

PCM1x Packages (Pxx) Aggregatesteuerung Installation Softwareversion 4.3

Inhalt

1	Ger	nerelle Informationen	5
2	Wa	rnung vor elektrostatischer Entladung	6
3		näuse	
	3.1	Abmessungen	
	3.2	Schalttafel-Ausschnitt	8
	3.3	Seitenansicht	9
	3.4	Einbau	
4	Ans	chlusspläne - Übersicht	.11
	4.1	PCM1-GPO1 Package	. 12
	4.2	PCM1-MPO1 Package	13
5	Ans	chlussklemmen - Details	.14
	5.1	Spannungsversorgung	
	5.2	Messeingänge	
	5.2.	1 Spannungsmessung	
	5.2.		
	5.3	Digitaleingänge	
	5.3.		
	5.3.		
	5.3.		
	5.4	Analogeingänge (Packages PO1)	22
	5.5	Pick-Up	23
	5.6	Relaisausgänge	
	5.6.		
	5.6.		
	5.7	Analogausgänge (Package PO1)	
	5.8	Reglerausgänge	
	5.8.		
	5.9	Schnittstelle	
	5.9.		
	5.9.	g · · · · · · · · · · · · · · · · · · ·	
	5.9.		
	5.9.		
6		nnische Daten	.30
7		nauigkeiten	.33
	- CCI	IMVIMIXVIIVII *******************************	-

Abbildungen und Tabellen

Abbildungen

Abbildung 3.1: Gehauseabmessungen Abbildung 3.2: Schalttafelausschnitt	
	8
Abbildung 3.3: Seitenansicht - ohne Befestigungsklammer	9
Abbildung 3.4: Seitenansicht - mit Befestigungsklammer	
Abbildung 4.1: Klemmenplan PCM1-GP01 Package	12
Abbildung 4.2: Klemmenplan PCM1-MPO1 Package	13
Abbildung 5.1: Spannungsversorgung	
Abbildung 5.2: Messeingänge - Spannung - Generator	
Abbildung 5.3: Messeingänge - Spannung - Sammelschiene	
Abbildung 5.4: Messeingänge - Spannung - Netz	
Abbildung 5.5: Messeingänge - Strom - Generator	
Abbildung 5.6: Messeingänge - Strom - Netz - über Stromwandler	
Abbildung 5.7: Messeingänge - Strom - Netz - über Messwandler	
Abbildung 5.8: Digitaleingänge - Steuereingänge	
Abbildung 5.9: Digitaleingänge - Alarmeingänge - positive Logik	
Abbildung 5.10: Digitaleingänge - Alarmeingänge - negative Logik (Bsp.)	
Abbildung 5.11: Analogeingänge - Package PO1	
Abbildung 5.12: Pickup	
Abbildung 5.13: Pickup - Typischer Verlauf der Eingangsspannungsempfindlichkeit.	
Abbildung 5.14: Relaisausgänge - Steuerausgänge - LS-Ansteuerung	
Abbildung 5.15: Relaisausgänge - Relaismanager	24
Abbildung 5.16: Analogausgänge	
Abbildung 5.17: Dreipunktregler - externe RC-Schutzbeschaltung für den Relaismanager	
Abbildung 5.18: Analoge Reglerausgabe n/f/P - Anschluss und externe Brücke/Jumper	
Abbildung 5.19: Analoge Reglerausgabe U/Q - Anschluss und externe Brücke/Jumper	
Abbildung 5.20: Schnittstellen - Anschlussklemmen	
Abbildung 5.21: Schnittstellen - CAN-Bus-Abschirmung	29
Abbildung 5.22: Schnittstellen - Schleifen des CAN-Busses	29
Abbildung 5.22: Schnittstellen - Schleifen des CAN-Busses	29
Abbildung 5.22: Schnittstellen - Schleifen des CAN-Busses	29
	29
Tabellen	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	5
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	5
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	5 8 14
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabellen Tabelle 1.1: Bedienungsanleitungen - Übersicht	
Tabelle 1.1: Bedienungsanleitungen - Übersicht	

WARNUNG

Bitte lesen Sie die vorliegende Bedienungsanleitung sowie alle weiteren Publikationen, die zum Arbeiten mit diesem Produkt (insbesondere für die Installation, den Betrieb oder die Wartung) hinzugezogen werden müssen. Beachten Sie hierbei alle Sicherheitsvorschriften sowie Warnhinweise. Sollten Sie den Hinweisen nicht folgen, kann dies Personenschäden oder/und Schäden am Produkt hervorrufen.

Der Motor, die Turbine oder irgend ein anderer Typ von Antrieb sollte über einen unabhängigen Überdrehzahlschutz verfügen (Übertemperatur und Überdruck wo notwendig), welcher absolut unabhängig von dieser Steuerung arbeitet. Der Schutz soll vor Hochlauf oder Zerstörung des Motors, der Turbine oder des verwendeten Antriebes sowie den daraus resultierenden Personen- oder Produktschäden schützen, falls der/die mechanisch-hydraulische Regler, der/die elektronische/n Regler, der/die Aktuator/en, die Treibstoffversorgung, der Antriebsmechanismus, die Verbindungen oder die gesteuerte/n Einheit/en ausfallen.

ACHTUNG

Um Schäden an einem Steuerungsgerät zu verhindern, welches einen Alternator/Generator oder ein Batterieladegerät verwendet, stellen Sie bitte sicher, dass das Ladegerät vor dem Abklemmen ausgeschaltet ist.

Diese elektronische Steuerung enthält statisch empfindliche Bauteile. Bitte beachten Sie folgende Hinweise um Schäden an diesen Bauteilen zu verhindern.

- Entladen Sie Ihre Körperladungen bevor Sie diese Steuerung berühren (stellen Sie hierzu sicher, daß diese Steuerung ausgeschaltet ist, berühren Sie eine geerdete Oberfläche und halten Sie zu dieser Oberfläche Kontakt, so lange Sie an dieser Steuerung arbeiten).
- Vermeiden Sie Plastik, Vinyl und Styropor in der n\u00e4heren Umgebung der Leiterplatten (ausgenommen sind hiervon anti-statische Materialien).
- Berühren Sie keine Bauteile oder Kontakte auf der Leiterplatte mit der Hand oder mit leitfähigem Material.

Wichtige Definitionen

WARNUNG

Um die Zerstörung von elektronischen Komponenten durch unsachgemäße Handhabung zu verhindern, lesen und beachten Sie bitte die entsprechenden Hinweise.

ACHTUNG

Bei diesem Symbol werden wichtige Hinweise zur Errichtung, Montage und zum Anschließen des Gerätes gemacht. Bitte beim Anschluß des Gerätes unbedingt beachten.

HINWEIS

Verweise auf weiterführende Hinweise und Ergänzungen sowie Tabellen und Listen werden mit dem i-Symbol verdeutlicht. Diese finden sich meistens im Anhang wieder.

