\bullet	\bullet
	„inactive"	$P>$ stage is put out of function						
ex Block	"active"	$P>$ stage is ineffective when the DI „Protect. Block." is active		-		-	-	\bullet
	„inactive"	$\mathrm{P}>$ stage is effective irrespectively of the DI "Protect. Block" state						
tripbloc.	"active"	Off command to the local CB is being blocked		-		-	\bullet	\bullet
	„inactive"	Off command to the local CB is being issued						
P>	0.01... $2 \times \mathrm{Pn}$	Pick-up value of the $\mathrm{P}>$ stage related to the rated power		$0.001 \times \mathrm{Pn}$		-	\bullet	\bullet
† P>	$\begin{gathered} 100 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay of the $\mathrm{P}>$ stage		1 ms		-		
Power Protection P>> (2nd stage)						-	\bullet	\bullet
Function	"active"	$\mathrm{P} \gg$ stage is put into function		-		-	-	\bullet
	„inactive"	$\mathrm{P} \gg$ stage is put out of function						
ex block	"active"	$\mathrm{P} \gg$ stage is ineffective when the DI „Protect. Block." is active		-		-	-	\bullet
	"inactive"	P>> stage is effective irrespectively of the Dl "Protect. Block" state						
tripbloc.	"active"	Off command to the local CB is being blocked		-		-	-	\bullet
	„inactive"	Off command to the local CB is being issued						
P>>	$0.01 \ldots 2 \times \mathrm{Pn}$	Pick-up value of the P>> stage related to the rated power		$0.001 \times \mathrm{Pn}$		-	\bullet	\bullet
t P>>	$\begin{gathered} \hline 100 \ldots 300,000 \\ \mathrm{~ms} \end{gathered}$	Trip time delay of the P>> stage		1 ms		-	\bullet	\bullet

Circuit Breaker Failure Protection (CBF)						Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	Tolerance	L	F3	F5
Function	"active"	CBF is put into function		-		\bullet	\bullet	\bullet
	„inactive"	CBF is put out of function						
ex block	"active"	CBF is ineffective when the DI „Protect. Block." is active		-		\bullet	-	\bullet
	"inactive"	CBF is effective irrespectively of the DI "Protect. Block" state						
tripbloc.	"active"	Second OFF command to the local CB is being blocked		-		\bullet	\bullet	\bullet
	„inactive"	Second Off command to the local CB is being issued						
† CBF	$\begin{gathered} 100 \ldots 10,00 \\ 0 \mathrm{~ms} \\ \hline \end{gathered}$	Time delay until alarm message „Alarm: CBF" is issued		1 ms		\bullet	\bullet	\bullet
I CBF	$0 \ldots 0.1 \times 1 n$	Threshold value for detection of the zero current when a CBF occurs		1		\bullet	\bullet	\bullet

Voltage Transformer Supervision (VTS)					Available in CSP2-		
Parameters	Setting/Setting Range	Description	Setting	Step Range	L	F3	F5
Function	"active"	VTS is put into function		-	\bullet	\bullet	\bullet
	„inactive"	VTS is put out of function					
ex block	"active"	VTS stage is ineffective when the DI „Protect. Block." is active		-	-	-	\bullet
	„inactive"	VTS stage is effective irrespectively of the DI "Protect. Block" state					
tripbloc.	"active"	Off command to the local CB is being blocked			-	\bullet	\bullet
	"inactive"	Off command to the local CB is being issued					
† FF	$\begin{gathered} 10 \ldots 20,000 \\ \mathrm{~ms} \\ \hline \end{gathered}$	Trip time delay		1 ms	\bullet	\bullet	\bullet

W woodward

Woodward Kempen GmbH

Krefelder Weg 47 • D - 47906 Kempen (Germany)
Postfach 100755 (P.O.Box) • D - 47884 Kempen (Germany)
Phone: +49 (0) 21521451
Internet
www.woodward.com

Sales

Phone: +49 (0) 2152145216 or 342 • Telefax: +49 (0) 2152145354 e-mail: salesEMEA_PGD@woodward.com

Service

Phone: +49 (0) 2152145614 • Telefax: +49 (0) 2152145455 e-mail: SupportEMEA_PGD@woodward.com

[^0]: Table 2.2: Choice of switchgear Control Direct/Indirect

[^1]: - current transformer with secondary nominal current of 1A
 without earth current measurement
 - with earthing of the current transformer secondary terminals S2

[^2]: - current transformer with secondary nominal current of 1 A
 - with earth current detection by ring core transformer
 with earthing of the current transformer secondary terminals SI

[^3]: current transformer with secondary nominal current of 5A

 - with earth current detection by Holmgreen circuit
 - with earthing of the current transformer secondary terminals S1

[^4]: - instantaneous display of the rotating voltage vectors for $t=0$ - wave form of the phase and line-to-line voltages

[^5]: Figure 2.36: Communication interfaces for the CSP2

[^6]: Table 5.4: Statistical Data

[^7]: Figure 5.30: Logic Plan "Coupling Operation"

[^8]: 4.2 Protection functions

[^9]: * it is possible to assign up to 16 output messages to one signal relay! If one of the assigned output messages is "active" the relay will pick-up!

