


# High**Pro**tec

Manual Motor Protection



## MRMV4 Software-Version: 3.4.a DOK-HB-MRMV4-2E Revision: C English



# **MRMV4** Functional Overview

# Order Code

|                                                                                                                              |                         | voltage / freque                                     | -            |                  |          |    |    |   |   |    |   |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------|--------------|------------------|----------|----|----|---|---|----|---|
| (Ver                                                                                                                         | sion 2 with USB         | , enhanced com<br>a                                  | munication   | •                | MRMV4    | -2 |    |   |   |    |   |
| Digital<br>Inputs                                                                                                            | Binary<br>output relays | Analog<br>Inputs/Outputs                             | Housing      | Large<br>display |          |    |    |   |   |    |   |
| 8                                                                                                                            | 7                       | 0/4                                                  | B2           | -                |          |    | Α  |   |   |    |   |
| 8                                                                                                                            | 13                      | 0/4                                                  | B2           | -                |          |    | С  |   |   |    |   |
| Hardware                                                                                                                     | variant 2               |                                                      |              |                  |          |    |    | _ |   |    |   |
| Phase Cu                                                                                                                     | rrent 5A/1A, Ground     | d Current 5A/1A                                      |              |                  |          |    |    | 0 |   |    |   |
| Phase Cu                                                                                                                     | rrent 5A/1A, Sensiti    | ve Ground Current                                    | 5A/1A        |                  |          |    |    | 1 |   |    |   |
| Housing a                                                                                                                    | and mounting            |                                                      |              |                  |          |    |    |   | _ |    |   |
| Door mou                                                                                                                     | nting                   |                                                      |              |                  |          |    |    |   | Α |    |   |
| Door mou                                                                                                                     | nting 19" (flush mou    | inting)                                              |              |                  |          |    |    |   | В |    |   |
| Communi                                                                                                                      | cation protocol         |                                                      |              |                  |          |    |    |   |   | -  |   |
| Without pr                                                                                                                   | otocol                  |                                                      |              |                  |          |    |    |   |   | Α  |   |
| Modbus R                                                                                                                     | TU, DNP3.0, IEC60       | 0870-5-103, RS485                                    | /terminals   |                  |          |    |    |   |   | B* |   |
| Modbus TCP, DNP3.0, Ethernet 100 MB/RJ45                                                                                     |                         |                                                      |              |                  |          |    | C* |   |   |    |   |
| Profibus-D                                                                                                                   | P, optic fibre          |                                                      |              |                  |          |    |    |   |   | D* |   |
| Profibus-D                                                                                                                   | DP, RS485/D-SUB         |                                                      |              |                  |          |    |    |   |   | E* |   |
| Modbus R                                                                                                                     | TU, IEC60870-5-10       | )3, optic fiber                                      |              |                  |          |    |    |   |   | F* |   |
| Modbus R                                                                                                                     | TU, IEC60870-5-10       | )3, RS485/D-SUB                                      |              |                  |          |    |    |   |   | G* |   |
| IEC61850, DNP3.0, Ethernet 100MB/ RJ45                                                                                       |                         |                                                      |              |                  |          |    | H* |   |   |    |   |
| IEC60870-5-103, Modbus RTU, DNP3.0 RTU   <i>RS485/terminals</i><br>Modbus TCP,  DNP3.0 TCP/UDP   <i>Ethernet 100 MB/RJ45</i> |                         |                                                      |              |                  |          |    | *  |   |   |    |   |
| IEC61850, Modbus TCP, DNP3.0 TCP/UDP   <i>Optical Ethernet 100MB/LC duplex connector</i>                                     |                         |                                                      |              |                  |          | K* |    |   |   |    |   |
| Modbus TCP, DNP3.0 TCP/UDP   Optical Ethernet 100MB/LC duplex connector                                                      |                         |                                                      |              |                  |          | L* |    |   |   |    |   |
|                                                                                                                              |                         | <sup>-</sup> U, DNP3.0 RTU   F<br>P3.0 TCP/UDP   Eti |              |                  |          |    |    |   |   | T* |   |
| Harsh Env                                                                                                                    | vironment Option        |                                                      |              |                  |          |    |    |   |   |    | - |
| None                                                                                                                         |                         |                                                      |              |                  |          |    |    |   |   |    | Α |
| Conforma                                                                                                                     | I Coating               |                                                      |              |                  |          |    |    |   |   |    | В |
| Available                                                                                                                    | menu languages          |                                                      |              |                  |          |    |    |   |   |    |   |
| Standard I                                                                                                                   | English/German/Sp       | anish/Russian/Polis                                  | sh/Portugues | se/French/R      | Romanian |    |    |   |   |    |   |

\* Within every communication option only one communication protocol is usable. Smart view can be used in parallel via the Ethernet interface (RJ45). The parameterizing- and disturbance analyzing software Smart view is included in the delivery of HighPROTEC devices.

All devices are equipped with an IRIG-B interface for Time Synchronization.

With control function for 1 switchgear and logic up to 80 equations.

# **Table of Contents**

| MRMV4 Functional Overview                      |     |
|------------------------------------------------|-----|
| Order Code                                     |     |
| Table of Contents                              |     |
| Comments on the Manual                         |     |
| Information Concerning Liability and Warranty  |     |
| IMPORTANT DEFINITIONS                          |     |
| Important Information                          |     |
| Scope of Delivery                              |     |
| Storage                                        |     |
| Waste Disposal                                 |     |
| Symbols                                        |     |
| General Conventions                            |     |
| Load Reference Arrow System                    |     |
| Device                                         |     |
| Device Planning                                |     |
| Device Configuration Parameters of the Device  |     |
| Installation and Connection                    |     |
| Three-Side-View - 19"                          |     |
| Three-Side-View - 8-Pushbutton Version         |     |
| Installation Diagram 8-Pushbutton Version      |     |
| Assembly Groups                                |     |
| Grounding                                      |     |
| Legend for Wiring Diagrams                     |     |
| Slot X1: Power Supply Card with Digital Inputs |     |
| Slot X2: Relay Output Card                     |     |
| Slot X3: Current Transformer Measuring Inputs  |     |
| Slot X4: Voltage Transformer Measuring Inputs  |     |
| Slot X5: Relay Output Card                     |     |
| Slot X6: Relay Output Card                     |     |
| Slot X100: Ethernet Interface                  |     |
| Slot X103: Data Communication                  |     |
| Slot X104: IRIG-B00X and Supervision Contact   |     |
| Navigation - Operation                         |     |
| Basic Menu Control                             |     |
| Input, Output and LED Settings                 |     |
| Configuration of the Digital Inputs            |     |
| Output Relays Settings                         |     |
| OR-6 X                                         |     |
| Configuration of the Analog Outputs            |     |
| LED configuration                              |     |
| Security                                       |     |
| Access Authorizations (access areas)           |     |
| Network Access                                 |     |
| Reset to Factory Defaults, Reset All Passwords |     |
| Smart View                                     |     |
| Data visualizer                                |     |
| Measuring Values.                              |     |
| Read out Measured Values                       |     |
| Power - Measured Values                        |     |
| Energy Counter                                 | 1/5 |

| Global Parameters of the Energy Counter Module                                                                   |     |
|------------------------------------------------------------------------------------------------------------------|-----|
| Direct Commands of the Energy Counter Module                                                                     |     |
| Signals of the Energy Counter Module (States of the Outputs)                                                     |     |
| Statistics                                                                                                       |     |
| Configuration of the Minimum and Maximum Values                                                                  |     |
| Configuration of the Average Value Calculation                                                                   |     |
| Direct Commands                                                                                                  |     |
| Global Protection Parameters of the Statistics Module                                                            |     |
| States of the Inputs of the Statistics Module                                                                    |     |
| Signals of the Statistics Module                                                                                 |     |
| Counters of the Module Statistics                                                                                |     |
| System Alarms                                                                                                    |     |
| Demand Management.                                                                                               |     |
| Peak Values                                                                                                      |     |
| Min. and Max. Values                                                                                             |     |
| THD Protection                                                                                                   |     |
| Device Planning Parameters of the Demand Management                                                              |     |
|                                                                                                                  |     |
| Signals of the Demand Management (States of the Outputs)<br>Global Protection Parameter of the Demand Management |     |
| -                                                                                                                |     |
| States of the Inputs of the Demand Management                                                                    |     |
| Acknowledgments                                                                                                  |     |
| Manual Acknowledgment                                                                                            |     |
| External Acknowledgments                                                                                         |     |
| Manual Resets                                                                                                    |     |
| Status Display                                                                                                   |     |
| Operating Panel (HMI)                                                                                            |     |
| Special Parameters of the Panel                                                                                  |     |
| Direct Commands of the Panel                                                                                     |     |
| Global Protection Parameters of the Panel                                                                        |     |
| Recorders                                                                                                        |     |
| Disturbance Recorder                                                                                             |     |
| Fault Recorder                                                                                                   |     |
| Event Recorder                                                                                                   |     |
| Trend Recorder                                                                                                   |     |
| Motor Start Recorder                                                                                             |     |
| Statistic Recorder                                                                                               |     |
| History Function                                                                                                 | 241 |
| Communication Protocols                                                                                          | 243 |
| SCADA Interface                                                                                                  |     |
| TCP/IP Parameter                                                                                                 |     |
| Modbus®                                                                                                          |     |
| Profibus                                                                                                         |     |
| IEC60870-5-103                                                                                                   |     |
| Direct Commands of the IEC60870-5-103                                                                            |     |
| IEC60870-5-103 Input States                                                                                      |     |
| IEC61850                                                                                                         |     |
| DNP3                                                                                                             |     |
| Time Synchronization                                                                                             |     |
| SNTP                                                                                                             |     |
| IRIG-B00X                                                                                                        |     |
| Parameters                                                                                                       |     |
| Parameter Definitions                                                                                            |     |
| Parameter Setting at the HMI.                                                                                    |     |
| <u> </u>                                                                                                         |     |

| Setting Groups                                                                      | . 390 |
|-------------------------------------------------------------------------------------|-------|
| Setting Lock                                                                        | . 400 |
| Device Parameters                                                                   | .401  |
| Date and Time                                                                       | . 401 |
| Version                                                                             | . 401 |
| Display of ANSI-Codes                                                               | . 401 |
| TCP/IP Settings                                                                     | . 402 |
| Direct Commands of the System Module                                                | 403   |
| Global Protection Parameters of the System                                          | 404   |
| System Module Input States                                                          | . 407 |
| System Module Signals                                                               | . 408 |
| Special Values of the System Module                                                 | 410   |
| Field Parameters                                                                    | .411  |
| General Field Parameters                                                            | 411   |
| Field Parameters – Current Related                                                  | 412   |
| Field Parameters – Voltage Related                                                  | 414   |
| Blockings                                                                           | .416  |
| Permanent Blocking                                                                  | . 416 |
| Temporary Blocking                                                                  |       |
| To Activate or Deactivate the Tripping Command of a Protection Module               |       |
| Activate, Deactivate Respectively Block Temporarily Protection Functions            |       |
| Module: Protection (Prot)                                                           |       |
| General Alarms and General Trips                                                    |       |
| Direction Determination                                                             |       |
| Direct Commands of the Protection Module                                            |       |
| Global Protection Parameters of the Protection Module                               |       |
| Protection Module Input States.                                                     |       |
| Protection Module Signals (Output States)                                           |       |
| Protection Module Values                                                            |       |
| Directional Features of the Overcurrent Stages I[n]                                 |       |
| Directional Features for Measured Ground Fault Elements 50N/51N                     |       |
| Directional Features for Calculated (IG calc) Ground Fault 50N/51N                  |       |
| Switchgear/Breaker – Manager                                                        |       |
| Single Line Diagram.                                                                |       |
| Switchgear Configuration                                                            |       |
| Switchgear Wear                                                                     |       |
| Control Parameters                                                                  |       |
| Controlled Circuit Breaker                                                          |       |
| Control - Example: Switching of a Circuit Breaker                                   |       |
| Protective Elements.                                                                |       |
| MStart - Motor Starting and Control [48,66]                                         |       |
| I< - Undercurrent [37]                                                              |       |
| JAM [51LR]                                                                          |       |
| LRC - Locked Rotor during Start                                                     |       |
| MLS - Mechanical Load Shedding                                                      |       |
| UTC - Ultimate Trip Current                                                         |       |
| I - Overcurrent Protection [50, 51,51Q, 51V*]                                       |       |
| IG - Ground Fault [50N/G, 51N/G, 67N/G]                                             |       |
| I2> and %I2/I1> – Unbalanced Load [46]                                              |       |
| Theta - Thermal Model [49M, 49R]                                                    |       |
| V - Voltage Protection [27,59]                                                      |       |
| V - Voltage Protection [27,39]<br>VG, VX - Voltage Supervision [27A, 27TN/59N, 59A] |       |
| f - Frequency [810/U, 78, 81R]                                                      |       |
|                                                                                     | . 040 |

| V 012 – Voltage Asymmetry [47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PQS - Power [32, 37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 679                                                                                                                                                                                                                                                                                                                                                             |
| PF - Power Factor [55]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 700                                                                                                                                                                                                                                                                                                                                                             |
| ExP - External Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 709                                                                                                                                                                                                                                                                                                                                                             |
| RTD Protection Module [26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 715                                                                                                                                                                                                                                                                                                                                                             |
| URTDII Module Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 747                                                                                                                                                                                                                                                                                                                                                             |
| Supervision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |
| CBF- Circuit Breaker Failure [50BF*/62BF]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 757                                                                                                                                                                                                                                                                                                                                                             |
| TCS - Trip Circuit Supervision [74TC]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 |
| CTS - Current Transformer Supervision [60L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |
| LOP - Loss of Potential.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |
| Phase Sequence Supervision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                 |
| Self Supervision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |
| Programmable Logic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 |
| General Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                 |
| Programmable Logic at the Panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                 |
| Commissioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 |
| Commissioning/Protection Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 |
| Putting out of Operation – Plug out the Relay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 |
| Service and Commissioning Support.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 |
| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                 |
| Phase Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
| Forcing the Relay Output Contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                 |
| Forcing RTDs*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 |
| Forcing Analog Outputs*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                 |
| Forcing Analog Inputs*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                 |
| Fanil Siluniyor (Seonencen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                 |
| Fault Simulator (Sequencer)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                 |
| Technical Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
| Technical Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
| Technical Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
| Technical Data<br>Climatic Environmental Conditions.<br>Degree of Protection EN 60529.<br>Routine Test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 853<br>853<br>853<br>853<br>853                                                                                                                                                                                                                                                                                                                                 |
| Technical Data<br>Climatic Environmental Conditions.<br>Degree of Protection EN 60529.<br>Routine Test.<br>Housing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 853<br>853<br>853<br>853<br>853<br>854                                                                                                                                                                                                                                                                                                                          |
| Technical Data<br>Climatic Environmental Conditions.<br>Degree of Protection EN 60529.<br>Routine Test.<br>Housing.<br>Current and Earth Current Measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 853<br>853<br>853<br>853<br>853<br>854<br>854<br>855                                                                                                                                                                                                                                                                                                            |
| Technical Data<br>Climatic Environmental Conditions.<br>Degree of Protection EN 60529.<br>Routine Test.<br>Housing.<br>Current and Earth Current Measurement.<br>Voltage and Residual Voltage Measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 853<br>853<br>853<br>853<br>853<br>854<br>855<br>855<br>855                                                                                                                                                                                                                                                                                                     |
| Technical Data<br>Climatic Environmental Conditions.<br>Degree of Protection EN 60529.<br>Routine Test.<br>Housing.<br>Current and Earth Current Measurement.<br>Voltage and Residual Voltage Measurement.<br>Frequency Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 853<br>853<br>853<br>853<br>853<br>854<br>854<br>855<br>856<br>856                                                                                                                                                                                                                                                                                              |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Frequency Measurement         Voltage Supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 853<br>853<br>853<br>853<br>853<br>854<br>854<br>855<br>856<br>856<br>856<br>857                                                                                                                                                                                                                                                                                |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Frequency Measurement         Voltage Supply.         Power Consumption.                                                                                                                                                                                                                                                                                                                                                                                                                                     | 853<br>853<br>853<br>853<br>854<br>854<br>855<br>856<br>856<br>856<br>857<br>857                                                                                                                                                                                                                                                                                |
| Technical Data<br>Climatic Environmental Conditions.<br>Degree of Protection EN 60529.<br>Routine Test.<br>Housing.<br>Current and Earth Current Measurement.<br>Voltage and Residual Voltage Measurement.<br>Frequency Measurement .<br>Voltage Supply.<br>Power Consumption.<br>Display.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 853<br>853<br>853<br>853<br>853<br>854<br>854<br>855<br>856<br>856<br>856<br>857<br>857<br>857<br>858                                                                                                                                                                                                                                                           |
| Technical Data<br>Climatic Environmental Conditions.<br>Degree of Protection EN 60529.<br>Routine Test.<br>Housing.<br>Current and Earth Current Measurement.<br>Voltage and Residual Voltage Measurement.<br>Frequency Measurement<br>Voltage Supply.<br>Power Consumption.<br>Display.<br>Front Interface USB.                                                                                                                                                                                                                                                                                                                                                                                                                                              | 853<br>853<br>853<br>853<br>853<br>854<br>854<br>855<br>856<br>856<br>856<br>857<br>857<br>857<br>858<br>858                                                                                                                                                                                                                                                    |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Frequency Measurement         Voltage Supply.         Power Consumption.         Display.         Front Interface USB.         Real Time Clock.                                                                                                                                                                                                                                                                                                                                                              | 853<br>853<br>853<br>853<br>854<br>854<br>855<br>856<br>856<br>856<br>856<br>857<br>857<br>857<br>858<br>858<br>858                                                                                                                                                                                                                                             |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Frequency Measurement         Voltage Supply.         Power Consumption.         Display.         Front Interface USB.         Real Time Clock.         Digital Inputs.                                                                                                                                                                                                                                                                                                                                      | <b>853</b><br>853<br>853<br>853<br>853<br>854<br>855<br>856<br>856<br>856<br>857<br>857<br>857<br>857<br>858<br>858<br>858<br>858                                                                                                                                                                                                                               |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Frequency Measurement         Voltage Supply.         Power Consumption.         Display.         Front Interface USB.         Real Time Clock.         Digital Inputs.         Binary Output Relays.                                                                                                                                                                                                                                                                                                        | <b>853</b><br>853<br>853<br>853<br>854<br>854<br>855<br>856<br>856<br>856<br>857<br>857<br>857<br>858<br>858<br>858<br>858<br>858<br>858<br>859<br>860                                                                                                                                                                                                          |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Voltage Supply.         Power Consumption.         Display.         Front Interface USB.         Real Time Clock.         Digital Inputs.         Binary Output Relays.         Supervision Contact (SC).                                                                                                                                                                                                                                                                                                    | <b>853</b><br>853<br>853<br>853<br>854<br>854<br>855<br>856<br>856<br>856<br>857<br>857<br>857<br>858<br>858<br>858<br>858<br>858<br>858<br>858                                                                                                                                                                                                                 |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Voltage Supply.         Power Consumption.         Display.         Front Interface USB.         Real Time Clock.         Digital Inputs.         Binary Output Relays.         Supervision Contact (SC).         Time Synchronization IRIG.                                                                                                                                                                                                                                                                 | 853         853         853         853         853         854         855         856         856         857         858         858         858         859         860         861                                                                                                                                                                         |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Frequency Measurement         Voltage Supply.         Power Consumption.         Display.         Front Interface USB.         Real Time Clock.         Digital Inputs.         Binary Output Relays.         Supervision Contact (SC).         Time Synchronization IRIG.         RS485*                                                                                                                                                                                                                    | 853         853         853         853         853         854         855         856         856         857         858         858         858         859         860         861                                                                                                                                                                         |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Frequency Measurement         Voltage Supply.         Power Consumption.         Display.         Front Interface USB.         Real Time Clock.         Digital Inputs.         Binary Output Relays.         Supervision Contact (SC).         Time Synchronization IRIG.         RS485*         Fiber Optic Module with ST connector*                                                                                                                                                                      | 853         853         853         853         853         853         854         855         856         856         856         857         858         858         859         860         861         861                                                                                                                                                 |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Frequency Measurement         Voltage Supply.         Power Consumption.         Display.         Front Interface USB.         Real Time Clock.         Digital Inputs.         Binary Output Relays.         Supervision Contact (SC).         Time Synchronization IRIG.         RS485*.         Fiber Optic Module with ST connector*.         Fiber Optic Module with LC Connector for Long-distance Protection Communication**.                                                                         | 853         853         853         853         853         854         855         856         856         856         856         857         858         858         858         858         859         860         861         861         861                                                                                                             |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Frequency Measurement         Voltage Supply.         Power Consumption.         Display.         Front Interface USB.         Real Time Clock.         Digital Inputs.         Binary Output Relays.         Supervision Contact (SC).         Time Synchronization IRIG.         RS485*.         Fiber Optic Module with ST connector*.         Fiber Optic Module with LC Connector for Long-distance Protection Communication**.         Boot phase.                                                     | 853         853         853         853         853         854         855         856         856         857         857         858         858         858         859         860         861         861         863                                                                                                                                     |
| Technical Data         Climatic Environmental Conditions.         Degree of Protection EN 60529.         Routine Test.         Housing.         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement.         Frequency Measurement         Voltage Supply.         Power Consumption.         Display.         Front Interface USB.         Real Time Clock.         Digital Inputs.         Binary Output Relays.         Supervision Contact (SC).         Time Synchronization IRIG.         RS485*.         Fiber Optic Module with ST connector*.         Fiber Optic Module with LC Connector for Long-distance Protection Communication**.         Boot phase.         Servicing and Maintenance.                  | 853         853         853         853         853         854         855         856         856         856         857         858         858         859         860         861         861         863         863                                                                                                                                     |
| Technical Data         Climatic Environmental Conditions         Degree of Protection EN 60529         Routine Test         Housing         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement         Frequency Measurement         Voltage Supply         Power Consumption         Display         Front Interface USB         Real Time Clock.         Digital Inputs         Binary Output Relays         Supervision Contact (SC)         Time Synchronization IRIG.         R\$485*         Fiber Optic Module with ST connector*         Fiber Optic Module with LC Connector for Long-distance Protection Communication**         Boot phase         Servicing and Maintenance                                  | 853         853         853         853         853         854         855         856         856         856         857         857         858         858         858         858         859         860         861         861         861         861         863         864         865                                                             |
| Technical Data         Climatic Environmental Conditions         Degree of Protection EN 60529         Routine Test         Housing         Current and Earth Current Measurement         Voltage and Residual Voltage Measurement         Frequency Measurement         Voltage Supply         Power Consumption         Display         Front Interface USB         Real Time Clock         Digital Inputs         Binary Output Relays         Supervision Contact (SC)         Time Synchronization IRIG         R\$485*         Fiber Optic Module with ST connector*         Fiber Optic Module with LC Connector for Long-distance Protection Communication**         Boot phase         Servicing and Maintenance         Standards         Approvals | 853         853         853         853         853         854         855         856         856         857         857         858         858         858         858         859         860         861         861         861         861         861         861         861         861         861         861         863         864         865 |
| Technical Data         Climatic Environmental Conditions         Degree of Protection EN 60529         Routine Test         Housing         Current and Earth Current Measurement.         Voltage and Residual Voltage Measurement         Frequency Measurement         Voltage Supply         Power Consumption         Display         Front Interface USB         Real Time Clock.         Digital Inputs         Binary Output Relays         Supervision Contact (SC)         Time Synchronization IRIG.         R\$485*         Fiber Optic Module with ST connector*         Fiber Optic Module with LC Connector for Long-distance Protection Communication**         Boot phase         Servicing and Maintenance                                  | 853         853         853         853         854         855         856         856         857         857         858         858         858         858         859         860         861         861         861         863         864         865         865                                                                                     |

| FMC Immunity Tests                               | 867   |
|--------------------------------------------------|-------|
| EMC Immunity Tests                               |       |
| EMC Emission Tests                               | . 868 |
| Environmental Tests                              | . 869 |
| Environmental Tests                              | . 870 |
| Mechanical Tests                                 | . 871 |
| General Lists                                    | .872  |
| Assignment List                                  | . 872 |
| List of the Digital Inputs                       |       |
| Signals of the Digital Inputs and Logic          | . 937 |
| Specifications                                   |       |
| Specifications of the Real Time Clock            |       |
|                                                  | . 947 |
| Specifications of the Measured Value Acquisition | .948  |
| Protection Elements Accuracy                     | . 950 |
|                                                  | 957   |
|                                                  | . 958 |
| Version: 3.1                                     | . 960 |
| Version: 3.0.b                                   | . 961 |
| Version: 3.0                                     | . 962 |
| Abbreviations, and Acronyms                      | .965  |
|                                                  | .970  |

This manual applies to devices (version):

Version 3.4.a

Build: 35598

# Comments on the Manual

This manual explains in general the tasks of device planning, parameter setting, installation, commissioning, operation and maintenance of the HighPROTEC devices.

The manual serves as working basis for:

- Engineers in the protection field,
- commissioning engineers,
- people dealing with setting, testing and maintenance of protection and control devices,
- as well as trained personnel for electrical installations and power stations.

All functions concerning the type code will be defined. Should there be a description of any functions, parameters or inputs/outputs which do not apply to the device in use, please ignore that information.

All details and references are explained to the best of our knowledge and are based on our experience and observations.

This manual describes the (optionally) full featured versions of the devices.

All technical information and data included in this manual reflect their state at the time this document was issued. We reserve the right to carry out technical modifications in line with further development without changing this manual and without previous notice. Hence no claim can be brought based on the information and descriptions this manual includes.

Text, graphic and formulae do not always apply to the actual delivery scope. The drawings and graphics are not true to scale. We do not accept any liability for damage and operational failures caused by operating errors or disregarding the directions of this manual.

No part of this manual is allowed to be reproduced or passed on to others in any form, unless *Woodward Kempen GmbH* have approved in writing.

This user manual is part of the delivery scope when purchasing the device. In case the device is passed on (sold) to a third party, the manual has to be handed over as well.

Any repair work carried out on the device requires skilled and competent personnel who need to be well aware especially of the local safety regulations and have the necessary experience for working on electronic protection devices and power installations (provided by evidence).

#### Information Concerning Liability and Warranty

*Woodward* does not accept any liability for damage resulting from conversions or changes carried out on the device or planning (projecting) work, parameter setting or adjustment changes done by the customer.

The warranty expires after a device has been opened by others than Woodward specialists.

Warranty and liability conditions stated in *Woodward* General Terms and Conditions are not supplemented by the above mentioned explanations.

# **IMPORTANT DEFINITIONS**

The signal definitions shown below serve the safety of life and limb as well as for the appropriate operating life of the device.



DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.



WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.



CAUTION, used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.



NOTICE is used to address practices not related to personal injury.



CAUTION, without the safety alert symbol, is used to address practices not related to personal injury.

# **WARNING**

#### FOLLOW INSTRUCTIONS

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

## A WARNING PROPER USE

# Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (1) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (2) invalidate product certifications or listings.

The programmable devices subject to this manual are designed for protection and also control of power installations and operational devices that are fed by voltage sources with a fixed frequency, i.e. fixed at 50 or 60 Hertz. They are not intended for use with Variable Frequency Drives. The devices are further designed for installation in low-voltage (LV) compartments of medium voltage (MV) switchgear panels or in decentralized protection panels. The programming and parameterization has to meet all requirements of the protection concept (of the equipment that is to be protected). You must ensure that the device will properly recognize and manage (e.g. switch off the circuit breaker) on the basis of your programming and parameterization all operational conditions (failures). The proper use requires a backup protection by an additional protective device. Before starting any operation and after any modification of the programming (parameterization) test make a documentary proof that your programming and parameterization meets the requirements of your protection concept.

The Self-Supervision Contact (Life-Contact) has to be wired with the substation automation system in order to supervise and monitor the state of health of the programmable protective device. It is very important that an alarm annunciation is driven from the programmable protective device self-supervision contact (Life-Contact) that requires immediate attention when tripped. The alarm indicates that the protective device is no longer protecting the circuit and the system should be serviced.

Typical applications for this product family/device line are for instance:

- Feeder protection
- Mains protection
- Machine protection
- Transformer Differential Protection

Any usage beyond these applications the devices are not designed for. This applies also to the use as a partly completed machinery. The manufacturer cannot be held liable for any resulting damage, the user alone bears the risk for this. As to the appropriate use of the device: The technical data and tolerances specified by *Woodward* have to be met.

# WARNING OUT-OF-DAT

#### OUT-OF-DATE PUBLICATION

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, please visit the download section of our website:

www.woodward.com

If your publication is not there, please contact your customer service representative to get the latest copy.

#### Important Information

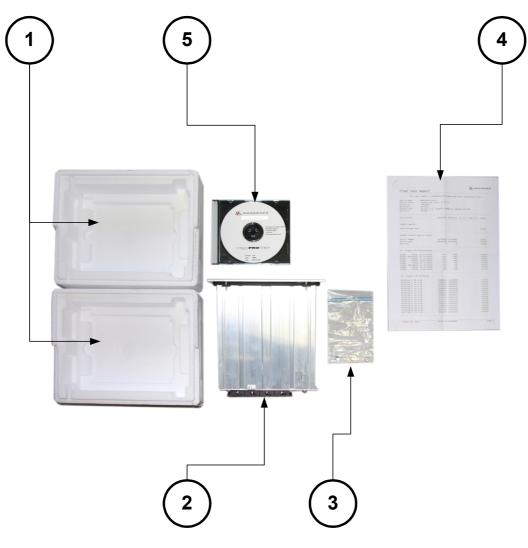


In line with the customer's requirement the devices are combined in a modular way (in compliance with the order code). The terminal assignment of the device can be found on the top of the device (wiring diagram).

# CAUTION

#### **Electrostatic Discharge Awareness**

All electronic equipment is electro static-sensitive, some components more than others. To protect these components from electro static damage, you must take special precautions to minimize or eliminate electrostatic discharges.Follow these precautions when working with or near the control.


- 1. Before doing maintenance on the electronic control, discharge the static electricity on your body to ground by touching and holding a grounded metal object (pipes, cabinets, equipment, etc.).
- 2. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.
- 3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam cups, cup holders, cigarette packages, cellophane wrappers, vinyl books or folders, plastic bottles, and plastic ash trays) away from the control, the modules, and the work area as much as possible.
- 4. Do not remove any printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
  - Verify the safe isolation from supply. All connectors have to be unplugged.
  - Do not touch any part of the PCB except the edges.
  - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
  - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly undertaken.

© Woodward 2016. All Rights Reserved.

## Scope of Delivery



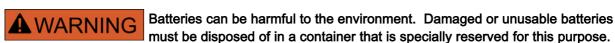
The delivery scope includes:

| 1 | The transportation box                                                                                                        |
|---|-------------------------------------------------------------------------------------------------------------------------------|
| 2 | The protective device                                                                                                         |
| 3 | The mounting nuts                                                                                                             |
| 4 | The test report                                                                                                               |
| 5 | The product DVD that includes the manuals and related documentation as well as the parameter setting and evaluation software. |

Please check the consignment for completeness on arrival (delivery note).

Please ascertain whether the type plate, connection diagram, type code and description of the device tally.

If you have any doubts please contact our Service Department (contact address to be found on the reverse of the manual).


### Storage

The devices must not be stored outdoors. The storing facilities have to be sufficiently ventilated and must be dry (see Technical Data).

## Waste Disposal

This protective device contains a battery, and therefore it is labeled with the following symbol according to the EU Directive 2006/66/EC:

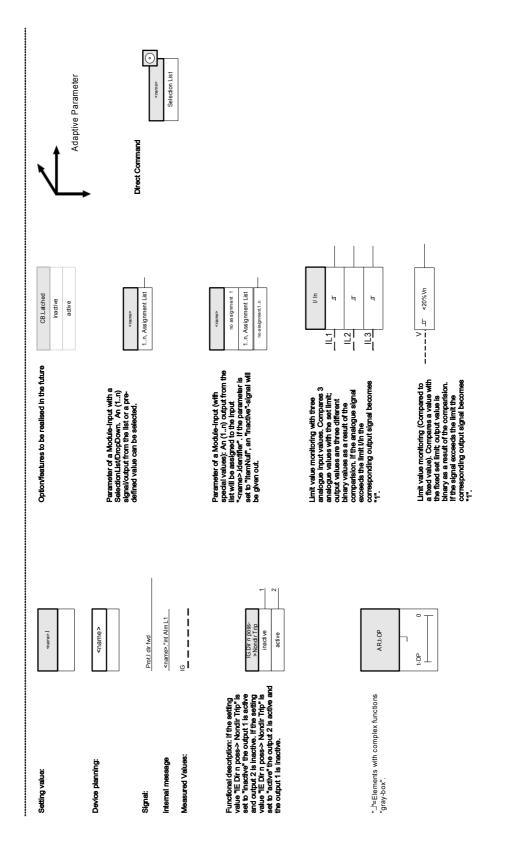


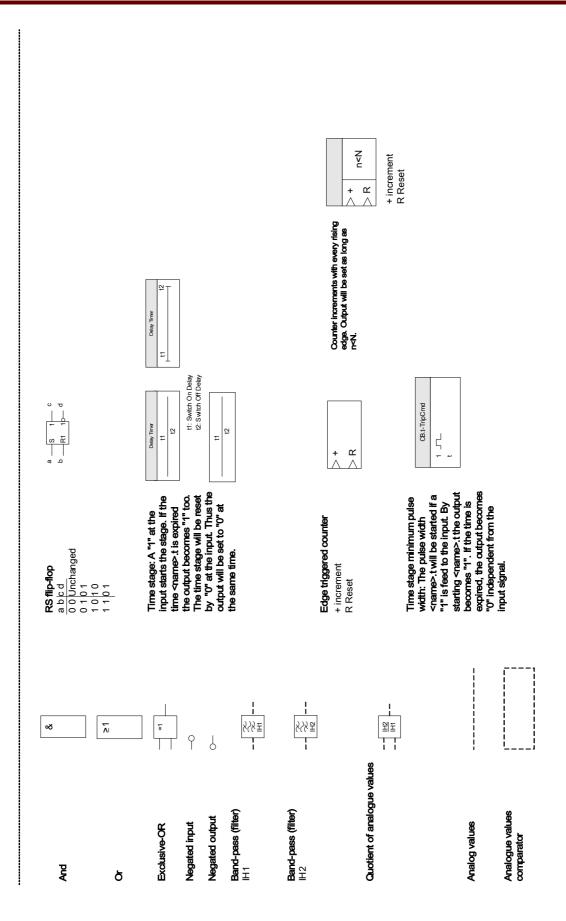


In general, appropriate local guidelines and regulations must be followed when disposing of electrical devices and batteries.

#### Purpose of the Battery

The purpose of the battery is to buffer the real time clock in case of an outage of the power supply of the protective device.


#### Removal of the Battery


The battery has to be soldered out or alternatively the contacts have to be pinched off. Please see the product safety data sheet of the battery manufacturer for further information.

#### Manufacturer and Type of the Battery

Panasonic, Type BR2032 (http://panasonic.net/ec/) or equivalent.

## Symbols





## **General Conventions**

»Parameters are indicated by right and left double arrow heads and written in italic .«

»SIGNALS are indicated by right and left double arrow heads and small caps .«

[Paths are indicated by brackets.]

Software and Device names are written in italic.

Module and Instance (Element) names are displayed italic and underlined.

»Pushbuttons, Modes and Menu entries are indicated by right and left double arrow heads .«



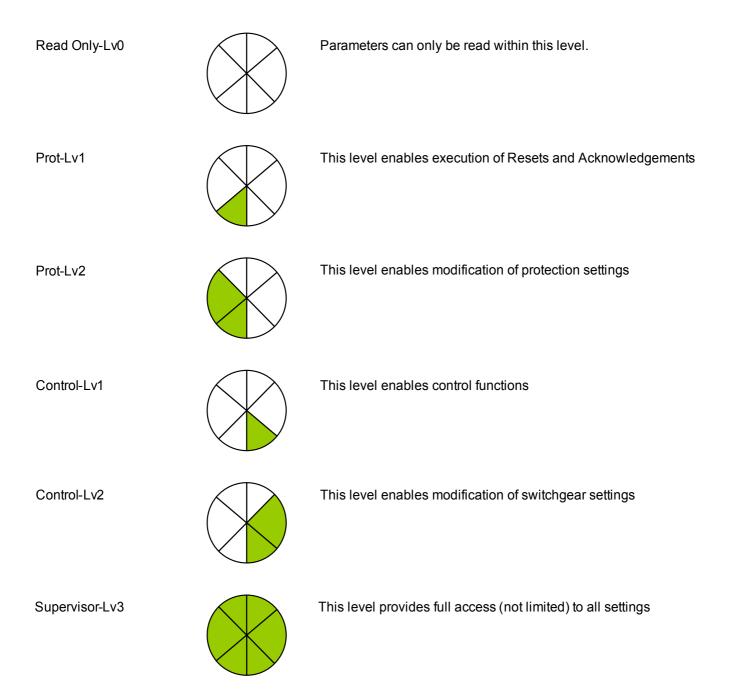
Image References (Squares)

Output Signal -

2

| — Input Signal |
|----------------|
|----------------|

| Output Signal                                                                       | Description / Diagram                                                                                                       | 2        |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                     |                                                                                                                             | (Symbol) |
| Prot.available                                                                      | Please Refer To Diagram: Prot                                                                                               | (1)      |
| Prot.available (as a signal sent via<br>ProtCom to the remote protective<br>device) | Please Refer To Diagram: Prot<br>only for line differential protection                                                      | (1R)     |
| name . active                                                                       | Please Refer To Diagram: Blockings                                                                                          | (2)      |
| name . Blo TripCmd                                                                  | Please Refer To Diagram: Trip blockings                                                                                     | (3)      |
| name . active                                                                       | Please Refer To Diagram: Blockings<br>(Phase Overcurrent Stages I[1] [n])                                                   | (4)      |
| name . active                                                                       | Please Refer To Diagram: Blockings<br>(Earth Overcurrent Stages IG[1] [n])                                                  | ———(4G)  |
| name . active (as local signal)                                                     | Please Refer To Diagram: Blockings<br>only for line differential protection                                                 | (4L)     |
| name . active (as a signal sent via<br>ProtCom to the remote protective<br>device)  | Please Refer To Diagram: Blockings<br>only for line differential protection                                                 | (4R)     |
| IH2 . Blo L1                                                                        | Please Refer To Diagram: IH2                                                                                                | (5)      |
| IH2 . Blo L2                                                                        | Please Refer To Diagram: IH2                                                                                                | (6)      |
| IH2 . Blo L3                                                                        | Please Refer To Diagram: IH2                                                                                                | (7)      |
| IH2 . Blo IG                                                                        | Please Refer To Diagram: IH2                                                                                                | (8)      |
| name . Fault in projected direction                                                 | Please Refer To Diagram: direction decision phase overcurrent                                                               | (9)      |
| name . Fault in projected direction                                                 | Please Refer To Diagram: direction decision Earth fault                                                                     | (10)     |
| CB . Trip CB                                                                        | Please Refer To Diagram: CB                                                                                                 | (11)     |
| VTS . Alarm                                                                         | Please Refer To Diagram: VTS                                                                                                | ——(12a)  |
| VTS . Ex FF VT-I                                                                    | Please Refer To Diagram: VTS                                                                                                | (12b)    |
| VTS . Ex FF EVT-I                                                                   | Please Refer To Diagram: VTS                                                                                                | (12c)    |
| name . Alarm                                                                        | Each alarm of a module (except from supervision modules but including CBF) will lead to a general alarm (collective alarm). | (14)     |
| name . Trip                                                                         | Each trip of an active, trip authorized protection module will lead to a general trip.                                      | (15)     |
| name . TripCmd                                                                      |                                                                                                                             | ———(15a) |


2

| Output Signal   | Description / Diagram                                                                                                                                     | 2         |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
|                 |                                                                                                                                                           | (Symbol)  |  |
|                 |                                                                                                                                                           | (16)      |  |
| name . Trip L1  | Each trip of an active, trip authorized protection module will lead to a general trip.                                                                    | ————(16a) |  |
|                 |                                                                                                                                                           | (16b)     |  |
|                 |                                                                                                                                                           | (17)      |  |
| name . Trip L2  | Each trip of an active, trip authorized protection module will lead to a general trip.                                                                    | ———(17a)  |  |
|                 |                                                                                                                                                           | (17b)     |  |
|                 |                                                                                                                                                           | (18)      |  |
| name . Trip L3  | Each trip of an active, trip authorized protection module will lead to a general trip.                                                                    | ———(18a)  |  |
|                 |                                                                                                                                                           | (18b)     |  |
|                 |                                                                                                                                                           | (19)      |  |
| nome TrinCmd    | Each trip of an active, trip authorized protection module will lead                                                                                       | ———(19a)  |  |
| name . TripCmd  | to a general trip.                                                                                                                                        | (19b)     |  |
|                 |                                                                                                                                                           | (19c)     |  |
| name . TripCmd  | Each trip of an active, trip authorized protection module will lead to a general trip.                                                                    | (19d)     |  |
| name . Trip L1  | Each trip of an active, trip authorized protection module will lead to a general trip.                                                                    | (20)      |  |
| name . Trip L2  | Each trip of an active, trip authorized protection module will lead to a general trip.                                                                    | (21)      |  |
| name . Trip L3  | Each trip of an active, trip authorized protection module will lead to a general trip.                                                                    | (22)      |  |
| name . Trip     | Each trip of an active, trip authorized protection module will lead to a general trip.                                                                    | (23)      |  |
|                 | Each phase selective alarm of a module (I, IG, V, VX depending<br>on the device type) will lead to a phase selective general alarm<br>(collective alarm). | (24)      |  |
| name . Alarm L1 |                                                                                                                                                           | ——(24a)   |  |
|                 |                                                                                                                                                           | (24b)     |  |
|                 | Each phase selective alarm of a module (I, IG, V, VX depending                                                                                            | (25)      |  |
| name . Alarm L2 | on the device type) will lead to a phase selective general alarm<br>(collective alarm).                                                                   | ——(25a)   |  |
|                 |                                                                                                                                                           | (25b)     |  |
|                 | Each phase selective alarm of a module (I, IG, V, VX depending                                                                                            | (26)      |  |
| name . Alarm L3 | on the device type) will lead to a phase selective general alarm (collective alarm).                                                                      | (26a)     |  |
|                 |                                                                                                                                                           | (26b)     |  |

| Output Signal                                | Description / Diagram                                                                                                                                     | (2)      |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                              |                                                                                                                                                           | (Symbol) |
|                                              |                                                                                                                                                           | (27)     |
|                                              |                                                                                                                                                           | ——(27a)  |
| name . Alarm                                 | Each phase selective alarm of a module (I, IG, V, VX depending<br>on the device type) will lead to a phase selective general alarm                        | (27b)    |
|                                              | (collective alarm).                                                                                                                                       | (27c)    |
|                                              |                                                                                                                                                           | (27d)    |
| name . Alarm L1                              | Each phase selective alarm of a module (I, IG, V, VX depending<br>on the device type) will lead to a phase selective general alarm<br>(collective alarm). | (28)     |
| name . Alarm L2                              | Each phase selective alarm of a module (I, IG, V, VX depending<br>on the device type) will lead to a phase selective general alarm<br>(collective alarm). | (29)     |
| name . Alarm L3                              | Each phase selective alarm of a module (I, IG, V, VX depending<br>on the device type) will lead to a phase selective general alarm<br>(collective alarm). | (30)     |
| name . Alarm                                 | Each phase selective alarm of a module (I, IG, V, VX depending<br>on the device type) will lead to a phase selective general alarm<br>(collective alarm). | (31)     |
| Prot . Blo TripCmd                           |                                                                                                                                                           | (32)     |
| CB . Pos                                     | Please Refer To Diagram: CB.CB Manager                                                                                                                    | (33)     |
| CB . Pos ON                                  | Please Refer To Diagram: CB.CB Manager                                                                                                                    | (34)     |
| CB . Pos OFF                                 | Please Refer To Diagram: CB.CB Manager                                                                                                                    | (35)     |
| CB . Pos Indeterm                            | Please Refer To Diagram: CB.CB Manager                                                                                                                    | (36)     |
| CB . Pos Disturb                             | Please Refer To Diagram: CB.CB Manager                                                                                                                    | (37)     |
| LOP . LOP Blo                                | Please Refer To Diagram: LOP.LOP Blo                                                                                                                      | ———(38a) |
| LOP . Ex FF VT-I                             | Please Refer To Diagram: LOP.Ex FF VT                                                                                                                     | (38b)    |
| LOP . Ex FF EVT-I                            | Please Refer To Diagram: LOP.Ex FF EVT                                                                                                                    | ———(38c) |
| Q->&V< . Decoupling Distributed<br>Generator | Please Refer To Diagram: Q->&V<: "QU_Y02"                                                                                                                 | (39)     |
| CTS . Alarm                                  | Please Refer To Diagram: CTS.Alarm                                                                                                                        | (40)     |
| SG.Prot ON                                   | Please Refer To Diagram: SG.Prot ON                                                                                                                       | (41)     |
| SG . ON Cmd                                  | Please Refer To Diagram: SG.ON Cmd                                                                                                                        | (42)     |
| AnIn[1] . Value                              | Please Refer To Diagram: Analog values                                                                                                                    | (43)     |
| AnIn[2] . Value                              | Please Refer To Diagram: Analog values                                                                                                                    | (44)     |
| AnIn[n] . Value                              | Please Refer To Diagram: Analog values                                                                                                                    | (45)     |
| Trip Incomplete (Motor) Start<br>Sequence    |                                                                                                                                                           | (46)     |
| Q->&V< . active                              | Please refer to diagram: Blocking (Q->&V<)                                                                                                                | (47)     |

#### **Access Level**

(Please refer to chapter [Parameter\Access Level])



# Load Reference Arrow System

Within the HighPROTEC the "Load Reference Arrow System" is used in principal. Generator protection relays are working based on the "Generator Reference System".

# Device

MRMV4

## **Device Planning**

Planning of a device means to reduce the functional range to a degree that suits the protection task to be fulfilled, i.e. the device shows only those functions you really need. If you, for example, deactivate the voltage protection function, all parameter branches related to this function do not appear in the parameter tree any more. All corresponding events, signals etc. will be deactivated too. By this the parameter trees become very transparent. Planning also involves adjustment of all basic system data (frequency etc.).



But it has to be taken into account that by deactivating, for instance, protective functions, you also change the functionality of the device. If you cancel the directional feature of the overcurrent protections then the device no longer trips in a directional way but merely in a non-directional way.

The manufacturer does not accept liability for any personal or material damage as a result of wrong planning.

A planning service is also offered by Woodward Kempen GmbH.



Beware of inadvertent deactivating protective functions/modules

If you are deactivating modules within the device planning all parameters of those modules will be set on default.

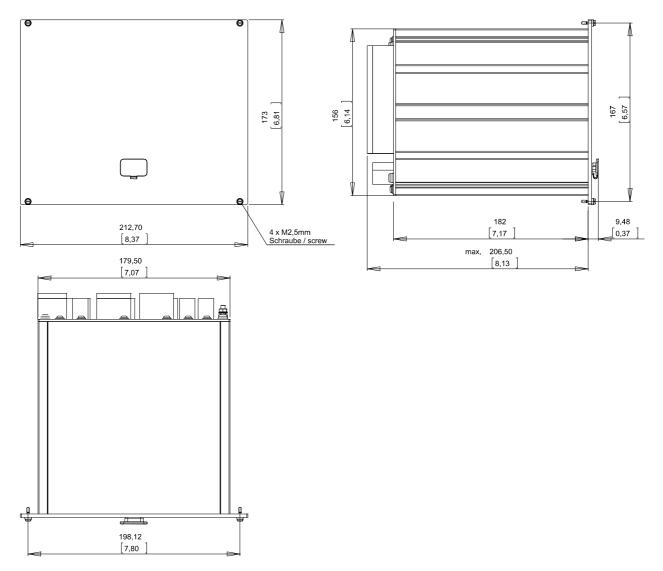
If you are activating one of these modules again all parameters of those reactivated modules will be set on default.

# Device Configuration Parameters of the Device

| Parameter             | Description                 | Options                                                          | Default                                            | Menu path |
|-----------------------|-----------------------------|------------------------------------------------------------------|----------------------------------------------------|-----------|
| Hardware<br>Variant 1 | Optional Hardware Extension | »A« 8 digital inputs<br>  7 binary output<br>relays,             | 8 digital<br>inputs   7<br>binary output<br>relays | [MRMV4]   |
|                       |                             | »C« 8 digital inputs<br>  13 binary output<br>relays             |                                                    |           |
| Hardware<br>Variant 2 | Optional Hardware Extension | »0« Phase Current<br>5A/1A, Ground<br>Current 5A/1A,             | Phase Current<br>5A/1A, Ground<br>Current 5A/1A    | [MRMV4]   |
| $\bigotimes$          |                             | »1« Phase Current<br>5A/1A, Sensitive<br>Ground Current<br>5A/1A |                                                    |           |
| Housing               | Mounting form               | »A« Flush<br>mounting,                                           | Flush<br>mounting                                  | [MRMV4]   |
| $\bigotimes$          |                             | »B« 19 inch<br>mounting (semi-<br>flush),                        |                                                    |           |
|                       |                             | »H« Customized<br>Version 1,                                     |                                                    |           |
|                       |                             | »K« Customized<br>Version 2                                      |                                                    |           |

| Parameter                | Description           | Options                                                                                            | Default      | Menu path |
|--------------------------|-----------------------|----------------------------------------------------------------------------------------------------|--------------|-----------|
| Communicatio             | Communication         | »A« Without,                                                                                       | »A« Without  | [MRMV4]   |
|                          |                       | »B« RS 485:<br>Modbus RTU   IEC<br>60870-5-103   DNP<br>RTU,                                       |              |           |
|                          |                       | »C« Ethernet:<br>Modbus TCP   DNP<br>UDP, TCP,                                                     |              |           |
|                          |                       | »D« Fiber Optics:<br>Profibus-DP,                                                                  |              |           |
|                          |                       | »E« D-SUB:<br>Profibus-DP,                                                                         |              |           |
|                          |                       | »F« Fiber Optics:<br>Modbus RTU   IEC<br>60870-5-103   DNP<br>RTU,                                 |              |           |
|                          |                       | »G« RS 485/D-SUB:<br>Modbus RTU   IEC<br>60870-5-103   DNP<br>RTU,                                 |              |           |
|                          |                       | »H« Ethernet:<br>IEC61850   Modbus<br>TCP   DNP UDP,<br>TCP,                                       |              |           |
|                          |                       | »I« RS 485,<br>Ethernet: Modbus<br>TCP, RTU   IEC<br>60870-5-103   DNP<br>UDP, TCP, RTU,           |              |           |
|                          |                       | »K« Ethernet/Fiber<br>Optics: IEC61850  <br>Modbus TCP   DNP<br>UDP, TCP,                          |              |           |
|                          |                       | »L« Ethernet/Fiber<br>Optics: Modbus<br>TCP   DNP UDP,<br>TCP,                                     |              |           |
|                          |                       | »T« RS 485,<br>Ethernet: IEC61850<br>  Modbus TCP, RTU<br>  IEC 60870-5-103  <br>DNP UDP, TCP, RTU |              |           |
| Printed Circuit<br>Board | Printed Circuit Board | »A« Standard,                                                                                      | »A« Standard | [MRMV4]   |
|                          |                       | »B« conformal coating                                                                              |              |           |

# Installation and Connection


#### Three-Side-View - 19"



Dependent on the connection method of the SCADA system used the needed space (depth) differs. If, for instance, a D-Sub-Plug is used, it has to be added to the depth dimension.



The three-side-view shown in this section is exclusively valid for 19" devices.



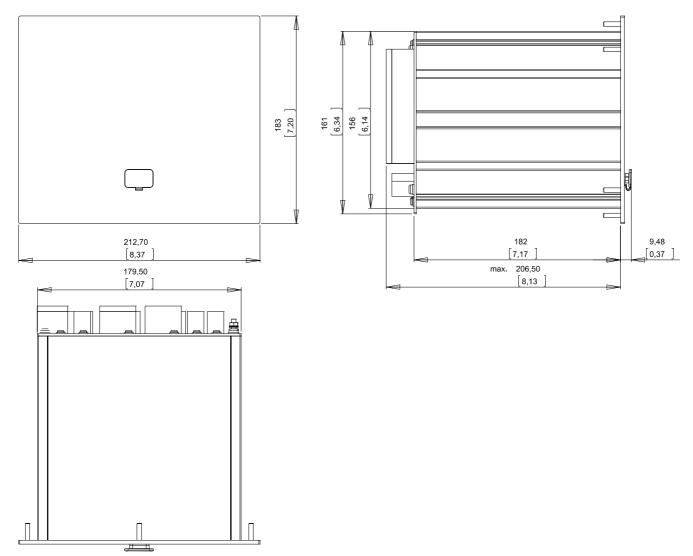
3-Side-View B2 Housing (19" Devices). (All dimensions in mm, except dimensions in brackets [inch].)

# **WARNING**

The housing must be carefully grounded. Connect a ground cable (protective earth, 4 to 6 mm<sup>2</sup> [AWG 11–9], tightening torque 1.7 Nm [15 lb·in]) to the housing, using the screw that is marked with the ground symbol (at the rear side of the device).

Moreover, the power supply card needs a separate ground connection (functional earth, min. 2.5 mm<sup>2</sup> [ $\leq$  AWG 13], tightening torque 0,56 – 0,79 Nm [5–7 lb·in]). See the "Terminal Marking" diagram in Section "DI-4 X – Power Supply and Digital Inputs" to check for the correct terminal.

All grounding connections (i. e. protective and functional earth) must be lowinductance, i. e. as short as possible, and national standards – if applicable – must be followed.


## Three-Side-View - 8-Pushbutton Version

NOTICE

Dependent on the connection method of the SCADA system used the needed space (depth) differs. If, for instance, a D-Sub-Plug is used, it has to be added to the depth dimension.



The installation diagram shown in this section is exclusively valid for devices with 8 pushbuttons at the front side of the HMI.

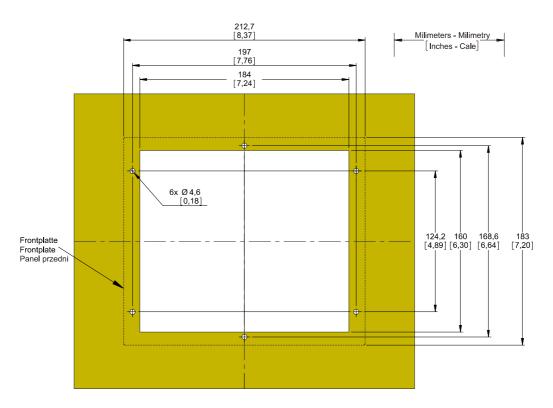


(INFO-, C-, OK-, CTRL-Pushbutton and 4 Softkeys (Pushbuttons)).

3-Side-View B2 Housing (Devices with 8 Softkeys). (All dimensions in mm, except dimensions in brackets [inch].)

**A**WARNING

The housing must be carefully grounded. Connect a ground cable (protective earth, 4 to 6 mm<sup>2</sup> [AWG 11–9], tightening torque 1.7 Nm [15 lb·in]) to the housing, using the screw that is marked with the ground symbol (at the rear side of the device). Moreover, the power supply card needs a separate ground connection (functional earth, min. 2.5 mm<sup>2</sup> [ $\leq$  AWG 13], tightening torque 0,56 – 0,79 Nm [5–7 lb·in]). See the "Terminal Marking" diagram in Section "DI-4 X" to check for the correct terminal. All grounding connections (i. e. protective and functional earth) must be low-inductance, i. e. as short as possible, and national standards – if applicable – must be followed.


## Installation Diagram 8-Pushbutton Version

**A**WARNING

Even when the auxiliary voltage is switched-off, unsafe voltages might remain at the device connections.



The installation diagram shown in this section is exclusively valid for devices with 8 pushbuttons at the front side of the HMI. (INFO-, C-, OK-, CTRL-Pushbutton and 4 Softkeys (Pushbuttons)).



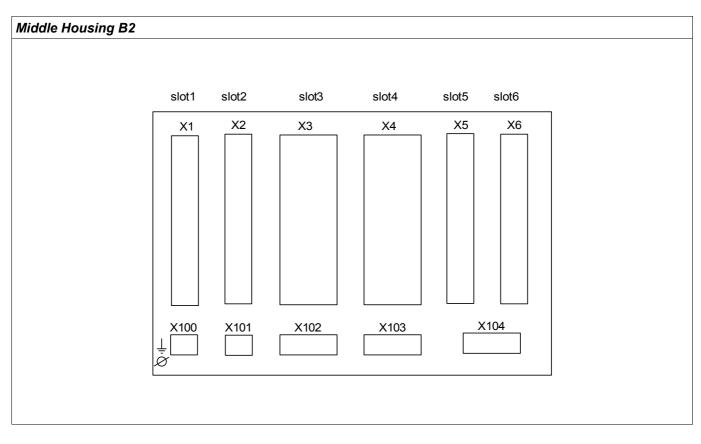
B2 Housing Door Cut-out (8-Pushbutton Version). (All dimensions in mm, except dimensions in brackets [inch].)



The housing must be carefully grounded. Connect a ground cable (protective earth, 4 to 6 mm<sup>2</sup> [AWG 11–9], tightening torque 1.7 Nm [15  $lb\cdot in$ ]) to the housing, using the screw that is marked with the ground symbol (at the rear side of the device).

Moreover, the power supply card needs a separate ground connection (functional earth, min. 2.5 mm<sup>2</sup> [ $\leq$  AWG 13], tightening torque 0,56 – 0,79 Nm [5–7 lb·in ]). See the "Terminal Marking" diagram in Section "DI-4 X – Power Supply and Digital Inputs" to check for the correct terminal.

All grounding connections (i. e. protective and functional earth) must be low-inductance, i. e. as short as possible, and national standards – if applicable – must be followed.




Be careful. Do not overtighten the mountings nuts of the relay (M4 metric 4 mm). Check the torque by means of a torque wrench (1.7 Nm [15 In·lb]). Over-tightening the mounting nuts could cause personal injury or damage the relay.

## Assembly Groups



In line with the customer's requirement the devices are combined in a modular way (in compliance with the order code). In each of the slots an assembly-group may be integrated. In the following the terminal assignment of the individual assembly-groups are shown. The exact installation place of the individual modules can be learned from the connection diagram fixed at the top of your device.



Rear view of B2 housing

## Grounding

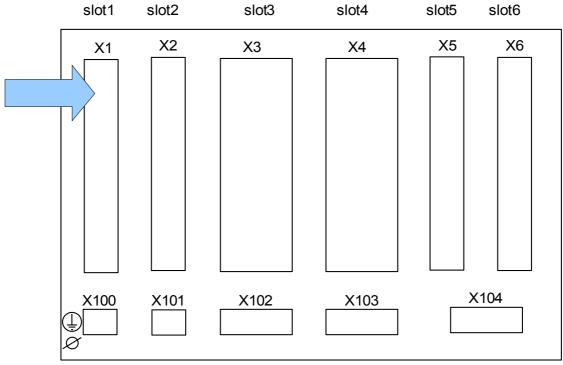


CAUTION

The housing must be carefully grounded. Connect a ground cable (protective earth, 4 to 6 mm<sup>2</sup> [AWG 11–9], tightening torque 1.7 Nm [15 lb·in]) to the housing, using the screw that is marked with the ground symbol (at the rear side of the device).

Moreover, the power supply card needs a separate ground connection (functional earth, min. 2.5 mm<sup>2</sup> [ $\leq$  AWG 13], tightening torque 0,56 – 0,79 Nm [5–7 lb·in]). See the "Terminal Marking" diagram in Section "DI-4 X – Power Supply and Digital Inputs" to check for the correct terminal.

All grounding connections (i. e. protective and functional earth) must be low-inductance, i. e. as short as possible, and national standards – if applicable – must be followed.


The devices are very sensitive to electro-static discharges.

## Legend for Wiring Diagrams

In this legend designations of various device types are listed, e. g. transformer protection, motor protection, generator protection, etc. Therefor it can occur that you will not find each designation on the wiring diagram of your device.

| Designation  | Meaning                                                                           |  |
|--------------|-----------------------------------------------------------------------------------|--|
| FE           | Connection of functional earth                                                    |  |
| Power Supply | Connection for auxiliary power supply                                             |  |
| IL1          | Phase current input L1                                                            |  |
| IL2          | Phase current input L2                                                            |  |
| IL3          | Phase current input L3                                                            |  |
| IG           | Earth current input IG                                                            |  |
| I L1 W1      | Phase current input L1, winding side 1                                            |  |
| I L2 W1      | Phase current input L2, winding side 1                                            |  |
| I L3 W1      | Phase current input L3, winding side 1                                            |  |
| I G W1       | Earth current input IG, winding side 1                                            |  |
| I L1 W2      | Phase current input L1, winding side 2                                            |  |
| I L2 W2      | Phase current input L2, winding side 2                                            |  |
| I L3 W2      | Phase current input L3, winding side 2                                            |  |
| I G W2       | Earth current input IG, winding side 2                                            |  |
| V L1         | Phase voltage L1                                                                  |  |
| V L2         | Phase voltage L2                                                                  |  |
| V L3         | Phase voltage L3                                                                  |  |
| V 12         | Phase to phase voltage V 12                                                       |  |
| V 23         | Phase to phase voltage V 23                                                       |  |
| V 31         | Phase to phase voltage V 31                                                       |  |
| VX           | Forth voltage measuring input for measuring residual voltage or for Synchro-check |  |
| во           | Contact output, change over contact                                               |  |
| NO           | Contact output, normally open                                                     |  |
| DI           | Digital input                                                                     |  |
| СОМ          | Common connection of digital inputs                                               |  |
| Out+         | Analog output + (0/420 mA or 010 V)                                               |  |
| IN-          | Analog input + (0/420 mA or 010 V)                                                |  |
| N.C.         | Not connected                                                                     |  |
| DO NOT USE   | Do not use                                                                        |  |
| SC           | Self supervision contact                                                          |  |
| GND          | Ground                                                                            |  |

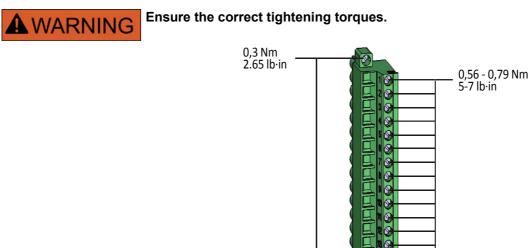
| Designation                                                                                        | Meaning                                                                                            |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| HF SHIELD                                                                                          | Connection cable shield                                                                            |
| Fibre Connection                                                                                   | Fibre optic connection                                                                             |
| Only for use with external galvanic decoupled CTs. See chapter Current Transformers of the manual. | Only for use with external galvanic decoupled CTs. See chapter Current Transformers of the manual. |
| Caution Sensitive Current Inputs                                                                   | Caution Sensitive Current Inputs                                                                   |
| Connection Diagram see specification                                                               | Connection Diagram see specification                                                               |



## Slot X1: Power Supply Card with Digital Inputs

Rear side of the device (Slots)

The type of power supply card and the number of digital inputs on it used in this slot is dependent on the ordered device type. The different variants have a different scope of functions.


Available assembly groups in this slot:

 (DI8-X1): This assembly group comprises a wide-range power supply unit; and two non-grouped digital inputs and six (6) digital inputs (grouped).

# NOTICE

The available combinations can be gathered from the ordering code.

## **DI8-X Power Supply and Digital Inputs**



This assembly group comprises:

- a wide-range power supply unit
- 6 digital inputs, grouped
- 2 digital inputs, non-grouped
- Connector for the functional earth

#### Functional Earth

#### ▲ WARNING In addition to the grounding of the housing (protective earth, see Chapter "Installation and Wiring") there must be an additional ground cable connected to the power supply card (functional earth, min. 2.5 mm<sup>2</sup> [≤ AWG 13], tightening torque 0,56 – 0,79 Nm [5–7 lb·in]). Connect this ground cable to terminal No. 1, see the "Terminals" diagram below. All grounding connections (i. e. protective and functional earth) must be low-inductance, i. e. as short as possible, and national standards – if applicable – must be followed.

#### Auxiliary voltage supply

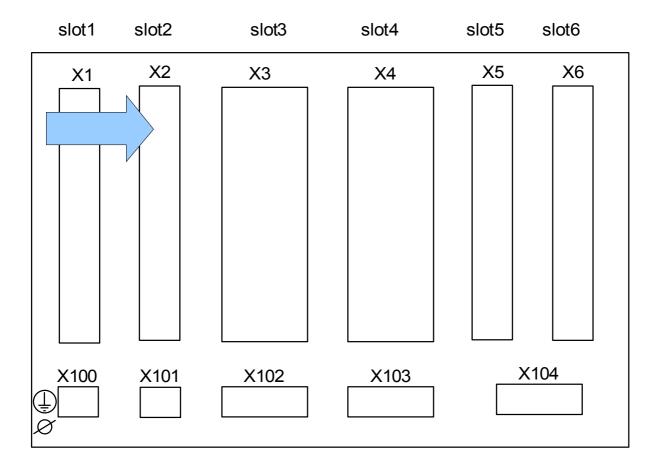
The aux. voltage inputs (wide-range power supply unit) are non-polarized. The device could be provided with AC or DC voltage.

#### Digital inputs

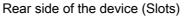


#### For each digital input group the related voltage input range has to be parameterized. Wrong switching thresholds can result in malfunctions/wrong signal transfer times.

The digital inputs are provided with different switching thresholds (can be parameterized) (two AC and five DC input ranges). For the six grouped (connected to common potential) inputs and the two non-grouped inputs the following switching levels can be defined:


- 24V DC
- 48V DC / 60V DC
- 110 V AC/DC
- 230 V AC/DC

If a voltage >80% of the set switching threshold is applied at the digital input, the state change is recognized (physically "1"). If the voltage is below 40% of the set switching threshold, the device detects physically "0".




When using DC supply, the negative potential has to be connected to the common terminal (COM1, COM2, COM3 - please see the terminal marking).

| Terminals                     |                                                          |  |
|-------------------------------|----------------------------------------------------------|--|
|                               |                                                          |  |
|                               | X?.                                                      |  |
|                               | = Functional Earth                                       |  |
|                               | 2 L+ Power Supply                                        |  |
|                               | 3<br>4                                                   |  |
|                               | 5                                                        |  |
|                               | 6 — DI1 <u>- 1</u> 2-                                    |  |
|                               |                                                          |  |
|                               | 8<br>9COM3                                               |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               | 12 — DI4 + 2-                                            |  |
|                               |                                                          |  |
|                               | 14 — DI6 = <sup>1</sup> 2-<br>15 — DI7 = <sup>1</sup> 2- |  |
|                               | 16 DI8                                                   |  |
|                               | 17 do not use                                            |  |
|                               | 18 do not use                                            |  |
|                               |                                                          |  |
| Electro-mechanical assignment |                                                          |  |
|                               |                                                          |  |
|                               | DF8b X                                                   |  |
|                               |                                                          |  |
|                               | Functional Earth                                         |  |
|                               | L+ Power Supply                                          |  |
|                               |                                                          |  |
|                               | <b>4</b> nc.                                             |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               |                                                          |  |
|                               | donot use                                                |  |
|                               |                                                          |  |
|                               | $\oslash$                                                |  |

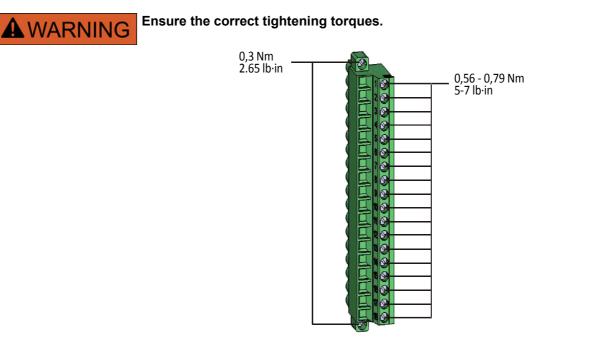


## Slot X2: Relay Output Card



The type of card in this slot is dependent on the ordered device type. The different variants have a different scope of functions.

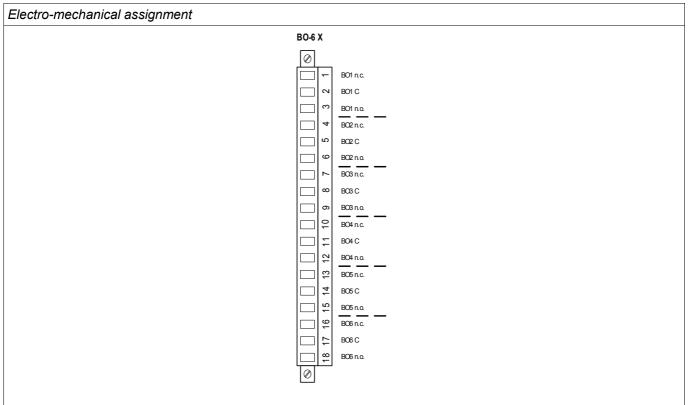
Available assembly groups in this slot:

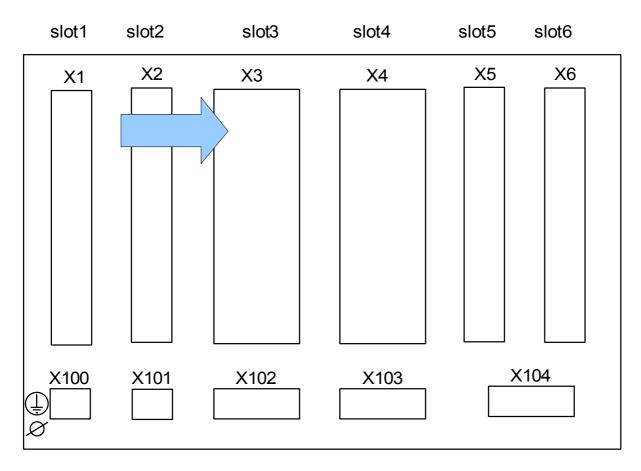

**(RO-6 X2):** Assembly Group with 6 Relay Outputs.

# NOTICE

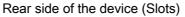
The available combinations can be gathered from the ordering code.

## **Binary Output Relays**


The number of the binary output relay contacts is related to the type of the device or type code. The binary output relays are potential-free change-over contacts. In chapter [Assignment/binary outputs] the assignment of the binary output relays is specified. The changeable signals are listed in the »assignment list« which can be found in the appendix.







Please duly consider the current carrying capacity of the binary output relays. Please refer to the Technical Data.



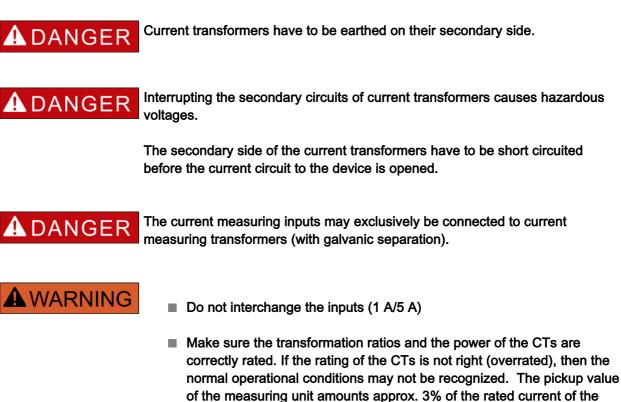




## Slot X3: Current Transformer Measuring Inputs



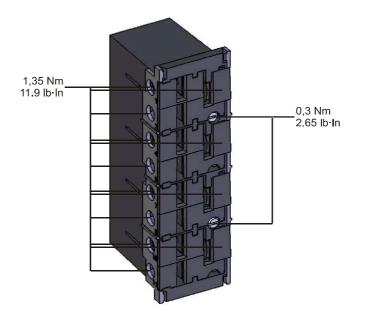
This slot contains the current transformer measuring inputs. Depending on the order code, this might be a standard current measuring card or a sensitive ground current measuring card.


#### Available assembly groups in this slot:

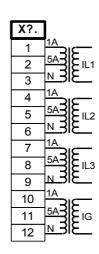
- (TI-4 X3): Standard ground current measuring card.
- (TIS-4 X3): Sensitive Ground current measuring card. The Technical data of the sensitive ground measuring input deviate are different to the Technical Data of the phase current measuring inputs. Please refer to the Technical Data.

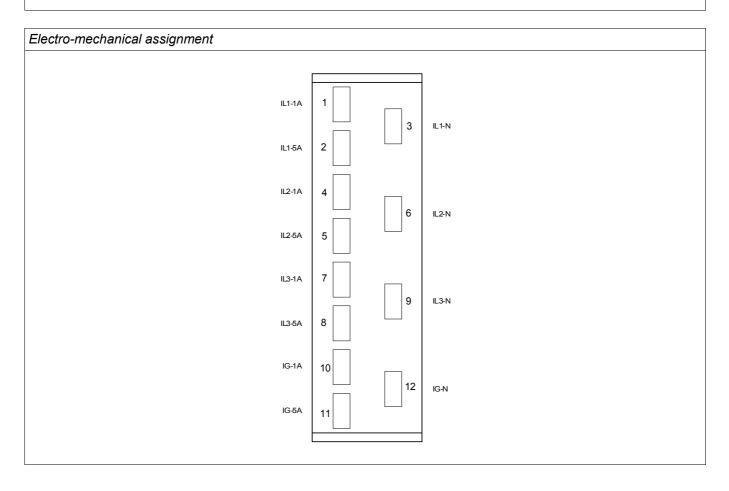
## TI X- Standard Phase and Ground Current Measuring Input Card

This measuring card is provided with 4 current measuring inputs: three for measuring the phase currents and one for measuring of the earth current. Each of the current measuring inputs has a measuring input for 1 A and 5 A.


The input for earth current measuring either can be connected to a cable-type current transformer or alternatively it is possible to connect the summation current path of the phase current transformer to this input (Holmgreen connection).




- device. Also the CTs need a current greater than approx 3% of the rated current to ensure sufficient accuracy. Example: For a 600 A CT (primary current) any currents below 18 A cannot be detected any more.
- Overloading can result in destruction of the measuring inputs or faulty signals. Overloading means that in case of a short-circuit the currentcarrying capacity of the measuring inputs could be exceeded.




Ensure the correct tightening torques.









## TIS X – Phase and Sensitive Ground Current Measuring Card

The measuring card is provided with 4 current measuring inputs: three for measuring the phase currents and one for measuring of the earth current. The sensitive Ground current Input has different technical data. Please refer to chapter Technical Data.

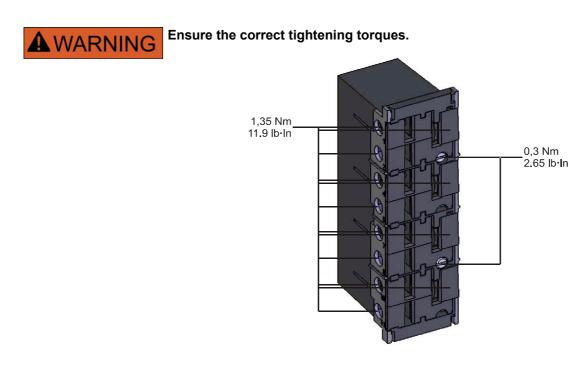
The input for earth current measuring either can be connected to a cable-type current transformer or alternatively it is possible to connect the summation current path of the phase current transformer to this input (Holmgreen connection).



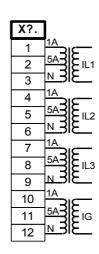
Current transformers have to be earthed on their secondary side.

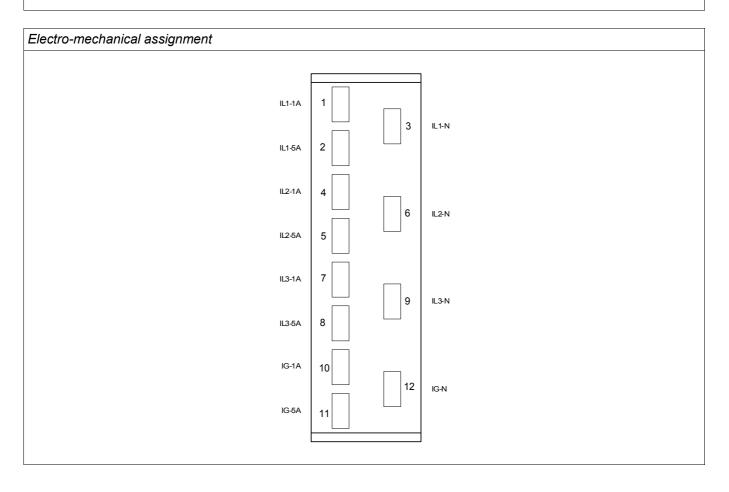


Interrupting the secondary circuits of current transformers causes hazardous voltages.


