. Woodward

MPU 1-F Multiple Measuring Converter 3.5

Contents

1 Introduction 3
1.1 Safery notes for users 3
1.2 Ratings 4
1.2.1 Power supply 4
1.2.2 Measuring inputs 4
1.2.3 Discrete inputs 5
1.2.4 Analog output 6
1.2.5 Impulse output 6
1.2.6 Interface 7
1.2.7 Wiring diagram 8
2 Functional description 9
2.1 Direction of power 9
3 Display and operating elements 10
3.1 Front panel 10
3.2 LEDs 11
3.3 Display 11
3.4 Push-buttons 12
4 Configuration screens (input of the parameters) 13
4.1 General 14
4.1.1 Password protection 14
4.1.2 General 14
4.1.3 Enable/disable service interface 15
4.2 Basic settings 15
4.2.1 Configuration of the voltage transformer 15
4.2.2 Configuration of the current transformer 16
4.2.3 Connection type 16
4.3 Energy counter 16
4.3.1 Impulse output of energy counter 16
4.3.2 Screen masks at the setting "+kWh" and "-kWh" 16
4.3.3 Display of the energy counters 17
4.3.4 Reset energy counters 17
4.4 Common masks 17
4.5 Analog output 18
4.6 Maximum Demand counter 19
4.7 Serial interface 20
4.7.1 Masks for protocol CAN bus 20
4.7.2 Masks for protocol MOD bus RTU slave 20
4.8 Change passwords 21
5 Commissioning 22
6 Appendix 23
6.1 Measuring system configuration 23
6.1.1 Configuration 1W 23
6.1.2 Configuration 1W3 24
6.1.3 Configuration 2W3 24
6.1.4 Configuration 2W4 24
6.2 Interface 25
6.3 Accuracy 26
6.4 Technical data 27
6.5 Dimensions 28
7 Parameter list MPU1 29
7.1 List with the setting ranges for the analog output. 30

1

NOTE

This operating manual is intended for unit models including all available options. In the event that inputs/outputs, functions, configuration masks and other details are described which are not existing, these descriptions do not apply.

ATTENTION !

This operating manual has been prepared for the installation and commissioning of the unit. On account of the large variations of parameter settings it is not possible to cover every possible combination. The specifications are only intended to provide useful information. In case of incorrect entries or a total loss of functions, the default settings can be taken from the enclosed list of parameters.

1.1 Safety notes for users

This document includes the necessary information for the proper use of the described product. It is intended to be read by qualified staff.

Danger Warning
The following notes are intended to prevent injuries as well as damage to the described product and to any machine connected to it. Safery notes and warnings to avoid any danger to the life and health of users or maintenance staff as well as to avoid any damage to property are identified in this document by means of the following symbols and terms. Within this framework the symbols and terms have the following meaning:

DANGER !!!

The DANGER symbol points out dangers. The description indicates how to handle and/or avoid such hazards. Any non-observance may cause fatal or serious injuries as well as considerable damage to property.

WARNING!

To avoid the destruction of electric components due to improper handling, please read and adhere to the relevant notes.

ATTENTION !

This symbol points to important notes concerning the setting up, installation and connection of the unit. When connecting the unit you must follow the instructions.

NOTE

References to other notes and supplements as well as tables and lists are identified by means of the "i" symbol. Most of the sections referred to are also included in the appendix.

Note on Proper Use The unit must only be used for those applications which are laid out and described in this operating manual. Proper and safe operation of the product assumes correct storage, transportation, setting up and installation as well as careful operation and maintenance.

1.2

Ratings

WARNING!

A circuit breaker which is easily accessible to the operator must be situated near to the device. This must also bear a sign marking it as an isolating switch for the device.

NOTE
Connected inductances (e.g. coils of operating current or undervoltage releasers, auxiliary or power contractors) must be wired with a suitable interference suppressor.

1.2.1 Power supply

Terminal	Description	Amax
1	+9.5.32 V DC, 10 W	$2.5 \mathrm{~mm}^{2}$
2	0 V reference potential	$2.5 \mathrm{~mm}^{2}$

1.2.2 Measuring inputs

O note

Please take the different measuring configurations at the description of the w-system beginning at page 23 in chapter "Measuring system configuration" into account.

a.) Voltage

b.) Current

Before disconnecting the secondary terminals of the transducer or the connection of the transducer at the unit make sure that the transducer is short-circuited.

O note

Current transducers are secondary and generally to be earthed single-sided.

Terminal	Measurement	Description	$\mathrm{A}_{\text {max }}$
12	Measuring transformer$\begin{gathered} . . / 1 \mathrm{~A} \\ \text { or } \\ . . / 5 \mathrm{~A} \end{gathered}$	Measuring current L1, transducer terminal S2 (I)	$2.5 \mathrm{~mm}^{2}$
13		Measuring current L1, transducer terminal S1 (k)	$2.5 \mathrm{~mm}^{2}$
14		Measuring current L2, transducer terminal S2 (I)	$2.5 \mathrm{~mm}^{2}$
15		Measuring current L2, transducer terminal S1 (k)	$2.5 \mathrm{~mm}^{2}$
16		Measuring current L3, transducer terminal S2 (I)	$2.5 \mathrm{~mm}^{2}$
17		Measuring current L3, transducer terminal S1 (k)	$2.5 \mathrm{~mm}^{2}$