SEG behält sich das Recht vor, jeden beliebigen Teil dieser Publikation zu jedem Zeitpunkt zu verändern. Alle Information, die durch SEG bereitgestellt werden, wurden geprüft und sind korrekt. SEG übernimmt keinerlei Garantie.

© SEG Alle Rechte vorbehalten.

1 Generelle Informationen

Тур		Deutsch	Englisch
PCM1x Packages (Pxx)			
PCM1x Packages (Pxx) - Installation	diese Anleitung ⇒	GR37275	37275
PCM1x Packages (Pxx) - Konfiguration		GR 37276	37276
PCM1x Packages (Pxx) - Funktion/Bedienung		GR 37274	37274

Tabelle 1.1: Bedienungsanleitungen - Übersicht

Bestimmungsgemäßer Gebrauch Das Gerät darf nur für die in dieser Bedienungsanleitung beschriebenen Einsatzfälle betrieben werden. Der einwandfreie und sichere Betrieb des Produktes setzt sachgemäßen Transport, sachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Instandhaltung voraus.

HINWEIS

Diese Bedienungsanleitung ist für einen maximalen Ausbau des Gerätes entwickelt worden. Sollten Ein-/Ausgänge, Funktionen, Parametriermasken und andere Einzelheiten beschrieben sein, die mit der vorliegenden Geräteausführung nicht möglich sind, sind diese als gegenstandslos zu betrachten.

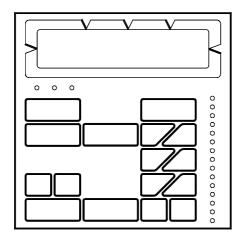
Diese Bedienungsanleitung ist zur Installation und Inbetriebnahme des Gerätes entwickelt worden. Die Vielzahl der Parameter kann nicht jede erdenkliche Variationsmöglichkeit erfassen und ist aus diesem Grund lediglich als Einstellhilfe gedacht. Bei einer Fehleingabe oder bei einem Funktionsverlust können die Voreinstellungen der beiliegenden Parameterliste entnommen werden.

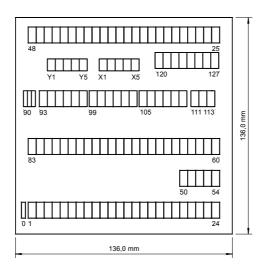
2 Warnung vor elektrostatischer Entladung

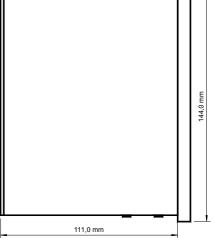
Das gesamte elektronische Equipment ist empfindlich gegenüber statischen Entladungen; einige Bauteile und Komponenten mehr als andere. Um diese Bauteile und Komponenten vor statischer Zerstörung zu schützen müssen Sie spezielle Vorkehrungen treffen um das Risiko zu minimieren und elektrostatische Aufladungen zu entladen.

Bitte befolgen Sie die beschriebenen Hinweise, sobald Sie mit diesem Gerät oder in dessen Nähe arbeiten:

- 1. Bevor Sie an diesem Gerät Wartungsarbeiten durchführen, entladen Sie bitte sämtliche elektrostatische Ladungen Ihres Körpers durch das Berühren eines geeigneten geerdeten Objekts aus Metall (Röhren, Schaltschränke, geerdete Einrichtungen, etc.).
- 2. Vermeiden Sie elektrostatische Ladungen in Ihrem Körper indem Sie auf synthetische Kleidung verzichten. Tragen Sie so viel Baumwolle oder baumwollähnliche Kleidung wie möglich, da diese Stoffe weniger elektrostatische Ladungen tragen können als synthetische Stoffe.
- 3. Vermeiden Sie Plastik, Vinyl und Styropor (wie z.B. Plastiktassen, Tassenhalter, Zigarettenschachteln, Zellophane-Umhüllungen, Vinylbücher oder -ordner oder Plastikaschenbecher) in der näheren Umgebung des Gerätes, den Modulen und Ihrer Arbeitsumgebung.


4. Mit dem Öffnen des Gerätes erlischt die Gewährleistung!


Entnehmen Sie keine Leiterplatten aus dem Gerätegehäuse, falls dies nicht unbedingt notwendig sein sollte. Sollten Sie dennoch Leiterplatten aus dem Gerätegehäuse entnehmen müssen, folgen Sie den genannten Hinweisen:


- Vergewissern Sie sich, dass das Gerät völlig spannungslos ist (alle Steckverbinder müssen abgezogen werden).
- Fassen Sie keine Bauteile auf der Leiterplatte an. Halten Sie die Leiterplatte an den Ecken.
- Berühren Sie keine Kontakte, Verbinder oder Komponenten mit leitfähigen Materialien oder Ihren Händen.
- Sollten Sie eine Leiterplatte tauschen müssen, belassen Sie die neue Leiterplatte in Ihrer anti-statischen Verpackung bis Sie die neue Leiterplatte installieren können. Sofort nach dem Entfernen der alten Leiterplatte stecken Sie diese in den anti-statischen Behälter.

3 Gehäuse

3.1 Abmessungen

2002-08-06 PCx Abmessungen SEG pcmxseg-3202-ab.skf

Abbildung 3.1: Gehäuseabmessungen

3.2 Schalttafel-Ausschnitt

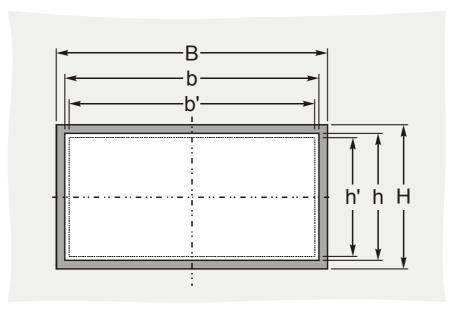


Abbildung 3.2: Schalttafelausschnitt

Maß	Bezeichnung			Toleranz
Н	Höhe	Gesamt	144 mm	_
h		Frontausschnitt	138 mm	+ 1,0 mm
h'		Gehäusegröße	136 mm	
В	Breite	Gesamt	144 mm	_
b		Frontausschnitt	138 mm	+ 1,0 mm
b'		Gehäusegröße	136 mm	
	Tiefe	Gesamt	118	-

Tabelle 3.1: Tafelausschnitt

3.3 Seitenansicht

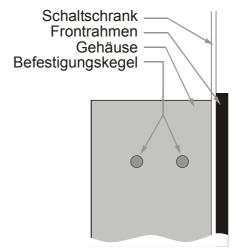
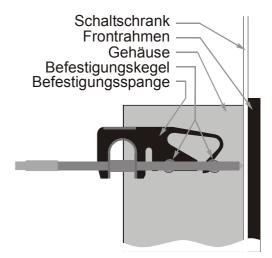
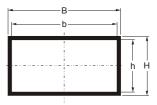


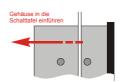
Abbildung 3.3: Seitenansicht - ohne Befestigungsklammer




Abbildung 3.4: Seitenansicht - mit Befestigungsklammer

3.4 Einbau

Zum Einbauen des Gerätes in eine Schaltschranktüre gehen Sie bitte wie folgt vor:

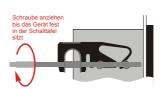

1. Schalttafel ausschneiden

Schneiden Sie die Schalttafel entsprechend der Abbildung 3.1 aus.