The secondary side of the current transformers have to be short circuited before the current circuit to the device is opened.




The current measuring inputs may exclusively be connected to current measuring transformers (with galvanic separation).




- Do not interchange the inputs (1 A/5 A)
- Make sure the transformation ratios and the power of the CTs are correctly rated. If the rating of the CTs is not right (overrated), then the normal operational conditions may not be recognized. The pickup value of the measuring unit amounts approx. 3% of the rated current of the device. Also the CTs need a current greater than approx 3% of the rated current to ensure sufficient accuracy. Example: For a 600 A CT (primary current) any currents below 18 A cannot be detected any more.
- Overloading can result in destruction of the measuring inputs or faulty signals. Overloading means that in case of a short-circuit the currentcarrying capacity of the measuring inputs could be exceeded.









## Current Transformers (CT)

Check the installation direction.



It is imperative that the secondary sides of measuring transformers be grounded.



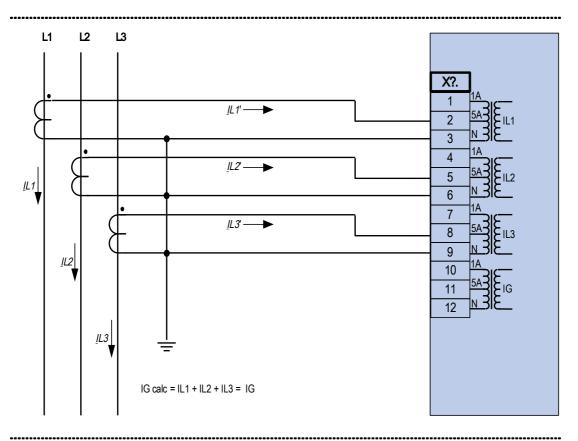
The current measuring inputs may exclusively be connected to current measuring transformers (with galvanic separation).



CT secondary circuits must always to be low burdened or short-circuited during operation.

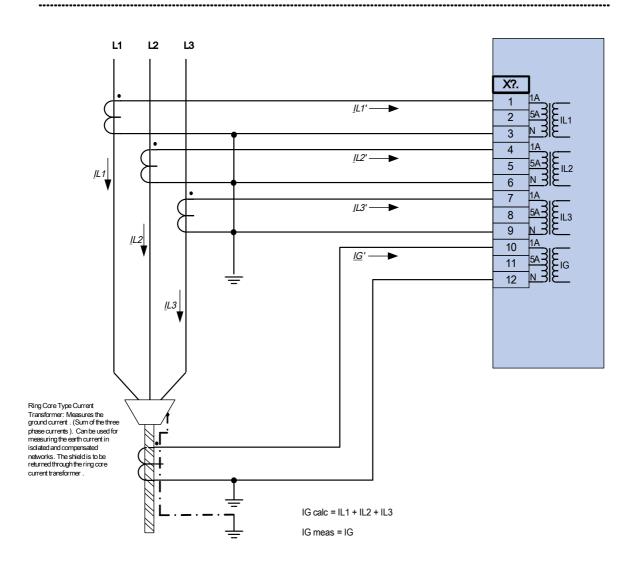


For current and voltage sensing function external wired and appropriate current and voltage transformer shall be used, based on the required input measurement ratings. Those devices provide the necessary insulation functionality.


All current measuring inputs can be provided with 1 A or 5 A nominal. Make sure that the wiring is correct.

#### **Sensitive Ground Current Measurement**

The proper use of sensitive current measuring inputs is the measurement of small currents like they could occur in isolated and high resistance grounded networks.

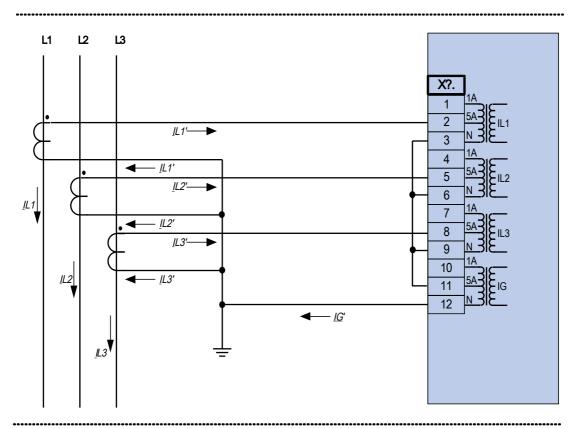

Due to the sensitiveness of these measuring inputs don't use them for the measurement of ground short circuit currents like they occur in solidly earthed networks.

If a sensitive measuring input should be used for the measurement of ground short circuit currents, it has to be ensured, that the measuring currents are transformed by a matching transformer according to the technical data of the protective device.

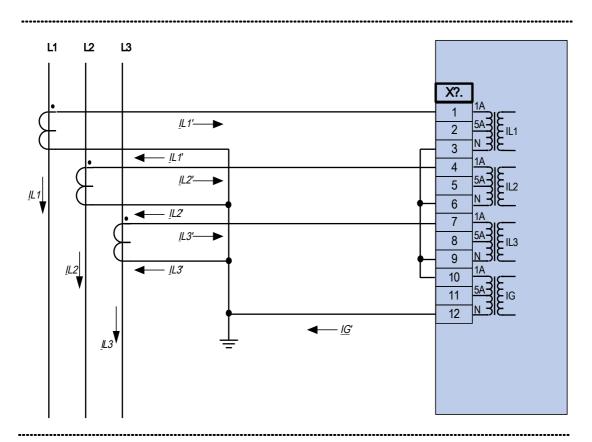


## **Current Transformer Connection Examples**

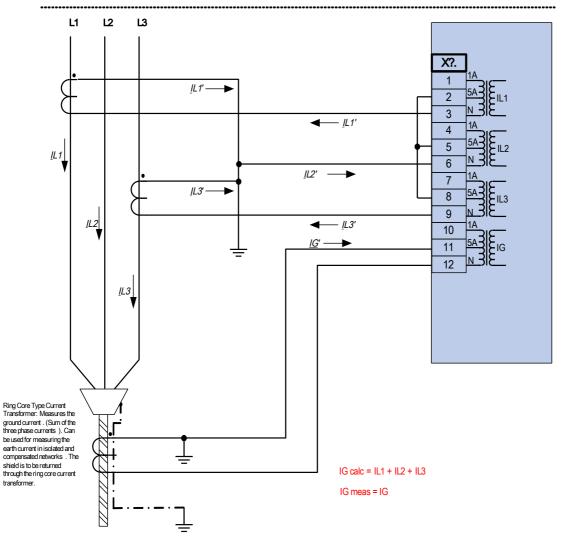
Three phase current measurement; In secondary = 5 A.




Three phase current measurement; In secondary = 1 A. Earth-current measuring via cable-type current transformer ; IGnom secondary = 1 A.




# Warning!


The shielding at the dismantled end of the line has to be put through the cable -type current transformer and has to be grounded at the cable side .

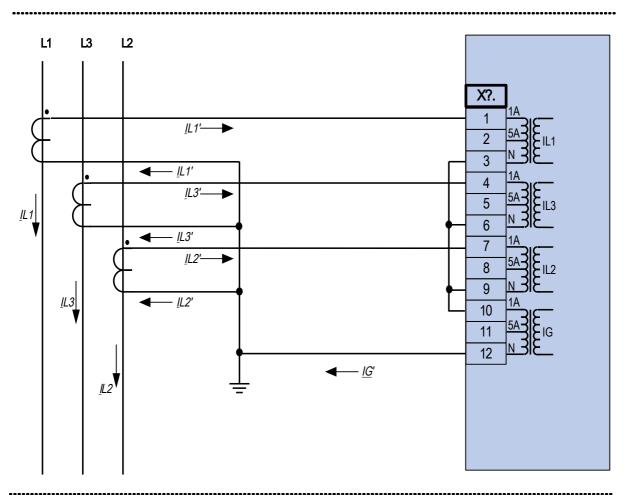


Three phase current measurement; In secondary = 5 A. Earth-current measuring via Holmgreen-connection; IGnom secondary = 5 A.

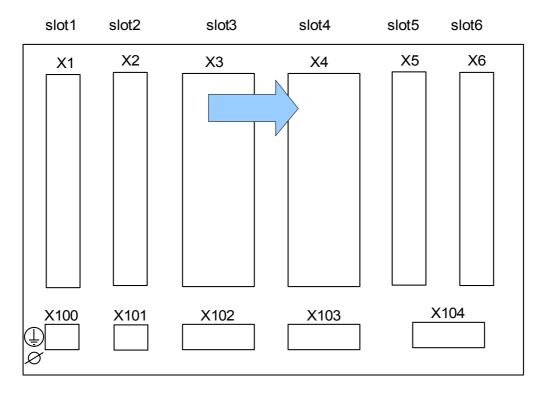


Three phase current measurement; In secondary = 1 A. Earth-current measuring via Holmgreen-connection; IGnom secondary = 1 A.




Two phase current measurement (Open Delta); In secondary = 5 A.

Earth-current measuring via cable-type current transformer; IGnom secondary = 5 A.




#### Warning!

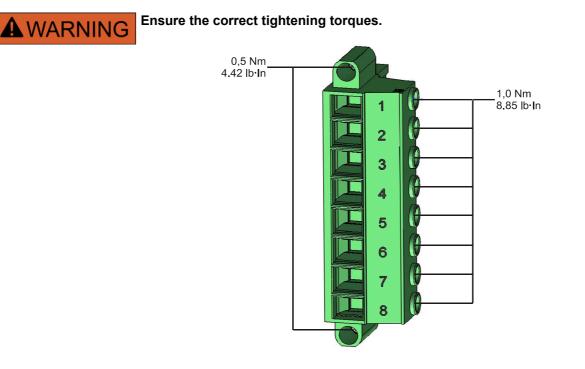
The shielding at the dismantled end of the line has to be put through the cable -type current transformer and has to be grounded at the cable side .



Three phase current measurement; In secondary = 1 A. Earth-current measuring via Holmgreen-connection; IGnom secondary = 1 A.



# Slot X4: Voltage Transformer Measuring Inputs

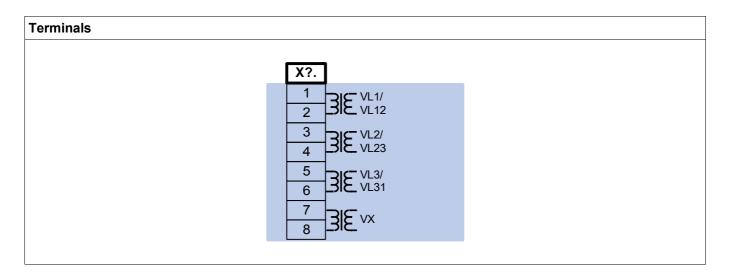

Rear side of the device (Slots)

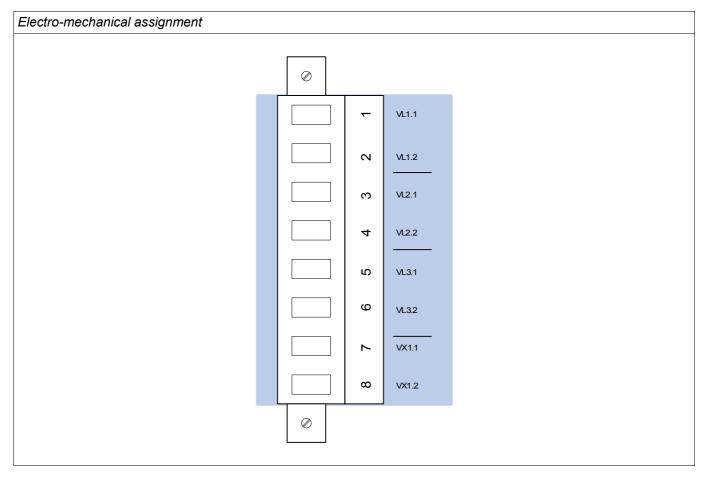
This slot contains the voltage transformer measuring inputs.

## **Voltage Measuring Inputs**

The device is provided with 4 voltage measuring inputs: three for measuring the phase-to-phase voltages (*»V12«, »V23« , »V31«*) or phase-to-neutral voltages (*»VL1«, »VL2«, »VL3«*) and one for the measuring of the residual voltage *»VE«.* With the field parameters the correct connection of the voltage measuring inputs has to be set:

- phase-to-neutral (star)
- phase-to-phase (Open Delta respectively V-Connection)





# CAUTION

The rotating field of your power supply system has to be taken in to account. Make sure that the transformer is wired correctly.

For the V-connection the parameter »VT con« has to be set to »phase-to-phase«.

Please refer to the Technical Data.





### **Voltage Transformers**

Check the installation direction of the VTs.



It is imperative that the secondary sides of measuring transformers be grounded.



For current and voltage sensing function external wired and appropriate current and voltage transformer shall be used, based on the required input measurement ratings. Those devices provide the necessary insulation functionality.

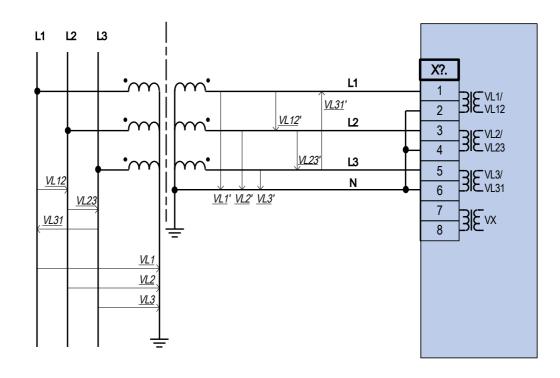
### Check of the Voltage Measuring Values

Connect a three-phase measuring voltage equal to the rated voltage to the relay.

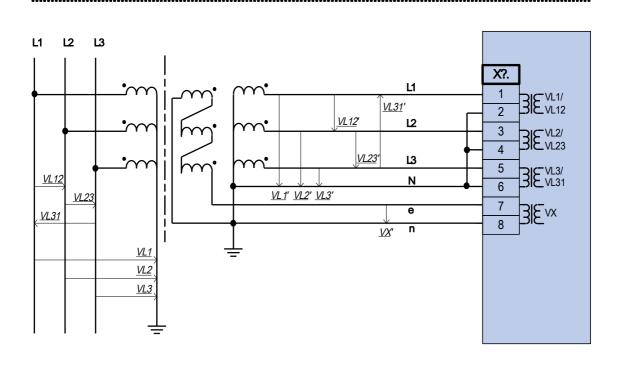


Take connection of the measuring transformers (star connection/open delta connection) duly into account.

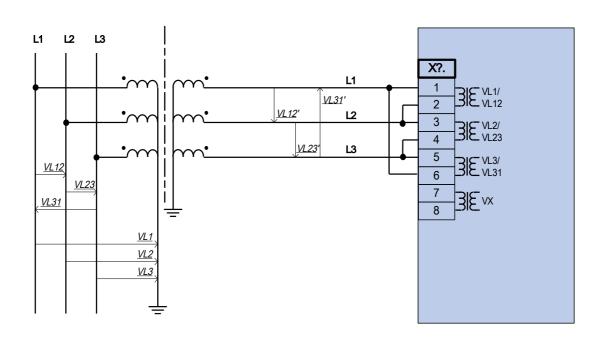
Now adjust voltage values in the nominal voltage range with the corresponding nominal frequency which are not likely to cause overvoltage- or undervoltage trips.


Compare the values shown in the device display with the readings of the measuring instruments. The deviation must be according to the technical data.

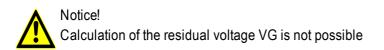
# NO<u>TICE</u>

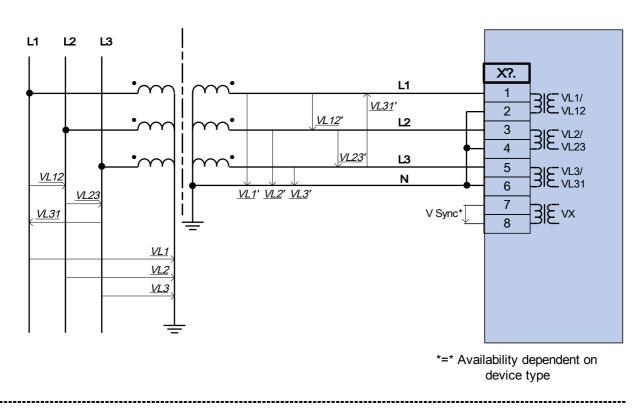

When r.m.s. value measuring instruments are used, higher deviations can arise if the fed voltage has a very high harmonic content. Since the device is provided with a filter for the harmonics, only the fundamental oscillation is evaluated (exception: thermal protection functions). If, however, a r.m.s. value forming measuring instrument is used, the harmonics are also measured.

## Wiring Examples of the Voltage Transformers

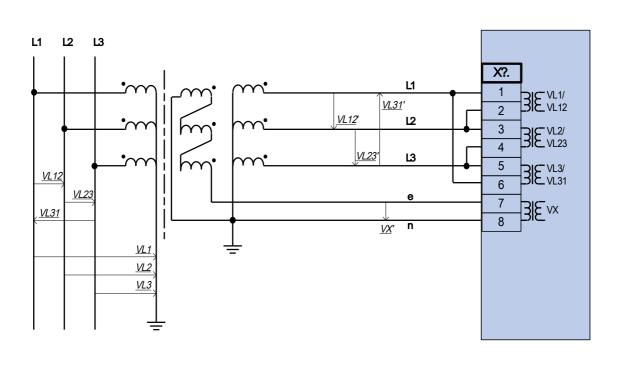

.....



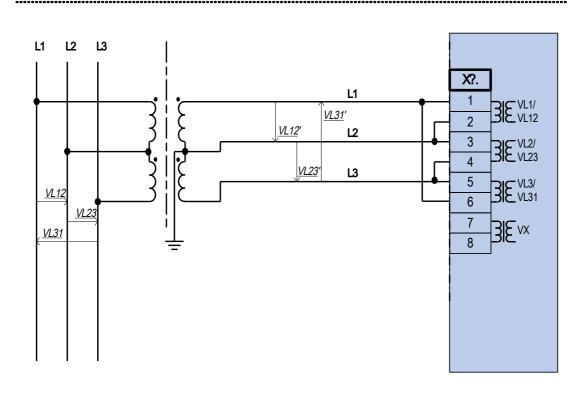

Three-phase voltage measurement - wiring of the measurement inputs: "star-connection"



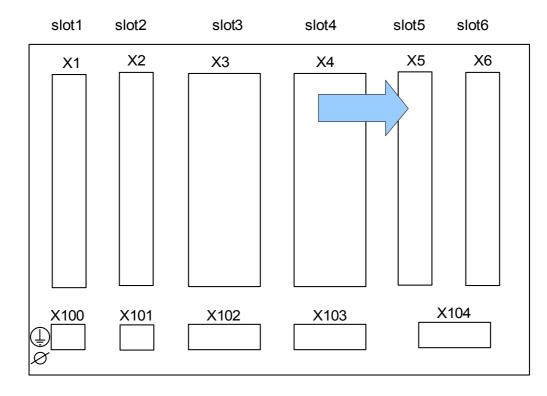

Three-phase voltage measurement - wiring of the measurement inputs : "star-connection" Measurement of the residual voltage VG via auxilliary windings (e-n) "broken delta"




Three-phase voltage measurement - wiring of the measurement inputs: "delta-connection"







Three-phase voltage measurement - wiring of the measurement inputs: "star-connection". Fourth measuring input for measuring a synchronisation voltage.



Three-phase voltage measurement - wiring of the measurement inputs: "delta-connection" Measurement of the residual voltage VG via auxilliary windings (e-n) "broken delta"



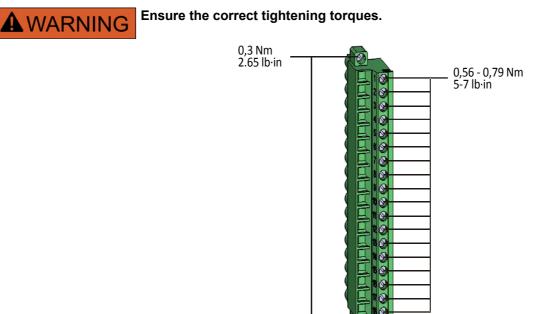
Two-phase voltage measurement - wiring of the measuring inputs: "Open Delta"



## Slot X5: Relay Output Card

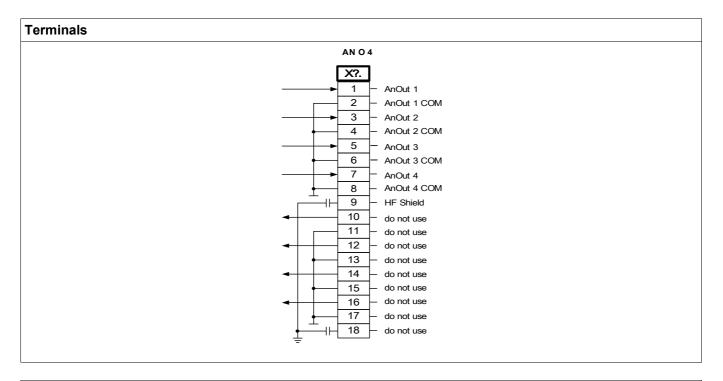
Rear side of the device (Slots)

The type of card in this slot is dependent on the ordered device type. The different variants have a different scope of functions.

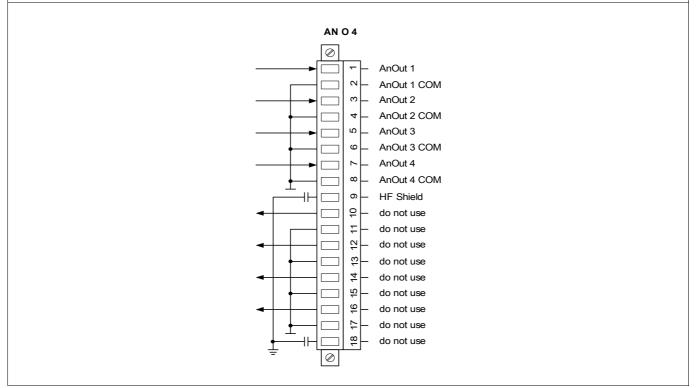

Available assembly groups in this slot:

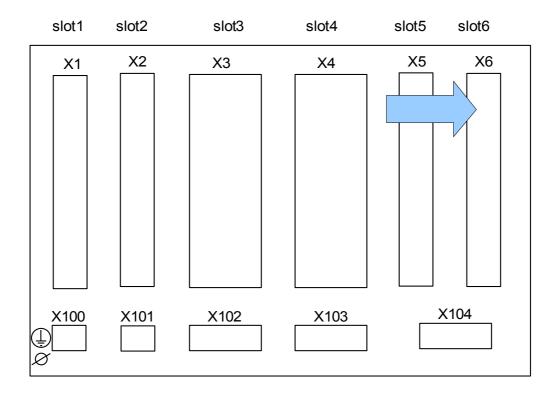
**(AO-4 X5):** Assembly Group with 4 Analog Outputs (Availability depends on ordered device).




The available combinations can be gathered from the ordering code.

## 4A0 X - Analog Outputs





There are 4 Analog Output channels that are configurable to either output 0-20 mA, 4-20 mA, or 0-10 V. Each of the 4 channels can be independently programmed to either of these three output modes.

For details on the Analog Output, please refer to the Technical Data.



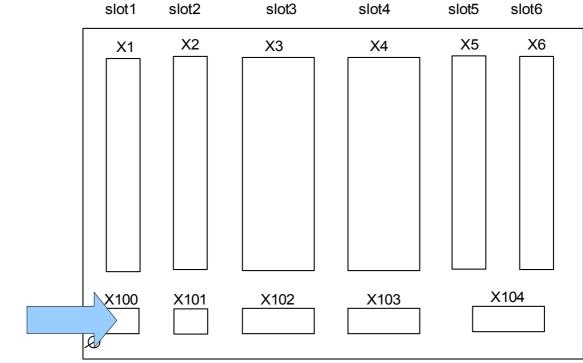
#### Electro-mechanical assignment





## Slot X6: Relay Output Card

Rear side of the device (Slots)


The type of card in this slot is dependent on the ordered device type. The different variants have a different scope of functions.

Available assembly groups in this slot:

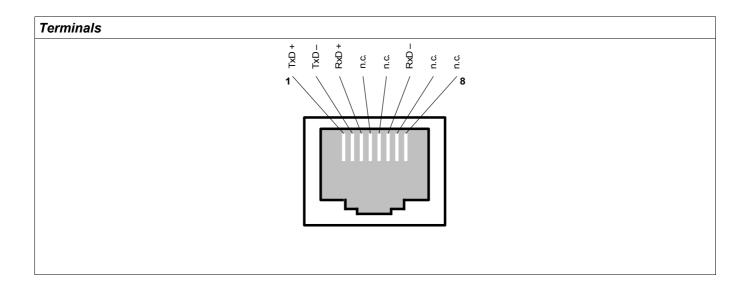
**(RO-6 X6):** Assembly Group with 6 Relay Outputs. The Relay Output Card is identical with the one on Slot X2.

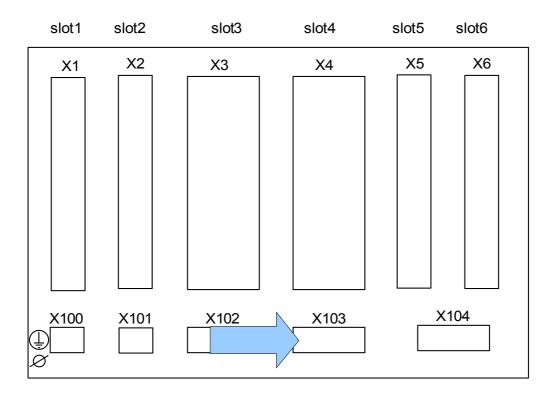


The available combinations can be gathered from the ordering code.



## Slot X100: Ethernet Interface


Rear side of the device (Slots)


An Ethernet interface may be available depending on the device type ordered.

NOTICE

The available combinations can be gathered from the ordering code.

## Ethernet - RJ45



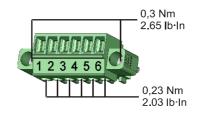


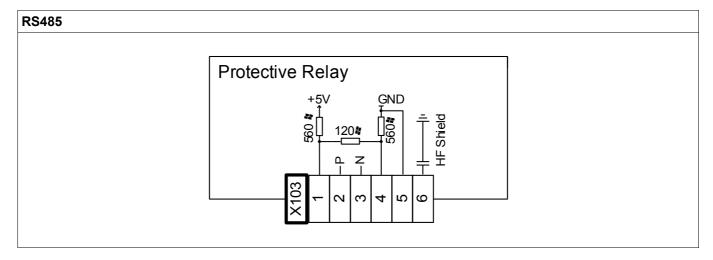
#### Slot X103: Data Communication

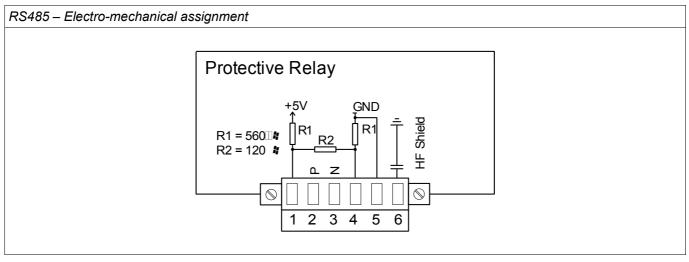
Rear side of the device (Slots)

The data communication interface in the **X103** slot is dependent on the ordered device type. The scope of functions is dependent on the type of data communication interface.

Available assembly groups in this slot:


- RS485 Terminals for Modbus, DNP and IEC
- Fiber Optics Interface for Modbus, DNP and IEC
- Fiber Optics Interface for Profibus
- D-SUB Interface for Modbus, DNP and IEC
- D-SUB Interface for Profibus
- Fiber Optics Interface for Ethernet

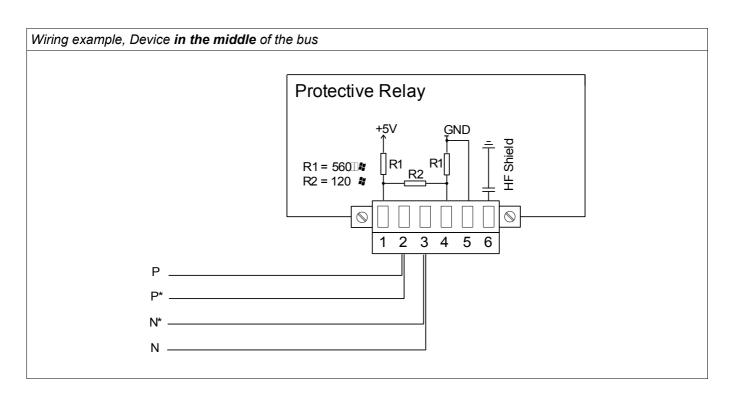

**NOTICE** The available combinations can be gathered from the ordering code.

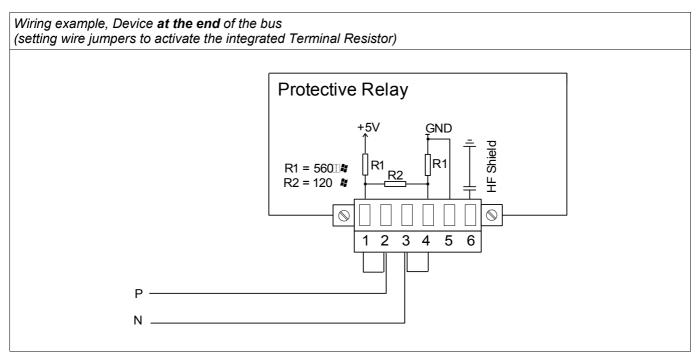

#### Modbus® RTU / IEC 60870-5-103 via RS485



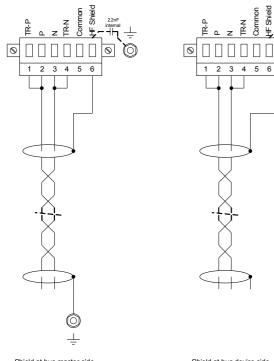
Ensure the correct tightening torques.





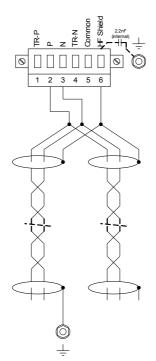




# NOTICE

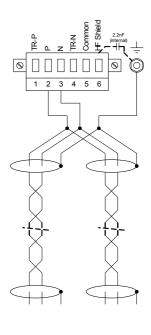

The Modbus $^{\circ}$  / IEC 60870-5-103 connection cable must be shielded. The shielding has to be fixed at the screw beneath the interface at the rear side of the device.

The communication is halfduplex.

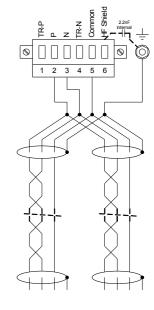





#### Shielding Options (2-wire + Shield)

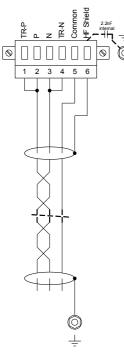



Shield at bus master side connected to earth termination resistors used Shield at bus device side connected to earth termination resistors used

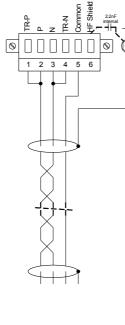

0



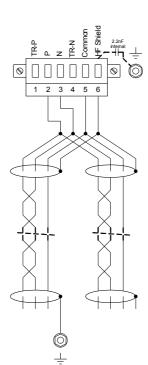
Shield at bus master side connected to earth termination resistors not used




Shield at bus device side connected to earth termination resistors not used

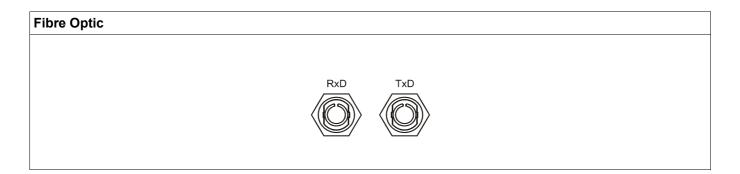



Shield at bus device side connected to earth termination resistors not used


#### Shielding Options (3-wire + Shield)



-Shield at bus master side connected to earth termination resistors used




Shield at bus device side connected to earth termination resistors used



Shield at bus master side connected to earth termination resistors not used

# Profibus DP/ Modbus $^{\circ}$ RTU / IEC 60870-5-103 via fibre optic



#### Modbus® RTU / IEC 60870-5-103 via D-SUB

# 

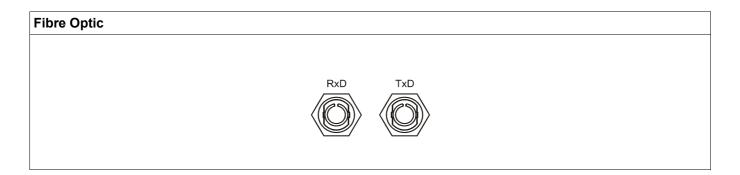
Electro-mechanical assignment

D-SUB assignment - bushing 1 Earthing/shielding 3 RxD TxD - P: High-Level 4 RTS-signal 5 DGND: Ground, neg. Potential of aux voltage supply 6 VP: pos. Potential of the aux voltage supply 8 RxD TxD - N: Low-Level

NOTICE

The connection cable must be shielded.

#### Profibus DP via D-SUB


| D-SUB                       |                                                                                                              |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------|--|
|                             | $\begin{pmatrix} 6 \circ \circ \circ \circ \circ 9 \\ 1 \circ \circ \circ \circ \circ \circ 5 \end{pmatrix}$ |  |
| Electro-mechanical assignme | t                                                                                                            |  |

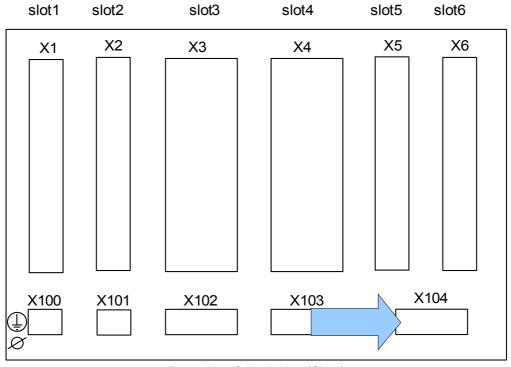
D-SUB assignment - bushing 1 Earthing/shielding 3 RxD TxD - P: High-Level 4 RTS-signal 5 DGND: Ground, neg. Potential of aux voltage supply 6 VP: pos. Potential of the aux voltage supply 8 RxD TxD - N: Low-Level



The connection cable must be shielded. The shielding has to be fixed at the screw which is marked with the ground symbol at the back side of the device.

# Profibus DP/ Modbus® RTU / IEC 60870-5-103 via fibre optic



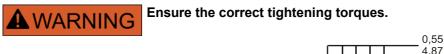

## Ethernet / TCP/IP via Fiber Optics

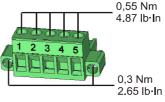
| Fiber Optics - FO |                        |  |
|-------------------|------------------------|--|
|                   |                        |  |
|                   | Fibre connection / LWL |  |
|                   | RxD TxD                |  |
|                   |                        |  |
|                   |                        |  |

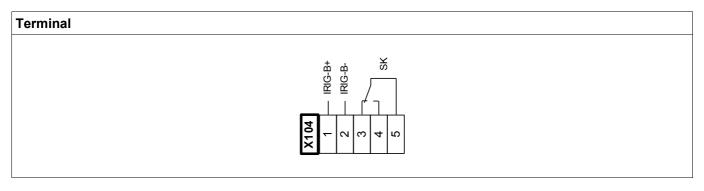


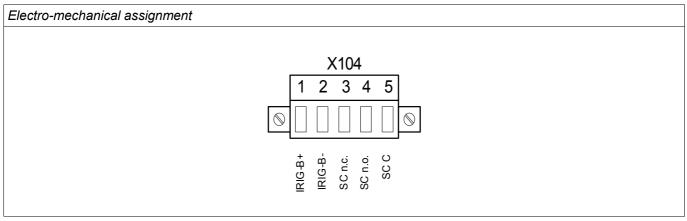
After plugging in the LC connector, fasten the metal protecting cap.

The tightening torque for the screw is 0.3 Nm [2.65 lb·in]).





## Slot X104: IRIG-B00X and Supervision Contact

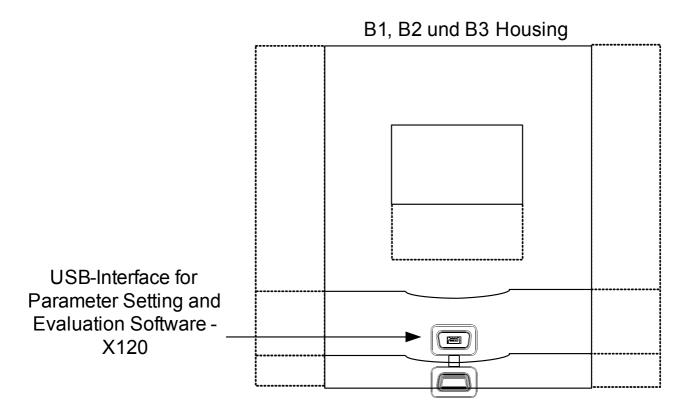

Rear side of the device (Slots)


This comprises the IRIG-B00X and the System contact (Supervision Contact).

#### Self-Supervision Contact (SC)/Life-Contact and IRIG-B00X

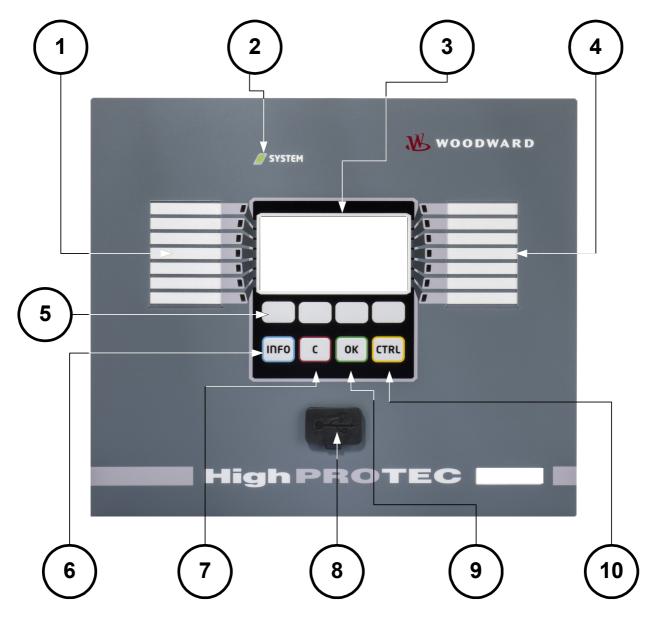


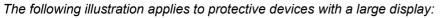


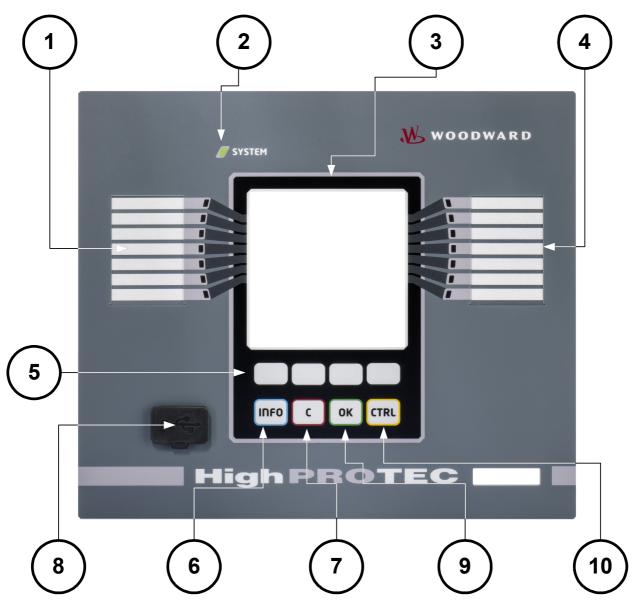





The *Self-Supervision Contact (SC relay)/Life-Contact* cannot be configured. The system contact is a changeover contact that picks up when the device is free from internal faults. While the device is booting up, the *Self-Supervision Contact (SC relay)/Life-Contact* remains dropped-off (unenergized). As soon as the system is properly started (and protection is active), the *Self-Supervision Contact (SC relay)/Life-Contact* picks up and the assigned LED (System OK) is activated accordingly (please refer to the Self Supervision chapter).


## PC Interface - X120


• USB (Mini-B)




# Navigation - Operation

The following illustration applies to protective devices with a small display:







| 1 |        | LEDs group A<br>(left)  | Messages inform you about<br>operational conditions, system<br>data or other device particulars.<br>They additionally provide you<br>with information regarding<br>failures and functioning of the<br>device as well as other states of<br>the device and the equipment.<br>Alarm signals can be freely<br>allocated to LEDs out of the<br>»assignment list«.<br>An overview about all alarm<br>signals available in the device<br>can be obtained from the<br>»ASSIGNMENT LIST« which can be<br>found in the appendix.  |
|---|--------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | SYSTEM | LED »System<br>OK«      | Should LED »System OK« flash red during operation, contact the Service Dept. immediately.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 |        | Display                 | Via the display you can read-out<br>operational data and edit<br>parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4 |        | LEDs group B<br>(right) | Messages inform you about<br>operational conditions, system<br>data or other device particulars.<br>They additionally provide you<br>with information regarding<br>failures and functioning of the<br>device as well as other states of<br>the device and the equipment.<br>Alarm signals can be freely<br>allocated to LEDs out of the<br>»assignment list« .<br>An overview about all alarm<br>signals available in the device<br>can be obtained from the<br>»assignment list« which can be<br>found in the appendix. |
| 5 |        | Softkeys                | The function of the<br>»SOFTKEYS« are contextual.<br>On the bottom line of the display<br>the present function is<br>displayed/symbolized.<br>Possible functions are:                                                                                                                                                                                                                                                                                                                                                    |

| 1 |      |                                    |                                                                                                                                                                                                                                  |
|---|------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |      |                                    | Navigation                                                                                                                                                                                                                       |
|   |      |                                    | Parameter<br>decrement/increment.                                                                                                                                                                                                |
|   |      |                                    | Scrolling up/down a menu<br>page                                                                                                                                                                                                 |
|   |      |                                    | Moving to a digit                                                                                                                                                                                                                |
|   |      |                                    | Change into the parameter setting mode »wrench symbol«.                                                                                                                                                                          |
| 6 | INFO | INFO Key<br>(Signals/Messa<br>ges) | Looking through the present<br>LED assignment. The direct<br>select key can be actuated at<br>any time.                                                                                                                          |
|   |      |                                    | If the INFO key is actuated<br>once, the »LEFT LED SIGNALS«<br>are inserted, if the INFO key is<br>actuated again, the »RIGHT LED<br>SIGNALS« are inserted. If the<br>INFO key is actuated again you<br>will leave the LED menu. |
|   |      |                                    | Here only the first assignments<br>of the LEDs will be shown. Every<br>three seconds the »SOFTKEYs«<br>will be shown (flashing).                                                                                                 |
|   |      |                                    | Displaying the multiple<br>Assignments                                                                                                                                                                                           |
|   |      |                                    | If the INFO-Button is pressed<br>only the first assignments of any<br>LED is shown. Every three<br>seconds the »SOFTKEYs« will<br>be shown (flashing).                                                                           |
|   |      |                                    | If there is more than one signal<br>assigned to a LED (indicated by<br>three dots) you can check the<br>state of the multiple<br>assignments if you proceed as<br>follows.                                                       |
|   |      |                                    | In order to show all (multiple)<br>assignments select a LED by<br>means of the »SOFTKEYs«<br>»up« and »down«                                                                                                                     |
|   |      |                                    | Via the »Softkey« »right« call up<br>a Submenu of this LED that<br>gives you detailed information<br>on the state of all signals                                                                                                 |

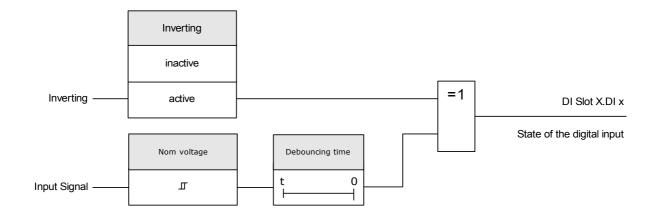
|    |                         |                                                     | assigned to this LED. An arrow<br>symbol points to the LED whose<br>assignments are currently<br>displayed.<br>Via the »SOFTKEYs« »up« and<br>»down« you can call up the<br>next / previous LED.<br>In order to leave the LED menu<br>press the »SOFTKEY« »left«<br>multiple times. |
|----|-------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | C                       | »C Key«                                             | To abort changes and to<br>acknowledge messages.<br>In order to reset please press<br>the Softkey »wrench« and enter<br>the password.<br>The reset menu can be left by<br>pressing the Softkey »Arrow-<br>left«                                                                     |
| 8  | Stephene and the second | USB Interface<br>( <i>Smart view</i><br>Connection) | Connection to software <i>Smart view</i> is done via the USB interface.                                                                                                                                                                                                             |
| 9  | ок                      | »OK Key«                                            | When using the »OK« key<br>parameter changes are<br>temporarily stored. If the »OK«<br>key is pressed again, those<br>changes are stored definitely.                                                                                                                                |
| 10 | CTRL                    | »CTRL Key«*                                         | Direct Access to the Control<br>Menu.                                                                                                                                                                                                                                               |

\*=Not for all devices available.

#### **Basic Menu Control**

The graphic user interface is equivalent to a hierarchical structured menu tree. For access to the individual submenus the »SOFTKEYS«/Navigation Keys are used. The function of the »SOFTKEYS« can be found as symbol in the footer of the display.

| Softkey       | Description                                                                                                        |
|---------------|--------------------------------------------------------------------------------------------------------------------|
|               | Via »SOFTKEY« »up« you will come to the prior menu point/one parameter up by scrolling<br>upwards.                 |
|               | Via »SOFTKEY« »left« you will go one step back.                                                                    |
|               | Via »SOFTKEY« »down« you will change to the next menu point/one parameter down by scrolling downwards.             |
|               | Via »SOFTKEY« »right« you will come to a submenu.                                                                  |
| 1             | Via »SOFTKEY« »Top of list« you will jump directly to the top of a list.                                           |
| ÷             | Via »SOFTKEY« »Bottom of list« you will jump directly to the end of a list.                                        |
| +             | Via »SOFTKEY« »+«the related digit will be incremented. (Continuous pressure -> fast).                             |
| _             | Via »SOFTKEY« »-«the related digit will be decremented. (Continuous pressure -> fast)                              |
| $\leftarrow$  | Via »SOFTKEY« »left« you will go one digit to the left.                                                            |
| $\rightarrow$ | Via »SOFTKEY« »right« you will go one digit to the right.                                                          |
| ÿ             | Via »SOFTKEY« »Parameter setting« you will call up the parameter setting mode.                                     |
| 0             | Via »SOFTKEY« »Parameter setting« you will call up the parameter setting mode. Password<br>authorization required. |
| X             | Via »SOFTKEY« »delete« data will be deleted.                                                                       |
| Ŧ             | Fast forward scrolling is possible via »SOFTKEY« »Fast forward«                                                    |
| Ŧ             | Fast backward scrolling is possible via »SOFTKEY« »Fast backward«                                                  |


In order to return to the main menu, just keep pressing the Softkey »Arrow-Left« until you arrive at the »main menu».

# Input, Output and LED Settings

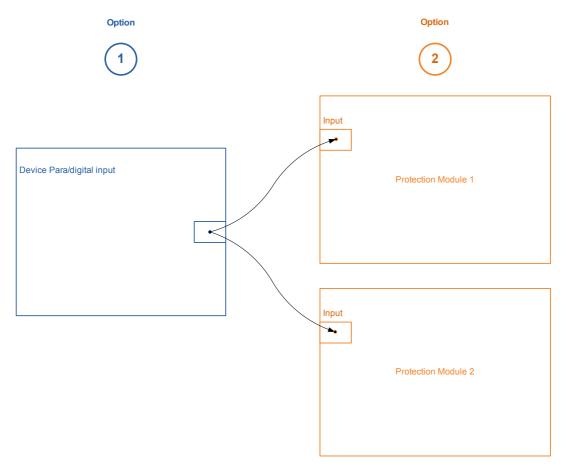
#### Configuration of the Digital Inputs

Set the following parameters for each of the digital inputs:

- »Nominal voltage«
- »Debouncing time«: A state change will only be adopted by the digital input after the debouncing time has expired.
- »Inverting« (where necessary)






The debouncing time will be started each time the state of the input signal alternates.

CAUTION

In addition to the debouncing time that can be set via software, there is always a hardware debouncing time (approx 12 ms) that cannot be turned of.

#### Assignment of Digital Inputs

There are two options available in order to determine where a Digital Input should be assigned to.



Option 1 – Assigning a Digital Input onto one or multiple modules.

#### Adding an assignment:

Within menu [Device Parameter\Digital Inputs] Digital Inputs can be assigned onto one or multiple targets.

Call up the Digital Input (Arrow right on the DI). Click on the Softkey *»Parameter Setting/Wrench«*. Click on *»Add«* and assign a target. Assign where required additional targets.

#### Deleting an assignment:

Select as described above a Digital Input that should be edited at the HMI.

Call up the assignments of the Digital Input (Arrow-right on the DI) and select the assignment that should be removed/deleted (Please note, this has to marked with the cursor). The assignment can now be deleted at the HMI by means of the Softkey *»Parameter setting«* and selection of *»remove«*. Confirm the parameter setting update.

#### Option 2 – Connecting a Module Input with a Digital Input

Call a module. Within this module assign a Digital Input onto a module input. Example: A protection module should be blocked depending on the state of a Digital Input.. For this assign onto the blocking input within the Global Parameters the Digital Input (e.g. Ex Blo 1).

#### Checking the Assignments of a Digital Input

In order to check the targets that a Digital Input is assigned to please proceed as follows:

Call up menu [Device Parameter\Digital Inputs].

Navigate to the Digital Input that should be checked.

#### At the HMI:

A multiple assignment, that means if a Digital Input is used more than once (if it is assigned to multiple targets), this will be indicated by an "..." behind a Digital Input. Call up this Digital Input by Softkey »Arrow right« in order to see the list of targets of this Digital Input.

#### DI-8P X

DI Slot X1

# Device Parameters of the Digital Inputs on DI-8P $\rm X$

| Parameter            | Description                                                                                                                            | Setting range          | Default                  | Menu path       |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|-----------------|
| Nom voltage          | Nominal voltage of the digital inputs                                                                                                  | 24 V DC,               | 24 V DC                  | [Device Para    |
| $\bigotimes$         |                                                                                                                                        | 48 V DC,               |                          | /Digital Inputs |
|                      |                                                                                                                                        | 60 V DC,               |                          | /DI Slot X1     |
|                      |                                                                                                                                        | 110 V DC,              |                          | /Group 1]       |
|                      |                                                                                                                                        | 230 V DC,              |                          |                 |
|                      |                                                                                                                                        | 110 V AC,              |                          |                 |
|                      |                                                                                                                                        | 230 V AC               |                          |                 |
| Inverting 1          | Inverting the input signals.                                                                                                           | inactive,              | inactive                 | [Device Para    |
|                      |                                                                                                                                        | active                 |                          | /Digital Inputs |
|                      |                                                                                                                                        |                        |                          | /DI Slot X1     |
|                      |                                                                                                                                        |                        |                          | /Group 1]       |
| Debouncing           | A change of the state of a digital input will                                                                                          | no debouncing          | no                       | [Device Para    |
| time 1               | only be recognized after the debouncing<br>time has expired (become effective). Thus,<br>transient signals will not be misinterpreted. | time,                  | debouncing<br>time       | /Digital Inputs |
|                      |                                                                                                                                        | 20 ms,                 |                          | /DI Slot X1     |
| $\bigotimes$         |                                                                                                                                        | 50 ms,                 |                          | /Group 1]       |
|                      |                                                                                                                                        | 100 ms                 |                          |                 |
| Nom voltage          | Nominal voltage of the digital inputs                                                                                                  | 24 V DC,               | 24 V DC                  | [Device Para    |
| <b>•</b>             |                                                                                                                                        | 48 V DC,               |                          | /Digital Inputs |
| $\bigotimes$         |                                                                                                                                        | 60 V DC,               |                          | /DI Slot X1     |
|                      |                                                                                                                                        | 110 V DC,              |                          | /Group 2]       |
|                      |                                                                                                                                        | 230 V DC,              |                          |                 |
|                      |                                                                                                                                        | 110 V AC,              |                          |                 |
|                      |                                                                                                                                        | 230 V AC               |                          |                 |
| Inverting 2          | Inverting the input signals.                                                                                                           | inactive,              | inactive                 | [Device Para    |
| -                    |                                                                                                                                        | active                 |                          | /Digital Inputs |
| $\bigotimes$         |                                                                                                                                        |                        |                          | /DI Slot X1     |
|                      |                                                                                                                                        |                        |                          | /Group 2]       |
| Debouncing<br>time 2 | A change of the state of a digital input will                                                                                          | no debouncing<br>time, | no<br>debouncing<br>time | [Device Para    |
|                      | only be recognized after the debouncing time has expired (become effective). Thus,                                                     |                        |                          | /Digital Inputs |
|                      | transient signals will not be misinterpreted.                                                                                          | 20 ms,                 |                          | /DI Slot X1     |
| $\bigotimes$         |                                                                                                                                        | 50 ms,                 |                          | /Group 2]       |
|                      |                                                                                                                                        | 100 ms                 |                          |                 |

| Parameter            | Description                                                                              | Setting range          | Default                  | Menu path                      |
|----------------------|------------------------------------------------------------------------------------------|------------------------|--------------------------|--------------------------------|
| Nom voltage          | Nominal voltage of the digital inputs                                                    | 24 V DC,               | 24 V DC                  | [Device Para                   |
| $\bigotimes$         |                                                                                          | 48 V DC,               |                          | /Digital Inputs                |
|                      |                                                                                          | 60 V DC,               |                          | /DI Slot X1                    |
|                      |                                                                                          | 110 V DC,              |                          | /Group 3]                      |
|                      |                                                                                          | 230 V DC,              |                          |                                |
|                      |                                                                                          | 110 V AC,              |                          |                                |
|                      |                                                                                          | 230 V AC               |                          |                                |
| Inverting 3          | Inverting the input signals.                                                             | inactive,              | inactive                 | [Device Para                   |
|                      |                                                                                          | active                 |                          | /Digital Inputs                |
|                      |                                                                                          |                        |                          | /DI Slot X1                    |
|                      |                                                                                          |                        |                          | /Group 3]                      |
| Debouncing           | A change of the state of a digital input will                                            | no debouncing          | no                       | [Device Para                   |
| time 3               | only be recognized after the debouncing time has expired (become effective). Thus,       | time,                  | debouncing<br>time       | /Digital Inputs                |
|                      | transient signals will not be misinterpreted.                                            | 20 ms,                 |                          | /DI Slot X1                    |
| $\bigotimes$         |                                                                                          | 50 ms,                 |                          | /Group 3]                      |
| lucionational A      |                                                                                          | 100 ms                 | in a atil va             |                                |
| Inverting 4          | Inverting the input signals.                                                             | inactive,              | inactive                 | [Device Para                   |
|                      |                                                                                          | active                 |                          | /Digital Inputs                |
| $\bigotimes$         |                                                                                          |                        |                          | /DI Slot X1                    |
| Debouncing           | A change of the state of a digital input will                                            |                        |                          | /Group 3]<br>[Device Para      |
| Debouncing<br>time 4 | A change of the state of a digital input will<br>only be recognized after the debouncing | no debouncing<br>time, | no<br>debouncing<br>time | -                              |
|                      | time has expired (become effective). Thus,                                               | 20 ms,                 |                          | /Digital Inputs<br>/DI Slot X1 |
|                      | transient signals will not be misinterpreted.                                            | 50 ms,                 |                          | -                              |
|                      |                                                                                          | 100 ms                 |                          | /Group 3]                      |
| Inverting 5          | Inverting the input signals.                                                             | inactive,              | inactive                 | [Device Para                   |
|                      |                                                                                          | active                 | active                   | /Digital Inputs                |
| $\bigcirc$           |                                                                                          |                        |                          | /DI Slot X1                    |
|                      |                                                                                          |                        |                          | /Group 3]                      |
| Debouncing           | A change of the state of a digital input will                                            | no debouncing          | no                       | [Device Para                   |
| time 5               | only be recognized after the debouncing time has expired (become effective). Thus,       | time,                  | debouncing<br>time       | /Digital Inputs                |
| •                    | transient signals will not be misinterpreted.                                            | 20 ms,                 | ume                      | /DI Slot X1                    |
| $\bigotimes$         |                                                                                          | 50 ms,                 |                          | /Group 3]                      |
|                      |                                                                                          | 100 ms                 |                          |                                |
| Inverting 6          | Inverting the input signals.                                                             | inactive,              | inactive                 | [Device Para                   |
| <b>—</b>             |                                                                                          | active                 |                          | /Digital Inputs                |
| $\bigotimes$         |                                                                                          |                        |                          | /DI Slot X1                    |
|                      |                                                                                          |                        |                          | /Group 3]                      |

| Parameter            | Description                                                                                                                                                                             | Setting range          | Default                  | Menu path                       |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|---------------------------------|
| Debouncing<br>time 6 | A change of the state of a digital input will<br>only be recognized after the debouncing<br>time has expired (become effective). Thus,<br>transient signals will not be misinterpreted. | no debouncing<br>time, | no<br>debouncing         | [Device Para<br>/Digital Inputs |
|                      |                                                                                                                                                                                         | 20 ms,                 | time                     | /DI Slot X1                     |
| $\bigotimes$         |                                                                                                                                                                                         | 50 ms,                 |                          | /Group 3]                       |
| •                    |                                                                                                                                                                                         | 100 ms                 |                          |                                 |
| Inverting 7          | Inverting the input signals.                                                                                                                                                            | inactive,              | inactive                 | [Device Para                    |
|                      |                                                                                                                                                                                         | active                 |                          | /Digital Inputs                 |
| $\bigotimes$         |                                                                                                                                                                                         |                        |                          | /DI Slot X1                     |
| •                    |                                                                                                                                                                                         |                        |                          | /Group 3]                       |
| Debouncing           | A change of the state of a digital input will<br>only be recognized after the debouncing<br>time has expired (become effective). Thus,<br>transient signals will not be misinterpreted. | no debouncing          | no<br>debouncing<br>time | [Device Para                    |
| time 7               |                                                                                                                                                                                         | time,                  |                          | /Digital Inputs                 |
|                      |                                                                                                                                                                                         | 20 ms,                 |                          | /DI Slot X1                     |
| $\bigotimes$         |                                                                                                                                                                                         | 50 ms,                 |                          | /Group 3]                       |
|                      |                                                                                                                                                                                         | 100 ms                 |                          |                                 |
| Inverting 8          | Inverting the input signals.                                                                                                                                                            | inactive,              | inactive                 | [Device Para                    |
| <b>•</b>             |                                                                                                                                                                                         | active                 |                          | /Digital Inputs                 |
| $\bigotimes$         |                                                                                                                                                                                         |                        |                          | /DI Slot X1                     |
|                      |                                                                                                                                                                                         |                        |                          | /Group 3]                       |
| Debouncing<br>time 8 | A change of the state of a digital input will only be recognized after the debouncing                                                                                                   | no debouncing<br>time, | no<br>debouncing         | [Device Para                    |
| une o                | time has expired (become effective). Thus,                                                                                                                                              | 20 ms,                 | time                     | /Digital Inputs                 |
|                      | transient signals will not be misinterpreted.                                                                                                                                           | 50 ms,                 |                          | /DI Slot X1                     |
| $\bigtriangledown$   | U C                                                                                                                                                                                     | 100 ms                 |                          | /Group 3]                       |
|                      |                                                                                                                                                                                         | 100 1112               |                          |                                 |

# Signals of the Digital Inputs on DI-8P X

| Signal | Description           |
|--------|-----------------------|
| DI 1   | Signal: Digital Input |
| DI 2   | Signal: Digital Input |
| DI 3   | Signal: Digital Input |
| DI 4   | Signal: Digital Input |
| DI 5   | Signal: Digital Input |
| DI 6   | Signal: Digital Input |
| DI 7   | Signal: Digital Input |
| DI 8   | Signal: Digital Input |

#### **Output Relays Settings**

The conditions of module outputs and signals/protective functions (such as reverse interlocking) can be passed by means of alarm relays. The alarm relays are potential-free contacts (which can be used as opening or closing contact). Each alarm relay can be assigned up to 7 functions out of the »assignment list«.

Set the following parameters for each of the binary output relays:

- Up to 7 signals from the »assignment list« (OR-connected)
- Each of the assigned signals can be inverted.
- The (collective) state of the binary output relay can be inverted (open or closed circuit current principle)
- By the Operating Mode it can be determined whether the relay output works in working current or closedcircuit principle.
- »Latched« active or inactive
  - *»Latched = inactive«*:

If the latching function is *»inactive«*, the alarm relay respectively the alarm contact will adopt the state of those alarms that were assigned.

»Latched = active«

If the »latching function« is *»active«*, the state of the alarm relay respectively alarm contact that was set by the alarms will be stored.

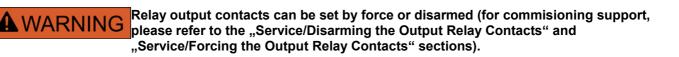
The alarm relay can only be acknowledged after reset of those signals that had initiated setting of the relay and after expiry of the minimum retention time.

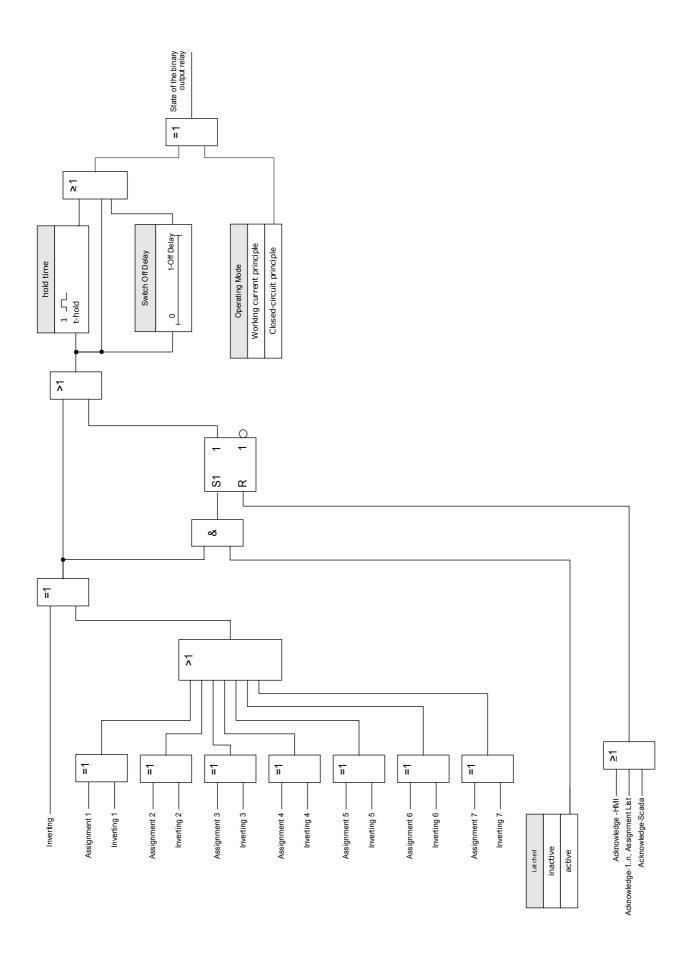
*»Hold time«*: At signal changes, the minimal latching time ensures that the relay will be maintained pickedup or released for at least this period.

# CAUTION

If binary outputs are parameterized *»*Latched=*active«*, they will keep (return into) their position even if there is a break within the power supply.

If binary output relays are parameterized *»*Latched=*active«*, The binary output will also retain, if the binary output is reprogrammed in another way. This applies also if *»*Latched is set to ina*ctive«*. Resetting a binary output that has latched a signal will always require an acknowledgement.





The »System OK Relay« (watchdog) cannot be configured.

#### Acknowledgment options

Binary output relays can be acknowledged:

- Via the push-button »C« at the operating panel.
- Each binary output relay can be acknowledged by a signal of the »assignment list« (If »Latched is active«).
- Via the module »Ex Acknowledge« all binary output relays can be acknowledged at once, if the signal for external acknowledgement that was selected from the »assignment list« becomes true. (e.g the state of a digital input).
- Via SCADA, all output relays can be acknowledged at once.





#### System Contact

The *System OK alarm relay (SC)* is the devices »LIFE CONTACT«. Its installation location depends on the housing type. Please refer to the wiring diagram of the device (WDC-contact).

The *System-OK relay (SC)* cannot be parameterized. The system contact is an operating current contact that picksup, when the device is free from internal faults. While the device is booting up, the *System OK relay (SC)* remains dropped-off. As soon as the system was duly started up, the relay picks up and the assigned LED is activated accordingly (please refer to chapter Self Supervision).