1.2.3 Discrete inputs

Terminal	Accompanying Zero terminals	Name (according to DIN 40719 Part 3, 5.8.3)	$\mathrm{A}_{\text {max }}$
NO (normally open) contact			
3	7	Discrete input 1 - CB status This discrete input is used to display the status of the breaker on the front folio.	$2.5 \mathrm{~mm}^{2}$
4		Discrete input 2 - Test/Operation This discrete input is transmitted via the interface only.	$2.5 \mathrm{~mm}^{2}$
5		Discrete input 3 - Earthing switch on/off This discrete input is transmitted via the interface only.	$2.5 \mathrm{~mm}^{2}$
6		Discrete input 4 - free This discrete input is transmitted via the interface only.	$2.5 \mathrm{~mm}^{2}$

1.2.4 Analog output

Terminal	Terminal	Description	$\mathrm{A}_{\max }$
$-20 / 0 / 4 . .20 \mathrm{~mA}$			
I_{A}	0 V		
11	10	Analog output $(-20 / 0 / 4 . .20 \mathrm{~mA})$	$1.5 \mathrm{~mm}^{2}$

1.2.5 Impulse output

Terminal	Description	$\mathrm{A}_{\max }$
9	Pulse output (kWh-/kvarh-lmpus): ON: max. $30 \mathrm{~mA} ;$ OFF: 27 V	$1.5 \mathrm{~mm}^{2}$
8	Emitter (Open Collector)	

Example

1.2.6

Interface

Terminal					
X1	X2	X3	X4	X5	
		GND	B	A	RS485, MOD bus RTU slave
$[1]$	$[1]$	GND	CAN-H	CAN-L	CAN bus

[1]..can be used to loop the CAN bus or to connect the termination resistor

NOTE

Please note that the CAN bus must be terminated with an impedance which corresponds to the wave impedance of the cable (e.g. 120 Ohm).

NOTE

In order to configure via the service interface, you require a configuration cable, the PC program (supplied with the cable) and the corresponding configuration files. Please consult the online help installed when the PC program is installed for a description of the PC program and its setup.

2 Functional description

2.1

Direction of power
In the event that the current transformers of the unit are wired according to the wiring picture below, the following values are displayed:

- Positive real power
- Inductive power factor $\cos \varphi$ Positive re-active power

The source exports real power.
The source is overexcited and exports inductive re-active power

3 Display and operating elements

3.1 Front panel

The front panel consists of a plastic coating. All keys have been designed as touch-sensitive folio switches. The display is an LC Display, comprising 2×16 characters which are illuminated indirectly (red). The contrast of the display can be adjusted continuously by means of a rotary potentiometer on the left.

(1) "Uよ"	Display L-N voltage
(2) $" \cup \Delta$	Display L-L voltage
(3) 110	Display Line current
(4) "CB"	CB status

[^0]Ds
(2) "U/I SELECT" \qquad Push-buttons
(22) "Digif \uparrow " \qquad \qquad Currents
(B8)"STATUS / ALARM" \qquad Select menu
(8B2) "Select"
Confirm Selection
(14) "RESET"............................... Acknowledgment alarm
(144) "Cursor \rightarrow "......... Move cursor one position to the right

The measuring frequency is to be displayed always in the second row.

In order to ease the setting of the parameters the pushbuttons have an "AUTOROLL function" which allows the operator to switch to the next setting of the configuration screens, to the next digit or the next cursor position. The "AUTOROLL function" is only activated if the operator presses the corresponding keys for a longer period of time.

NOTE
After entering into the configuration mode the push-buttons will have another function. This function will be as follows. Their function is not printed on the push-button and is permitted to authorized personnel only.
(12)
.................PUSHBUTTON
"U / I SELECT..Digit \uparrow "
U / I SELECT..Digit \uparrow
color "NONE"
Automatic mode......... "U/I SELECT" By pressing this pushbutton the operator
can display voltages and currents in the first row.
Using this pushbutton the number on which
Configuration "Digit个"
the cursor is currently located is increased by one. The in-
crease is restricted by the admissible limits (see list of parame-
ters included in the appendix). In case the maximal number
which can be set is reached the number automatically returns
to the lowest admissible value.
(13) PUSHBUTTON

STATUS / ALARM..Select
color "NONE"

"STATUS / ALARM..Select"

Automatic mode"STATUS / ALARM" \begin{tabular}{l}
Select messages to be displayed.

ConfigurationSelect"

\quad

By pressing this pushbutton the user jumps
\end{tabular} to the next entry screen. If the original value was modified using the pushbuttons "Select" or "Cursor \rightarrow " the new entered value is saved by pressing "Digit" once. By pressing this pushbutton again the operator moves on to the next entry screen.

(14)

PUSHBUTTON
RESET..Cursor \rightarrow
color "NONE" "RESET..Cursor \rightarrow "
Automatic mode.......... "RESET" By pressing this pushbutton counters can
be re-setted.
Configuration "Cursor \rightarrow "
one position to the right. On this pushbutton the cursor is moved the extreme right the
cursor automatically moves to the digit on the left of the value
being entered.

4 Configuration screens (input of the parameters)

When the configuration mode is activated |simultaneous depression of the keys "U / I SELECT" and "RESET"; flashing of LEDs "Uん", "Uロ" and " 1 "), the configuration screens can be browsed by pressing the key "STATUS / ALARM". If the pushbutton "STATUS / ALARM" is depressed for a longer period of time the scroll function is activated and the screens can be browsed quickly. Simultaneously pressing the "STATUS / ALARM" and "RESET" buttons allows you to scroll through the last four configuration screens. Exception: The service routine and the break from the first to the last screen. If no entry, modification or any other action is carried out for 120 s , the unit returns unaided to the automatic mode.

NOTE
The rated measuring voltage (secondary) is selectable via the following configuration screens in two different ranges. The measuring voltage has to be applied either to the " 100 V AC " or to the " 400 V AC " inputs: The shortage of the different versions is as follows: reated 100 V version $=[1]$ and rated 400 V version $=[4]$. There is a difference as far as the configuration masks and the entry of the parameters of the two versions are concerned, and the setting limits are also different.