2. Gerät in den Ausschnitt einführen

Führen Sie das Gerät in die Schalttafel ein. Prüfen Sie dabei, ob das Gerät gut sitzt. Sollte der Schalttafelausschnitt nicht groß genug sein, vergrößern Sie diesen entsprechend.

3. Befestigungsspangen montieren


Klicken Sie die Befestigungsspangen auf die Befestigungskegel, wie im Bild rechts beschrieben.

4. Klammer festdrehen

Drehen Sie an den Befestigungsschrauben so lange, bis das Gehäuse gut gegen die Schalttafel gepresst wird. Der Anpressdruck sollte nicht zu hoch gewählt werden, damit der Frontrahmen nicht vom Gehäuse springt. Sollte der Gehäuserahmen vom Gehäuse springen, lösen Sie die Schrauben wieder, entfernen die Spangen und ziehen das Gehäuse ein Stück aus der Schalttafel heraus. Drücken Sie nun den Frontrahmen an das Gehäuse, bis dieser einrastet.

Hinweis

Die Verwendung des Dichtungskits erhöht den IP-Schutzgrad von IP42 auf IP54 von vorne. Die Montage wird in der Anleitung beschrieben, die dem Dichtungskit beiliegt.

4 Anschlusspläne - Übersicht

WARNUNG

Es ist ein Schalter in der Gebäudeinstallation vorzusehen, der sich in der Nähe des Gerätes befinden muss und durch den Benutzer leicht zugänglich ist. Außerdem muss er als Trennvorrichtung für das Gerät gekennzeichnet sein.

HINWEIS

Angeschlossene Induktivitäten (z. B. Spulen von Arbeitsstrom- oder Unterspannungsauslösern, von Hilfs- und Leistungsschützen) müssen mit einem geeigneten Entstörschutz beschaltet werden.

4.1 PCM1-G-..-P01 Package

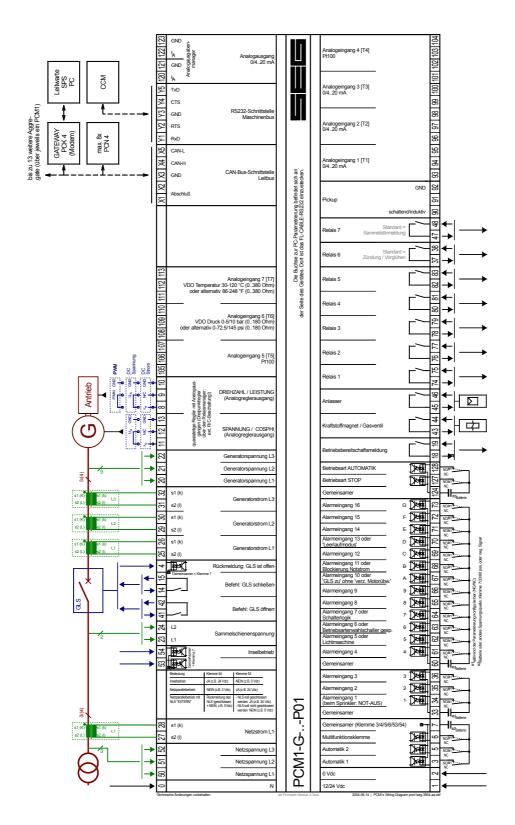


Abbildung 4.1: Klemmenplan PCM1-G-..-PO1 Package

4.2 PCM1-M-..-P01 Package

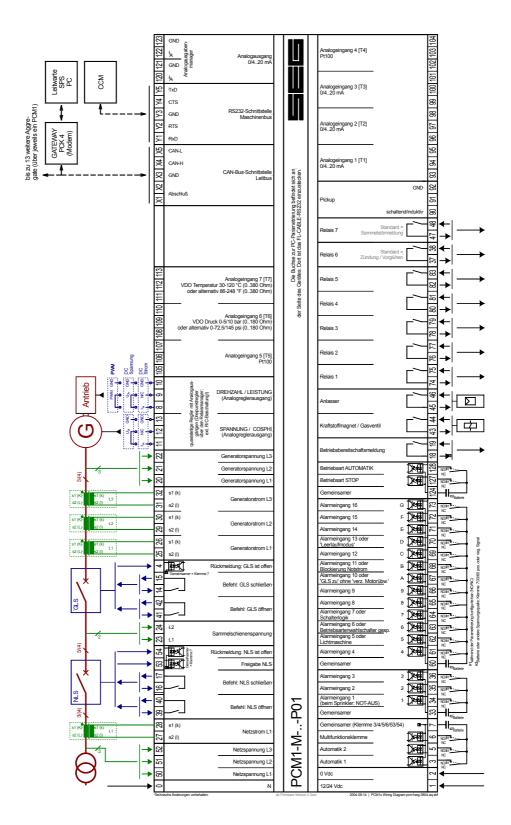


Abbildung 4.2: Klemmenplan PCM1-M-..-PO1 Package

5 Anschlussklemmen - Details

5.1 Spannungsversorgung

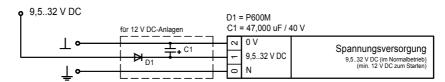


Abbildung 5.1: Spannungsversorgung

I	Klemme	Bezeichnung	A _{max}
	0	N-Klemme des Niederspannungssystems oder Sternpunkt des Spannungswandlers (Messbezugspunkt)	2,5 mm ²
I	1	9,532 Vdc, 15 W	2,5 mm ²
	2	O Vdc Bezugspotential	2,5 mm ²

Tabelle 5.1: Klemmenbelegung - Spannungsversorgung

HINWEIS

Bitte beachten Sie bei einem Einsatz in einer 12 Vdc-Anlage die oben beschriebene Beschaltung der Spannungsversorgung.