## OR-6 X

BO Slot X2 ,BO Slot X6

#### Direct Commands of OR-6 X

| Parameter        | Description                                                                                                                                                                        | Setting range              | Default  | Menu path               |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-------------------------|
| DISARMED         | "DISARMED Ctrl" has been activated, that is<br>required to DISARM the relay outputs. This<br>will DISARM those output relays that are<br>currently not latched and that are not on | inactive,                  | inactive | [Service                |
| $\frown$         |                                                                                                                                                                                    | active                     |          | /Test (Prot<br>inhibit) |
|                  |                                                                                                                                                                                    |                            |          | /DISARMED               |
|                  | "hold" by a pending minimum hold time.<br>CAUTION! RELAYS DISARMED in order to                                                                                                     |                            |          | /BO Slot X2]            |
|                  | safely perform maintenance while                                                                                                                                                   |                            |          |                         |
|                  | eliminating the risk of taking an entire process off-line. (Note: Zone Interlocking                                                                                                |                            |          |                         |
|                  | and Supervision Contact cannot be                                                                                                                                                  |                            |          |                         |
|                  | disarmed). YOU MUST ENSURE that the relays are ARMED AGAIN after maintenance.                                                                                                      |                            |          |                         |
|                  | Only available if: DISARMED Ctrl = active                                                                                                                                          |                            |          |                         |
| Force all Outs   | By means of this function the normal Output<br>Relay State can be overwritten (forced). The                                                                                        |                            | Normal   | [Service                |
| $\bigtriangleup$ | relay can be set from normal operation<br>(relay works according to the assigned<br>signals) to "force energized" or "force de-                                                    | De-Energized,<br>Energized |          | /Test (Prot<br>inhibit) |
|                  |                                                                                                                                                                                    | 5                          |          | /Force OR               |
|                  | energized" state. Forcing all outputs relays<br>of an entire assembly group is superior to<br>forcing a single output relay.                                                       |                            |          | /BO Slot X2]            |
| Force OR1        | By means of this function the normal Output                                                                                                                                        | Normal,                    | Normal   | [Service                |
|                  | Relay State can be overwritten (forced). The relay can be set from normal operation                                                                                                | De-Energized,              |          | /Test (Prot             |
|                  |                                                                                                                                                                                    | Energized                  |          | inhibit)                |
|                  |                                                                                                                                                                                    |                            |          | /Force OR               |
|                  |                                                                                                                                                                                    |                            |          | /BO Slot X2]            |
| Force OR2        | By means of this function the normal Output                                                                                                                                        | Normal,                    | Normal   | [Service                |
|                  | Relay State can be overwritten (forced). The relay can be set from normal operation                                                                                                | De-Energized,              |          | /Test (Prot             |
| $\bigotimes$     | (relay works according to the assigned                                                                                                                                             | Energized                  |          | inhibit)<br>/Faraa OB   |
| -                | signals) to "force energized" or "force de-<br>energized" state.                                                                                                                   |                            |          | /Force OR               |
|                  |                                                                                                                                                                                    |                            |          | /BO Slot X2]            |
| Force OR3        | By means of this function the normal Output                                                                                                                                        | Normal,                    | Normal   | [Service                |
|                  | relay can be set nom normal operation                                                                                                                                              | De-Energized,              |          | /Test (Prot<br>inhibit) |
| $\checkmark$     | (relay works according to the assigned signals) to "force energized" or "force de-                                                                                                 | Energized                  |          | /Force OR               |
|                  | energized" state.                                                                                                                                                                  |                            |          | /BO Slot X2]            |
|                  |                                                                                                                                                                                    |                            |          | ,20 0.00,72]            |

| Parameter | Description                                                                                                                                                                                                                                         | Setting range                         | Default | Menu path                                                        |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|------------------------------------------------------------------|
| Force OR4 | By means of this function the normal Output<br>Relay State can be overwritten (forced). The<br>relay can be set from normal operation<br>(relay works according to the assigned<br>signals) to "force energized" or "force de-<br>energized" state. | Normal,<br>De-Energized,<br>Energized | Normal  | [Service<br>/Test (Prot<br>inhibit)<br>/Force OR<br>/BO Slot X2] |
| Force OR5 | By means of this function the normal Output<br>Relay State can be overwritten (forced). The<br>relay can be set from normal operation<br>(relay works according to the assigned<br>signals) to "force energized" or "force de-<br>energized" state. | Normal,<br>De-Energized,<br>Energized | Normal  | [Service<br>/Test (Prot<br>inhibit)<br>/Force OR<br>/BO Slot X2] |
| Force OR6 | By means of this function the normal Output<br>Relay State can be overwritten (forced). The<br>relay can be set from normal operation<br>(relay works according to the assigned<br>signals) to "force energized" or "force de-<br>energized" state. | Normal,<br>De-Energized,<br>Energized | Normal  | [Service<br>/Test (Prot<br>inhibit)<br>/Force OR<br>/BO Slot X2] |

# Device Parameters of the Binary Output Relays on OR-6 X

| Parameter      | Description                                                                                                                                            | Setting range                    | Default              | Menu path       |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|-----------------|
| Operating Mode | Operating Mode                                                                                                                                         | Working<br>current<br>principle, | Working              | [Device Para    |
|                |                                                                                                                                                        |                                  | current<br>principle | /Binary Outputs |
| $\bigcirc$     |                                                                                                                                                        | Closed-circuit<br>principle      | F                    | /BO Slot X2     |
|                |                                                                                                                                                        |                                  |                      | /BO 1]          |
| t-hold         | To clearly identify the state transition of a<br>binary output relay, the "new state" is being<br>hold, at least for the duration of the hold<br>time. | 0.00 - 300.00s                   | 0.00s                | [Device Para    |
|                |                                                                                                                                                        |                                  |                      | /Binary Outputs |
| $\bigotimes$   |                                                                                                                                                        |                                  |                      | /BO Slot X2     |
|                |                                                                                                                                                        |                                  |                      | /BO 1]          |
| t-Off Delay    | Switch Off Delay                                                                                                                                       | 0.00 - 300.00s                   | 0.00s                | [Device Para    |
|                |                                                                                                                                                        |                                  |                      | /Binary Outputs |
|                |                                                                                                                                                        |                                  |                      | /BO Slot X2     |
|                |                                                                                                                                                        |                                  |                      | /BO 1]          |
| Latched        | Defines whether the Relay Output will be<br>latched when it picks up.                                                                                  | inactive,                        | inactive             | [Device Para    |
|                |                                                                                                                                                        | active                           |                      | /Binary Outputs |
|                |                                                                                                                                                        |                                  |                      | /BO Slot X2     |
|                |                                                                                                                                                        |                                  |                      | /BO 1]          |

| Parameter           | Description                                                                                                                                                                                                                                                    | Setting range          | Default                                         | Menu path                                                |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------|----------------------------------------------------------|
| Acknowledgem<br>ent | Acknowledgement Signal - An<br>acknowledgement signal (that<br>acknowledges the corresponding binary<br>output relay) can be assigned to each<br>output relay. The acknowledgement-signal<br>is only effective if the parameter "Latched"<br>is set to active. | 1n,<br>Assignment List |                                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 1] |
|                     | Only available if: Latched = active                                                                                                                                                                                                                            |                        |                                                 |                                                          |
| Inverting           | Inverting of the collective signal (OR-<br>gate/disjunction). In combination with<br>inverted input signals an AND-gate can be<br>programmed (Conjunction).                                                                                                    | inactive,<br>active    | inactive                                        | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 1] |
| Assignment 1        | Assignment                                                                                                                                                                                                                                                     | 1n,<br>Assignment List | BO Slot X2:<br>SG[1].TripCm<br>d<br>BO Slot X6: | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 1] |
| Inverting 1         | Inverting of the state of the assigned signal.                                                                                                                                                                                                                 | inactive,<br>active    | inactive                                        | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 1] |
| Assignment 2        | Assignment                                                                                                                                                                                                                                                     | 1n,<br>Assignment List |                                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 1] |
| Inverting 2         | Inverting of the state of the assigned signal.                                                                                                                                                                                                                 | inactive,<br>active    | inactive                                        | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 1] |
| Assignment 3        | Assignment                                                                                                                                                                                                                                                     | 1n,<br>Assignment List |                                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 1] |
| Inverting 3         | Inverting of the state of the assigned signal.                                                                                                                                                                                                                 | inactive,<br>active    | inactive                                        | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 1] |
| Assignment 4        | Assignment                                                                                                                                                                                                                                                     | 1n,<br>Assignment List |                                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 1] |

| Parameter      | Description                                                                                                                                            | Setting range          | Default              | Menu path       |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|-----------------|
| Inverting 4    | Inverting of the state of the assigned signal.                                                                                                         | inactive,              | inactive             | [Device Para    |
|                |                                                                                                                                                        | active                 |                      | /Binary Outputs |
| $\bigotimes$   |                                                                                                                                                        |                        |                      | /BO Slot X2     |
|                |                                                                                                                                                        |                        |                      | /BO 1]          |
| Assignment 5   | Assignment                                                                                                                                             | 1n,<br>Assignment List |                      | [Device Para    |
|                |                                                                                                                                                        |                        |                      | /Binary Outputs |
| $\bigotimes$   |                                                                                                                                                        |                        |                      | /BO Slot X2     |
|                |                                                                                                                                                        |                        |                      | /BO 1]          |
| Inverting 5    | Inverting of the state of the assigned signal.                                                                                                         | inactive,              | inactive             | [Device Para    |
|                |                                                                                                                                                        | active                 |                      | /Binary Outputs |
| $\bigotimes$   |                                                                                                                                                        |                        |                      | /BO Slot X2     |
|                |                                                                                                                                                        |                        |                      | /BO 1]          |
| Assignment 6   | Assignment                                                                                                                                             | 1n,                    |                      | [Device Para    |
|                |                                                                                                                                                        | Assignment List        |                      | /Binary Outputs |
| $\bigotimes$   |                                                                                                                                                        |                        |                      | /BO Slot X2     |
|                |                                                                                                                                                        |                        |                      | /BO 1]          |
| Inverting 6    | Inverting of the state of the assigned signal.                                                                                                         | inactive,              | inactive             | [Device Para    |
|                |                                                                                                                                                        | active                 |                      | /Binary Outputs |
| $\bigotimes$   |                                                                                                                                                        |                        |                      | /BO Slot X2     |
| $\bullet$      |                                                                                                                                                        |                        |                      | /BO 1]          |
| Assignment 7   | Assignment                                                                                                                                             | 1n,                    |                      | [Device Para    |
|                |                                                                                                                                                        | Assignment List        |                      | /Binary Outputs |
| $\bigotimes$   |                                                                                                                                                        |                        |                      | /BO Slot X2     |
|                |                                                                                                                                                        |                        |                      | /BO 1]          |
| Inverting 7    | Inverting of the state of the assigned signal.                                                                                                         | inactive,              | inactive             | [Device Para    |
|                |                                                                                                                                                        | active                 |                      | /Binary Outputs |
| $\bigotimes$   |                                                                                                                                                        |                        |                      | /BO Slot X2     |
| $\bullet$      |                                                                                                                                                        |                        |                      | /BO 1]          |
| Operating Mode | Operating Mode                                                                                                                                         | Working                | Working              | [Device Para    |
|                |                                                                                                                                                        | current<br>principle,  | current<br>principle | /Binary Outputs |
| $\bigotimes$   |                                                                                                                                                        | Closed-circuit         | P                    | /BO Slot X2     |
|                |                                                                                                                                                        | principle              |                      | /BO 2]          |
| t-hold         | To clearly identify the state transition of a<br>binary output relay, the "new state" is being<br>hold, at least for the duration of the hold<br>time. | 0.00 - 300.00s         | 0.00s                | [Device Para    |
|                |                                                                                                                                                        |                        |                      | /Binary Outputs |
| $\bigotimes$   |                                                                                                                                                        |                        |                      | /BO Slot X2     |
|                |                                                                                                                                                        |                        |                      | /BO 2]          |

| Parameter           | Description                                                                                                                                                                                                                                                                                           | Setting range          | Default                                  | Menu path                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|----------------------------------------------------------|
| t-Off Delay         | Switch Off Delay                                                                                                                                                                                                                                                                                      | 0.00 - 300.00s         | 0.00s                                    | [Device Para<br>/Binary Outputs<br>/BO Slot X2           |
| $\bigotimes$        |                                                                                                                                                                                                                                                                                                       |                        |                                          | /BO 2]                                                   |
| Latched             | Defines whether the Relay Output will be<br>latched when it picks up.                                                                                                                                                                                                                                 | inactive,<br>active    | inactive                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 2] |
| Acknowledgem<br>ent | Acknowledgement Signal - An<br>acknowledgement signal (that<br>acknowledges the corresponding binary<br>output relay) can be assigned to each<br>output relay. The acknowledgement-signal<br>is only effective if the parameter "Latched"<br>is set to active.<br>Only available if: Latched = active | 1n,<br>Assignment List |                                          | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 2] |
| Inverting           | Inverting of the collective signal (OR-<br>gate/disjunction). In combination with<br>inverted input signals an AND-gate can be<br>programmed (Conjunction).                                                                                                                                           | inactive,<br>active    | inactive                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 2] |
| Assignment 1        | Assignment                                                                                                                                                                                                                                                                                            | 1n,<br>Assignment List | BO Slot X2:<br>Prot.Alarm<br>BO Slot X6: | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 2] |
| Inverting 1         | Inverting of the state of the assigned signal.                                                                                                                                                                                                                                                        | inactive,<br>active    | inactive                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 2] |
| Assignment 2        | Assignment                                                                                                                                                                                                                                                                                            | 1n,<br>Assignment List |                                          | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 2] |
| Inverting 2         | Inverting of the state of the assigned signal.                                                                                                                                                                                                                                                        | inactive,<br>active    | inactive                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 2] |
| Assignment 3        | Assignment                                                                                                                                                                                                                                                                                            | 1n,<br>Assignment List |                                          | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 2] |

| Parameter    | Description                                    | Setting range          | Default  | Menu path       |
|--------------|------------------------------------------------|------------------------|----------|-----------------|
| Inverting 3  | Inverting of the state of the assigned signal. | inactive,              | inactive | [Device Para    |
| $\bigotimes$ |                                                | active                 |          | /Binary Outputs |
|              |                                                |                        |          | /BO Slot X2     |
|              |                                                |                        |          | /BO 2]          |
| Assignment 4 | Assignment                                     | 1n,<br>Assignment List |          | [Device Para    |
|              |                                                |                        |          | /Binary Outputs |
| $\bigotimes$ |                                                |                        |          | /BO Slot X2     |
|              |                                                |                        |          | /BO 2]          |
| Inverting 4  | Inverting of the state of the assigned signal. | inactive,              | inactive | [Device Para    |
|              |                                                | active                 |          | /Binary Outputs |
| $\bigotimes$ |                                                |                        |          | /BO Slot X2     |
|              |                                                |                        |          | /BO 2]          |
| Assignment 5 | Assignment                                     | 1n,                    |          | [Device Para    |
|              |                                                | Assignment List        |          | /Binary Outputs |
| $\bigotimes$ |                                                |                        |          | /BO Slot X2     |
|              |                                                |                        |          | /BO 2]          |
| Inverting 5  | Inverting of the state of the assigned signal. | inactive,              | inactive | [Device Para    |
|              |                                                | active                 |          | /Binary Outputs |
| $\bigcirc$   |                                                |                        |          | /BO Slot X2     |
|              |                                                |                        |          | /BO 2]          |
| Assignment 6 | Assignment                                     | 1n,                    |          | [Device Para    |
|              |                                                | Assignment List        |          | /Binary Outputs |
| $\bigotimes$ |                                                |                        |          | /BO Slot X2     |
|              |                                                |                        |          | /BO 2]          |
| Inverting 6  | Inverting of the state of the assigned signal. | inactive,              | inactive | [Device Para    |
|              |                                                | active                 |          | /Binary Outputs |
| $\bigotimes$ |                                                |                        |          | /BO Slot X2     |
|              |                                                |                        |          | /BO 2]          |
| Assignment 7 | Assignment                                     | 1n,                    |          | [Device Para    |
|              |                                                | Assignment List        |          | /Binary Outputs |
| $\bigotimes$ |                                                |                        |          | /BO Slot X2     |
|              |                                                |                        |          | /BO 2]          |
| Inverting 7  | Inverting of the state of the assigned signal. | inactive,              | inactive | [Device Para    |
|              |                                                | active                 |          | /Binary Outputs |
| $\bigotimes$ |                                                |                        |          | /BO Slot X2     |
|              |                                                |                        |          | /BO 2]          |

| Parameter           | Description                                                                                                                                                                                                                                                    | Setting range                                      | Default                                       | Menu path                                                |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
| Operating Mode      | Operating Mode                                                                                                                                                                                                                                                 | Working<br>current<br>principle,<br>Closed-circuit | Working<br>current<br>principle               | [Device Para<br>/Binary Outputs<br>/BO Slot X2           |
|                     |                                                                                                                                                                                                                                                                | principle                                          |                                               | /BO 3]                                                   |
| t-hold              | To clearly identify the state transition of a<br>binary output relay, the "new state" is being<br>hold, at least for the duration of the hold<br>time.                                                                                                         | 0.00 - 300.00s                                     | 0.00s                                         | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 3] |
| t-Off Delay         | Switch Off Delay                                                                                                                                                                                                                                               | 0.00 - 300.00s                                     | 0.00s                                         | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 3] |
| Latched             | Defines whether the Relay Output will be<br>latched when it picks up.                                                                                                                                                                                          | inactive,<br>active                                | inactive                                      | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 3] |
| Acknowledgem<br>ent | Acknowledgement Signal - An<br>acknowledgement signal (that<br>acknowledges the corresponding binary<br>output relay) can be assigned to each<br>output relay. The acknowledgement-signal<br>is only effective if the parameter "Latched"<br>is set to active. | 1n,<br>Assignment List                             |                                               | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 3] |
| Inverting           | Only available if: Latched = active<br>Inverting of the collective signal (OR-                                                                                                                                                                                 | inactive,                                          | inactive                                      | [Device Para                                             |
|                     | gate/disjunction). In combination with<br>inverted input signals an AND-gate can be<br>programmed (Conjunction).                                                                                                                                               | active                                             | Inactive                                      | /Binary Outputs<br>/BO Slot X2<br>/BO 3]                 |
| Assignment 1        | Assignment                                                                                                                                                                                                                                                     | 1n,<br>Assignment List                             | BO Slot X2:<br>SG[1].ON<br>Cmd<br>BO Slot X6: | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 3] |
| Inverting 1         | Inverting of the state of the assigned signal.                                                                                                                                                                                                                 | inactive,                                          | inactive                                      | [Device Para                                             |
| $\bigotimes$        |                                                                                                                                                                                                                                                                | active                                             |                                               | /Binary Outputs<br>/BO Slot X2<br>/BO 3]                 |
| Assignment 2        | Assignment                                                                                                                                                                                                                                                     | 1n,<br>Assignment List                             |                                               | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 3] |

| Parameter    | Description                                    | Setting range   | Default  | Menu path       |
|--------------|------------------------------------------------|-----------------|----------|-----------------|
| Inverting 2  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para    |
|              |                                                | active          |          | /Binary Outputs |
| $\bigcirc$   |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 3]          |
| Assignment 3 | Assignment                                     | 1n,             |          | [Device Para    |
|              |                                                | Assignment List |          | /Binary Outputs |
|              |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 3]          |
| Inverting 3  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para    |
|              |                                                | active          |          | /Binary Outputs |
| $\bigcirc$   |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 3]          |
| Assignment 4 | Assignment                                     | 1n,             |          | [Device Para    |
|              |                                                | Assignment List |          | /Binary Outputs |
|              |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 3]          |
| Inverting 4  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para    |
|              |                                                | active          |          | /Binary Outputs |
| $\bigcirc$   |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 3]          |
| Assignment 5 | Assignment                                     | 1n,             |          | [Device Para    |
|              |                                                | Assignment List |          | /Binary Outputs |
| $\bigcirc$   |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 3]          |
| Inverting 5  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para    |
|              |                                                | active          |          | /Binary Outputs |
| $\bigcirc$   |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 3]          |
| Assignment 6 | Assignment                                     | 1n,             |          | [Device Para    |
|              |                                                | Assignment List |          | /Binary Outputs |
|              |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 3]          |
| Inverting 6  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para    |
|              |                                                | active          |          | /Binary Outputs |
|              |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 3]          |

| Parameter           | Description                                                                                                                                                                                                                                                                                           | Setting range                                                                     | Default                                        | Menu path                                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|
| Assignment 7        | Assignment                                                                                                                                                                                                                                                                                            | 1n,<br>Assignment List                                                            |                                                | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 3]                 |
| Inverting 7         | Inverting of the state of the assigned signal.                                                                                                                                                                                                                                                        | inactive,<br>active                                                               | inactive                                       | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 3]                 |
| Operating Mode      | Operating Mode<br>To clearly identify the state transition of a<br>binary output relay, the "new state" is being                                                                                                                                                                                      | Working<br>current<br>principle,<br>Closed-circuit<br>principle<br>0.00 - 300.00s | Working<br>current<br>principle<br>0.00s       | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 4]<br>[Device Para |
| $\bigotimes$        | hold, at least for the duration of the hold<br>time.                                                                                                                                                                                                                                                  |                                                                                   |                                                | /Binary Outputs<br>/BO Slot X2<br>/BO 4]                                 |
| t-Off Delay         | Switch Off Delay                                                                                                                                                                                                                                                                                      | 0.00 - 300.00s                                                                    | 0.00s                                          | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 4]                 |
| Latched             | Defines whether the Relay Output will be<br>latched when it picks up.                                                                                                                                                                                                                                 | inactive,<br>active                                                               | inactive                                       | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 4]                 |
| Acknowledgem<br>ent | Acknowledgement Signal - An<br>acknowledgement signal (that<br>acknowledges the corresponding binary<br>output relay) can be assigned to each<br>output relay. The acknowledgement-signal<br>is only effective if the parameter "Latched"<br>is set to active.<br>Only available if: Latched = active | 1n,<br>Assignment List                                                            |                                                | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 4]                 |
| Inverting           | Inverting of the collective signal (OR-<br>gate/disjunction). In combination with<br>inverted input signals an AND-gate can be<br>programmed (Conjunction).                                                                                                                                           | inactive,<br>active                                                               | inactive                                       | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 4]                 |
| Assignment 1        | Assignment                                                                                                                                                                                                                                                                                            | 1n,<br>Assignment List                                                            | BO Slot X2:<br>SG[1].OFF<br>Cmd<br>BO Slot X6: | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 4]                 |

| Parameter    | Description                                    | Setting range   | Default  | Menu path       |
|--------------|------------------------------------------------|-----------------|----------|-----------------|
| Inverting 1  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para    |
|              |                                                | active          |          | /Binary Outputs |
| $\bigotimes$ |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 4]          |
| Assignment 2 | Assignment                                     | 1n,             |          | [Device Para    |
|              |                                                | Assignment List |          | /Binary Outputs |
| $\bigotimes$ |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 4]          |
| Inverting 2  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para    |
|              |                                                | active          |          | /Binary Outputs |
| $\bigotimes$ |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 4]          |
| Assignment 3 | Assignment                                     | 1n,             |          | [Device Para    |
|              |                                                | Assignment List |          | /Binary Outputs |
| $\bigotimes$ |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 4]          |
| Inverting 3  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para    |
|              |                                                | active          |          | /Binary Outputs |
| $\bigotimes$ |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 4]          |
| Assignment 4 | Assignment                                     | 1n,             |          | [Device Para    |
|              |                                                | Assignment List |          | /Binary Outputs |
| $\bigotimes$ |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 4]          |
| Inverting 4  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para    |
|              |                                                | active          |          | /Binary Outputs |
| $\bigotimes$ |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 4]          |
| Assignment 5 | Assignment                                     | 1n,             |          | [Device Para    |
|              |                                                | Assignment List |          | /Binary Outputs |
| $\bigotimes$ |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 4]          |
| Inverting 5  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para    |
|              |                                                | active          |          | /Binary Outputs |
|              |                                                |                 |          | /BO Slot X2     |
|              |                                                |                 |          | /BO 4]          |

| Parameter           | Description                                                                                                                                                                                                                                                                                           | Setting range                                                   | Default                         | Menu path                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|----------------------------------------------------------|
| Assignment 6        | Assignment                                                                                                                                                                                                                                                                                            | 1n,<br>Assignment List                                          |                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 4] |
| Inverting 6         | Inverting of the state of the assigned signal.                                                                                                                                                                                                                                                        | inactive,<br>active                                             | inactive                        | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 4] |
| Assignment 7        | Assignment                                                                                                                                                                                                                                                                                            | 1n,<br>Assignment List                                          |                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 4] |
| Inverting 7         | Inverting of the state of the assigned signal.                                                                                                                                                                                                                                                        | inactive,<br>active                                             | inactive                        | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 4] |
| Operating Mode      | Operating Mode                                                                                                                                                                                                                                                                                        | Working<br>current<br>principle,<br>Closed-circuit<br>principle | Working<br>current<br>principle | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 5] |
| t-hold              | To clearly identify the state transition of a<br>binary output relay, the "new state" is being<br>hold, at least for the duration of the hold<br>time.                                                                                                                                                | 0.00 - 300.00s                                                  | 0.00s                           | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 5] |
| t-Off Delay         | Switch Off Delay                                                                                                                                                                                                                                                                                      | 0.00 - 300.00s                                                  | 0.00s                           | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 5] |
| Latched             | Defines whether the Relay Output will be<br>latched when it picks up.                                                                                                                                                                                                                                 | inactive,<br>active                                             | inactive                        | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 5] |
| Acknowledgem<br>ent | Acknowledgement Signal - An<br>acknowledgement signal (that<br>acknowledges the corresponding binary<br>output relay) can be assigned to each<br>output relay. The acknowledgement-signal<br>is only effective if the parameter "Latched"<br>is set to active.<br>Only available if: Latched = active | 1n,<br>Assignment List                                          |                                 | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 5] |

| Parameter    | Description                                                                      | Setting range   | Default     | Menu path       |
|--------------|----------------------------------------------------------------------------------|-----------------|-------------|-----------------|
| Inverting    | Inverting of the collective signal (OR-                                          | inactive,       | inactive    | [Device Para    |
|              | gate/disjunction). In combination with inverted input signals an AND-gate can be | active          |             | /Binary Outputs |
| $\bigcirc$   | programmed (Conjunction).                                                        |                 |             | /BO Slot X2     |
|              |                                                                                  |                 |             | /BO 5]          |
| Assignment 1 | Assignment                                                                       | 1n,             | BO Slot X2: | [Device Para    |
|              |                                                                                  | Assignment List |             | /Binary Outputs |
| $\bigotimes$ |                                                                                  |                 | BO Slot X6: | /BO Slot X2     |
|              |                                                                                  |                 |             | /BO 5]          |
| Inverting 1  | Inverting of the state of the assigned signal.                                   | inactive,       | inactive    | [Device Para    |
|              |                                                                                  | active          |             | /Binary Outputs |
| $\bigotimes$ |                                                                                  |                 |             | /BO Slot X2     |
|              |                                                                                  |                 |             | /BO 5]          |
| Assignment 2 | Assignment                                                                       | 1n,             |             | [Device Para    |
|              |                                                                                  | Assignment List |             | /Binary Outputs |
| $\bigotimes$ |                                                                                  |                 |             | /BO Slot X2     |
|              |                                                                                  |                 |             | /BO 5]          |
| Inverting 2  | Inverting of the state of the assigned signal.                                   | inactive,       | inactive    | [Device Para    |
|              |                                                                                  | active          |             | /Binary Outputs |
| $\bigotimes$ |                                                                                  |                 |             | /BO Slot X2     |
|              |                                                                                  |                 |             | /BO 5]          |
| Assignment 3 | Assignment                                                                       | 1n,             |             | [Device Para    |
|              |                                                                                  | Assignment List |             | /Binary Outputs |
| $\bigotimes$ |                                                                                  |                 |             | /BO Slot X2     |
|              |                                                                                  |                 |             | /BO 5]          |
| Inverting 3  | Inverting of the state of the assigned signal.                                   | inactive,       | inactive    | [Device Para    |
|              |                                                                                  | active          |             | /Binary Outputs |
| $\bigotimes$ |                                                                                  |                 |             | /BO Slot X2     |
|              |                                                                                  |                 |             | /BO 5]          |
| Assignment 4 | Assignment                                                                       | 1n,             |             | [Device Para    |
|              |                                                                                  | Assignment List |             | /Binary Outputs |
| $\bigotimes$ |                                                                                  |                 |             | /BO Slot X2     |
|              |                                                                                  |                 |             | /BO 5]          |
| Inverting 4  | Inverting of the state of the assigned signal.                                   | inactive,       | inactive    | [Device Para    |
|              |                                                                                  | active          |             | /Binary Outputs |
|              |                                                                                  |                 |             | /BO Slot X2     |
|              |                                                                                  |                 |             | /BO 5]          |

| Parameter        | Description                                                                                  | Setting range         | Default              | Menu path            |
|------------------|----------------------------------------------------------------------------------------------|-----------------------|----------------------|----------------------|
| Assignment 5     | Assignment                                                                                   | 1n,                   |                      | [Device Para         |
|                  |                                                                                              | Assignment List       |                      | /Binary Outputs      |
| $\bigotimes$     |                                                                                              |                       |                      | /BO Slot X2          |
| •                |                                                                                              |                       |                      | /BO 5]               |
| Inverting 5      | Inverting of the state of the assigned signal.                                               | inactive,             | inactive             | [Device Para         |
|                  |                                                                                              | active                |                      | /Binary Outputs      |
| $\bigotimes$     |                                                                                              |                       |                      | /BO Slot X2          |
| $\bullet$        |                                                                                              |                       |                      | /BO 5]               |
| Assignment 6     | Assignment                                                                                   | 1n,                   |                      | [Device Para         |
|                  |                                                                                              | Assignment List       |                      | /Binary Outputs      |
| $\bigotimes$     |                                                                                              |                       |                      | /BO Slot X2          |
|                  |                                                                                              |                       |                      | /BO 5]               |
| Inverting 6      | Inverting of the state of the assigned signal.                                               | inactive,             | inactive             | [Device Para         |
|                  |                                                                                              | active                |                      | /Binary Outputs      |
| $\bigotimes$     |                                                                                              |                       |                      | /BO Slot X2          |
|                  |                                                                                              |                       |                      | /BO 5]               |
| Assignment 7     | Assignment                                                                                   | 1n,                   |                      | [Device Para         |
|                  |                                                                                              | Assignment List       |                      | /Binary Outputs      |
| $\bigotimes$     |                                                                                              |                       |                      | /BO Slot X2          |
| $\checkmark$     |                                                                                              |                       |                      | /BO 5]               |
| Inverting 7      | Inverting of the state of the assigned signal.                                               | inactive,             | inactive             | [Device Para         |
|                  |                                                                                              | active                |                      | /Binary Outputs      |
| $\bigotimes$     |                                                                                              |                       |                      | /BO Slot X2          |
| $\checkmark$     |                                                                                              |                       |                      | /BO 5]               |
| Operating Mode   | Operating Mode                                                                               | Working               | Working              | [Device Para         |
|                  |                                                                                              | current<br>principle, | current<br>principle | /Binary Outputs      |
| $\bigotimes$     |                                                                                              | Closed-circuit        | principie            | /BO Slot X2          |
|                  |                                                                                              | principle             |                      | /BO 6]               |
| t-hold           | To clearly identify the state transition of a                                                | 0.00 - 300.00s        | 0.00s                | [Device Para         |
| $\bigotimes$     | binary output relay, the "new state" is being<br>hold, at least for the duration of the hold |                       |                      | /Binary Outputs      |
|                  | time.                                                                                        |                       |                      | /BO Slot X2          |
|                  |                                                                                              |                       |                      | /BO 6]               |
| t-Off Delay      | Switch Off Delay                                                                             | 0.00 - 300.00s        | 0.00s                | [Device Para         |
| 2                |                                                                                              |                       |                      | -<br>/Binary Outputs |
| $\bigtriangleup$ |                                                                                              |                       |                      | /BO Slot X2          |
|                  |                                                                                              |                       |                      | /BO 6]               |

| Parameter        | Description                                                                           | Setting range   | Default  | Menu path       |
|------------------|---------------------------------------------------------------------------------------|-----------------|----------|-----------------|
| Latched          | Defines whether the Relay Output will be                                              | inactive,       | inactive | [Device Para    |
|                  | latched when it picks up.                                                             | active          |          | /Binary Outputs |
| $\bigotimes$     |                                                                                       |                 |          | /BO Slot X2     |
|                  |                                                                                       |                 |          | /BO 6]          |
| Acknowledgem     | Acknowledgement Signal - An                                                           | 1n,             |          | [Device Para    |
| ent              | acknowledgement signal (that acknowledges the corresponding binary                    | Assignment List |          | /Binary Outputs |
| -                | output relay) can be assigned to each                                                 |                 |          | /BO Slot X2     |
| $\bigotimes$     | output relay. The acknowledgement-signal is only effective if the parameter "Latched" |                 |          | /BO 6]          |
|                  | is set to active.                                                                     |                 |          |                 |
|                  | Only available if: Latched = active                                                   |                 |          |                 |
| Inverting        | Inverting of the collective signal (OR-                                               | inactive,       | inactive | [Device Para    |
|                  | gate/disjunction). In combination with inverted input signals an AND-gate can be      | active          |          | /Binary Outputs |
| $\bigotimes$     | programmed (Conjunction).                                                             |                 |          | /BO Slot X2     |
|                  |                                                                                       |                 |          | /BO 6]          |
| Assignment 1     | Assignment                                                                            | 1n,             |          | [Device Para    |
| -                |                                                                                       | Assignment List |          | /Binary Outputs |
| $\bigtriangleup$ |                                                                                       |                 |          | /BO Slot X2     |
|                  |                                                                                       |                 |          | /BO 6]          |
| Inverting 1      | Inverting of the state of the assigned signal.                                        | inactive,       | inactive | [Device Para    |
|                  |                                                                                       | active          |          | /Binary Outputs |
|                  |                                                                                       |                 |          | /BO Slot X2     |
|                  |                                                                                       |                 |          | /BO 6]          |
| Assignment 2     | Assignment                                                                            | 1n,             |          | [Device Para    |
|                  |                                                                                       | Assignment List |          | /Binary Outputs |
| $\bigotimes$     |                                                                                       |                 |          | /BO Slot X2     |
|                  |                                                                                       |                 |          | /BO 6]          |
| Inverting 2      | Inverting of the state of the assigned signal.                                        | inactive,       | inactive | [Device Para    |
|                  |                                                                                       | active          |          | /Binary Outputs |
| $\bigotimes$     |                                                                                       |                 |          | /BO Slot X2     |
|                  |                                                                                       |                 |          | /BO 6]          |
| Assignment 3     | Assignment                                                                            | 1n,             |          | [Device Para    |
|                  |                                                                                       | Assignment List |          | /Binary Outputs |
| $\bigotimes$     |                                                                                       |                 |          | /BO Slot X2     |
| <b>•</b>         |                                                                                       |                 |          | /BO 6]          |
| Inverting 3      | Inverting of the state of the assigned signal.                                        | inactive,       | inactive | [Device Para    |
|                  |                                                                                       | active          |          | /Binary Outputs |
| $\bigotimes$     |                                                                                       |                 |          | /BO Slot X2     |
|                  |                                                                                       |                 |          | /BO 6]          |

| Parameter     | Description                                                                                                                                                                                                       | Setting range          | Default  | Menu path                                                          |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------------------------------------------------------------|
| Assignment 4  | Assignment                                                                                                                                                                                                        | 1n,<br>Assignment List |          | [Device Para<br>/Binary Outputs                                    |
| ₩             |                                                                                                                                                                                                                   |                        |          | /BO Slot X2<br>/BO 6]                                              |
| Inverting 4   | Inverting of the state of the assigned signal.                                                                                                                                                                    | inactive,<br>active    | inactive | [Device Para<br>/Binary Outputs<br>/BO Slot X2                     |
| Assignment 5  | Assignment                                                                                                                                                                                                        | 1n,<br>Assignment List |          | /BO 6]<br>[Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 6] |
| Inverting 5   | Inverting of the state of the assigned signal.                                                                                                                                                                    | inactive,<br>active    | inactive | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 6]           |
| Assignment 6  | Assignment                                                                                                                                                                                                        | 1n,<br>Assignment List |          | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 6]           |
| Inverting 6   | Inverting of the state of the assigned signal.                                                                                                                                                                    | inactive,<br>active    | inactive | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 6]           |
| Assignment 7  | Assignment                                                                                                                                                                                                        | 1n,<br>Assignment List |          | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 6]           |
| Inverting 7   | Inverting of the state of the assigned signal.                                                                                                                                                                    | inactive,<br>active    | inactive | [Device Para<br>/Binary Outputs<br>/BO Slot X2<br>/BO 6]           |
| DISARMED Ctrl | Enables and disables the disarming of the<br>relay outputs. This is the first step of a two<br>step process, to inhibit the operation or the<br>relay outputs. Please refer to "DISARMED"<br>for the second step. | inactive,<br>active    | inactive | [Service<br>/Test (Prot<br>inhibit)<br>/DISARMED<br>/BO Slot X2]   |

| Parameter           | Description                                                                                                                                                                                                                                                                                               | Setting range         | Default   | Menu path                                                        |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|------------------------------------------------------------------|
| Disarm Mode         | CAUTION! RELAYS DISARMED in order to<br>safely perform maintenance while<br>eliminating the risk of taking an entire<br>process off-line. (Note: The Supervision<br>Contact cannot be disarmed). YOU MUST<br>ENSURE that the relays are ARMED AGAIN<br>after maintenance.                                 | permanent,<br>timeout | permanent | [Service<br>/Test (Prot<br>inhibit)<br>/DISARMED<br>/BO Slot X2] |
| t-Timeout<br>DISARM | The relays will be armed again after<br>expiring of this time.<br>Only available if: Mode = Timeout DISARM                                                                                                                                                                                                | 0.00 - 300.00s        | 0.03s     | [Service<br>/Test (Prot<br>inhibit)<br>/DISARMED<br>/BO Slot X2] |
| Force Mode          | By means of this function the normal Output<br>Relay States can be overwritten (forced) in<br>case that the Relay is not in a disarmed<br>state. The relays can be set from normal<br>operation (relay works according to the<br>assigned signals) to "force energized" or<br>"force de-energized" state. | permanent,<br>timeout | permanent | [Service<br>/Test (Prot<br>inhibit)<br>/Force OR<br>/BO Slot X2] |
| t-Timeout Force     | The Output State will be set by force for the duration of this time. That means for the duration of this time the Output Relay does not show the state of the signals that are assigned on it.<br>Only available if: Mode = Timeout DISARM                                                                | 0.00 - 300.00s        | 0.03s     | [Service<br>/Test (Prot<br>inhibit)<br>/Force OR<br>/BO Slot X2] |

# Input States of the Binary Output Relays on OR-6 X

| Name            | Description                                                                                            | Assignment via  |
|-----------------|--------------------------------------------------------------------------------------------------------|-----------------|
| BO1.1           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 1]          |
| BO1.2           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 1]          |
| BO1.3           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 1]          |
| BO1.4           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 1]          |
| BO1.5           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 1]          |
| BO1.6           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 1]          |
| BO1.7           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 1]          |
| Ack signal BO 1 | Module input state: Acknowledgement signal for the                                                     | [Device Para    |
|                 | binary output relay. If latching is set to active, the binary output relay can only be acknowledged if | /Binary Outputs |
|                 | those signals that initiated the setting are fallen                                                    | /BO Slot X2     |
|                 | back and the hold time is expired.                                                                     | /BO 1]          |
| BO2.1           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 2]          |

| Name            | Description                                                                                            | Assignment via  |
|-----------------|--------------------------------------------------------------------------------------------------------|-----------------|
| BO2.2           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 2]          |
| BO2.3           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 2]          |
| BO2.4           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 2]          |
| BO2.5           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 2]          |
| BO2.6           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 2]          |
| BO2.7           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 2]          |
| Ack signal BO 2 | Module input state: Acknowledgement signal for the                                                     | [Device Para    |
|                 | binary output relay. If latching is set to active, the binary output relay can only be acknowledged if | /Binary Outputs |
|                 | those signals that initiated the setting are fallen                                                    | /BO Slot X2     |
|                 | back and the hold time is expired.                                                                     | /BO 2]          |
| BO3.1           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 3]          |
| BO3.2           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 3]          |

| Name            | Description                                                                                            | Assignment via  |
|-----------------|--------------------------------------------------------------------------------------------------------|-----------------|
| BO3.3           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 3]          |
| BO3.4           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 3]          |
| BO3.5           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 3]          |
| BO3.6           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 3]          |
| BO3.7           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 3]          |
| Ack signal BO 3 | Module input state: Acknowledgement signal for the                                                     | [Device Para    |
|                 | binary output relay. If latching is set to active, the binary output relay can only be acknowledged if | /Binary Outputs |
|                 | those signals that initiated the setting are fallen                                                    | /BO Slot X2     |
|                 | back and the hold time is expired.                                                                     | /BO 3]          |
| BO4.1           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 4]          |
| BO4.2           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 4]          |
| BO4.3           | Module input state: Assignment                                                                         | [Device Para    |
|                 |                                                                                                        | /Binary Outputs |
|                 |                                                                                                        | /BO Slot X2     |
|                 |                                                                                                        | /BO 4]          |

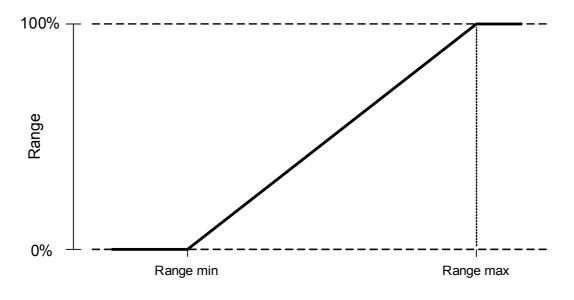
| Name            | Description                                                                                                                                                                                                                                                  | Assignment via  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| BO4.4           | Module input state: Assignment                                                                                                                                                                                                                               | [Device Para    |
|                 |                                                                                                                                                                                                                                                              | /Binary Outputs |
|                 |                                                                                                                                                                                                                                                              | /BO Slot X2     |
|                 |                                                                                                                                                                                                                                                              | /BO 4]          |
| BO4.5           | Module input state: Assignment                                                                                                                                                                                                                               | [Device Para    |
|                 |                                                                                                                                                                                                                                                              | /Binary Outputs |
|                 |                                                                                                                                                                                                                                                              | /BO Slot X2     |
|                 |                                                                                                                                                                                                                                                              | /BO 4]          |
| BO4.6           | Module input state: Assignment                                                                                                                                                                                                                               | [Device Para    |
|                 |                                                                                                                                                                                                                                                              | /Binary Outputs |
|                 |                                                                                                                                                                                                                                                              | /BO Slot X2     |
|                 |                                                                                                                                                                                                                                                              | /BO 4]          |
| BO4.7           | Module input state: Assignment                                                                                                                                                                                                                               | [Device Para    |
|                 |                                                                                                                                                                                                                                                              | /Binary Outputs |
|                 |                                                                                                                                                                                                                                                              | /BO Slot X2     |
|                 |                                                                                                                                                                                                                                                              | /BO 4]          |
| Ack signal BO 4 | Module input state: Acknowledgement signal for the<br>binary output relay. If latching is set to active, the<br>binary output relay can only be acknowledged if<br>those signals that initiated the setting are fallen<br>back and the hold time is expired. | [Device Para    |
|                 |                                                                                                                                                                                                                                                              | /Binary Outputs |
|                 |                                                                                                                                                                                                                                                              | /BO Slot X2     |
|                 |                                                                                                                                                                                                                                                              | /BO 4]          |
| BO5.1           | Module input state: Assignment                                                                                                                                                                                                                               | [Device Para    |
|                 |                                                                                                                                                                                                                                                              | /Binary Outputs |
|                 |                                                                                                                                                                                                                                                              | /BO Slot X2     |
|                 |                                                                                                                                                                                                                                                              | /BO 5]          |
| BO5.2           | Module input state: Assignment                                                                                                                                                                                                                               | [Device Para    |
|                 |                                                                                                                                                                                                                                                              | /Binary Outputs |
|                 |                                                                                                                                                                                                                                                              | /BO Slot X2     |
|                 |                                                                                                                                                                                                                                                              | /BO 5]          |
| BO5.3           | Module input state: Assignment                                                                                                                                                                                                                               | [Device Para    |
|                 |                                                                                                                                                                                                                                                              | /Binary Outputs |
|                 |                                                                                                                                                                                                                                                              | /BO Slot X2     |
|                 |                                                                                                                                                                                                                                                              | /BO 5]          |
| BO5.4           | Module input state: Assignment                                                                                                                                                                                                                               | [Device Para    |
|                 |                                                                                                                                                                                                                                                              | /Binary Outputs |
|                 |                                                                                                                                                                                                                                                              | /BO Slot X2     |
|                 |                                                                                                                                                                                                                                                              | /BO 5]          |

| Name            | Description                                                                                               | Assignment via  |
|-----------------|-----------------------------------------------------------------------------------------------------------|-----------------|
| BO5.5           | Module input state: Assignment                                                                            | [Device Para    |
|                 |                                                                                                           | /Binary Outputs |
|                 |                                                                                                           | /BO Slot X2     |
|                 |                                                                                                           | /BO 5]          |
| BO5.6           | Module input state: Assignment                                                                            | [Device Para    |
|                 |                                                                                                           | /Binary Outputs |
|                 |                                                                                                           | /BO Slot X2     |
|                 |                                                                                                           | /BO 5]          |
| BO5.7           | Module input state: Assignment                                                                            | [Device Para    |
|                 |                                                                                                           | /Binary Outputs |
|                 |                                                                                                           | /BO Slot X2     |
|                 |                                                                                                           | /BO 5]          |
| Ack signal BO 5 | Module input state: Acknowledgement signal for the                                                        | [Device Para    |
|                 | binary output relay. If latching is set to active, the<br>binary output relay can only be acknowledged if | /Binary Outputs |
|                 | those signals that initiated the setting are fallen                                                       | /BO Slot X2     |
|                 | back and the hold time is expired.                                                                        | /BO 5]          |
| BO6.1           | Module input state: Assignment                                                                            | [Device Para    |
|                 |                                                                                                           | /Binary Outputs |
|                 |                                                                                                           | /BO Slot X2     |
|                 |                                                                                                           | /BO 6]          |
| BO6.2           | Module input state: Assignment                                                                            | [Device Para    |
|                 |                                                                                                           | /Binary Outputs |
|                 |                                                                                                           | /BO Slot X2     |
|                 |                                                                                                           | /BO 6]          |
| BO6.3           | Module input state: Assignment                                                                            | [Device Para    |
|                 |                                                                                                           | /Binary Outputs |
|                 |                                                                                                           | /BO Slot X2     |
|                 |                                                                                                           | /BO 6]          |
| BO6.4           | Module input state: Assignment                                                                            | [Device Para    |
|                 |                                                                                                           | /Binary Outputs |
|                 |                                                                                                           | /BO Slot X2     |
|                 |                                                                                                           | /BO 6]          |
| BO6.5           | Module input state: Assignment                                                                            | [Device Para    |
|                 |                                                                                                           | /Binary Outputs |
|                 |                                                                                                           | /BO Slot X2     |
|                 |                                                                                                           | /BO 6]          |

| Name            | Description                                                                                                                                                      | Assignment via  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| BO6.6           | Module input state: Assignment                                                                                                                                   | [Device Para    |
|                 |                                                                                                                                                                  | /Binary Outputs |
|                 |                                                                                                                                                                  | /BO Slot X2     |
|                 |                                                                                                                                                                  | /BO 6]          |
| BO6.7           | Module input state: Assignment                                                                                                                                   | [Device Para    |
|                 |                                                                                                                                                                  | /Binary Outputs |
|                 |                                                                                                                                                                  | /BO Slot X2     |
|                 |                                                                                                                                                                  | /BO 6]          |
| Ack signal BO 6 | Module input state: Acknowledgement signal for the                                                                                                               | [Device Para    |
|                 | binary output relay. If latching is set to active, the<br>binary output relay can only be acknowledged if<br>those signals that initiated the setting are fallen | /Binary Outputs |
|                 |                                                                                                                                                                  | /BO Slot X2     |
|                 | back and the hold time is expired.                                                                                                                               | /BO 6]          |

# Signals of the Binary Output Relays on OR-6 $\rm X$

| Signal      | Description                                                                                                                                                                                                                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BO 1        | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO 2        | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO 3        | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO 4        | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO 5        | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO 6        | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| DISARMED!   | Signal: CAUTION! RELAYS DISARMED in order to safely perform<br>maintenance while eliminating the risk of taking an entire process off-line.<br>(Note: The Self Supervision Contact cannot be disarmed). YOU MUST<br>ENSURE that the relays are ARMED AGAIN after maintenance |
| Outs forced | Signal: The State of at least one Relay Output has been set by force. That means that the state of at least one Relay is forced and hence does not show the state of the assigned signals.                                                                                   |


### Configuration of the Analog Outputs

Available Elements: AnOut[1] .AnOut[2] .AnOut[3] .AnOut[4]

The Analog Outputs can be programmed to output for three different ranges of either »*0- 20mA«*, »*4- 20 mA«*, or »*0-10 Volts«*.

These outputs can be configured by the User to represent the status of User programmed parameters that are available from the relay. The User will find the configuration menu for this feature under the [Device Para/ Analog Outputs] menu option. Here the User can define to which parameter the output will correlate.

Once the assignment has been made, the User can select the expected range of the parameter that will correlate to the analog output. The User will be required to enter a *»Range min«*, and *»Range max«*. The *»Range min«* will determine the value at which value the transmission will start. Likewise, the *»Range max«* value will determine the value that will result in the end value of the transmission.



Range of assigned value

#### Setting Example: Analog Output with Active Power P\*

\*=only available in Devices that offer Power Protection

All settings/thresholds within the power module are to be set as per unit thresholds. Per definition  $S_n$  is to be used as scale basis.

 $S_{n} = \sqrt{3^{*} \ VoltageTransformer_{\text{Line-to-Line}\_Rated\_Voltage}^{*} \ CurrentTransformer_{\text{Rated}\_Current}}$ 

If thresholds should base on primary side values:

 $S_{n} = \sqrt{3^{*} VoltageTransformer_{Pri\_Line-to-Line\_Rated\_Voltage}^{*} CurrentTransformer_{Pri\_Rated\_Current}^{*}}$ 

If thresholds should base on secondary side values

 $S_n = \sqrt{3^* \ VoltageTransformer_{Sec\_Line-to-Line\_Rated\_Voltage}} * CurrentTransformer_{Sec\_Rated\_Current}$ 

#### Example – Field Data

- CurrentTransformer CT pri =200 A; CT sec = 5 A
- VoltageTransformer VT pri = 10 kV; VT sec =100 V
- Active power range 1 MW to 4 MW is mapped to an Analog Outputs 0% to 100%.

Calculating setting for Range min and Range max based on primary side values

Active power range is 1 MW to 4 MW.

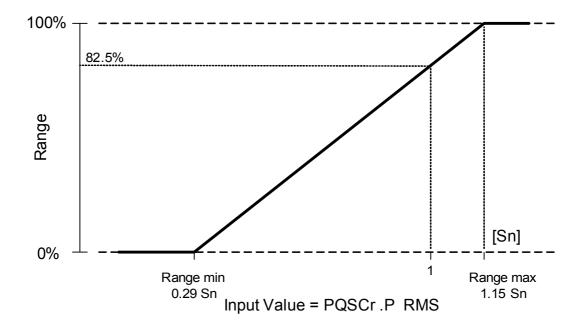
First  $S_n$  is to be calculated:

 $S_n = \sqrt{3 * VoltageTransformer_{Pri\_Line-to-Line\_Rated\_Voltage} * CurrentTransformer_{Pri\_Rated\_Current} + Current +$ 

S<sub>n</sub>= 1.73 \* 10000 V \* 200 A = 3.464 MVA

Calculating the range settings based to  $S_{\mbox{\scriptsize n}}$  :

Range min (0%) = 1 MW/ 3.464 MVA =  $0.29 S_n$ Range max (100%) = 4 MW/ 3.464 MVA =  $1.15 S_n$ 


Calculate the Analog Output percentage for specific value:

AnalogOutput (InputValue) = 100% / (Range max – Range min) \* (InputValue – Range min)

For e.g. Input value  $1 S_n$ :

AnalogOutput( 1 Sn ) = 100% / 0.86 S<sub>n</sub> \* ( 1 S<sub>n</sub> – 0.29 S<sub>n</sub>) =  $\underline{82.5\%}$ 

The Output current for e.g. 4...20mA type is then 17.7 mA = 4mA + 82.5% \* (20mA - 4mA)



#### Setting Example: Analog Output with Power Factor PF\*

\*=only available in Devices that offer Power Protection

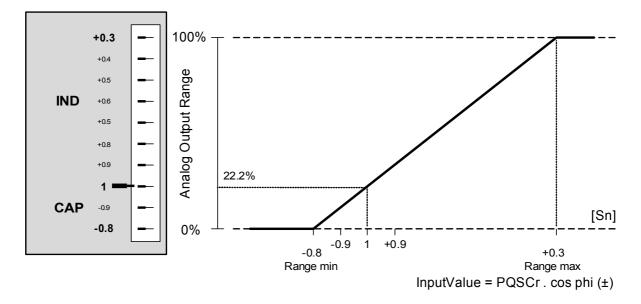
Since the sign of Power Factor PF follows the sign of Active Power P, there is no distinguish between capacitive and inductive Reactive Power. Hence, for Analog Output assignment the setting for PF output range uses a Power Factor with a "Sign Convention":

a positive sign (+) PF, if Active and Reactive Power has same sign

a negative sign (-) PF, if Active and Reactive Power has different sign

For e.g. if Active Power is flowing into the load and Current lags the voltage for a inductive load, PF with sign convention uses a positive sign. This is important to set the right range settings for Analog Ouput.

Use case for analog instrument with 4...20mA with linear scale, where scale is in range from 0.8 capacitive to 0.3 inductive, following setting should be uses:


Range min (0%) = -0.8Range max (100%) = +0.3

Calculate the Analog Output percentage for specific value for e.g. unitiy: |PF|=1 at phi = 0°:

First the signed PF needs to be converted into a linear range:

Range min' (0%) = -1 - (-0.8) = -0.2Range max' (100%) = +1 - (+0.3) = +0.7InputValue' = +1 - (+1) = 0.0AnalogOutput (InputValue') = 100% / (Range max' - Range min') \* (InputValue' - Range min')AnalogOutput( 0) = 100% / 0.9 \* 0.2 = 22.2%

The Output current for e.g. 4...20mA type is then  $\overline{7.5 \text{ mA}}$  = 4mA + 22.2% \* (20mA – 4mA)



### Global Protection Parameters of the Analog Outputs

| Parameter       | Description                                                                                                                                                                                                                                                  | Setting range                 | Default   | Menu path                                                               |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|-------------------------------------------------------------------------|
| Assignment      | Assignment                                                                                                                                                                                                                                                   | 1n,<br>AnalogOutputLi<br>st   |           | [Device Para<br>/Analog<br>Outputs<br>/AnOut[1]]                        |
| Range           | Adjustable range                                                                                                                                                                                                                                             | 020mA,<br>420mA,<br>010V      | 020mA     | [Device Para<br>/Analog<br>Outputs<br>/AnOut[1]]                        |
| Range max       | Adjustable range maximum.                                                                                                                                                                                                                                    | -9999999.00 -<br>9999999.00°C | 1.00°C    | [Device Para<br>/Analog<br>Outputs<br>/AnOut[1]]                        |
| Range min       | Adjustable range minimum.                                                                                                                                                                                                                                    | -9999999.00 -<br>9999999.00°C | 0.00°C    | [Device Para<br>/Analog<br>Outputs<br>/AnOut[1]]                        |
| Force Mode      | For commissioning purposes or for<br>maintenance, Analog Outputs can be set by<br>force. By means of this function the normal<br>Analog Outputs can be overwritten (forced).                                                                                 | permanent,<br>timeout         | permanent | [Service<br>/Test (Prot<br>inhibit)<br>/Analog<br>Outputs<br>/AnOut[1]] |
| t-Timeout Force | The Analog Output Value will be set by force<br>for the duration of this time. That means for<br>the duration of this time the Analog Output<br>does not show the value of the signals that<br>are assigned on it.<br>Only available if: Force Mode = active | 0.00 - 300.00s                | 0.03s     | [Service<br>/Test (Prot<br>inhibit)<br>/Analog<br>Outputs<br>/AnOut[1]] |

# Direct Commands of the Analog Outputs

| Parameter   | Description                                 | Setting range  | Default  | Menu path               |
|-------------|---------------------------------------------|----------------|----------|-------------------------|
| Function    | module/stage                                | inactive,      | inactive | [Service                |
|             |                                             | active         |          | /Test (Prot<br>inhibit) |
|             |                                             |                |          | /Analog<br>Outputs      |
|             |                                             |                |          | /AnOut[1]]              |
| Force Value | By means of this function the Analog Output | 0.00 - 100.00% | 0%       | [Service                |
|             | Value can be overwritten (forced).          |                |          | /Test (Prot<br>inhibit) |
|             |                                             |                |          | /Analog<br>Outputs      |
|             |                                             |                |          | /AnOut[1]]              |

#### Signals of the Analog Outputs

| Signal | Description                                                                                                                                                               |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | For commissioning purposes or for maintenance, Analog Outputs can be set<br>by force. By means of this function the normal Analog Outputs can be<br>overwritten (forced). |

# List of the Analog Outputs

| Name           | Description                                                                                      |
|----------------|--------------------------------------------------------------------------------------------------|
|                | No assignment                                                                                    |
| VT.f           | Measured value: Frequency                                                                        |
| VT.VL12 RMS    | Measured value: Phase-to-phase voltage (RMS)                                                     |
| VT.VL23 RMS    | Measured value: Phase-to-phase voltage (RMS)                                                     |
| VT.VL31 RMS    | Measured value: Phase-to-phase voltage (RMS)                                                     |
| VT.VL1 RMS     | Measured value: Phase-to-neutral voltage (RMS)                                                   |
| VT.VL2 RMS     | Measured value: Phase-to-neutral voltage (RMS)                                                   |
| VT.VL3 RMS     | Measured value: Phase-to-neutral voltage (RMS)                                                   |
| VT.VX meas RMS | Measured value (measured): VX measured (RMS)                                                     |
| VT.VG calc RMS | Measured value (calculated): VG (RMS)                                                            |
| VT.V1          | Measured value (calculated): Symmetrical components positive phase sequence voltage(fundamental) |
| VT.V2          | Measured value (calculated): Symmetrical components negative phase sequence voltage(fundamental) |
| VT.%VL12 THD   | Measured value (calculated): V12 Total Harmonic Distortion / Ground wave                         |
| VT.%VL23 THD   | Measured value (calculated): V23 Total Harmonic Distortion / Ground wave                         |
| VT.%VL31 THD   | Measured value (calculated): V31 Total Harmonic Distortion / Ground wave                         |
| VT.%VL1 THD    | Measured value (calculated): VL1 Total Harmonic Distortion / Ground wave                         |
| VT.%VL2 THD    | Measured value (calculated): VL2 Total Harmonic Distortion / Ground wave                         |
| VT.%VL3 THD    | Measured value (calculated): VL3 Total Harmonic Distortion / Ground wave                         |
| VT.VL12 THD    | Measured value (calculated): V12 Total Harmonic Distortion                                       |
| VT.VL23 THD    | Measured value (calculated): V23 Total Harmonic Distortion                                       |
| VT.VL31 THD    | Measured value (calculated): V31 Total Harmonic Distortion                                       |
| VT.VL1 THD     | Measured value (calculated): VL1 Total Harmonic Distortion                                       |
| VT.VL2 THD     | Measured value (calculated): VL2 Total Harmonic Distortion                                       |
| VT.VL3 THD     | Measured value (calculated): VL3 Total Harmonic Distortion                                       |
| CT.IL1 RMS     | Measured value: Phase current (RMS)                                                              |
| CT.IL2 RMS     | Measured value: Phase current (RMS)                                                              |
| CT.IL3 RMS     | Measured value: Phase current (RMS)                                                              |
| CT.IG meas RMS | Measured value (measured): IG (RMS)                                                              |
| CT.IG calc RMS | Measured value (calculated): IG (RMS)                                                            |
| CT.I1          | Measured value (calculated): Positive phase sequence current (fundamental)                       |
| CT.I2          | Measured value (calculated): Unbalanced load current (fundamental)                               |
| CT.%IL1 THD    | Measured value (calculated): IL1 Total Harmonic Distortion                                       |
| CT.%IL2 THD    | Measured value (calculated): IL2 Total Harmonic Distortion                                       |
| CT.%IL3 THD    | Measured value (calculated): IL3 Total Harmonic Distortion                                       |
| CT.IL1 THD     | Measured value (calculated): IL1 Total Harmonic Current                                          |
| CT.IL2 THD     | Measured value (calculated): IL2 Total Harmonic Current                                          |
| CT.IL3 THD     | Measured value (calculated): IL3 Total Harmonic Current                                          |

| Name                       | Description                                                                                                                |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------|
| MStart.IL1 lb              | Measured value: Phase current as multiple of Ib                                                                            |
| MStart.IL2 Ib              | Measured value: Phase current as multiple of Ib                                                                            |
| MStart.IL3 Ib              | Measured value: Phase current as multiple of Ib                                                                            |
| MStart.I3 P (%lb) avg      | Average RMS current of all 3 phases as percentages of Ib                                                                   |
| MStart.I3P Fla Demand      | RMS current of all 3 phases calculated in a fixed demand window as percentages of lb                                       |
| ThR.I2T Used               | Thermal capacity used.                                                                                                     |
| ThR.I2T Remained           | Thermal capacity remained.                                                                                                 |
| URTD.Windg1                | Winding 1                                                                                                                  |
| URTD.Windg2                | Winding 2                                                                                                                  |
| URTD.Windg3                | Winding 3                                                                                                                  |
| URTD.Windg4                | Winding 4                                                                                                                  |
| URTD.Windg5                | Winding 5                                                                                                                  |
| URTD.Windg6                | Winding 6                                                                                                                  |
| URTD.MotBear1              | Motor Bearing 1                                                                                                            |
| URTD.MotBear2              | Motor Bearing 2                                                                                                            |
| URTD.LoadBear1             | Load Bearing 1                                                                                                             |
| URTD.LoadBear2             | Load Bearing 2                                                                                                             |
| URTD.Aux1                  | Auxiliary1                                                                                                                 |
| URTD.Aux2                  | Auxiliary2                                                                                                                 |
| URTD.RTD Max               | Maximum temperature of all channels.                                                                                       |
| RTD.HottestWindingTem<br>p | Hottest motor winding temperature in degrees C.                                                                            |
| RTD.Hottest<br>MotBearTemp | Hottest motor bearing temperature in degrees C.                                                                            |
| PQSCr.S RMS                | Measured Value (Calculated): Apparent power (RMS)                                                                          |
| PQSCr.P RMS                | Measured value (calculated): Active power ( $P$ - = Fed Active Power, $P$ + = Consumpted Active Power) (RMS)               |
| PQSCr.Q                    | Measured value (calculated): Reactive power ( $Q$ - = Fed Reactive Power, $Q$ + = Consumpted Reactive Power) (fundamental) |
| PQSCr.cos phi (±)          | Measured value (calculated): Power factor: Sign Convention: (+)PF:I lags V (-)PF:I leads V                                 |
| PQSCr.cos phi RMS(±)       | Measured value (calculated): Power factor: Sign Convention: (+)PF:I lags V (-)PF:I leads V                                 |
| PQSCr.Ws Net               | Absolute Apparent Power Hours                                                                                              |
| PQSCr.Wp Net               | Absolute Active Power Hours                                                                                                |
| PQSCr.Wp+                  | Positive Active Power is consumed active energy                                                                            |
| PQSCr.Wp-                  | Negative Active Power (Fed Energy)                                                                                         |
| PQSCr.Wq Net               | Absolute Reactive Power Hours                                                                                              |
| PQSCr.Wq+                  | Positive Reactive Power is consumed Reactive Energy                                                                        |
| PQSCr.Wq-                  | Negative Reactive Power (Fed Energy)                                                                                       |

### Global Protection Parameters of the LED Module

#### LEDs group A ,LEDs group B

| Parameter             | Description                                                                                                                                                                                                                        | Setting range                                     | Default                                                             | Menu path                                                         |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|
| Latched               | Defines whether the LED will be latched when it picks up.                                                                                                                                                                          | inactive,<br>active,<br>active, ack. by<br>alarm  | LEDs group A:<br>active<br>LEDs group B:<br>inactive                | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 1]                 |
| Ack signal            | Acknowledgement signal for the LED. If<br>latching is set to active the LED can only be<br>acknowledged if those signals that initiated<br>the setting are no longer present.<br>Dependency Only available if: Latched =<br>active | 1n,<br>Assignment List                            |                                                                     | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 1]                 |
| LED active<br>color   | The LED lights up in this color if the state of the OR-assignment of the signals is true.                                                                                                                                          | green,<br>red,<br>red flash,<br>green flash,<br>- | red                                                                 | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 1]                 |
| LED inactive<br>color | The LED lights up in this color if the state of<br>the OR-assignment of the signals is untrue.                                                                                                                                     | green,<br>red,<br>red flash,<br>green flash,<br>- | -                                                                   | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 1]                 |
| Assignment 1          | Assignment<br>Inverting of the state of the assigned signal.                                                                                                                                                                       | 1n,<br>Assignment List<br>inactive,               | LEDs group A:<br>SG[1].TripCm<br>d<br>LEDs group B:<br><br>inactive | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 1]<br>[Device Para |
| *                     |                                                                                                                                                                                                                                    | active                                            |                                                                     | /LEDs<br>/LEDs group A<br>/LED 1]                                 |
| Assignment 2          | Assignment                                                                                                                                                                                                                         | 1n,<br>Assignment List                            |                                                                     | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 1]                 |
| Inverting 2           | Inverting of the state of the assigned signal.                                                                                                                                                                                     | inactive,<br>active                               | inactive                                                            | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 1]                 |

| Parameter        | Description                                                                     | Setting range          | Default       | Menu path                              |
|------------------|---------------------------------------------------------------------------------|------------------------|---------------|----------------------------------------|
| Assignment 3     | Assignment                                                                      | 1n,<br>Assignment List |               | [Device Para<br>/LEDs<br>/LEDs group A |
|                  |                                                                                 |                        |               | /LED 1]                                |
| Inverting 3      | Inverting of the state of the assigned signal.                                  | inactive,              | inactive      | [Device Para                           |
|                  |                                                                                 | active                 |               | /LEDs                                  |
| $\bigotimes$     |                                                                                 |                        |               | /LEDs group A                          |
| Assignment 4     | Assignment                                                                      | 1n,                    |               | /LED 1]<br>[Device Para                |
| Assignment 4     | Assignment                                                                      | Assignment List        |               | /LEDs                                  |
| $\frown$         |                                                                                 |                        |               | /LEDs group A                          |
|                  |                                                                                 |                        |               | /LED 1]                                |
| Inverting 4      | Inverting of the state of the assigned signal.                                  | inactive,              | inactive      | [Device Para                           |
|                  |                                                                                 | active                 |               | /LEDs                                  |
| $\bigotimes$     |                                                                                 |                        |               | /LEDs group A                          |
|                  |                                                                                 |                        |               | /LED 1]                                |
| Assignment 5     | Assignment                                                                      | 1n,<br>Assignment List |               | [Device Para                           |
| -                |                                                                                 | Assignment List        |               | /LEDs                                  |
| $\bigotimes$     |                                                                                 |                        |               | /LEDs group A                          |
|                  |                                                                                 |                        |               | /LED 1]                                |
| Inverting 5      | Inverting of the state of the assigned signal.                                  | inactive,              | inactive      | [Device Para                           |
|                  |                                                                                 | active                 |               | /LEDs                                  |
| $\bigotimes$     |                                                                                 |                        |               | /LEDs group A                          |
| Latched          | Defines whether the LED will be latched                                         | inactive,              | LEDs group A: | /LED 1]                                |
| Laterieu         | when it picks up.                                                               | active,                | active        | /LEDs                                  |
|                  |                                                                                 | active, ack. by        | LEDs group B: | /LEDs group A                          |
|                  |                                                                                 | alarm                  | inactive      | /LED 2]                                |
| Ack signal       | Acknowledgement signal for the LED. If                                          | 1n,                    |               | [Device Para                           |
| 2                | latching is set to active the LED can only be                                   | Assignment List        |               | /LEDs                                  |
| $\bigtriangleup$ | acknowledged if those signals that initiated the setting are no longer present. |                        |               | /LEDs group A                          |
|                  | Only available if: Latched = active                                             |                        |               | /LED 2]                                |
| LED active       | The LED lights up in this color if the state of                                 | green,                 | red           | [Device Para                           |
| color            | the OR-assignment of the signals is true.                                       | red,                   |               | /LEDs                                  |
| _                |                                                                                 | red flash,             |               | /LEDs group A                          |
| $\bigotimes$     |                                                                                 | green flash,           |               | /LED 2]                                |
|                  |                                                                                 | -                      |               |                                        |

| Parameter    | Description                                     | Setting range          | Default                     | Menu path             |
|--------------|-------------------------------------------------|------------------------|-----------------------------|-----------------------|
| LED inactive | The LED lights up in this color if the state of | green,                 | -                           | [Device Para          |
| color        | the OR-assignment of the signals is untrue.     | red,                   |                             | /LEDs                 |
| •            |                                                 | red flash,             |                             | /LEDs group A         |
| $\bigotimes$ |                                                 | green flash,           |                             | /LED 2]               |
|              |                                                 | -                      |                             |                       |
| Assignment 1 | Assignment                                      | 1n,<br>Assignment List | LEDs group A:<br>Prot.Alarm | [Device Para<br>/LEDs |
| $\bigotimes$ |                                                 |                        | LEDs group B:<br>           | /LEDs group A         |
|              |                                                 |                        |                             | /LED 2]               |
| Inverting 1  | Inverting of the state of the assigned signal.  | inactive,              | inactive                    | [Device Para          |
| _            |                                                 | active                 |                             | /LEDs                 |
| $\bigotimes$ |                                                 |                        |                             | /LEDs group A         |
|              |                                                 |                        |                             | /LED 2]               |
| Assignment 2 | Assignment                                      | 1n,<br>Assignment List |                             | [Device Para          |
|              |                                                 | Assignment List        |                             | /LEDs                 |
| $\bigotimes$ |                                                 |                        |                             | /LEDs group A         |
|              |                                                 |                        |                             | /LED 2]               |
| Inverting 2  | Inverting of the state of the assigned signal.  | inactive,              | inactive                    | [Device Para          |
|              |                                                 | active                 |                             | /LEDs                 |
| $\bigotimes$ |                                                 |                        |                             | /LEDs group A         |
|              |                                                 |                        |                             | /LED 2]               |
| Assignment 3 | Assignment                                      | 1n,<br>Assignment List |                             | [Device Para          |
|              |                                                 | Assignment List        |                             | /LEDs                 |
| $\bigotimes$ |                                                 |                        |                             | /LEDs group A         |
|              |                                                 |                        |                             | /LED 2]               |
| Inverting 3  | Inverting of the state of the assigned signal.  | inactive,              | inactive                    | [Device Para          |
|              |                                                 | active                 |                             | /LEDs                 |
| $\bigotimes$ |                                                 |                        |                             | /LEDs group A         |
| •            |                                                 |                        |                             | /LED 2]               |
| Assignment 4 | Assignment                                      | 1n,                    |                             | [Device Para          |
|              |                                                 | Assignment List        |                             | /LEDs                 |
| $\bigotimes$ |                                                 |                        |                             | /LEDs group A         |
| <b>•</b>     |                                                 |                        |                             | /LED 2]               |
| Inverting 4  | Inverting of the state of the assigned signal.  | inactive,              | inactive                    | [Device Para          |
|              |                                                 | active                 |                             | /LEDs                 |
| $\bigotimes$ |                                                 |                        |                             | /LEDs group A         |
|              |                                                 |                        |                             | /LED 2]               |

| Parameter             | Description                                                                                                                                                                                                          | Setting range                                     | Default                                              | Menu path                                                    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| Assignment 5          | Assignment                                                                                                                                                                                                           | 1n,<br>Assignment List                            |                                                      | [Device Para<br>/LEDs                                        |
| $\bigotimes$          |                                                                                                                                                                                                                      |                                                   |                                                      | /LEDs group A<br>/LED 2]                                     |
| Inverting 5           | Inverting of the state of the assigned signal.                                                                                                                                                                       | inactive,<br>active                               | inactive                                             | [Device Para<br>/LEDs<br>/LEDs group A                       |
| Latched               | Defines whether the LED will be latched when it picks up.                                                                                                                                                            | inactive,<br>active,<br>active, ack. by<br>alarm  | LEDs group A:<br>active<br>LEDs group B:<br>inactive | /LED 2]<br>[Device Para<br>/LEDs<br>/LEDs group A<br>/LED 3] |
| Ack signal            | Acknowledgement signal for the LED. If<br>latching is set to active the LED can only be<br>acknowledged if those signals that initiated<br>the setting are no longer present.<br>Only available if: Latched = active | 1n,<br>Assignment List                            |                                                      | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 3]            |
| LED active<br>color   | The LED lights up in this color if the state of the OR-assignment of the signals is true.                                                                                                                            | green,<br>red,<br>red flash,<br>green flash,<br>- | red                                                  | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 3]            |
| LED inactive<br>color | The LED lights up in this color if the state of the OR-assignment of the signals is untrue.                                                                                                                          | green,<br>red,<br>red flash,<br>green flash,<br>- | -                                                    | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 3]            |
| Assignment 1          | Assignment                                                                                                                                                                                                           | 1n,<br>Assignment List                            | LEDs group A:<br>ThR.Alarm<br>LEDs group B:<br>      | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 3]            |
| Inverting 1           | Inverting of the state of the assigned signal.                                                                                                                                                                       | inactive,<br>active                               | inactive                                             | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 3]            |
| Assignment 2          | Assignment                                                                                                                                                                                                           | 1n,<br>Assignment List                            | LEDs group A:<br>I[1].Alarm<br>LEDs group B:<br>     | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 3]            |

| Parameter                                                                                                                                          | Description                                                                                | Setting range   | Default                   | Menu path     |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------|---------------------------|---------------|
| Inverting 2                                                                                                                                        | Inverting of the state of the assigned signal.                                             | inactive,       | inactive                  | [Device Para  |
|                                                                                                                                                    |                                                                                            | active          |                           | /LEDs         |
| $\bigotimes$                                                                                                                                       |                                                                                            |                 |                           | /LEDs group A |
| $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ |                                                                                            |                 |                           | /LED 3]       |
| Assignment 3                                                                                                                                       | Assignment                                                                                 | 1n,             |                           | [Device Para  |
|                                                                                                                                                    |                                                                                            | Assignment List |                           | /LEDs         |
| $\bigotimes$                                                                                                                                       |                                                                                            |                 |                           | /LEDs group A |
| $\mathbf{+}$                                                                                                                                       |                                                                                            |                 |                           | /LED 3]       |
| Inverting 3                                                                                                                                        | Inverting of the state of the assigned signal.                                             | inactive,       | inactive                  | [Device Para  |
|                                                                                                                                                    |                                                                                            | active          |                           | /LEDs         |
| $\bigotimes$                                                                                                                                       |                                                                                            |                 |                           | /LEDs group A |
| •                                                                                                                                                  |                                                                                            |                 |                           | /LED 3]       |
| Assignment 4                                                                                                                                       | Assignment                                                                                 | 1n,             |                           | [Device Para  |
|                                                                                                                                                    |                                                                                            | Assignment List |                           | /LEDs         |
| $\bigotimes$                                                                                                                                       |                                                                                            |                 |                           | /LEDs group A |
| <b>•</b>                                                                                                                                           |                                                                                            |                 |                           | /LED 3]       |
| Inverting 4                                                                                                                                        | Inverting of the state of the assigned signal.                                             | inactive,       | inactive                  | [Device Para  |
|                                                                                                                                                    |                                                                                            | active          |                           | /LEDs         |
| $\bigotimes$                                                                                                                                       |                                                                                            |                 |                           | /LEDs group A |
| <b>•</b>                                                                                                                                           |                                                                                            |                 |                           | /LED 3]       |
| Assignment 5                                                                                                                                       | Assignment                                                                                 | 1n,             |                           | [Device Para  |
|                                                                                                                                                    |                                                                                            | Assignment List |                           | /LEDs         |
| $\bigotimes$                                                                                                                                       |                                                                                            |                 |                           | /LEDs group A |
| •<br>                                                                                                                                              |                                                                                            |                 |                           | /LED 3]       |
| Inverting 5                                                                                                                                        | Inverting of the state of the assigned signal.                                             | inactive,       | inactive                  | [Device Para  |
|                                                                                                                                                    |                                                                                            | active          |                           | /LEDs         |
| $\bigotimes$                                                                                                                                       |                                                                                            |                 |                           | /LEDs group A |
|                                                                                                                                                    |                                                                                            |                 |                           | /LED 3]       |
| Latched                                                                                                                                            | Defines whether the LED will be latched                                                    | inactive,       | LEDs group A:             | [Device Para  |
|                                                                                                                                                    | when it picks up.                                                                          | active,         | active                    | /LEDs         |
| $\bigotimes$                                                                                                                                       |                                                                                            | active, ack. by | LEDs group B:<br>inactive | /LEDs group A |
|                                                                                                                                                    |                                                                                            | alarm           |                           | /LED 4]       |
| Ack signal                                                                                                                                         | Acknowledgement signal for the LED. If                                                     | 1n,             |                           | [Device Para  |
|                                                                                                                                                    | latching is set to active the LED can only be acknowledged if those signals that initiated | Assignment List |                           | /LEDs         |
| $\bigotimes$                                                                                                                                       | the setting are no longer present.                                                         |                 |                           | /LEDs group A |
| -                                                                                                                                                  | Only available if: Latched = active                                                        |                 |                           | /LED 4]       |

| Parameter    | Description                                     | Setting range   | Default           | Menu path     |
|--------------|-------------------------------------------------|-----------------|-------------------|---------------|
| LED active   | The LED lights up in this color if the state of | green,          | red               | [Device Para  |
| color        | the OR-assignment of the signals is true.       | red,            |                   | /LEDs         |
| <b>•</b>     |                                                 | red flash,      |                   | /LEDs group A |
| $\bigotimes$ |                                                 | green flash,    |                   | /LED 4]       |
|              |                                                 | -               |                   |               |
| LED inactive | The LED lights up in this color if the state of | green,          | -                 | [Device Para  |
| color        | the OR-assignment of the signals is untrue.     | red,            |                   | /LEDs         |
| •            |                                                 | red flash,      |                   | /LEDs group A |
| $\bigotimes$ |                                                 | green flash,    |                   | /LED 4]       |
|              |                                                 | -               |                   |               |
| Assignment 1 | Assignment                                      | 1n,             | LEDs group A:     | [Device Para  |
|              |                                                 | Assignment List |                   | /LEDs         |
|              |                                                 |                 | LEDs group B:<br> | /LEDs group A |
|              |                                                 |                 | •                 | /LED 4]       |
| Inverting 1  | Inverting of the state of the assigned signal.  | inactive,       | inactive          | [Device Para  |
|              |                                                 | active          |                   | /LEDs         |
|              |                                                 |                 |                   | /LEDs group A |
|              |                                                 |                 |                   | /LED 4]       |
| Assignment 2 | Assignment                                      | 1n,             |                   | [Device Para  |
|              |                                                 | Assignment List |                   | /LEDs         |
|              |                                                 |                 |                   | /LEDs group A |
|              |                                                 |                 |                   | /LED 4]       |
| Inverting 2  | Inverting of the state of the assigned signal.  | inactive,       | inactive          | [Device Para  |
|              |                                                 | active          |                   | /LEDs         |
| $\bigotimes$ |                                                 |                 |                   | /LEDs group A |
|              |                                                 |                 |                   | /LED 4]       |
| Assignment 3 | Assignment                                      | 1n,             |                   | [Device Para  |
|              |                                                 | Assignment List |                   | /LEDs         |
|              |                                                 |                 |                   | /LEDs group A |
|              |                                                 |                 |                   | /LED 4]       |
| Inverting 3  | Inverting of the state of the assigned signal.  | inactive,       | inactive          | [Device Para  |
|              |                                                 | active          |                   | /LEDs         |
|              |                                                 |                 |                   | /LEDs group A |
|              |                                                 |                 |                   | /LED 4]       |
| Assignment 4 | Assignment                                      | 1n,             |                   | [Device Para  |
|              |                                                 | Assignment List |                   | /LEDs         |
|              |                                                 |                 |                   | /LEDs group A |
|              |                                                 |                 |                   | /LED 4]       |

| Parameter    | Description                                                                                                                                                                   | Setting range   | Default                       | Menu path     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|---------------|
| Inverting 4  | Inverting of the state of the assigned signal.                                                                                                                                | inactive,       | inactive                      | [Device Para  |
|              |                                                                                                                                                                               | active          |                               | /LEDs         |
| $\bigotimes$ |                                                                                                                                                                               |                 |                               | /LEDs group A |
| •            |                                                                                                                                                                               |                 |                               | /LED 4]       |
| Assignment 5 | Assignment                                                                                                                                                                    | 1n,             |                               | [Device Para  |
|              |                                                                                                                                                                               | Assignment List |                               | /LEDs         |
| $\bigotimes$ |                                                                                                                                                                               |                 |                               | /LEDs group A |
| •            |                                                                                                                                                                               |                 |                               | /LED 4]       |
| Inverting 5  | Inverting of the state of the assigned signal.                                                                                                                                | inactive,       | inactive                      | [Device Para  |
|              |                                                                                                                                                                               | active          |                               | /LEDs         |
| $\bigotimes$ |                                                                                                                                                                               |                 |                               | /LEDs group A |
|              |                                                                                                                                                                               |                 |                               | /LED 4]       |
| Latched      | Defines whether the LED will be latched                                                                                                                                       | inactive,       | inactive                      | [Device Para  |
|              | when it picks up.                                                                                                                                                             | active,         |                               | /LEDs         |
| $\bigotimes$ |                                                                                                                                                                               | active, ack. by |                               | /LEDs group A |
| •            |                                                                                                                                                                               | alarm           |                               | /LED 5]       |
| Ack signal   | Acknowledgement signal for the LED. If<br>latching is set to active the LED can only be<br>acknowledged if those signals that initiated<br>the setting are no longer present. | 1n,             |                               | [Device Para  |
|              |                                                                                                                                                                               | Assignment List |                               | /LEDs         |
| $\bigotimes$ |                                                                                                                                                                               |                 |                               | /LEDs group A |
| <b>U</b>     | Only available if: Latched = active                                                                                                                                           |                 |                               | /LED 5]       |
| LED active   | The LED lights up in this color if the state of                                                                                                                               | green,          | LEDs group A:                 | [Device Para  |
| color        | the OR-assignment of the signals is true.                                                                                                                                     | red,            | red flash                     | /LEDs         |
|              |                                                                                                                                                                               | red flash,      | LEDs group B:<br>red          | /LEDs group A |
| $\bigotimes$ |                                                                                                                                                                               | green flash,    | leu                           | /LED 5]       |
|              |                                                                                                                                                                               | -               |                               |               |
| LED inactive | The LED lights up in this color if the state of                                                                                                                               | green,          | -                             | [Device Para  |
| color        | the OR-assignment of the signals is untrue.                                                                                                                                   | red,            |                               | /LEDs         |
|              |                                                                                                                                                                               | red flash,      |                               | /LEDs group A |
| $\bigotimes$ |                                                                                                                                                                               | green flash,    |                               | /LED 5]       |
|              |                                                                                                                                                                               | -               |                               |               |
| Assignment 1 | Assignment                                                                                                                                                                    | 1n,             | LEDs group A:                 | [Device Para  |
| ×            |                                                                                                                                                                               | Assignment List | MStart.Start<br>LEDs group B: | /LEDs         |
|              |                                                                                                                                                                               |                 |                               | /LEDs group A |
|              |                                                                                                                                                                               |                 |                               | /LED 5]       |
| Inverting 1  | Inverting of the state of the assigned signal.                                                                                                                                | inactive,       | inactive                      | [Device Para  |
| -            |                                                                                                                                                                               | active          |                               | /LEDs         |
|              |                                                                                                                                                                               |                 |                               | /LEDs group A |
|              |                                                                                                                                                                               |                 |                               | /LED 5]       |

| Parameter    | Description                                    | Setting range          | Default  | Menu path             |
|--------------|------------------------------------------------|------------------------|----------|-----------------------|
| Assignment 2 | Assignment                                     | 1n,<br>Assignment List |          | [Device Para<br>/LEDs |
| $\bigcirc$   |                                                |                        |          | /LEDs group A         |
|              |                                                |                        |          | /LED 5]               |
| Inverting 2  | Inverting of the state of the assigned signal. | inactive,              | inactive | [Device Para          |
|              |                                                | active                 |          | /LEDs                 |
| $\bigcirc$   |                                                |                        |          | /LEDs group A         |
|              |                                                |                        |          | /LED 5]               |
| Assignment 3 | Assignment                                     | 1n,                    |          | [Device Para          |
|              |                                                | Assignment List        |          | /LEDs                 |
|              |                                                |                        |          | /LEDs group A         |
|              |                                                |                        |          | /LED 5]               |
| Inverting 3  | Inverting of the state of the assigned signal. | inactive,              | inactive | [Device Para          |
|              |                                                | active                 |          | /LEDs                 |
|              |                                                |                        |          | /LEDs group A         |
|              |                                                |                        |          | /LED 5]               |
| Assignment 4 | Assignment                                     | 1n,                    |          | [Device Para          |
|              |                                                | Assignment List        |          | /LEDs                 |
|              |                                                |                        |          | /LEDs group A         |
|              |                                                |                        |          | /LED 5]               |
| Inverting 4  | Inverting of the state of the assigned signal. | inactive,              | inactive | [Device Para          |
|              |                                                | active                 |          | /LEDs                 |
| $\bigotimes$ |                                                |                        |          | /LEDs group A         |
|              |                                                |                        |          | /LED 5]               |
| Assignment 5 | Assignment                                     | 1n,                    |          | [Device Para          |
|              |                                                | Assignment List        |          | /LEDs                 |
|              |                                                |                        |          | /LEDs group A         |
| <b>U</b>     |                                                |                        |          | /LED 5]               |
| Inverting 5  | Inverting of the state of the assigned signal. | inactive,              | inactive | [Device Para          |
|              |                                                | active                 |          | /LEDs                 |
|              |                                                |                        |          | /LEDs group A         |
|              |                                                |                        |          | /LED 5]               |
| Latched      | Defines whether the LED will be latched        | inactive,              | inactive | [Device Para          |
|              | when it picks up.                              | active,                |          | /LEDs                 |
|              |                                                | active, ack. by        |          | /LEDs group A         |
| <b>•</b>     |                                                | alarm                  |          | /LED 6]               |

| Parameter             | Description                                                                                                                                                                                                          | Setting range                                     | Default                                          | Menu path                                         |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
| Ack signal            | Acknowledgement signal for the LED. If<br>latching is set to active the LED can only be<br>acknowledged if those signals that initiated<br>the setting are no longer present.<br>Only available if: Latched = active | 1n,<br>Assignment List                            |                                                  | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| LED active<br>color   | The LED lights up in this color if the state of<br>the OR-assignment of the signals is true.                                                                                                                         | green,<br>red,<br>red flash,<br>green flash,<br>- | red                                              | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| LED inactive<br>color | The LED lights up in this color if the state of<br>the OR-assignment of the signals is untrue.                                                                                                                       | green,<br>red,<br>red flash,<br>green flash,<br>- | -                                                | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| Assignment 1          | Assignment                                                                                                                                                                                                           | 1n,<br>Assignment List                            | LEDs group A:<br>MStart.Run<br>LEDs group B:<br> | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| Inverting 1           | Inverting of the state of the assigned signal.                                                                                                                                                                       | inactive,<br>active                               | inactive                                         | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| Assignment 2          | Assignment                                                                                                                                                                                                           | 1n,<br>Assignment List                            |                                                  | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| Inverting 2           | Inverting of the state of the assigned signal.                                                                                                                                                                       | inactive,<br>active                               | inactive                                         | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| Assignment 3          | Assignment                                                                                                                                                                                                           | 1n,<br>Assignment List                            |                                                  | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| Inverting 3           | Inverting of the state of the assigned signal.                                                                                                                                                                       | inactive,<br>active                               | inactive                                         | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |

| Parameter             | Description                                                                                                                                                                                                          | Setting range                                     | Default                                           | Menu path                                         |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Assignment 4          | Assignment                                                                                                                                                                                                           | 1n,<br>Assignment List                            |                                                   | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| Inverting 4           | Inverting of the state of the assigned signal.                                                                                                                                                                       | inactive,<br>active                               | inactive                                          | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| Assignment 5          | Assignment                                                                                                                                                                                                           | 1n,<br>Assignment List                            |                                                   | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| Inverting 5           | Inverting of the state of the assigned signal.                                                                                                                                                                       | inactive,<br>active                               | inactive                                          | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 6] |
| Latched               | Defines whether the LED will be latched when it picks up.                                                                                                                                                            | inactive,<br>active,<br>active, ack. by<br>alarm  | inactive                                          | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 7] |
| Ack signal            | Acknowledgement signal for the LED. If<br>latching is set to active the LED can only be<br>acknowledged if those signals that initiated<br>the setting are no longer present.<br>Only available if: Latched = active | 1n,<br>Assignment List                            |                                                   | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 7] |
| LED active<br>color   | The LED lights up in this color if the state of<br>the OR-assignment of the signals is true.                                                                                                                         | green,<br>red,<br>red flash,<br>green flash,<br>- | LEDs group A:<br>green<br>LEDs group B:<br>red    | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 7] |
| LED inactive<br>color | The LED lights up in this color if the state of<br>the OR-assignment of the signals is untrue.                                                                                                                       | green,<br>red,<br>red flash,<br>green flash,<br>- | -                                                 | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 7] |
| Assignment 1          | Assignment                                                                                                                                                                                                           | 1n,<br>Assignment List                            | LEDs group A:<br>MStart.Stop<br>LEDs group B:<br> | [Device Para<br>/LEDs<br>/LEDs group A<br>/LED 7] |

| Parameter    | Description                                    | Setting range   | Default  | Menu path     |
|--------------|------------------------------------------------|-----------------|----------|---------------|
| Inverting 1  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para  |
|              |                                                | active          |          | /LEDs         |
| $\bigotimes$ |                                                |                 |          | /LEDs group A |
|              |                                                |                 |          | /LED 7]       |
| Assignment 2 | Assignment                                     | 1n,             |          | [Device Para  |
|              |                                                | Assignment List |          | /LEDs         |
| $\bigotimes$ |                                                |                 |          | /LEDs group A |
|              |                                                |                 |          | /LED 7]       |
| Inverting 2  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para  |
|              |                                                | active          |          | /LEDs         |
|              |                                                |                 |          | /LEDs group A |
|              |                                                |                 |          | /LED 7]       |
| Assignment 3 | Assignment                                     | 1n,             |          | [Device Para  |
|              |                                                | Assignment List |          | /LEDs         |
| $\bigotimes$ |                                                |                 |          | /LEDs group A |
|              |                                                |                 |          | /LED 7]       |
| Inverting 3  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para  |
|              |                                                | active          |          | /LEDs         |
| $\bigcirc$   |                                                |                 |          | /LEDs group A |
|              |                                                |                 |          | /LED 7]       |
| Assignment 4 | Assignment                                     | 1n,             |          | [Device Para  |
|              |                                                | Assignment List |          | /LEDs         |
| $\bigcirc$   |                                                |                 |          | /LEDs group A |
|              |                                                |                 |          | /LED 7]       |
| Inverting 4  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para  |
|              |                                                | active          |          | /LEDs         |
| $\bigcirc$   |                                                |                 |          | /LEDs group A |
|              |                                                |                 |          | /LED 7]       |
| Assignment 5 | Assignment                                     | 1n,             |          | [Device Para  |
|              |                                                | Assignment List |          | /LEDs         |
| $\bigotimes$ |                                                |                 |          | /LEDs group A |
| <b>—</b>     |                                                |                 |          | /LED 7]       |
| Inverting 5  | Inverting of the state of the assigned signal. | inactive,       | inactive | [Device Para  |
|              |                                                | active          |          | /LEDs         |
| $\bigcirc$   |                                                |                 |          | /LEDs group A |
|              |                                                |                 |          | /LED 7]       |

### LED Module Input States

| Name         | Description                                      | Assignment via |
|--------------|--------------------------------------------------|----------------|
| LED1.1       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 1]        |
| LED1.2       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 1]        |
| LED1.3       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 1]        |
| LED1.4       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 1]        |
| LED1.5       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 1]        |
| Acknow Sig 1 | Module input state: Acknowledgement Signal (only | [Device Para   |
|              | for automatic acknowledgement)                   | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 1]        |
| LED2.1       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 2]        |
| LED2.2       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 2]        |
| LED2.3       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 2]        |

| Name         | Description                                                                     | Assignment via |
|--------------|---------------------------------------------------------------------------------|----------------|
| LED2.4       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 2]        |
| LED2.5       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 2]        |
| Acknow Sig 2 | Module input state: Acknowledgement Signal (only                                | [Device Para   |
|              | for automatic acknowledgement)                                                  | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 2]        |
| LED3.1       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 3]        |
| LED3.2       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 3]        |
| LED3.3       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 3]        |
| LED3.4       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 3]        |
| LED3.5       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 3]        |
| Acknow Sig 3 | Module input state: Acknowledgement Signal (only for automatic acknowledgement) | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 3]        |

| Name         | Description                                                                     | Assignment via |
|--------------|---------------------------------------------------------------------------------|----------------|
| LED4.1       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 4]        |
| LED4.2       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 4]        |
| LED4.3       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 4]        |
| LED4.4       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 4]        |
| LED4.5       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 4]        |
| Acknow Sig 4 | Module input state: Acknowledgement Signal (only for automatic acknowledgement) | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 4]        |
| LED5.1       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 5]        |
| LED5.2       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 5]        |
| LED5.3       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 5]        |

| Name         | Description                                      | Assignment via |
|--------------|--------------------------------------------------|----------------|
| LED5.4       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 5]        |
| LED5.5       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 5]        |
| Acknow Sig 5 | Module input state: Acknowledgement Signal (only | [Device Para   |
|              | for automatic acknowledgement)                   | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 5]        |
| LED6.1       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 6]        |
| LED6.2       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 6]        |
| LED6.3       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 6]        |
| LED6.4       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 6]        |
| LED6.5       | Module input state: LED                          | [Device Para   |
|              |                                                  | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 6]        |
| Acknow Sig 6 | Module input state: Acknowledgement Signal (only | [Device Para   |
|              | for automatic acknowledgement)                   | /LEDs          |
|              |                                                  | /LEDs group A  |
|              |                                                  | /LED 6]        |

| Name         | Description                                                                     | Assignment via |
|--------------|---------------------------------------------------------------------------------|----------------|
| LED7.1       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 7]        |
| LED7.2       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 7]        |
| LED7.3       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 7]        |
| LED7.4       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 7]        |
| LED7.5       | Module input state: LED                                                         | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 7]        |
| Acknow Sig 7 | Module input state: Acknowledgement Signal (only for automatic acknowledgement) | [Device Para   |
|              |                                                                                 | /LEDs          |
|              |                                                                                 | /LEDs group A  |
|              |                                                                                 | /LED 7]        |

## LED configuration

The LEDs can be configured within menu:

[Device Para/LEDs/Group X]

CAUTION

Attention must be paid that there are no overlapping functions due to double or multiple LED assignment of colors and flashing codes.