Adjust Settings:
 SELECT (STATUS)

Software version

$\mathbf{X . X X X X}$

Configuration mode
Push-button "Select"
By simultaneously pressing the pushbuttons "U / I SELECT" and "RESET" the configuration mode is activated. The subsequent screen masks can then be viewed and/or modified within the given limits. Please note that any depression of the pushbutton "STATUS / ALARM" causes the system to switch to the next configuration mask. In the event that "OFF" was selected in the parameter options, the parameters are not displayed and cannot be edited either.

Software version
Indication of the software version.

4.1 General

4.1.1 Password protection

The device is equipped with a three-step code and configuration hierarchy which allows to make different configuration masks visible for different users. The difference is made between:

Code level 0 User: External person
(CSO) This code level does not allow any access to the parameters. The configuration is blocked.

Code level 1 User: Client

(CS1) This code level authorizes the user to modify a few pre-selected parameters. The password cannot be changed at this level.

Code level 2 User: Commissioning engineer
(CS2) With this code level 2 the user obtains all access rights, thus having direct access to all parameters (viewing and changing) Moreover, at this level, the user is also authorized to establish passwords for levels 1 and 2.

NOTE

Once the code level is set, it will not be changed even after entering the configuration repeatedly. If entering an incorrect code number, the code level is set to CSO, thus locking the device for external persons (entering of the passwords on page 14). Two hours after the last operator action, the device automatically switches to the code level CSO. By entering the appropriate code number you go back to the corresponding level.

Enter code number XXXX

Enter code number
$0 . .9999$
When entering the configuration, a code number to identify the different users is inquired first. The number $X X X X$, which is indicated is a random number and is confirmed with the button "STATUS / ALARM". If the random number is confirmed with "STATUS / ALARM" without changing it, the code level of the device is not changed. In order to change the code level and to install new passwords for the users, there are two four-digit code numbers (0000..9999). For the user level "External person" no assignment is necessary, since normally, the user does not obtain the right to access the configuration level (protected by the codes).

4.1.2 General

> | SPRACHE/LANGUAGE |
| ---: |
| english |

Password

 Protection ONSelect language
English/German
The screens (configuration screens and display masks) can be displayed in either English or German.

Password protection enabling/disabling
ON/OFF
ON The user is requested to enter a password to enter configuration.
OFF...........No password is required.

4.1.3 Enable/disable service interface

NOTE
For the configuration via the service interface you need the configuration cable, the PC program (will be delivered with the cable) and the appropriate configuration files. For the description and setting up of the PC program please refer to the online help which will also be installed when installing the PC program.

WARNING!

If the following parameter "Direct parametr." is set to "YES", the communication via the interface is blocked with terminals X1..X5. If, after the configuration of the device, communication via the interface X1..X5 should be established again, (e. g. CAN bus connection or MOD bus connection via gateway), the subsequent parameter must be set to "NO"!

Direct parametr.

Configuration via the service interface
YES/NO
YES
YES Configuration via the service interface is possible, and an interface connection that may be existing via the terminals $\times 1 . . \times 5$, is deactivated. The function of existing analog outputs is restricted. The following requirements must be met for the configuration via the service interface:

- A connection between the device and the PC must be established with the configuration cable,
- the Baudrate of the PC program must be set to 9,600 Baud and
- the appropriate configuration file must be used (file name: *.asm).

NO Configuration via the service interface cannot be carried out, and an interface connection that may be existing via the terminals X1 ..X5, is enabled. All existing analog output do function without any restriction.

4.2 Basic settings

4.2.1 Configuration of the voltage transformer

Please apply the measuring voltage in dependence of the rated voltage to the following terminals:

Shortage	Rated voltage	Voltage range	Terminals L1/L2/L3[/N]
$[1]$	100 Vac	$50 . .160 \mathrm{Vac}$	$19 / 21 / 23[/ 18]$
$[4]$	400 Vac	$161 . .480 \mathrm{Vac}$	$20 / 22 / 24[/ 18]$

Volt.transformer

Voltage transformer secondary $50 . .480 \mathrm{~V}$

Here, the secondary voltage is set in V. This information is needed for the indication of the secondary voltages on the display. For measuring voltages of 400 V without a measurement transformer, "400v" must be set here.

Volt.transformer primary 000.00kV

Voltage transformer primary
$0.10 . .650 .00 \mathrm{kV}$
Here, the primary voltage is set in kV. This information is needed for the indication of the primary voltages on the display. For measuring voltages of 400 V without a measurement transformer, " $\mathbf{0 0 0}, \mathbf{4 0 k v}$ " must be set here.

4.2.2 Configuration of the current transformer

Current transformer
1..9,999/x A

In order to prevent some loss of precision, it is recommended to use a current transducer by which at least 60% of the transducer nominal current flow.
$\{X\} / 1 \mathrm{~A} .$. Secondary nominal current $=1$ A at primary nominal current $=\{X\}$;
$\{X\} / 5 \mathrm{~A} . .$. Secondary nominal current $=5 \mathrm{~A}$ at primary nominal current $=\{\mathrm{X}\} \mathrm{A}$;
$\{X\} \ldots \ldots$. e.g. taken from the main series $10,15,20,30,50$ or 75 A as well as decimal fractions and multiples of this series or the corresponding secondary series with $12.5,25,40$ or 60 A .

4.2.3 Connection type

- NOTE

The measuring transducer has to be connected in accordance with the connection type.

Connection type

Measuring system
By selecting one of the measuring variants, according to the w-System corresponding to the description on page 23 in chapter 6.1 "Measuring system configuration", different mains variants and mains configurations are predetermined.

4.3 Energy counter

4.3.1 Impulse output of energy counter

The impulse output of the energy counter is not calibrated.