5.2 Messeingänge

5.2.1 Spannungsmessung

a.) Generator

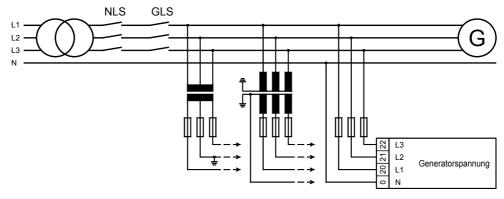


Abbildung 5.2: Messeingänge - Spannung - Generator

	Klemme	Messung	Bezeichnung	A_{max}
ĺ	20		Generatorspannung L1	2,5 mm ²
Ī	21	400 Vac o.	Generatorspannung L2	2,5 mm ²
Ī	22	/100 Vac	Generatorspannung L3	2,5 mm ²
Ī	0		Sternpunkt vom Drehstromsystem / Meßwandler	2,5 mm ²

Tabelle 5.2: Klemmenbelegung - Spannungsmessung Generator

b.) Sammelschiene/Remanenz

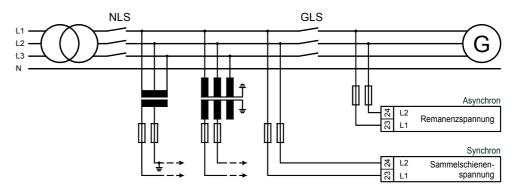


Abbildung 5.3: Messeingänge - Spannung - Sammelschiene

Klemme	Messung	Bezeichnung	A_{max}		
Synchrongeneratoren (Standard)					
23	400 Vac o.	Sammelschienenspannung L1	2,5 mm ²		
24	/100 Vac	Sammelschienenspannung L2	2,5 mm ²		
Asynchronger	neratoren (spez	zielle Option)			
23	direkt	Remanenzspannung L1	2,5 mm ²		
24	dileki	Remanenzspannung L2	2,5 mm ²		

Tabelle 5.3: Klemmenbelegung - Spannungsmessung Sammelschiene

c.) Netz

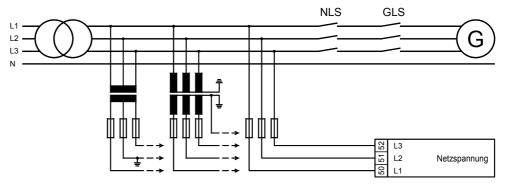


Abbildung 5.4: Messeingänge - Spannung - Netz

Klemme	Messung	Bezeichnung	A_{max}
50		Netzspannung L1	2,5 mm ²
51		Netzspannung L2	2,5 mm ²
52	/100 Vac	Netzspannung L3	2,5 mm ²
0		Sternpunkt vom Drehstromsystem / Meßwandler	2,5 mm ²

Tabelle 5.4: Klemmenbelegung - Spannungsmessung Netz

5.2.2 Strommessung

WARNUNG

Vor dem Lösen der sekundären Stromwandleranschlüsse bzw. der Anschlüsse des Stromwandlers am Gerät ist darauf zu achten, dass dieser kurzgeschlossen wird.

HINWEIS

Stromwandler sind sekundär generell einseitig zu erden.

a.) Generator

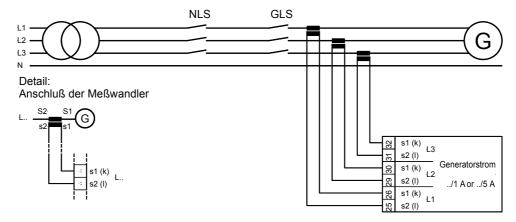


Abbildung 5.5: Messeingänge - Strom - Generator

Klemme	Messung	Bezeichnung	A_{max}
25		Generatorstrom L1, Wandlerklemme s2 (1)	2,5 mm ²
26	Wandler	Generatorstrom L1, Wandlerklemme s1 (k)	2,5 mm ²
29	/1 A	Generatorstrom L2, Wandlerklemme s2 (I)	2,5 mm ²
30	oder	Generatorstrom L2, Wandlerklemme s1 (k)	2,5 mm ²
31	/5 A	Generatorstrom L3, Wandlerklemme s2 (I)	2,5 mm ²
32		Generatorstrom L3, Wandlerklemme s1 (k)	2,5 mm ²

Tabelle 5.5: Klemmenbelegung - Strommessung Generator

b.) Netz (Netzstrommessung über Stromwandler)

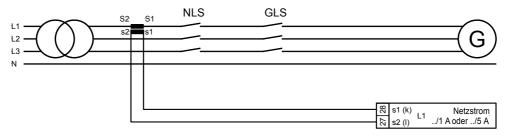


Abbildung 5.6: Messeingänge - Strom - Netz - über Stromwandler

Klemme	Messung	Bezeichnung	A_{max}
27	Wandler	Netzstrom L1, Wandlerklemme s2 (I)	2,5 mm ²
28	/1 A,/5 A	Netzstrom L1, Wandlerklemme s1 (k)	2,5 mm ²

Tabelle 5.6: Klemmenbelegung - Strommessung Netz

c.) Netz (Netzwirkleistungsistwertmessung über Meßwandler)

HINWEIS

Die frei parametrierbaren 20 mA-Eingänge können während der Parametrierung mit den folgenden Funktionen versehen werden:

- Netzwirkleistungs**ist**wertmessung
- Wirkleistungssollwert oder
- Alarmeingang.

Beachten Sie bitte die Angaben in der Konfigurationsanleitung.

HINWEIS

Sind mehrere Geräte zu einem Verbund zusammengeschlossen, darf das 20 mA Messsignal nicht durch alle Geräte geschleift werden. An jede Steuerung muss ein 0/4..20 mA-Trennverstärker an den Netzwirkleistungs**ist**wertmessung angeschlossen werden. Bitte beachten Sie bei der Auswahl des externen Messwertumformers, dass dieser bei der Übertragung von Liefer- und Bezugsleistungen negative Bereiche übertragen muss.

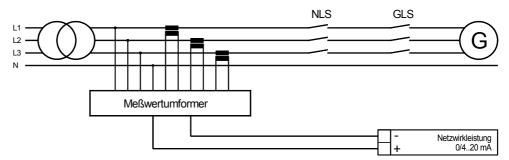


Abbildung 5.7: Messeingänge - Strom - Netz - über Messwandler

I	Klemme	Messung	Bezeichnung	A_{max}
	parametrier- bar	Analogsignal	Netzwirkleistungs ist wertmessung über ein 0/420 mA-Signal eines externen Messwertumformers (z. B. UMT 1)	1,5 mm ²

Tabelle 5.7: Klemmenbelegung - Strommessung Netz

5.3 Digitaleingänge

ACHTUNG

Bitte beachten Sie, dass die maximalen Spannungen, die Sie an die Digitaleingänge anlegen können wie folgt definiert sind. Höhere Spannungen als die angegebenen zerstören die Hardware!

Maximaler Eingangsbereich: +/-4..40 Vdc.