CAUTION

If LEDs are parameterized *»*Latched=*active«*, they will keep (return into) their blink code/color even if there is a break within the power supply.

If LEDs are parameterized *»*Latched=*active«*, The LED blink code will also retain, if the LED is reprogrammed in another way. This applies also if *»*Latched is set to ina*ctive«*. Resetting a LED that has latched a signal will always require an acknowledgement.

# NOTICE

This chapter contains information on the LEDs that are placed on the left hand of the display (group A).

If your device is also equipped with LEDs on the right hand of the display (group B), the information in this chapter is valid analog. The only difference is "group A" and "group B" within the menu paths.

Via push button »INFO« it is always possible to display the current alarms/alarm texts that are assigned to an LED. Please refer to chapter *Navigation* (description of the »INFO-key«).

Set the following parameters for each LED:

- »Latching/self holding function«: If »Latching« is set to »active«, the state that is set by the alarms will be stored. If latching »Latching« is set to »inactive«, the LED always adopts the state of those alarms that were assigned.
- *»Acknowledgment«* (signal from the »assignment list«)
- *»LED active color«*, LED lights up in this color in case that at least one of the allocated functions is valid (red, red flashing, green, green flashing, off).
- *»LED inactive color«*, LED lights up in this color in case that none of the allocated functions is valid (red, red flashing, green, green flashing, off).
- Apart from the LED for System OK, each LED can be assigned up to five functions/alarms out of the »assignment list«.
- *»Inverting«* (of the signals), if necessary.

#### Acknowledgment options

LEDs can be acknowledged by:

- Via the push-button »C« at the operating panel.
- Each LED can be acknowledged by a signal of the »assignment list« (If »Latched = active«).
- Via the module »Ex Acknowledge« all LEDs can be acknowledged at once, if the signal for external acknowledgment that was selected from the »assignment list« becomes true (e.g. the state of a digital input).
- Via SCADA, all LEDs can be acknowledged at once.
- Automatically in case of an alarm from a protection function. The automatic acknowledgment must be activated by setting: [Device Para / LEDs / LEDs group A / LED 1...n] *»Latched«* = "active, ack. by pickup"

See also Chapter "Acknowledgments" for more information.

## NOTICE

The Product-CD that is delivered with the device contains a PDF-Template in order to create and print out self adhesive films for LED assignment texts (front foil) by means of a laser printer. Recommendation: (AVERY Zweckform Art.Nr.3482)



## The »System OK« LED

This LED flashes green while the device is booting. After completed booting, the LED for *System OK* lights up in green thus signalizing that the *protection* (function) is *»activated«*. Please refer to chapter "Self-Supervision" and to the external document "*Troubleshooting Guide*" to find out further information on blink codes of the *System OK LED* 

LED System OK cannot be parameterized.

# Security



All security settings have to be made by the user of the device! It is strictly recommended that you adapt the security settings according to the local regulations and requirements at the end of the commissioning procedure.

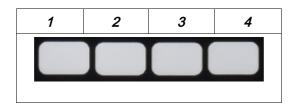
The device is delivered with maximum "open" settings, i. e. all access restrictions are deactivated. This way the commissioning is not complicated unnecessarily. But afterwards, when the device is running, it is probably required to restrict the access to some extent. There are in particular the following two aspects to consider:

# CAUTION

It is strictly recommended to define passwords different from the default ones. (The default password "1234" does not provide any security against unauthorized access.)

It is recommended to define (as part of the overall security concept) the rules and restrictions for accessing the device via the operating software *Smart view*.

It is recommended to define different, level-specific passwords for the different access areas / levels. This way it is possible to make sure that different user groups get their individual access permissions.


By default, all kinds of *Smart view* access to the device are permitted. Note, however, that it can be required for security reasons to block (or at least restrict) the access after commissioning (e. g. block the TCP/IP access over the network).

## Access Authorizations (access areas)

### **Password Handling**

### Password Entry at the Panel

Passwords can be entered by way of the Softkeys.



Example: For password (3244) press successively:

- Softkey 3
- Softkey 2
- Softkey 4
- Softkey 4

### Changing Passwords

Passwords can be changed at the device in menu [Device Para/Passwords] or by means of the *Smart view* software.

# NOTICE

A password must be a user-defined combination of the numerics 1, 2, 3 and 4. All other characters and keys won't be accepted.

When you want to change a password, the existing one has to be entered firstly. The new password (up to 8 digits) is then to be confirmed twice. Please proceed as follows:

- In order to change the password please enter your old password by means of the Softkeys followed by pressing the »OK«-key.
- Enter the new password by means of the Softkeys and press the »OK«-key.
- Afterwards enter the new password once again by means of the Softkeys and press the »OK«-key.

### Acknowledge without Entering a Password

If there is the need to be able to acknowledge without entering any password set an empty password for the level »Prot-Lv1«. For general information about acknowledgments see Chapter "Acknowledgments". Information about access areas / levels can be found below ("Passwords – Areas").

#### Deactivating Passwords during Commissioning

It is possible optionally to deactivate passwords during commissioning. It is not allowed to use this feature for other purposes than commissioning. In order to deactivate the password protection replace the existing password with an empty one for the corresponding access areas. All access authorizations (access areas) that are protected by an empty password are unlocked permanently. That means, that all parameters and settings within those areas can be modified without any further access authorization. It is no longer possible to change into the *»Read Only-LvO«* level (the protective device will also not fall back into this mode if the maximum edit time is expired (t-max-Edit).

## CAUTION

You have to ensure that all passwords are activated again after the commissioning. That means, that all access areas have to be protected by a password that consists of 4 digits as minimum.

Woodward will not take over any liability for any personal injuries or damages that are caused by deactivated password protection.

#### Password Forgotten

It is possible to reset all passwords via a general Reset dialog. See "Reset to Factory Defaults, Reset All Passwords" for details.

#### General Considerations

You have to ensure that the access authorizations are protected by secure passwords. These passwords have to be kept as a secret and to be known only by the authorized persons. The default password "1234" does not provide any security against unauthorized access.

A lock symbol indicates in the upper right corner of the display if there are any access authorizations active at the moment . That means, within the mode "Read Only Lv0" a closed (locked) lock symbol will be shown in the upper right corner of the display. As soon as there are any access authorizations active (above the "Read Only-Lv0" level), the upper right corner of the display will show an unlocked (open) lock symbol.

During setting parameters the C-Button can be used for canceling the parameter changes. Because of that it is not possible to acknowledge (LEDs, Output Relays...) as long as there are non-saved (cached only) parameters.

The acknowledgment menu cannot be accessed as long as the parameter modifications are not overtaken by the device (indicated by a star symbol in the upper left corner).

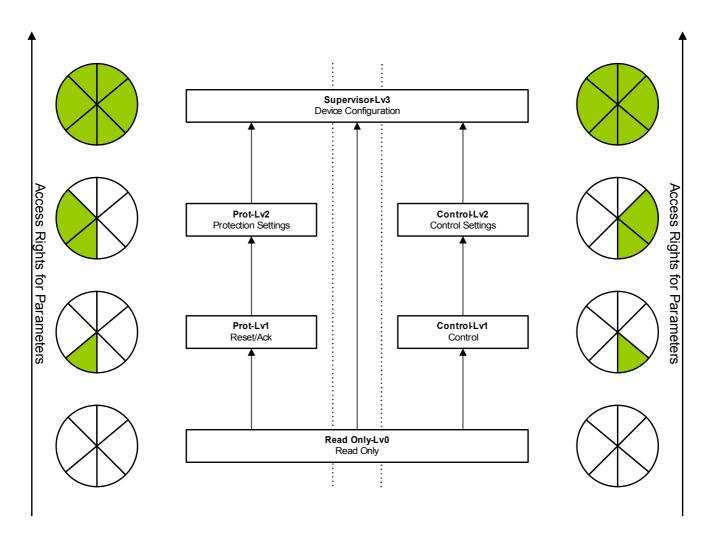
The passwords are part of the device (fixed assignments). That means, passwords will not be overwritten, if a parameter file is transmitted into a device.

Existing passwords are persistent (assigned to a device). If an offline created parameter file is transmitted into a device, or if a parameter file is transmitted from one device to another, this will have no impact on existing passwords within the device.

## Passwords – Areas

The following table shows the access areas and the authorization passwords that they require in order to access them.

| Area Symbol | Authorization<br>Password | Access to:                                                                                                                                                                                                                                                              |
|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Read Only-Lv0             | Level 0 provides Read Only access to all settings and<br>parameters of the device. The device will fall back into this<br>level automatically after a longer period or inactivity                                                                                       |
|             | Prot-Lv1                  | This password provides access to the reset- and acknowledge options. In addition to that, it permits the execution of manual trigger signals.                                                                                                                           |
|             | Prot-Lv2                  | This password provides access to the reset and acknowledge options. In addition to that it permits changing of protection settings and the configuration of the trip manager.                                                                                           |
|             | Control-Lv1               | This password grants permission for switching operations (switching switchgears)                                                                                                                                                                                        |
|             | Control-Lv2               | This password grants permission for switching operations (switching switchgears). In addition to that it gives access to the switchgear settings (switching authority, interlockings, general settings of switchgears, Breaker wear).                                   |
|             | Supervisor-Lv3            | This password grants non-restricted access to all parameters<br>and settings of the device (device configuration). This<br>includes also the devices planning, device parameters (e.g.<br>Date and Time), Field Parameters, Service Parameters and<br>Logic Parameters. |


### Available Levels/Access Authorizations

The access authorizations are designed in form of two hierarchic strings.

The supervisor (administrator) password provides access to all parameters and settings.

Access Level for Protection Settings

Access Level for Control Settings



Legend: Lv = Level

Parameters are read only

Parameters can be modified

If the device was not active within the parameter setting mode for a longer time (can be set between 20 – 3600 seconds) it changes into »Read Only-Lv0« mode automatically. This parameter (t-max-Edit) can be modified within menu [Device Para / HMI].

### How to Unlock an Access Area or Check which Ones are Unlocked?

#### Check for unlocked access areas:

The menu [Device Para / Access Level] provides the information, which access areas (authorizations) are currently unlocked. Within this menu it is also possible to enter (unlock) a particular area.

However, the common way during every-day-use of the device is not to use this [Access Level] menu, but to simply enter the menu path of a parameter to be changed, then start editing the parameter; at the end, immediately before the change is accepted, the user is asked for the appropriate password, which then unlocks the respective access area.

As soon as there is an unlocked access area (authorization) above *»Read Only-Lv0«*, this will be indicated by an unlocked lock symbol within the upper right corner of the device display.

If you want to explicitly set back (i. e. lock) the access area at the end (instead waiting for the *»t-max Edit/Access«* timeout) you have to enter the *»Read Only-Lv0«* mode.

#### Unlock an access area at the panel:

Within the menu [Device Para / Access level] it is possible to unlock or lock access areas (authorizations). After an access area has been unlocked all parameter changes or activities that are assigned to this (or a lower) level can be made without entering a password once again. However, the access permission is valid only for the panel; any access via *Smart view* has to be unlocked separately.

When no key is pressed for a time that can be specified via the [Device para / HMI / Security] *»t-max Edit/Access«* setting, the access area is reset automatically to *»Read Only-Lv0«*, and all unsaved parameter changes get canceled.

# CAUTION

Do not leave the device unsupervised as long as there are still access areas (levels) unlocked (unlocked lock symbol on the display). If the access is no longer needed it is advisable to reset the permissions back to *»Read Only-Lv0«.* 

#### Unlock an access area via Smart view:

After an access area (authorizations) has been unlocked by entering the password all parameter changes or activities that are assigned to this (or a lower) level can be made without entering a password once again. However, the access permission is valid only for this instance of *Smart view*; any access via panel or other *Smart view* instances has to be unlocked separately.

When no key is pressed for some (Smart view-internal) time the access area is automatically reset.

# CAUTION

Do not leave the device unsupervised as long as Smart view still keeps some access area unlocked. Lock your PC during your absence, or at least reset the access permissions. This can be done by a double-click on the lock symbol in the status line on the bottom margin of the Smart view window (or, alternatively, via the menu *[Device / Reset to Parameter "Read Only" Status]*.

## **Network Access**

### Access via Smart view:

One of the fundamental requirements of *»IT Security«* is to prevent unauthorized persons from accessing the own systems, including the protective device. The device offers access via its front panel, and via the operating software *Smart view*.

Since the access via front panel is possible only for someone who is located directly in front of the device the risk should normally be rather low, compared to the risk of unauthorized access via *Smart view*, especially if the device is part of an Ethernet / TCP/IP network.

# NOTICE

After commissioning of the device, it is recommended to deactivate the *Smart view* access via Ethernet; this can be done with the setting parameter [Device Para / HMI / Security] *»Smart view via Eth«*.

Independent of this, there is also the option to deactivate the *Smart view* access via the USB interface; this can be done with the setting parameter [Device Para / HMI / Security] *»Smart view via USB«*.

For Line Differential devices there is the additional option to deactivate the access to the remote device via Protection Communication; this can be done with the setting parameter [Device Para / HMI / Security] *»Sm. view via ProtCom«*.

Note: If *Smart view* is used to deactivate the Smart view access, then the current session gets automatically terminated.

### SCADA Communication:

It is to be noted that there are always certain security risks related to the use of SCADA protocols. Detailed information can be found in the technical literature.

### Intranet Security:

If the Ethernet interface of the device is connected to a network, it is the responsibility of the user to maintain all necessary means required for the security of the company network. In particular, it must be guaranteed that external access (i. e. out of the internet) to the device has been made impossible. Please keep yourself informed about up-to-date technology (firewalls, VPN etc.)!

## Reset to Factory Defaults, Reset All Passwords

There is a dedicated Reset dialog that allows for selecting any of the following options:

- Reset to the factory defaults, or
- reset all passwords.

This Reset dialog is available at the HMI only (i. e. not via Smart view).

Press the »C« key during a cold start until the Reset dialog appears.

## NOTICE

For technical reasons, this Reset dialog is available only in English language (independent of the regional language being used later, after the device has started).

Note furthermore that the dialog might not appear at all because it has been intentionally disabled (see below), or the option to reset all passwords has been disabled.

### Reset to Factory Defaults



All records will be deleted and the measured values and counters will be reset. Exception: The operation hours counter is preserved.

- From the Reset dialog, select »Reset to factory default«.
  - ⇒ There is a confirmation dialog, asking »Reset device to factory defaults and reboot?«
- Confirm with »Yes«.
  - $\Rightarrow$  The reset to factory defaults is executed, and the device restarts.

### **Reset All Passwords**

It is possible to remove this option from the Reset dialog for security reasons (see below).

- From the Reset dialog, select »Reset all passwords «.
   ⇒ There is a confirmation dialog, asking »Reset all passwords?«
- · Confirm with »Yes«.
  - $\Rightarrow~$  The device starts using the standard password » 1234« .



For security reasons, it is strictly recommended to change the default passwords immediately to some individual passwords. (See chapter "Changing Passwords".

## **Security Settings**

The Reset dialog can be restricted for security reasons.

The setting parameter [Device para / HMI / Security] *»Options Reset Dialog«* allows for specifying which resetting options shall be available from the Reset dialog:

- "Fact.def.", "PW rst": Both options –»Reset to factory default« and »Reset all passwords« shall be available.
- Only "Fact.defaults": Only the »Reset to factory default« option shall be available.
- Dialog deact.: The Reset dialog shall be disabled.

# CAUTION

If the password should be lost and the *»Reset all passwords«* option has been made unavailable then the only chance to recover control is to reset the device to factory default. If this option has been deactivated, too, then the device has to be sent to Woodward as a service request.

# **Smart View**

Smart view is a parameter setting and evaluation software. Please see separate manual (DOK-HB-SMARTVE).

- Menu-controlled parameter setting incl. validity checks
- Offline configuration of all relay types
- Reading and evaluating of statistical data and measuring values
- Setting into operation assistance
- Display of the device status
- Fault analysis via event- and fault recorder

# Data visualizer

*Data visualizer* is an disturbance record and event viewing software. It is installed automatically with *Smart view*. It can also be used as a standard COMTRADE file viewer.

- Open and review downloaded disturbance records.
- Customize disturbance record channel layout and views including channel overlapping and zooming
- Analyze sample by sample data points and line up the displayed analog waveform channels along with the recorded internal relay logic
- Save window setups (snapshots) and print for reporting
- Open industry standard COMTRADE files from other intelligent electronic devices
- Convert downloaded waveform files to COMTRADE file format using "Export" feature

# **Measuring Values**

## **Read out Measured Values**

In menu »Operation/Measured Values« both measured and calculated values can be viewed. The measured values are ordered by »Standard values« and »special values« (depending on the type of device).

### **Measurement Display**

Menu [Device Para\Measurem Display] offers options to change the display of measured values.

#### Scaling of Measured values

By means of the parameter »Scaling« the user can determine how measured values are to be displayed within the HMI and *Smart view*.

- Primary quantities
- Secondary quantities
- Per Unit quantities

#### Power Units (applies only for devices with power measurement)

By means of the parameter *»Power Units«* the User can determine how measured values are to be displayed within the HMI and *Smart view*.

- Power Auto Scaling
- kW, kVAr or kVA
- MW, MVAr or MVA
- GW, GVAr or GVA

#### Energy Units (applies only for devices with energy measurement)

By means of the parameter *»Energy Units«* the User can determine how measured values are to be displayed within the HMI and *Smart view*.

- Energy Auto Scaling
- kWh, kVArh or kVAh
- MWh, MVArh or MVAh
- GWh, GVArh or GVAh

In case of an overflow of the counter, the counter will start counting again at zero. A corresponding signal will indicate the counter overflow.

#### Counter overflow at:

| Energy Auto Scaling | Depends on the settings for the current and voltage transformers |
|---------------------|------------------------------------------------------------------|
|---------------------|------------------------------------------------------------------|

- kWh, kVArh or kVAh 999,999.99
- MWh, MVArh or MVAh 999,999.99
- GWh, GVArh or GVAh 999,999.99

#### Temperature Unit (applies only for devices with temperature measurement)

By means of the parameter *»Temperatur Unit«* the User can determine how measured values are to be displayed within the HMI and *Smart view*.

- Celsius
- ° Fahrenheit

#### Cutoff level

In order to suppress noise within measured values that are close to zero the user has the option to set cutoff levels. By means of the cutoff levels, measuring quantities that are close to zero will be displayed as zero. These parameters have no impact on recorded values.

## **Current - Measured Values**

### <u>CT</u>

If the device is not equipped with an voltage measuring card the first measuring input on the first current measuring card (slot with the lowest number) will be used as the reference angle (NL1).

## **Current Transformer Signals (Output States)**

| Signal | Description                                                                                                                                                                          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Signal that the device has detected a phase sequence (L1-L2-L3 / L1-L3-L2) that is different from the one that had been set at [Field settings / General Settings] »Phase Sequence«. |

## **Current Transformer Values**

| Value   | Description                                                                | Menu path        |
|---------|----------------------------------------------------------------------------|------------------|
| IL1     | Measured value: Phase current (fundamental)                                | [Operation       |
|         |                                                                            | /Measured Values |
|         |                                                                            | /Current ]       |
| IL2     | Measured value: Phase current (fundamental)                                | [Operation       |
|         |                                                                            | /Measured Values |
|         |                                                                            | /Current ]       |
| IL3     | Measured value: Phase current (fundamental)                                | [Operation       |
|         |                                                                            | /Measured Values |
|         |                                                                            | /Current ]       |
| IG meas | Measured value (measured): IG (fundamental)                                | [Operation       |
|         |                                                                            | /Measured Values |
|         |                                                                            | /Current ]       |
| IG calc | Measured value (calculated): IG (fundamental)                              | [Operation       |
|         |                                                                            | /Measured Values |
|         |                                                                            | /Current ]       |
| 10      | Measured value (calculated): Zero current                                  | [Operation       |
|         | (fundamental)                                                              | /Measured Values |
|         |                                                                            | /Current ]       |
| 11      | Measured value (calculated): Positive phase sequence current (fundamental) | [Operation       |
|         |                                                                            | /Measured Values |
|         |                                                                            | /Current ]       |
| 12      | Measured value (calculated): Unbalanced load current (fundamental)         | [Operation       |
|         |                                                                            | /Measured Values |
|         |                                                                            | /Current ]       |

| Value         | Description                                                                         | Menu path        |
|---------------|-------------------------------------------------------------------------------------|------------------|
| phi IL1       | Measured value (calculated): Angle of Phasor IL1                                    | [Operation       |
|               | Reference phasor is required to calculate the angle.                                | /Measured Values |
|               |                                                                                     | /Current ]       |
| phi IL2       | Measured value (calculated): Angle of Phasor IL2                                    | [Operation       |
|               | Reference phasor is required to calculate the angle.                                | /Measured Values |
|               |                                                                                     | /Current ]       |
| phi IL3       | Measured value (calculated): Angle of Phasor IL3                                    | [Operation       |
|               | Reference phasor is required to calculate the angle.                                | /Measured Values |
|               |                                                                                     | /Current ]       |
| phi IG meas   | Measured value (calculated): Angle of Phasor IG meas                                | [Operation       |
|               | Reference phasor is required to calculate the angle.                                | /Measured Values |
|               |                                                                                     | /Current ]       |
| phi IG calc   | Measured value (calculated): Angle of Phasor IG calc                                | [Operation       |
|               | Reference phasor is required to calculate the angle.                                | /Measured Values |
|               |                                                                                     | /Current ]       |
| phi I0        | Measured value (calculated): Angle Zero Sequence                                    | [Operation       |
|               | System                                                                              | /Measured Values |
|               | Reference phasor is required to calculate the angle.                                | /Current ]       |
| phi I1        | Measured value (calculated): Angle of Positive                                      | [Operation       |
|               | Sequence System                                                                     | /Measured Values |
|               | Reference phasor is required to calculate the angle.                                | /Current ]       |
| phi I2        | Measured Value (calculated): Angle of Negative                                      | [Operation       |
|               | Sequence System                                                                     | /Measured Values |
|               | Reference phasor is required to calculate the angle.                                | /Current ]       |
|               |                                                                                     |                  |
| phi I2-phi I1 | Measured Value (calculated): Angle of Negative                                      | [Operation       |
|               | Sequence System - Measured value (calculated):<br>Angle of Positive Sequence System | /Measured Values |
|               |                                                                                     | /Current ]       |
| IL1 RMS       | Measured value: Phase current (RMS)                                                 | [Operation       |
|               |                                                                                     | /Measured Values |
|               |                                                                                     | /Current RMS]    |

| Value       | Description                                                                                  | Menu path        |
|-------------|----------------------------------------------------------------------------------------------|------------------|
| IL2 RMS     | Measured value: Phase current (RMS)                                                          | [Operation       |
|             |                                                                                              | /Measured Values |
|             |                                                                                              | /Current RMS]    |
| IL3 RMS     | Measured value: Phase current (RMS)                                                          | [Operation       |
|             |                                                                                              | /Measured Values |
|             |                                                                                              | /Current RMS]    |
| IG meas RMS | Measured value (measured): IG (RMS)                                                          | [Operation       |
|             |                                                                                              | /Measured Values |
|             |                                                                                              | /Current RMS]    |
| IG calc RMS | Measured value (calculated): IG (RMS)                                                        | [Operation       |
|             |                                                                                              | /Measured Values |
|             |                                                                                              | /Current RMS]    |
| %IL1 THD    | Measured value (calculated): IL1 Total Harmonic                                              | [Operation       |
|             | Distortion                                                                                   | /Measured Values |
|             |                                                                                              | /Current RMS]    |
| %IL2 THD    | Measured value (calculated): IL2 Total Harmonic<br>Distortion                                | [Operation       |
|             |                                                                                              | /Measured Values |
|             |                                                                                              | /Current RMS]    |
| %IL3 THD    | Measured value (calculated): IL3 Total Harmonic                                              | [Operation       |
|             | Distortion                                                                                   | /Measured Values |
|             |                                                                                              | /Current RMS]    |
|             |                                                                                              | -                |
| IL1 THD     | Measured value (calculated): IL1 Total Harmonic<br>Current                                   | [Operation       |
|             |                                                                                              | /Measured Values |
|             |                                                                                              | /Current RMS]    |
| IL2 THD     | Measured value (calculated): IL2 Total Harmonic Current                                      | [Operation       |
|             |                                                                                              | /Measured Values |
|             |                                                                                              | /Current RMS]    |
| IL3 THD     | Measured value (calculated): IL3 Total Harmonic<br>Current                                   | [Operation       |
|             |                                                                                              | /Measured Values |
|             |                                                                                              | /Current RMS]    |
| %(I2/I1)    | Measured value (calculated): I2/I1, phase sequence will be taken into account automatically. | [Operation       |
| ,           |                                                                                              | /Measured Values |
|             |                                                                                              | /Current ]       |
|             |                                                                                              | , can one j      |

### Voltage - Measured Values

<u>VT</u>

In general, the first measuring input of the measuring card is used as the reference angle.

Only if the amplitude of the reference phase drops away will the next phase be used as the reference for angle calculation. For this the following order is used:

• Channel VL1, VL2, VL3, VL12, VL23, VL31, IL1, IL2, ...)

## Voltage Transformer Signals (Output States)

| Signal | Description                                                                                                                                                                          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Signal that the device has detected a phase sequence (L1-L2-L3 / L1-L3-L2) that is different from the one that had been set at [Field settings / General Settings] »Phase Sequence«. |

### Voltage Transformer Values

| Value | Description                                             | Menu path        |
|-------|---------------------------------------------------------|------------------|
| f     | Measured value: Frequency                               | [Operation       |
|       |                                                         | /Measured Values |
|       |                                                         | /Voltage ]       |
| VL12  | Measured value: Phase-to-phase voltage                  | [Operation       |
|       | (fundamental)                                           | /Measured Values |
|       |                                                         | /Voltage ]       |
| VL23  | Measured value: Phase-to-phase voltage                  | [Operation       |
|       | (fundamental)                                           | /Measured Values |
|       |                                                         | /Voltage ]       |
| VL31  | Measured value: Phase-to-phase voltage<br>(fundamental) | [Operation       |
|       |                                                         | /Measured Values |
|       |                                                         | /Voltage ]       |
| VL1   | Measured value: Phase-to-neutral voltage (fundamental)  | [Operation       |
|       |                                                         | /Measured Values |
|       |                                                         | /Voltage ]       |
| VL2   | Measured value: Phase-to-neutral voltage (fundamental)  | [Operation       |
|       |                                                         | /Measured Values |
|       |                                                         | /Voltage ]       |

| Value    | Description                                                                                            | Menu path        |
|----------|--------------------------------------------------------------------------------------------------------|------------------|
| VL3      | Measured value: Phase-to-neutral voltage                                                               | [Operation       |
|          | (fundamental)                                                                                          | /Measured Values |
|          |                                                                                                        | /Voltage ]       |
| VX meas  | Measured value (measured): VX measured                                                                 | [Operation       |
|          | (fundamental)                                                                                          | /Measured Values |
|          |                                                                                                        | /Voltage ]       |
| VG calc  | Measured value (calculated): VG (fundamental)                                                          | [Operation       |
|          |                                                                                                        | /Measured Values |
|          |                                                                                                        | /Voltage ]       |
| V0       | Measured value (calculated): Symmetrical                                                               | [Operation       |
|          | components Zero voltage(fundamental)                                                                   | /Measured Values |
|          |                                                                                                        | /Voltage ]       |
| V1       | Measured value (calculated): Symmetrical                                                               | [Operation       |
|          | components positive phase sequence voltage(fundamental)                                                | /Measured Values |
|          |                                                                                                        | /Voltage ]       |
| V2       | Measured value (calculated): Symmetrical<br>components negative phase sequence<br>voltage(fundamental) | [Operation       |
|          |                                                                                                        | /Measured Values |
|          | voltage(fundamental)                                                                                   | /Voltage ]       |
| VL12 RMS | Measured value: Phase-to-phase voltage (RMS)                                                           | [Operation       |
|          |                                                                                                        | /Measured Values |
|          |                                                                                                        | /Voltage RMS]    |
| VL23 RMS | Measured value: Phase-to-phase voltage (RMS)                                                           | [Operation       |
|          |                                                                                                        | /Measured Values |
|          |                                                                                                        | /Voltage RMS]    |
| VL31 RMS | Measured value: Phase-to-phase voltage (RMS)                                                           | [Operation       |
|          |                                                                                                        | /Measured Values |
|          |                                                                                                        | /Voltage RMS]    |
| VL1 RMS  | Measured value: Phase-to-neutral voltage (RMS)                                                         | [Operation       |
|          |                                                                                                        | /Measured Values |
|          |                                                                                                        | /Voltage RMS]    |
| VL2 RMS  | Measured value: Phase-to-neutral voltage (RMS)                                                         | [Operation       |
|          |                                                                                                        | /Measured Values |
|          |                                                                                                        | /Voltage RMS]    |
| VL3 RMS  | Measured value: Phase-to-neutral voltage (RMS)                                                         | [Operation       |
|          |                                                                                                        | /Measured Values |
|          |                                                                                                        | /Voltage RMS]    |

| Value       | Description                                               | Menu path        |
|-------------|-----------------------------------------------------------|------------------|
| VX meas RMS | Measured value (measured): VX measured (RMS)              | [Operation       |
|             |                                                           | /Measured Values |
|             |                                                           | /Voltage RMS]    |
| VG calc RMS | Measured value (calculated): VG (RMS)                     | [Operation       |
|             |                                                           | /Measured Values |
|             |                                                           | /Voltage RMS]    |
| phi VL12    | Measured value (calculated): Angle of Phasor VL12         | [Operation       |
|             | This phase is used as reference to calculate the          | /Measured Values |
|             | angles of other phases. Only if:VT con!=Phase to Ground   | /Voltage ]       |
| phi VL23    | Measured value (calculated): Angle of Phasor VL23         | [Operation       |
|             | Reference phasor is required to calculate the angle.      | /Measured Values |
|             |                                                           | /Voltage ]       |
| phi VL31    | Measured value (calculated): Angle of Phasor VL31         | [Operation       |
|             | Reference phasor is required to calculate the angle.      | /Measured Values |
|             |                                                           | /Voltage ]       |
| phi VL1     | Measured value (calculated): Angle of Phasor VL1          | [Operation       |
|             | This phase is used as reference to calculate the          | /Measured Values |
|             | angles of other phases. Only if:VT con=Phase to<br>Ground | /Voltage ]       |
| phi VL2     | Measured value (calculated): Angle of Phasor VL2          | [Operation       |
|             | Reference phasor is required to calculate the angle.      | /Measured Values |
|             |                                                           | /Voltage ]       |
| phi VL3     | Measured value (calculated): Angle of Phasor VL3          | [Operation       |
|             | Reference phasor is required to calculate the angle.      | /Measured Values |
|             |                                                           | /Voltage ]       |
| phi VX meas | Measured value: Angle of Phasor VX meas                   | [Operation       |
|             | Reference phasor is required to calculate the angle.      | /Measured Values |
|             |                                                           | /Voltage ]       |
| phi VG calc | Measured value (calculated): Angle of Phasor VG calc      | [Operation       |
|             | Reference phasor is required to calculate the angle.      | /Measured Values |
|             |                                                           | /Voltage ]       |

| Value     | Description                                                    | Menu path        |
|-----------|----------------------------------------------------------------|------------------|
| phi V0    | Measured value (calculated): Angle Zero Sequence               | [Operation       |
|           | System<br>Reference phasor is required to calculate the angle. | /Measured Values |
|           | Reference phasor is required to calculate the angle.           | /Voltage ]       |
| phi V1    | Measured value (calculated): Angle of Positive                 | [Operation       |
| •         | Sequence System                                                | /Measured Values |
|           | Reference phasor is required to calculate the angle.           | /Voltage ]       |
| phi V2    | Measured Value (calculated): Angle of Negative                 | [Operation       |
|           | Sequence System                                                | /Measured Values |
|           | Reference phasor is required to calculate the angle.           | /Voltage ]       |
| %(V2/V1)  | Measured value (calculated): V2/V1, phase sequence             | [Operation       |
| ,,        | will be taken into account automatically.                      | /Measured Values |
|           |                                                                | /Voltage ]       |
| %VL12 THD | Measured value (calculated): V12 Total Harmonic                | [Operation       |
|           | Distortion / Ground wave                                       | /Measured Values |
|           |                                                                | /Voltage RMS]    |
| %VL23 THD | Measured value (calculated): V23 Total Harmonic                | [Operation       |
|           | Distortion / Ground wave                                       | /Measured Values |
|           |                                                                | /Voltage RMS]    |
| %VL31 THD | Measured value (calculated): V31 Total Harmonic                | [Operation       |
|           | Distortion / Ground wave                                       | /Measured Values |
|           |                                                                | /Voltage RMS]    |
| %VL1 THD  | Measured value (calculated): VL1 Total Harmonic                | [Operation       |
|           | Distortion / Ground wave                                       | /Measured Values |
|           |                                                                | /Voltage RMS]    |
| %VL2 THD  | Measured value (calculated): VL2 Total Harmonic                | [Operation       |
|           | Distortion / Ground wave                                       | /Measured Values |
|           |                                                                | /Voltage RMS]    |
| %VL3 THD  | Measured value (calculated): VL3 Total Harmonic                | [Operation       |
|           | Distortion / Ground wave                                       | /Measured Values |
|           |                                                                | /Voltage RMS]    |

| Value    | Description                                                | Menu path        |
|----------|------------------------------------------------------------|------------------|
| VL12 THD | Measured value (calculated): V12 Total Harmonic            | [Operation       |
|          | Distortion                                                 | /Measured Values |
|          |                                                            | /Voltage RMS]    |
| VL23 THD | Measured value (calculated): V23 Total Harmonic            | [Operation       |
|          | Distortion                                                 | /Measured Values |
|          |                                                            | /Voltage RMS]    |
| VL31 THD | Measured value (calculated): V31 Total Harmonic            | [Operation       |
|          | Distortion                                                 | /Measured Values |
|          |                                                            | /Voltage RMS]    |
| VL1 THD  | Measured value (calculated): VL1 Total Harmonic Distortion | [Operation       |
|          |                                                            | /Measured Values |
|          |                                                            | /Voltage RMS]    |
| VL2 THD  | Measured value (calculated): VL2 Total Harmonic Distortion | [Operation       |
|          |                                                            | /Measured Values |
|          |                                                            | /Voltage RMS]    |
| VL3 THD  | Measured value (calculated): VL3 Total Harmonic Distortion | [Operation       |
|          |                                                            | /Measured Values |
|          |                                                            | /Voltage RMS]    |
| V/f      | Ratio Volts/Hertz in relation to nominal values.           | [Operation       |
|          |                                                            | /Measured Values |
|          |                                                            | /Voltage RMS]    |

## **Power - Measured Values**

| Value   | Description                                                          | Menu path        |
|---------|----------------------------------------------------------------------|------------------|
| S       | Measured Value (Calculated): Apparent power                          | [Operation       |
|         | (fundamental)                                                        | /Measured Values |
|         |                                                                      | /Power]          |
| Р       | Measured value (calculated): Active power (P- = Fed                  | [Operation       |
|         | Active Power, P+ = Consumpted Active Power)<br>(fundamental)         | /Measured Values |
|         |                                                                      | /Power]          |
| Q       | Measured value (calculated): Reactive power (Q- =                    | [Operation       |
|         | Fed Reactive Power, Q+ = Consumpted Reactive<br>Power) (fundamental) | /Measured Values |
|         |                                                                      | /Power]          |
| cos phi | Measured value (calculated): Power factor: Sign                      | [Operation       |
|         | Convention: $sign(PF) = sign(P)$                                     | /Measured Values |
|         |                                                                      | /Power]          |
| Wp+     | Positive Active Power is consumed active energy                      | [Operation       |
|         |                                                                      | /Measured Values |
|         |                                                                      | /Energy]         |
| Wp-     | Negative Active Power (Fed Energy)                                   | [Operation       |
|         |                                                                      | /Measured Values |
|         |                                                                      | /Energy]         |
| Wq+     | Positive Reactive Power is consumed Reactive Energy                  | [Operation       |
|         |                                                                      | /Measured Values |
|         |                                                                      | /Energy]         |
| Wq-     | Negative Reactive Power (Fed Energy)                                 | [Operation       |
|         |                                                                      | /Measured Values |
|         |                                                                      | /Energy]         |
| Ws Net  | Absolute Apparent Power Hours                                        | [Operation       |
|         |                                                                      | /Measured Values |
|         |                                                                      | /Energy]         |
| Wp Net  | Absolute Active Power Hours                                          | [Operation       |
|         |                                                                      | /Measured Values |
|         |                                                                      | /Energy]         |
| Wq Net  | Absolute Reactive Power Hours                                        | [Operation       |
|         |                                                                      | /Measured Values |
|         |                                                                      | /Energy]         |

| Value           | Description                                                                           | Menu path        |
|-----------------|---------------------------------------------------------------------------------------|------------------|
| Start Date/Time | Energy counters run since (Date and time of last reset)                               | [Operation       |
|                 |                                                                                       | /Measured Values |
|                 |                                                                                       | /Energy]         |
| S RMS           | Measured Value (Calculated): Apparent power (RMS)                                     | [Operation       |
|                 |                                                                                       | /Measured Values |
|                 |                                                                                       | /Power RMS]      |
| P RMS           | Measured value (calculated): Active power (P- = Fed                                   | [Operation       |
|                 | Active Power, P+ = Consumpted Active Power) (RMS)                                     | /Measured Values |
|                 |                                                                                       | /Power RMS]      |
| cos phi RMS     | Measured value (calculated): Power factor: Sign<br>Convention: sign(PF) = sign(P)     | [Operation       |
|                 |                                                                                       | /Measured Values |
|                 |                                                                                       | /Power RMS]      |
| P 1             | Measured value (calculated): Active power in positive                                 | [Operation       |
|                 | sequence system (P- = Fed Active Power, P+ =<br>Consumpted Active Power)              | /Measured Values |
|                 |                                                                                       | /Power]          |
|                 |                                                                                       |                  |
| Q 1             | Measured value (calculated): Reactive power in                                        | [Operation       |
|                 | positive sequence system (Q- = Fed Reactive Power,<br>Q+ = Consumpted Reactive Power) | /Measured Values |
|                 |                                                                                       | /Power]          |
|                 |                                                                                       |                  |

# **Energy Counter**

<u>PQSCr</u>

## Global Parameters of the Energy Counter Module

| Parameter               | Description                                                                                                                                                                                                                                            | Setting range                                                                               | Default               | Menu path                                                     |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------|
| S, P, Q Cutoff<br>Level | The Active/Reactive/Apparent Power shown<br>in the Display or within the PC Software will<br>be displayed as zero, if the absolute value of<br>the corresponding Power falls below this<br>Cutoff Level. This parameter has no impact<br>on recorders. | 0.0 - 0.100Sn                                                                               | 0.005Sn               | [Device Para<br>/Measurem<br>Display<br>/Power]               |
| Power Units             | Power Units                                                                                                                                                                                                                                            | Power Auto<br>Scaling,<br>kW/kVAr/kVA,<br>MW/MVAr/MVA,<br>GW/GVAr/GVA                       | Power Auto<br>Scaling | [Device Para<br>/Measurem<br>Display<br>/General<br>Settings] |
| Energy Units            | Energy Units                                                                                                                                                                                                                                           | Energy Auto<br>Scaling,<br>kWh/kVArh/kVA<br>h,<br>MWh/MVArh/MV<br>Ah,<br>GWh/GVArh/GV<br>Ah | MWh/MVArh/<br>MVAh    | [Device Para<br>/Measurem<br>Display<br>/General<br>Settings] |

## Direct Commands of the Energy Counter Module

| Parameter            | Description                  | Setting range       | Default  | Menu path                                |
|----------------------|------------------------------|---------------------|----------|------------------------------------------|
| Res all Energy<br>Cr | Reset of all Energy Counters | inactive,<br>active | inactive | [Operation<br>/<br>Reset/Acknowle<br>dge |
|                      |                              |                     |          | /Reset]                                  |

## Signals of the Energy Counter Module (States of the Outputs)

| Signal         | Description                     |
|----------------|---------------------------------|
| Cr Oflw Ws Net | Signal: Counter Overflow Ws Net |
| Cr Oflw Wp Net | Signal: Counter Overflow Wp Net |
| Cr Oflw Wp+    | Signal: Counter Overflow Wp+    |

| Signal            | Description                               |
|-------------------|-------------------------------------------|
| Cr Oflw Wp-       | Signal: Counter Overflow Wp-              |
| Cr Oflw Wq Net    | Signal: Counter Overflow Wq Net           |
| Cr Oflw Wq+       | Signal: Counter Overflow Wq+              |
| Cr Oflw Wq-       | Signal: Counter Overflow Wq-              |
| Ws Net Res Cr     | Signal: Ws Net Reset Counter              |
| Wp Net Res Cr     | Signal: Wp Net Reset Counter              |
| Wp+ Res Cr        | Signal: Wp+ Reset Counter                 |
| Wp- Res Cr        | Signal: Wp- Reset Counter                 |
| Wq Net Res Cr     | Signal: Wq Net Reset Counter              |
| Wq+ Res Cr        | Signal: Wq+ Reset Counter                 |
| Wq- Res Cr        | Signal: Wq- Reset Counter                 |
| Res all Energy Cr | Signal: Reset of all Energy Counters      |
| Cr OflwW Ws Net   | Signal: Counter Ws Net will overflow soon |
| Cr OflwW Wp Net   | Signal: Counter Wp Net will overflow soon |
| Cr OflwW Wp+      | Signal: Counter Wp+ will overflow soon    |
| Cr OflwW Wp-      | Signal: Counter Wp- will overflow soon    |
| Cr OflwW Wq Net   | Signal: Counter Wq Net will overflow soon |
| Cr OflwW Wq+      | Signal: Counter Wq+ will overflow soon    |
| Cr OflwW Wq-      | Signal: Counter Wq- will overflow soon    |

# Statistics

### Statistics

In menu *»Operation/Statistics«* the min., max. and mean values of the measured and calculated measured quantities can be found.

## Configuration of the Minimum and Maximum Values

The calculation of the minimum and maximum values will be started:

- When a Reset signal becomes active (Min/Max)
- When the device is restarted
- After configuration

|                                                                                                      | Minimum and Maximum Values (Peak Values/Pointers)                                                          |                                                                                                                |  |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
|                                                                                                      | Time interval for the calculation of the minimum and maximum values                                        | Reset                                                                                                          |  |
| Configuration Options<br>Where to configure?<br>Within menu [Device Para\<br>Statistics\<br>Min/Max] | The minimum and maximum values will<br>be reset with the rising edge of the<br>corresponding reset signal. | Res Min<br>Res Max<br>(e.g. via digital Inputs). These signals will reset<br>the minimum and maximum pointers. |  |
| Display of Minimum Values                                                                            | Where? Within menu [Operation\Statistics\Min]                                                              |                                                                                                                |  |
| Display of Maximum Values                                                                            | Where? Within menu [Operation\Statistics\Max]                                                              |                                                                                                                |  |

## Configuration of the Average Value Calculation

## Configuration of the Current Based Average Value Calculation\*

\*=Availability depends on the ordered device code.

|                                                                                                               | Current based Average Values and Peak Values                                                                                                                                                         |                                                                                                                                                                       |                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                               | Time period for the<br>calculation of the<br>average and peak<br>values                                                                                                                              | Start options                                                                                                                                                         | Reset of the average and peak values                                                                                                                                                     |
| Configuration Options<br>Where to configure?<br>In [Device Para\<br>Statistics\<br>Demand\<br>Current Demand] | Sliding:<br>(sliding: average calculation<br>based on sliding period)<br>fixed:<br>(fixed: Average calculation is<br>reset by the end of the period,<br>that means with the next<br>starting period) | duration:<br>(fixed or sliding period)<br>Start Fct:<br>(The average values are<br>calculated based on the time<br>period between two rising edges<br>ot this signal) | Res Fc<br>(e.g. via Digital Input in order to<br>reset the average values in<br>advance (before the next rising<br>edge of the start signal). This<br>applies to option "Start FC" only. |
| <i>Trip (command) option to limit<br/>the average current demand:<br/>Yes</i>                                 | Please                                                                                                                                                                                               | e refert to chapter "System A                                                                                                                                         | \larms"                                                                                                                                                                                  |
| <i>View average values and peak values</i>                                                                    | Where? Within menu [Operation\Statistics\Demand]                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                                                                                          |

### Configuration of the Voltage Based Average Value Calculation\*

\*=Availability depends on the ordered device code.

|                                                                                          | Voltage based Average Values                                                                                                                                                                         |                                                                                                                                                                       |                                                                                                                                                                                          |  |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                          | Time period for the<br>calculation of the<br>average values                                                                                                                                          | Start options                                                                                                                                                         | Reset of the average and peak values                                                                                                                                                     |  |
| Configuration Options<br>Where to configure?<br>In [Device Para\<br>Statistics\<br>Umit] | sliding:<br>(sliding: average calculation<br>based on sliding period)<br>fixed:<br>(fixed: Average calculation is<br>reset by the end of the period,<br>that means with the next<br>starting period) | duration:<br>(fixed or sliding period)<br>Start Fct:<br>(The average values are<br>calculated based on the time<br>period between two rising edges<br>ot this signal) | Res Fc<br>(e.g. via Digital Input in order to<br>reset the average values in<br>advance (before the next rising<br>edge of the start signal). This<br>applies to option "Start FC" only. |  |
| View average values                                                                      | Where? Within menu [Operation\Statistics\Vavg]                                                                                                                                                       |                                                                                                                                                                       |                                                                                                                                                                                          |  |

## Configuration of the Power Based Average Value Calculation\*

\*=Availability depends on the ordered device code.

|                                                                                                                   | Power based Average Values (Demand) and Peak Values                                                                                                                                                  |                                                                                                                                                                       |                                                                                                                                                                                          |  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                   | Time period for the<br>calculation of the<br>average and peak<br>values                                                                                                                              | Start options                                                                                                                                                         | Reset of the average and peak values                                                                                                                                                     |  |
| Configuration Options<br>Where to configure?<br>In [Device Para\<br>Statistics\<br>Bezugsmanagm\<br>Power Demand] | sliding:<br>(sliding: average calculation<br>based on sliding period)<br>fixed:<br>(fixed: Average calculation is<br>reset by the end of the period,<br>that means with the next<br>starting period) | duration:<br>(fixed or sliding period)<br>Start Fct:<br>(The average values are<br>calculated based on the time<br>period between two rising edges<br>ot this signal) | Res Fc<br>(e.g. via Digital Input in order to<br>reset the average values in<br>advance (before the next rising<br>edge of the start signal). This<br>applies to option "Start FC" only. |  |
| <i>Trip (command) option to limit<br/>the average power demand:<br/>Yes</i>                                       | Please refert to chapter "System Alarms"                                                                                                                                                             |                                                                                                                                                                       |                                                                                                                                                                                          |  |
| <i>View average values and peak values</i>                                                                        | Where? Within menu [Operation\Statistics\Demand]                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                                                                                          |  |

## **Direct Commands**

| Parameter         | Description                                            | Setting range | Default  | Menu path             |
|-------------------|--------------------------------------------------------|---------------|----------|-----------------------|
| ResFc all         | Resetting of all Statistic values (Current             | inactive,     | inactive | [Operation            |
|                   | Demand, Power Demand, Min, Max)                        | active        |          | /                     |
|                   |                                                        |               |          | Reset/Acknowle<br>dge |
|                   |                                                        |               |          | /Reset]               |
| ResFc I           | Resetting of Statistics - Current Demand               | inactive,     | inactive | [Operation            |
| Demand            | (avg, peak avg)                                        | active        |          | /                     |
|                   |                                                        |               |          | Reset/Acknowle<br>dge |
|                   |                                                        |               |          | /Reset]               |
| ResFc P<br>Demand | Resetting of Statistics - Power Demand (avg, peak avg) | inactive,     | inactive | [Operation            |
|                   |                                                        | active        |          | /                     |
|                   |                                                        |               |          | Reset/Acknowle<br>dge |
|                   |                                                        |               |          | /Reset]               |
| ResFc Min         | Resetting of all Minimum values                        | inactive,     | inactive | [Operation            |
|                   |                                                        | active        |          | /                     |
|                   |                                                        |               |          | Reset/Acknowle<br>dge |
|                   |                                                        |               |          | /Reset]               |
| ResFc Max         | Resetting of all Maximum values                        | inactive,     | inactive | [Operation            |
|                   |                                                        | active        |          | /                     |
| $\bigotimes$      |                                                        |               |          | Reset/Acknowle<br>dge |
|                   |                                                        |               |          | /Reset]               |

## **Global Protection Parameters of the Statistics Module**

| Parameter              | Description                     | Setting range          | Default  | Menu path                                                     |
|------------------------|---------------------------------|------------------------|----------|---------------------------------------------------------------|
| ResFc Max              | Resetting of all Maximum values | 1n,<br>Assignment List |          | [Device Para<br>/Statistics<br>/Min / Max]                    |
| ResFc Min              | Resetting of all Minimum values | 1n,<br>Assignment List |          | [Device Para<br>/Statistics<br>/Min / Max]                    |
| Start I Demand<br>via: | Start Current demand by:        | Duration,<br>StartFct  | Duration | [Device Para<br>/Statistics<br>/Demand<br>/Current<br>Demand] |

| Parameter      | Description                               | Setting range   | Default  | Menu path           |
|----------------|-------------------------------------------|-----------------|----------|---------------------|
| Start I Demand | Start of the calculation, if the assigned | 1n,             |          | [Device Para        |
| Fc             | signal becomes true.                      | Assignment List |          | /Statistics         |
| <b>—</b>       | Only available if: Start I Demand via: =  |                 |          | /Demand             |
| $\bigotimes$   | StartFct                                  |                 |          | /Current<br>Demand] |
| ResFc I        | Resetting of Statistics - Current Demand  | 1n,             |          | [Device Para        |
| Demand         | (avg, peak avg)                           | Assignment List |          | /Statistics         |
|                |                                           |                 |          | /Demand             |
| $\bigotimes$   |                                           |                 |          | /Current<br>Demand] |
| Duration I     | Recording time                            | 2 s,            | 15 s     | [Device Para        |
| Demand         | Only available if: Start I Demand via: =  | 5 s,            |          | /Statistics         |
|                | Duration                                  | 10 s,           |          | /Demand             |
| $\bigotimes$   |                                           | 15 s,           |          | /Current            |
|                |                                           | 30 s,           |          | Demand]             |
|                |                                           | 1 min,          |          |                     |
|                |                                           | 5 min,          |          |                     |
|                |                                           | 10 min,         |          |                     |
|                |                                           | 15 min,         |          |                     |
|                |                                           | 30 min,         |          |                     |
|                |                                           | 1 h,            |          |                     |
|                |                                           | 2 h,            |          |                     |
|                |                                           | 6 h,            |          |                     |
|                |                                           | 12 h,           |          |                     |
|                |                                           | 1 d,            |          |                     |
|                |                                           | 2 d,            |          |                     |
|                |                                           | 5 d,            |          |                     |
|                |                                           | 7 d,            |          |                     |
|                |                                           | 10 d,           |          |                     |
|                |                                           | 30 d            |          |                     |
| Window I       | Window configuration                      | sliding,        | sliding  | [Device Para        |
| Demand         |                                           | fixed           |          | /Statistics         |
| •              |                                           |                 |          | /Demand             |
| $\bigotimes$   |                                           |                 |          | /Current<br>Demand] |
|                | Start Active Power demand by:             | Duration,       | Duration | [Device Para        |
| via:           |                                           | StartFct        |          | /Statistics         |
| •              |                                           |                 |          | /Demand             |
| $\bigotimes$   |                                           |                 |          | /Power<br>Demand]   |

| Parameter          | Description                                  | Setting range          | Default | Menu path         |
|--------------------|----------------------------------------------|------------------------|---------|-------------------|
| Start P Demand     | <b>. . .</b>                                 | 1n,<br>Assignment List |         | [Device Para      |
| Fc                 | signal becomes true.                         |                        |         | /Statistics       |
| <b>•</b>           | Only available if: Start P Demand via: =     |                        |         | /Demand           |
| $\bigotimes$       | StartFct                                     |                        |         | /Power<br>Demand] |
| ResFc P            | Resetting of Statistics - Power Demand (avg, | 1n,                    |         | [Device Para      |
| Demand             | peak avg)                                    | Assignment List        |         | /Statistics       |
| <b>•</b>           |                                              |                        |         | /Demand           |
|                    |                                              |                        |         | /Power<br>Demand] |
| Duration P         | Recording time                               | 2 s,                   | 15 s    | [Device Para      |
| Demand             | Only available if: Start P Demand via: =     | 5 s,                   |         | /Statistics       |
|                    | Duration                                     | 10 s,                  |         | /Demand           |
| $\bigotimes$       |                                              | 15 s,                  |         | /Power            |
|                    |                                              | 30 s,                  |         | Demand]           |
|                    |                                              | 1 min,                 |         |                   |
|                    |                                              | 5 min,                 |         |                   |
|                    |                                              | 10 min,                |         |                   |
|                    |                                              | 15 min,                |         |                   |
|                    |                                              | 30 min,                |         |                   |
|                    |                                              | 1 h,                   |         |                   |
|                    |                                              | 2 h,                   |         |                   |
|                    |                                              | 6 h,                   |         |                   |
|                    |                                              | 12 h,                  |         |                   |
|                    |                                              | 1 d,                   |         |                   |
|                    |                                              | 2 d,                   |         |                   |
|                    |                                              | 5 d,                   |         |                   |
|                    |                                              | 7 d,                   |         |                   |
|                    |                                              | 10 d,                  |         |                   |
|                    |                                              | 30 d                   |         |                   |
| Window P<br>Demand | Window configuration                         | sliding,               | sliding | [Device Para      |
|                    |                                              | fixed                  |         | /Statistics       |
| <b>•</b>           |                                              |                        |         | /Demand           |
| $\bigotimes$       |                                              |                        |         | /Power<br>Demand] |

## States of the Inputs of the Statistics Module

| Name             | Description                                                                            | Assignment via   |
|------------------|----------------------------------------------------------------------------------------|------------------|
| StartFc I        | State of the module input: Start of the Statistics of                                  | [Device Para     |
| Demand-I         | the Current Demand                                                                     | /Statistics      |
|                  |                                                                                        | /Demand          |
|                  |                                                                                        | /Current Demand] |
| StartFc P        | State of the module input: Start of the Statistics of                                  | [Device Para     |
| Demand-I         | the Active Power Demand                                                                | /Statistics      |
|                  |                                                                                        | /Demand          |
|                  |                                                                                        | /Power Demand]   |
| ResFc I Demand-I | State of the module input: Resetting of Statistics -                                   | [Device Para     |
|                  | Current Demand (avg, peak avg)                                                         | /Statistics      |
|                  |                                                                                        | /Demand          |
|                  |                                                                                        | /Current Demand] |
| ResFc P Demand-  | - State of the module input: Resetting of Statistics -<br>Power Demand (avg, peak avg) | [Device Para     |
| 1                |                                                                                        | /Statistics      |
|                  |                                                                                        | /Demand          |
|                  |                                                                                        | /Power Demand]   |
| ResFc Max-I      | State of the module input: Resetting of all Maximum values                             | [Device Para     |
|                  |                                                                                        | /Statistics      |
|                  |                                                                                        | /Min / Max]      |
| ResFc Min-I      | State of the module input: Resetting of all Minimum values                             | [Device Para     |
|                  |                                                                                        | /Statistics      |
|                  |                                                                                        | /Min / Max]      |

## Signals of the Statistics Module

| Signal         | Description                                                                        |
|----------------|------------------------------------------------------------------------------------|
| ResFc all      | Signal: Resetting of all Statistic values (Current Demand, Power Demand, Min, Max) |
| ResFc I Demand | Signal: Resetting of Statistics - Current Demand (avg, peak avg)                   |
| ResFc P Demand | Signal: Resetting of Statistics - Power Demand (avg, peak avg)                     |
| ResFc Max      | Signal: Resetting of all Maximum values                                            |
| ResFc Min      | Signal: Resetting of all Minimum values                                            |

### **Counters of the Module Statistics**

| Value             | Description                                                                               | Menu path        |
|-------------------|-------------------------------------------------------------------------------------------|------------------|
| Res Cr I Demand   | Number of resets since last booting. The timestamp                                        | [Operation       |
|                   | shows date and time of the last reset.                                                    | /Statistics      |
|                   |                                                                                           | /Demand          |
|                   |                                                                                           | /Current Demand] |
| Res Cr P Demand   | Number of resets since last booting. The timestamp                                        | [Operation       |
|                   | shows date and time of the last reset.                                                    | /Statistics      |
|                   |                                                                                           | /Demand          |
|                   |                                                                                           | /Power Demand]   |
| Res Cr Min values | Number of resets since last booting. The timestamp shows date and time of the last reset. | [Operation       |
|                   |                                                                                           | /Statistics      |
|                   |                                                                                           | /Min             |
|                   |                                                                                           | /Power]          |
| Res Cr Max values | Number of resets since last booting. The timestamp shows date and time of the last reset. | [Operation       |
|                   |                                                                                           | /Statistics      |
|                   |                                                                                           | /Max             |
|                   |                                                                                           | /URTD]           |

#### Current - Statistic Values

| Value       | Description                                   | Menu path        |
|-------------|-----------------------------------------------|------------------|
| l1 max      | Maximum value positive phase sequence current | [Operation       |
|             | (fundamental)                                 | /Statistics      |
|             |                                               | /Max             |
|             |                                               | /Current]        |
| I1 min      | Minimum value positive phase sequence current | [Operation       |
|             | (fundamental)                                 | /Statistics      |
|             |                                               | /Min             |
|             |                                               | /Current]        |
| l2 max      | Maximum value negative sequence current       | [Operation       |
|             | (fundamental)                                 | /Statistics      |
|             |                                               | /Max             |
|             |                                               | /Current]        |
| I2 min      | Minimum value unbalanced load current         | [Operation       |
|             | (fundamental)                                 | /Statistics      |
|             |                                               | /Min             |
|             |                                               | /Current]        |
| IL1 max RMS | IL1 maximum value (RMS)                       | [Operation       |
|             |                                               | /Statistics      |
|             |                                               | /Max             |
|             |                                               | /Current]        |
| IL1 avg RMS | IL1 average value (RMS)                       | [Operation       |
|             |                                               | /Statistics      |
|             |                                               | /Demand          |
|             |                                               | /Current Demand] |
| IL1 min RMS | IL1 minimum value (RMS)                       | [Operation       |
|             |                                               | /Statistics      |
|             |                                               | /Min             |
|             |                                               | /Current]        |
| IL2 max RMS | IL2 maximum value (RMS)                       | [Operation       |
|             |                                               | /Statistics      |
|             |                                               | /Max             |
|             |                                               | /Current]        |
| IL2 avg RMS | IL2 average value (RMS)                       | [Operation       |
|             |                                               | /Statistics      |
|             |                                               | /Demand          |
|             |                                               | /Current Demand] |

| Value           | Description                                                | Menu path        |
|-----------------|------------------------------------------------------------|------------------|
| IL2 min RMS     | IL2 minimum value (RMS)                                    | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Min             |
|                 |                                                            | /Current]        |
| IL3 max RMS     | IL3 maximum value (RMS)                                    | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Max             |
|                 |                                                            | /Current]        |
| IL3 avg RMS     | IL3 average value (RMS)                                    | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Demand          |
|                 |                                                            | /Current Demand] |
| IL3 min RMS     | IL3 minimum value (RMS)                                    | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Min             |
|                 |                                                            | /Current]        |
| IG meas max RMS | Measured value: IG maximum value (RMS)                     | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Max             |
|                 |                                                            | /Current]        |
| IG meas min RMS | Measured value: IG minimum value (RMS)                     | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Min             |
|                 |                                                            | /Current]        |
| IG calc max RMS | Measured value (calculated):IG maximum value (RMS)         | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Max             |
|                 |                                                            | /Current]        |
| IG calc min RMS | Measured value (calculated):IG minimum value (RMS)         | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Min             |
|                 |                                                            | /Current]        |
| %(I2/I1) max    | Measured value (calculated): I2/I1 maximum value,          | [Operation       |
|                 | phase sequence will be taken into account<br>automatically | /Statistics      |
|                 |                                                            | /Max             |
|                 |                                                            | /Current]        |

| Value           | Description                                                | Menu path        |
|-----------------|------------------------------------------------------------|------------------|
| %(I2/I1) min    | Measured value (calculated): I2/I1 minimum value,          | [Operation       |
|                 | phase sequence will be taken into account<br>automatically | /Statistics      |
|                 |                                                            | /Min             |
|                 |                                                            | /Current]        |
| IL1 Peak demand | IL1 Peak value, RMS value                                  | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Demand          |
|                 |                                                            | /Current Demand] |
| IL2 Peak demand | IL2 Peak value, RMS value                                  | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Demand          |
|                 |                                                            | /Current Demand] |
| IL3 Peak demand | IL3 Peak value, RMS value                                  | [Operation       |
|                 |                                                            | /Statistics      |
|                 |                                                            | /Demand          |
|                 |                                                            | /Current Demand] |

### Voltage - Statistic Values

| Value        | Description                                                                        | Menu path   |
|--------------|------------------------------------------------------------------------------------|-------------|
| f max        | Max. frequency value                                                               | [Operation  |
|              |                                                                                    | /Statistics |
|              |                                                                                    | /Max        |
|              |                                                                                    | /Voltage]   |
| f min        | Min. frequency value                                                               | [Operation  |
|              |                                                                                    | /Statistics |
|              |                                                                                    | /Min        |
|              |                                                                                    | /Voltage]   |
| V1 max       | Maximum value: Symmetrical components positive                                     | [Operation  |
|              | phase sequence voltage(fundamental)                                                | /Statistics |
|              |                                                                                    | /Max        |
|              |                                                                                    | /Voltage]   |
| V1 min       | Minimum value: Symmetrical components positive                                     | [Operation  |
|              | phase sequence voltage(fundamental)                                                | /Statistics |
|              |                                                                                    | /Min        |
|              |                                                                                    | /Voltage]   |
| V2 max       | Maximum value: Symmetrical components negative phase sequence voltage(fundamental) | [Operation  |
|              |                                                                                    | /Statistics |
|              |                                                                                    | /Max        |
|              |                                                                                    | /Voltage]   |
| V2 min       | Minimum value: Symmetrical components negative phase sequence voltage(fundamental) | [Operation  |
|              |                                                                                    | /Statistics |
|              |                                                                                    | /Min        |
|              |                                                                                    | /Voltage]   |
| VL12 max RMS | VL12 maximum value (RMS)                                                           | [Operation  |
|              |                                                                                    | /Statistics |
|              |                                                                                    | /Max        |
|              |                                                                                    | /Voltage]   |
| VL12 min RMS | VL12 minimum value (RMS)                                                           | [Operation  |
|              |                                                                                    | /Statistics |
|              |                                                                                    | /Min        |
|              |                                                                                    | /Voltage]   |
| VL23 max RMS | VL23 maximum value (RMS)                                                           | [Operation  |
|              |                                                                                    | /Statistics |
|              |                                                                                    | /Max        |
|              |                                                                                    | /Voltage]   |

| Value        | Description              | Menu path   |
|--------------|--------------------------|-------------|
| VL23 min RMS | VL23 minimum value (RMS) | [Operation  |
|              |                          | /Statistics |
|              |                          | /Min        |
|              |                          | /Voltage]   |
| VL31 max RMS | VL31 maximum value (RMS) | [Operation  |
|              |                          | /Statistics |
|              |                          | /Max        |
|              |                          | /Voltage]   |
| VL31 min RMS | VL31 minimum value (RMS) | [Operation  |
|              |                          | /Statistics |
|              |                          | /Min        |
|              |                          | /Voltage]   |
| VL1 max RMS  | VL1 maximum value (RMS)  | [Operation  |
|              |                          | /Statistics |
|              |                          | /Max        |
|              |                          | /Voltage]   |
| VL1 min RMS  | VL1 minimum value (RMS)  | [Operation  |
|              |                          | /Statistics |
|              |                          | /Min        |
|              |                          | /Voltage]   |
| VL2 max RMS  | VL2 maximum value (RMS)  | [Operation  |
|              |                          | /Statistics |
|              |                          | /Max        |
|              |                          | /Voltage]   |
| VL2 min RMS  | VL2 minimum value (RMS)  | [Operation  |
|              |                          | /Statistics |
|              |                          | /Min        |
|              |                          | /Voltage]   |
| VL3 max RMS  | VL3 maximum value (RMS)  | [Operation  |
|              |                          | /Statistics |
|              |                          | /Max        |
|              |                          | /Voltage]   |
| VL3 min RMS  | VL3 minimum value (RMS)  | [Operation  |
|              |                          | /Statistics |
|              |                          | /Min        |
|              |                          | /Voltage]   |

| Value           | Description                                                                                                     | Menu path   |
|-----------------|-----------------------------------------------------------------------------------------------------------------|-------------|
| VX meas max RMS | Measured value: VX maximum value (RMS)                                                                          | [Operation  |
|                 |                                                                                                                 | /Statistics |
|                 |                                                                                                                 | /Max        |
|                 |                                                                                                                 | /Voltage]   |
| VX meas min RMS | Measured value: VX minimum value (RMS)                                                                          | [Operation  |
|                 |                                                                                                                 | /Statistics |
|                 |                                                                                                                 | /Min        |
|                 |                                                                                                                 | /Voltage]   |
| VG calc max RMS | Measured value (calculated):VX maximum value                                                                    | [Operation  |
|                 | (RMS)                                                                                                           | /Statistics |
|                 |                                                                                                                 | /Max        |
|                 |                                                                                                                 | /Voltage]   |
| VG calc min RMS | Measured value (calculated):VX minimum value (RMS)                                                              | [Operation  |
|                 |                                                                                                                 | /Statistics |
|                 |                                                                                                                 | /Min        |
|                 |                                                                                                                 | /Voltage]   |
| %(V2/V1) max    | Measured value (calculated):V2/V1 maximum value,<br>phase sequence will be taken into account<br>automatically  | [Operation  |
|                 |                                                                                                                 | /Statistics |
|                 |                                                                                                                 | /Max        |
|                 |                                                                                                                 | /Voltage]   |
| %(V2/V1) min    | Measured value (calculated):V2/V1 minimum value ,<br>phase sequence will be taken into account<br>automatically | [Operation  |
|                 |                                                                                                                 | /Statistics |
|                 |                                                                                                                 | /Min        |
|                 |                                                                                                                 | /Voltage]   |
| V/f max         | Maximum value: Ratio Volts/Hertz in relation to                                                                 | [Operation  |
|                 | nominal values.                                                                                                 | /Statistics |
|                 |                                                                                                                 | /Max        |
|                 |                                                                                                                 | /Voltage]   |
| V/f min         | Minimum value: Ratio Volts/Hertz in relation to                                                                 | [Operation  |
|                 | nominal values.                                                                                                 | /Statistics |
|                 |                                                                                                                 | /Min        |
|                 |                                                                                                                 | /Voltage]   |

### **Power - Statistic Values**

| Value       | Description                                         | Menu path      |
|-------------|-----------------------------------------------------|----------------|
| cos phi max | Maximum value of the power factor: Sign Convention: | [Operation     |
|             | sign(PF) = sign(P)                                  | /Statistics    |
|             |                                                     | /Max           |
|             |                                                     | /Power]        |
| cos phi min | Minimum value of the power factor: Sign Convention: | [Operation     |
|             | sign(PF) = sign(P)                                  | /Statistics    |
|             |                                                     | /Min           |
|             |                                                     | /Power]        |
| S max       | Maximum value of the apparent power                 | [Operation     |
|             |                                                     | /Statistics    |
|             |                                                     | /Max           |
|             |                                                     | /Power]        |
| S avg       | Average of the apparent power                       | [Operation     |
|             |                                                     | /Statistics    |
|             |                                                     | /Demand        |
|             |                                                     | /Power Demand] |
| S min       | Minimum value of the apparent power                 | [Operation     |
|             |                                                     | /Statistics    |
|             |                                                     | /Min           |
|             |                                                     | /Power]        |
| P max       | Maximum value of the active power                   | [Operation     |
|             |                                                     | /Statistics    |
|             |                                                     | /Max           |
|             |                                                     | /Power]        |
| P avg       | Average of the active power                         | [Operation     |
|             |                                                     | /Statistics    |
|             |                                                     | /Demand        |
|             |                                                     | /Power Demand] |
| P min       | Minimum value of the active power                   | [Operation     |
|             |                                                     | /Statistics    |
|             |                                                     | /Min           |
|             |                                                     | /Power]        |
| Q max       | Maximum value of the reactive power                 | [Operation     |
|             |                                                     | /Statistics    |
|             |                                                     | /Max           |
|             |                                                     | /Power]        |

| Value            | Description                                         | Menu path      |
|------------------|-----------------------------------------------------|----------------|
| Q avg            | Average of the reactive power                       | [Operation     |
|                  |                                                     | /Statistics    |
|                  |                                                     | /Demand        |
|                  |                                                     | /Power Demand] |
| Q min            | Minimum value of the reactive power                 | [Operation     |
|                  |                                                     | /Statistics    |
|                  |                                                     | /Min           |
|                  |                                                     | /Power]        |
| cos phi max RMS  | Maximum value of the power factor: Sign Convention: | [Operation     |
|                  | sign(PF) = sign(P)                                  | /Statistics    |
|                  |                                                     | /Max           |
|                  |                                                     | /Power]        |
| cos phi min RMS  | Minimum value of the power factor: Sign Convention: | [Operation     |
|                  | sign(PF) = sign(P)                                  | /Statistics    |
|                  |                                                     | /Min           |
|                  |                                                     | /Power]        |
| VA Peak demand   | VA Peak value, RMS value                            | [Operation     |
|                  |                                                     | /Statistics    |
|                  |                                                     | /Demand        |
|                  |                                                     | /Power Demand] |
| Watt Peak demand | WATTS Peak value, RMS value                         | [Operation     |
|                  |                                                     | /Statistics    |
|                  |                                                     | /Demand        |
|                  |                                                     | /Power Demand] |
| VAr Peak demand  | VARs Peak value, RMS value                          | [Operation     |
|                  |                                                     | /Statistics    |
|                  |                                                     | /Demand        |
|                  |                                                     | /Power Demand] |

## System Alarms

Available Elements: SysA



Please note that Power Protection and (Active/Reactive/Apparent) Power Demand is only available within Protective Devices that offer current and voltage measurement.