Pulse output P.duration	0.00 s

Pulse output	
	$+\mathbf{k W h}$

> Length of impulse output of energy counters
$0.04 . .1 .00 \mathrm{~s}$
The length of the impulse signal of the energy counter output is set here.
Select the energy output
+kWh / -kWh / +kvarh / -kvarh
With this screen mask the type of the output of the energy impulses can be determined on the impulse output (terminal $8 / 9$). It is possible to select between the positive or negative active energy and the inductive or capacitive reactive energy. Only one type of the energy impulse can be output. According to this setting the following screen masks will be different.

4.3.2 Screen masks at the setting "+kWh" and "-kWh"

| Pulse/kWh
 Logic negative \mathbf{l} |
| :--- | ---: |

alternatively to kvarh

Active energy

Pulse/kWh 000.0

alternatively to kvarh

Counter impulse to measure the active energy
The output of the kWh impulse (positive as well as negative) can occur both negative (per kWh impulse the open collector output [terminal 8/9] is opened) and positive (per kWh impulse the open collector output [terminal 8/9] is closed).

Counter impulse of the active energy
0.1..150.0/kWh

The number of the impulses/kWh can be entered in this mask.

4.3.3 Display of the energy counters

Display kWh	$\mathbf{+ -}$
on?	YY

Activate kWh display
Y/N
The display of the kWh counter, which is not required (positive active energy $=+$; negative active energy $=-$) is here extracted. By means of the entry of " N " the concerned display does not appear in the second line of the display.

Display kvarh	$\mathbf{+ -}$
on?	YY

Activate kvarh display $\quad \mathrm{Y} / \mathrm{N}$
The display of the kvarh counter, which is not required linductive reactive energy $=+; \mathrm{ca}^{-}$ pacitive reactive energy $=-1$ is here extracted. By means of the entry of " N " the concerned display does not appear in the second line of the display.

Activate second kWh display
Y / N
The display of the second (differential) kWh counter, which is not required (positive active energy $=+\mid$ is here extracted. By means of the entry of " N " the concerned display does not appear in the second line of the display.

4.3.4 Reset energy counters

> | RESET kWh/kvarh |
| :--- |
| |
| ON |

RESET kWh/kvarh measurement
ON/OFF
If here the setting "ON" is selected, the energy counters can be re-setted to zero by pressing the "RESET" push-button.

NOTE

The re-setting of the energy counter is to be done as follows:

- Bring the $\mathrm{kWh} / \mathrm{kvarh}$ into the lowest display line.
- Press the push-button "RESET" at least 5 seconds.

After a successful re-setting the result is
"50.00 0000.0 kWh" / "50.00 0000.0kvah".

4.4 Common masks

Refresh time Display	$0.00 s$

Adjust time to refresh displayed values
$0.00 . .5 .00 \mathrm{~s}$
Setting this parameter changes the refresh time of the measuring values in the second display line.

| Measuring filter
 Voltage $0.00 s$ |
| :--- | :--- |

Measuring filter to display voltage OFF/0.04/0.08/0.16/0.32/0.64/1.28/2.56s
The measured voltage will be filtered using the time base configured here.

Measuring filter Current	$\mathbf{0 . 0 0}$

Measuring filter to display current	see above
The measured current will be filtered using the time base configured here.	

Measuring filter Power $0.00 s$${ }^{2}$	

Measuring filter to display power	see above
The measured power will be filtered using the time base configured here.	

| Measuring filter
 Frequency$\quad 0.00 \mathrm{~s}$ |
| :--- | :--- |

Measuring filter to display frequency	see above
The measured frequency will be filtered using the time base configured here.	

4.5 Analog output

It is possible to apply a certain measuring quantity to the analog output via the push-buttons (possible measuring quantities according to the table below). The output can be carried out either as $-20 . .+20 \mathrm{~mA}$, as $0 . .20 \mathrm{~mA}$ or as $4 . .20 \mathrm{~mA}$ value. The quantity which has to be transmitted can be scaled via an upper and a lower value. The scaling is carried out linear. The inputs can also be afflicted with signs.

Value	Lower and upper setting value
Vol 1	0.650 .00 kV
Vol 2	$0 . .650 .00 \mathrm{kV}$
Vol 3	0.650 .00 kV
$V \mathrm{~N}$-ph	0.650 .00 kV
V N -ph H	$0 . .650 .00 \mathrm{kV}$
V N-ph L	0.650 .00 kV
Vol 1-2	$0 . .650 .00 \mathrm{kV}$
Vol 2-3	0.650 .00 kV
Vol 3-1	0.650 .00 kV
$V \mathrm{Vh}$-ph	0..650.00 kV
$V \mathrm{Vph}$-ph H	$0 . .650 .00 \mathrm{kV}$
$V \mathrm{ph}$-ph L	0.650 .00 kV
Freq	30.00..80.00 Hz
Cur 1	0.. $9,9999 \mathrm{~A}$
Cur 2	0..9,999 A
Cur 3	0..9,999 A
Cur	0..9,999 A
Cur H	0..9,999 A
Cur L	0..9,999 A
Curl $+/-11^{11}$	-9,999..9,999 A
Curl $+/ /-12^{\prime \prime}$	-9,999.. $+9,9999$
Curl+/--13	-9,999
Curl+/-11	$-9,999 .+9,999$ A
Curl $+/-$ - $\mathrm{H}^{\text {II }}$	-9,999 $+9,999 \mathrm{~A}$
Curl $+/-\mathrm{LL}$	-9,999 . $+9,999$ A
Power	$-99.99 .+99.99 \mathrm{MW}$
Re. Pow.	-99.99...+99.99 Mvar
Ap. Pow.	0..150.00 MVA
cosphi	i0.01..1.00..c0.01

...The symbol of the current values is defined via the polarity of the active components.