5.3.1 Steuereingänge

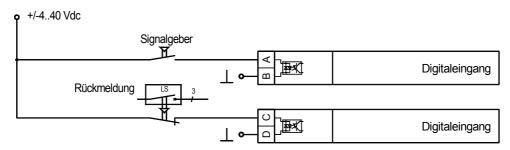


Abbildung 5.8: Digitaleingänge - Steuereingänge

Klemme	Zugehöriger Gemeinsa- mer	Bezeichnung (gemäß DIN 40 719 Teil 3, 5.8.3)	A _{max}
A	В	Schließer	
3		Automatik 1	2,5 mm ²
5		Automatik 2	2,5 mm ²
6	7	Multifunktion (wahlweise über Parametrierung): • Sprinklerbetrieb • Motorfreigabe • externe Quittierung • Motor Stop • Betriebsart STOP • Start ohne LS	2,5 mm ²
53		[PCM1-G] Freigabe extern [PCM1-M] Freigabe NLS	2,5 mm ²
С	D	Öffner	
4		Rückmeldung: GLS ist offen	2,5 mm ²
54	7	[PCM1-G] Zustand: Inselbetrieb [PCM1-M] Rückmeldung: NLS ist offen	2,5 mm ²

Tabelle 5.8: Digitaleingänge - Steuereingänge

5.3.2 Alarmeingänge

Die Digitaleingänge können in positiver oder negativer Logik angeschlossen werden:

- positive Logik Der Digitaleingang wird mit +/-4..40dc beschalten.
- negative Logik Der Digitaleingang wird mit GND beschalten.

a.) Positive Logik

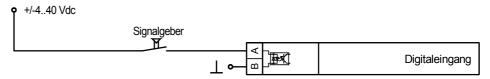


Abbildung 5.9: Digitaleingänge - Alarmeingänge - positive Logik

Klemme	Zugehöriger Gemeinsamer	Bezeichnung (gemäß DIN 40 719 Teil 3, 5.8.3)	A_{max}
Α	В	(genial)	
34		Digitaleingang [D01] - Alarmeingang - bei Sprinklerbetrieb: NOTAUS	2,5 mm ²
35	33	Digitaleingang [D02] - Alarmeingang	2,5 mm ²
36	-	Digitaleingang [D03] - Alarmeingang	2,5 mm ²
61		Digitaleingang [D04] - Alarmeingang - wenn der Dig.Eing. Klemme 34 nicht vorhanden ist bei Sprinklerbetrieb: NOTAUS	2,5 mm ²
62		Digitaleingang [D05] - Alarmeingang oder - Zünddrehzahl erreicht ("Lichtmaschine")	2,5 mm ²
63		Digitaleingang [D06] - Alarmeingang oder - Betriebsartenwahlschalter sperren	2,5 mm ²
64		Digitaleingang [D07] - Alarmeingang oder - Schalterlogik ändern	2,5 mm ²
65		Digitaleingang [D08] - Alarmeingang	2,5 mm ²
66		Digitaleingang [D09] - Alarmeingang	2,5 mm ²
67	60	Digitaleingang [D10] - Alarmeingang oder - 'GLS schließen' vor Ablauf der verz. Motorüberwachung	2,5 mm ²
68		Digitaleingang [D11] - Alarmeingang oder - Blockierung Notstrom (ab Version 4.3010	2,5 mm ²
69		Digitaleingang [D12] - Alarmeingang	2,5 mm ²
70		Digitaleingang [D13] - Alarmeingang oder - Leerlaufmodus	2,5 mm ²
71	1	Digitaleingang [D14] - Alarmeingang	2,5 mm ²
72	1	Digitaleingang [D15] - Alarmeingang	2,5 mm ²
73	1	Digitaleingang [D16] - Alarmeingang	2,5 mm ²

Tabelle 5.9: Digitaleingänge - Alarmeingänge Positive Logik

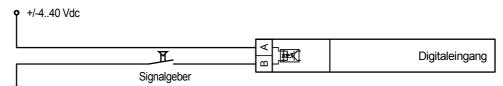


Abbildung 5.10: Digitaleingänge - Alarmeingänge - negative Logik (Bsp.)

Zugehöriger	Klemme	Bezeichnung	A _{max}
Gemeinsa-		(gemäß DIN 40 719 Teil 3, 5.8.3)	mux
mer			
Α	В		
		Digitaleingang [D01]	
	34	- Alarmeingang	2,5 mm ²
		- bei Sprinklerbetrieb: NOTAUS	
33	35	Digitaleingang [D02]	2.52
	33	- Alarmeingang	2,5 mm ²
	36	Digitaleingang [DO3]	2,5 mm ²
	30	- Alarmeingang	2,5 111111
		Digitaleingang [DO4]	
	61	- Alarmeingang	2,5 mm ²
	01	- wenn der Dig.Eing. Klemme 34 nicht vorhanden ist	2,3 111112
		bei Sprinklerbetrieb: NOTAUS	
Γ		Digitaleingang [D05]]
	62	- Alarmeingang oder	2,5 mm ²
		- Zünddrehzahl erreicht ("Lichtmaschine")	
		Digitaleingang [D06]	
	63	- Alarmeingang oder	2,5 mm ²
		- Betriebsartenwahlschalter sperren	
		Digitaleingang [D07]	
	64	- Alarmeingang oder	2,5 mm ²
		- Schalterlogik ändern	
	65	Digitaleingang [D08]	2,5 mm ²
		- Alarmeingang	2,0 11111
	66	Digitaleingang [D09]	2,5 mm ²
		- Alarmeingang	, -
60		Digitaleingang [D10]	
	67	- Alarmeingang oder	2,5 mm ²
		- 'GLS schließen' vor Ablauf der verz. Motorüberwa-]
<u> </u>		chung	
	6.0	Digitaleingang [D11]	25 2
	68	- Alarmeingang oder	2,5 mm ²
-		- Blockierung Notstrom (ab Version 4.3010)	
	69	Digitaleingang [D12] - Alarmeingang	2,5 mm ²
}		ŭ ŭ	
	70	Digitaleingang [D13]	252
	70	- Alarmeingang oder - Leerlaufmodus	2,5 mm ²
}		Digitaleingang [D14]	
	71	- Alarmeingang	2,5 mm ²
		Digitaleingang [D15]	
	72	- Alarmeingang	2,5 mm ²
 		Digitaleingang [D16]	
	73	- Alarmeingang	2,5 mm ²
		/ warmenigang	

Tabelle 5.10: Digitaleingänge - Alarmeingänge Negative Logik

5.3.3 Betriebsartenwahl über DI (Package P01, ab V4.3010)

Ab der Version 4.3010 besteht die Möglichkeit, die Betriebsart über die Klemmen 127 bzw. 128 zu wäh-len. Die Digitaleingänge können wie oben beschrieben in positiver oder negativer Logik beschalten werden.

Klemme		Bezeichnung (gemäß DIN 40 719 Teil 3, 5.8.3)	A_{max}
	mer		
127	124	Steuereingang [Kl. 127] - Betriebsart STOP	2,5 mm ²
128		Steuereingang [Kl. 128] - Betriebsart AUTOMATIK	2,5 mm ²

Tabelle 5.11: Digitaleingänge – Betriebsartenwahl

HINWEIS

Die Betriebsartenwahl über DI ist nur möglich, wenn der Digitaleingang 63 (Betriebsartenwahlschalter sperren) aktiv ist. Nähere Informationen dazu finden Sie in der Anleitung Konfiguration (GR37276A) un-ter 'Betriebsartenwahlschalter über Klemme 63 sperren'.