Within the System Alarms menu [SysA] the User can configure:

- General Settings (activate/inactivate the Demand Management, optional assign a signal, that will block the Demand Management);
- Power Protection (Peak values);
- Demand Management (Power and Current); and
- THD Protection.

Please note, that all thresholds are to be set as primary values.

#### **Demand Management**

Demand is the average of system current or power over a time interval (window). Demand management supports the User to keep energy demand below target values bound by contract (with the energy supplier). If the contractual target values are exceeded, extra charges are to be paid to the energy supplier.

Therefore, demand management helps the User detect and avoid averaged peak loads that are taken into account for the billing. In order to reduce the demand charge respective to demand rate, peak loads, if possible, should be diversified. That means, if possible, avoiding large loads at the same time. In order to assist the User in analyzing the demand, demand management might inform the User by an alarm. The User might also use demand alarms and assign them on relays in order to perform load shedding (where applicable).

Demand management comprises:

- Power Demand
  - Watt Demand (Active Power);
  - VAr Demand (Reactive Power);
  - VA Demand (Apparent Power); and
- Current Demand.

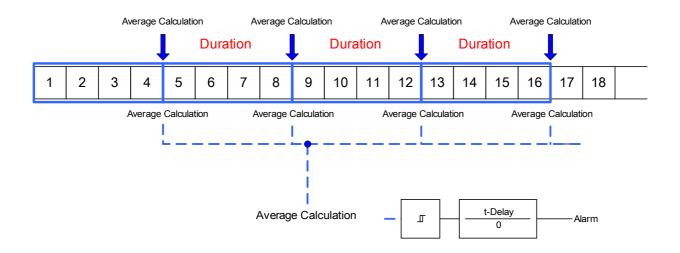
#### Configuring the Demand

Configuring the demand is a two step procedure. Proceed as follows.

Step1: Configure the general settings within the [Device Para/Statistics/Demand] menu:

- Set the trigger source to »Duration«.
- Select a time base for the *»window«*.
- Determine if the window is *»fixed«* or *»sliding«*.
- If applicable assign a reset signal.

The interval time (window) can be set to fixed or sliding.


**Example for a fixed window:** If the range is set for 15 minutes, the protective device calculates the average current or power over the past 15 minutes and updates the value every 15 minutes.

**Example for a sliding window:** If the sliding window is selected and the interval is set to 15 minutes, the protective device calculates and updates the average current or power continuously, for the past 15 minutes (the newest measuring value replaces the oldest measuring value continuously).





Window configuration = fixed



#### System Alarms

Step 2:

- In addition, the Demand specific settings have to be configured in the [SysA/Demand] menu.
- Determine if the demand should generate an alarm or if it should run in the silent mode. (Alarm active/inactive).
- Set the threshold.
- Where applicable, set a delay time for the alarm.

#### **Peak Values**

The protective device also saves the peak demand values for current and power. The quantities represent the largest demand value since the demand values were last reset. Peak demands for current and system power are date and time stamped.

Within the [Operation/Statistics] menu, the current Demand and Peak demand values can be seen.

#### Configuring the Peak Value Supervision

The supervision for the peak values can be configurated within menu [SysA/Power] in order to monitor:

- Active Power (Watt),
- Reactive Power (VAr)
- Apparent Powr (VA)

The specific settings are to be set within menu [SysA/Power].

- Determine if the peak value supervision should generate an alarm or if it should run in the silent mode. (Alarm active/inactive).
- Set the threshold.
- Where applicable, set a delay time for the alarm.

#### Min. and Max. Values.

Within [Operation/Statistics] menu the minimum (min.) and maximum (max.) values can be seen.

**Minimum values since last reset:** The minimum values are continuously compared to the last minimum value for that measuring value. If the new value is less than the last minimum, the value is updated. Within the [Device Para/Statistics/"Min / Max"] menu, a reset signal can be assigned.

**Maximum values since last reset:** The maximum values are continuously compared to the last maximum value for that measuring value. If the new value is greater than the last maximum, the value is updated. Within the [Device Para/Statistics/"Min / Max"] menu, a reset signal can be assigned.

### **THD Protection**

In order to supervise power quality, the protective device can monitor the voltage (phase-to-phase) and current THDs.

Within the [SysA/THD] menu:

- Determine if an alarm is to be issued or not (Alarm active/inactive);
- Set the threshold; and
- Where applicable, set a delay time for the alarm.

### **Device Planning Parameters of the Demand Management**

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | use         |            |                   |
| $\bigotimes$ |             |             |            |                   |

### Signals of the Demand Management (States of the Outputs)

| Signal              | Description                                     |
|---------------------|-------------------------------------------------|
| active              | Signal: active                                  |
| ExBlo               | Signal: External Blocking                       |
| Alarm Watt Power    | Signal: Alarm permitted Active Power exceeded   |
| Alarm VAr Power     | Signal: Alarm permitted Reactive Power exceeded |
| Alarm VA Power      | Signal: Alarm permitted Apparent Power exceeded |
| Alarm Watt Demand   | Signal: Alarm averaged Active Power exceeded    |
| Alarm VAr Demand    | Signal: Alarm averaged Reactive Power exceeded  |
| Alarm VA Demand     | Signal: Alarm averaged Apparent Power exceeded  |
| Alm Current Demd    | Signal: Alarm averaged demand current           |
| Alarm I THD         | Signal: Alarm Total Harmonic Distortion Current |
| Alarm V THD         | Signal: Alarm Total Harmonic Distortion Voltage |
| Trip Watt Power     | Signal: Trip permitted Active Power exceeded    |
| Trip VAr Power      | Signal: Trip permitted Reactive Power exceeded  |
| Trip VA Power       | Signal: Trip permitted Apparent Power exceeded  |
| Trip Watt Demand    | Signal: Trip averaged Active Power exceeded     |
| Trip VAr Demand     | Signal: Trip averaged Reactive Power exceeded   |
| Trip VA Demand      | Signal: Trip averaged Apparent Power exceeded   |
| Trip Current Demand | Signal: Trip averaged demand current            |
| Trip I THD          | Signal: Trip Total Harmonic Distortion Current  |
| Trip V THD          | Signal: Trip Total Harmonic Distortion Voltage  |

## Global Protection Parameter of the Demand Management

| Parameter | Description                                                                                                                                                                                                                                                                                                 | Setting range          | Default   | Menu path                      |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|--------------------------------|
| Function  | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                       | inactive,<br>active    | inactive  | [SysA<br>/General<br>Settings] |
| ExBlo Fc  | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active". | 1n,<br>Assignment List |           | [SysA<br>/General<br>Settings] |
| Alarm     | Alarm                                                                                                                                                                                                                                                                                                       | inactive,<br>active    | inactive  | [SysA<br>/Power<br>/Watt]      |
| Threshold | Threshold (to be entered as primary value)                                                                                                                                                                                                                                                                  | 1 -<br>40000000kW      | 10000kW   | [SysA<br>/Power<br>/Watt]      |
| t-Delay   | Tripping Delay                                                                                                                                                                                                                                                                                              | 0 - 60min              | 0min      | [SysA<br>/Power<br>/Watt]      |
| Alarm     | Alarm                                                                                                                                                                                                                                                                                                       | inactive,<br>active    | inactive  | [SysA<br>/Power<br>/VAr]       |
| Threshold | Threshold (to be entered as primary value)                                                                                                                                                                                                                                                                  | 1 -<br>40000000kVAr    | 10000kVAr | [SysA<br>/Power<br>/VAr]       |
| t-Delay   | Tripping Delay                                                                                                                                                                                                                                                                                              | 0 - 60min              | 0min      | [SysA<br>/Power<br>/VAr]       |
| Alarm     | Alarm                                                                                                                                                                                                                                                                                                       | inactive,<br>active    | inactive  | [SysA<br>/Power<br>/VA]        |
| Threshold | Threshold (to be entered as primary value)                                                                                                                                                                                                                                                                  | 1 -<br>40000000kVA     | 10000kVA  | [SysA<br>/Power<br>/VA]        |

| Parameter    | Description                                | Setting range | Default   | Menu path        |
|--------------|--------------------------------------------|---------------|-----------|------------------|
| t-Delay      | Tripping Delay                             | 0 - 60min     | 0min      | [SysA            |
|              |                                            |               |           | /Power           |
| $\bigotimes$ |                                            |               |           | /VA]             |
| Alarm        | Alarm                                      | inactive,     | inactive  | [SysA            |
|              |                                            | active        |           | /Demand          |
| $\bigotimes$ |                                            |               |           | /Power<br>Demand |
|              |                                            |               |           | /Watt Demand]    |
| Threshold    | Threshold (to be entered as primary value) | 1 -           | 10000kW   | [SysA            |
|              |                                            | 40000000kW    |           | /Demand          |
| $\bigotimes$ |                                            |               |           | /Power<br>Demand |
|              |                                            |               |           | /Watt Demand]    |
| t-Delay      | Tripping Delay                             | 0 - 60min     | 0min      | [SysA            |
|              |                                            |               |           | /Demand          |
| $\bigotimes$ |                                            |               |           | /Power<br>Demand |
|              |                                            |               |           | /Watt Demand]    |
| Alarm        | Alarm                                      | inactive,     | inactive  | [SysA            |
|              |                                            | active        |           | /Demand          |
| $\bigotimes$ |                                            |               |           | /Power<br>Demand |
|              |                                            |               |           | /VAr Demand]     |
| Threshold    | Threshold (to be entered as primary value) | 1 -           | 20000kVAr | [SysA            |
|              |                                            | 40000000kVAr  |           | /Demand          |
| $\bigotimes$ |                                            |               |           | /Power<br>Demand |
|              |                                            |               |           | /VAr Demand]     |
| t-Delay      | Tripping Delay                             | 0 - 60min     | 0min      | [SysA            |
|              |                                            |               |           | /Demand          |
| $\bigotimes$ |                                            |               |           | /Power<br>Demand |
|              |                                            |               |           | /VAr Demand]     |
| Alarm        | Alarm                                      | inactive,     | inactive  | [SysA            |
|              |                                            | active        |           | /Demand          |
|              |                                            |               |           | /Power<br>Demand |
|              |                                            |               |           | /VA Demand]      |

| Parameter              | Description                                | Setting range | Default  | Menu path           |
|------------------------|--------------------------------------------|---------------|----------|---------------------|
| Threshold              | Threshold (to be entered as primary value) | 1 -           | 20000kVA | [SysA               |
|                        |                                            | 40000000kVA   |          | /Demand             |
|                        |                                            |               |          | /Power<br>Demand    |
|                        |                                            |               |          | /VA Demand]         |
| t-Delay                | Tripping Delay                             | 0 - 60min     | 0min     | [SysA               |
|                        |                                            |               |          | /Demand             |
|                        |                                            |               |          | /Power<br>Demand    |
|                        |                                            |               |          | /VA Demand]         |
| Alarm                  | Alarm                                      | inactive,     | inactive | [SysA               |
|                        |                                            | active        |          | /Demand             |
| $\bigotimes$           |                                            |               |          | /Current<br>Demand] |
| Threshold              | Threshold (to be entered as primary value) | 10 - 500000A  | 500A     | [SysA               |
|                        |                                            |               |          | /Demand             |
| $\bigotimes$           |                                            |               |          | /Current<br>Demand] |
| t-Delay                | Tripping Delay                             | 0 - 60min     | 0min     | [SysA               |
|                        |                                            |               |          | /Demand             |
|                        |                                            |               |          | /Current<br>Demand] |
| Alarm                  | Alarm                                      | inactive,     | inactive | [SysA               |
|                        |                                            | active        |          | /THD                |
| $\bigcirc$             |                                            |               |          | /I THD]             |
| Threshold              | Threshold (to be entered as primary value) | 1 - 500000A   | 500A     | [SysA               |
|                        |                                            |               |          | /THD                |
| $\widehat{\mathbf{R}}$ |                                            |               |          | /I THD]             |
| t-Delay                | Tripping Delay                             | 0 - 3600s     | 0s       | [SysA               |
| -                      |                                            |               |          | /THD                |
| $\bigcirc$             |                                            |               |          | /I THD]             |
| Alarm                  | Alarm                                      | inactive,     | inactive | [SysA               |
|                        |                                            | active        |          | /THD                |
|                        |                                            | uctive        |          | /V THD]             |
|                        |                                            |               | 10000    |                     |
| Threshold              | Threshold (to be entered as primary value) | 1 - 500000V   | 10000V   | [SysA               |
| <i>—</i>               |                                            |               |          | /THD                |
| $\bigotimes$           |                                            |               |          | /V THD]             |

| Parameter    | Description    | Setting range | Default | Menu path |
|--------------|----------------|---------------|---------|-----------|
| t-Delay      | Tripping Delay | 0 - 3600s     | 0s      | [SysA     |
|              |                |               |         | /THD      |
| $\bigotimes$ |                |               |         | /V THD]   |

## States of the Inputs of the Demand Management

| Name    | Description                           | Assignment via     |
|---------|---------------------------------------|--------------------|
| ExBlo-I | Module input state: External blocking | [SysA              |
|         |                                       | /General Settings] |

# Acknowledgments

Collective Acknowledgments for latched signals:

|                                                                                                                                                                                                            |                                                                                  | Collective Ack                                                                                      | rnowledgments                                                                                |                                                                                                         |                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                            | LEDs                                                                             | Binary Output<br>Relays                                                                             | SCADA                                                                                        | Pending<br>Trip Command                                                                                 | LEDs+<br>Binary Output<br>Relays+<br>SCADA+<br>Pending<br>Trip Command |
| Via <i>Smart view</i><br>or at the <i>panel</i><br><i>all</i><br>can be<br>acknowledged.<br>At the panel, the<br>menu [Operation\<br>Acknowledge]<br>can directly be<br>accessed via the<br><b>»C« key</b> | All LEDs at once:<br>Where?<br>[Operation /<br>Acknowledge]                      | All Binary Output<br>Relays at once:<br>Where?<br>[Operation /<br>Acknowledge]                      | All SCADA<br>signals at once:<br>Where?<br>[Operation /<br>Acknowledge]                      | All pending trip<br>commands at<br>once:<br>Where?<br>[Operation /<br>Acknowledge]                      | All at once:<br>Where?<br>[Operation /<br>Acknowledge]                 |
| <i>External</i><br><i>Acknowledg-</i><br><i>ment*:</i><br>Via a signal from<br>the assignment<br>list (e.g. a digital<br>Input) <i>all</i> can<br>be<br>acknowledged.                                      | All LEDs at once:<br>Where? Within<br>the menu<br>[Device Para /<br>Acknowledge] | All Binary Output<br>Relays at once:<br>Where? Within<br>the menu<br>[Device Para /<br>Acknowledge] | All SCADA<br>signals at once:<br>Where? Within<br>the menu<br>[Device Para /<br>Acknowledge] | All pending trip<br>commands at<br>once:<br>Where? Within<br>the menu<br>[Device Para /<br>Acknowledge] |                                                                        |
| <i>Automatic</i><br><i>Acknowledg-</i><br><i>ment:</i><br>Via a new alarm<br>from any<br>protection<br>function                                                                                            | All LEDs at once,<br>automatically in<br>case of a<br>protection alarm.          |                                                                                                     |                                                                                              |                                                                                                         |                                                                        |

\*The External Acknowledgment might be disabled if parameter »*Ex Ack «*is set to »*inactive«* within menu [Device Para / Acknowledge]. This blocks also the acknowledgment via Communication (e.g. Modbus).

\*\* If the automatic acknowledgment is active all LEDs get acknowledged with a protection alarm.

The automatic acknowledgment must be activated by setting:

[Device Para / LEDs / LEDs group A / LED 1...n] »Latched« = "active, ack. by alarm"

Options for individual acknowledgments for latched signals:

| Individual Acknowledgment                                                                                  |                                                                               |                                                                                                           |                                                                            |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|                                                                                                            | LEDs                                                                          | Binary Output Relays                                                                                      | Pending<br>Trip Command                                                    |  |
| Via a signal from the<br>assignment list (e.g.:a<br>digital Input) a <i>single</i> can<br>be acknowledged. | Single LED:<br>Where?<br>Within the configuration<br>menu of this single LED. | Binary Output Relay:<br>Where?<br>Within the configuration<br>menu of this single Binary<br>Output Relay. | Pending Trip Command.<br>Where?<br>Within the module<br><u>TripControl</u> |  |

# NOTICE

As long as you are within the parameter setting mode, you cannot acknowledge.



In case of a fault during parameter setting via the operating panel, you must first leave the parameter mode by pressing either push-button »C« or »OK« before you may access to menu »Acknowledgments« via push-button.

### Manual Acknowledgment

It is possible to acknowledge LEDs, SCADA, binary output relays and / or a pending trip command by pressing the »C« key at the panel.

There are two principles available how the »C« key shall react when being pressed:

- (1.) With intermediate selection step: After the »C« key has been pressed, you select the items to be acknowledged (LEDs, SCADA, binary output relays, trip command, or all of these) via the Softkeys. After this, you press the Softkey with the »Wrench-Symbol«.
- (2.) *Immediate acknowledge:* After it has been configured which items shall be be assigned to the *»Ack via »C« key«*, these are acknowledged by simply pressing the »C« key (for ca. 1 second).

The setting parameter [Device Para / Acknowledge] *»Ack via »C« key«* decides about which principle described above shall be available when the »C« key is pressed:

- "Nothing" Pressing the »C« key works as described with "principle (1.)", i. e. you explicitly select the items to be acknowledged.
- "Ack LEDs" Pressing the »C« key (for approx. 1 second) acknowledges all LEDs immediately (only the password will be asked for, see below).
- "Ack LEDs, relays" Pressing the »C« key (for approx. 1 second) acknowledges all LEDs and all binary output relays immediately (only the password will be asked for, see below).
- "Ack Everything" Pressing the »C« key (for approx. 1 second) acknowledges all (above) mentioned items immediately (only the password will be asked for, see below).

The three immediate types of acknowledgments according to "principle (2.)" can be recognized from the fact that it always includes an LED test, i. e. all LEDs flash in red color for a second, then flash in green color for a second.

# **NOTICE** Independent of which acknowledgment type you have set, note that you are asked to enter the password.

If there is the need to be able to acknowledge without entering any password set an empty password for the level *»Prot-Lv1«*.

For general information about passwords and security-related considerations, see the "Security" chapter.

### **External Acknowledgments**

Within the menu [Device Parameter\Ex Acknowledge] you can assign a signal (e.g. the state of a digital input) from the assignment list that:

- acknowledges all (acknowledgeable) LEDs at once;
- acknowledges all (acknowledgeable) binary outputs at once:
- acknowledges all (acknowledgeable) SCADA-signals at once.

| Ex Acknowledge.Ack LED   | Ack LED 1n, Assignment List   |
|--------------------------|-------------------------------|
| Ex Acknowledge.Ack BO    | Ack BO                        |
| Ex Acknowledge.Ack Scada | Ack Scada 1n, Assignment List |

### **Manual Resets**

In menu »Operation/Reset« you can:

- reset counters,
- delete records (e.g. disturbance records) and
- reset special things (like statistics, thermal replica...).

NOTICE

The description of the reset commands can be found within the corresponding modules.

# **Status Display**

In the status display within the »Operation« menu, the present state of all signals can be viewed. This means the User is able to see if the individual signals are active or inactive at that moment. The User can see all signals sorted by protective elements/modules.

| State of the module input/signal is | Is shown at the panel as |
|-------------------------------------|--------------------------|
| false / »0«                         |                          |
| true / »1«                          | 522<br>5                 |

# **Operating Panel (HMI)**

<u>HMI</u>

### Special Parameters of the Panel

This menu »Device Parameter/HMI« is used to define the contrast of the display, the maximum admissible edit time and the menu language (after expiry of which, all unsaved parameter changes will be rejected).

### **Direct Commands of the Panel**

| Parameter             | Description                                                                                                                                                                              | Setting range            | Default                | Menu path               |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|-------------------------|
| Contrast              | Contrast                                                                                                                                                                                 | 0 - 100%                 | 50%                    | [Device Para            |
|                       |                                                                                                                                                                                          |                          |                        | /HMI]                   |
| 8                     |                                                                                                                                                                                          |                          |                        |                         |
| Reset Options         | If the »C« key is pressed while the device is<br>performing a cold restart a general Reset<br>Dialog appears on the screen. Select which<br>options shall be available with this dialog. | Fact.def., "PW           | Fact.def., "PW<br>rst" | [Device Para            |
|                       |                                                                                                                                                                                          | rst",                    |                        | /Security               |
|                       |                                                                                                                                                                                          | Only<br>"Fact.defaults", |                        | /Miscellaneous]         |
|                       |                                                                                                                                                                                          | Reset deact.             |                        |                         |
| Smart view via<br>USB | Activate (allow) or inactivate (disallow) the Smart view access via the USB interface.                                                                                                   | inactive,                | active                 | [Device Para            |
|                       |                                                                                                                                                                                          | active                   |                        | /Security               |
|                       |                                                                                                                                                                                          |                          |                        | 1                       |
| $\otimes$             |                                                                                                                                                                                          |                          |                        | Communication<br>]      |
| Smart view via<br>Eth | Activate (allow) or inactivate (disallow) the<br>Smart view access via the Ethernet<br>interface.                                                                                        | inactive,                | active                 | [Device Para            |
|                       |                                                                                                                                                                                          | active                   |                        | /Security               |
| $\otimes$             |                                                                                                                                                                                          |                          |                        | /<br>Communication<br>1 |

### **Global Protection Parameters of the Panel**

| Parameter            | Description                                                                                                                                                                                                     | Setting range | Default | Menu path                                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|----------------------------------------------|
| t-max<br>Edit/Access | If no other key(s) is pressed at the panel,<br>after expiration of this time, all cached<br>(changed) parameters are canceled. The<br>device access will be locked by falling back<br>into Read-only level Lv0. | 20 - 3600s    | 180s    | [Device Para<br>/Security<br>/Miscellaneous] |

| Parameter                  | Description                                                            | Setting range | Default | Menu path             |
|----------------------------|------------------------------------------------------------------------|---------------|---------|-----------------------|
| Display Off                | The display back light will be turned off when this timer has expired. | 20 - 3600s    | 180s    | [Device Para<br>/HMI] |
| $\bigotimes$               |                                                                        |               |         |                       |
| Menu language              | Selection of the language                                              | English,      | English | [Device Para          |
|                            |                                                                        | German,       |         | /HMI]                 |
|                            |                                                                        | Russian,      |         |                       |
|                            |                                                                        | Polish,       |         |                       |
|                            |                                                                        | French,       |         |                       |
|                            |                                                                        | Portuguese,   |         |                       |
|                            |                                                                        | Spanish,      |         |                       |
|                            |                                                                        | Romanian      |         |                       |
| Display ANSI<br>Device No. | Display ANSI Device Numbers                                            | inactive,     | active  | [Device Para          |
|                            |                                                                        | active        |         | /HMI]                 |
| $\bigotimes$               |                                                                        |               |         |                       |

## Recorders

#### **Disturbance Recorder**

Available elements: <u>Disturb rec</u>

- Disturbance records can be downloaded (read out) by means of the parameter setting and evaluation software Smart view.
- The disturbance records can be viewed and analyzed within *Data visualizer* (will be installed with *Smart view*).
- Disturbance records can be converted into the COMTRADE file format by means of *Data visualizers*.

The disturbance recorder works with 32 samples per cycle. The disturbance recorder can be started by any of eight start events (selection from the »assignment list« / OR-Logic). The disturbance record contains the measuring values inclusively pre-trigger-time. By means of *Smart view/Datavisualizer* (option) the oscillographic curves of the analogue (current, voltage) and digital channels/traces can be shown and evaluated in a graphical form. The disturbance recorder has a storage capacity of 120 s. The disturbance recorder is able to record up to 15 s (adjustable) per record. The amount of records depends on the size of each record.

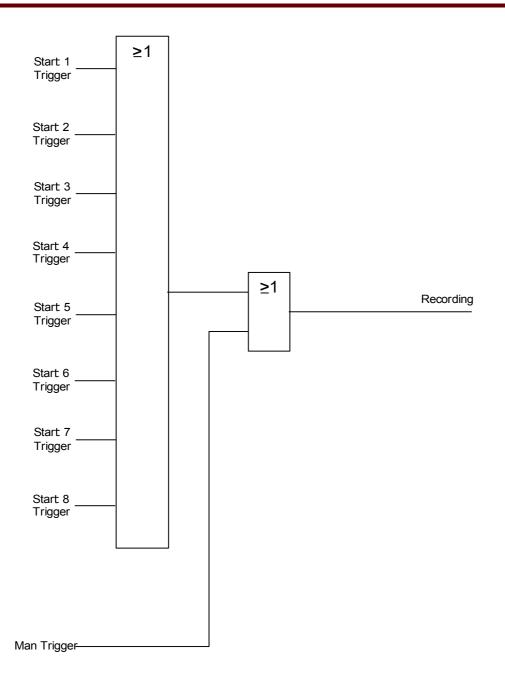
The disturbance recorder can be configured in the menu »Device Parameter/Recorder/Disturb rec«.

Determine the max. recording time to register a disturbance event. This can be set via the parameter *»Max file size«, the maximum value is* 15 s (including pre-trigger and post-trigger time). The pre-trigger and post-trigger times of the disturbance recorder are set (via parameters *»Pre-trigger time«* and *»Post-trigger time«*) in percent of the *»Max file size«* value.

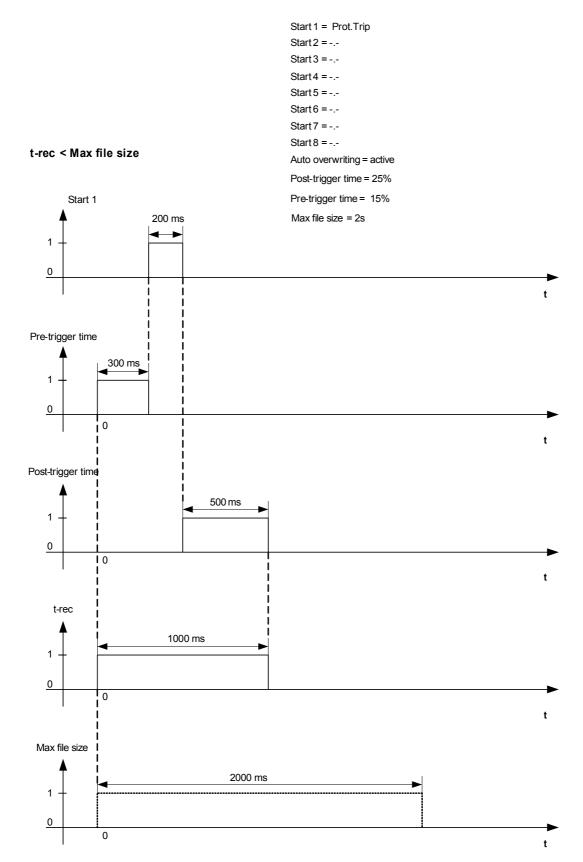
To trigger the disturbance recorder, up to 8 signals can be selected from the »assignment list«. The trigger events are OR-linked. If a disturbance record has been written, a new disturbance record cannot be triggered until all trigger signals that have triggered the previous disturbance record are gone.



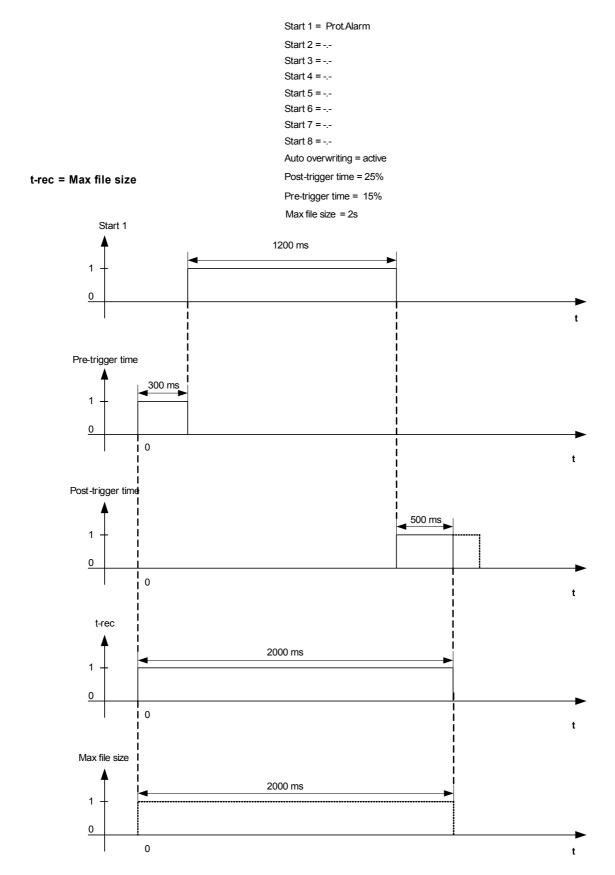
If  $t_T$  is the duration of the trigger signal and  $t_{Max}=$ »Max file size«,  $t_{Pre}=($ »Pre-trigger time« ·  $t_{Max}$ ),  $t_{Post}=($ »Postt-trigger time« ·  $t_{Max}$ ), then the resulting durations are as follows:


- The actual pre-trigger timer always equals t<sub>Pre</sub>
- The disturbance event is recorded for the time t<sub>Ev</sub>, which is: t<sub>Ev</sub> = min( t<sub>T</sub>, (t<sub>Max</sub> -t<sub>Pre</sub>) )
- The actual post-trigger timer  $t_{\text{Rest}}$  is:  $t_{\text{Rest}} = \min(t_{\text{Post}}, (t_{\text{Max}} - t_{\text{Pre}} - t_{\text{Ev}}))$

It can obviously happen that – depending on the actual duration of the trigger signal and the setting  $t_{Pre}$  – that  $t_{Ev} < t_T$ , I. e. that the disturbance event does not get recorded completely. The only way to mitigate this risk (besides setting a smaller value for  $t_{Pre}$ ) is to configure a larger value for  $t_{Max}$ . This, however, has the consequence that a smaller number of events can be held in memory.


In the same way it can happen that no more post-trigger time is left (i. e.  $t_{Rest} = 0$ ). Note that the recording always gets stopped after the configured time  $t_{Max}=$ *»Max file size«* has elapsed.

Moreover, decide about the behavior of the disturbance recorder in case the storage capacity has been used up: Do you want it to automatically overwrite the oldest recordings (*»Auto overwriting«*="active"), or do you want it to


stop making any further recordings (*»Auto overwriting«=*"inactive") until the memory has been cleared manually.



Example Disturbance Recorder Timing Chart I



Example Disturbance Recorder Timing Chart II



#### Read Out Disturbance Records

Within the menu »Operation/Disturb rec« you can detect accumulated disturbance records.

# NOTICE

Within the Menu »Operation/Recorders/Man Trigger« you can trigger the disturbance recorder manually.

#### **Deleting Disturbance Records**

Within the menu »Operation/Disturb rec« you can:

- Delete disturbance records.
- Choose via »SOFTKEY« »up« and »SOFTKEY« »down« the disturbance record that is to be deleted.
- Call up the detailed view of the disturbance record via »SOFTKEY« »right«.
- Confirm by pressing »SOFTKEY« »delete«
- Enter your password followed by pressing the key »OK«
- Choose whether only the current of whether all disturbance records should be deleted.
- Confirm by pressing »SOFTKEY« »OK«

# Direct Commands of the Disturbance Recorder

| Parameter    | Description       | Setting range | Default  | Menu path                  |
|--------------|-------------------|---------------|----------|----------------------------|
| Man Trigger  | Manual Trigger    | False,        | False    | [Operation                 |
|              |                   | True          |          | /Recorders                 |
| $\bigotimes$ |                   |               |          | /Man Trigger]              |
| Res all rec  | Reset all records | inactive,     | inactive | [Operation                 |
| $\bigotimes$ |                   | active        |          | /<br>Reset/Acknowle<br>dge |
|              |                   |               |          | /Reset]                    |

# Global Protection Parameters of the Disturbance Recorder

| Parameter | Description                                     | Setting range          | Default   | Menu path                                   |
|-----------|-------------------------------------------------|------------------------|-----------|---------------------------------------------|
| Start: 1  | Start recording if the assigned signal is true. | 1n,<br>Assignment List | Prot.Trip | [Device Para<br>/Recorders<br>/Disturb rec] |
| Start: 2  | Start recording if the assigned signal is true. | 1n,<br>Assignment List |           | [Device Para<br>/Recorders<br>/Disturb rec] |
| Start: 3  | Start recording if the assigned signal is true. | 1n,<br>Assignment List |           | [Device Para<br>/Recorders<br>/Disturb rec] |
| Start: 4  | Start recording if the assigned signal is true. | 1n,<br>Assignment List |           | [Device Para<br>/Recorders<br>/Disturb rec] |
| Start: 5  | Start recording if the assigned signal is true. | 1n,<br>Assignment List |           | [Device Para<br>/Recorders<br>/Disturb rec] |
| Start: 6  | Start recording if the assigned signal is true. | 1n,<br>Assignment List |           | [Device Para<br>/Recorders<br>/Disturb rec] |
| Start: 7  | Start recording if the assigned signal is true. | 1n,<br>Assignment List |           | [Device Para<br>/Recorders<br>/Disturb rec] |

| Parameter            | Description                                                                                                                                                                                                                                                               | Setting range          | Default | Menu path                                   |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|---------------------------------------------|
| Start: 8             | Start recording if the assigned signal is true.                                                                                                                                                                                                                           | 1n,<br>Assignment List |         | [Device Para<br>/Recorders<br>/Disturb rec] |
| Auto<br>overwriting  | If there is no more free memory capacity<br>left, the oldest file will be overwritten.                                                                                                                                                                                    | inactive,<br>active    | active  | [Device Para<br>/Recorders<br>/Disturb rec] |
| Pre-trigger time     | The pre trigger time is set in percent of the<br>»Max file size« value. It corresponds to the<br>part of recording before the onset of the<br>trigger event.                                                                                                              | 0 - 99%                | 20%     | [Device Para<br>/Recorders<br>/Disturb rec] |
| Post-trigger<br>time | The post trigger time is set in percent of the<br>»Max file size« value. It is the remaining<br>time of the »Max file size«, depending on<br>the »Pre-trigger time« setting and the<br>duration of the trigger event, but at<br>maximum the »Post-trigger time« set here. | 0 - 99%                | 20%     | [Device Para<br>/Recorders<br>/Disturb rec] |
| Max file size        | The maximum storage capacity per record,<br>including pre-trigger and post-trigger time.<br>The amount of records depends on the size<br>of each record, on the max. file size (set<br>here), and on the total storage capacity.                                          | 0.1 - 15.0s            | 2s      | [Device Para<br>/Recorders<br>/Disturb rec] |

# **Disturbance Recorder Input States**

| Name     | Description                                                     | Assignment via |
|----------|-----------------------------------------------------------------|----------------|
| Start1-I | State of the module input:: Trigger event / start               | [Device Para   |
|          | recording if:                                                   | /Recorders     |
|          |                                                                 | /Disturb rec]  |
| Start2-I | State of the module input:: Trigger event / start               | [Device Para   |
|          | recording if:                                                   | /Recorders     |
|          |                                                                 | /Disturb rec]  |
| Start3-I | State of the module input:: Trigger event / start recording if: | [Device Para   |
|          |                                                                 | /Recorders     |
|          |                                                                 | /Disturb rec]  |
| Start4-I | State of the module input:: Trigger event / start               | [Device Para   |
|          | recording if:                                                   | /Recorders     |
|          |                                                                 | /Disturb rec]  |

| Name     | Description                                       | Assignment via |
|----------|---------------------------------------------------|----------------|
| Start5-I | State of the module input:: Trigger event / start | [Device Para   |
|          | recording if:                                     | /Recorders     |
|          |                                                   | /Disturb rec]  |
| Start6-I | State of the module input:: Trigger event / start | [Device Para   |
|          | recording if:                                     | /Recorders     |
|          |                                                   | /Disturb rec]  |
| Start7-I | State of the module input:: Trigger event / start | [Device Para   |
|          | recording if:                                     | /Recorders     |
|          |                                                   | /Disturb rec]  |
| Start8-I | State of the module input:: Trigger event / start | [Device Para   |
|          | recording if:                                     | /Recorders     |
|          |                                                   | /Disturb rec]  |

# Disturbance Recorder Signals

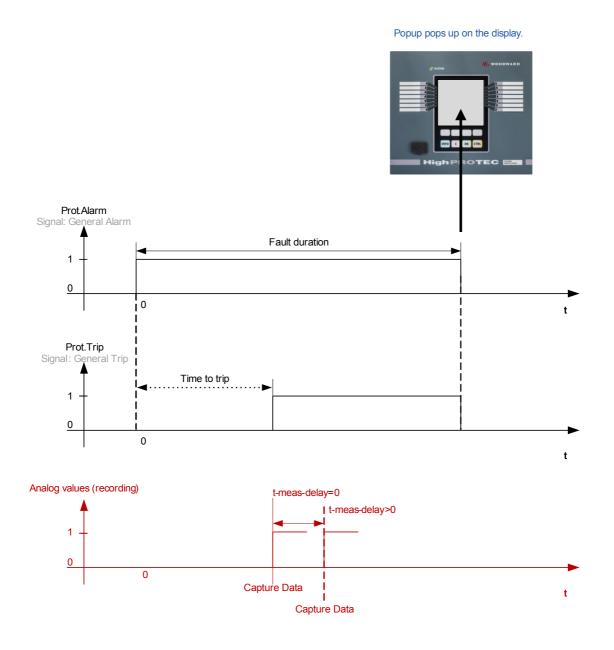
| Signal          | Description                     |
|-----------------|---------------------------------|
| recording       | Signal: Recording               |
| memory full     | Signal: Memory full             |
| Clear fail      | Signal: Clear failure in memory |
| Res all records | Signal: All records deleted     |
| Res rec         | Signal: Delete record           |
| Man Trigger     | Signal: Manual Trigger          |

# Special Parameters of the Disturbance Recorder

| Value      | Description     | Default | Size                       | Menu path       |
|------------|-----------------|---------|----------------------------|-----------------|
| Rec state  | Recording state | Ready   | Ready,                     | [Operation      |
|            |                 |         | Recording,                 | /Status Display |
|            |                 |         | Writing file,              | /Recorders      |
|            |                 |         | Trigger Blo                | /Disturb rec]   |
| Error code | Error code      | OK      | OK,                        | [Operation      |
|            |                 |         | Write err,                 | /Status Display |
|            |                 |         | Clear fail,                | /Recorders      |
|            |                 |         | Calculation err,           | /Disturb rec]   |
|            |                 |         | File not<br>found,         |                 |
|            |                 |         | Auto<br>overwriting<br>off |                 |

# Fault Recorder

Fault rec


### Purpose of the Fault recorder

The *Fault Recorder* provides compressed information about faults (e.g. Trip Causes). The compressed information can be read out also at the HMI. This might be helpful for fast fault analysis already at the HMI. After a fault, a popup window will be sent onto the display in order to draw the users attention to the fault. The *Fault Recorder* will provide information on the causes of the fault. A detailed fault analysis (in oscillographic form) can be done means of the Disturbance Recorder. The reference between the Fault Records and the corresponding Disturbance Records are the *»Fault Number«* and the *»Grid Fault Number«*.

#### Definitions

Time to Trip: Time between *First Alarm* (Prot.Pickup) and *First Trip* (Prot.Trip) decision

Fault Duration: Time period from the rising edge of the General Pickup (»PROT.PICKUP«) signal up to the falling edge of the General Pickup Signal. Please note that General Pickup is an or-connection (disjunction) of all Pickup signals. General Trip is an OR-connection of all Trips.



#### Behaviour of the Fault Recorder

#### Who triggers the Fault Recorder?

The *Fault Recorder* will be triggered by the rising edge of the »PROT.PICKUP« (General Pickup) signal. Please note that »PROT.PICKUP« (General Pickup) is an or-connection of all Pickup signals. The first Pickup will trigger the Fault recorder.

#### At which point of time will the fault measurements be captured?

The fault measurements will be captured (written) when the trip decision is taken. The point in time, when the measurements are captured (after a trip) can be delayed optionally by the parameter *»t-meas-delay«.* This might be reasonable in order to achieve more reliable measuring values (e.g. in order to avoid measuring disturbances caused by significant DC-components).

#### Modes

In case of a fault record should be written even if an general alarm has not lead to a trip, the parameter »*Record-Mode*« is to be set to »*Alarms and Trips*«.

Set parameter »*Record-Mode«* to »*Trips only«*, if an Alarm that is not followed by a trip decision should not lead to a trip.

*When does the overlay (popup) appears on the display of the HMI?* A popup will appear on the HMI display, when the General Pickup (Prot.Pickup) disappears.

# NOTICE

No time to trip will be shown if the pickup signal that triggers the fault recorder is issued by another protection module than the trip signal. This might happen if more than one protection module is involved into a fault.

# NOTICE

Please note: The parameter settings (thresholds etc.) that are shown in a fault record are not part of the fault record itself. They are always read out from the current device setting. If parameters settings that are shown in a fault record could have been updated, they will be indicated with an asterisk symbol within the fault record.

To prevent this please proceed as follows:

Save any fault record that should be archived to your local network/hard disk before doing any parameter change. Delete all the fault records in your fault recorder afterwards.

#### Memory

The last stored fault record is saved (fail-safe) within the *Fault Recorder* (the others are saved within a memory that depends on the auxiliary power of the protective relay). If there is no more memory free, the oldest record will be overwritten (FIFO). Up to 20 records can be stored.

*How to close the overlay/popup?* By using Softkey »OK«.

How to find out fast, if a fault has lead to a trip or not?

Faults that lead to a trip will be indicated by a flash icon 🗲 (right side) within the overview menu of the fault recorder.

*Which fault record pops up?* The newest fault.

### Content of a Fault Record

A fault record comprises information about:

| Date/Time       | Date and Time of the Fault                                                                                                                                                                                                                                                                                                                       |                       |                          |            |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|------------|
| FaultNr         | The number of the fault will be incremented with each fault (General Alarm or »PROT.PICKUP«)                                                                                                                                                                                                                                                     |                       |                          |            |
| Grid Fault No.  | This counter will be incremented by each General Pickup (Exception AR: this applies only to devices that offer auto reclosing).                                                                                                                                                                                                                  |                       |                          |            |
| Active Set      | The active parameter set                                                                                                                                                                                                                                                                                                                         |                       |                          |            |
| Time to trip    | The time between pickup and trip. Please note: No time to trip will be shown if the first pickup and the first trip are issued by different protection modules.                                                                                                                                                                                  |                       |                          |            |
| Alarm           | Name of the module                                                                                                                                                                                                                                                                                                                               | that picked up first. |                          |            |
| Trip            | Name of the module that tripped first.<br>The information that will be displayed depends on which protection module has tripped.<br>That means e.g. that the thresholds are shown. In case that the trip was initiated by the<br>MotorStart (applies to motor protection relays) protection module, additional information<br>will be displayed. |                       |                          |            |
| Adaptive Set    | In case that adaptive sets are used, the number of the active set will be displayed.                                                                                                                                                                                                                                                             |                       |                          |            |
| Fault type      | phases.                                                                                                                                                                                                                                                                                                                                          |                       | ill be evaluated based o |            |
|                 | Alarm Phase A                                                                                                                                                                                                                                                                                                                                    | Alarm Phase B         | Alarm Phase C            | Fault Type |
|                 | x                                                                                                                                                                                                                                                                                                                                                |                       |                          | L1G        |
|                 |                                                                                                                                                                                                                                                                                                                                                  | x                     |                          | L2G        |
|                 |                                                                                                                                                                                                                                                                                                                                                  |                       | x                        | L3G        |
|                 | x                                                                                                                                                                                                                                                                                                                                                | x                     |                          | L1B        |
|                 |                                                                                                                                                                                                                                                                                                                                                  | x                     | x                        | L2L3       |
|                 | x                                                                                                                                                                                                                                                                                                                                                |                       | x                        | L1L3       |
|                 | x                                                                                                                                                                                                                                                                                                                                                | x                     | x                        | L1L2L3     |
| Direction       | In case that a direction has been detected, the evaluated direction will be displayed (this applies to directional phase and ground overcurrent relays only).                                                                                                                                                                                    |                       |                          |            |
| Measured Values | Various measuring values at the time of tripping (or delayed depending on parameter setting) will be displayed.                                                                                                                                                                                                                                  |                       |                          |            |

#### How to set up the Fault Recorder

The *»Record-Mode«* will determine if trips only cause a fault record or if also Alarms without a consecutively trip should cause a fault record. This parameter is to be set within menu [Device Para\Recorders\Fault rec]

#### How to navigate within the Fault Recorder

| Navigation within the<br><u>Fault recorder</u> | Softkey |
|------------------------------------------------|---------|
| Back to overview.                              |         |
| Next (upper) item within this fault record.    |         |
| Previous fault record.                         | ₩       |
| Next (lower) item within this fault record.    | •       |

#### How to read Out the Fault Recorder

In order to read out a fault record there are two options available:

- Option 1: A Fault has popped up on the HMI (because an trip or pickup has occurred).
- Option 2: Call up manually the Fault recorder menu.

Option 1 (in case a fault record pops up on the display (overlay):

- Analyze the fault record by using Softkeys Arrow Up and Arrow Down.
- Or close the Popup by using Softkey OK

#### Option 2 :

- Call up the main menu;
- Call up the sub-menu »Operation/Recorders/Fault rec.«;
- Select a fault record; and
- Analyze the fault record by using Softkeys Arrow Up and Arrow Down.

# Direct Commands of the Fault Recorder

| Parameter    | Description       | Setting range | Default  | Menu path                  |
|--------------|-------------------|---------------|----------|----------------------------|
| Res all rec  | Reset all records | inactive,     | inactive | [Operation                 |
| $\bigotimes$ |                   | active        |          | /<br>Reset/Acknowle<br>dge |
|              |                   |               |          | /Reset]                    |

### **Global Protection Parameters of the Fault Recorder**

| Parameter    | Description                                                    | Setting range                      | Default    | Menu path                                 |
|--------------|----------------------------------------------------------------|------------------------------------|------------|-------------------------------------------|
| Record-Mode  | Recorder Mode (Set the behaviour of the recorder)              | Alarms and<br>Trips,<br>Trips only | Trips only | [Device Para<br>/Recorders<br>/Fault rec] |
| t-meas-delay | After the Trip, the measurement will be delayed for this time. | 0 - 60ms                           | 0ms        | [Device Para<br>/Recorders<br>/Fault rec] |

# Fault Recorder Signals

| Signal  | Description           |
|---------|-----------------------|
| Res rec | Signal: Delete record |

# **Event Recorder**

#### Event rec

The event recorder can register up to 300 events and the last (minimum) 50 saved events are recorded fail-safe. The following information is provided for any of the events:

#### Events are logged as follows:

| Record No.           | Fault No.                                                                                                         | No of grid faults                                                                                                                                                                                    | Date of Record | Module.Name          | State         |
|----------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|---------------|
| Sequential<br>Number | Number of the<br>ongoing fault<br>This counter will<br>be incremented<br>by each General<br>Alarm<br>(Prot.Alarm) | A grid fault No. can<br>have several Fault<br>No.<br>This counter will be<br>incremented by each<br>General Alarm<br>(Exception AR: this<br>applies only to<br>devices that offer<br>auto reclosing) | Time stamp     | What has<br>changed? | Changed Value |

There are three different classes of events:

#### Alternation of binary states are shown as:

- 0->1 if the signal changes physically from »0« to »1«.
- 1->0 if the signal changes physically from »1« to »0«.

#### Counters increment is shown as:

Old Counter state -> New Counter state (e.g. 3->4)

#### Alternation of multiple states are shown as:

Old state -> New state (e.g. 0->2)

### Read Out the Event Recorder

- Call up the »*main menu«.*
- Call up the submenu *»Operation/Recorders/Event rec«*.
- Select an event.

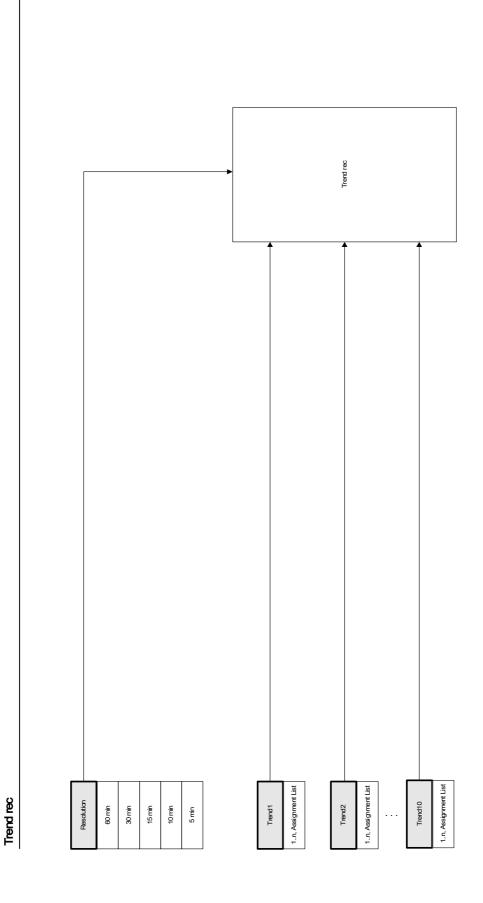
### **Direct Commands of the Event Recorder**

| Parameter    | Description       | Setting range | Default  | Menu path                  |
|--------------|-------------------|---------------|----------|----------------------------|
| Res all rec  | Reset all records | inactive,     | inactive | [Operation                 |
| $\mathbf{X}$ |                   | active        |          | /<br>Reset/Acknowle<br>dge |
|              |                   |               |          | /Reset]                    |

### **Event Recorder Signals**

| Signal          | Description                 |
|-----------------|-----------------------------|
| Res all records | Signal: All records deleted |

# **Trend Recorder**


Available Elements: <u>Trend rec</u>

### Configuring the Trend Recorder

The Trend Recorder is to be configured within [Device Para/Recorders/Trend Recorder] menu.

The User has to set the time interval. This defines the distance between two measuring points.

The User can select up to ten values that will be recorded.



# Global Protection Parameters of the Trend Recorder

| Parameter    | Description                      | Setting range | Default     | Menu path       |
|--------------|----------------------------------|---------------|-------------|-----------------|
| Resolution   | Resolution (recording frequency) | 60 min,       | 15 min      | [Device Para    |
|              |                                  | 30 min,       |             | /Recorders      |
| $\bigotimes$ |                                  | 15 min,       |             | /Trend rec]     |
| <b>↓</b>     |                                  | 10 min,       |             |                 |
|              |                                  | 5 min         |             |                 |
| Trend1       | Observed Value1                  | 1n,           | CT.IL1 RMS  | [Device Para    |
|              |                                  | TrendRecList  |             | /Recorders      |
| $\bigotimes$ |                                  |               |             | /Trend rec]     |
| Trend2       | Observed Value2                  | 1n,           | CT.IL2 RMS  | [Device Para    |
|              |                                  | TrendRecList  |             | /Recorders      |
| $\bigotimes$ |                                  |               |             | /Trend rec]     |
| Trend3       | Observed Value3                  | 1n,           | CT.IL3 RMS  | [Device Para    |
|              |                                  | TrendRecList  |             | /Recorders      |
| $\bigotimes$ |                                  |               |             | /Trend rec]     |
| Trend4       | Observed Value4                  | 1n,           | CT.IG meas  | [Device Para    |
|              |                                  | TrendRecList  | RMS         | -<br>/Recorders |
| $\bigotimes$ |                                  |               |             | /Trend rec]     |
| Trend5       | Observed Value5                  | 1n,           | VT.VL1 RMS  | [Device Para    |
|              |                                  | TrendRecList  |             | /Recorders      |
| $\bigotimes$ |                                  |               |             | /Trend rec]     |
| Trend6       | Observed Value6                  | 1n,           | VT.VL2 RMS  | [Device Para    |
|              |                                  | TrendRecList  |             | /Recorders      |
| $\bigotimes$ |                                  |               |             | /Trend rec]     |
| Trend7       | Observed Value7                  | 1n,           | VT.VL3 RMS  | [Device Para    |
|              |                                  | TrendRecList  |             | /Recorders      |
| $\bigotimes$ |                                  |               |             | /Trend rec]     |
| Trend8       | Observed Value8                  | 1n,           | VT.VX meas  | [Device Para    |
|              |                                  | TrendRecList  | RMS         | /Recorders      |
| $\bigotimes$ |                                  |               |             | /Trend rec]     |
| Trend9       | d9 Observed Value9 1n,           |               |             | [Device Para    |
|              |                                  | TrendRecList  |             | -<br>/Recorders |
| $\land$      |                                  |               | /Trend rec] |                 |

| Parameter | Description      | Setting range       | Default | Menu path                  |
|-----------|------------------|---------------------|---------|----------------------------|
| Trend10   | Observed Value10 | 1n,<br>TrendRecList |         | [Device Para<br>/Recorders |
| $\otimes$ |                  |                     |         | /Trend rec]                |

### Trend Recorder Signals (Output States)

| Signal     | Description |
|------------|-------------|
| Hand Reset | Hand Reset  |

### Direct Commands of the Trend Recorder

| Parameter    | Description        | Setting range | Default  | Menu path                  |
|--------------|--------------------|---------------|----------|----------------------------|
| Reset        | Delete all entries | inactive,     | inactive | [Operation                 |
| $\bigotimes$ |                    | active        |          | /<br>Reset/Acknowle<br>dge |
|              |                    |               |          | /Reset]                    |

# General Values of the Trend Recorder

| Value             | Description                                            | Default | Size                 | Menu path                                       |
|-------------------|--------------------------------------------------------|---------|----------------------|-------------------------------------------------|
| Max avail Entries | Maximum available entries in the current configuration | 0       | 0 -<br>9999999999999 | [Operation<br>/Count and RevData<br>/Trend rec] |

### Global Values of the Trend Recorder

The *»TrendRecList«* below summarizes all signals that the User can assign.

| Name       | Description                                            |
|------------|--------------------------------------------------------|
|            | No assignment                                          |
| VT.VL1     | Measured value: Phase-to-neutral voltage (fundamental) |
| VT.VL2     | Measured value: Phase-to-neutral voltage (fundamental) |
| VT.VL3     | Measured value: Phase-to-neutral voltage (fundamental) |
| VT.VX meas | Measured value (measured): VX measured (fundamental)   |
| VT.VG calc | Measured value (calculated): VG (fundamental)          |
| VT.VL12    | Measured value: Phase-to-phase voltage (fundamental)   |
| VT.VL23    | Measured value: Phase-to-phase voltage (fundamental)   |
| VT.VL31    | Measured value: Phase-to-phase voltage (fundamental)   |
| VT.VL1 RMS | Measured value: Phase-to-neutral voltage (RMS)         |

| Name            | Description                                                                                      |
|-----------------|--------------------------------------------------------------------------------------------------|
| VT.VL2 RMS      | Measured value: Phase-to-neutral voltage (RMS)                                                   |
| VT.VL3 RMS      | Measured value: Phase-to-neutral voltage (RMS)                                                   |
| VT.VX meas RMS  | Measured value (measured): VX measured (RMS)                                                     |
| VT.VG calc RMS  | Measured value (calculated): VG (RMS)                                                            |
| VT.VL12 RMS     | Measured value: Phase-to-phase voltage (RMS)                                                     |
| VT.VL23 RMS     | Measured value: Phase-to-phase voltage (RMS)                                                     |
| VT.VL31 RMS     | Measured value: Phase-to-phase voltage (RMS)                                                     |
| VT.V/f          | Ratio Volts/Hertz in relation to nominal values.                                                 |
| VT.V0           | Measured value (calculated): Symmetrical components Zero voltage(fundamental)                    |
| VT.V1           | Measured value (calculated): Symmetrical components positive phase sequence voltage(fundamental) |
| VT.V2           | Measured value (calculated): Symmetrical components negative phase sequence voltage(fundamental) |
| VT.%(V2/V1)     | Measured value (calculated): V2/V1, phase sequence will be taken into account automatically.     |
| VT.VL1 avg RMS  | VL1 average value (RMS)                                                                          |
| VT.VL2 avg RMS  | VL2 average value (RMS)                                                                          |
| VT.VL3 avg RMS  | VL3 average value (RMS)                                                                          |
| VT.VL12 avg RMS | VL12 average value (RMS)                                                                         |
| VT.VL23 avg RMS | VL23 average value (RMS)                                                                         |
| VT.VL31 avg RMS | VL31 average value (RMS)                                                                         |
| VT.f            | Measured value: Frequency                                                                        |
| VT.VL1 THD      | Measured value (calculated): VL1 Total Harmonic Distortion                                       |
| VT.VL2 THD      | Measured value (calculated): VL2 Total Harmonic Distortion                                       |
| VT.VL3 THD      | Measured value (calculated): VL3 Total Harmonic Distortion                                       |
| VT.VL12 THD     | Measured value (calculated): V12 Total Harmonic Distortion                                       |
| VT.VL23 THD     | Measured value (calculated): V23 Total Harmonic Distortion                                       |
| VT.VL31 THD     | Measured value (calculated): V31 Total Harmonic Distortion                                       |
| CT.IL1          | Measured value: Phase current (fundamental)                                                      |
| CT.IL2          | Measured value: Phase current (fundamental)                                                      |
| CT.IL3          | Measured value: Phase current (fundamental)                                                      |
| CT.IG meas      | Measured value (measured): IG (fundamental)                                                      |
| CT.IG calc      | Measured value (calculated): IG (fundamental)                                                    |
| CT.IL1 RMS      | Measured value: Phase current (RMS)                                                              |
| CT.IL2 RMS      | Measured value: Phase current (RMS)                                                              |
| CT.IL3 RMS      | Measured value: Phase current (RMS)                                                              |
| CT.IG meas RMS  | Measured value (measured): IG (RMS)                                                              |
| CT.IG calc RMS  | Measured value (calculated): IG (RMS)                                                            |
| CT.I0           | Measured value (calculated): Zero current (fundamental)                                          |
| CT.I1           | Measured value (calculated): Positive phase sequence current (fundamental)                       |
| CT.I2           | Measured value (calculated): Unbalanced load current (fundamental)                               |

| Name                       | Description                                                                                               |
|----------------------------|-----------------------------------------------------------------------------------------------------------|
| CT.%(I2/I1)                | Measured value (calculated): I2/I1, phase sequence will be taken into account automatically.              |
| CT.%(I2/I1) max            | Measured value (calculated): I2/I1 maximum value, phase sequence will be taken into account automatically |
| CT.IL1 avg RMS             | IL1 average value (RMS)                                                                                   |
| CT.IL2 avg RMS             | IL2 average value (RMS)                                                                                   |
| CT.IL3 avg RMS             | IL3 average value (RMS)                                                                                   |
| CT.IL1 THD                 | Measured value (calculated): IL1 Total Harmonic Current                                                   |
| CT.IL2 THD                 | Measured value (calculated): IL2 Total Harmonic Current                                                   |
| CT.IL3 THD                 | Measured value (calculated): IL3 Total Harmonic Current                                                   |
| MStart.IL1 Ib              | Measured value: Phase current as multiple of lb                                                           |
| ThR.I2T Used               | Thermal capacity used.                                                                                    |
| URTD.Windg1                | Winding 1                                                                                                 |
| URTD.Windg1 max            | Winding1 Maximum Value                                                                                    |
| URTD.Windg2                | Winding 2                                                                                                 |
| URTD.Windg2 max            | Winding2 Maximum Value                                                                                    |
| URTD.Windg3                | Winding 3                                                                                                 |
| URTD.Windg3 max            | Winding3 Maximum Value                                                                                    |
| URTD.Windg4                | Winding 4                                                                                                 |
| URTD.Windg4 max            | Winding4 Maximum Value                                                                                    |
| URTD.Windg5                | Winding 5                                                                                                 |
| URTD.Windg5 max            | Winding5 Maximum Value                                                                                    |
| URTD.Windg6                | Winding 6                                                                                                 |
| URTD.Windg6 max            | Winding6 Maximum Value                                                                                    |
| URTD.MotBear1              | Motor Bearing 1                                                                                           |
| URTD.MotBear1 max          | Motor Bearing1 Maximum Value                                                                              |
| URTD.MotBear2              | Motor Bearing 2                                                                                           |
| URTD.MotBear2 max          | Motor Bearing2 Maximum Value                                                                              |
| URTD.LoadBear1             | Load Bearing 1                                                                                            |
| URTD.LoadBear1 max         | Load Bearing1 Maximum Value                                                                               |
| URTD.LoadBear2             | Load Bearing 2                                                                                            |
| URTD.LoadBear2 max         | Load Bearing2 Maximum Value                                                                               |
| URTD.Aux1                  | Auxiliary1                                                                                                |
| URTD.Aux1 max              | Auxiliary1 Maximum Value                                                                                  |
| URTD.Aux2                  | Auxiliary2                                                                                                |
| URTD.Aux2 max              | Auxiliary2 Maximum Value                                                                                  |
| URTD.RTD Max               | Maximum temperature of all channels.                                                                      |
| RTD.HottestWindingTem<br>p | Hottest motor winding temperature in degrees C.                                                           |
| RTD.Hottest<br>MotBearTemp | Hottest motor bearing temperature in degrees C.                                                           |

| Recorders |
|-----------|
| Recorders |

| Name                        | Description                                                                                                                              |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| RTD.Hottest<br>LoadBearTemp | Hottest load bearing temperature in degrees C.                                                                                           |
| RTD.Hottest Aux Temp        | Hottest Auxiliary temperature in degrees C.                                                                                              |
| PQSCr.S                     | Measured Value (Calculated): Apparent power (fundamental)                                                                                |
| PQSCr.P                     | Measured value (calculated): Active power (P- = Fed Active Power, P+ = Consumpted Active Power) (fundamental)                            |
| PQSCr.Q                     | Measured value (calculated): Reactive power ( $Q$ - = Fed Reactive Power, $Q$ + = Consumpted Reactive Power) (fundamental)               |
| PQSCr.P 1                   | Measured value (calculated): Active power in positive sequence system ( $P$ - = Fed Active Power, $P$ + = Consumpted Active Power)       |
| PQSCr.Q 1                   | Measured value (calculated): Reactive power in positive sequence system ( $Q$ - = Fed Reactive Power, $Q$ + = Consumpted Reactive Power) |
| PQSCr.S RMS                 | Measured Value (Calculated): Apparent power (RMS)                                                                                        |
| PQSCr.P RMS                 | Measured value (calculated): Active power (P- = Fed Active Power, P+ = Consumpted Active Power) (RMS)                                    |
| PQSCr.cos phi               | Measured value (calculated): Power factor: Sign Convention: sign(PF) = sign(P)                                                           |
| PQSCr.cos phi RMS           | Measured value (calculated): Power factor: Sign Convention: sign(PF) = sign(P)                                                           |
| PQSCr.Ws Net                | Absolute Apparent Power Hours                                                                                                            |
| PQSCr.Wp Net                | Absolute Active Power Hours                                                                                                              |
| PQSCr.Wq Net                | Absolute Reactive Power Hours                                                                                                            |
| PQSCr.Wp+                   | Positive Active Power is consumed active energy                                                                                          |
| PQSCr.Wp-                   | Negative Active Power (Fed Energy)                                                                                                       |
| PQSCr.Wq+                   | Positive Reactive Power is consumed Reactive Energy                                                                                      |
| PQSCr.Wq-                   | Negative Reactive Power (Fed Energy)                                                                                                     |

### Motor Start Recorder

Available Elements: Start rec

The Motor Start Recorder logs information during a motor start-up. These records are stored in a fail-safe manner and the capacity allows for recording up to 5 start-ups. After 5 start-ups, every following start-up overwrites the recording of the oldest one ("First in First out" principle).

Every recording consists of a summary of information and recorded analog trends. However, the exact set of data is dependent on the ordered device variant. The summary data can be accessed using *Smart view* or via the front panel interface of the relay. This feature provides information recorded at the time of each start of the motor such as:

- Date of the motor start event
- Record number
- IA max RMS, IB max RMS, IC max RMS, IX max RMS Maximum RMS phase current of the respective phase
- Unbalance max Maximum current unbalance during the motor start-up
- TIR avg Average current of all three phases at the time of the start-to-run transition
- *Speed* The motor nominal speed (1 or 2)
- Time (duration) values:
  - TSTI The time that elapses from the start until the current value drops below the set start-up threshold
  - TSTR The time that elapses from the start until the motor is running, or in case of an incomplete start sequence until the trip command
- I2T Used Thermal capacity used, specified as percentage of the maximum thermal capacity
- Start success This is set to 1 if the motor start has been successful (and equals 0 otherwise).

Smart view allows for storing the summary information as text files, or have them printed out.

The analog trends can be viewed using the DataVisualizer. Examples for recorded analog trends are:

- Phase current values
- Current unbalance
- Thermal capacity
- Temperatures (in case an RTD box is fitted)

### **Managing Start Records**

The start recorder data can be downloaded by means of *Smart view* from the device.

- Start *Smart view* if this has not been done already.
- If the data has not been downloaded from the device yet, select the menu item "Receive Start Recorder" in the "Device" menu.
- Within the navigation tree, double-click the "Operation" icon.
- Go to the [Operation / Recorders] menu. Here the user will find the "Start Rec" menu item.
- By selecting "Start Rec", the Start Recorder Window will appear
- To access data that has been stored in the device using *Smart view*, the User must select the "Receive Start Recorder" button in the upper left hand corner of the "Start Rec" window. When clicked, the *Smart view* software will retrieve the highlighted record from the device.
- After selecting one of the max. 5 recordings a summary of the Start Recorder data can be retrieved (for the selected recording) by clicking the "Receive Summary Data" button in the upper left hand corner of the "Start Rec" window.
- A list of all currently available Start Records is viewable by selecting the "Refresh Start Recorder" button on the start recorder.
- It is possible to delete individual records that are stored on the protective device. First, select "Receive Start Recorder", and then select the record to be deleted by clicking on the record number, followed by the selection of the "Delete Start Record" button in the upper left hand corner of the "Start Rec" window.
- To permanently remove all start records within a device's start recorder, select the "Delete All Start Records" button also located in the upper left hand corner of the "Start Rec" window. This will remove all previously stored start records within the device to which the user is presently connected.
- Open a Start Record file from a local storage device. Please note that it is possible to compare an archived Start Record against archived Parameter settings that are also stored on a local device. Read the "Caution" information below (page 238).

When using *Smart view* to view the Start Recorder data, the Start Recorder features can also be found by right clicking anywhere within the "Start Rec" window.



The "Print" button takes the user to the printing dialogue, where it is possible to export the summary into a text file. This is done the following way:

- Retrieve the data in the "Start Rec" window, as described above.
- Click on the button "Receive Summary Data".
- Click on the "Print" button.
- Click on the button "Export to file".
- Enter a valid file name.
- Select the file path.
- Click on the "Save" button.

### **Displaying Start Records**

When a Start Record is called up, a window with the following options pops up.

| 1  | 1 |   |     |    |
|----|---|---|-----|----|
| 1  |   |   | ••• | +  |
| 4. |   | 4 | -   | ь. |

View motor start data graphically in the <u>Data visualizer</u> software. In the <u>Data visualizer</u> software the user can view the RMS value of the phase currents, thermal capacity used, and temperatures measured by the URTD module if a URTD is installed and attached to the relay.

| T C |   | Т | Γ | Т | ٦. |
|-----|---|---|---|---|----|
| -   | - | 1 |   | t | -  |
| -   | 4 | 5 | A | + | -  |
|     |   |   |   |   |    |
| -1- |   |   |   | - | -  |
| +   | _ | _ |   |   |    |

View motor start data overlayed with the Motor Protection Curves (Starting Profile Plot versus Protection limits). The user can view the average current recorded during the motor start versus protection elements such as 50P, or the Thermal Model. The user has the option to alter the displayed setting groups.

Please note that protective elements, that are not projected within the device planning, won't be visible.

The Starting Profile Plot offers two User Scenarios:

- 1. Adapting the protection settings to the recorded start curve. The User will see the impact of parameter changes in the Profile Plot. By means of this he can decide if the relay settings match the protection requirements.
- 2. Analyzing a Start Record. Since a Start Record does not include the relay settings, the User has to ensure, that backups of the relay settings are available that were valid at the time of recording.



Please Note that the Starting Profile Plot shows the recorded average current versus the current relay settings. The relay settings itself are not part of a Start Record.

Adaptive parameters and their impacts wont be visible within the Starting Profile.

Blockings wont be visible within the Starting Profile.

Please make sure to save the setting files together with this record to guarantee the graph represents the conditions of when this event occurred.

### Global Protection Parameters of the Motor Start Recorder

| Parameter    | Description                      | Setting range | Default | Menu path    |
|--------------|----------------------------------|---------------|---------|--------------|
| Resolution   | Resolution (recording frequency) | 50ms,         | 50ms    | [Device Para |
|              |                                  | 100ms,        |         | /Recorders   |
| $\bigotimes$ |                                  | 1s            |         | /Start rec]  |

# Motor Start Recorder Signals (Output States)

| Signal  | Description            |
|---------|------------------------|
| Storing | Signal: Data are saved |

#### Direct Commands of the Motor Start Recorder

| Parameter        | Description                       | Setting range | Default  | Menu path                  |
|------------------|-----------------------------------|---------------|----------|----------------------------|
| ClearStartRec    | Delete all start recorder records | inactive,     | inactive | [Operation                 |
| $\otimes$        |                                   | active        |          | /<br>Reset/Acknowle<br>dge |
|                  |                                   |               |          | /Reset]                    |
| ClearStatisticRe |                                   | inactive,     | inactive | [Operation                 |
| c                | trending)                         | active        |          | /<br>Reset/Acknowle<br>dge |
|                  |                                   |               |          | /Reset]                    |

### **Statistic Recorder**

The Statistic Recorder shows motor specific statistical data on a monthly base.

The Statistic Recorder can record up to 24 monthly reports. The reports are power fail safe stored. In order to view information from the Statistic Recorder, the User has to select [Operation/Recorder/Statisticrec] from the menu tree.

By double clicking on the »Date of Record« statistics information can be viewed such as the number of starts, the number of successful starts, the average start time, the »*average I2T*« value during any start, and the average of all maximum currents value seen during each start.

# **History Function**

The History function, accessible under the Operations menu, can be utilized as a counter or log of specific occurrences monitored by the device. The types of occurrence that can be recorded include:

- •Operations (OperationsCr);
- •Alarms (AlarmCr);
- •Trips (TripCr); and
- •Totals (TotalCr).

#### To View the History Records at the HMI

- Call up menu »Operation«.
- Navigate to the menu item »History« by means of the Softkeys »down«. Enter this menu by means of the Softkey »right«.
- Scroll down by means of the Softkey »down« within this list up to that menu you want to change in. Enter this submenu by pressing the Softkey »right«.
- Scroll down by means of the Softkey »down« within this list up to that counter/entry that you want to take a look at. Call up details of this counter by means of pressing the Softkey »right«.

### To Reset the History Records at the HMI

- Call up menu »Operation«.
- Navigate to the menu item »Reset/Acknowledge« by means of the Softkeys »down«. Enter this menu by means of the Softkey »right«.
- Navigate to that group of counters/entries that you want to reset by means of the Softkeys »down«. Enter this menu by means of the Softkey »right«.
- In order to reset that group of counters, press the Softkey »*Parameter Setting«*. Enter your password.
- Confirm the dialog »Excecute?« by means of Softkey »Yes«.

### To View the History Records with Smart view

- In case *Smart view* is not running please start it.
- If device data has not been loaded yet click »Receive Data From The Device« in the menu »Device.
- Double click the »History« icon within the »OPERATION« menu.
- Double click within menu »History« onto that group of counters you want to take a look at.
- In the window the details are shown in tabular form.

#### To Reset the History Records with Smart view

- In case *Smart view* is not running please start it.
- If device data has not been loaded yet click »Receive Data From The Device« in menu »Device.
- Double click the »Reset/Acknowledge« icon within the »OPERATION« menu.
- Double click the »History« icon.
- Double click within this menu onto that group of counters, that are to be reset. Enter, if necessary your password.

# **Communication Protocols**

# SCADA Interface

<u>Scada</u>

### Device Planning Parameters of the Serial Scada Interface

| Parameter | Description                           | Options         | Default    | Menu path         |
|-----------|---------------------------------------|-----------------|------------|-------------------|
| Protocol  | Select the SCADA protocol to be used. | do not use,     | do not use | [Device planning] |
|           |                                       | Modbus RTU,     |            |                   |
|           |                                       | Modbus TCP,     |            |                   |
|           |                                       | Modbus TCP/RTU, |            |                   |
|           |                                       | DNP3 RTU,       |            |                   |
|           |                                       | DNP3 TCP,       |            |                   |
|           |                                       | DNP3 UDP,       |            |                   |
|           |                                       | IEC60870-5-103, |            |                   |
|           |                                       | IEC61850,       |            |                   |
|           |                                       | Profibus        |            |                   |

# Signals (Output States) of the SCADA Interface

| Signal              | Description                                           |
|---------------------|-------------------------------------------------------|
| SCADA connected     | At least one SCADA System is connected to the device. |
| SCADA not connected | No SCADA System is connected to the device            |

### **TCP/IP Parameter**

<u>Tcplp</u>

# **Global TCP/IP Parameters**

| Parameter              | Description                                                                                                                                                                     | Setting range | Default | Menu path                                         |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|---------------------------------------------------|
| Keep Alive<br>Time     | Keep Alive Time is the duration between two keep alive transmissions in idle condition                                                                                          | 1 - 7200s     | 720s    | [Device Para<br>/TCP/IP<br>/Advanced<br>Settings] |
| Keep Alive<br>Interval | Keep Alive Interval is the duration between<br>two successive keep alive retransmissions,<br>if the acknowledgement to the previous<br>keepalive transmission was not received. | 1 - 60s       | 15s     | [Device Para<br>/TCP/IP<br>/Advanced<br>Settings] |

| Parameter           | Description                                                                                                                         | Setting range | Default | Menu path                                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|---------------------------------------------------|
| Keep Alive<br>Retry | Keep alive retry is the number of<br>retransmissions to be carried out before<br>declaring that the remote end is not<br>available. | 3 - 3         | 3       | [Device Para<br>/TCP/IP<br>/Advanced<br>Settings] |

# Modbus®

<u>Modbus</u>

# Modbus® Protocol Configuration

The time-controlled Modbus<sup>®</sup> protocol is based on the Master-Slave working principle. This means that the substation control and protection system sends an enquiry or instruction to a certain device (slave address) which will then be answered or carried out accordingly. If the enquiry/instruction cannot be answered/carried out (e.g. because of an invalid slave address), a failure message is returned to the master.