Analog. output 1

$\{x x-x x\} m A$

Analog. output 1

Example for a $4 . .20 \mathrm{~mA}$ output

Analog. output

$4 \mathrm{~mA}=$
Example for a $4 . .20 \mathrm{~mA}$ output

Analog. output

 $20 \mathrm{~mA}=$Output range
$\{x x-x x\}-20 . .+20 / 0 . .20 / 4 . .20 \mathrm{~mA} /$ OFF
20 mA analog output (the upper value is always +20 mA)
$-20 . .20 \mathrm{~mA}$... By outputting the lower value -20 mA are output.
$0 . .20 \mathrm{~mA}$...... By outputting the lower value 0 mA are output.
$4 . .20 \mathrm{~mA}$...... By outputting the lower value 4 mA are output.
OFF..............If this parameter is set to "OFF", 0 mA is output, and the following screen masks are not displayed.

Output value of the analog output see list above

Select the value to be output (please take the table above into account).
Scaling of the lower output values see list above

Determination of the lower value.

Scaling of the upper output values
see list above
Determination of the upper value.

Maximum Demand
ON

Maximum Demand P.duration 00m

Maximum Demand counter
ON The Maximum Demand counter is enabled, and the following screen of this function is visible.
OFF..........The Maximum Demand counter is disabled, and the following screen of this function is not visible.

Maximum Demand counter cycle duration
$1 . .30$ minutes
The functionality "Maximum Demand counter" is based on the determination of the real power within a certain time period of the period duration T. The length of the period duration can be selected here by 1 .. 30 minutes freely. The real power is mostly determined during one period by 15 minutes. This measuring concept is implemented by the determination of the effect work within small time periods t of the length 10 seconds, so that also short real power points can be entered. The values of the individual time periods result from education of the arithmetic average value from 500 individual values, which are determined every 20 ms . So that with the following determination for "Maximum Demand" no synchronization problems occur, no fixed start and end point are given, but applied the procedure of the "Sliding Window". Here the period duration becomes e.g. in 90 (for 15 minutes Maximum Demand) or in 180 (for 30 minutes Maximum Demand) paragraph of the length 10 seconds partitions. Subsequently, the performance from the measured values is formed. According to applying further 10 seconds a new power rating is determined, after the oldest time period was replaced to the new 10 second value. By this rotary system the possibility exists of receiving every 10 seconds the current power rating of the last period. This maximum Demand value determined every 10 seconds at the display of the device is then output.

Real power value of the current display (for a period duration of x minutes):
$P=\frac{\sum_{t=1}^{X} W_{t}}{T}$

4.7

 Serial interface
ATTENTION!

The function of the interface is restricted during configuration via the service interface. The parameter "Direct para." must be set to "NO" to make the serial interface available (also see chapter 4.1.3 "Enable/disable service interface" on page 15).

4.7.1 Masks for protocol CAN bus

Device number CAN-Bus 00

Baudrate

Base-ID (send)
0000

Device number CAN bus $1 . .15$

The device number with CAN bus is entered here. The device number interferes with the calculation of the sending and control-ID.

Baudrate CAN bus
125 / 250 / 500 kBaud
Setting of the baudrate.
Base - ID send
$0 . .2,015$
The ID, from which the device is sending its operating data, is calculated from the base-IDsend plus the device number.

4.7.2 Masks for protocol MOD bus RTU slave

Device number
MOD-Bus 000

Baudrate

Parity none

Stopbits

Delay to send MOD-Bus 00.0 ms

Device number MOD-Bus RTU Slave
Device number for the MOD-Bus RTU Slave.

Baudrate MOD-Bus RTU Slave $1,200 / 2,400 / 4,800 / 9,600 / 19,200$ Baud
The baudrate of the MOD-Bus RTU Slave is defined here.

Parity MOD-Bus RTU Slave none / even / odd
The parity of the MOD-Bus RTU Slave is defined here.
Stoppbits MOD-Bus RTU Slave
one / two
The number of stoppbits of the MOD-Bus RTU Slave is defined here.

Waiting time sending after read request
0.2 .50 .0 ms

After the read request by the master waiting time for the response is at least as long as the pre-set time. This way, the time behaviour of the master can be adjusted appropriately, thus ensuring an adequate processing of the response.

Once the code level is set, it will not be changed even after entering the configuration repeatedly. If an incorrect code number has been entered, the code level is set to CSO, thus locking the device for external persons.
If for 2 hours uninterruptedly supply voltage is applied, the device autom. switches to code level 0 .

Define level 1

Code
0000

Define level 2
Code 0000

Code level 1 (client)
$0 . .9999$
This masks appears only from code level 2. After entering the digits into this mask, the code level for level 1 (client) is set. After entering the code, the client only has the access rights assigned to him.
This code level (CS) is preset to CS1 = 0 0 0 1
Code level 2 (commissioning engineer)
$0 . .9999$
This masks only appears from code level 2. After entering the digits into this mask, the code level for level 2 (technician) is set. After entering the code, the technician has the access rights with which he was assigned.
This code level (CS) is preset to $C S 2=0002$

$5 \quad$ Commissioning

DANGER !!!

When commissioning the unit, please observe the five safety rules that apply to the handling of live equipment. Make sure that you know how to provide first aid in currentrelated accidents and that you know where the firstaid kit and the nearest telephone are. Never touch any live components of the system or on the back of the system:

DANGERTOLIFE

WARNING!

The unit may only be commissioned by a qualified technician. Before commissioning the unit, make sure that The EMERGENCY OFF function works properly and does not depend on the unit.

ATTENTION !