5.4 Analogeingänge (Packages P01)

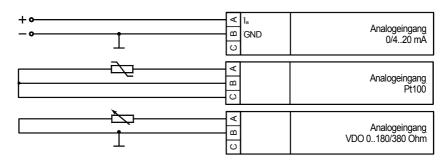


Abbildung 5.11: Analogeingänge - Package PO1

	Klemme		Bezeichnung	A_{max}
A	В	C	(gemäß DIN 40 719 Teil 3, 5.8.3)	max
93	94	95	Analogeingang 1 [T1] 0/420 mA, parametrierbare Funktion: - Alarmeingang oder - Sollwerteingang oder - Istwerteingang	1,5 mm ²
96	97	98	Analogeingang 2 [T2] 0/420 mA, parametrierbare Funktion: - Alarmeingang oder - Sollwerteingang oder - Istwerteingang	1,5 mm ²
99	100	101	Analogeingang 3 [T3] 0/420 mA, parametrierbare Funktion: - Alarmeingang oder - Sollwerteingang oder - Istwerteingang	1,5 mm ²
102	103	104	Analogeingang 4 [T4] Pt100, parametrierbare Funktion: - Alarmeingang oder - Istwerteingang	1,5 mm ²
105	106	107	Analogeingang 5 [T5] Pt100, parametrierbare Funktion: - Alarmeingang oder - Istwerteingang	1,5 mm ²
108	109	110	Analogeingang 6 [T6] VDO Druck 0-5/10 bar bzw. 0-72,5/145 psi (0180 Ohm), parametrierbare Funktion: - Alarmeingang oder - Istwerteingang	1,5 mm ²
111	112	113	Analogeingang 7 [T7] VDO Temp. 30-120°C bzw. 86-248°F (0380 Ohm), parametrierbare Funktion: - Alarmeingang oder - Istwerteingang	1,5 mm ²

Tabelle 5.12: Analogeingänge - Klemmenbelegung

5.5 Pick-Up

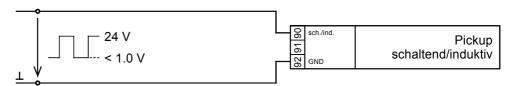


Abbildung 5.12: Pickup

Klemme	Bezeichnung		A_{max}
90		schaltend/induktiv	2,5 mm ²
91	Pickup		2,5 mm ²
92		GND	2,5 mm ²

Tabelle 5.13: Pickup - Klemmenbelegung

Spezifikation der Eingangsschaltung für induktive Drehzahlgeber Umgebungstemperatur: 25 $^{\circ}\mathrm{C}$

Signalform	sinusförmig
Minimale Eingangsspannung von 20010.000 Hz	< 0,5 V _{eff}
Minimale Eingangsspannung von 3005.000 Hz	< 0,3 V _{eff}

Tabelle 5.14: Pickup - minimale Eingangsspannung

Anmerkung:

Bei steigender Umgebungstemperatur steigt die minimale Eingangsspannung um ca. 0,3 V/°C an.

Abbildung 5.13: Pickup - Typischer Verlauf der Eingangsspannungsempfindlichkeit.

5.6 Relaisausgänge

5.6.1 Steuerausgänge

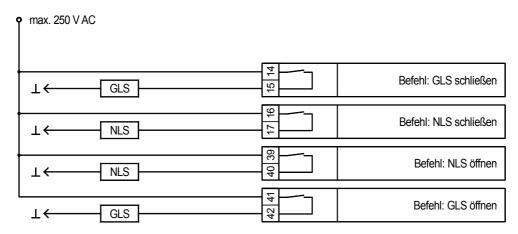


Abbildung 5.14: Relaisausgänge - Steuerausgänge - LS-Ansteuerung

Schließer	Bezeichnung	A _{max}
14/15	Befehl: GLS schließen	2,5 mm ²
16/17	[PCM1-M] Befehl: NLS schließen	2,5 mm ²
39/40	[PCM1-M] Befehl: NLS öffnen	2,5 mm ²
41/42	Befehl: GLS öffnen	2,5 mm ²

Tabelle 5.15: Relaisausgänge - Klemmenbelegung

5.6.2 Relaismanager

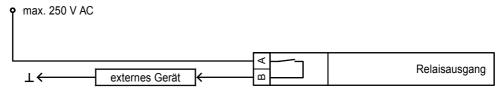


Abbildung 5.15: Relaisausgänge - Relaismanager

Schließer	Bezeichnung	A _{max}
18/19	Betriebsbereitschaft	2,5 mm ²
43/44	Betriebs-/Stoppmagnet	2,5 mm ²
45/46	Anlasser	2,5 mm ²
74/75	Relais [R1] (Relaismanager)	2,5 mm ²
76/77	Relais [R2] (Relaismanager)	2,5 mm ²
78/79	Relais [R3] (Relaismanager)	2,5 mm ²
80/81	Relais [R4] (Relaismanager)	2,5 mm ²
82/83	Relais [R5] (Relaismanager)	2,5 mm ²
37/38	Relais [R6] (Relaismanager; vorbelegt: Vorglühen/Zündung EIN)	2,5 mm ²
47/48	Relais [R7] (Relaismanager; vorbelegt: Sammelstörung Hupe)	2,5 mm ²

Tabelle 5.16: Relaismanager - Klemmenbelegung

5.7 Analogausgänge (Package P01)

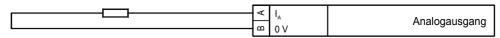


Abbildung 5.16: Analogausgänge

la	GND	Bezeichnung	A _{max}
A	В		
120	121	Analogausgang [A1] - 0/420 mA	1,5 mm ²
122	123	Analogausgang [A2] - 0/420 mA	1,5 mm ²

Tabelle 5.17: Analogausgänge - Klemmenbelegung

5.8 Reglerausgänge

5.8.1 Multifunktionale Reglerausgänge (Package P01)

Die multifunktionalen Reglerausgänge können über die Parametrierung sowie eine externe Brücke umgeschaltet werden.

a.) Ausführungen

- Dreipunktregler über den Relaismanager
 - Regelung von n/f/P: Parameter "F-/P-Regler Typ" = DREIPUNKT n+/f+/P+ = Relaismanager Parameter 114
 - n-/f-/P- = Relaismanager Parameter 115
 - Regelung von U/Q: Parameter "U-/Q-Regler Typ" = DREIPUNKT