The Master (substation control and protection system) can <u>query</u> information <u>from</u> the device, such as:

- Type of unit version
- Measuring values/Statistical measured values
- Switch operating position
- State of device
- Time and date
- State of the device's digital inputs
- Protection-/State alarms

The Master (control system) can give commands/instructions to the device, such as:

- Control of switchgear (where applicable, i.e. each acc. to the applied device version)
- Change-over of parameter set
- Reset and acknowledgement of alarms/signals
- Adjustment of date and time
- Control of alarm relays

For detailed information on data point lists and error handling, please refer to the Modbus® documentation.

To allow configuration of the devices for Modbus<sup>®</sup> connection, some default values of the control system must be available.

#### Modbus RTU

#### Part 1: Configuration of the Devices

Call up *»Device parameter/Modbus«* and set the following communication parameters there:

- Slave-address, to allow clear identification of the device.
- Baud-Rate

Also, select below indicated RS485 interface-related parameters from there, such as:

- Number of data bits
- One of the following supported communication variants: Number of data bits, even, odd, parity or no parity, number of stop bits.
- *»t-timeout«*: communication errors are only identified after expiry of a supervision time *»t-timeout«*.
- Response time (defining the period within which an enquiry from the master has to be answered).

#### Part 2: Hardware Connection

- For hardware connection to the control system, there is an RS485 interface at the rear side of the device (RS485, fiber optic or terminals).
- Connect bus and device (wiring).

#### Error Handling - Hardware Errors

Information on physical communication errors, such as:

- Baudrate Error
- Parity Error ...

can be obtained from the event recorder.

#### Error Handling – Errors on protocol level

If, for example, an invalid memory address is enquired, error codes will be returned by the device that need to be interpreted.

#### Modbus TCP



Establishing a connection via TCP/IP to the device is only possible if your device is equipped with an Ethernet Interface (RJ45).

Contact your IT administrator in order to establish the network connection.

#### Part 1: Setting the TCP/IP Parameters

Call up *»Device parameter/TCP/IP«* at the HMI (panel) and set the following parameters:

- TCP/IP address
- Subnetmask
- Gateway

#### Part 2: Configuration of the Devices

Call up *»Device parameter/Modbus«* and set the following communication parameters:

- Setting a Unit Identifier is only necessary if a TCP network should be coupled to a RTU network.
- If a different port than the default port 502 should be used please proceed as follows:
  - Choose "Private" within the TCP-Port-Configuration.
  - Set the port-number.
- Set the maximum accepted time of "no communication". If this time has expired without any comunication, the device concludes a failure within the master system.
- Allow or disallow the blocking of SCADA commands.

#### Part 3: Hardware Connection

- There is a RJ45 interface at the rear side of the device for the hardware connection to the control system.
- Establish the connection to the device by means of a proper Ethernet cable.

| Parameter    | Description                                  | Setting range | Default  | Menu path                  |
|--------------|----------------------------------------------|---------------|----------|----------------------------|
| Res Diagn Cr | All Modbus Diagnosis Counters will be reset. | inactive,     | inactive | [Operation                 |
| $\bigotimes$ |                                              | active        |          | /<br>Reset/Acknowle<br>dge |
|              |                                              |               |          | /Reset]                    |

### Direct Commands of the Modbus®

# Global Protection Parameters of the Modbus®

| Parameter       | Description                                                                                                                                                                                                                                                                                                                                       | Setting range                                       | Default | Menu path                                              |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------|--------------------------------------------------------|
| Slave ID        | Device address (Slave ID) within the bus<br>system. Each device address has to be<br>unique within a bus system.                                                                                                                                                                                                                                  | 1 - 247                                             | 1       | [Device Para<br>/Modbus<br>/<br>Communication<br>/RTU] |
| Unit ID         | The Unit Identifier is used for routing. This<br>parameter is to be set, if a Modbus RTU and<br>a Modbus TCP network should be coupled.                                                                                                                                                                                                           | 1 - 255                                             | 255     | [Device Para<br>/Modbus<br>/<br>Communication<br>/TCP] |
| TCP Port Config | TCP Port Configuration. This parameter is to<br>be set only if the default Modubs TCP Port<br>should not be used.                                                                                                                                                                                                                                 | Default,<br>Private                                 | Default | [Device Para<br>/Modbus<br>/<br>Communication<br>/TCP] |
| Port            | IP Port Number.<br>And Only available if: TCP Port Config =<br>Private<br>In general it is recommended to keep the<br>default value. if this is not possible then<br>select a number out of the private range<br>49152-52151 or 52162-65535 that is not<br>yet in use within your network.<br>And Only available if: TCP Port Config =<br>Private | 502 - 65535                                         | 502     | [Device Para<br>/Modbus<br>/<br>Communication<br>/TCP] |
| t-timeout       | Within this time the answer has to be<br>received by the SCADA system, otherwise<br>the request will be disregarded. In that case<br>the Scada system detects a communication<br>failure and the Scada System has to send a<br>new request.                                                                                                       | 0.01 - 10.00s                                       | 1s      | [Device Para<br>/Modbus<br>/<br>Communication<br>/RTU] |
| Baud rate       | Baud rate                                                                                                                                                                                                                                                                                                                                         | 1200,<br>2400,<br>4800,<br>9600,<br>19200,<br>38400 | 19200   | [Device Para<br>/Modbus<br>/<br>Communication<br>/RTU] |

| Parameter            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Setting range       | Default  | Menu path             |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-----------------------|
| Physical<br>Settings | Digit 1: Number of bits. Digit 2: E=even<br>parity, O=odd parity, N=no parity. Digit 3:<br>Number of stop bits. More information on                                                                                                                                                                                                                                                                                                                                                     | 8E1,                | 8E1      | [Device Para          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 801,                |          | /Modbus               |
|                      | the parity: It is possible that the last data bit                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8N1,                |          | 1                     |
|                      | is followed by a parity bit which is used for<br>recognition of communication errors. The<br>parity bit ensures that with even parity<br>("EVEN") always an even number of bits<br>with valence "1" or with odd parity ("ODD")<br>an odd number of "1" valence bits are<br>transmitted. But it is also possible to<br>transmit no parity bits (here the setting is<br>"Parity = None"). More information on the<br>stop-bits: The end of a data byte is<br>terminated by the stop-bits. | 8N2                 |          | Communication         |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | /RTU]                 |
| t call               | If there is no request tologram cont from                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 - 3600s           | 10s      | [Device Para          |
| t-call               | If there is no request telegram sent from<br>Scada to the device after expiry of this time<br>- the device concludes a communication<br>failure within the Scada system.                                                                                                                                                                                                                                                                                                                | 1 - 30005           | 105      | /Modbus               |
| $\bigotimes$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | /<br>Communication    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | /General<br>Settings] |
| Scada CmdBlo         | Activating (allowing)/ Deactivating<br>(disallowing) the blocking of the Scada<br>Commands                                                                                                                                                                                                                                                                                                                                                                                              | inactive,           | inactive | [Device Para          |
| <b>•</b>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | active              |          | /Modbus               |
| $\bigotimes$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | /<br>Communication    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | /General<br>Settings] |
| Disable<br>Latching  | Disable Latching: If this parameter is active<br>(true), none of the Modbus states will be<br>latched. That means that trip signals wont<br>be latched by Modbus.                                                                                                                                                                                                                                                                                                                       | inactive,<br>active | inactive | [Device Para          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | /Modbus<br>/          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | ,<br>Communication    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | /General<br>Settings] |
| AllowGap             | If this parameter is active (True), the user<br>can request a set of modbus register<br>without getting an exception, because of<br>invalid address in the requested array. The<br>invalid addresses have a special value<br>0xFAFA, but the user is responsible for<br>ignoring invalid addresses. Attention: This<br>special value can be valid, if address is<br>valid.                                                                                                              | inactive,           | inactive | [Device Para          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | active              |          | /Modbus               |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | /<br>Communication    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | /General              |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          | Settings]             |

| Parameter                  | Description                                                                                  | Setting range          | Default  | Menu path             |
|----------------------------|----------------------------------------------------------------------------------------------|------------------------|----------|-----------------------|
| Optical rest               | Optical rest position                                                                        | Light off,             | Light on | [Device Para          |
| position                   |                                                                                              | Light on               |          | /Modbus<br>/          |
|                            |                                                                                              |                        |          | Communication         |
|                            |                                                                                              |                        |          | /General<br>Settings] |
| Config Bin Inp1            | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,<br>Assignment List |          | [Device Para          |
|                            |                                                                                              |                        |          | /Modbus               |
|                            |                                                                                              |                        |          | /Configb<br>Registers |
|                            |                                                                                              |                        |          | /States]              |
| Latched Config             | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
| Bin Inp1                   |                                                                                              | active                 |          | /Modbus               |
| $\bigotimes$               |                                                                                              |                        |          | /Configb<br>Registers |
|                            |                                                                                              |                        |          | /States]              |
| Config Bin Inp2            | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,                    |          | [Device Para          |
|                            |                                                                                              | Assignment List        |          | /Modbus               |
| $\bigotimes$               |                                                                                              |                        |          | /Configb<br>Registers |
|                            |                                                                                              |                        |          | /States]              |
| Latched Config<br>Bin Inp2 | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
|                            |                                                                                              | active                 |          | /Modbus               |
|                            |                                                                                              |                        |          | /Configb<br>Registers |
|                            |                                                                                              |                        |          | /States]              |
| Config Bin Inp3            | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,<br>Assignment List |          | [Device Para          |
|                            |                                                                                              |                        |          | /Modbus               |
| $\bigotimes$               |                                                                                              |                        |          | /Configb<br>Registers |
|                            |                                                                                              |                        |          | /States]              |
| Latched Config             | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
| Bin Inp3                   |                                                                                              | active                 |          | /Modbus               |
| ♦                          |                                                                                              |                        |          | /Configb<br>Registers |
|                            |                                                                                              |                        |          | /States]              |
| Config Bin Inp4            | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,<br>Assignment List |          | [Device Para          |
|                            |                                                                                              |                        |          | /Modbus               |
|                            |                                                                                              |                        |          | /Configb<br>Registers |
|                            |                                                                                              |                        |          | /States]              |

| Parameter       | Description                                                                                  | Setting range          | Default  | Menu path             |
|-----------------|----------------------------------------------------------------------------------------------|------------------------|----------|-----------------------|
| Latched Config  | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
| Bin Inp4        |                                                                                              | active                 |          | /Modbus               |
| $\bigotimes$    |                                                                                              |                        |          | /Configb<br>Registers |
|                 |                                                                                              |                        |          | /States]              |
| Config Bin Inp5 | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,<br>Assignment List |          | [Device Para          |
|                 |                                                                                              |                        |          | /Modbus               |
|                 |                                                                                              |                        |          | /Configb<br>Registers |
|                 |                                                                                              |                        |          | /States]              |
| Latched Config  | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
| Bin Inp5        |                                                                                              | active                 |          | /Modbus               |
|                 |                                                                                              |                        |          | /Configb<br>Registers |
|                 |                                                                                              |                        |          | /States]              |
| Config Bin Inp6 | Virtual Digital Input. This corresponds to a                                                 | 1n,                    |          | [Device Para          |
|                 | virtual binary output of the protective                                                      | Assignment List        |          | /Modbus               |
| $\bigotimes$    | device.                                                                                      |                        |          | /Configb<br>Registers |
|                 |                                                                                              |                        |          | /States]              |
| Latched Config  | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
| Bin Inp6        |                                                                                              | active                 |          | /Modbus               |
| $\bigotimes$    |                                                                                              |                        |          | /Configb<br>Registers |
|                 |                                                                                              |                        |          | /States]              |
| Config Bin Inp7 | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,<br>Assignment List |          | [Device Para          |
|                 |                                                                                              |                        |          | /Modbus               |
| $\bigotimes$    |                                                                                              |                        |          | /Configb<br>Registers |
|                 |                                                                                              |                        |          | /States]              |
| Latched Config  | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
| Bin Inp7        |                                                                                              | active                 |          | /Modbus               |
| $\bigotimes$    |                                                                                              |                        |          | /Configb<br>Registers |
|                 |                                                                                              |                        |          | /States]              |
| Config Bin Inp8 | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,<br>Assignment List |          | [Device Para          |
|                 |                                                                                              |                        |          | /Modbus               |
|                 |                                                                                              |                        |          | /Configb<br>Registers |
|                 |                                                                                              |                        |          | /States]              |

| Parameter           | Description                                                                                  | Setting range          | Default  | Menu path             |
|---------------------|----------------------------------------------------------------------------------------------|------------------------|----------|-----------------------|
| Latched Config      | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
| Bin Inp8            |                                                                                              | active                 |          | /Modbus               |
|                     |                                                                                              |                        |          | /Configb<br>Registers |
|                     |                                                                                              |                        |          | /States]              |
| Config Bin Inp9     | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,<br>Assignment List |          | [Device Para          |
|                     |                                                                                              |                        |          | /Modbus               |
| $\bigotimes$        |                                                                                              |                        |          | /Configb<br>Registers |
|                     |                                                                                              |                        |          | /States]              |
| Latched Config      | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
| Bin Inp9            |                                                                                              | active                 |          | /Modbus               |
|                     |                                                                                              |                        |          | /Configb<br>Registers |
|                     |                                                                                              |                        |          | /States]              |
| Config Bin          | Virtual Digital Input. This corresponds to a                                                 | 1n,                    |          | [Device Para          |
| Inp10               | virtual binary output of the protective device.                                              | Assignment List        |          | /Modbus               |
| $\bigcirc$          | device.                                                                                      |                        |          | /Configb<br>Registers |
|                     |                                                                                              |                        |          | /States]              |
| Latched Config      | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
| Bin Inp10           |                                                                                              | active                 |          | /Modbus               |
| $\bigcirc$          |                                                                                              |                        |          | /Configb<br>Registers |
|                     |                                                                                              |                        |          | /States]              |
| Config Bin          | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,<br>Assignment List |          | [Device Para          |
| Inp11               |                                                                                              |                        |          | /Modbus               |
|                     |                                                                                              |                        |          | /Configb<br>Registers |
|                     |                                                                                              |                        |          | /States]              |
| Latched Config      | Latched Configurable Binary Input                                                            | inactive,              | inactive | [Device Para          |
| Bin Inp11           |                                                                                              | active                 |          | /Modbus               |
| *                   |                                                                                              |                        |          | /Configb<br>Registers |
|                     |                                                                                              |                        |          | /States]              |
| Config Bin<br>Inp12 | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,<br>Assignment List |          | [Device Para          |
|                     |                                                                                              |                        |          | /Modbus               |
|                     |                                                                                              |                        |          | /Configb<br>Registers |
|                     |                                                                                              |                        |          | /States]              |

| Parameter      | Description                                     | Setting range   | Default  | Menu path             |
|----------------|-------------------------------------------------|-----------------|----------|-----------------------|
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp12      |                                                 | active          |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp13          | virtual binary output of the protective device. | Assignment List |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp13      |                                                 | active          |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp14          | virtual binary output of the protective device. | Assignment List | l        | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp14      |                                                 | active          |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp15          | virtual binary output of the protective device. | Assignment List |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp15      |                                                 | active          |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp16          | virtual binary output of the protective device. | Assignment List |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |

| Parameter      | Description                                     | Setting range   | Default  | Menu path             |
|----------------|-------------------------------------------------|-----------------|----------|-----------------------|
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp16      |                                                 | active          |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp17          | virtual binary output of the protective device. | Assignment List |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp17      |                                                 | active          |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     |                                                 | 1n,             |          | [Device Para          |
| Inp18          |                                                 | Assignment List |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp18      |                                                 | active          |          | /Modbus               |
| $\bigcirc$     |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp19          | virtual binary output of the protective device. | Assignment List |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp19      |                                                 | active          |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp20          | virtual binary output of the protective device. | Assignment List |          | /Modbus               |
| $\mathbf{R}$   |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |

| Parameter      | Description                                                                                  | Setting range   | Default  | Menu path             |
|----------------|----------------------------------------------------------------------------------------------|-----------------|----------|-----------------------|
| Latched Config | Latched Configurable Binary Input                                                            | inactive,       | inactive | [Device Para          |
| Bin Inp20      |                                                                                              | active          |          | /Modbus               |
|                |                                                                                              |                 |          | /Configb<br>Registers |
|                |                                                                                              |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para          |
| Inp21          | virtual binary output of the protective device.                                              | Assignment List |          | /Modbus               |
|                |                                                                                              |                 |          | /Configb<br>Registers |
|                |                                                                                              |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input                                                            | inactive,       | inactive | [Device Para          |
| Bin Inp21      |                                                                                              | active          |          | /Modbus               |
|                |                                                                                              |                 |          | /Configb<br>Registers |
|                |                                                                                              |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,             |          | [Device Para          |
| Inp22          |                                                                                              | Assignment List | l        | /Modbus               |
|                |                                                                                              |                 |          | /Configb<br>Registers |
|                |                                                                                              |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input                                                            | inactive,       | inactive | [Device Para          |
| Bin Inp22      |                                                                                              | active          |          | /Modbus               |
|                |                                                                                              |                 |          | /Configb<br>Registers |
|                |                                                                                              |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para          |
| Inp23          | virtual binary output of the protective device.                                              | Assignment List |          | /Modbus               |
|                |                                                                                              |                 |          | /Configb<br>Registers |
|                |                                                                                              |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input                                                            | inactive,       | inactive | [Device Para          |
| Bin Inp23      |                                                                                              | active          |          | /Modbus               |
|                |                                                                                              |                 |          | /Configb<br>Registers |
|                |                                                                                              |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para          |
| Inp24          | virtual binary output of the protective device.                                              | Assignment List |          | /Modbus               |
|                |                                                                                              |                 |          | /Configb<br>Registers |
|                |                                                                                              |                 |          | /States]              |

| Parameter      | Description                                                                                         | Setting range   | Default  | Menu path             |
|----------------|-----------------------------------------------------------------------------------------------------|-----------------|----------|-----------------------|
| Latched Config | Latched Configurable Binary Input                                                                   | inactive,       | inactive | [Device Para          |
| Bin Inp24      |                                                                                                     | active          |          | /Modbus               |
|                |                                                                                                     |                 |          | /Configb<br>Registers |
|                |                                                                                                     |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a                                                        | 1n,             |          | [Device Para          |
| Inp25          | virtual binary output of the protective device.                                                     | Assignment List |          | /Modbus               |
|                |                                                                                                     |                 |          | /Configb<br>Registers |
|                |                                                                                                     |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input                                                                   | inactive,       | inactive | [Device Para          |
| Bin Inp25      |                                                                                                     | active          |          | /Modbus               |
|                |                                                                                                     |                 |          | /Configb<br>Registers |
|                |                                                                                                     |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a virtual binary output of the protective Assign device. | 1n,             |          | [Device Para          |
| Inp26          |                                                                                                     | Assignment List |          | /Modbus               |
|                |                                                                                                     |                 |          | /Configb<br>Registers |
|                |                                                                                                     |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input                                                                   | inactive,       | inactive | [Device Para          |
| Bin Inp26      |                                                                                                     | active          |          | /Modbus               |
|                |                                                                                                     |                 |          | /Configb<br>Registers |
|                |                                                                                                     |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a                                                        | 1n,             |          | [Device Para          |
| Inp27          | virtual binary output of the protective device.                                                     | Assignment List |          | /Modbus               |
|                |                                                                                                     |                 |          | /Configb<br>Registers |
|                |                                                                                                     |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input                                                                   | inactive,       | inactive | [Device Para          |
| Bin Inp27      |                                                                                                     | active          |          | /Modbus               |
|                |                                                                                                     |                 |          | /Configb<br>Registers |
|                |                                                                                                     |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a                                                        | 1n,             |          | [Device Para          |
| Inp28          | virtual binary output of the protective device.                                                     | Assignment List |          | /Modbus               |
|                |                                                                                                     |                 |          | /Configb<br>Registers |
|                |                                                                                                     |                 |          | /States]              |

| Parameter      | Description                                     | Setting range   | Default  | Menu path             |
|----------------|-------------------------------------------------|-----------------|----------|-----------------------|
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp28      |                                                 | active          |          | /Modbus               |
| $\bigotimes$   |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp29          | virtual binary output of the protective device. | Assignment List |          | /Modbus               |
| $\bigotimes$   |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp29      |                                                 | active          |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp30          | virtual binary output of the protective device. | Assignment List |          | /Modbus               |
| $(\mathbf{x})$ |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp30      |                                                 | active          |          | /Modbus               |
| $\bigcirc$     |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp31          | virtual binary output of the protective device. | Assignment List |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Latched Config | Latched Configurable Binary Input               | inactive,       | inactive | [Device Para          |
| Bin Inp31      |                                                 | active          |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |
| Config Bin     | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para          |
| Inp32          | virtual binary output of the protective device. | Assignment List |          | /Modbus               |
|                |                                                 |                 |          | /Configb<br>Registers |
|                |                                                 |                 |          | /States]              |

| Parameter      | Description                                                                                     | Setting range | Default  | Menu path             |
|----------------|-------------------------------------------------------------------------------------------------|---------------|----------|-----------------------|
| Latched Config | Latched Configurable Binary Input                                                               | inactive,     | inactive | [Device Para          |
| Bin Inp32      |                                                                                                 | active        |          | /Modbus               |
| $\bigotimes$   |                                                                                                 |               |          | /Configb<br>Registers |
| •              |                                                                                                 |               |          | /States]              |
| Mapped Meas 1  | Mapped Measured Values. They can be used                                                        | 1n,           |          | [Device Para          |
|                | to provide measured values to the Modbus<br>Master.                                             | TrendRecList  |          | /Modbus               |
| $\bigotimes$   |                                                                                                 |               |          | /Configb<br>Registers |
|                |                                                                                                 |               |          | /Measured<br>Values]  |
| Mapped Meas 2  | Mapped Measured Values. They can be used                                                        | 1n,           |          | [Device Para          |
|                | to provide measured values to the Modbus Master.                                                | TrendRecList  |          | /Modbus               |
| $\bigotimes$   |                                                                                                 |               |          | /Configb<br>Registers |
|                |                                                                                                 |               |          | /Measured<br>Values]  |
| Mapped Meas 3  | Mapped Measured Values. They can be used<br>to provide measured values to the Modbus<br>Master. | 1n,           |          | [Device Para          |
|                |                                                                                                 | TrendRecList  |          | /Modbus               |
| $\bigotimes$   |                                                                                                 |               |          | /Configb<br>Registers |
|                |                                                                                                 |               |          | /Measured<br>Values]  |
| Mapped Meas 4  | Mapped Measured Values. They can be used                                                        | 1n,           |          | [Device Para          |
|                | to provide measured values to the Modbus Master.                                                | TrendRecList  |          | /Modbus               |
| $\bigotimes$   |                                                                                                 |               |          | /Configb<br>Registers |
|                |                                                                                                 |               |          | /Measured<br>Values]  |
| Mapped Meas 5  | Mapped Measured Values. They can be used                                                        |               |          | [Device Para          |
|                | to provide measured values to the Modbus Master.                                                | TrendRecList  |          | /Modbus               |
| $\bigotimes$   |                                                                                                 |               |          | /Configb<br>Registers |
|                |                                                                                                 |               |          | /Measured<br>Values]  |
| Mapped Meas 6  | Mapped Measured Values. They can be used                                                        | 1n,           |          | [Device Para          |
|                | to provide measured values to the Modbus<br>Master.                                             | TrendRecList  |          | /Modbus               |
| $\bigotimes$   |                                                                                                 |               |          | /Configb<br>Registers |
|                |                                                                                                 |               |          | /Measured<br>Values]  |

| Parameter     | Description                                                                                     | Setting range       | Default | Menu path               |
|---------------|-------------------------------------------------------------------------------------------------|---------------------|---------|-------------------------|
| Mapped Meas 7 | Mapped Measured Values. They can be used<br>to provide measured values to the Modbus<br>Master. | 1n,<br>TrendRecList |         | [Device Para<br>/Modbus |
| $\bigotimes$  | Muster.                                                                                         |                     |         | /Configb<br>Registers   |
|               |                                                                                                 |                     |         | /Measured<br>Values]    |
| Mapped Meas 8 |                                                                                                 |                     |         | [Device Para            |
|               | to provide measured values to the Modbus Master.                                                | TrendRecList        |         | /Modbus                 |
| $\bigotimes$  |                                                                                                 |                     |         | /Configb<br>Registers   |
|               |                                                                                                 |                     |         | /Measured<br>Values]    |
| Mapped Meas 9 | Mapped Measured Values. They can be used                                                        |                     |         | [Device Para            |
|               | to provide measured values to the Modbus<br>Master.                                             | TrendRecList        |         | /Modbus                 |
| $\bigotimes$  |                                                                                                 |                     |         | /Configb<br>Registers   |
|               |                                                                                                 |                     |         | /Measured<br>Values]    |
| Mapped Meas   | Mapped Measured Values. They can be used<br>to provide measured values to the Modbus<br>Master. |                     |         | [Device Para            |
| 10            |                                                                                                 | TrendRecList        |         | /Modbus                 |
| $\bigotimes$  |                                                                                                 |                     |         | /Configb<br>Registers   |
| •             |                                                                                                 |                     |         | /Measured<br>Values]    |
| Mapped Meas   | Mapped Measured Values. They can be used                                                        | 1n,<br>TrendRecList |         | [Device Para            |
| 11            | to provide measured values to the Modbus Master.                                                |                     |         | /Modbus                 |
| $\bigotimes$  |                                                                                                 |                     |         | /Configb<br>Registers   |
|               |                                                                                                 |                     |         | /Measured<br>Values]    |
| Mapped Meas   | Mapped Measured Values. They can be used                                                        |                     |         | [Device Para            |
| 12            | to provide measured values to the Modbus Master.                                                | TrendRecList        |         | /Modbus                 |
| $\bigotimes$  | Master.                                                                                         |                     |         | /Configb<br>Registers   |
|               |                                                                                                 |                     |         | /Measured<br>Values]    |
| Mapped Meas   | Mapped Measured Values. They can be used                                                        |                     |         | [Device Para            |
| 13            | to provide measured values to the Modbus Master.                                                | TrendRecList        |         | /Modbus                 |
| $\bigotimes$  |                                                                                                 |                     |         | /Configb<br>Registers   |
|               |                                                                                                 |                     |         | /Measured<br>Values]    |

| Parameter         | Description                                                                                     | Setting range       | Default | Menu path                                                                |
|-------------------|-------------------------------------------------------------------------------------------------|---------------------|---------|--------------------------------------------------------------------------|
| Mapped Meas<br>14 | Mapped Measured Values. They can be used<br>to provide measured values to the Modbus<br>Master. | 1n,<br>TrendRecList |         | [Device Para<br>/Modbus<br>/Configb<br>Registers<br>/Measured<br>Values] |
| Mapped Meas<br>15 | Mapped Measured Values. They can be used<br>to provide measured values to the Modbus<br>Master. | 1n,<br>TrendRecList |         | [Device Para<br>/Modbus<br>/Configb<br>Registers<br>/Measured<br>Values] |
| Mapped Meas<br>16 | Mapped Measured Values. They can be used<br>to provide measured values to the Modbus<br>Master. | 1n,<br>TrendRecList |         | [Device Para<br>/Modbus<br>/Configb<br>Registers<br>/Measured<br>Values] |

# States of the Module Inputs of the MODBUS® Protocol

| Name              | Description                               | Assignment via     |
|-------------------|-------------------------------------------|--------------------|
| Config Bin Inp1-I | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp2-I | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp3-I | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp4-I | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |

| Name              | Description                               | Assignment via     |
|-------------------|-------------------------------------------|--------------------|
| Config Bin Inp5-I | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp6-I | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp7-I | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp8-I | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp9-I | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp10- | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp11- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp12- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp13- | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |

| Name              | Description                               | Assignment via     |
|-------------------|-------------------------------------------|--------------------|
| Config Bin Inp14- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp15- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp16- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp17- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp18- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp19- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp20- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp21- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp22- | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |

| Name              | Description                               | Assignment via     |
|-------------------|-------------------------------------------|--------------------|
| Config Bin Inp23- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp24- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp25- | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp26- | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp27- | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp28- | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp29- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp30- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |
| Config Bin Inp31- | State of the module input: Config Bin Inp | [Device Para       |
| 1                 |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |

| Name              | Description                               | Assignment via     |
|-------------------|-------------------------------------------|--------------------|
| Config Bin Inp32- | State of the module input: Config Bin Inp | [Device Para       |
|                   |                                           | /Modbus            |
|                   |                                           | /Configb Registers |
|                   |                                           | /States]           |

## Values of the MODBUS® Protocol

| Value         | Description                                                                               | Menu path          |
|---------------|-------------------------------------------------------------------------------------------|--------------------|
| Mapped Meas 1 | Mapped Measured Values. They can be used to                                               | [Operation         |
|               | provide measured values to the Modbus Master.                                             | /Count and RevData |
|               |                                                                                           | /Modbus            |
|               |                                                                                           | /General Settings] |
| Mapped Meas 2 | Mapped Measured Values. They can be used to                                               | [Operation         |
|               | provide measured values to the Modbus Master.                                             | /Count and RevData |
|               |                                                                                           | /Modbus            |
|               |                                                                                           | /General Settings] |
| Mapped Meas 3 | Mapped Measured Values. They can be used to                                               | [Operation         |
|               | provide measured values to the Modbus Master.                                             | /Count and RevData |
|               |                                                                                           | /Modbus            |
|               |                                                                                           | /General Settings] |
| Mapped Meas 4 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation         |
|               |                                                                                           | /Count and RevData |
|               |                                                                                           | /Modbus            |
|               |                                                                                           | /General Settings] |
| Mapped Meas 5 | Mapped Measured Values. They can be used to                                               | [Operation         |
|               | provide measured values to the Modbus Master.                                             | /Count and RevData |
|               |                                                                                           | /Modbus            |
|               |                                                                                           | /General Settings] |
| Mapped Meas 6 | Mapped Measured Values. They can be used to                                               | [Operation         |
|               | provide measured values to the Modbus Master.                                             | /Count and RevData |
|               |                                                                                           | /Modbus            |
|               |                                                                                           | /General Settings] |
| Mapped Meas 7 | Mapped Measured Values. They can be used to                                               | [Operation         |
|               | provide measured values to the Modbus Master.                                             | /Count and RevData |
|               |                                                                                           | /Modbus            |
|               |                                                                                           | /General Settings] |

| Value          | Description                                                                               | Menu path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mapped Meas 8  | Mapped Measured Values. They can be used to                                               | [Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | provide measured values to the Modbus Master.                                             | /Count and RevData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                           | /Modbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                           | /General Settings]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mapped Meas 9  | Mapped Measured Values. They can be used to                                               | [Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | provide measured values to the Modbus Master.                                             | /Count and RevData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                           | /Modbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                           | /General Settings][Operation/Count and RevData/Modbus/General Settings] |
| Mapped Meas 10 | Mapped Measured Values. They can be used to                                               | [Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | provide measured values to the Modbus Master.                                             | /Count and RevData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                           | /Modbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                           | /General Settings]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mapped Meas 11 | Mapped Measured Values. They can be used to                                               | [Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | provide measured values to the Modbus Master.                                             | /Count and RevData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                           | /Modbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                           | /General Settings]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mapped Meas 12 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |                                                                                           | /Count and RevData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                           | /Modbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                           | /General Settings]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mapped Meas 13 | Mapped Measured Values. They can be used to                                               | [Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | provide measured values to the Modbus Master.                                             | /Count and RevData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                           | /Modbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                           | /General Settings]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mapped Meas 14 | Mapped Measured Values. They can be used to                                               | [Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | provide measured values to the Modbus Master.                                             | /Count and RevData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                           | /Modbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                           | /General Settings]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mapped Meas 15 | Mapped Measured Values. They can be used to                                               | [Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | provide measured values to the Modbus Master.                                             | /Count and RevData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                           | /Modbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                           | /General Settings]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mapped Meas 16 | Mapped Measured Values. They can be used to                                               | [Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | provide measured values to the Modbus Master.                                             | /Count and RevData                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                           | /Modbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                           | /General Settings]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### Counters of the MODBUS® Protocol

| Parameter    | Description                                                                                                                    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|
| Device Type  | Device Type: Device type code for relationship between device name and its Modbus code.                                        |
|              | Woodward:                                                                                                                      |
|              | MRI4 - 1000                                                                                                                    |
|              | MRU4 - 1001                                                                                                                    |
|              | MRA4 - 1002                                                                                                                    |
|              | MCA4 - 1003                                                                                                                    |
|              | MRDT4 - 1005                                                                                                                   |
|              | MCDTV4 - 1006                                                                                                                  |
|              | MCDGV4 - 1007                                                                                                                  |
|              | MRM4 - 1009                                                                                                                    |
|              | MRMV4 - 1010                                                                                                                   |
|              | MCDLV4 - 1011                                                                                                                  |
| Comm Version | Modbus Communication version. This version number changes if something becomes incompatible between different Modbus releases. |

## Modbus<sup>®</sup> Signals (Output States)

# NOTICE

Some signals (that are for a short time active only) have to be acknowledged separately (e.g. Trip signals) by the Communication System.

| Signal           | Description          |
|------------------|----------------------|
| Transmission RTU | Signal: SCADA active |
| Transmission TCP | Signal: SCADA active |
| Scada Cmd 1      | Scada Command        |
| Scada Cmd 2      | Scada Command        |
| Scada Cmd 3      | Scada Command        |
| Scada Cmd 4      | Scada Command        |
| Scada Cmd 5      | Scada Command        |
| Scada Cmd 6      | Scada Command        |
| Scada Cmd 7      | Scada Command        |
| Scada Cmd 8      | Scada Command        |
| Scada Cmd 9      | Scada Command        |
| Scada Cmd 10     | Scada Command        |
| Scada Cmd 11     | Scada Command        |
| Scada Cmd 12     | Scada Command        |
| Scada Cmd 13     | Scada Command        |
| Scada Cmd 14     | Scada Command        |

| Signal       | Description   |
|--------------|---------------|
| Scada Cmd 15 | Scada Command |
| Scada Cmd 16 | Scada Command |

## Modbus® Values

| Value            | Description                                                         | Default    | Size                  | Menu path          |
|------------------|---------------------------------------------------------------------|------------|-----------------------|--------------------|
|                  | Total number of requests. Includes                                  | 0          | 0 -                   | [Operation         |
| al               | requests for other slaves.                                          | 9999999999 |                       | /Count and RevData |
|                  |                                                                     |            |                       | /Modbus            |
|                  |                                                                     |            |                       | /RTU]              |
|                  | Total Number of requests for this slave.                            | 0 0 -      | [Operation            |                    |
| Ме               |                                                                     |            | 99999999999           | /Count and RevData |
|                  |                                                                     |            |                       | /Modbus            |
|                  |                                                                     |            |                       | /RTU]              |
| NoOfResponsTim   | Total number of requests with exceeded                              | 0          | 0 -                   | [Operation         |
| eOverruns        | response time. Physically corrupted<br>Frame.                       |            | 99999999999           | /Count and RevData |
|                  |                                                                     |            |                       | /Modbus            |
|                  |                                                                     |            |                       | /RTU]              |
| NoOfOverrunErro  | Total Number of Overrun Failures.                                   | 0          | 0 -                   | [Operation         |
| S                | Physically corrupted Frame.                                         |            | 999999999999          | /Count and RevData |
|                  |                                                                     |            |                       | /Modbus            |
|                  |                                                                     |            |                       | /RTU]              |
| NoOfParityErrors | Total number of parity errors. Physically corrupted Frame.          | 0          | 0 -<br>999999999999   | [Operation         |
|                  |                                                                     |            |                       | /Count and RevData |
|                  |                                                                     |            |                       | /Modbus            |
|                  |                                                                     |            |                       | /RTU]              |
| NoOfFrameErrors  | Total Number of Frame Errors.                                       | 0          | 0 -                   | [Operation         |
|                  | Physically corrupted Frame.                                         |            | 99999999999           | /Count and RevData |
|                  |                                                                     |            |                       | /Modbus            |
|                  |                                                                     |            |                       | /RTU]              |
| NoOfBreaks       | Number of detected communication                                    | 0          | 0 -<br>999999999999   | [Operation         |
|                  | aborts                                                              |            |                       | /Count and RevData |
|                  |                                                                     |            |                       | /Modbus            |
|                  |                                                                     |            |                       | /RTU]              |
| NoOfQueryInvali  | Total number of Request errors.<br>Request could not be interpreted | 0          | 0 -<br>99999999999999 | [Operation         |
| d                |                                                                     |            |                       | /Count and RevData |
|                  |                                                                     |            |                       | /Modbus            |
|                  |                                                                     |            |                       | /RTU]              |

| Value            | Description                              | Default | Size         | Menu path          |
|------------------|------------------------------------------|---------|--------------|--------------------|
| NoOfInternalErro | Total Number of Internal errors while    | 0       | 0 -          | [Operation         |
| r                | interpreting the request.                |         | 99999999999  | /Count and RevData |
|                  |                                          |         |              | /Modbus            |
|                  |                                          |         |              | /RTU]              |
|                  | Total number of requests. Includes       | 0       | 0 -          | [Operation         |
| al               | requests for other slaves.               |         | 99999999999  | /Count and RevData |
|                  |                                          |         |              | /Modbus            |
|                  |                                          |         |              | /TCP]              |
|                  | Total Number of requests for this slave. | 0       | 0 -          | [Operation         |
| Me               |                                          |         | 99999999999  | /Count and RevData |
|                  |                                          |         |              | /Modbus            |
|                  |                                          |         |              | /TCP]              |
| NoOfResponse     | Total number of requests having been     | 0       | 0 -          | [Operation         |
|                  | responded.                               |         | 99999999999  | /Count and RevData |
|                  |                                          |         |              | /Modbus            |
|                  |                                          |         |              | /TCP]              |
| NoOfQueryInvali  | Total number of Request errors.          | 0       | 0 -          | [Operation         |
| d                | Request could not be interpreted         |         | 99999999999  | /Count and RevData |
|                  |                                          |         |              | /Modbus            |
|                  |                                          |         |              | /TCP]              |
| NoOfInternalErro | Total Number of Internal errors while    | 0       | 0 -          | [Operation         |
| r                | interpreting the request.                |         | 999999999999 | /Count and RevData |
|                  |                                          |         |              | /Modbus            |
|                  |                                          |         |              | /TCP]              |

## Profibus

### Profibus

Part 1: Configuration of the Devices

Call up *»Device parameter/Profibus«* and set the following communication parameter:

Slave-address, to allow clear identification of the device.

In addition to that the Master has to be provided with the GSD-file. The GSD-file can be taken from the Product-CD.

### Part 2: Hardware Connection

- For hardware connection to the control system, there is optional an D-SUB interface at the rear side of the device.
- Connect bus and device (wiring).
- Up to 123 slaves can be connected.
- Terminate the Bus by means of an Terminate Resistor.

### Error Handling

Information on physical communication errors, such as:

Baudrate Error

This can be obtained from the event recorder or the status display.

Error Handling - Status LED at the rear side

The Profibus D-SUB interface at the rear side of the device is equipped with an status LED.

- Baud Search -> red flashing
- Baud Found -> green flashing
- Data Exchange -> green
- No Profibus/Unplugged, not connected -> red

## **Direct Commands of the Profibus**

| Parameter    | Description                          | Setting range | Default  | Menu path                  |
|--------------|--------------------------------------|---------------|----------|----------------------------|
| Reset Comds  | All Profibus Commands will be reset. | inactive,     | inactive | [Operation                 |
| $\bigotimes$ |                                      | active        |          | /<br>Reset/Acknowle<br>dge |
|              |                                      |               |          | /Reset]                    |

### **Global Protection Parameters of the Profibus**

| Parameter        | Description                                     | Setting range   | Default  | Menu path                |
|------------------|-------------------------------------------------|-----------------|----------|--------------------------|
| Config Bin Inp 1 | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para             |
|                  | virtual binary output of the protective device. | Assignment List |          | /Profibus                |
| $\bigotimes$     |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Latched 1        | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para             |
|                  | Only available if: Latched = active             | active          |          | /Profibus                |
| $\bigotimes$     |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp 2 |                                                 | 1n,             |          | [Device Para             |
|                  | virtual binary output of the protective device. | Assignment List |          | /Profibus                |
| $\bigotimes$     |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Latched 2        | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para             |
|                  | Only available if: Latched = active             | active          |          | /Profibus                |
| $\bigotimes$     |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp 3 |                                                 | 1n,             |          | [Device Para             |
|                  | virtual binary output of the protective device. | Assignment List |          | /Profibus                |
|                  |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Latched 3        | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para             |
|                  | Only available if: Latched = active             | active          |          | /Profibus                |
| $\bigotimes$     |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp 4 |                                                 | 1n,             |          | [Device Para             |
|                  | virtual binary output of the protective device. | Assignment List |          | /Profibus                |
| $\bigotimes$     |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Latched 4        | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para             |
|                  | Only available if: Latched = active             | active          |          | /Profibus                |
| $\bigotimes$     |                                                 |                 |          | /Config Bin Inp<br>1-16] |

| Parameter        | Description                                                                          | Setting range          | Default  | Menu path                |
|------------------|--------------------------------------------------------------------------------------|------------------------|----------|--------------------------|
| Config Bin Inp 5 | Virtual Digital Input. This corresponds to a virtual binary output of the protective | 1n,<br>Assignment List |          | [Device Para             |
|                  | device.                                                                              | Assignment List        |          | /Profibus                |
| $\bigotimes$     |                                                                                      |                        |          | /Config Bin Inp<br>1-16] |
| Latched 5        | Defines whether the Input is latched.                                                | inactive,              | inactive | [Device Para             |
|                  | Only available if: Latched = active                                                  | active                 |          | /Profibus                |
| $\bigotimes$     |                                                                                      |                        |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp 6 |                                                                                      | 1n,                    |          | [Device Para             |
|                  | virtual binary output of the protective device.                                      | Assignment List        |          | /Profibus                |
| $\bigotimes$     |                                                                                      |                        |          | /Config Bin Inp<br>1-16] |
| Latched 6        | Defines whether the Input is latched.                                                | inactive,              | inactive | [Device Para             |
|                  | Only available if: Latched = active                                                  | active                 |          | /Profibus                |
| $\bigotimes$     |                                                                                      |                        |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp 7 |                                                                                      | 1n,                    |          | [Device Para             |
|                  | virtual binary output of the protective device.                                      | Assignment List        |          | /Profibus                |
| $\bigotimes$     |                                                                                      |                        |          | /Config Bin Inp<br>1-16] |
| Latched 7        | Defines whether the Input is latched.                                                | inactive,              | inactive | [Device Para             |
|                  | Only available if: Latched = active                                                  | active                 |          | /Profibus                |
| $\bigotimes$     |                                                                                      |                        |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp 8 |                                                                                      | 1n,                    |          | [Device Para             |
|                  | virtual binary output of the protective device.                                      | Assignment List        |          | /Profibus                |
| $\bigotimes$     |                                                                                      |                        |          | /Config Bin Inp<br>1-16] |
| Latched 8        | Defines whether the Input is latched.                                                | inactive,              | inactive | [Device Para             |
|                  | Only available if: Latched = active                                                  | active                 |          | /Profibus                |
| $\bigotimes$     |                                                                                      |                        |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp 9 |                                                                                      | 1n,                    |          | [Device Para             |
|                  | virtual binary output of the protective device.                                      | Assignment List        |          | /Profibus                |
| $\bigotimes$     |                                                                                      |                        |          | /Config Bin Inp<br>1-16] |
| Latched 9        | Defines whether the Input is latched.                                                | inactive,              | inactive | [Device Para             |
|                  | Only available if: Latched = active                                                  | active                 |          | /Profibus                |
| $\bigotimes$     |                                                                                      |                        |          | /Config Bin Inp<br>1-16] |

| Parameter      | Description                                     | Setting range   | Default  | Menu path                |
|----------------|-------------------------------------------------|-----------------|----------|--------------------------|
| Config Bin Inp | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para             |
| 10             | virtual binary output of the protective device. | Assignment List |          | /Profibus                |
| $\otimes$      |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Latched 10     | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para             |
|                | Only available if: Latched = active             | active          |          | /Profibus                |
| $\bigotimes$   | ,                                               |                 |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para             |
| 11             | virtual binary output of the protective device. | Assignment List |          | /Profibus                |
| $\otimes$      |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Latched 11     | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para             |
|                | Only available if: Latched = active             | active          |          | /Profibus                |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para             |
| 12             | virtual binary output of the protective device. | Assignment List |          | /Profibus                |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Latched 12     | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para             |
|                | Only available if: Latched = active             | active          |          | /Profibus                |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para             |
| 13             | virtual binary output of the protective device. | Assignment List |          | /Profibus                |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Latched 13     | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para             |
|                | Only available if: Latched = active             | active          |          | /Profibus                |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para             |
| 14             | virtual binary output of the protective device. | Assignment List |          | /Profibus                |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>1-16] |
| Latched 14     | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para             |
|                | Only available if: Latched = active             | active          |          | /Profibus                |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>1-16] |

| Parameter      | Description                                                                                  | Setting range   | Default  | Menu path                 |
|----------------|----------------------------------------------------------------------------------------------|-----------------|----------|---------------------------|
| Config Bin Inp | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para              |
| 15             | virtual binary output of the protective device.                                              | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>1-16]  |
| Latched 15     | Defines whether the Input is latched.                                                        | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active                                                          | active          |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>1-16]  |
| Config Bin Inp | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para              |
| 16             | virtual binary output of the protective device.                                              | Assignment List |          | /Profibus                 |
| $\otimes$      |                                                                                              |                 |          | /Config Bin Inp<br>1-16]  |
| Latched 16     | Defines whether the Input is latched.                                                        | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active                                                          | active          |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>1-16]  |
| Config Bin Inp | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,             |          | [Device Para              |
| 17             |                                                                                              | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Latched 17     | Defines whether the Input is latched.                                                        | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active                                                          | active          |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para              |
| 18             | virtual binary output of the protective device.                                              | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Latched 18     | Defines whether the Input is latched.                                                        | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active                                                          | active          |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para              |
| 19             | virtual binary output of the protective device.                                              | Assignment List |          | /Profibus                 |
| $\otimes$      |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Latched 19     | Defines whether the Input is latched.                                                        | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active                                                          | active          |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |

| Parameter      | Description                                                                                  | Setting range   | Default  | Menu path                 |
|----------------|----------------------------------------------------------------------------------------------|-----------------|----------|---------------------------|
| Config Bin Inp | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para              |
| 20             | virtual binary output of the protective device.                                              | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Latched 20     | Defines whether the Input is latched.                                                        | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active                                                          | active          |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para              |
| 21             | virtual binary output of the protective device.                                              | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Latched 21     | Defines whether the Input is latched.                                                        | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active                                                          | active          |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a virtual binary output of the protective device. | 1n,             |          | [Device Para              |
| 22             |                                                                                              | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Latched 22     | Defines whether the Input is latched.                                                        | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active                                                          | active          |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para              |
| 23             | virtual binary output of the protective device.                                              | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Latched 23     | Defines whether the Input is latched.                                                        | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active                                                          | active          |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a                                                 | 1n,             |          | [Device Para              |
| 24             | virtual binary output of the protective device.                                              | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |
| Latched 24     | Defines whether the Input is latched.                                                        | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active                                                          | active          |          | /Profibus                 |
| $\bigotimes$   |                                                                                              |                 |          | /Config Bin Inp<br>17-32] |

| Parameter      | Description                                     | Setting range   | Default  | Menu path                 |
|----------------|-------------------------------------------------|-----------------|----------|---------------------------|
| Config Bin Inp | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para              |
| 25             | virtual binary output of the protective device. | Assignment List |          | /Profibus                 |
| $\otimes$      |                                                 |                 |          | /Config Bin Inp<br>17-32] |
| Latched 25     | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active             | active          |          | /Profibus                 |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>17-32] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para              |
| 26             | virtual binary output of the protective device. | Assignment List |          | /Profibus                 |
| $\otimes$      |                                                 |                 |          | /Config Bin Inp<br>17-32] |
| Latched 26     | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active             | active          |          | /Profibus                 |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>17-32] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para              |
| 27             | virtual binary output of the protective device. | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>17-32] |
| Latched 27     | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active             | active          |          | /Profibus                 |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>17-32] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para              |
| 28             | virtual binary output of the protective device. | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>17-32] |
| Latched 28     | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active             | active          |          | /Profibus                 |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>17-32] |
| Config Bin Inp | Virtual Digital Input. This corresponds to a    | 1n,             |          | [Device Para              |
| 29             | virtual binary output of the protective device. | Assignment List |          | /Profibus                 |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>17-32] |
| Latched 29     | Defines whether the Input is latched.           | inactive,       | inactive | [Device Para              |
|                | Only available if: Latched = active             | active          |          | /Profibus                 |
| $\bigotimes$   |                                                 |                 |          | /Config Bin Inp<br>17-32] |

| Parameter            | Description                                                                                                      | Setting range          | Default  | Menu path                                              |
|----------------------|------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------------------------------------------------|
| Config Bin Inp<br>30 | Virtual Digital Input. This corresponds to a virtual binary output of the protective device.                     | 1n,<br>Assignment List |          | [Device Para<br>/Profibus<br>/Config Bin Inp<br>17-32] |
| Latched 30           | Defines whether the Input is latched.<br>Only available if: Latched = active                                     | inactive,<br>active    | inactive | [Device Para<br>/Profibus<br>/Config Bin Inp<br>17-32] |
| Config Bin Inp<br>31 | Virtual Digital Input. This corresponds to a virtual binary output of the protective device.                     | 1n,<br>Assignment List |          | [Device Para<br>/Profibus<br>/Config Bin Inp<br>17-32] |
| Latched 31           | Defines whether the Input is latched.<br>Only available if: Latched = active                                     | inactive,<br>active    | inactive | [Device Para<br>/Profibus<br>/Config Bin Inp<br>17-32] |
| Config Bin Inp<br>32 | Virtual Digital Input. This corresponds to a virtual binary output of the protective device.                     | 1n,<br>Assignment List |          | [Device Para<br>/Profibus<br>/Config Bin Inp<br>17-32] |
| Latched 32           | Defines whether the Input is latched.<br>Only available if: Latched = active                                     | inactive,<br>active    | inactive | [Device Para<br>/Profibus<br>/Config Bin Inp<br>17-32] |
| Slave ID             | Device address (Slave ID) within the bus<br>system. Each device address has to be<br>unique within a bus system. | 2 - 125                | 2        | [Device Para<br>/Profibus<br>/Bus<br>parameters]       |

# Inputs of the Profibus

| Name           | Description                          | Assignment via        |
|----------------|--------------------------------------|-----------------------|
| Assignment 1-I | Module input state: Scada Assignment | [Device Para          |
|                |                                      | /Profibus             |
|                |                                      | /Config Bin Inp 1-16] |
| Assignment 2-I | Module input state: Scada Assignment | [Device Para          |
|                |                                      | /Profibus             |
|                |                                      | /Config Bin Inp 1-16] |
| Assignment 3-I | Module input state: Scada Assignment | [Device Para          |
|                |                                      | /Profibus             |
|                |                                      | /Config Bin Inp 1-16] |

| Name            | Description                          | Assignment via        |
|-----------------|--------------------------------------|-----------------------|
| Assignment 4-I  | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 5-I  | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 6-I  | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 7-I  | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 8-I  | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 9-I  | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 10-I | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 11-I | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 12-I | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 13-I | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 14-I | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 15-I | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |
| Assignment 16-I | Module input state: Scada Assignment | [Device Para          |
|                 |                                      | /Profibus             |
|                 |                                      | /Config Bin Inp 1-16] |

| Name            | Description                          | Assignment via         |
|-----------------|--------------------------------------|------------------------|
| Assignment 17-I | Module input state: Scada Assignment | [Device Para           |
|                 |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 18-I | Module input state: Scada Assignment | [Device Para           |
|                 |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 19-I | Module input state: Scada Assignment | [Device Para           |
|                 |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 20-I | Module input state: Scada Assignment | [Device Para           |
|                 |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 21-I | Module input state: Scada Assignment | [Device Para           |
| -               |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 22-I | Module input state: Scada Assignment | [Device Para           |
| 5               |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 23-I | Module input state: Scada Assignment | [Device Para           |
| 5               |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 24-I | Module input state: Scada Assignment | [Device Para           |
| 5               |                                      | -<br>/Profibus         |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 25-I | Module input state: Scada Assignment | [Device Para           |
| 5               |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 26-I | Module input state: Scada Assignment | [Device Para           |
| 5               |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 27-I | Module input state: Scada Assignment | [Device Para           |
| 5               |                                      | -<br>/Profibus         |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 28-I | Module input state: Scada Assignment | [Device Para           |
| <b>,</b>        |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 29-I | Module input state: Scada Assignment | [Device Para           |
|                 |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
|                 |                                      |                        |

| Name            | Description                          | Assignment via         |
|-----------------|--------------------------------------|------------------------|
| Assignment 30-I | Module input state: Scada Assignment | [Device Para           |
|                 |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 31-I | Module input state: Scada Assignment | [Device Para           |
|                 |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |
| Assignment 32-I | Module input state: Scada Assignment | [Device Para           |
|                 |                                      | /Profibus              |
|                 |                                      | /Config Bin Inp 17-32] |

# Profibus Signals (Output States)

| Signal            | Description                                                      |
|-------------------|------------------------------------------------------------------|
| Data OK           | Data within the Input field are OK (Yes=1)                       |
| SubModul Err      | Assignable Signal, Failure in Sub-Module, Communication Failure. |
| Connection active | Connection active                                                |
| Scada Cmd 1       | Scada Command                                                    |
| Scada Cmd 2       | Scada Command                                                    |
| Scada Cmd 3       | Scada Command                                                    |
| Scada Cmd 4       | Scada Command                                                    |
| Scada Cmd 5       | Scada Command                                                    |
| Scada Cmd 6       | Scada Command                                                    |
| Scada Cmd 7       | Scada Command                                                    |
| Scada Cmd 8       | Scada Command                                                    |
| Scada Cmd 9       | Scada Command                                                    |
| Scada Cmd 10      | Scada Command                                                    |
| Scada Cmd 11      | Scada Command                                                    |
| Scada Cmd 12      | Scada Command                                                    |
| Scada Cmd 13      | Scada Command                                                    |
| Scada Cmd 14      | Scada Command                                                    |
| Scada Cmd 15      | Scada Command                                                    |
| Scada Cmd 16      | Scada Command                                                    |

## **Profibus Values**

| Value       | Description                                                     | Default | Size         | Menu path                                      |
|-------------|-----------------------------------------------------------------|---------|--------------|------------------------------------------------|
| Fr Sync Err | Frames, that were sent from the Master to the Slave are faulty. | 1       | 1 - 99999999 | [Operation<br>/Count and RevData<br>/Profibus] |

| Value        | Description                                                                                                                                   | Default | Size               | Menu path                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|-------------------------------------------------------|
| crcErrors    | Number of CRC errors that the ss<br>manager has recognized in received<br>response frames from ss (each error<br>caused a subsystem reset)    | 1       | 1 - 99999999       | [Operation<br>/Count and RevData<br>/Profibus]        |
| frLossErrors | Number of frame loss errors that the ss<br>manager recognized in received<br>response frames from ss (each error<br>caused a subsystem reset) | 1       | 1 - 999999999      | [Operation<br>/Count and RevData<br>/Profibus]        |
| ssCrcErrors  | Number of CRC errors that the<br>subsystem has recognized in received<br>trigger frames from host                                             | 1       | 1 - 99999999       | [Operation<br>/Count and RevData<br>/Profibus]        |
| ssResets     | Number of subsystem resets/restarts from ss manager                                                                                           | 1       | 1 - 999999999      | [Operation<br>/Count and RevData<br>/Profibus]        |
| Master ID    | Device address (Master ID) within the<br>bus system. Each device address has to<br>be unique within a bus system.                             | 1       | 1 - 125            | [Operation<br>/Status Display<br>/Profibus<br>/State] |
| HO ld PSub   | Handoff Id of PbSub                                                                                                                           | 0       | 0 -<br>99999999999 | [Operation<br>/Status Display<br>/Profibus<br>/State] |
| t-WatchDog   | The Profibus Chip detects a communication issue if this timer is expired without any communication (Parameterising telegram).                 | 0       | 0 -<br>99999999999 | [Operation<br>/Status Display<br>/Profibus<br>/State] |

| Value       | Description                                                                                | Default     | Size             | Menu path       |
|-------------|--------------------------------------------------------------------------------------------|-------------|------------------|-----------------|
| Slave State | Communication State between Slave and Master.                                              | Baud Search | Baud Search,     | [Operation      |
|             |                                                                                            |             | Baud Found,      | /Status Display |
|             |                                                                                            |             | PRM OK,          | /Profibus       |
|             |                                                                                            |             | PRM REQ,         | /State]         |
|             |                                                                                            |             | PRM Fault,       |                 |
|             |                                                                                            |             | CFG Fault,       |                 |
|             |                                                                                            |             | Clear Data,      |                 |
|             |                                                                                            |             | Data<br>exchange |                 |
| Baud rate   | The baud rate that has been detected lastly, will still be shown after a connection issue. |             | 12 Mb/s,         | [Operation      |
|             |                                                                                            |             | 6 Mb/s,          | /Status Display |
|             |                                                                                            |             | 3 Mb/s,          | /Profibus       |
|             |                                                                                            |             | 1.5 Mb/s,        | /State]         |
|             |                                                                                            |             | 0.5 Mb/s,        |                 |
|             |                                                                                            |             | 187500 baud,     |                 |
|             |                                                                                            |             | 93750 baud,      |                 |
|             |                                                                                            |             | 45450 baud,      |                 |
|             |                                                                                            |             | 19200 baud,      |                 |
|             |                                                                                            |             | 9600 baud,       |                 |
|             |                                                                                            |             |                  |                 |
| PNO Id      | PNO Identification Number. GSD                                                             | 0C50h       | 0C50h            | [Operation      |
|             | Identification Number.                                                                     |             |                  | /Status Display |
|             |                                                                                            |             |                  | /Profibus       |
|             |                                                                                            |             |                  | /State]         |

## IEC60870-5-103

IEC 103

### IEC60870-5-103 Protocol Configuration

In order to use the IEC60870-5-103 protocol it has to be assigned to the X103 Interface within the Device Planning. The device will reboot after setting this parameter.

Moreover, the IEC103 protocol has to be activated by setting [Device Para/ IEC 103] »Function« to "active".

# NOTICE

The parameter X103 is only available if the device is at the rear side equipped with an interface like RS485 or Fiber Optic.



If the device is equipped with an Fiber Optic Interface, the Optical Rest Position has to be set within the Device Parameters .

The time-controlled IEC60870-5-103 protocol is based on the Master-Slave working principle. This means that the substation control and protection system sends an enquiry or instruction to a certain device (slave address) which will then be answered or carried out accordingly.

The device meets the compatibility mode 2. Compatibility mode 3 is not supported.

The following IEC60870-5-103-functions will be supported:

- Initialization (Reset)
- Time Synchronization
- Reading out of time stamped, instantaneous signals
- General Queries
- Cyclic Signals
- General Commands
- Transmission of Disturbance Data
- Blocking of Monitor Direction
- Test Mode

#### Initialization

The communication has to be reset by a Reset Command each time that the device is turned on or that communication parameters have been changed. The "Reset CU" Command resets. The relay acts on both Reset Commands (Reset CU or Reset FCB).

The relay acts on the reset command by an identification signal ASDU 5 (Application Service Data Unit), as a reason (Cause Of Transmission, COT) for the transmission of the answer either a "Reset CU" or a "Reset FCB" will be sent depending on the type of the reset command. This information can be part of the data section of the ASDU-signal.

#### Name of the Manufacturer

The section for the identification of the software contains three digits of the device code for the identification of the device type. Beside the upper mentioned identification number the device generates a communication start event.

### Time Synchronization

Time and date of the relay can be set by means of the time synchronization function of the IEC60870-5-103 protocol. If the time synchronization signal is send out with a confirmation request, the device will answer with a confirmation signal.

#### Spontaneous Events

The events that are generated by the device will be forwarded to the master with numbers for standard function types / standard information. The data point list comprises all events that can be generated by the device.

### Cyclic Measurement

The device generates on a cyclic base measured values by means of ASDU 9. They can be read out via a class 2 query. Please take into account that the measured values will be send out as multiples (1.2 or 2.4 times the rated value). How to set 1.2 or 2.4 as multiplier for a value can be taken from the data point list.

The parameter "Transm priv meas val" defines if additional measurement values should be transmitted in the private part. Public and private measured values are transmitted by ASDU9. That means that either a "private" or a "public" ASDU9 will be transmitted. If this parameter is set, the ASDU9 will contain additional measured values that are an enhancement of the standard. The "private" ASDU9 is send with a fixed function type and information number that does not depend the type of device. Please refer to the data point list.

#### Commands

The data point list comprises a list of the supported commands. Any command will be responded by the device with a positive or negative confirmation. If the command is executable, the execution with the corresponding reason for the transmission (COT) will be lead in at first, and subsequently the execution will be confirmed with COT1 within a ASDU9.

#### Disturbance Recording

The disturbances recorded by the device can be read out by means described in standard IEC60870-5-103. The device is in compliance with the VDEW-Control System by transmission of an ASDU 23 without disturbance records at the beginning of an GI-Cycle.

#### A disturbance record contains the following information:

- Analog Measured Values, IL1, IL2, IL3, IN, Voltages VL1, VL2, VL3, VEN;
- Binary States, transmitted as marks, e.g. Alarms and Trips.
- The Transmission ratio will not be supported. The transmission ratio is included in the "Multiplier".

#### Blocking the Transmission in Monitor Direction

The relay supports the function to block the transmission in monitor direction. There are two ways to activate this blocking:

- Manual activation via Direct Control parameter »Activate Block MD«
- External activation, by assigning a signal to the setting parameter »Ex activate Block MD«

### Test Mode

The relay supports the test mode (Cause of Transmission 7). There are two ways to activate the test mode:

- Manual activation via Direct Control parameter »Activate test mode«
- External activation, by assigning a signal to the setting parameter »Ex activate test mode«

## Global Protection Parameters of the IEC60870-5-103

| Parameter               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Setting range                                                 | Default  | Menu path                 |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------|---------------------------|
| Function                | Activation or deactivation of the IEC103 communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | inactive,<br>active                                           | inactive | [Device Para<br>/IEC 103] |
| Slave ID                | Device address (Slave ID) within the bus<br>system. Each device address has to be<br>unique within a bus system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 - 247                                                       | 1        | [Device Para<br>/IEC 103] |
| Baud rate               | Baud rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1200,<br>2400,<br>4800,<br>9600,<br>19200,<br>38400,<br>57600 | 19200    | [Device Para<br>/IEC 103] |
| Physical<br>Settings    | Digit 1: Number of bits. Digit 2: E=even<br>parity, O=odd parity, N=no parity. Digit 3:<br>Number of stop bits. More information on<br>the parity: It is possible that the last data bit<br>is followed by a parity bit which is used for<br>recognition of communication errors. The<br>parity bit ensures that with even parity<br>("EVEN") always an even number of bits<br>with valence "1" or with odd parity ("ODD")<br>an odd number of "1" valence bits are<br>transmitted. But it is also possible to<br>transmit no parity bits (here the setting is<br>"Parity = None"). More information on the<br>stop-bits: The end of a data byte is<br>terminated by the stop-bits. | 8E1,<br>8O1,<br>8N1,<br>8N2                                   | 8E1      | [Device Para<br>/IEC 103] |
| t-call                  | If there is no request telegram sent from<br>Scada to the device after expiry of this time<br>- the device concludes a communication<br>failure within the Scada system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 - 3600s                                                     | 60s      | [Device Para<br>/IEC 103] |
| Transm priv<br>meas val | Transmit additional (private) measuring values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inactive,<br>active                                           | inactive | [Device Para<br>/IEC 103] |
| Transfer<br>Disturb Rec | Activates the transmission of disturbance records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | inactive,<br>active                                           | inactive | [Device Para<br>/IEC 103] |

| Parameter                | Description                                                                                                                                                                                                                                                                                                              | Setting range          | Default      | Menu path                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|------------------------------------------------------------|
| Timezone                 | Selection whether the timestamps in IEC103 messages shall be given as UTC or local time. ("Local time" always includes the actual daylight saving settings.)                                                                                                                                                             | UTC,<br>Local Time     | UTC          | [Device Para<br>/IEC 103]                                  |
| Energy Pulse<br>Rate     | The energy values are always transmitted<br>as counter values (i.e. as integer numbers).<br>This setting defines the unit: If "1" is set<br>then each counter increment is 1 kWh, if "2"<br>is set then each counter increment is 2<br>kWh,etc. The setting "0" has the effect that<br>no energy values are transmitted. | 0 - 100                | 0            | [Device Para<br>/IEC 103]                                  |
| DFC-Compat.              | This setting is only required for certain<br>substation implementations. If there should<br>be communication problems related to the<br>Command Response Queue this setting<br>switches the device over to a different<br>behavior.                                                                                      | inactive,<br>active    | inactive     | [Device Para<br>/IEC 103]                                  |
| Optical rest<br>position | Optical rest position                                                                                                                                                                                                                                                                                                    | Light off,<br>Light on | Light on     | [Device Para<br>/IEC 103]                                  |
| Ex activate test<br>mode | The signal assigned to this parameter<br>switches the IEC103 communication into<br>Test Mode.                                                                                                                                                                                                                            | 1n,<br>Assignment List | Sgen.Running | [Service<br>/Test (Prot<br>inhibit)<br>/Scada<br>/IEC 103] |
| Ex activate<br>Block MD  | The signal assigned to this parameter<br>activates the blocking of IEC103<br>transmission in monitor direction.                                                                                                                                                                                                          | 1n,<br>Assignment List |              | [Service<br>/Test (Prot<br>inhibit)<br>/Scada<br>/IEC 103] |

# Direct Commands of the IEC60870-5-103

| Parameter             | Description                                                                                             | Setting range       | Default  | Menu path                           |
|-----------------------|---------------------------------------------------------------------------------------------------------|---------------------|----------|-------------------------------------|
| Activate test<br>mode | This Direct Control parameter switches the IEC103 communication into Test Mode (or back to nomal mode). | inactive,<br>active | inactive | [Service<br>/Test (Prot<br>inhibit) |
| $\bigotimes$          |                                                                                                         |                     |          | /Scada<br>/IEC 103]                 |

| Parameter            | Description                                                                                                        | Setting range       | Default  | Menu path                                |
|----------------------|--------------------------------------------------------------------------------------------------------------------|---------------------|----------|------------------------------------------|
| Activate Block<br>MD | This Direct Control parameter activates (or deactivates) the blocking of IEC103 transmission in monitor direction. | inactive,<br>active | inactive | [Service<br>/Test (Prot<br>inhibit)      |
| $\bigotimes$         |                                                                                                                    |                     |          | /Scada<br>/IEC 103]                      |
| Res all Diag Cr      | Reset all diagnosis counters                                                                                       | inactive,<br>active | inactive | [Operation<br>/<br>Reset/Acknowle<br>dge |
|                      |                                                                                                                    |                     |          | /Reset]                                  |

# IEC60870-5-103 Input States

| Name                       | Description                                                                                 | Assignment via       |
|----------------------------|---------------------------------------------------------------------------------------------|----------------------|
| Ex activate test<br>mode-l | Module input state: Test Mode of the IEC103 communication.                                  | [Service             |
|                            |                                                                                             | /Test (Prot inhibit) |
|                            |                                                                                             | /Scada               |
|                            |                                                                                             | /IEC 103]            |
| Ex activate Block<br>MD-I  | Module input state: Activation of the blocking of IEC103 transmission in monitor direction. | [Service             |
|                            |                                                                                             | /Test (Prot inhibit) |
|                            |                                                                                             | /Scada               |
|                            |                                                                                             | /IEC 103]            |

# IEC60870-5-103 Signals (Output States)

| Signal             | Description                                                                          |
|--------------------|--------------------------------------------------------------------------------------|
| Scada Cmd 1        | Scada Command                                                                        |
| Scada Cmd 2        | Scada Command                                                                        |
| Scada Cmd 3        | Scada Command                                                                        |
| Scada Cmd 4        | Scada Command                                                                        |
| Scada Cmd 5        | Scada Command                                                                        |
| Scada Cmd 6        | Scada Command                                                                        |
| Scada Cmd 7        | Scada Command                                                                        |
| Scada Cmd 8        | Scada Command                                                                        |
| Scada Cmd 9        | Scada Command                                                                        |
| Scada Cmd 10       | Scada Command                                                                        |
| Transmission       | Signal: SCADA active                                                                 |
| Failure Event lost | Failure event lost                                                                   |
| Test mode active   | Signal: IEC103 communication has been switched over into Test Mode.                  |
| Block MD active    | Signal: The blocking of IEC103 transmission in monitor direction has been activated. |

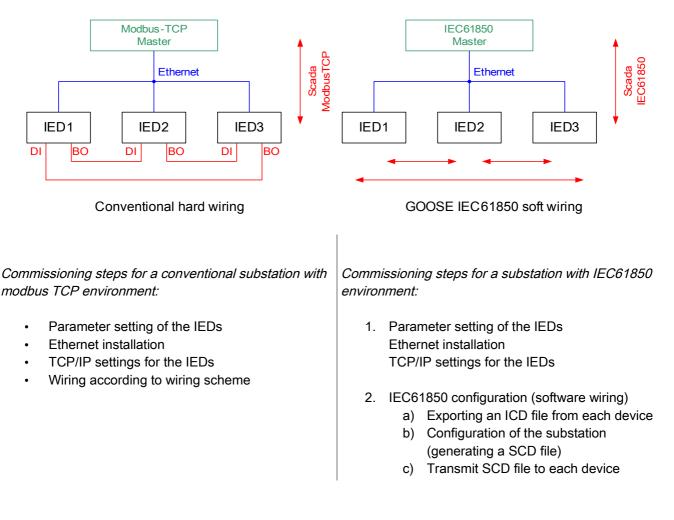
### IEC60870-5-103 Values

| Value                | Description                        | Default | Size        | Menu path          |
|----------------------|------------------------------------|---------|-------------|--------------------|
| NReceived            | Total Number of received Messages  | 0       | 0 -         | [Operation         |
|                      |                                    |         | 99999999999 | /Count and RevData |
|                      |                                    |         |             | /IEC 103]          |
| NSent                | Total Number of sent Messages      | 0       | 0 -         | [Operation         |
|                      |                                    |         | 99999999999 | /Count and RevData |
|                      |                                    |         |             | /IEC 103]          |
| NBadFramings         | Number of bad Messages             | 0       | 0 -         | [Operation         |
|                      |                                    |         | 99999999999 | /Count and RevData |
|                      |                                    |         |             | /IEC 103]          |
| NBadParities         | Number of Parity Errors            | 0       | 0 -         | [Operation         |
|                      |                                    |         | 99999999999 | /Count and RevData |
|                      |                                    |         |             | /IEC 103]          |
| NBreakSignals        | Number of Communication Interrupts | 0       | 0 -         | [Operation         |
|                      |                                    |         | 99999999999 | /Count and RevData |
|                      |                                    |         |             | /IEC 103]          |
| NInternalError       | Number of Internal Errors          | 0       | 0 -         | [Operation         |
|                      |                                    |         | 99999999999 | /Count and RevData |
|                      |                                    |         |             | /IEC 103]          |
| NBadCharChecks<br>um | Number of Checksum Errors          | 0       | 0 -         | [Operation         |
|                      |                                    |         | 99999999999 | /Count and RevData |
|                      |                                    |         |             | /IEC 103]          |

## IEC61850

### IEC61850

### Introduction


To understand the functioning and mode of operation of a substation in an IEC61850 automation environment, it is useful to compare the commissioning steps with those of a conventional substation in a Modbus TCP environment.

In a conventional substation the individual IEDs (Intelligent Electronic Devices) communicate in vertically direction with the higher level control center via SCADA. The horizontal communication is exclusively realized by wiring output relays (OR) and digital inputs (DI) among each other.

In an IEC61850 environment communication between the IEDs takes place digitally (via Ethernet) by a service called GOOSE (Generic Object Oriented Substation Event). By means of this service information about events is submitted between each IED. Therefore each IED has to know about the functional capability of all other connected IEDs.

Each IEC61850 capable device includes a description of it's own functionality and communications skills (IED Capability Description, \*.ICD).

By means of a Substation Configuration Tool to describe the structure of the substation, assignment of the devices to the primary technique, etc. a virtual wiring of the IEDs among each other and with other switch gear of the substation can be done. A description of the substation configuration will be generated in form of a \*.SCD file. At last this file has to be submitted to each device. Now the IEDs are able to communicate closed among each other, react to interlockings and operate switch gear.



# Generation/Export of a device specific ICD file

Please refer to chapter "IEC61850" of the Smart view Manual.

### Generation/Export of a SCD file

Please refer to chapter "IEC61850" of the Smart view Manual.

#### Substation configuration, Generation of .SCD file (Station Configuration Description)

The substation configuration, i. e. connection of all logical nodes of protection and control devices, as well as switch gear usually is done with a "Substation Configuration Tool". Therefore the ICD files of all connected IEDs in the IEC61850 environment have to be available. The result of the station wide "software wiring" can be exported in the form of a SCD file (Station Configuration Description).

Suitable Substation Configuration Tools (SCT) are available by the following Companies:

H&S, Hard- & Software Technologie GmbH & Co. KG, Dortmund (Germany) (www.hstech.de). Applied Systems Engineering Inc. (www.ase-systems.com) Kalki Communication Technologies Limited (www.kalkitech.com)

# Import of the .SCD file into the device

Please refer to chapter "IEC61850" of the Smart view Manual.

#### IEC 61850 Virtual Outputs

Additionally to the standardized logical node status information up to 32 free configurable status information can be assigned to 32 Virtual Outputs. This can be done in the menu [Device Para/IEC61850].