1. Before commissioning the unit, check that all measuring voltages are correctly connected with respect to the phases. The rotating field must be measured. Any lack or incorrect connection of measuring voltages or other signals may lead to incorrect functions and damage the unit as well as machines and components connected to the unit!

Course of action 2. Following a check whether all measuring voltages have been connected in the correct phase relation, the power supply must be applied.
3. Enter all required parameters using either the push-buttons or the configuration software.

6 Appendix

6.1 Measuring system configuration

ATTENTION !

The grounding of the N-wire of the voltage measurement must not be effected at MPU1-F, but must be carried out at a central place (PEN-System).

6.1.1 Configuration IW

Single-phase system •Voltage measurement in phase Ll $\left(P=U_{L I N} \times I_{L 1} \times \cos \varphi\right)$

- Current measurement in phase L1
- Grounding of the transformer terminals pointing into the direction of the outgoing.

a.) Configuration IW4

Three-phase system

- 4-wire system $\left(P=\sqrt{ } 3 \times U_{L 12} \times I_{L 1} \times \cos \varphi\right)$
- Symmerrical load
- Voltage measurement in phase L1, L2 and L3
- Current measurement in phase L1
- Grounding of the transformer terminals pointing into the direction of the outgoing

6.1.2 Configuration IW3

Three-phase system

- 3 -wire system
- Symmetrical load
- Voltage measurement in phase L1, L2 and L3
- Current measurement in phase L1
- Grounding of the transformer terminals into the direction of the outgoing.

6.1.3 Configuration 2W3

Three-phase system

- 3-wire system
- Asymmetrical load
- Voltage measurement in phase L1, L2 and L3
- Current measurement in phase L1 and L3 (Aron connection)
- Grounding of the neutral point (fan-in of both transducer terminals)

6.1.4 Configuration 2W4

Three-phase system • 4-wire system

- Asymmetrical load
- Voltage measurement in phase L1, L2 and L3
- Current measurement in phase L1, L2 and L3
- Grounding of the transformer terminals into the direction of the outgoing.

1	Mux 0 Word 1	Kennung	"1400"	Telegram type
2	Mux 0 Word 2	Gen.voltage L1 L2	$\left(10^{\text {UGNEPPO}}\right) \mathrm{V}$	The actual value has to be calculated using the voltage exponent UGNEXPO with the value transmitted via the interface.
3	Mux 0 Word 3	Gen.voltage L2 L3	$\left(10^{\text {UGNEXPO }}\right) \mathrm{V}$	
4	Mux 1 Word 1	Gen.voltage L3 L1	$\left(10^{\text {UGNEXPO }}\right.$) V	
5	Mux 1 Word 2	Gen.voltage L1 N	$\left.110^{\text {UGNEXPO }}\right) \mathrm{V}$	
6	Mux 1 Word 3	Gen.voltage L2 N	$\left.110^{\text {UGNEXPO }}\right) \mathrm{V}$	
7	Mux 2 Word 1	Gen.voltage L3 N	$\left(10^{\text {UGNEPPO }}\right) \mathrm{V}$	
8	Mux 2 Word 2	Gen.frequency L1/L2	$\frac{1}{100} \mathrm{~Hz}$	
9	Mux 2 Word 3	Gen.current L1	$\left(10^{\text {IGNEXPO }}\right) \mathrm{A}$	The actual value has to be calculated using the current exponent IGNEXPO with the value transmitted via the interface.
10	Mux 3 Word 1	Gen.current L2	$\left.110^{\text {IGNEXPO }}\right) \mathrm{A}$	
11	Mux 3 Word 2	Gen.current L3	$\left(10^{\text {IGNEXPO }}\right) \mathrm{A}$	
12	Mux 3 Word 3	Gen. $\cos \varphi$	$\frac{1}{100}$	Real value Transmitted value $\cos \varphi=-0,98 k$ Hex FF9E $\cos \varphi=-0,99 k$ Hex FF9D $\cos \varphi=1,00$ Hex 0064 $\cos \varphi=+0,99 i$ Hex 0063 $\cos \varphi=+0,98 i$ Hex 0062
13	Mux 4 Word 1	Gen.real power	$\left(10^{\text {PGNEPPO}}\right) \mathrm{W}$	The actual value has to be calculated using the power exponent PGNEXPO with the value transmitted via the interface.
14	Mux 4 Word 2	Gen.reactive power	$\left(10^{\text {PGNEXPO }}\right)_{\text {var }}$	The actual value has to be calculated using the power exponent PGNEXPO with the value transmitted via the interface.
15	Mux 4 Word 3	Internal	Internal	Internal
16	Mux 5 Word 1	Internal	Internal	Internal
17	Mux 5 Word 2	Exponents	1	LowByte: UGNEXPO (voltage) HighByte: IGNEXPO (current)
18	Mux 5 Word 3	Exponents	1	LowByte: PGNEXPO (power) HighByte: internal
19	Mux 6 Word 1	Gen.real energy HighWord	$2^{16} \mathrm{kWh}$	Positive real energy
20	Mux 6 Word 2	Gen.real energy LowWord	kWh	Positive real energy
21	Mux 6 Word 3	Discrete inputs		Bit 0-3: DI 1 term. 3 Bit 4-7: DI 2 term. 4 $H^{\prime} \mathrm{O}=$ DI not active Bit 8-11: DI 3 term. 5 $H^{\prime} \mathrm{F}=\mathrm{Dl}$ active Bit 12-15: $\mathbf{\text { DI } 4 \text { term. } 6}$
22	Mux 7 Word 1	Internal	Internal	
23	Mux 7 Word 2	Internal	Internal	
24	Mux 7 Word 3	Internal	Internal	
25	Mux 8 Word 1	Internal	Internal	PMD (MaximumDemand)
26	Mux 8 Word 2	Internal	Internal	Internal
27	Mux 8 Word 3	Internal	Internal	Internal
28	Mux 9 Word 1	Gen.real energy HighWord	$2^{16} \mathrm{kWh}$	Negative real energy
29	Mux 9 Word 2	Gen.real energy LowWord	kWh	Negative real energy
30	Mux 9 Word 3	Gen.reactive energy HighWord	2^{16} kvarh	Positive reactive energy (inductive)
31	Mux 10 Word 1	Gen.reactive energy LowWord	kvarh	Positive reactive energy (inductive)
32	Mux 10 Word 2	Gen.reactive energy HighWord	2^{16} kvarh	Negative reactive energy (capacitive)
33	Mux 10 Word 3	Gen.reactive energy LowWord	kvarh	Negative reactive energy (capacitive)