U+/Q+ = Relaismanager Parameter 116

U-/Q- = Relaismanager Parameter 117

- Analoger Reglerausgang

- Regelung von n/f/P: Parameter "F-/P-Regler Typ" = ANALOG
 - Stromausgang (mA) = keine externe Brücke/Jumper notwendig
 - Spannungsausgang (V) = externe Brücke/Jumper zwischen 8/9
 - Schließen Sie den Regler an Klemmen 9/10 an
- Regelung von U/Q: Parameter "U-/Q-Regler Typ" = ANALOG
 - Stromausgang (mA) = keine externe Brücke/Jumper notwendig
 - Spannungsausgang (V) = externe Brücke/Jumper zwischen 11/12
 - Schließen Sie den Regler an Klemmen 12/13 an

- PWM-Reglerausgang

Regelung von n/f/P: Parameter "F-/P-Regler Typ" = PWM
 PWM-Ausgang = externe Brücke/Jumper zwischen 8/9
 Schließen Sie den Regler an Klemmen 9/10 an

b.) Anschluss der Regler

- Einstellung: DREIPUNKT (Dreipunktregler)

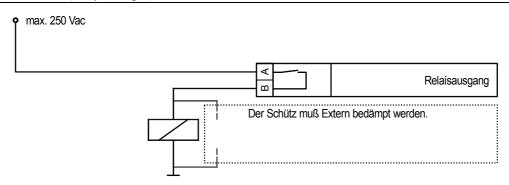


Abbildung 5.17: Dreipunktregler - externe RC-Schutzbeschaltung für den Relaismanager

Klemme		Bezeichnung	A _{max}
A B	höher	Drehzahl/Frequenz/Wirkleistung (RM: "+" = 114, "-" = 115) oder	2,5 mm ² 2,5 mm ²
C D	tiefer	Spannung/Blindleistung (RM: "+" = 116, "-" = 117)	2,5 mm ² 2,5 mm ²

Die Auswahl und Programmierung der Relais erfolgt über den Relaismanager (RM).

Tabelle 5.18: Reglerausgänge - Anschluss Dreipunkt

ACHTUNG

Sehen Sie zu Informationen über den maximal zu schaltenden Strom in den Technische Daten auf Seite 30 nach. Verwenden Sie gegebenenfalls ein Zwischenrelais. Höhere Schaltströme als angegeben zerstören Ihre Hardware!

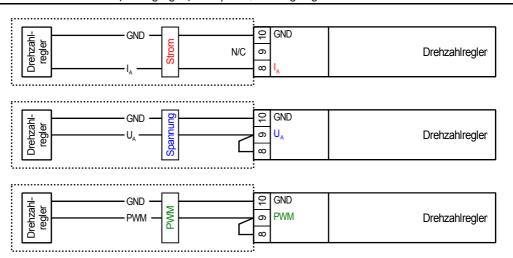


Abbildung 5.18: Analoge Reglerausgabe n/f/P - Anschluss und externe Brücke/Jumper

Тур	Klemme		Bezeichnung	A_{max}
	8	l _A		2,5 mm ²
Strom	9			2,5 mm ²
Siloili	10	GND		2,5 mm ²
U	8		Drehzahlregler / Frequenzregler / Wirkleistungsreg- ler	2,5 mm ²
Span-	9	U _A		2,5 mm ²
nung	10	GND		2,5 mm ²
	8			2,5 mm ²
PWM	9	PWM		2,5 mm ²
	10	GND		2,5 mm ²

Tabelle 5.19: Reglerausgänge - Anschluss Analog oder PWM

- Einstellung: ANALOG (Analogregler) - Spannungs-/Blindleistungsregler

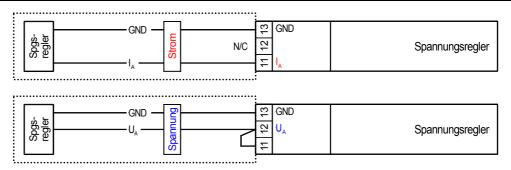


Abbildung 5.19: Analoge Reglerausgabe U/Q - Anschluss und externe Brücke/Jumper

Тур	Klemme		Bezeichnung	A_{max}
_	11	l _A		2,5 mm ²
Strom	12			2,5 mm ²
	13	GND	Spannungsregler / Blindleistungsregler	2,5 mm ²
U	11		Spannongsregier / binnalersiongsregier	2,5 mm ²
Span-	12	U _A		2,5 mm ²
nung	13	GND		2,5 mm ²

Tabelle 5.20: Reglerausgänge - Anschluss Analog

5.9 Schnittstelle

5.9.1 Schnittstellenbeschaltung

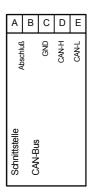


Abbildung 5.20: Schnittstellen - Anschlussklemmen

Anschluss		Beschreibung					
Ob die Anschlussklemmen mit X oder Y bezeichnet werden, hängt von der Konfiguration der							
Anlage ab. Bitte beachten Sie hierzu den Anschlussplan (A = X/Y, B = X/Y, etc.)							
alle							
A (X1)	B (X2)	C (X3)	D (X4)	E (X5)			
[1]	[1]	GND	CAN-H	CAN-L	CAN-Bus (Leitebene)		

^{[1]..}kann zum Schleifen des CAN-Busses oder/und für den Abschlusswiderstand benutzt werden.

Tabelle 5.21: Schnittstelle - Klemmenbelegung

5.9.2 CAN-Bus-Abschirmung

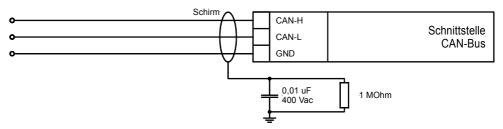


Abbildung 5.21: Schnittstellen - CAN-Bus-Abschirmung

5.9.3 CAN-Bus schleifen

HINWEIS

Bitte beachten Sie, dass der CAN-Bus mit einem Widerstand, der dem Wellenwiderstand des Kabels entspricht (z. B. 120 Ohm) abgeschlossen werden muss. Beim Maschinen-CAN-Bus wird der Abschlusswiderstand zwischen CAN-H und CAN-L angebracht.

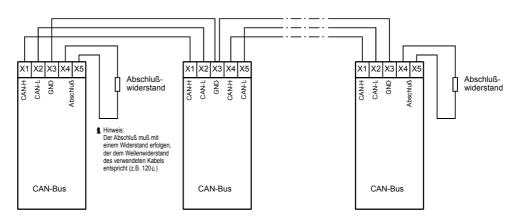


Abbildung 5.22: Schnittstellen - Schleifen des CAN-Busses

5.9.4 FL-CABLE-RS232 - Direktparametrierschnittstelle

HINWEIS

Zur Parametrierung über den Parametrierstecker (Direktparametrierung) benötigen Sie ein Direktparametrierkabel (Bestellcode "FL-CABLE-RS232"), das Programm FL-SOFT3 (wird mit dem Kabel geliefert) und die entsprechenden Konfigurationsdateien. Die Beschreibung des PC-Programmes FL-SOFT3 sowie dessen Einrichtung entnehmen Sie bitte der Online-Hilfe, die bei der Installation des Programmes ebenfalls installiert wird.