# Direct Commands of the IEC 61850

| Parameter             | Description                               | Setting range | Default  | Menu path                  |
|-----------------------|-------------------------------------------|---------------|----------|----------------------------|
| ResetStatistic        | Reset of all IEC61850 diagnostic counters | inactive,     | inactive | [Operation                 |
| $\mathbf{\mathbf{A}}$ |                                           | active        |          | /<br>Reset/Acknowle<br>dge |
|                       |                                           |               |          | /Reset]                    |

# Global Parameters of the IEC 61850

| Parameter            | Description                                           | Setting range       | Default  | Menu path                  |
|----------------------|-------------------------------------------------------|---------------------|----------|----------------------------|
| Function             | Permanent activation or deactivation of module/stage. | inactive,<br>active | inactive | [Device Para<br>/IEC61850] |
| Deadb integr<br>time | Deadband integration time.                            | 0 - 300             | 0        | [Device Para<br>/IEC61850] |
| $\bigotimes$         |                                                       |                     |          |                            |

# Global Parameters of the IEC 61850

| Parameter      | Description                                                                                                                       | Setting range          | Default | Menu path                  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|----------------------------|
| VirtualOutput1 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput2 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput3 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput4 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |

| Parameter       | Description                                                                                                                       | Setting range          | Default | Menu path                  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|----------------------------|
| VirtualOutput5  | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput6  | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput7  | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput8  | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput9  | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput10 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput11 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput12 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput13 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput14 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |

| Parameter       | Description                                                                                                                       | Setting range          | Default | Menu path                  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|----------------------------|
| VirtualOutput15 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput16 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput17 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput18 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput19 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput20 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput21 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput22 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput23 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput24 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |

| Parameter       | Description                                                                                                                       | Setting range          | Default | Menu path                  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|----------------------------|
| VirtualOutput25 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput26 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput27 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput28 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput29 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput30 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput31 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |
| VirtualOutput32 | Virtual Output. This signal can be assigned<br>or visualized via the SCD file to other<br>devices within the IEC61850 substation. | 1n,<br>Assignment List |         | [Device Para<br>/IEC61850] |

# States of the Inputs of the IEC 61850

| Name        | Description                                     | Assignment via |
|-------------|-------------------------------------------------|----------------|
| VirtOut1-I  | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut2-I  | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut3-I  | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut4-I  | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut5-I  | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut6-I  | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut7-I  | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut8-I  | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut9-I  | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut10-I | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut11-I | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut12-I | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut13-I | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut14-I | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut15-I | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut16-I | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut17-I | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |
| VirtOut18-I | Module input state: Binary state of the Virtual | [Device Para   |
|             | Output (GGIO)                                   | /IEC61850]     |

| Name        | Description                                                   | Assignment via |
|-------------|---------------------------------------------------------------|----------------|
| VirtOut19-I | Module input state: Binary state of the Virtual Output (GGIO) | [Device Para   |
|             |                                                               | /IEC61850]     |
| VirtOut20-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut21-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut22-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut23-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut24-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut25-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut26-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut27-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut28-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut29-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut30-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut31-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |
| VirtOut32-I | Module input state: Binary state of the Virtual               | [Device Para   |
|             | Output (GGIO)                                                 | /IEC61850]     |

# IEC 61850 Module Signals (Output States)

| Signal                      | Description                                        |
|-----------------------------|----------------------------------------------------|
| MMS Client connected        | At least one MMS client is connected to the device |
| All Goose Subscriber active | All Goose subscriber in the device are working     |
| VirtInp1                    | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp2                    | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp3                    | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp4                    | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp5                    | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp6                    | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp7                    | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp8                    | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp9                    | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp10                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp11                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp12                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp13                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp14                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp15                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp16                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp17                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp18                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp19                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp20                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp21                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp22                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp23                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp24                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp25                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp26                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp27                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp28                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp29                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp30                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp31                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| VirtInp32                   | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| Quality of GGIO In1         | Self-Supervision of the GGIO Input                 |
| Quality of GGIO In2         | Self-Supervision of the GGIO Input                 |
| Quality of GGIO In3         | Self-Supervision of the GGIO Input                 |
| Quality of GGIO In4         | Self-Supervision of the GGIO Input                 |

| Signal               | Description                                                                                      |
|----------------------|--------------------------------------------------------------------------------------------------|
| Quality of GGIO In5  | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In6  | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In7  | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In8  | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In9  | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In10 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In11 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In12 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In13 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In14 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In15 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In16 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In17 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In18 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In19 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In20 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In21 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In22 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In23 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In24 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In25 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In26 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In27 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In28 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In29 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In30 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In31 | Self-Supervision of the GGIO Input                                                               |
| Quality of GGIO In32 | Self-Supervision of the GGIO Input                                                               |
| SPCSO1               | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO2               | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO3               | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO4               | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO5               | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO6               | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO7               | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |

| Signal  | Description                                                                                      |
|---------|--------------------------------------------------------------------------------------------------|
| SPCSO8  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO9  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO10 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO11 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO12 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO13 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO14 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO15 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO16 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO17 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO18 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO19 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO20 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO21 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO22 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO23 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO24 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO25 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO26 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO27 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO28 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO29 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO30 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |

| Signal | Description                                                                                      |
|--------|--------------------------------------------------------------------------------------------------|
|        | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
|        | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |

# IEC 61850 Module Values

| Value                     | Description                                                                                                                     | Default | Size                | Menu path                                      |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|------------------------------------------------|
| NoOfGooseRxAll            | Total number of received GOOSE<br>messages including messages for other<br>devices (subscribed and not subscribed<br>messages). | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| NoOfGooseRxSub<br>scribed | Total Number of subscribed GOOSE<br>messages including messages with<br>incorrect content.                                      | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| NoOfGooseRxCor<br>rect    | Total Number of subscribed and correctly received GOOSE messages.                                                               | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| NoOfGooseRxNe<br>w        | Number of subscribed and correctly received GOOSE messages with new content.                                                    | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| NoOfGooseTxAll            | Total Number of GOOSE messages that have been published by this device.                                                         | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| NoOfGooseTxNe<br>w        | Total Number of new GOOSE messages<br>(modified content) that have been<br>published by this device.                            | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| NoOfServerRequ<br>estsAll | Total number of MMS Server requests including incorrect requests.                                                               | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| NoOfDataReadAll           | Total Number of values read from this device including incorrect requests.                                                      | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| NoOfDataReadCo<br>rrect   | Total Number of correctly read values from this device.                                                                         | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| NoOfDataWritten<br>All    | Total Number of values written by this device including incorrect ones.                                                         | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |

| Value                          | Description                                                                            | Default | Size                 | Menu path                                      |
|--------------------------------|----------------------------------------------------------------------------------------|---------|----------------------|------------------------------------------------|
| NoOfDataWritten<br>Correct     | Total Number of correctly written values by this device.                               | 0       | 0 -<br>9999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| NoOfDataChange<br>Notification | Number of detected changes within the datasets that are published with GOOSE messages. | 0       | 0 -<br>9999999999999 | [Operation<br>/Count and RevData<br>/IEC61850] |
| No of Client<br>Connections    | Number of active MMS client connections                                                | 0       | 0 -<br>999999999999  | [Operation<br>/Count and RevData<br>/IEC61850] |

# Values of the IEC 61850

| Value           | Description                              | Default | Size  | Menu path       |
|-----------------|------------------------------------------|---------|-------|-----------------|
|                 | State of the GOOSE Publisher (on or off) | Off     | Off,  | [Operation      |
| ate             |                                          |         | On,   | /Status Display |
|                 |                                          |         | Error | /IEC61850       |
|                 |                                          |         |       | /State]         |
| GooseSubscriber | State of the GOOSE Subscriber (on or     | Off     | Off,  | [Operation      |
| State           | off)                                     |         | On,   | /Status Display |
|                 |                                          |         | Error | /IEC61850       |
|                 |                                          |         |       | /State]         |
| MmsServerState  | State of MMS Server (on or off)          | Off     | Off,  | [Operation      |
|                 |                                          |         | On,   | /Status Display |
|                 |                                          |         | Error | /IEC61850       |
|                 |                                          |         |       | /State]         |

# DNP3

#### DNP3

DNP (Distributed Network Protocol) is for data and information exchange between SCADA (Master) and IEDs (Intelligent Electronic Devices). The DNP protocol has been developed in first releases for serial communication. Due to further development of the DNP protocol, it offers now also TCP and UDP communication options via Ethernet.

#### **DNP Device Planning**

Depending on the hardware of the proctective device up to three DNP communication options are available within the Device Planning.

Call up the device planning menu.

Select (depending on device code) the appropriate SCADA Protocol.

- DNP3 RTU (via serial Port)
- DNP3 TCP (via Ethernet)
- DNP3 UDP (via Ethernet)

#### **DNP** Protocol General Settings



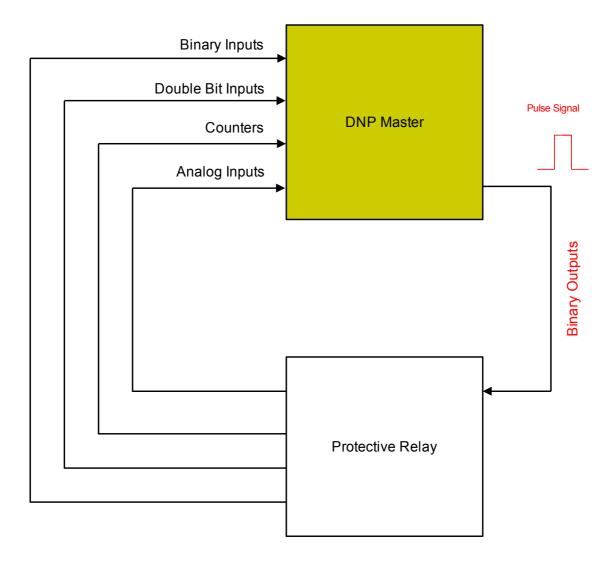
Please note that unsolicited reporting is not available for serial communication, if more than one slave is connected to the serial communication (collisions). Do not use in these cases unsolicited reporting for DNP RTU.

Unsolicited reporting is available also for serial communication, if each slave is connected via a separated connection to the Master-System. That means, the master is equipped with a separate serial interface for each slave (multi serial cards).

Call up menu [Device Para/DNP3/Communication].

The Communication (General Settings) Settings have to be set according to the needs of the SCADA (Master) – System.

Self Addressing is available for DNP-TCP. That means that the Master and Slave id are auto-detected.


# **Point Mapping**

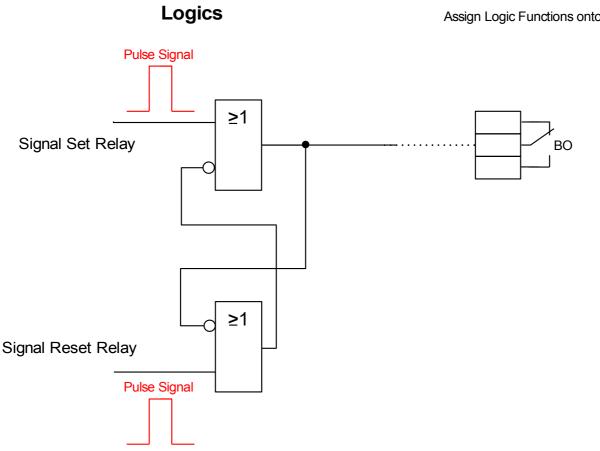
# **NOTICE** Please take into account that the designations of inputs and outputs are set from the Masters perspective. This way of choosing the designations is due to a definition in the DNP standard. That means for example that Binary Inputs that can be set within the Device Parameters of the DNP protocol are the "Binary Inputs" of the Master.

Call up menu [Device Para/DNP3/Point Map]. Once the general settings of the DNP protocol are done, the point mapping is to be done as a next step.

- Binary Inputs (States to be send to the master)
- Double Bit Inputs (Breaker states to be send to the master)
- · Counters (Counters to be send to the master)
- Analog Inputs (e.g. measured values to be send to the master). Please take into account that floating values have to be transmitted as integers. That means they have to be scaled (multiplied) with a scaling factor in order to bring them into the integer format.

Use Binary outputs in order to control e.g. LEDs or Relays within the protective device (via Logic).




#### **Point Mapping**

Please try to avoid gaps that will slow down the performance of the DNP communication. That means do not leave unused inputs / outputs in between used inputs / outputs (e.g. Do not use Binary Output 1 and 3 when 2 is unused).

# Application Example Setting a Relay:

Binary Output signals of the DNP cannot directly be used in order to switch relays because the DNP Binary Outputs are pulse signals (by DNP definition, not steady state). Steady states can be created by means of Logic functions. The Logic Functions can be assigned onto the Relay Inputs.

Please note: You can use a Set/Reset element (Flip Flop) from Logics.



# **Direct Commands of the DNP**

| Parameter       | Description                                                  | Setting range | Default  | Menu path                  |
|-----------------|--------------------------------------------------------------|---------------|----------|----------------------------|
| Res all Diag Cr | Reset all diagnosis counters                                 | inactive,     | inactive | [Operation                 |
| *               |                                                              | active        |          | /<br>Reset/Acknowle<br>dge |
|                 |                                                              |               |          | /Reset]                    |
| Slave Id        | Slaveld defines the DNP3 address of this device (Outstation) | 0 - 65519     | 1        | [Device Para<br>/DNP3      |
| $\otimes$       |                                                              |               |          | /<br>Communication<br>]    |

Assign Logic Functions onto Relay Inputs

| Parameter | Description                                         | Setting range | Default | Menu path                                   |
|-----------|-----------------------------------------------------|---------------|---------|---------------------------------------------|
| Master Id | Masterld defines the DNP3 address of master (SCADA) | 0 - 65519     | 65500   | [Device Para<br>/DNP3<br>/<br>Communication |

# Global Protection Parameters of the DNP

| Parameter      | Description                                                                                                                                                                                                      | Setting range | Default  | Menu path               |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-------------------------|
| Function       | Permanent activation or deactivation of                                                                                                                                                                          | inactive,     | inactive | [Device Para            |
|                | module/stage.                                                                                                                                                                                                    | active        |          | /DNP3                   |
| $\bigotimes$   |                                                                                                                                                                                                                  |               |          | /<br>Communication<br>] |
| IP Port Number | IP Port Number.                                                                                                                                                                                                  | 0 - 65535     | 20000    | [Device Para            |
|                |                                                                                                                                                                                                                  |               |          | /DNP3                   |
| *              | In general it is recommended to keep the<br>default value. if this is not possible then<br>select a number out of the private range<br>49152-52151 or 52162-65535 that is not<br>yet in use within your network. |               |          | /<br>Communication<br>] |
| Baud rate      | Baud rate for communication                                                                                                                                                                                      | 1200,         | 19200    | [Device Para            |
|                |                                                                                                                                                                                                                  | 2400,         |          | /DNP3                   |
| $\bigotimes$   |                                                                                                                                                                                                                  | 4800,         |          | /                       |
|                |                                                                                                                                                                                                                  | 9600,         |          | Communication           |
|                |                                                                                                                                                                                                                  | 19200,        |          | 1                       |
|                |                                                                                                                                                                                                                  | 38400,        |          |                         |
|                |                                                                                                                                                                                                                  | 57600,        |          |                         |
|                |                                                                                                                                                                                                                  | 115200        |          |                         |
| Frame Layout   | Frame Layout                                                                                                                                                                                                     | 8E1,          | 8E1      | [Device Para            |
|                |                                                                                                                                                                                                                  | 801,          |          | /DNP3                   |
| $\bigotimes$   |                                                                                                                                                                                                                  | 8N1,          |          | /                       |
| ÷              |                                                                                                                                                                                                                  | 8N2           |          | Communication           |
| Optical rest   | Optical rest position                                                                                                                                                                                            | Light off,    | Light on | [Device Para            |
| position       |                                                                                                                                                                                                                  | Light on      |          | /DNP3                   |
| _              |                                                                                                                                                                                                                  |               |          | 1                       |
| $\bigotimes$   |                                                                                                                                                                                                                  |               |          | Communication           |

| Parameter            | Description                                                         | Setting range | Default  | Menu path               |
|----------------------|---------------------------------------------------------------------|---------------|----------|-------------------------|
| SelfAddress          | Support of self (automatic) addresses                               | inactive,     | inactive | [Device Para            |
|                      |                                                                     | active        |          | /DNP3                   |
| $\bigotimes$         |                                                                     |               |          | 1                       |
| •                    |                                                                     |               |          | Communication           |
| DataLink             | Enables or disables the data layer                                  | Never,        | Never    | Device Para             |
| confirm              | confirmation (ack).                                                 | Always,       |          | /DNP3                   |
|                      |                                                                     | On_Large      |          | /                       |
| $\bigotimes$         |                                                                     |               |          | ,<br>Communication<br>] |
| t-DataLink           | Data layer confirmation timeout                                     | 0.1 - 10.0s   | 1s       | [Device Para            |
| confirm              |                                                                     |               |          | /DNP3                   |
|                      |                                                                     |               |          | /<br>Communication      |
| (                    |                                                                     |               |          | ]                       |
| DataLink num         | Number of repetition of data link packet                            | 0 - 255       | 3        | [Device Para            |
| retries              | sending after failing                                               |               |          | /DNP3                   |
|                      |                                                                     |               |          | 1                       |
| $\bigotimes$         |                                                                     |               |          | Communication ]         |
| Direction Bit        | Enables Direction Bit functionality. The                            | inactive,     | inactive | [Device Para            |
|                      | Direction Bit is 0 for SlaveStation and 1 for<br>MasterStation      | active        |          | /DNP3                   |
| $\bigotimes$         |                                                                     |               |          | 1                       |
|                      |                                                                     |               |          | Communication           |
| Max Frame Size       | This value is used to limit the net Frame                           | 64 - 255      | 255      | J<br>[Device Para       |
| Hux Hume Size        | Size                                                                | 04 200        | 233      | /DNP3                   |
|                      |                                                                     |               |          |                         |
| $\bigotimes$         |                                                                     |               |          | ,<br>Communication      |
|                      |                                                                     |               |          | ]                       |
| Test Link Period     | This value specifies the time period when to send a Test Link-Frame | 0.0 - 120.0s  | 0s       | [Device Para            |
|                      |                                                                     |               |          | /DNP3                   |
| $\bigotimes$         |                                                                     |               |          | /                       |
| ÷                    |                                                                     |               |          | Communication           |
| AppLink              | Determines if the device will request that                          | Never,        | Always   | [Device Para            |
| confirm              | the Application Layer response be confirmed                         | Always,       |          | /DNP3                   |
|                      | or not                                                              | Event         |          |                         |
| $\bigotimes$         |                                                                     |               |          | Communication           |
|                      |                                                                     | 0.1           |          | ]                       |
| t-AppLink<br>confirm | Application layer response timeout                                  | 0.1 - 10.0s   | 5s       | [Device Para            |
|                      |                                                                     |               |          | /DNP3                   |
|                      |                                                                     |               |          | /<br>Communication      |
| $\bigtriangledown$   |                                                                     |               |          | ]                       |

| Parameter                  | Description                                                                                                                                                                                                                                                                    | Setting range       | Default  | Menu path                                             |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-------------------------------------------------------|
| AppLink num<br>retries     | The number of times the device will retransmit an Application Layer fragment                                                                                                                                                                                                   | 0 - 255             | 0        | [Device Para<br>/DNP3<br>/<br>Communication           |
| Unsol Reporting            | Enables unsolicited reporting. This is<br>available only for DNP3 TCP connections,<br>and for DNP3 RTU in case of a peer-to-peer<br>connection.                                                                                                                                | inactive,<br>active | inactive | J<br>[Device Para<br>/DNP3<br>/<br>Communication      |
| Unsol Reporting<br>Timeout | Set the amount of time that the outstation<br>will wait for an Application Layer<br>confirmation back from the master<br>indicating that the master received the<br>unsolicited response message.                                                                              | 1.0 - 60.0s         | 10s      | J<br>[Device Para<br>/DNP3<br>/<br>Communication<br>] |
| Unsol Reporting<br>Retry   | Set the number of retries that an outstation<br>transmits in each unsolicited response<br>series if it does not receive confirmation<br>back from the master.                                                                                                                  | 0 - 255             | 2        | [Device Para<br>/DNP3<br>/<br>Communication<br>]      |
| TestSeqNo                  | Test if sequence number of request is<br>incremented. If it is not correctly<br>incremented the request will be ignored. It<br>is recommended to have it inactive but<br>some older DNP implementations need it<br>activated.                                                  | inactive,<br>active | inactive | [Device Para<br>/DNP3<br>/<br>Communication<br>]      |
| TestSBO                    | It enables a stricter comparing of SBO and<br>operate command. For older DNP versions it<br>is recommanded to deactivated it.                                                                                                                                                  | inactive,<br>active | active   | [Device Para<br>/DNP3<br>/<br>Communication           |
| Timeout SBO                | DNP Outputs can be controlled in a two<br>stage procedure (SBO: Select Before<br>Operate). These outputs are to be selected<br>first by a select command. After this the bit<br>is reserved for this operate request. When<br>this timer is expired, the bit will be released. | 1.0 - 60.0s         | 30s      | [Device Para<br>/DNP3<br>/<br>Communication<br>]      |
| ColdRestart                | Enables support for Cold Restart function.                                                                                                                                                                                                                                     | inactive,<br>active | inactive | [Device Para<br>/DNP3<br>/<br>Communication<br>]      |

| Parameter     | Description                                                                                              | Setting range   | Default | Menu path          |
|---------------|----------------------------------------------------------------------------------------------------------|-----------------|---------|--------------------|
| Deadb integr  | Deadband integration time.                                                                               | 0 - 300         | 1       | [Device Para       |
| time          |                                                                                                          |                 |         | /DNP3              |
|               |                                                                                                          |                 |         | /<br>Communication |
| $\bigotimes$  |                                                                                                          |                 |         | ]                  |
| BinaryInput 0 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,             |         | [Device Para       |
|               | to a virtual binary output of the protective device.                                                     | Assignment List |         | /DNP3              |
| $\bigotimes$  |                                                                                                          |                 |         | /Point map         |
|               |                                                                                                          |                 |         | /Binary Inputs]    |
| BinaryInput 1 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,             |         | [Device Para       |
|               | to a virtual binary output of the protective device.                                                     | Assignment List |         | /DNP3              |
|               |                                                                                                          |                 |         | /Point map         |
|               |                                                                                                          |                 |         | /Binary Inputs]    |
| BinaryInput 2 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,             |         | [Device Para       |
|               | to a virtual binary output of the protective device.                                                     | Assignment List |         | /DNP3              |
| $\bigotimes$  |                                                                                                          |                 |         | /Point map         |
| •             |                                                                                                          |                 |         | /Binary Inputs]    |
| BinaryInput 3 | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device. | 1n,             |         | [Device Para       |
|               |                                                                                                          | Assignment List |         | /DNP3              |
| $\bigotimes$  |                                                                                                          |                 |         | /Point map         |
| <b>•</b>      |                                                                                                          |                 |         | /Binary Inputs]    |
| BinaryInput 4 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,             |         | [Device Para       |
|               | to a virtual binary output of the protective device.                                                     | Assignment List |         | /DNP3              |
| $\bigotimes$  |                                                                                                          |                 |         | /Point map         |
| <u> </u>      |                                                                                                          |                 |         | /Binary Inputs]    |
| BinaryInput 5 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,             |         | [Device Para       |
|               | to a virtual binary output of the protective device.                                                     | Assignment List |         | /DNP3              |
|               |                                                                                                          |                 |         | /Point map         |
| •             |                                                                                                          |                 |         | /Binary Inputs]    |
| BinaryInput 6 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,             |         | [Device Para       |
|               | to a virtual binary output of the protective device.                                                     | Assignment List |         | /DNP3              |
|               |                                                                                                          |                 |         | /Point map         |
| -             |                                                                                                          |                 |         | /Binary Inputs]    |
| BinaryInput 7 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,             |         | [Device Para       |
|               | to a virtual binary output of the protective device.                                                     | Assignment List |         | /DNP3              |
| $\bigotimes$  |                                                                                                          |                 |         | /Point map         |
| <b>—</b>      |                                                                                                          |                 |         | /Binary Inputs]    |

| Parameter      | Description                                                                                              | Setting range          | Default | Menu path             |
|----------------|----------------------------------------------------------------------------------------------------------|------------------------|---------|-----------------------|
| BinaryInput 8  | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device. | 1n,<br>Assignment List |         | [Device Para<br>/DNP3 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 9  |                                                                                                          | 1n,                    |         | [Device Para          |
|                | device.                                                                                                  | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| •              |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 10 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     |                        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| •              |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 11 |                                                                                                          |                        |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| <b>•</b>       |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 12 | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device. | 1n,<br>Assignment List |         | [Device Para          |
|                |                                                                                                          |                        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 13 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective               | 1n,<br>Assignment List |         | [Device Para          |
|                | device.                                                                                                  | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 14 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective               | 1n,<br>Assignment List |         | [Device Para          |
| _              | device.                                                                                                  | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 15 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective               | 1n,<br>Assignment List |         | [Device Para          |
| -              | device.                                                                                                  |                        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 16 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective               | 1n,<br>Assignment List |         | [Device Para          |
| •              | device.                                                                                                  |                        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |

| Parameter      | Description                                                                                              | Setting range          | Default | Menu path             |
|----------------|----------------------------------------------------------------------------------------------------------|------------------------|---------|-----------------------|
| BinaryInput 17 | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device. | 1n,<br>Assignment List |         | [Device Para<br>/DNP3 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 18 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| •              |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 19 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     |                        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| <b>·</b>       |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 20 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| <b>U</b>       |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 21 | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device. | 1n,<br>Assignment List |         | [Device Para          |
|                |                                                                                                          |                        |         | /DNP3                 |
|                |                                                                                                          |                        |         | /Point map            |
| <u> </u>       |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 22 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| ÷              |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 23 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 24 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 25 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| -              |                                                                                                          |                        |         | /Binary Inputs]       |

| Parameter      | Description                                                                                              | Setting range          | Default          | Menu path             |
|----------------|----------------------------------------------------------------------------------------------------------|------------------------|------------------|-----------------------|
| BinaryInput 26 | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device. | 1n,<br>Assignment List |                  | [Device Para<br>/DNP3 |
|                |                                                                                                          |                        |                  | /Point map            |
|                |                                                                                                          |                        |                  | /Binary Inputs]       |
| BinaryInput 27 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |                  | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |                  | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |                  | /Point map            |
| •              |                                                                                                          |                        |                  | /Binary Inputs]       |
| BinaryInput 28 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |                  | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |                  | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |                  | /Point map            |
| •              |                                                                                                          |                        |                  | /Binary Inputs]       |
| BinaryInput 29 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |                  | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |                  | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |                  | /Point map            |
| •              |                                                                                                          |                        |                  | /Binary Inputs]       |
| BinaryInput 30 | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device. | 1n,<br>Assignment List |                  | [Device Para          |
|                |                                                                                                          |                        |                  | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |                  | /Point map            |
|                |                                                                                                          |                        |                  | /Binary Inputs]       |
| BinaryInput 31 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective               | 1n,                    |                  | [Device Para          |
|                | device.                                                                                                  | Assignment List        |                  | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |                  | /Point map            |
|                |                                                                                                          |                        |                  | /Binary Inputs]       |
| BinaryInput 32 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective               | 1n,                    | ,<br>gnment List | [Device Para          |
|                | device.                                                                                                  | Assignment List        |                  | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |                  | /Point map            |
|                |                                                                                                          |                        |                  | /Binary Inputs]       |
| BinaryInput 33 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective               | 1n,<br>Assignment List |                  | [Device Para          |
|                | device.                                                                                                  | Assignment List        |                  | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |                  | /Point map            |
|                |                                                                                                          |                        |                  | /Binary Inputs]       |
| BinaryInput 34 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective               | 1n,<br>Assignment List |                  | [Device Para          |
|                | device.                                                                                                  | Assignment LIST        |                  | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |                  | /Point map            |
|                |                                                                                                          |                        |                  | /Binary Inputs]       |

| Parameter      | Description                                                                                              | Setting range          | Default | Menu path             |
|----------------|----------------------------------------------------------------------------------------------------------|------------------------|---------|-----------------------|
| BinaryInput 35 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device.       | 1n,<br>Assignment List |         | [Device Para<br>/DNP3 |
|                |                                                                                                          |                        |         | /Point map            |
| <b>U</b>       |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 36 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 37 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| •              |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 38 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 39 | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device. | 1n,<br>Assignment List |         | [Device Para          |
|                |                                                                                                          |                        |         | /DNP3                 |
|                |                                                                                                          |                        |         | /Point map            |
| <u> </u>       |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 40 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,<br>Assignment List |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     |                        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| ÷              |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 41 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 42 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| -              |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 43 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,<br>Assignment List |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     |                        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| <b>—</b>       |                                                                                                          |                        |         | /Binary Inputs]       |

| Parameter      | Description                                                                                              | Setting range          | Default | Menu path             |
|----------------|----------------------------------------------------------------------------------------------------------|------------------------|---------|-----------------------|
| BinaryInput 44 |                                                                                                          | 1n,<br>Assignment List |         | [Device Para<br>/DNP3 |
|                |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 45 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 46 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     | Assignment List        |         | /DNP3                 |
| $\bigcirc$     |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 47 | 5 1 1 1                                                                                                  | 1n,                    |         | [Device Para          |
|                |                                                                                                          | Assignment List        |         | /DNP3                 |
| $\bigcirc$     |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 48 | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device. | 1n,<br>Assignment List |         | [Device Para          |
|                |                                                                                                          |                        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
| •              |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 49 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,<br>Assignment List |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     |                        |         | /DNP3                 |
| $\bigotimes$   |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 50 | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective            | 1n,<br>Assignment List |         | [Device Para<br>/DNP3 |
| $\frown$       | device.                                                                                                  |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 51 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,                    |         | [Device Para          |
| 5 1            | to a virtual binary output of the protective                                                             | Assignment List        | •       | -<br>/DNP3            |
|                | device.                                                                                                  |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |
| BinaryInput 52 | Virtual Digital Input (DNP). This corresponds                                                            | 1n,<br>Assignment List |         | [Device Para          |
|                | to a virtual binary output of the protective device.                                                     |                        |         | /DNP3                 |
|                |                                                                                                          |                        |         | /Point map            |
|                |                                                                                                          |                        |         | /Binary Inputs]       |

| Parameter      | Description                                                                                                   | Setting range          | Default    | Menu path             |
|----------------|---------------------------------------------------------------------------------------------------------------|------------------------|------------|-----------------------|
| BinaryInput 53 |                                                                                                               | 1n,<br>Assignment List |            | [Device Para<br>/DNP3 |
|                |                                                                                                               |                        |            | /Point map            |
|                |                                                                                                               |                        |            | /Binary Inputs]       |
| BinaryInput 54 | Virtual Digital Input (DNP). This corresponds                                                                 | 1n,                    |            | [Device Para          |
|                | to a virtual binary output of the protective device.                                                          | Assignment List        |            | /DNP3                 |
| $\bigotimes$   |                                                                                                               |                        |            | /Point map            |
|                |                                                                                                               |                        |            | /Binary Inputs]       |
| BinaryInput 55 | Virtual Digital Input (DNP). This corresponds                                                                 | 1n,                    |            | [Device Para          |
|                | to a virtual binary output of the protective Assignment List device.                                          |                        | /DNP3      |                       |
| $\bigotimes$   |                                                                                                               |                        | /Point map |                       |
| <b>·</b>       |                                                                                                               |                        |            | /Binary Inputs]       |
| BinaryInput 56 | t 56 Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device. |                        |            | [Device Para          |
|                |                                                                                                               | Assignment List        |            | /DNP3                 |
| $\bigotimes$   |                                                                                                               |                        |            | /Point map            |
|                |                                                                                                               |                        |            | /Binary Inputs]       |
| BinaryInput 57 | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective<br>device.      | 1n,<br>Assignment List |            | [Device Para          |
|                |                                                                                                               |                        |            | /DNP3                 |
| $\bigotimes$   |                                                                                                               |                        |            | /Point map            |
|                |                                                                                                               |                        |            | /Binary Inputs]       |
| BinaryInput 58 | Virtual Digital Input (DNP). This corresponds                                                                 | 1n,                    |            | [Device Para          |
|                | to a virtual binary output of the protective device.                                                          | Assignment List        |            | /DNP3                 |
| $\bigotimes$   |                                                                                                               |                        |            | /Point map            |
| <u> </u>       |                                                                                                               |                        |            | /Binary Inputs]       |
| BinaryInput 59 | Virtual Digital Input (DNP). This corresponds                                                                 | 1n,                    |            | [Device Para          |
|                | to a virtual binary output of the protective device.                                                          | Assignment List        |            | /DNP3                 |
| $\bigotimes$   |                                                                                                               |                        |            | /Point map            |
|                |                                                                                                               |                        |            | /Binary Inputs]       |
| BinaryInput 60 | Virtual Digital Input (DNP). This corresponds                                                                 | 1n,                    |            | [Device Para          |
|                | to a virtual binary output of the protective device.                                                          | Assignment List        |            | /DNP3                 |
| $\bigotimes$   |                                                                                                               |                        |            | /Point map            |
| -              |                                                                                                               |                        |            | /Binary Inputs]       |
| BinaryInput 61 | Virtual Digital Input (DNP). This corresponds                                                                 | 1n,<br>Assignment List |            | [Device Para          |
|                | to a virtual binary output of the protective device.                                                          |                        |            | /DNP3                 |
| $\bigotimes$   |                                                                                                               |                        |            | /Point map            |
| -              |                                                                                                               |                        |            | /Binary Inputs]       |

| Parameter           | Description                                                                                                    | Setting range          | Default | Menu path              |
|---------------------|----------------------------------------------------------------------------------------------------------------|------------------------|---------|------------------------|
| BinaryInput 62      | Virtual Digital Input (DNP). This corresponds<br>to a virtual binary output of the protective                  | 1n,<br>Assignment List |         | [Device Para<br>/DNP3  |
|                     | device.                                                                                                        |                        |         | /Point map             |
|                     |                                                                                                                |                        |         | /Binary Inputs]        |
| BinaryInput 63      | Virtual Digital Input (DNP). This corresponds                                                                  | 1n,                    |         | [Device Para           |
|                     | to a virtual binary output of the protective device.                                                           | Assignment List        |         | /DNP3                  |
| $\bigotimes$        |                                                                                                                |                        |         | /Point map             |
|                     |                                                                                                                |                        |         | /Binary Inputs]        |
| DoubleBitInput      | Double Bit Digital Input (DNP). This                                                                           | 1n,                    |         | [Device Para           |
| 0                   | corresponds to a double bit binary output of the protective device.                                            | Assignment List        |         | /DNP3                  |
| •                   |                                                                                                                |                        |         | /Point map             |
| $\bigotimes$        |                                                                                                                |                        |         | /Double Bit<br>Inputs] |
| DoubleBitInput      | Double Bit Digital Input (DNP). This<br>corresponds to a double bit binary output of<br>the protective device. | 1n,                    |         | [Device Para           |
| 1                   |                                                                                                                | Assignment List        |         | /DNP3                  |
| <b></b>             |                                                                                                                |                        |         | /Point map             |
| $\bigotimes$        |                                                                                                                |                        |         | /Double Bit<br>Inputs] |
| DoubleBitInput      | Double Bit Digital Input (DNP). This<br>corresponds to a double bit binary output of<br>the protective device. | 1n,<br>Assignment List |         | [Device Para           |
| 2                   |                                                                                                                |                        |         | /DNP3                  |
| <b></b>             |                                                                                                                |                        |         | /Point map             |
| $\bigotimes$        |                                                                                                                |                        |         | /Double Bit<br>Inputs] |
| DoubleBitInput      | Double Bit Digital Input (DNP). This                                                                           | 1n,<br>Assignment List |         | [Device Para           |
| 3                   | corresponds to a double bit binary output of the protective device.                                            |                        |         | /DNP3                  |
|                     |                                                                                                                |                        |         | /Point map             |
| $\bigotimes$        |                                                                                                                |                        |         | /Double Bit<br>Inputs] |
| DoubleBitInput      | Double Bit Digital Input (DNP). This                                                                           | 1n,                    |         | [Device Para           |
| 4                   | corresponds to a double bit binary output of the protective device.                                            | Assignment List        |         | /DNP3                  |
|                     |                                                                                                                |                        |         | /Point map             |
| $\bigotimes$        |                                                                                                                |                        |         | /Double Bit<br>Inputs] |
| DoubleBitInput<br>5 | Double Bit Digital Input (DNP). This                                                                           | 1n,<br>Assignment List |         | [Device Para           |
|                     | corresponds to a double bit binary output of the protective device.                                            |                        |         | /DNP3                  |
|                     |                                                                                                                |                        |         | /Point map             |
| $\bigotimes$        |                                                                                                                |                        |         | /Double Bit<br>Inputs] |

| Parameter      | Description                               | Setting range   | Default | Menu path       |
|----------------|-------------------------------------------|-----------------|---------|-----------------|
| BinaryCounter  | Counter can be used to report counter     | 1n,             |         | [Device Para    |
| 0              | values to the DNP master.                 | Assignment List |         | /DNP3           |
|                |                                           |                 |         | /Point map      |
| $\bigotimes$   |                                           |                 |         | /BinaryCounter] |
| BinaryCounter  | Counter can be used to report counter     | 1n,             |         | [Device Para    |
| 1              | values to the DNP master.                 | Assignment List |         | /DNP3           |
|                |                                           |                 |         | /Point map      |
| $\bigotimes$   |                                           |                 |         | /BinaryCounter] |
| BinaryCounter  | Counter can be used to report counter     | 1n,             |         | [Device Para    |
| 2              | values to the DNP master.                 | Assignment List |         | /DNP3           |
| (              |                                           |                 |         | /Point map      |
| $\bigotimes$   |                                           |                 |         | /BinaryCounter] |
| BinaryCounter  | Counter can be used to report counter     | 1n,             |         | [Device Para    |
| 3              | values to the DNP master. Assignment List |                 | /DNP3   |                 |
|                |                                           |                 |         | /Point map      |
| $\bigotimes$   |                                           |                 |         | /BinaryCounter] |
| BinaryCounter  | Counter can be used to report counter     | 1n,             |         | [Device Para    |
| 4              | values to the DNP master.                 | Assignment List |         | /DNP3           |
| (              |                                           |                 |         | /Point map      |
| $\bigotimes$   |                                           |                 |         | /BinaryCounter] |
| BinaryCounter  | Counter can be used to report counter     | 1n,             |         | [Device Para    |
| 5              | values to the DNP master.                 | Assignment List |         | /DNP3           |
| •              |                                           |                 |         | /Point map      |
| $\bigotimes$   |                                           |                 |         | /BinaryCounter] |
| BinaryCounter  | Counter can be used to report counter     | 1n,             |         | [Device Para    |
| 6              | values to the DNP master.                 | Assignment List |         | /DNP3           |
| <b>•</b>       |                                           |                 |         | /Point map      |
| $\bigotimes$   |                                           |                 |         | /BinaryCounter] |
| BinaryCounter  | Counter can be used to report counter     | 1n,             |         | [Device Para    |
| 7              | values to the DNP master.                 | Assignment List |         | /DNP3           |
|                |                                           |                 |         | /Point map      |
| $\bigotimes$   |                                           |                 |         | /BinaryCounter] |
| Analog value 0 | Analog value can be used to report values | 1n,             |         | [Device Para    |
|                | to the master (DNP)                       | TrendRecList    |         | /DNP3           |
| $\bigotimes$   |                                           |                 |         | /Point map      |
|                |                                           |                 |         | /Analog Input]  |

| Parameter      | Description                                                                 | Setting range       | Default | Menu path      |
|----------------|-----------------------------------------------------------------------------|---------------------|---------|----------------|
| Scale Factor 0 | The scale factor is used to convert the                                     | 0.001,              | 1       | [Device Para   |
| $\bigotimes$   | measured value in an integer format                                         | 0.01,               |         | /DNP3          |
|                |                                                                             | 0.1,                |         | /Point map     |
|                |                                                                             | 1,                  |         | /Analog Input] |
|                |                                                                             | 10,                 |         |                |
|                |                                                                             | 100,                |         |                |
|                |                                                                             | 1000,               |         |                |
|                |                                                                             | 10000,              |         |                |
|                |                                                                             | 100000,             |         |                |
|                |                                                                             | 1000000             |         |                |
| Dead Band 0    | If a change of measured value is greater                                    | 0.01 - 100.00%      | 1%      | [Device Para   |
|                | than the deadband value it will be reported to the master.                  |                     |         | /DNP3          |
| $\bigotimes$   |                                                                             |                     |         | /Point map     |
|                |                                                                             |                     |         | /Analog Input] |
| Analog value 1 | Analog value can be used to report values to the master (DNP)               | 1n,<br>TrendRecList |         | [Device Para   |
|                |                                                                             |                     |         | /DNP3          |
| $\bigotimes$   |                                                                             |                     |         | /Point map     |
|                |                                                                             |                     |         | /Analog Input] |
| Scale Factor 1 | The scale factor is used to convert the measured value in an integer format | 0.001,              | 1       | [Device Para   |
|                |                                                                             | 0.01,               |         | /DNP3          |
| $\bigotimes$   |                                                                             | 0.1,                |         | /Point map     |
| $\checkmark$   |                                                                             | 1,                  |         | /Analog Input] |
|                |                                                                             | 10,                 |         |                |
|                |                                                                             | 100,                |         |                |
|                |                                                                             | 1000,               |         |                |
|                |                                                                             | 10000,              |         |                |
|                |                                                                             | 100000,             |         |                |
|                |                                                                             | 1000000             |         |                |
| Dead Band 1    | If a change of measured value is greater                                    | 0.01 - 100.00%      | 1%      | [Device Para   |
|                | than the deadband value it will be reported to the master.                  |                     |         | /DNP3          |
| $\bigotimes$   |                                                                             |                     |         | /Point map     |
|                |                                                                             |                     |         | /Analog Input] |
| Analog value 2 | Analog value can be used to report values                                   | 1n,                 |         | [Device Para   |
|                | to the master (DNP)                                                         | TrendRecList        |         | /DNP3          |
|                |                                                                             |                     |         | /Point map     |
| -              |                                                                             |                     |         | /Analog Input] |

| Parameter      | Description                                                   | Setting range       | Default | Menu path      |
|----------------|---------------------------------------------------------------|---------------------|---------|----------------|
| Scale Factor 2 | The scale factor is used to convert the                       | 0.001,              | 1       | [Device Para   |
| $\bigotimes$   | measured value in an integer format                           | 0.01,               |         | /DNP3          |
|                |                                                               | 0.1,                |         | /Point map     |
|                |                                                               | 1,                  |         | /Analog Input] |
|                |                                                               | 10,                 |         |                |
|                |                                                               | 100,                |         |                |
|                |                                                               | 1000,               |         |                |
|                |                                                               | 10000,              |         |                |
|                |                                                               | 100000,             |         |                |
|                |                                                               | 1000000             |         |                |
| Dead Band 2    | If a change of measured value is greater                      | 0.01 - 100.00%      | 1%      | [Device Para   |
|                | than the deadband value it will be reported to the master.    |                     |         | /DNP3          |
|                |                                                               |                     |         | /Point map     |
| •<br>          |                                                               |                     |         | /Analog Input] |
| Analog value 3 | Analog value can be used to report values to the master (DNP) | 1n,<br>TrondDealist |         | [Device Para   |
|                |                                                               | TrendRecList        |         | /DNP3          |
| $\bigotimes$   |                                                               |                     |         | /Point map     |
|                |                                                               |                     |         | /Analog Input] |
| Scale Factor 3 | The scale factor is used to convert the                       | 0.001,              | 1       | [Device Para   |
|                | measured value in an integer format                           | 0.01,               |         | /DNP3          |
| $\bigotimes$   |                                                               | 0.1,                |         | /Point map     |
| -              |                                                               | 1,                  |         | /Analog Input] |
|                |                                                               | 10,                 |         |                |
|                |                                                               | 100,                |         |                |
|                |                                                               | 1000,               |         |                |
|                |                                                               | 10000,              |         |                |
|                |                                                               | 100000,             |         |                |
|                |                                                               | 1000000             |         |                |
| Dead Band 3    | If a change of measured value is greater                      | 0.01 - 100.00%      | 1%      | [Device Para   |
|                | than the deadband value it will be reported to the master.    |                     |         | /DNP3          |
| $\bigotimes$   |                                                               |                     |         | /Point map     |
| <b>—</b>       |                                                               |                     |         | /Analog Input] |
| Analog value 4 | Analog value can be used to report values                     | 1n,                 |         | [Device Para   |
|                | to the master (DNP)                                           | TrendRecList        |         | /DNP3          |
|                |                                                               |                     |         | /Point map     |
| ¥              |                                                               |                     |         | /Analog Input] |

| Parameter      | Description                                                                             | Setting range       | Default | Menu path      |
|----------------|-----------------------------------------------------------------------------------------|---------------------|---------|----------------|
| Scale Factor 4 | The scale factor is used to convert the measured value in an integer format             | 0.001,              | 1       | [Device Para   |
| $\bigotimes$   |                                                                                         | 0.01,               |         | /DNP3          |
|                |                                                                                         | 0.1,                |         | /Point map     |
|                |                                                                                         | 1,                  |         | /Analog Input] |
|                |                                                                                         | 10,                 |         |                |
|                |                                                                                         | 100,                |         |                |
|                |                                                                                         | 1000,               |         |                |
|                |                                                                                         | 10000,              |         |                |
|                |                                                                                         | 100000,             |         |                |
|                |                                                                                         | 1000000             |         |                |
| Dead Band 4    | If a change of measured value is greater than the deadband value it will be reported    | 0.01 - 100.00%      | 1%      | [Device Para   |
| •              | to the master.                                                                          |                     |         | /DNP3          |
| $\bigotimes$   |                                                                                         |                     |         | /Point map     |
|                |                                                                                         | -                   |         | /Analog Input] |
| Analog value 5 | Analog value can be used to report values to the master (DNP)                           | 1n,<br>TrendRecList |         | [Device Para   |
| •              |                                                                                         |                     |         | /DNP3          |
| $\bigotimes$   |                                                                                         |                     |         | /Point map     |
|                |                                                                                         | 0.001               | -       | /Analog Input] |
| Scale Factor 5 | The scale factor is used to convert the measured value in an integer format             | 0.001,              | 1       | [Device Para   |
|                |                                                                                         | 0.01,               |         | /DNP3          |
| $\bigotimes$   |                                                                                         | 0.1,                |         | /Point map     |
|                |                                                                                         | 1,                  |         | /Analog Input] |
|                |                                                                                         | 10,                 |         |                |
|                |                                                                                         | 100,                |         |                |
|                |                                                                                         | 1000,               |         |                |
|                |                                                                                         | 10000,              |         |                |
|                |                                                                                         | 100000,             |         |                |
|                |                                                                                         | 1000000             | - 0/    |                |
| Dead Band 5    | If a change of measured value is greater<br>than the deadband value it will be reported | 0.01 - 100.00%      | 1%      | [Device Para   |
|                | to the master.                                                                          |                     |         | /DNP3          |
| $\bigotimes$   |                                                                                         |                     |         | /Point map     |
|                |                                                                                         | _                   |         | /Analog Input] |
| Analog value 6 | Analog value can be used to report values to the master (DNP)                           | 1n,<br>TrendRecList |         | [Device Para   |
|                |                                                                                         |                     |         | /DNP3          |
| $\bigotimes$   |                                                                                         |                     |         | /Point map     |
|                |                                                                                         |                     |         | /Analog Input] |

| Parameter      | Description                                                                 | Setting range  | Default | Menu path      |
|----------------|-----------------------------------------------------------------------------|----------------|---------|----------------|
| Scale Factor 6 | The scale factor is used to convert the measured value in an integer format | 0.001,         | 1       | [Device Para   |
| $\bigotimes$   |                                                                             | 0.01,          |         | /DNP3          |
|                |                                                                             | 0.1,           |         | /Point map     |
|                |                                                                             | 1,             |         | /Analog Input] |
|                |                                                                             | 10,            |         |                |
|                |                                                                             | 100,           |         |                |
|                |                                                                             | 1000,          |         |                |
|                |                                                                             | 10000,         |         |                |
|                |                                                                             | 100000,        |         |                |
|                |                                                                             | 1000000        |         |                |
| Dead Band 6    | If a change of measured value is greater                                    | 0.01 - 100.00% | 1%      | [Device Para   |
|                | than the deadband value it will be reported to the master.                  |                |         | /DNP3          |
| $\bigotimes$   |                                                                             |                |         | /Point map     |
| ÷              |                                                                             |                |         | /Analog Input] |
| Analog value 7 | Analog value can be used to report values to the master (DNP)               | 1n,            |         | [Device Para   |
|                |                                                                             | TrendRecList   |         | /DNP3          |
| $\bigotimes$   |                                                                             |                |         | /Point map     |
| <b>•</b>       |                                                                             |                |         | /Analog Input] |
| Scale Factor 7 | The scale factor is used to convert the                                     | 0.001,         | 1       | [Device Para   |
|                | measured value in an integer format                                         | 0.01,          |         | /DNP3          |
| $\bigotimes$   |                                                                             | 0.1,           |         | /Point map     |
| •              |                                                                             | 1,             |         | /Analog Input] |
|                |                                                                             | 10,            |         |                |
|                |                                                                             | 100,           |         |                |
|                |                                                                             | 1000,          |         |                |
|                |                                                                             | 10000,         |         |                |
|                |                                                                             | 100000,        |         |                |
|                |                                                                             | 1000000        |         |                |
| Dead Band 7    | If a change of measured value is greater                                    | 0.01 - 100.00% | 1%      | [Device Para   |
|                | than the deadband value it will be reported to the master.                  |                |         | /DNP3          |
| $\bigotimes$   |                                                                             |                |         | /Point map     |
|                |                                                                             |                |         | /Analog Input] |
| Analog value 8 | Analog value can be used to report values                                   | 1n,            |         | [Device Para   |
|                | to the master (DNP)                                                         | TrendRecList   |         | /DNP3          |
| $\bigotimes$   |                                                                             |                |         | /Point map     |
|                |                                                                             |                |         | /Analog Input] |

| Parameter      | Description                                                   | Setting range        | Default | Menu path      |
|----------------|---------------------------------------------------------------|----------------------|---------|----------------|
| Scale Factor 8 | The scale factor is used to convert the                       | 0.001,               | 1       | [Device Para   |
| $\bigotimes$   | measured value in an integer format                           | 0.01,                |         | /DNP3          |
|                |                                                               | 0.1,                 |         | /Point map     |
|                |                                                               | 1,                   |         | /Analog Input] |
|                |                                                               | 10,                  |         |                |
|                |                                                               | 100,                 |         |                |
|                |                                                               | 1000,                |         |                |
|                |                                                               | 10000,               |         |                |
|                |                                                               | 100000,              |         |                |
|                |                                                               | 1000000              |         |                |
| Dead Band 8    | If a change of measured value is greater                      | 0.01 - 100.00%       | 1%      | [Device Para   |
|                | than the deadband value it will be reported to the master.    |                      |         | /DNP3          |
| $\bigotimes$   |                                                               |                      |         | /Point map     |
| <b>•</b>       |                                                               |                      |         | /Analog Input] |
| Analog value 9 | Analog value can be used to report values to the master (DNP) | 1n,                  |         | [Device Para   |
|                |                                                               | TrendRecList         |         | /DNP3          |
| $\bigotimes$   |                                                               |                      |         | /Point map     |
| <b>•</b>       |                                                               |                      |         | /Analog Input] |
| Scale Factor 9 | The scale factor is used to convert the                       | 0.001,               | 1       | [Device Para   |
|                | measured value in an integer format                           | 0.01,                |         | /DNP3          |
| $\bigotimes$   |                                                               | 0.1,                 |         | /Point map     |
| <b>•</b>       |                                                               | 1,                   |         | /Analog Input] |
|                |                                                               | 10,                  |         |                |
|                |                                                               | 100,                 |         |                |
|                |                                                               | 1000,                |         |                |
|                |                                                               | 10000,               |         |                |
|                |                                                               | 100000,              |         |                |
|                |                                                               | 1000000              |         |                |
| Dead Band 9    | If a change of measured value is greater                      | 0.01 - 100.00%       | 1%      | [Device Para   |
|                | than the deadband value it will be reported to the master.    |                      |         | /DNP3          |
| $\bigotimes$   |                                                               |                      |         | /Point map     |
|                |                                                               |                      |         | /Analog Input] |
| Analog value   | Analog value can be used to report values                     | 1n,<br>Trand Declist |         | [Device Para   |
| 10             | to the master (DNP)                                           | TrendRecList         |         | /DNP3          |
|                |                                                               |                      |         | /Point map     |
| $\bigotimes$   |                                                               |                      |         | /Analog Input] |

| Parameter                                                                                                                                          | Description                                                | Setting range         | Default | Menu path      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|---------|----------------|
| Scale Factor 10                                                                                                                                    | The scale factor is used to convert the                    | 0.001,                | 1       | [Device Para   |
|                                                                                                                                                    | measured value in an integer format                        | 0.01,                 |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                            | 0.1,                  |         | /Point map     |
| $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ |                                                            | 1,                    |         | /Analog Input] |
|                                                                                                                                                    |                                                            | 10,                   |         |                |
|                                                                                                                                                    |                                                            | 100,                  |         |                |
|                                                                                                                                                    |                                                            | 1000,                 |         |                |
|                                                                                                                                                    |                                                            | 10000,                |         |                |
|                                                                                                                                                    |                                                            | 100000,               |         |                |
|                                                                                                                                                    |                                                            | 1000000               |         |                |
| Dead Band 10                                                                                                                                       | If a change of measured value is greater                   | 0.01 - 100.00%        | 1%      | [Device Para   |
|                                                                                                                                                    | than the deadband value it will be reported to the master. |                       |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                            |                       |         | /Point map     |
| )                                                                                                                                                  |                                                            |                       |         | /Analog Input] |
| Analog value                                                                                                                                       | Analog value can be used to report values                  | 1n,<br>TrandDaaliat   |         | [Device Para   |
| 11                                                                                                                                                 | to the master (DNP)                                        | TrendRecList          |         | /DNP3          |
|                                                                                                                                                    |                                                            |                       |         | /Point map     |
| $\bigotimes$                                                                                                                                       |                                                            |                       |         | /Analog Input] |
| Scale Factor 11                                                                                                                                    |                                                            | 0.001,                | 1       | [Device Para   |
|                                                                                                                                                    | measured value in an integer format                        | 0.01,                 |         | /DNP3          |
|                                                                                                                                                    |                                                            | 0.1,                  |         | /Point map     |
| -                                                                                                                                                  |                                                            | 1,                    |         | /Analog Input] |
|                                                                                                                                                    |                                                            | 10,                   |         |                |
|                                                                                                                                                    |                                                            | 100,                  |         |                |
|                                                                                                                                                    |                                                            | 1000,                 |         |                |
|                                                                                                                                                    |                                                            | 10000,                |         |                |
|                                                                                                                                                    |                                                            | 100000,               |         |                |
|                                                                                                                                                    |                                                            | 1000000               |         |                |
| Dead Band 11                                                                                                                                       | If a change of measured value is greater                   | 0.01 - 100.00%        | 1%      | [Device Para   |
|                                                                                                                                                    | than the deadband value it will be reported to the master. |                       |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                            |                       |         | /Point map     |
| _                                                                                                                                                  |                                                            |                       |         | /Analog Input] |
| Analog value                                                                                                                                       | Analog value can be used to report values                  | 1n,<br>Trand Back ist |         | [Device Para   |
| 12                                                                                                                                                 | to the master (DNP)                                        | TrendRecList          |         | /DNP3          |
|                                                                                                                                                    |                                                            |                       |         | /Point map     |
| $\bigotimes$                                                                                                                                       |                                                            |                       |         | /Analog Input] |

| Parameter       | Description                                                | Setting range         | Default | Menu path      |
|-----------------|------------------------------------------------------------|-----------------------|---------|----------------|
| Scale Factor 12 | The scale factor is used to convert the                    | 0.001,                | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,                 |         | /DNP3          |
| $\bigotimes$    |                                                            | 0.1,                  |         | /Point map     |
|                 |                                                            | 1,                    |         | /Analog Input] |
|                 |                                                            | 10,                   |         |                |
|                 |                                                            | 100,                  |         |                |
|                 |                                                            | 1000,                 |         |                |
|                 |                                                            | 10000,                |         |                |
|                 |                                                            | 100000,               |         |                |
|                 |                                                            | 1000000               |         |                |
| Dead Band 12    | If a change of measured value is greater                   | 0.01 - 100.00%        | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                       |         | /DNP3          |
| $\bigotimes$    |                                                            |                       |         | /Point map     |
| )               |                                                            |                       |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,                   |         | [Device Para   |
| 13              | to the master (DNP)                                        | TrendRecList          |         | /DNP3          |
|                 |                                                            |                       |         | /Point map     |
| $\bigotimes$    |                                                            |                       |         | /Analog Input] |
| Scale Factor 13 |                                                            | 0.001,                | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,                 |         | /DNP3          |
|                 |                                                            | 0.1,                  |         | /Point map     |
| )               |                                                            | 1,                    |         | /Analog Input] |
|                 |                                                            | 10,                   |         |                |
|                 |                                                            | 100,                  |         |                |
|                 |                                                            | 1000,                 |         |                |
|                 |                                                            | 10000,                |         |                |
|                 |                                                            | 100000,               |         |                |
|                 |                                                            | 1000000               |         |                |
| Dead Band 13    | If a change of measured value is greater                   | 0.01 - 100.00%        | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                       |         | /DNP3          |
|                 |                                                            |                       |         | /Point map     |
|                 |                                                            |                       |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,<br>Trand Back ist |         | [Device Para   |
| 14              | to the master (DNP)                                        | TrendRecList          |         | /DNP3          |
|                 |                                                            |                       |         | /Point map     |
| $\bigotimes$    |                                                            |                       |         | /Analog Input] |

| Parameter       | Description                                                | Setting range  | Default | Menu path      |
|-----------------|------------------------------------------------------------|----------------|---------|----------------|
| Scale Factor 14 | The scale factor is used to convert the                    | 0.001,         | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,          |         | /DNP3          |
| $\bigotimes$    |                                                            | 0.1,           |         | /Point map     |
| •               |                                                            | 1,             |         | /Analog Input] |
|                 |                                                            | 10,            |         |                |
|                 |                                                            | 100,           |         |                |
|                 |                                                            | 1000,          |         |                |
|                 |                                                            | 10000,         |         |                |
|                 |                                                            | 100000,        |         |                |
|                 |                                                            | 1000000        |         |                |
| Dead Band 14    | If a change of measured value is greater                   | 0.01 - 100.00% | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                |         | /DNP3          |
| $\bigotimes$    |                                                            |                |         | /Point map     |
| )               |                                                            |                |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,            |         | [Device Para   |
| 15              | to the master (DNP)                                        | TrendRecList   |         | /DNP3          |
|                 |                                                            |                |         | /Point map     |
| $\bigotimes$    |                                                            |                |         | /Analog Input] |
| Scale Factor 15 |                                                            | 0.001,         | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,          |         | /DNP3          |
|                 |                                                            | 0.1,           |         | /Point map     |
| )               |                                                            | 1,             |         | /Analog Input] |
|                 |                                                            | 10,            |         |                |
|                 |                                                            | 100,           |         |                |
|                 |                                                            | 1000,          |         |                |
|                 |                                                            | 10000,         |         |                |
|                 |                                                            | 100000,        |         |                |
|                 |                                                            | 1000000        |         |                |
| Dead Band 15    | If a change of measured value is greater                   | 0.01 - 100.00% | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                |         | /DNP3          |
| $\bigotimes$    |                                                            |                |         | /Point map     |
| -               |                                                            |                |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,            |         | [Device Para   |
| 16              | to the master (DNP)                                        | TrendRecList   |         | /DNP3          |
|                 |                                                            |                |         | /Point map     |
| $\bigotimes$    |                                                            |                |         | /Analog Input] |

| Parameter                                                                                                                                          | Description                                                | Setting range       | Default | Menu path      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------|---------|----------------|
| Scale Factor 16                                                                                                                                    | The scale factor is used to convert the                    | 0.001,              | 1       | [Device Para   |
|                                                                                                                                                    | measured value in an integer format                        | 0.01,               |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                            | 0.1,                |         | /Point map     |
| $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ |                                                            | 1,                  |         | /Analog Input] |
|                                                                                                                                                    |                                                            | 10,                 |         |                |
|                                                                                                                                                    |                                                            | 100,                |         |                |
|                                                                                                                                                    |                                                            | 1000,               |         |                |
|                                                                                                                                                    |                                                            | 10000,              |         |                |
|                                                                                                                                                    |                                                            | 100000,             |         |                |
|                                                                                                                                                    |                                                            | 1000000             |         |                |
| Dead Band 16                                                                                                                                       | If a change of measured value is greater                   | 0.01 - 100.00%      | 1%      | [Device Para   |
|                                                                                                                                                    | than the deadband value it will be reported to the master. |                     |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                            |                     |         | /Point map     |
| •                                                                                                                                                  |                                                            |                     |         | /Analog Input] |
| Analog value                                                                                                                                       | Analog value can be used to report values                  | 1n,                 |         | [Device Para   |
| 17                                                                                                                                                 | to the master (DNP)                                        | TrendRecList        |         | /DNP3          |
|                                                                                                                                                    |                                                            |                     |         | /Point map     |
| $\bigotimes$                                                                                                                                       |                                                            |                     |         | /Analog Input] |
| Scale Factor 17                                                                                                                                    |                                                            | 0.001,              | 1       | [Device Para   |
|                                                                                                                                                    | measured value in an integer format                        | 0.01,               |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                            | 0.1,                |         | /Point map     |
| )                                                                                                                                                  |                                                            | 1,                  |         | /Analog Input] |
|                                                                                                                                                    |                                                            | 10,                 |         |                |
|                                                                                                                                                    |                                                            | 100,                |         |                |
|                                                                                                                                                    |                                                            | 1000,               |         |                |
|                                                                                                                                                    |                                                            | 10000,              |         |                |
|                                                                                                                                                    |                                                            | 100000,             |         |                |
|                                                                                                                                                    |                                                            | 1000000             |         |                |
| Dead Band 17                                                                                                                                       | If a change of measured value is greater                   | 0.01 - 100.00%      | 1%      | [Device Para   |
|                                                                                                                                                    | than the deadband value it will be reported to the master. |                     |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                            |                     |         | /Point map     |
| _                                                                                                                                                  |                                                            |                     |         | /Analog Input] |
| Analog value                                                                                                                                       | Analog value can be used to report values                  | 1n,<br>TrendRecList |         | [Device Para   |
| 18                                                                                                                                                 | to the master (DNP)                                        | TrenakecList        |         | /DNP3          |
|                                                                                                                                                    |                                                            |                     |         | /Point map     |
| $\bigotimes$                                                                                                                                       |                                                            |                     |         | /Analog Input] |

| Parameter       | Description                                                | Setting range         | Default | Menu path      |
|-----------------|------------------------------------------------------------|-----------------------|---------|----------------|
| Scale Factor 18 | The scale factor is used to convert the                    | 0.001,                | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,                 |         | /DNP3          |
| $\bigotimes$    |                                                            | 0.1,                  |         | /Point map     |
| $\mathbf{+}$    |                                                            | 1,                    |         | /Analog Input] |
|                 |                                                            | 10,                   |         |                |
|                 |                                                            | 100,                  |         |                |
|                 |                                                            | 1000,                 |         |                |
|                 |                                                            | 10000,                |         |                |
|                 |                                                            | 100000,               |         |                |
|                 |                                                            | 1000000               |         |                |
| Dead Band 18    | If a change of measured value is greater                   | 0.01 - 100.00%        | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                       |         | /DNP3          |
| $\bigotimes$    |                                                            |                       |         | /Point map     |
| )               |                                                            |                       |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,<br>TrandDaaliat   |         | [Device Para   |
| 19              | to the master (DNP)                                        | TrendRecList          |         | /DNP3          |
|                 |                                                            |                       |         | /Point map     |
| $\bigotimes$    |                                                            |                       |         | /Analog Input] |
| Scale Factor 19 | The scale factor is used to convert the                    | 0.001,                | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,                 |         | /DNP3          |
|                 |                                                            | 0.1,                  |         | /Point map     |
| -               |                                                            | 1,                    |         | /Analog Input] |
|                 |                                                            | 10,                   |         |                |
|                 |                                                            | 100,                  |         |                |
|                 |                                                            | 1000,                 |         |                |
|                 |                                                            | 10000,                |         |                |
|                 |                                                            | 100000,               |         |                |
|                 |                                                            | 1000000               |         |                |
| Dead Band 19    | If a change of measured value is greater                   | 0.01 - 100.00%        | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                       |         | /DNP3          |
| $\bigotimes$    |                                                            |                       |         | /Point map     |
|                 |                                                            |                       |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,<br>Trand Dock ist |         | [Device Para   |
| 20              | to the master (DNP)                                        | TrendRecList          |         | /DNP3          |
|                 |                                                            |                       |         | /Point map     |
| $\bigotimes$    |                                                            |                       |         | /Analog Input] |

| Parameter                                                                                                                                          | Description                                                                          | Setting range         | Default | Menu path      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|---------|----------------|
| Scale Factor 20                                                                                                                                    | The scale factor is used to convert the                                              | 0.001,                | 1       | [Device Para   |
|                                                                                                                                                    | measured value in an integer format                                                  | 0.01,                 |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                                                      | 0.1,                  |         | /Point map     |
| $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ |                                                                                      | 1,                    |         | /Analog Input] |
|                                                                                                                                                    |                                                                                      | 10,                   |         |                |
|                                                                                                                                                    |                                                                                      | 100,                  |         |                |
|                                                                                                                                                    |                                                                                      | 1000,                 |         |                |
|                                                                                                                                                    |                                                                                      | 10000,                |         |                |
|                                                                                                                                                    |                                                                                      | 100000,               |         |                |
|                                                                                                                                                    |                                                                                      | 1000000               |         |                |
| Dead Band 20                                                                                                                                       | If a change of measured value is greater                                             | 0.01 - 100.00%        | 1%      | [Device Para   |
|                                                                                                                                                    | than the deadband value it will be reported to the master.                           |                       |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                                                      |                       |         | /Point map     |
| )                                                                                                                                                  |                                                                                      |                       |         | /Analog Input] |
| Analog value                                                                                                                                       | Analog value can be used to report values                                            | 1n,<br>TrandDaaliat   |         | [Device Para   |
| 21                                                                                                                                                 | to the master (DNP)                                                                  | TrendRecList          |         | /DNP3          |
|                                                                                                                                                    |                                                                                      |                       |         | /Point map     |
| $\bigotimes$                                                                                                                                       |                                                                                      |                       |         | /Analog Input] |
| Scale Factor 21                                                                                                                                    |                                                                                      | 0.001,                | 1       | [Device Para   |
|                                                                                                                                                    | measured value in an integer format                                                  | 0.01,                 |         | /DNP3          |
|                                                                                                                                                    |                                                                                      | 0.1,                  |         | /Point map     |
| -                                                                                                                                                  |                                                                                      | 1,                    |         | /Analog Input] |
|                                                                                                                                                    |                                                                                      | 10,                   |         |                |
|                                                                                                                                                    |                                                                                      | 100,                  |         |                |
|                                                                                                                                                    |                                                                                      | 1000,                 |         |                |
|                                                                                                                                                    |                                                                                      | 10000,                |         |                |
|                                                                                                                                                    |                                                                                      | 100000,               |         |                |
|                                                                                                                                                    |                                                                                      | 1000000               |         |                |
| Dead Band 21                                                                                                                                       | If a change of measured value is greater than the deadband value it will be reported | 0.01 - 100.00%        | 1%      | [Device Para   |
|                                                                                                                                                    | to the master.                                                                       |                       |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                                                      |                       |         | /Point map     |
|                                                                                                                                                    |                                                                                      |                       |         | /Analog Input] |
| Analog value                                                                                                                                       | Analog value can be used to report values                                            | 1n,<br>Trand Back ist |         | [Device Para   |
| 22                                                                                                                                                 | to the master (DNP)                                                                  | TrendRecList          |         | /DNP3          |
|                                                                                                                                                    |                                                                                      |                       |         | /Point map     |
| $\bigotimes$                                                                                                                                       |                                                                                      |                       |         | /Analog Input] |

| Parameter                                                                                                                                          | Description                                                | Setting range         | Default | Menu path      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|---------|----------------|
| Scale Factor 22                                                                                                                                    | The scale factor is used to convert the                    | 0.001,                | 1       | [Device Para   |
|                                                                                                                                                    | measured value in an integer format                        | 0.01,                 |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                            | 0.1,                  |         | /Point map     |
| $\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$ |                                                            | 1,                    |         | /Analog Input] |
|                                                                                                                                                    |                                                            | 10,                   |         |                |
|                                                                                                                                                    |                                                            | 100,                  |         |                |
|                                                                                                                                                    |                                                            | 1000,                 |         |                |
|                                                                                                                                                    |                                                            | 10000,                |         |                |
|                                                                                                                                                    |                                                            | 100000,               |         |                |
|                                                                                                                                                    |                                                            | 1000000               |         |                |
| Dead Band 22                                                                                                                                       | If a change of measured value is greater                   | 0.01 - 100.00%        | 1%      | [Device Para   |
|                                                                                                                                                    | than the deadband value it will be reported to the master. |                       |         | /DNP3          |
| $\bigotimes$                                                                                                                                       |                                                            |                       |         | /Point map     |
| )                                                                                                                                                  |                                                            |                       |         | /Analog Input] |
| Analog value                                                                                                                                       | Analog value can be used to report values                  | 1n,                   |         | [Device Para   |
| 23                                                                                                                                                 | to the master (DNP)                                        | TrendRecList          |         | /DNP3          |
|                                                                                                                                                    |                                                            |                       |         | /Point map     |
| $\bigotimes$                                                                                                                                       |                                                            |                       |         | /Analog Input] |
| Scale Factor 23                                                                                                                                    | The scale factor is used to convert the                    | 0.001,                | 1       | [Device Para   |
|                                                                                                                                                    | measured value in an integer format                        | 0.01,                 |         | /DNP3          |
|                                                                                                                                                    |                                                            | 0.1,                  |         | /Point map     |
| )                                                                                                                                                  |                                                            | 1,                    |         | /Analog Input] |
|                                                                                                                                                    |                                                            | 10,                   |         |                |
|                                                                                                                                                    |                                                            | 100,                  |         |                |
|                                                                                                                                                    |                                                            | 1000,                 |         |                |
|                                                                                                                                                    |                                                            | 10000,                |         |                |
|                                                                                                                                                    |                                                            | 100000,               |         |                |
|                                                                                                                                                    |                                                            | 1000000               |         |                |
| Dead Band 23                                                                                                                                       | If a change of measured value is greater                   | 0.01 - 100.00%        | 1%      | [Device Para   |
|                                                                                                                                                    | than the deadband value it will be reported to the master. |                       |         | /DNP3          |
|                                                                                                                                                    |                                                            |                       |         | /Point map     |
|                                                                                                                                                    |                                                            |                       |         | /Analog Input] |
| Analog value                                                                                                                                       | Analog value can be used to report values                  | 1n,<br>Trand Back ist |         | [Device Para   |
| 24                                                                                                                                                 | to the master (DNP)                                        | TrendRecList          |         | /DNP3          |
|                                                                                                                                                    |                                                            |                       |         | /Point map     |
| $\bigotimes$                                                                                                                                       |                                                            |                       |         | /Analog Input] |

| Parameter       | Description                                                                          | Setting range       | Default | Menu path      |
|-----------------|--------------------------------------------------------------------------------------|---------------------|---------|----------------|
| Scale Factor 24 | The scale factor is used to convert the                                              | 0.001,              | 1       | [Device Para   |
|                 | measured value in an integer format                                                  | 0.01,               |         | /DNP3          |
| $\bigotimes$    |                                                                                      | 0.1,                |         | /Point map     |
| $\mathbf{+}$    |                                                                                      | 1,                  |         | /Analog Input] |
|                 |                                                                                      | 10,                 |         |                |
|                 |                                                                                      | 100,                |         |                |
|                 |                                                                                      | 1000,               |         |                |
|                 |                                                                                      | 10000,              |         |                |
|                 |                                                                                      | 100000,             |         |                |
|                 |                                                                                      | 1000000             |         |                |
| Dead Band 24    | If a change of measured value is greater                                             | 0.01 - 100.00%      | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master.                           |                     |         | /DNP3          |
| $\bigotimes$    |                                                                                      |                     |         | /Point map     |
| )               |                                                                                      |                     |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                                            | 1n,<br>TrandDaaliat |         | [Device Para   |
| 25              | to the master (DNP)                                                                  | TrendRecList        |         | /DNP3          |
|                 |                                                                                      |                     |         | /Point map     |
| $\bigotimes$    |                                                                                      |                     |         | /Analog Input] |
| Scale Factor 25 |                                                                                      | 0.001,              | 1       | [Device Para   |
|                 | measured value in an integer format                                                  | 0.01,               |         | /DNP3          |
|                 |                                                                                      | 0.1,                |         | /Point map     |
| -               |                                                                                      | 1,                  |         | /Analog Input] |
|                 |                                                                                      | 10,                 |         |                |
|                 |                                                                                      | 100,                |         |                |
|                 |                                                                                      | 1000,               |         |                |
|                 |                                                                                      | 10000,              |         |                |
|                 |                                                                                      | 100000,             |         |                |
|                 |                                                                                      | 1000000             |         |                |
| Dead Band 25    | If a change of measured value is greater than the deadband value it will be reported | 0.01 - 100.00%      | 1%      | [Device Para   |
|                 | to the master.                                                                       |                     |         | /DNP3          |
| $\bigotimes$    |                                                                                      |                     |         | /Point map     |
|                 |                                                                                      |                     |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                                            | 1n,<br>TrendRecList |         | [Device Para   |
| 26              | to the master (DNP)                                                                  | TENUKECLIST         |         | /DNP3          |
|                 |                                                                                      |                     |         | /Point map     |
| $\bigotimes$    |                                                                                      |                     |         | /Analog Input] |

| Parameter       | Description                                                | Setting range  | Default | Menu path      |
|-----------------|------------------------------------------------------------|----------------|---------|----------------|
| Scale Factor 26 | The scale factor is used to convert the                    | 0.001,         | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,          |         | /DNP3          |
| $\bigotimes$    |                                                            | 0.1,           |         | /Point map     |
|                 |                                                            | 1,             |         | /Analog Input] |
|                 |                                                            | 10,            |         |                |
|                 |                                                            | 100,           |         |                |
|                 |                                                            | 1000,          |         |                |
|                 |                                                            | 10000,         |         |                |
|                 |                                                            | 100000,        |         |                |
|                 |                                                            | 1000000        |         |                |
| Dead Band 26    | If a change of measured value is greater                   | 0.01 - 100.00% | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                |         | /DNP3          |
| $\bigotimes$    |                                                            |                |         | /Point map     |
| <b>•</b>        |                                                            |                |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,            |         | [Device Para   |
| 27              | to the master (DNP)                                        | TrendRecList   |         | /DNP3          |
|                 |                                                            |                |         | /Point map     |
| $\bigotimes$    |                                                            |                |         | /Analog Input] |
| Scale Factor 27 |                                                            | 0.001,         | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,          |         | /DNP3          |
| $\bigotimes$    |                                                            | 0.1,           |         | /Point map     |
| •               |                                                            | 1,             |         | /Analog Input] |
|                 |                                                            | 10,            |         |                |
|                 |                                                            | 100,           |         |                |
|                 |                                                            | 1000,          |         |                |
|                 |                                                            | 10000,         |         |                |
|                 |                                                            | 100000,        |         |                |
|                 |                                                            | 1000000        |         |                |
| Dead Band 27    | If a change of measured value is greater                   | 0.01 - 100.00% | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                |         | /DNP3          |
|                 |                                                            |                |         | /Point map     |
| <b>—</b>        |                                                            |                |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,            |         | [Device Para   |
| 28              | to the master (DNP)                                        | TrendRecList   |         | /DNP3          |
|                 |                                                            |                |         | /Point map     |
| $\bigotimes$    |                                                            |                |         | /Analog Input] |

| Parameter       | Description                                                | Setting range         | Default | Menu path      |
|-----------------|------------------------------------------------------------|-----------------------|---------|----------------|
| Scale Factor 28 | The scale factor is used to convert the                    | 0.001,                | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,                 |         | /DNP3          |
| $\bigotimes$    |                                                            | 0.1,                  |         | /Point map     |
| $\mathbf{+}$    |                                                            | 1,                    |         | /Analog Input] |
|                 |                                                            | 10,                   |         |                |
|                 |                                                            | 100,                  |         |                |
|                 |                                                            | 1000,                 |         |                |
|                 |                                                            | 10000,                |         |                |
|                 |                                                            | 100000,               |         |                |
|                 |                                                            | 1000000               |         |                |
| Dead Band 28    | If a change of measured value is greater                   | 0.01 - 100.00%        | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                       |         | /DNP3          |
| $\bigotimes$    |                                                            |                       |         | /Point map     |
| )               |                                                            |                       |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,                   |         | [Device Para   |
| 29              | to the master (DNP)                                        | TrendRecList          |         | /DNP3          |
|                 |                                                            |                       |         | /Point map     |
| $\bigotimes$    |                                                            |                       |         | /Analog Input] |
| Scale Factor 29 | The scale factor is used to convert the                    | 0.001,                | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,                 |         | /DNP3          |
|                 |                                                            | 0.1,                  |         | /Point map     |
| )               |                                                            | 1,                    |         | /Analog Input] |
|                 |                                                            | 10,                   |         |                |
|                 |                                                            | 100,                  |         |                |
|                 |                                                            | 1000,                 |         |                |
|                 |                                                            | 10000,                |         |                |
|                 |                                                            | 100000,               |         |                |
|                 |                                                            | 1000000               |         |                |
| Dead Band 29    | If a change of measured value is greater                   | 0.01 - 100.00%        | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                       |         | /DNP3          |
| $\bigotimes$    |                                                            |                       |         | /Point map     |
| _               |                                                            |                       |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,<br>Trand Back ist |         | [Device Para   |
| 30              | to the master (DNP)                                        | TrendRecList          |         | /DNP3          |
|                 |                                                            |                       |         | /Point map     |
| $\bigotimes$    |                                                            |                       |         | /Analog Input] |

| Parameter       | Description                                                | Setting range    | Default | Menu path      |
|-----------------|------------------------------------------------------------|------------------|---------|----------------|
| Scale Factor 30 | The scale factor is used to convert the                    | 0.001,           | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,            |         | /DNP3          |
| $\bigotimes$    |                                                            | 0.1,             |         | /Point map     |
|                 |                                                            | 1,               |         | /Analog Input] |
|                 |                                                            | 10,              |         |                |
|                 |                                                            | 100,             |         |                |
|                 |                                                            | 1000,            |         |                |
|                 |                                                            | 10000,           |         |                |
|                 |                                                            | 100000,          |         |                |
|                 |                                                            | 1000000          |         |                |
| Dead Band 30    | If a change of measured value is greater                   | 0.01 - 100.00%   | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                  |         | /DNP3          |
| $\bigotimes$    |                                                            |                  |         | /Point map     |
| •               |                                                            |                  |         | /Analog Input] |
| Analog value    | Analog value can be used to report values                  | 1n,<br>Transland |         | [Device Para   |
| 31              | to the master (DNP)                                        | TrendRecList     |         | /DNP3          |
|                 |                                                            |                  |         | /Point map     |
| $\bigotimes$    |                                                            |                  |         | /Analog Input] |
| Scale Factor 31 | The scale factor is used to convert the                    | 0.001,           | 1       | [Device Para   |
|                 | measured value in an integer format                        | 0.01,            |         | /DNP3          |
| $\bigotimes$    |                                                            | 0.1,             |         | /Point map     |
| -               |                                                            | 1,               |         | /Analog Input] |
|                 |                                                            | 10,              |         |                |
|                 |                                                            | 100,             |         |                |
|                 |                                                            | 1000,            |         |                |
|                 |                                                            | 10000,           |         |                |
|                 |                                                            | 100000,          |         |                |
|                 |                                                            | 1000000          |         |                |
| Dead Band 31    | If a change of measured value is greater                   | 0.01 - 100.00%   | 1%      | [Device Para   |
|                 | than the deadband value it will be reported to the master. |                  |         | /DNP3          |
| $\otimes$       |                                                            |                  |         | /Point map     |
|                 |                                                            |                  |         | /Analog Input] |