Accuracy

Measuring quantity	Display	Accuracy ${ }^{\prime}$	Range	Remark
Frequency				
f_{11}	$30.0 . .80 .0 \mathrm{~Hz}$	$\pm 0.05 \mathrm{~Hz}$	$30.0 . .80 .0 \mathrm{~Hz}$	
Voltage				
$\mathrm{U}_{11}, \mathrm{U}_{12}, \mathrm{U}_{13}, \mathrm{U}_{112}, \mathrm{U}_{123}, \mathrm{U}_{131}$	$0 . .650 .00 \mathrm{kV}$	0.5 \%	$0 . .650 .00 \mathrm{kV}$	Adjustable transducer relation
Current				
$\mathrm{I}_{11}, \mathrm{I}_{12}, \mathrm{I}_{13}$	0..9,999 A	0.5 \%	0..9,999 A	-
Max. value I_{14}, I_{12}, I_{13}	0..9,999 A	0.5 \%	0..9,999 A	Slave pointer
Real power				
Total real power value	-99.99..+99.99 MW	1 \%	-99.99..+99.99 MW	-
Re-active power				
Actual value in L1, L2, L3	-99.99..99.99 Mvar	1 \%	-99.99..99.99 Mvar	-
Apparent power				
Actual value in L1, L2, L3	0..150.00 MVA	1 \%	0..150.00 MVA	
Power factor $\cos \varphi$				
$\cos \varphi_{11}$	i0.01..1.00..c0.01	1.5°	i0.01..1.00..c0.01	-
Miscellaneous				
Active energy	0..4,200 GWh	2 \%	0..4,200 GWh	Not calibrated
Active energy (impulse)		-		Impulse output
Re-active energy	0..4,200 Gvarh	2\%	0..4,200 Gvarh	Not calibrated
Re-active energy (impulse)		-		Impulse output

Reference conditions for the accuracy
${ }^{1}$ The details are valid for the following reference conditions:

- Input voltage = sinusoidal rated voltage
- Input current = sinusoidal rated current
- Frequency = rated frequency $\pm 2 \%$
- Power supply = rated voltage $\pm 2 \%$
- Power factor = 1
- Ambient temperature $23^{\circ} \mathrm{C} \pm 2 \mathrm{~K}$
- Warming-up period $=20$ minutes.

Measuring values	
Environmental variables	
Measuring inputs	- Voltage .. resistances 0.1 \% - Continuous input voltage. \qquad $2.0 \times U_{N}$ - Linear measuring range up to. $1.3 \times U_{N}$ - Input resistance \qquad $0.21 \mathrm{M} \Omega$ - Maximum power consumption per path
	- Current metallically separated - Maximum continuous current \qquad $1.5 \times I_{\mathrm{N}}$ - Power consumption. .$<0.15 \mathrm{VA}$ - Rated short time current (1 s)[..1/A] $50.0 \times I_{N^{\prime}}[. . / 5 \mathrm{~A}] 10.0 \times \mathrm{I}_{\mathrm{N}}$
Digital inputs	- Metallically separated - Input range ($U_{\text {Cort, digitid inuul }}$ nom. $24 \mathrm{~V}_{\mathrm{DC}}\left(4 . .40 \mathrm{~V}_{\mathrm{D}}\right)$ - Input resistance approx. $6.8 \mathrm{k} \Omega$
Analog outputs	
Interface	- Metallically separated insulation voltage $3,000 V_{D C}$ - Version \qquad variable
Housing	- Type APRANORM DIN 43700 - Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) $144 \times 144 \times 118 \mathrm{~mm}$ - Front cutout (W×H) - Connection \qquad $1.5 \mathrm{~mm}^{2}$ or $2.5 \mathrm{~mm}^{2}$ screw terminals depending on the plug connector use $60 / 75^{\circ} \mathrm{C}$ copper wire only; use class 1 wire only or equivalent
	- Weight... depending on model, approx. 500 g
Protection	- Disturbance test (CE) \qquad tested according to valid EN codes of practice - Degree of protection (for the build-in housing). .IP 21 , front IP 54 - Front foil insulating surface

Housing Type APRANORM DIN 43700
Dimensions $\quad 144 \times 144 \times 118 \mathrm{~mm}$
Front cutout
Connection
Weight
$138 \times 136 \mathrm{~mm}$
screw terminals depending on plug connector $1.5 \mathrm{~mm}^{2}$ or $2.5 \mathrm{~mm}^{2}$ depending on the model, approx. 500 g

2002-07-03 MPU 1-F Abmessungen Woodward mpu1fseg-2702-ab.skf

$7 \quad$ Parameter list MPU1

MPUI-F - Multiple Measuring Converter
Model
Project
Date
Unit number
Date

	Line 1	Parameter - Text -	Line 2	Setting range $1 / 5 \mathrm{~A}$	Standard- setting	Customer's settings