Steht der Parameter "Direct para." auf YES, wird die Kommunikation über die Schnittstelle mit den Klemmen X1..X5 deaktiviert.

Erkennt das Gerät, dass der Motor läuft (Zünddrehzahl überschritten), wird die Direktparametrierung abgeschaltet.

6 Technische Daten

Typenschild			
1	1 2 3 4 5 6 7 8 9	S/N S/N S/N P/N REV P/N+REV Typ Typ Details UL	Seriennummer (numerisch) Produktionsdatum (JJMM) Seriennummer (als Barcode) Produktnummer Produkt-Revisionsnummer P/N+REV (als Barcode) Bezeichnung Bezeichnung (als Barcode) Technische Daten UL-Zeichen
Messgrößen, Spannung ————			
- Messspannungen	Maximaly [4] 400 Yennwer	t (Un) wert (U _L max) Vac t (Un)	
- Einstellbereich(prim)			0.050 his 65.000 kVac
	[1]	↓ 50 bis 12 ↓ 50 bis 48	25 Vac Δ 50 bis 114 Vac 30 Vac Δ 50 bis 380 Vac 50/60 Hz (40,070,0 Hz) Klasse 1 [1] 0,21 MΩ [4] 0,7 MΩ
Messgrößen, Ströme ————			aalvanisch aetrennt
- Messströme	[/1] Ne	ennwert (In)	1 A 5 A
 Genauigkeit Linearer Messbereich Maximale Leistungsaufnahme p 	Generato Netz/Ero	r (Klemmen x Istrom (Klemn	$(-\infty)$
p	/		====

Umgebungsgrößen -

- Umgebungstemperatur

Lagerung.....-30..+80 °C / -22..176 °F

Betrieb-20..+70 °C / -4..158 °F

Digitaleingänge — galvanisch getrennt - Eingangsbereich (UCont, digital input)Nennspannung 12/24 Vdc (632 Vdc) - Eingangswiderstand	
Relaisausgänge — potentialfrei - Kontaktmaterial	1
AC	
- Induktive Belastung (PD) (U _{Cont, relay output}) AC	
Analogeingänge (Packages P01)frei skalierbar- Auflösung10 Bit- 0/420 mA-EingangDifferenzmessung, Bürde, ca. 150 Ohm- 05/10 Vdc-EingangDifferenzmessung, Eingangswiderstand, ca. 16,5 kOhm- Pt100-/Pt1000-Eingangfür Messwiderstände nach IEC 751[Pt100]2/3-Leiter-Messung, 0200 °C[Pt1000]2-Leiter-Messung, -30200 °C- 0180/380 Ω-EingangDifferenzmessung, Geberstrom ≤ 1,9 mA	
Analogausgänge (Packages P01)galvanisch getrennt- bei Istwertausgabefrei skalierbar- Isolationsspannung3.000 Vdc- Versionen0.5 Vdc, ±5 Vdc, 0.10 Vdc, 020 mA- Auflösung PWM8/12 Bit (je nach Ausführung)- 0/420 mA-AusgangMaximale Bürde 500 Ohm- 010 V/±5 V-AusgangInnenwiderstand ≤ 1 kOhm	
Pickup Eingangkapazitiv entkoppelt- Eingangsimpedanzmin. ca. 17 kΩ- Eingangsspannung875 mV eff	

Schnitts	telle
	Service-Schnittstelle Version RS232 Signalpegel 5 V
	Pegelwandlung und Trennung durch FL-CABLE-RS232
-	CAN-Bus-Schnittstellegalvanisch getrenntIsolationsspannung1.500 VdcVersionCAN-BusInterner LeitungsabschlußNicht vorhanden
	(Packages PO1) ————————————————————————————————————
-	Typ
Gehäu	e
- - - -	Typ
	Schutzart
-	Frontfolie

7 Genauigkeiten

Messgröße		Anzeige und Bereich	Genauigkeit	Bemerkung
Frequenz				
Generator	f _{11N} , f _{12N} , f _{13N}	15,085,0 Hz	1 %	
Sammelschiene	'lin' 'l2n' 'l3n f ₂	15,085,0 Hz	1 %	-
Netz	f_{l1N} , f_{l2N} , f_{l3N}	40,085,0 Hz	1 %	-
Spannung				
Generator	U _{lin} , U _{lin} , U _{lin}	0400 V	1 %	Wandlerverhältnis einstellbar
	$U_{112}, U_{123}, U_{131}$	0400 V	1 %	
Sammelschiene	U_{l12}	0400 V	1 %	Wandlerverhältnis einstellbar
Netz	U _{L1N} , U _{L2N} , U _{L3N}	0400 V	1 %	Wandlerverhältnis einstellbar
	$U_{_{L12}},\ U_{_{L23}},\ U_{_{L31}}$	0400 V	1 %	
Strom				
Generator	₁₁ , ₁₂ , ₁₃	09.999 A	1 %	-
Maximalwert	$ \frac{1}{1}, \frac{1}{12}, \frac{1}{13} $	09.999 A	1 %	Schleppzeiger
Netz	I _{II}	09.999 A	1 %	-
Wirkleistung				
Gesamtwirkleistungsistv	vert	-32,0032,0 MW	2 %	-
Blindleistung				
Istwert in L1, L2, L3		-32,0032,0 Mvar	2 %	-
cos				
Istwert cos L1		i0,001,00k0,00	2 %	-
Sonstiges				
Wirkarbeit		04.200 GWh	2 %	nicht PTB geeicht
Betriebsstunden		065.000 h		-
Wartungsaufruf		09.999 h		-
Startzähler		032.750		-
Batteriespannung		1030 V	1 %	-
Pickup Drehzahl		$f_N \pm 40 \%$		-
Analogeingänge (Po	ackages XP)			
0/420 mA		frei skalierbar		
Pt 100		0250 °C		nicht PTB geeicht
0180 Ohm		frei skalierbar		für VDO-Geber
0360 Ohm		frei skalierbar		für VDO-Geber

Referenzbedingungen: Die obigen Angaben gelten für folgende Referenzbedingungen.

Woodward SEG GmbH & Co. KG

Krefelder Weg 47 · D – 47906 Kempen (Germany)
Postfach 10 07 55 (P.O.Box) · D – 47884 Kempen (Germany)
Phone: +49 (0) 21 52 145 1

Internet

Homepage http://www.woodward-seg.com Documentation http://doc.seg-pp.com

Sales

Phone: +49 (0) 21 52 145 635 · Telefax: +49 (0) 21 52 145 354 e-mail: kemp.electronics@woodward.com

Service

Phone: +49 (0) 21 52 145 614 · Telefax: +49 (0) 21 52 145 455

e-mail: kemp.pd@woodward.com