SPRACHE/LANGUAGE	German/English	English	$\square g \square e$	$\square \mathrm{g} \square \mathrm{e}$
Software version	-	Vx.xxx		
Password Protection	ON/OFF	ON	\square on \square off	\square on \square off
Direct parametr.	YES/NO	NO	$\square Y \square N$	$\square Y \square N$
BASIC SETTINGS				
Volt. transformer secondary	$50 . .480 \mathrm{~V}$	400 V		
Volt. transformer primary	0.10 .650 .00 kV	0.400 kV		
Current transf.	$1 . .9,999 / \times \mathrm{A}$	1,000/xA		
Connection type	1W/1W4/1W3 2W3/2W4	2W4		
ENERGY COUNTER				
Pulse output P.duration	0.04 .1 .00 s	0.10 s		
Pulse output	$+\mathrm{kWh} /-\mathrm{kWh}$ +kvarh/-kvarh	+kWh		
Pulse/kWh	positive/negative	Negative	$\square p \square n$	口p口n
Active energy Pulse/kWh	0.10 .150 .00	1.00		
Display $\mathrm{kWh}+$ - on? YY	Y / N	YY		
	Y / N	Y		
RESET kWh/kvarh	ON/OFF	ON	\square on O off	पon a off
Display $2 \mathrm{kWh}+\mathrm{m}$ on? Y	Y / N	Y	$\square Y \square N$	$\square Y \square N$

COMMON MASKS

	MAXIMUM DEMAND					
	Maximum Demand		YES/NO	YES	पY पN	पY \quad N
	Maximum Demand	P.duration	$1 . .30 \mathrm{~min}$	15 min		
	ANALOG OUTPUT CONFIGURATION					
	Analog. output		$\begin{gathered} \hline \hline \text { OFF } \\ 0 . .20 \mathrm{~mA} \\ 4 . .20 \mathrm{~mA} \\ -20 . .+20 \mathrm{~mA} \end{gathered}$	OFF	ㅁ OFF ㅁ $0 . .20$ $\square 4.20$ $\square . ~$	\square OFF $\square 0 . .20$ $\square 4 . .20$ $\square-/+20$
	Analog output		See list at the end of the list of parameters			
	Analog output $0 / 4 /-20 \mathrm{~mA}$					
	Analog output 20 mA					
MOD	INTERFACE CONFIGURATION					
	Device number	MOD-Bus	0.255	1		
	Baudrate		$\begin{gathered} 1,200 / 2,400 / 4,800 \\ / 9,600 / 19,200 \\ \text { Baud } \end{gathered}$	9,600 Baud		
..	Parity		none/even/odd	none		
..	Stopbits		one/two	one		
MOD	Delay to send MOD-Bus		0.2 .50 .0 ms	0.2 ms		
$\begin{array}{r} \text { CAN } \\ \text {. } \\ \text { CAN } \\ \hline \end{array}$	Device number CAN-Bus		$1 . .15$	1		
	Baudrate		125/250/500 kBaud	125 kBaud		
	Base-ID (send)		0..2,015	800		
	BASIC SETTINGS					
	Define level 1	code	0000...9999	0001		
	Define level 2	code	0000.. 9999	0002		

Value	Lower and upper setting value
Vol 1	0.650 .00 kV
Vol 2	0.650 .00 kV
Vol 3	$0 . .650 .00 \mathrm{kV}$
$V \mathrm{~N}$-ph	0.650 .00 kV
$V \mathrm{~N}$-ph H	0.650 .00 kV
$V \mathrm{~N}$-ph L	0.650 .00 kV
Vol 1-2	0.650 .00 kV
Vol 2-3	0.650 .00 kV
Vol 3-1	$0 . .650 .00 \mathrm{kV}$
V ph-ph	0.650 .00 kV
$V \mathrm{ph}$-ph H	0.650 .00 kV
$V \mathrm{ph}$-ph L	0.650 .00 kV
Freq	30.00 .80 .00 Hz
Cur 1	$0 . .9 .999 \mathrm{~A}$
Cur 2	0.9 .999 A
Cur 3	$0 . .9 .999$ A
Cur	0.9 .9999
Cur H	$0 . .9 .999$ A
Cur L	0.9 .999 A
Cur $+1 /-11^{11}$	$-9.999 . .+9.999 \mathrm{~A}$
Cur + /-121	$-9.999 . .+9.999 \mathrm{~A}$
Curl+/-33	$-9.999 .+9.999$ A
$\mathrm{Cur}(+/-)^{1}$	$-9.999 . .+9.999 \mathrm{~A}$
Curl+/-) $\mathrm{H}^{\prime \prime}$	$-9.999 . .+9.999 \mathrm{~A}$
Cur(+/-lL'	$-9.999 . .+9.999 \mathrm{~A}$
Power	-99.99..+99.99 MW
Re. Pow.	-99.99..+99.99 Mvar
Ap. Pow.	0.150 .00 MVA
cosphi	10.01..1.00..c0.01

.The symbol of the current values is defined via the polarity of the active components.

W woodward

Woodward Kempen GmbH

Krefelder Weg 47 • D - 47906 Kempen (Germany)
Postfach 100755 (P.O.Box) • D - 47884 Kempen (Germany)
Phone: +49 (0) 21521451
Internet
www.woodward.com

Sales

Phone: +49 (0) 2152145216 or 342 • Telefax: +49 (0) 2152145354 e-mail: salesEMEA_PGD@woodward.com

Service

Phone: +49 (0) 2152145614 • Telefax: +49 (0) 2152145455 e-mail: SupportEMEA_PGD@woodward.com

[^0]: (5) LC Display ... LC Display

 Others
 (29) RS232

 Plug for configuration cable
 (3) "Potentiometer"

 Adjust LC display contrast