## Inputs of the DNP

| Name           | Description                                        | Assignment via  |
|----------------|----------------------------------------------------|-----------------|
| BinaryInput0-I | Virtual Digital Input (DNP). This corresponds to a | [Device Para    |
|                | virtual binary output of the protective device.    | /DNP3           |
|                |                                                    | /Point map      |
|                |                                                    | /Binary Inputs] |
| BinaryInput1-I | Virtual Digital Input (DNP). This corresponds to a | [Device Para    |
|                | virtual binary output of the protective device.    | /DNP3           |
|                |                                                    | /Point map      |
|                |                                                    | /Binary Inputs] |
| BinaryInput2-I | Virtual Digital Input (DNP). This corresponds to a | [Device Para    |
|                | virtual binary output of the protective device.    | /DNP3           |
|                |                                                    | /Point map      |
|                |                                                    | /Binary Inputs] |
| BinaryInput3-I | Virtual Digital Input (DNP). This corresponds to a | [Device Para    |
|                | virtual binary output of the protective device.    | /DNP3           |
|                |                                                    | /Point map      |
|                |                                                    | /Binary Inputs] |
| BinaryInput4-I | Virtual Digital Input (DNP). This corresponds to a | [Device Para    |
|                | virtual binary output of the protective device.    | /DNP3           |
|                |                                                    | /Point map      |
|                |                                                    | /Binary Inputs] |
| BinaryInput5-I | Virtual Digital Input (DNP). This corresponds to a | [Device Para    |
|                | virtual binary output of the protective device.    | /DNP3           |
|                |                                                    | /Point map      |
|                |                                                    | /Binary Inputs] |
| BinaryInput6-I | Virtual Digital Input (DNP). This corresponds to a | [Device Para    |
|                | virtual binary output of the protective device.    | /DNP3           |
|                |                                                    | /Point map      |
|                |                                                    | /Binary Inputs] |
| BinaryInput7-I | Virtual Digital Input (DNP). This corresponds to a | [Device Para    |
|                | virtual binary output of the protective device.    | /DNP3           |
|                |                                                    | /Point map      |
|                |                                                    | /Binary Inputs] |
| BinaryInput8-I | Virtual Digital Input (DNP). This corresponds to a | [Device Para    |
|                | virtual binary output of the protective device.    | /DNP3           |
|                |                                                    | /Point map      |
|                |                                                    | /Binary Inputs] |

| Name            | Description                                                                                        | Assignment via  |
|-----------------|----------------------------------------------------------------------------------------------------|-----------------|
| BinaryInput9-I  | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput10-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput11-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput12-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput13-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput14-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput15-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput16-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput17-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |

| Name            | Description                                                                                        | Assignment via  |
|-----------------|----------------------------------------------------------------------------------------------------|-----------------|
| BinaryInput18-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput19-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput20-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput21-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput22-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput23-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput24-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput25-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput26-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |

| Name            | Description                                                                                        | Assignment via  |
|-----------------|----------------------------------------------------------------------------------------------------|-----------------|
| BinaryInput27-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput28-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput29-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput30-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput31-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput32-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput33-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput34-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput35-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |

| Name            | Description                                                                                        | Assignment via  |
|-----------------|----------------------------------------------------------------------------------------------------|-----------------|
| BinaryInput36-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput37-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput38-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput39-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput40-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput41-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput42-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput43-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput44-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |

| Name            | Description                                                                                        | Assignment via  |
|-----------------|----------------------------------------------------------------------------------------------------|-----------------|
| BinaryInput45-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput46-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput47-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput48-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput49-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput50-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput51-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput52-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput53-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |

| Name            | Description                                                                                        | Assignment via  |
|-----------------|----------------------------------------------------------------------------------------------------|-----------------|
| BinaryInput54-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput55-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput56-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput57-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput58-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput59-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput60-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput61-I | Virtual Digital Input (DNP). This corresponds to a                                                 | [Device Para    |
|                 | virtual binary output of the protective device.                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |
| BinaryInput62-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para    |
|                 |                                                                                                    | /DNP3           |
|                 |                                                                                                    | /Point map      |
|                 |                                                                                                    | /Binary Inputs] |

| Name              | Description                                                                                              | Assignment via      |
|-------------------|----------------------------------------------------------------------------------------------------------|---------------------|
| BinaryInput63-I   | Virtual Digital Input (DNP). This corresponds to a                                                       | [Device Para        |
|                   | virtual binary output of the protective device.                                                          | /DNP3               |
|                   |                                                                                                          | /Point map          |
|                   |                                                                                                          | /Binary Inputs]     |
| DoubleBitInput0-I |                                                                                                          | [Device Para        |
|                   | double bit binary output of the protective device.                                                       | /DNP3               |
|                   |                                                                                                          | /Point map          |
|                   |                                                                                                          | /Double Bit Inputs] |
| DoubleBitInput1-I |                                                                                                          | [Device Para        |
|                   | double bit binary output of the protective device.                                                       | /DNP3               |
|                   |                                                                                                          | /Point map          |
|                   |                                                                                                          | /Double Bit Inputs] |
| DoubleBitInput2-I | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | [Device Para        |
|                   |                                                                                                          | /DNP3               |
|                   |                                                                                                          | /Point map          |
|                   |                                                                                                          | /Double Bit Inputs] |
| DoubleBitInput3-I | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | [Device Para        |
|                   |                                                                                                          | /DNP3               |
|                   |                                                                                                          | /Point map          |
|                   |                                                                                                          | /Double Bit Inputs] |
| DoubleBitInput4-I | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | [Device Para        |
|                   |                                                                                                          | /DNP3               |
|                   |                                                                                                          | /Point map          |
|                   |                                                                                                          | /Double Bit Inputs] |
| DoubleBitInput5-I | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | [Device Para        |
|                   |                                                                                                          | /DNP3               |
|                   |                                                                                                          | /Point map          |
|                   |                                                                                                          | /Double Bit Inputs] |

## Options of the DNP

| Name                  | Description                                                                                                                                                                                                                        |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | No assignment                                                                                                                                                                                                                      |
| Prot.FaultNo          | Fault number                                                                                                                                                                                                                       |
| Prot.No of GridFaults | Number of grid faults: A grid fault, e.g. a short circuit, might cause several faults with trip and autoreclosing, each fault being identified by an increased fault number. In this case, the grid fault number remains the same. |
| SG[1].TripCmd Cr      | Counter: Total number of trips of the switchgear (circuit breaker, load break switch). Resettable with Total or All.                                                                                                               |
| MStart.StartPerHour   | StartPerHour                                                                                                                                                                                                                       |

| Description                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In case that the Motor is blocked by a SPH blocking, this timer needs to be expired<br>before the blocking is released and the next motor start is permitted. The next Motor<br>Start will increment the SPH counter again. |
| Number of cold starts remaining                                                                                                                                                                                             |
| Motor Operation count since last reset.                                                                                                                                                                                     |
| Motor Operation time since last reset.                                                                                                                                                                                      |
| Number of emergency overrides since last reset.                                                                                                                                                                             |
| Motor Operation (Motor run time) time since last reset.                                                                                                                                                                     |
| Total Motor Operation count since last reset.                                                                                                                                                                               |
| Number of transition trips since last reset.                                                                                                                                                                                |
| Number of reverse spinning trips since last reset.                                                                                                                                                                          |
| Number of zero speed switch trips since last reset.                                                                                                                                                                         |
| Number of incomplete sequence trips since last reset.                                                                                                                                                                       |
| Number of start per hour blocks since last reset.                                                                                                                                                                           |
| Number of time between start blocks since last reset.                                                                                                                                                                       |
| Positive Active Power is consumed active energy                                                                                                                                                                             |
| Negative Active Power (Fed Energy)                                                                                                                                                                                          |
| Positive Reactive Power is consumed Reactive Energy                                                                                                                                                                         |
| Negative Reactive Power (Fed Energy)                                                                                                                                                                                        |
| Operating hours counter of the protective device                                                                                                                                                                            |
| Hours Counter                                                                                                                                                                                                               |
|                                                                                                                                                                                                                             |

## Selectable Switchgears of the DNP

| Name      | Description                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------|
|           | No assignment                                                                                 |
| SG[1].Pos | Signal: Circuit Breaker Position ( $0 =$ Indeterminate, $1 =$ OFF, $2 =$ ON, $3 =$ Disturbed) |

### **DNP Signals (Output States)**



Some signals (that are for a short time active only) have to be acknowledged separately (e.g. Trip signals) by the Communication System.

| Signal         | Description                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------|
| busy           | This message is set if the protocol is started. It will be reset if the protocol is shut down.       |
| ready          | The message will be set if the protocol is successfully started and ready for data exchange.         |
| active         | The communication with the Master (SCADA) is active.                                                 |
|                | Note that for TCP/UDP, this state is permanently "Low" unless »DataLink confirm« is set to "Always". |
| BinaryOutput0  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput1  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput2  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput3  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput4  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput5  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput6  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput7  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput8  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput9  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput10 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput11 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput12 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput13 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput14 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput15 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| BinaryOutput16 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |

| Signal         | Description                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------|
| BinaryOutput17 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput18 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput19 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput20 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput21 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput22 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput23 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput24 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput25 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput26 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput27 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput28 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput29 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput30 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput31 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |

### **DNP Values**

| Value         | Description                                                                                                 | Default | Size                  | Menu path                                  |
|---------------|-------------------------------------------------------------------------------------------------------------|---------|-----------------------|--------------------------------------------|
| NReceived     | Diagnostic counter: Number of received characters                                                           | 0       | 0 -<br>999999999999   | [Operation<br>/Count and RevData<br>/DNP3] |
| NSent         | Diagnostic counter: Number of sent<br>characters                                                            | 0       | 0 -<br>999999999999   | [Operation<br>/Count and RevData<br>/DNP3] |
| NBadFramings  | Diagnostic counter: Number of bad<br>framings. A large number indicates a<br>disturbed serial connection.   | 0       | 0 -<br>99999999999999 | [Operation<br>/Count and RevData<br>/DNP3] |
| NBadParities  | Diagnostic counter: Number of parity<br>errrors. A large number indicates a<br>disturbed serial connection. | 0       | 0 -<br>99999999999999 | [Operation<br>/Count and RevData<br>/DNP3] |
| NBreakSignals | Diagnostic counter: Number of break<br>signals. A large number indicates a<br>disturbed serial connection.  | 0       | 0 -<br>999999999999   | [Operation<br>/Count and RevData<br>/DNP3] |
| NBadChecksum  | Diagnostic counter: Number of frames received with bad checksum.                                            | 0       | 0 -<br>999999999999   | [Operation<br>/Count and RevData<br>/DNP3] |

# **Time Synchronization**

#### <u>TimeSync</u>

The user has the possibility to synchronize the device with a central time generator. This offers the following advantages:

- The time does not drift off from the reference time. A continuously accumulating deviation from the reference time thereby will be balanced. Also refer to the chapter Specifications (Tolerances Real Time Clock).
- All time synchronized devices operate with the same time. Thus logged events of the individual devices can be compared exactly and be evaluated in conjunction (single events of the event recorder, disturbance records).

The device's time can be synchronized via the following protocols:

- IRIG-B
- SNTP
- Communication protocol Modbus (RTU or TCP)
- Communication protocol IEC60870-5-103
- Communication protocol DNP3
- Protection communication (only for line differential devices and only for one of the two interconnected devices).

The provided protocols use different hardware interfaces and differ also in their achieved time accuracy. Further information can be found in the chapter Specifications.

| Used Protocol                | Hardware-Interface             | Recommended Application                                                                                                                                                                                                                                                                                                                      |
|------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Without time synchronization | —                              | Not recommended                                                                                                                                                                                                                                                                                                                              |
| IRIG-B                       | IRIG-B Terminal                | Recommended, if interface available                                                                                                                                                                                                                                                                                                          |
| SNTP                         | RJ45 (Ethernet)                | Recommended alternative to IRIG-B, especially when using IEC 61850 or Modbus TCP                                                                                                                                                                                                                                                             |
| Modbus RTU                   | RS485, D-SUB or<br>Fiber Optic | Recommended when using the Modbus RTU communication protocol and when no IRIG-B code generator is available                                                                                                                                                                                                                                  |
| Modbus TCP                   | RJ45 (Ethernet)                | Limited recommendation when the Modbus TCP communication<br>protocol is used and no IRIG-B code generator or an SNTP server<br>is available                                                                                                                                                                                                  |
| IEC 60870-5-103              | RS485, D-SUB or<br>Fiber Optic | Recommended when using the IEC 10870-5-103 communication protocol and no IRIG-B code generator is available                                                                                                                                                                                                                                  |
| DNP3                         | RS485 or RJ45<br>(Ethernet)    | Limited recommendation when using the DNP3 communication<br>protocol and no IRIG-B code generator or an SNTP server is<br>available                                                                                                                                                                                                          |
| ProtCom                      | X102 (Fiber Optic)             | The "ProtCom" Protection Communication is available only with line<br>differential devices, and it connects two devices with each other.<br>Time Synchronization via "ProtCom" is recommended for only one<br>of these two devices. (Time Synchronization of the other device<br>should be done via another protocol, e. g. IRIG-B or SNTP.) |

### Accuracy of Time Synchronization

The accuracy of the device's synchronized system time depends on several factors:

- accuracy of the connected time generator
- used synchronization protocol
- when using Modbus TCP, SNTP or DNP3 TCP/UDP: Network load and data package transmission times



Please consider the accuracy of the used time generator. Fluctuations of the time generator's time will cause the same fluctuations of the protection relay's system time.

### Selection of Timezone and Synchronization Protocol

The protection relay masters both UTC and local time. This means that the device can be synchronized with UTC time while using local time for user display.

#### Time Synchronization with UTC time (recommended):

Time synchronization is usually done using UTC time. This means for example that an IRIG-B time generator is sending UTC time information to the protection relay. This is the recommended use case, since here a continuous time synchronization can be ensured. There are no "leaps in time" through change of summer- and wintertime.

To achieve that the device shows the current local time, the timezone and the change between summer- and wintertime can be configured.

Please carry out the following setting steps under [Device Para/ Time]:

- 1.Select your local timezone in the timezone menu.
- 2. There also configure the switching of daylight saving time.
- 3.Select the used time synchronization protocol in the TimeSync menu (e.g. "IRIG-B").
- 4.Set the parameters of the synchronization protocol (refer to the according chapter).

#### Time Synchronization with local time:

Should the time synchronization however be done using local time, then please leave the timezone to *»UTC+0 London«* and do not use switching of daylight saving time.

## NOTICE

The synchronization of the relay's system time is exclusively done by the synchronization protocol selected in the menu [Device Para/ Time/ TimeSync/ Used Protocol].

#### Without Time Synchronization:

To achieve that the device shows the current local time, the timezone and the change between summer- and wintertime can be configured.

Please carry out the following setting steps under [Device Para/ Time]:

- 1. Select your local timezone in the timezone menu.
- 2. There also configure the switching of daylight saving time.
- 3. Select »manual« as your used protocol in the TimeSync menu.
- 4. Set date and time.

## Global Protection Parameters of the Time Synchronization

| Parameter    | Description                                | Setting range | Default  | Menu path    |
|--------------|--------------------------------------------|---------------|----------|--------------|
| DST offset   | Difference to wintertime                   | -180 - 180min | 60min    | [Device Para |
|              |                                            |               |          | /Time        |
| $\bigotimes$ |                                            |               |          | /Timezone]   |
| DST manual   | Manual setting of the Daylight Saving Time | inactive,     | active   | [Device Para |
|              |                                            | active        |          | /Time        |
| $\bigotimes$ |                                            |               |          | /Timezone]   |
| Summertime   | Daylight Saving Time                       | inactive,     | inactive | [Device Para |
|              | Only available if: DST manual = active     | active        |          | /Time        |
| $\bigotimes$ |                                            |               |          | /Timezone]   |
| Summertime m | Month of clock change summertime           | January,      | March    | [Device Para |
|              | Only available if: DST manual = inactive   | February,     |          | /Time        |
| $\bigotimes$ | ,                                          | March,        |          | /Timezone]   |
| •            |                                            | April,        |          |              |
|              |                                            | May,          |          |              |
|              |                                            | June,         |          |              |
|              |                                            | July,         |          |              |
|              |                                            | August,       |          |              |
|              |                                            | September,    |          |              |
|              |                                            | October,      |          |              |
|              |                                            | November,     |          |              |
|              |                                            | December      |          |              |
| Summertime d | Day of clock change summertime             | Sunday,       | Sunday   | [Device Para |
|              | Only available if: DST manual = inactive   | Monday,       |          | /Time        |
| $\bigotimes$ |                                            | Tuesday,      |          | /Timezone]   |
| •            |                                            | Wednesday,    |          |              |
|              |                                            | Thursday,     |          |              |
|              |                                            | Friday,       |          |              |
|              |                                            | Saturday,     |          |              |
|              |                                            | General day   |          |              |
| Summertime w | Place of selected day in month (for clock  | First,        | Last     | [Device Para |
|              | change summertime)                         | Second,       |          | /Time        |
|              | Only available if: DST manual = inactive   | Third,        |          | /Timezone]   |
| ~            |                                            | Fourth,       |          |              |
|              |                                            | Last          |          |              |

| Parameter      | Description                               | Setting range | Default | Menu path     |
|----------------|-------------------------------------------|---------------|---------|---------------|
| Summertime h   | Hour of clock change summertime           | 0 - 23h       | 2h      | [Device Para  |
|                | Only available if: DST manual = inactive  |               |         | /Time         |
| $\bigotimes$   |                                           |               |         | /Timezone]    |
| Summertime     | Minute of clock change summertime         | 0 - 59min     | 0min    | [Device Para  |
| min            |                                           |               |         | /Time         |
|                | Only available if: DST manual = inactive  |               |         | /Timezone]    |
| $\otimes$      |                                           |               |         | -             |
| Wintertime m   | Month of clock change wintertime          | January,      | October | [Device Para  |
|                | Only available if: DST manual = inactive  | February,     |         | /Time         |
| $\bigcirc$     | only available it. Do't manual – mactive  | March,        |         | /Timezone]    |
|                |                                           | April,        |         |               |
|                |                                           | May,          |         |               |
|                |                                           | June,         |         |               |
|                |                                           | July,         |         |               |
|                |                                           | August,       |         |               |
|                |                                           | September,    |         |               |
|                |                                           | October,      |         |               |
|                |                                           | November,     |         |               |
|                |                                           | December      |         |               |
| Wintertime d   | Day of clock change wintertime            | Sunday,       | Sunday  | [Device Para  |
|                | Only available if: DST manual = inactive  | Monday,       |         | /Time         |
| $\bigcirc$     |                                           | Tuesday,      |         | /Timezone]    |
|                |                                           | Wednesday,    |         |               |
|                |                                           | Thursday,     |         |               |
|                |                                           | Friday,       |         |               |
|                |                                           | Saturday,     |         |               |
|                |                                           | General day   |         |               |
| Wintertime w   | Place of selected day in month (for clock | First,        | Last    | [Device Para  |
|                | change wintertime)                        | Second,       |         | /Time         |
|                | Only available if: DST manual = inactive  | Third,        |         | /Timezone]    |
|                |                                           | Fourth,       |         |               |
|                |                                           | Last          |         |               |
| Wintertime h   | Hour of clock change wintertime           | 0 - 23h       | 3h      | [Device Para  |
|                | Only available if: DST manual = inactive  |               |         | /Time         |
| $\bigotimes$   |                                           |               |         | /Timezone]    |
| Wintertime min | Minute of clock change wintertime         | 0 - 59min     | 0min    | [Device Para  |
|                |                                           |               |         | /Time         |
|                | Only available if: DST manual = inactive  |               |         | /Timezone]    |
| $\checkmark$   |                                           |               |         | / 1111620116] |

| Parameter    | Description | Setting range                   | Default         | Menu path             |
|--------------|-------------|---------------------------------|-----------------|-----------------------|
| Time Zones   | Time Zones  | UTC+14<br>Kiritimati,           | UTC+0<br>London | [Device Para<br>/Time |
| $\bigotimes$ |             | UTC+13<br>Rawaki,               |                 | /Timezone]            |
|              |             | UTC+12.75<br>Chatham<br>Island, |                 |                       |
|              |             | UTC+12<br>Wellington,           |                 |                       |
|              |             | UTC+11.5<br>Kingston,           |                 |                       |
|              |             | UTC+11 Port<br>Vila,            |                 |                       |
|              |             | UTC+10.5 Lord<br>Howe Island,   |                 |                       |
|              |             | UTC+10<br>Sydney,<br>UTC+9.5    |                 |                       |
|              |             | Adelaide,                       |                 |                       |
|              |             | UTC+9 Tokyo,                    |                 |                       |
|              |             | UTC+8 Hong<br>Kong,             |                 |                       |
|              |             | UTC+7<br>Bangkok,               |                 |                       |
|              |             | UTC+6.5<br>Rangoon,             |                 |                       |
|              |             | UTC+6<br>Colombo,               |                 |                       |
|              |             | UTC+5.75<br>Kathmandu,          |                 |                       |
|              |             | UTC+5.5 New<br>Delhi,           |                 |                       |
|              |             | UTC+5<br>Islamabad,             |                 |                       |
|              |             | UTC+4.5 Kabul,                  |                 |                       |
|              |             | UTC+4 Abu<br>Dhabi,             |                 |                       |
|              |             | UTC+3.5<br>Tehran,              |                 |                       |
|              |             | UTC+3<br>Moscow,                |                 |                       |
|              |             | UTC+2 Athens,                   |                 |                       |
|              |             | UTC+1 Berlin,                   |                 |                       |
|              |             | UTC+0 London,                   |                 |                       |
|              |             | UTC-1 Azores,                   |                 |                       |
|              |             | UTC-2 Fern. d.<br>Noronha,      |                 |                       |

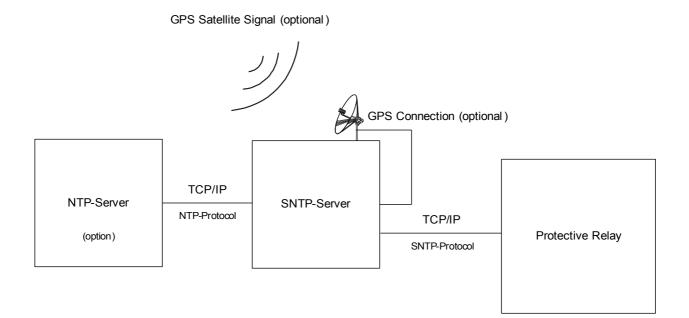
| Parameter | Description          | Setting range       | Default | Menu path    |
|-----------|----------------------|---------------------|---------|--------------|
| TimeSync  | Time synchronisation | -,                  | -       | [Device Para |
|           |                      | IRIG-B,             |         | /Time        |
|           |                      | SNTP,               |         | /TimeSync    |
|           |                      | Modbus,             |         | /TimeSync]   |
|           |                      | IEC60870-5-<br>103, |         |              |
|           |                      | DNP3                |         |              |

## Signals (Output States) of the Time Synchronization

| Signal       | Description            |
|--------------|------------------------|
| synchronized | Clock is synchronized. |

### SNTP

<u>SNTP</u>


# NOTICE

Important pre-condition: The protective relay needs to have access to an SNTP server via the connected network. This server preferably should be installed locally.

#### Principle – General Use

SNTP is a standard protocol for time synchronisation via a network. For this at least one SNTP server has to be available within the network. The device can be configured for one or two SNTP servers.

The protection relay's system time will be synchronised with the connected SNTP server 1-4 times per minute. In turn the SNTP server synchronises its time via NTP with other NTP servers. This is the normal case. Alternatively it can synchronise its time via GPS, radio controlled clock or the like.



### Accuracy

The accuracy of the used SNTP server and the excellence of its reference clock influences the accuracy of the protection relay's clock.

For further information about accuracy refer to the chapter "Specifications".

With each transmitted time information, the SNTP server also sends information about its accuracy:

- Stratum: The stratum indicates over how many interacting NTP-Servers the used SNTP server is connected to an atomic or radio controlled clock.
- Precision: This indicates the accuracy of the system time provided by the SNTP server.

Additionally the performance of the connected network (traffic and data package transmission times) has an influence on the accuracy of the time synchronisation.

Recommended is a locally installed SNTP server with an accuracy of ≤200 µsec. If this cannot be realised, the connected server's excellence can be checked in the menu [Operation/Status Display/TimeSync]:

- The server quality gives information about the accuracy of the used server. The quality should be GOOD or SUFFICIENT. A server with BAD quality should not be used, because this could cause fluctuations in time synchronisation.
- The network quality gives information about the network's load and data package transmission time. The quality should be GOOD or SUFFICIENT. A network with BAD quality should not be used, because this could cause fluctuations in time synchronisation.

#### Using two SNTP Servers

When configuring two SNTP servers, the device always synchronizes to server 1 by default. If server 1 fails, the device automatically switches to server 2. When (after a failure) server 1 recovers, the device switches back to server 1.

### **SNTP** Commissioning

Activate the SNTP time synchronisation by means of the menu [Device Para/ Time/ TimeSync]:

- Select »*SNTP«* in the time synchronisation menu.
- Set the IP address of the first server in the SNTP menu.
- Set the IP address of the second server, if available.
- Set all configured servers to "active".

### **Fault Analysis**

If there is no SNTP signal for more than 120 sec, the SNTP status changes from "active" to "inactive" and an entry in the Event Recorder will be created.

The SNTP functionality can be checked in the menu [Operation/Status Display/TimeSync/Sntp]: If the SNTP status is not indicated as being "active", please proceed as follows:

- Check if the wiring is correct (Ethernet-cable connected).
- Check if a valid IP address is set in the device (Device Para/TCP/IP).
- Check if the IP address of the SNTP server is set in the device (Device Para/ Time/ TimeSync/ SNTP).
- Check if SNTP is used for time synchronization (Device Para/ Time/ TimeSync/ TimeSync).
- Check if the Ethernet connection is active (Device Para/TCP/IP/Link = Up?).
- Check if both the SNTP server and the protection device answer to a Ping.
- Check if the SNTP server is up and working.

### **Device Planning Parameters of the SNTP**

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | use         |            |                   |
| $\bigotimes$ |             |             |            |                   |

### Direct Commands of the SNTP

| Parameter    | Description         | Setting range | Default  | Menu path                  |
|--------------|---------------------|---------------|----------|----------------------------|
| Res Counter  | Reset all Counters. | inactive,     | inactive | [Operation                 |
| $\bigotimes$ |                     | active        |          | /<br>Reset/Acknowle<br>dge |
|              |                     |               |          | /Reset]                    |

### **Global Protection Parameters of the SNTP**

| Parameter    | Description     | Setting range | Default  | Menu path    |
|--------------|-----------------|---------------|----------|--------------|
| Server1      | Server 1        | inactive,     | inactive | [Device Para |
|              |                 | active        |          | /Time        |
|              |                 |               |          | /TimeSync    |
|              |                 |               |          | /SNTP]       |
| IP Byte1     | IP1.IP2.IP3.IP4 | 0 - 255       | 0        | [Device Para |
|              |                 |               |          | /Time        |
| $\bigotimes$ |                 |               |          | /TimeSync    |
|              |                 |               |          | /SNTP]       |
| IP Byte2     | IP1.IP2.IP3.IP4 | 0 - 255       | 0        | [Device Para |
|              |                 |               |          | /Time        |
| $\bigotimes$ |                 |               |          | /TimeSync    |
|              |                 |               |          | /SNTP]       |
| IP Byte3     | IP1.IP2.IP3.IP4 | 0 - 255       | 0        | [Device Para |
|              |                 |               |          | /Time        |
| $\bigotimes$ |                 |               |          | /TimeSync    |
|              |                 |               |          | /SNTP]       |
| IP Byte4     | IP1.IP2.IP3.IP4 | 0 - 255       | 0        | [Device Para |
|              |                 |               |          | /Time        |
|              |                 |               |          | /TimeSync    |
|              |                 |               |          | /SNTP]       |

| Parameter | Description     | Setting range | Default  | Menu path    |
|-----------|-----------------|---------------|----------|--------------|
| Server2   | Server 2        | inactive,     | inactive | [Device Para |
|           |                 | active        |          | /Time        |
|           |                 |               |          | /TimeSync    |
|           |                 |               |          | /SNTP]       |
| IP Byte1  | IP1.IP2.IP3.IP4 | 0 - 255       | 0        | [Device Para |
|           |                 |               |          | /Time        |
|           |                 |               |          | /TimeSync    |
|           |                 |               |          | /SNTP]       |
| IP Byte2  | IP1.IP2.IP3.IP4 | 0 - 255       | 0        | [Device Para |
|           |                 |               |          | /Time        |
|           |                 |               |          | /TimeSync    |
|           |                 |               |          | /SNTP]       |
| IP Byte3  | IP1.IP2.IP3.IP4 | 0 - 255       | 0        | [Device Para |
|           |                 |               |          | /Time        |
|           |                 |               |          | /TimeSync    |
|           |                 |               |          | /SNTP]       |
| IP Byte4  | IP1.IP2.IP3.IP4 | 0 - 255       | 0        | [Device Para |
|           |                 |               |          | /Time        |
|           |                 |               |          | /TimeSync    |
|           |                 |               |          | /SNTP]       |

### Signals of the SNTP

| Signal | Description                                                                         |
|--------|-------------------------------------------------------------------------------------|
|        | Signal: If there is no valid SNTP signal for 120 sec, SNTP is regarded as inactive. |

### **SNTP Counters**

| Value           | Description                                                     | Default | Size                | Menu path                                               |
|-----------------|-----------------------------------------------------------------|---------|---------------------|---------------------------------------------------------|
| NoOfSyncs       | Total Number of Synchronizations.                               | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/TimeSync<br>/SNTP] |
| NoOfConnectLost | Total Number of lost SNTP Connections<br>(no sync for 120 sec). | 0       | 0 -<br>999999999999 | [Operation<br>/Count and RevData<br>/TimeSync<br>/SNTP] |

| Value           | Description                                                   | Default | Size               | Menu path                                                         |
|-----------------|---------------------------------------------------------------|---------|--------------------|-------------------------------------------------------------------|
| NoOfSmallSyncs  | Service counter: Total Number of very small Time Corrections. | 0       | 0 -<br>99999999999 | [Operation<br>/Count and RevData<br>/TimeSync                     |
| NoOfNormSyncs   | Service counter: Total Number of normal Time Corrections      | 0       | 0 -<br>99999999999 | /SNTP]<br>[Operation<br>/Count and RevData<br>/TimeSync           |
| NoOfBigSyncs    | Service counter: Total Number of big<br>Time Corrections      | 0       | 0 -<br>99999999999 | /SNTP]<br>[Operation<br>/Count and RevData<br>/TimeSync           |
| NoOfFiltSyncs   | Service counter: Total Number of filtered Time Corrections    | 0       | 0 -<br>99999999999 | /SNTP]<br>[Operation<br>/Count and RevData<br>/TimeSync           |
| NoOfSlowTrans   | Service counter: Total Number of slow<br>Transfers.           | 0       | 0 -<br>99999999999 | /SNTP]<br>[Operation<br>/Count and RevData<br>/TimeSync<br>/SNTP] |
| NoOfHighOffs    | Service counter: Total Number of high<br>Offsets.             | 0       | 0 -<br>99999999999 | [Operation<br>/Count and RevData<br>/TimeSync<br>/SNTP]           |
| NoOfIntTimeouts | Service counter: Total Number of internal timeouts.           | 0       | 0 -<br>99999999999 | [Operation<br>/Count and RevData<br>/TimeSync<br>/SNTP]           |
| StratumServer1  | Stratum of Server 1                                           | 0       | 0 -<br>99999999999 | [Operation<br>/Status Display<br>/TimeSync<br>/SNTP]              |
| StratumServer2  | Stratum of Server 2                                           | 0       | 0 -<br>99999999999 | [Operation<br>/Status Display<br>/TimeSync<br>/SNTP]              |

### **SNTP** Values

| Value       | Description                                | Default          | Size             | Menu path       |
|-------------|--------------------------------------------|------------------|------------------|-----------------|
| Used Server | Which Server is used for SNTP              | None             | Server1,         | [Operation      |
|             | synchronization.                           |                  | Server2,         | /Status Display |
|             |                                            |                  | None             | /TimeSync       |
|             |                                            |                  |                  | /SNTP]          |
| PrecServer1 | Precision of Server 1                      | 0ms              | 0 -              | [Operation      |
|             |                                            | 1000.00000<br>ms | /Status Display  |                 |
|             |                                            |                  |                  | /TimeSync       |
|             |                                            |                  |                  | /SNTP]          |
| PrecServer2 | Precision of Server 2                      | 0ms              | 0 -              | [Operation      |
|             |                                            |                  | 1000.00000<br>ms | /Status Display |
|             |                                            |                  |                  | /TimeSync       |
|             |                                            |                  |                  | /SNTP]          |
| ServerQlty  | Quality of Server used for                 | -                | GOOD,            | [Operation      |
|             | Synchronization (GOOD, SUFFICIENT,<br>BAD) |                  | SUFFICIENT,      | /Status Display |
|             |                                            |                  | BAD,             | /TimeSync       |
|             |                                            |                  | -                | /SNTP]          |
| NetConn     | Quality of Network Connection (GOOD,       | -                | GOOD,            | [Operation      |
|             | SUFFICIENT, BAD).                          |                  | SUFFICIENT,      | /Status Display |
|             |                                            |                  | BAD,             | /TimeSync       |
|             |                                            |                  | -                | /SNTP]          |

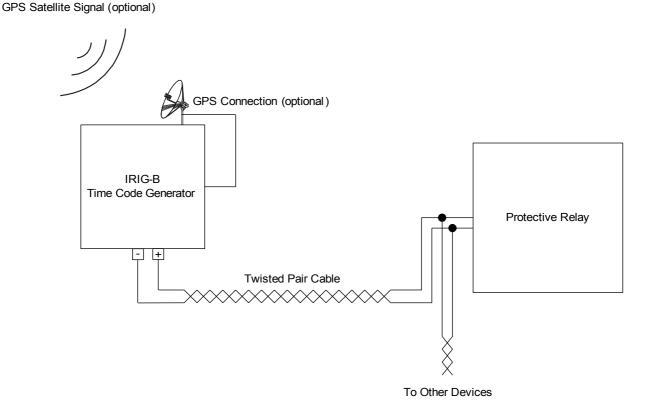
### **IRIG-B00X**

IRIG-B



Requirement: An IRIG-B00X time code generator is needed. IRIG-B004 and higher will support/transmit the "year information".

If you are using an IRIG time code that does not support the "year information" (IRIG-B000, IRIG-B001, IRIG-B002, IRIG-B003), you have to set the "year" manually within the device. In these cases the correct year information is a precondition for a properly working IRIG-B.


### **Principle - General Use**

The IRIG-B standard is the most used standard to synchronize the time of protection devices in medium voltage applications.

The protection device supports IRIG-B according to the IRIG STANDARD 200-04.

This means that all time synchronization formats IRIG-B00X (IRIG-B000 / B001 / B002 / B003 / B004 / B005 / B006 / B007) are supported. It is recommended to use IRIG-B004 and higher which also transmits the "year information".

The system time of the protection device is being synchronized with the connected IRIG-B code generator once a second. The accuracy of the used IRIG-B code generator can be increased by connecting a GPS-receiver to it.



The location of the IRIG-B interface depends to the device type. Please refer to the wiring diagram supplied with the protective device.

362

### **IRIG-B** Commissioning

Activate the IRIG-B synchronization within menu [Device Para/ Time/ TimeSync]:

- Select »IRIG-B« in the time synchronisation menu.
- Set the time synchronization in the IRIG-B menu to »Active«.
- Select the IRIG-B type (choose B000 through B007).

### **Fault Analysis**

If the device does not receive any IRIG-B time code for more than 60 s, the IRIG-B status switches from *»active«* to *»inactive«* and there is created an entry within the Event Recorder.

Check the IRIG-B functionality through the menu [Operation/ Status display/ TimeSync/ IRIG-B]:

Should the IRIG-B status not be reported as being »active«, please proceed as follows:

- To begin with check the IRIG-B wiring.
- Check, if the correct IRIG-B00X type is configured.

#### **IRIG-B** Control Commands

In addition to the date and time information, the IRIG-B code offers the option to transmit up to 18 control commands that can be processed by the protective device. They have to be set and issued by the IRIG-B code generator.

The protective device offers up to 18 IRIG-B assignment options for those control commands in order to carry out the assigned action. If there is a control command assigned to an action, this action is being triggered as soon as the control command is transmitted as being true. As an example there can be triggered the start of statistics or the street lighting can be switched on through a relay.

# NOTICE

IRIG-B control commands are not recorded by Event and Disturbance Recorders.

If it is required to have a control signal recorded the best way is to use a Logic (1 gate) equation, because the Programmable Logic always gets recorded.

### **Device Planning Parameters of the IRIG-B00X**

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | use         |            |                   |
| $\bigotimes$ |             |             |            |                   |

### Direct Commands of the IRIG-B00X

| Parameter     | Description                                 | Setting range | Default  | Menu path                  |
|---------------|---------------------------------------------|---------------|----------|----------------------------|
| Res IRIG-B Cr | Resetting of the Diagnosis Counters: IRIG-B | inactive,     | inactive | [Operation                 |
| $\bigotimes$  |                                             | active        |          | /<br>Reset/Acknowle<br>dge |
|               |                                             |               |          | /Reset]                    |

### **Global Protection Parameters of the IRIG-B00X**

| Parameter | Description                                                                          | Setting range | Default                    | Menu path    |
|-----------|--------------------------------------------------------------------------------------|---------------|----------------------------|--------------|
| Function  | Permanent activation or deactivation of                                              | inactive,     | inactive                   | [Device Para |
|           | module/stage. a                                                                      | active        |                            | /Time        |
|           |                                                                                      |               |                            | /TimeSync    |
|           |                                                                                      |               |                            | /IRIG-B]     |
| IRIG-B00X | Determination of the Type: IRIG-B00X. IRIG-                                          | IRIGB-000,    | IGB-000, IRIGB-000 [Device | [Device Para |
|           | B types differ in types of included "Coded<br>Expressions" (year, control-functions, | IRIGB-001,    |                            | /Time        |
|           | straight-binary-seconds).                                                            | IRIGB-002,    |                            | /TimeSync    |
|           |                                                                                      | IRIGB-003,    |                            | /IRIG-B]     |
|           |                                                                                      | IRIGB-004,    |                            |              |
|           |                                                                                      | IRIGB-005,    |                            |              |
|           |                                                                                      | IRIGB-006,    |                            |              |
|           |                                                                                      | IRIGB-007     |                            |              |

### Signals of the IRIG-B00X (Output States)

| Signal          | Description                                                                                                                                                                  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IRIG-B active   | Signal: If there is no valid IRIG-B signal for 60 sec, IRIG-B is regarded as inactive.                                                                                       |
| High-Low Invert | Signal: The High and Low signals of the IRIG-B are inverted. This does NOT mean that the wiring is faulty. If the wiring is faulty no IRIG-B signal will be detected.        |
| Control Signal1 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |

| Signal           | Description                                                                                                                                                                  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Signal2  | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal3  | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal4  | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal5  | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal6  | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal7  | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal8  | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal9  | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal10 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal11 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal12 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal13 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal14 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal15 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal16 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal17 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal18 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |

### **IRIG-B00X Values**

| Value           | Description                                                                        | Default | Size       | Menu path          |
|-----------------|------------------------------------------------------------------------------------|---------|------------|--------------------|
| NoOfFramesOK    | Total Number valid Frames.                                                         | 0       | 0 - 65535  | [Operation         |
|                 |                                                                                    |         |            | /Count and RevData |
|                 |                                                                                    |         |            | /TimeSync          |
|                 |                                                                                    |         |            | /IRIG-B]           |
| NoOfFrameErrors |                                                                                    |         | [Operation |                    |
|                 | Physically corrupted Frame.                                                        |         |            | /Count and RevData |
|                 |                                                                                    |         |            | /TimeSync          |
|                 |                                                                                    |         |            | /IRIG-B]           |
| Edges           | Edges: Total number of rising and                                                  | 0       | 0 - 65535  | [Operation         |
|                 | falling edges. This signal indicates if a signal is available at the IRIG-B input. |         |            | /Count and RevData |
|                 |                                                                                    |         |            | /TimeSync          |
|                 |                                                                                    |         |            | /IRIG-B]           |

# Parameters

Parameter setting and planning can be done:

- directly at the device or
- by way of the *Smart view* software.

### **Parameter Definitions**

#### **Device Parameters**

Device Parameters are part of the Parameter Tree. By means of them you can (depending on the type of device):

- Set cutoff levels,
- Configure Digital Inputs,
- Configure Output Relays,
- Assign LEDs,
- Assign Acknowledgment Signals,
- Configure Statistics,
- Configure Protocol Parameters,
- Adapt HMI Settings,
- Configure Recorders (reports),
- Set Date and Time,
- Change Passwords,
- Check the version (build) of the device.

### **Field Parameters**

*Field Parameters* are part of the Parameter Tree. Field Parameters comprise the essential, basic settings of your switchboard such as rated frequency, transformer ratios.

### **Protection Parameters**

*Protection Parameters* are part of the Parameter Tree. This tree comprises:

- *Global Protection Parameters are part of the Protection Parameters:* All settings and assignments that are done within the Global Parameter Tree are valid independent of the Setting Groups. They have to be set once only. In addition to that they comprise the CB Management.
- The Parameter Setting Switch is part of the Protection Parameters: You can either direct switch onto a certain parameter setting group or you can determine the conditions for switching onto another parameter setting group.
- Setting Group Parameters are part of the Protection Parameters: By means of the Parameter Setting Group Parameters you can individually adapt your protective device to the current conditions or grid conditions. They can be individually set in each Setting group.

### **Device Planning Parameters**

Device Planning Parameters are part of the Parameter Tree.

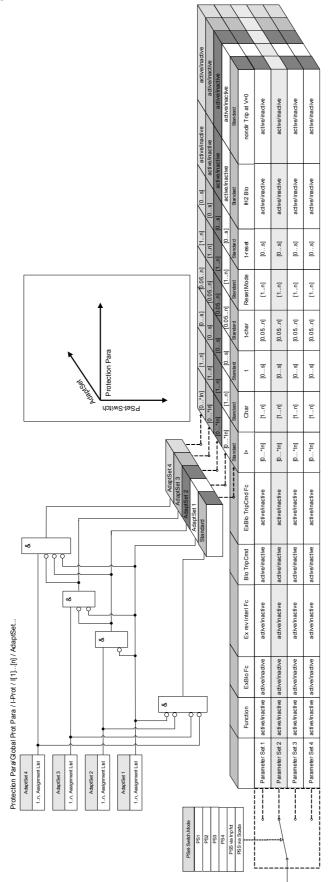
- Improving the Usability (clearness): All protection modules that are currently not needed can be
- de-protected (switched to invisible) by means of Device Planning. In Menu Device Planning you can adapt the scope of functionality of the protective device exactly to your needs. You can improve the usability by de-projecting all modules that are currently not needed.
- *Adapting the device to your application:* For those modules that you need, determine how they should work (e.g. directional, non-directional, <, >...).

### **Direct Commands**

*Direct Commands* are part of the Device Parameter Tree but they are *NOT* part of the parameter file. They will be executed directly (e.g. Resetting of a Counter).

#### State of the Module Inputs

*Module Inputs* are part of the Parameter Tree. The State of the Module Input is context-dependent.


By means of the Module Inputs influence can be taken on the Modules. You can assign Signals onto *Module Inputs*. The state of the signals that are assigned to an input can be taken from the Status Display. Module Inputs can be identified by an *"-I"* at the end of the name.

### Signals

*Signals* are part of the Parameter Tree. The state of the signal is context-dependent.

- *Signals* represent the state of your installation/equipment (e.g. Position Indicators of the Circuit Breaker).
- *Signals* are assessments of the state of the grid and the equipment (System OK, Transformer failure detected...).
- *Signals* represent decisions that are taken by the device (e.g. Trip command) based on your parameter settings.

### Adaptive Parameter Sets



Adaptive Parameter Sets are part of the Parameter Tree.

By means of *Adaptive Parameter Sets* you can modify temporarily single parameters within the parameter setting groups.

# NOTICE

Adaptive Parameters fall back automatically, if the acknowledged signal, that has activated them, has fallen back. Please take into account that Adaptive Set 1 is dominant to Adaptive Set 2. Adaptive Set 2 is dominant to Adaptive Set 3. Adaptive Set 3 is dominant to Adaptive Set 4.

# NOTICE

In order to increase the usability (clearness) Adaptive Parameter Sets become visible if an corresponding activation signals has been assigned (Smart view 2.0 and higher).

Example: In order to use Adaptive Parameters within Protective Element I[1] please proceed as follows:

- Assign within the Global Parameter tree within Protective Element I[1] an activation signal for AdaptiveParameterSet 1.
- AdaptiveParameterSet 1 becomes now visible within the Protection Parameter Sets for element I[1].

# By means of additional activation signals further Adaptive Parameter Sets can be used.

The functionality of the IED (relay) can be enhanced / adapted by means of *Adaptive Parameters* in order to meet the requirements of modified states of the grid or the power supply system respectively to manage unpredictable events.

Moreover, the adaptive parameter can also be used to realize various special protective functions or to expand the existing function modules in a simple way without to redesign the existing hardware or software platform costly.

The *Adaptive Parameter* feature allows, besides a standard parameter set, one of the four parameter sets labeled from 1 to 4, to be used for example in a time overcurrent element under the control of the configurable Set Control Logics. The dynamical switch-over of the adaptive parameter set is only active for a particular element when its adaptive set control logic is configured and only as long as the activation signal is true.

For some protection elements such as time overcurrent and instantaneous overcurrent (50P, 51P, 50G, 51G...), besides the "default" setting there exist another 4 "alternative" settings for pickup value, curve type, time dial, reset mode set values which can be switched-over dynamically by means of the configurable adaptive setting control logics in the single set parameter.

If the *Adaptive Parameter* feature is not used, the adaptive set control logics will not be selected (assigned). The protective elements work in this case just like a normal protection using the "Default" settings. If one of the *Adaptive Set* Control logics" is assigned to a logic function, the protective element will be "switched-over" to the corresponding adaptive settings if the assigned logic function is asserted and will fall back to the "Default" Setting if the assigned signal that has been activated the *Adaptive Set* has fallen back.

#### Application Example

During a Switch-OnTo-Fault condition, it is usually requested to make the embedded protective function tripping the faulted line faster, instantaneously or sometimes non-directionally.

Such a Switch-OnTo-Fault application can easily be realized using the *Adaptive Parameter* features above mentioned: The standard time overcurrent protection element (e.g. 51P) normally works with an inverse curve type (e.g. ANSI Type A), while in case of <u>SOTF</u> condition, it should trip instantaneously. If the <u>SOTF</u> logic function »SOTF ENABLED« is detecting a manual circuit breaker close condition the relay switches to **AdaptiveSet1** if the signal »SOTF.ENABLED« is assigned to **AdaptiveSet1**. The corresponding **AdaptiveSet1** will become active and that means e.g. »*curve type = DEFT*« and »*t = 0*« sec.

#### Parameters

| :.HptPara - S<br>Device Edit | View Settings Tools Window Help |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
|                              | a 🌒 🔄 🚓 🔞                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| ortcuts                      | B- CA4                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | Deration                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | Device planning                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| <u>⊾</u> mī                  | ⊕ © Device Para                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| eration                      | Field Para                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | - 58 Protection Para            | Protection Para/Globa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I Prot Para/I-Prot/I                                                                                                                                                             |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| 1                            |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| 10                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| planning                     | Prot                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value                                                                                                                                                                            |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | The interconnection_            | See ExBlo 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| e?                           | i - Prot                        | Se ExBlo 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| 9F-28                        |                                 | Section Explored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| ce Para                      | 🖶 🛅 V-Prot                      | Secret Interl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | 😥 🛅 f-Prot                      | AdaptSet 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SOTF , enabled                                                                                                                                                                   |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| 50/60                        | 🕀 💼 P-Prot                      | Adapt Set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLPU . enabled                                                                                                                                                                   |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| .0                           |                                 | Adapt Set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V[2] . Alarm                                                                                                                                                                     |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| d Para                       | CLPU                            | AdaptSet 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V 012 [1] . Alarm                                                                                                                                                                |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| 0.00                         | 🖃 🧰 Set 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | Interconnection_                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| tion Para                    | E- California I-Prot            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| -                            | IIIII                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| <u>.</u>                     | ⊕ 📄 V-Prot                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| +-                           | ⊕ 🚔 f-Prot                      | Protection Para/Set 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-Prot/I[1]                                                                                                                                                                      |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      | × |
| introl                       | P-Prot                          | 😁 🚓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | SOTF                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      | - |
| հ                            | CLPU                            | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DefaultSet                                                                                                                                                                       | SOTF . enabled                                                                                              | CLPU . enabled                                                                                                                                   | V[2] . Alarm                                                                                                                                                   | V 012 [1] . Alarm                                                                                                                                              | Unit |   |
|                              | 🕀 🦳 Set 2                       | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 🎾 active                                                                                                                                                                         |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| gics                         | 😥 📄 Set 3                       | 🌽 ExBlo Fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🌽 inactive                                                                                                                                                                       |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | 🗈 🕞 Set 4                       | Se Ex rev Interl Fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 🌽 inactive                                                                                                                                                                       |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | Control                         | 🌽 Blo TripCmd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 🌽 inactive                                                                                                                                                                       |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | E Logics                        | See ExBlo TripCmd Fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 🌽 inactive                                                                                                                                                                       |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
| rvice                        | # togics                        | set Measuring method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 🌽 Fundamental                                                                                                                                                                    |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | Convice                         | Se 1>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                  | SP 2                                                                                                        | S 4                                                                                                                                              | <i>§</i> 1.00                                                                                                                                                  | 🌽 1.00                                                                                                                                                         | In   |   |
|                              | ⊕-æ Service                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🌽 1.5                                                                                                                                                                            |                                                                                                             |                                                                                                                                                  |                                                                                                                                                                |                                                                                                                                                                |      |   |
|                              | 🗄 🕁 Service                     | 🌽 Char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IEC NINV                                                                                                                                                                         | 🌽 DEFT                                                                                                      | IEC NINV                                                                                                                                         | JEC NINV                                                                                                                                                       | IEC NINV                                                                                                                                                       |      |   |
|                              | 🗓 🙀 Service                     | 🌽 Char<br>🌽 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IEC NINV<br>1.00                                                                                                                                                                 | DEFT<br>1.00                                                                                                | <ul> <li>IEC NINV</li> <li>1.00</li> </ul>                                                                                                       | <ul> <li>IEC NINV</li> <li>1.00</li> </ul>                                                                                                                     | <ul> <li>IEC NINV</li> <li>1.00</li> </ul>                                                                                                                     | s    |   |
|                              | 🕁 🚟 Service                     | <pre>     Char         b         t         t         t-char     </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> </ul>                                                                                                                            | <ul> <li>DEFT</li> <li>1.00</li> <li>1</li> </ul>                                                           | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> </ul>                                                                                            | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> </ul>                                                                                                          | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> </ul>                                                                                                          |      |   |
|                              | 🗄 🚌 Service                     | Char<br>St<br>t-char<br>St<br>Reset Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> </ul>                                                                                                     | <ul> <li>DEFT</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> </ul>                                    | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> </ul>                                                                     | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> </ul>                                                                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> </ul>                                                                                   |      |   |
|                              | 🗄 🚌 Service                     | Char<br>t<br>tchar<br>Reset Mode<br>treset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IEC NINV     1.00     1     instantaneous     0                                                                                                                                  | <ul> <li>DEFT</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> </ul>                         | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> </ul>                                                          | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> </ul>                                                                        | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> </ul>                                                                        |      |   |
|                              | ⊕-apat Service                  | Char<br>L Char<br>L Char<br>Reset Mode<br>L reset<br>III 2 Blo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IEC NINV     I.00     I     instantaneous     0     inactive                                                                                                                     | <ul> <li>DEFT</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> </ul>       | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> </ul>                                        | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> </ul>                                                      | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> </ul>                                                      |      |   |
|                              | 由 교전 Service                    | Char<br>Char<br>Char<br>Char<br>Reset Mode<br>Freset<br>H12 Blo<br>VRestraint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> </ul>                                                      | DEFT<br>1.00<br>1<br>instantaneous<br>0<br>inactive<br>inactive                                             | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> </ul>                      | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> </ul>                                    | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> </ul>                                    |      |   |
|                              | 🗄 🚌 Service                     | Orar       >> t       >>> tchar       >>>>>>>> tchar       >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> </ul>                                 | DEFT<br>1.00<br>1<br>instantaneous<br>0<br>inactive<br>Phase to Ne                                          | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> </ul>               | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> </ul>               | S    |   |
|                              | ⊕-apat Service                  | <ul> <li> <sup>(3)</sup>/<sub>2</sub> Char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> Reset Mode         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> Restarint         <sup>(3)</sup>/<sub>2</sub> Measuring Mode         <sup>(3)</sup>/<sub>2</sub> V Restraint max         <sup>(3)</sup>/<sub>2</sub> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IEC NINV     1.00     1     instantaneous     0     inactive     inactive     Phase to Ne     1.00                                                                               | DEFT DEFT DEFT DEFT DEFT DEFT DEFT DEFT                                                                     | IEC NINV     I.00     Instantaneous     0     instartaneous     inactive     inactive     Phase to Ne     I.00                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> |      |   |
|                              | 由 (武) Service                   | Orar       >> t       >>> tchar       >>>>>>>> tchar       >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> </ul>                                 | DEFT<br>1.00<br>1<br>instantaneous<br>0<br>inactive<br>Phase to Ne                                          | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> </ul>               | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> </ul>               | S    |   |
|                              | ⊕-æ: Service                    | <ul> <li> <sup>(3)</sup>/<sub>2</sub> Char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> Reset Mode         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset R reset         <sup>(3)</sup>/<sub>2</sub> R R reset         <sup></sup></li></ul> | IEC NINV     1.00     1     instantaneous     0     inactive     inactive     Phase to Ne     1.00                                                                               | DEFT DEFT DEFT DEFT DEFT DEFT DEFT DEFT                                                                     | IEC NINV     I.00     Instantaneous     0     instartaneous     inactive     inactive     Phase to Ne     I.00                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | S    |   |
|                              | ⊕-apat Service                  | <ul> <li> <sup>(3)</sup>/<sub>2</sub> Char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> Reset Mode         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset R reset         <sup>(3)</sup>/<sub>2</sub> R R reset         <sup></sup></li></ul> | IEC NINV     1.00     1     instantaneous     0     inactive     inactive     Phase to Ne     1.00                                                                               | DEFT DEFT DEFT DEFT DEFT DEFT DEFT DEFT                                                                     | IEC NINV     I.00     Instantaneous     0     instartaneous     inactive     inactive     Phase to Ne     I.00                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | S    |   |
|                              | 由 (武) Service                   | <ul> <li> <sup>(3)</sup>/<sub>2</sub> Char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> Reset Mode         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset R reset         <sup>(3)</sup>/<sub>2</sub> R R reset         <sup></sup></li></ul> | IEC NINV     1.00     1     instantaneous     0     inactive     inactive     Phase to Ne     1.00                                                                               | DEFT DEFT DEFT DEFT DEFT DEFT DEFT DEFT                                                                     | IEC NINV     I.00     Instantaneous     0     instartaneous     inactive     inactive     Phase to Ne     I.00                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | S    |   |
|                              | ⊕-æ: Service                    | <ul> <li> <sup>(3)</sup>/<sub>2</sub> Char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> Reset Mode         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset R reset         <sup>(3)</sup>/<sub>2</sub> R R reset         <sup></sup></li></ul> | IEC NINV     1.00     1     instantaneous     0     inactive     inactive     Phase to Ne     1.00                                                                               | DEFT DEFT DEFT DEFT DEFT DEFT DEFT DEFT                                                                     | IEC NINV     I.00     Instantaneous     0     instartaneous     inactive     inactive     Phase to Ne     I.00                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | S    |   |
|                              | ⊕-apat Service                  | <ul> <li> <sup>(3)</sup>/<sub>2</sub> Char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> Reset Mode         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset R reset         <sup>(3)</sup>/<sub>2</sub> R R reset         <sup></sup></li></ul> | IEC NINV     1.00     1     instantaneous     0     inactive     inactive     Phase to Ne     1.00                                                                               | DEFT DEFT DEFT DEFT DEFT DEFT DEFT DEFT                                                                     | IEC NINV     I.00     Instantaneous     0     instartaneous     inactive     inactive     Phase to Ne     I.00                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | S    |   |
|                              | ⊕-æx Service                    | <ul> <li> <sup>(3)</sup>/<sub>2</sub> Char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> Reset Mode         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset R reset         <sup>(3)</sup>/<sub>2</sub> R R reset         <sup></sup></li></ul> | IEC NINV     1.00     1     instantaneous     0     inactive     inactive     Phase to Ne     1.00                                                                               | DEFT DEFT DEFT DEFT DEFT DEFT DEFT DEFT                                                                     | IEC NINV     I.00     Instantaneous     0     instartaneous     inactive     inactive     Phase to Ne     I.00                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | S    |   |
|                              | ⊕-æ: Service                    | <ul> <li> <sup>(3)</sup>/<sub>2</sub> Char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> Reset Mode         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset R reset         <sup>(3)</sup>/<sub>2</sub> R R reset         <sup></sup></li></ul> | IEC NINV     1.00     1     instantaneous     0     inactive     inactive     Phase to Ne     1.00                                                                               | DEFT DEFT DEFT DEFT DEFT DEFT DEFT DEFT                                                                     | IEC NINV     I.00     Instantaneous     0     instartaneous     inactive     inactive     Phase to Ne     I.00                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | S    |   |
|                              | ⊕-apat Service                  | <ul> <li> <sup>(3)</sup>/<sub>2</sub> Char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> Reset Mode         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset R reset         <sup>(3)</sup>/<sub>2</sub> R R reset         <sup></sup></li></ul> | IEC NINV     1.00     1     instantaneous     0     inactive     inactive     Phase to Ne     1.00                                                                               | DEFT DEFT DEFT DEFT DEFT DEFT DEFT DEFT                                                                     | IEC NINV     I.00     Instantaneous     0     instartaneous     inactive     inactive     Phase to Ne     I.00                                   | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | S    |   |
|                              |                                 | <ul> <li> <sup>(3)</sup>/<sub>2</sub> Char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> L char         <sup>(3)</sup>/<sub>2</sub> Reset Mode         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset         <sup>(3)</sup>/<sub>2</sub> L reset R reset         <sup>(3)</sup>/<sub>2</sub> R R reset         <sup></sup></li></ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> <li>inactive</li> </ul> | DEFT     1     10     1     instantaneous     0     inactive     inactive     100     inactive     inactive | <ul> <li>JEC NINV</li> <li>1.00</li> <li>Instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>1.00</li> <li>inactive</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | <ul> <li>IEC NINV</li> <li>1.00</li> <li>1</li> <li>instantaneous</li> <li>0</li> <li>inactive</li> <li>inactive</li> <li>Phase to Ne</li> <li>1.00</li> </ul> | S    |   |

The screenshot above shows the adaptive setting configurations following applications based on only one simple overcurrent protection element:

- 1. Standard Set: Default settings
- 2. Adaptive Set 1: <u>SOTF</u> application (Switch-Onto-Fault)
- 3. Adaptive Set 2: <u>CLPU</u> application (Cold Load Pickup)
- 4. Adaptive Set 3: Voltage-Controlled time overcurrent protection (ANSI 51V)
- 5. Adaptive Set 4: Negative- Phase- Sequence- Voltage-Controlled time overcurrent protection

#### Application Examples

- The output signal of the <u>Switch Onto Fault</u> module can be used to activate an **Adaptive Parameter Set** that sensibilizes the overcurrent protection.
- The output signal of the <u>Cold Load Pickup</u> module can be used to activate an **Adaptive Parameter Set** that desensitizes the overcurrent protection.
- By means of *Adaptive Parameter Sets* an Adaptive <u>Auto Reclosure</u> can be realized. After a reclosure attempt the tripping thresholds or tripping curves of the overcurrent protection can be adapted.
- Depending on undervoltage the overcurrent protection can be modified (Voltage Controlled).
- The earth overcurrent protection can be modified by the residual voltage.
- Matching the ground current protective settings dynamically and automatically according to the singlephase load diversity (Adaptive relay Setting – Normal Setting/Alternative Setting)



Adaptive Parameter Sets are only available for devices with current protection modules.

# Adaptive Parameter Set Activation Signals

| Name               | Description                                                     |
|--------------------|-----------------------------------------------------------------|
|                    | No assignment                                                   |
| V[1].Alarm         | Signal: Alarm voltage stage                                     |
| V[2].Alarm         | Signal: Alarm voltage stage                                     |
| V[3].Alarm         | Signal: Alarm voltage stage                                     |
| V[4].Alarm         | Signal: Alarm voltage stage                                     |
| V[5].Alarm         | Signal: Alarm voltage stage                                     |
| V[6].Alarm         | Signal: Alarm voltage stage                                     |
| VG[1].Alarm        | Signal: Alarm Residual Voltage Supervision-stage                |
| VG[2].Alarm        | Signal: Alarm Residual Voltage Supervision-stage                |
| V012[1].Alarm      | Signal: Alarm voltage asymmetry                                 |
| V012[2].Alarm      | Signal: Alarm voltage asymmetry                                 |
| V012[3].Alarm      | Signal: Alarm voltage asymmetry                                 |
| V012[4].Alarm      | Signal: Alarm voltage asymmetry                                 |
| V012[5].Alarm      | Signal: Alarm voltage asymmetry                                 |
| V012[6].Alarm      | Signal: Alarm voltage asymmetry                                 |
| ExP[1].Alarm       | Signal: Alarm                                                   |
| ExP[2].Alarm       | Signal: Alarm                                                   |
| ExP[3].Alarm       | Signal: Alarm                                                   |
| ExP[4].Alarm       | Signal: Alarm                                                   |
| CTS.Alarm          | Signal: Alarm Current Transformer Measuring Circuit Supervision |
| LOP.Alarm          | Signal: Alarm Loss of Potential                                 |
| DI Slot X1.DI 1    | Signal: Digital Input                                           |
| DI Slot X1.DI 2    | Signal: Digital Input                                           |
| DI Slot X1.DI 3    | Signal: Digital Input                                           |
| DI Slot X1.DI 4    | Signal: Digital Input                                           |
| DI Slot X1.DI 5    | Signal: Digital Input                                           |
| DI Slot X1.DI 6    | Signal: Digital Input                                           |
| DI Slot X1.DI 7    | Signal: Digital Input                                           |
| DI Slot X1.DI 8    | Signal: Digital Input                                           |
| Modbus.Scada Cmd 1 | Scada Command                                                   |
| Modbus.Scada Cmd 2 | Scada Command                                                   |
| Modbus.Scada Cmd 3 | Scada Command                                                   |
| Modbus.Scada Cmd 4 | Scada Command                                                   |
| Modbus.Scada Cmd 5 | Scada Command                                                   |
| Modbus.Scada Cmd 6 | Scada Command                                                   |
| Modbus.Scada Cmd 7 | Scada Command                                                   |
| Modbus.Scada Cmd 8 | Scada Command                                                   |
| Modbus.Scada Cmd 9 | Scada Command                                                   |

| Name                | Description                               |
|---------------------|-------------------------------------------|
| Modbus.Scada Cmd 10 | Scada Command                             |
| Modbus.Scada Cmd 11 | Scada Command                             |
| Modbus.Scada Cmd 12 | Scada Command                             |
| Modbus.Scada Cmd 13 | Scada Command                             |
| Modbus.Scada Cmd 14 | Scada Command                             |
| Modbus.Scada Cmd 15 | Scada Command                             |
| Modbus.Scada Cmd 16 | Scada Command                             |
| IEC61850.VirtInp1   | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp2   | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp3   | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp4   | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp5   | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp6   | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp7   | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp8   | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp9   | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp10  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp11  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp12  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp13  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp14  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp15  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp16  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp17  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp18  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp19  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp20  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp21  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp22  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp23  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp24  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp25  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp26  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp27  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp28  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp29  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp30  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp31  | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp32  | Signal: Virtual Input (IEC61850 GGIO Ind) |

| Name                 | Description                                                                                      |
|----------------------|--------------------------------------------------------------------------------------------------|
| IEC61850.SPCSO1      | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO2      | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO3      | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO4      | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO5      | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO6      | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO7      | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO8      | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO9      | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO10     | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO11     | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO12     | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO13     | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO14     | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO15     | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO16     | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC 103.Scada Cmd 1  | Scada Command                                                                                    |
| IEC 103.Scada Cmd 2  | Scada Command                                                                                    |
| IEC 103.Scada Cmd 3  | Scada Command                                                                                    |
| IEC 103.Scada Cmd 4  | Scada Command                                                                                    |
| IEC 103.Scada Cmd 5  | Scada Command                                                                                    |
| IEC 103.Scada Cmd 6  | Scada Command                                                                                    |
| IEC 103.Scada Cmd 7  | Scada Command                                                                                    |
| IEC 103.Scada Cmd 8  | Scada Command                                                                                    |
| IEC 103.Scada Cmd 9  | Scada Command                                                                                    |
| IEC 103.Scada Cmd 10 | Scada Command                                                                                    |
| Profibus.Scada Cmd 1 | Scada Command                                                                                    |
|                      |                                                                                                  |
| Profibus.Scada Cmd 2 | Scada Command                                                                                    |

| Name                    | Description                            |
|-------------------------|----------------------------------------|
| Profibus.Scada Cmd 4    | Scada Command                          |
| Profibus.Scada Cmd 5    | Scada Command                          |
| Profibus.Scada Cmd 6    | Scada Command                          |
| Profibus.Scada Cmd 7    | Scada Command                          |
| Profibus.Scada Cmd 8    | Scada Command                          |
| Profibus.Scada Cmd 9    | Scada Command                          |
| Profibus.Scada Cmd 10   | Scada Command                          |
| Profibus.Scada Cmd 11   | Scada Command                          |
| Profibus.Scada Cmd 12   | Scada Command                          |
| Profibus.Scada Cmd 13   | Scada Command                          |
| Profibus.Scada Cmd 14   | Scada Command                          |
| Profibus.Scada Cmd 15   | Scada Command                          |
| Profibus.Scada Cmd 16   | Scada Command                          |
| Logics.LE1.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE1.Timer Out    | Signal: Timer Output                   |
| Logics.LE1.Out          | Signal: Latched Output (Q)             |
| Logics.LE1.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE2.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE2.Timer Out    | Signal: Timer Output                   |
| Logics.LE2.Out          | Signal: Latched Output (Q)             |
| Logics.LE2.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE3.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE3.Timer Out    | Signal: Timer Output                   |
| Logics.LE3.Out          | Signal: Latched Output (Q)             |
| Logics.LE3.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE4.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE4.Timer Out    | Signal: Timer Output                   |
| Logics.LE4.Out          | Signal: Latched Output (Q)             |
| Logics.LE4.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE5.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE5.Timer Out    | Signal: Timer Output                   |
| Logics.LE5.Out          | Signal: Latched Output (Q)             |
| Logics.LE5.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE6.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE6.Timer Out    | Signal: Timer Output                   |
| Logics.LE6.Out          | Signal: Latched Output (Q)             |
| Logics.LE6.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE7.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE7.Timer Out    | Signal: Timer Output                   |
| Logics.LE7.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE7.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE8.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE8.Timer Out     | Signal: Timer Output                   |
| Logics.LE8.Out           | Signal: Latched Output (Q)             |
| Logics.LE8.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE9.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE9.Timer Out     | Signal: Timer Output                   |
| Logics.LE9.Out           | Signal: Latched Output (Q)             |
| Logics.LE9.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE10.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE10.Timer Out    | Signal: Timer Output                   |
| Logics.LE10.Out          | Signal: Latched Output (Q)             |
| Logics.LE10.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE11.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE11.Timer Out    | Signal: Timer Output                   |
| Logics.LE11.Out          | Signal: Latched Output (Q)             |
| Logics.LE11.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE12.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE12.Timer Out    | Signal: Timer Output                   |
| Logics.LE12.Out          | Signal: Latched Output (Q)             |
| Logics.LE12.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE13.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE13.Timer Out    | Signal: Timer Output                   |
| Logics.LE13.Out          | Signal: Latched Output (Q)             |
| Logics.LE13.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE14.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE14.Timer Out    | Signal: Timer Output                   |
| Logics.LE14.Out          | Signal: Latched Output (Q)             |
| Logics.LE14.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE15.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE15.Timer Out    | Signal: Timer Output                   |
| Logics.LE15.Out          | Signal: Latched Output (Q)             |
| Logics.LE15.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE16.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE16.Timer Out    | Signal: Timer Output                   |
| Logics.LE16.Out          | Signal: Latched Output (Q)             |
| Logics.LE16.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE17.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE17.Timer Out    | Signal: Timer Output                   |
| Logics.LE17.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE17.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE18.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE18.Timer Out    | Signal: Timer Output                   |
| Logics.LE18.Out          | Signal: Latched Output (Q)             |
| Logics.LE18.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE19.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE19.Timer Out    | Signal: Timer Output                   |
| Logics.LE19.Out          | Signal: Latched Output (Q)             |
| Logics.LE19.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE20.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE20.Timer Out    | Signal: Timer Output                   |
| Logics.LE20.Out          | Signal: Latched Output (Q)             |
| Logics.LE20.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE21.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE21.Timer Out    | Signal: Timer Output                   |
| Logics.LE21.Out          | Signal: Latched Output (Q)             |
| Logics.LE21.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE22.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE22.Timer Out    | Signal: Timer Output                   |
| Logics.LE22.Out          | Signal: Latched Output (Q)             |
| Logics.LE22.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE23.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE23.Timer Out    | Signal: Timer Output                   |
| Logics.LE23.Out          | Signal: Latched Output (Q)             |
| Logics.LE23.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE24.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE24.Timer Out    | Signal: Timer Output                   |
| Logics.LE24.Out          | Signal: Latched Output (Q)             |
| Logics.LE24.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE25.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE25.Timer Out    | Signal: Timer Output                   |
| Logics.LE25.Out          | Signal: Latched Output (Q)             |
| Logics.LE25.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE26.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE26.Timer Out    | Signal: Timer Output                   |
| Logics.LE26.Out          | Signal: Latched Output (Q)             |
| Logics.LE26.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE27.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE27.Timer Out    | Signal: Timer Output                   |
| Logics.LE27.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE27.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE28.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE28.Timer Out    | Signal: Timer Output                   |
| Logics.LE28.Out          | Signal: Latched Output (Q)             |
| Logics.LE28.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE29.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE29.Timer Out    | Signal: Timer Output                   |
| Logics.LE29.Out          | Signal: Latched Output (Q)             |
| Logics.LE29.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE30.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE30.Timer Out    | Signal: Timer Output                   |
| Logics.LE30.Out          | Signal: Latched Output (Q)             |
| Logics.LE30.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE31.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE31.Timer Out    | Signal: Timer Output                   |
| Logics.LE31.Out          | Signal: Latched Output (Q)             |
| Logics.LE31.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE32.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE32.Timer Out    | Signal: Timer Output                   |
| Logics.LE32.Out          | Signal: Latched Output (Q)             |
| Logics.LE32.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE33.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE33.Timer Out    | Signal: Timer Output                   |
| Logics.LE33.Out          | Signal: Latched Output (Q)             |
| Logics.LE33.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE34.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE34.Timer Out    | Signal: Timer Output                   |
| Logics.LE34.Out          | Signal: Latched Output (Q)             |
| Logics.LE34.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE35.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE35.Timer Out    | Signal: Timer Output                   |
| Logics.LE35.Out          | Signal: Latched Output (Q)             |
| Logics.LE35.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE36.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE36.Timer Out    | Signal: Timer Output                   |
| Logics.LE36.Out          | Signal: Latched Output (Q)             |
| Logics.LE36.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE37.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE37.Timer Out    | Signal: Timer Output                   |
| Logics.LE37.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE37.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE38.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE38.Timer Out    | Signal: Timer Output                   |
| Logics.LE38.Out          | Signal: Latched Output (Q)             |
| Logics.LE38.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE39.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE39.Timer Out    | Signal: Timer Output                   |
| Logics.LE39.Out          | Signal: Latched Output (Q)             |
| Logics.LE39.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE40.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE40.Timer Out    | Signal: Timer Output                   |
| Logics.LE40.Out          | Signal: Latched Output (Q)             |
| Logics.LE40.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE41.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE41.Timer Out    | Signal: Timer Output                   |
| Logics.LE41.Out          | Signal: Latched Output (Q)             |
| Logics.LE41.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE42.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE42.Timer Out    | Signal: Timer Output                   |
| Logics.LE42.Out          | Signal: Latched Output (Q)             |
| Logics.LE42.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE43.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE43.Timer Out    | Signal: Timer Output                   |
| Logics.LE43.Out          | Signal: Latched Output (Q)             |
| Logics.LE43.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE44.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE44.Timer Out    | Signal: Timer Output                   |
| Logics.LE44.Out          | Signal: Latched Output (Q)             |
| Logics.LE44.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE45.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE45.Timer Out    | Signal: Timer Output                   |
| Logics.LE45.Out          | Signal: Latched Output (Q)             |
| Logics.LE45.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE46.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE46.Timer Out    | Signal: Timer Output                   |
| Logics.LE46.Out          | Signal: Latched Output (Q)             |
| Logics.LE46.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE47.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE47.Timer Out    | Signal: Timer Output                   |
| Logics.LE47.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE47.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE48.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE48.Timer Out    | Signal: Timer Output                   |
| Logics.LE48.Out          | Signal: Latched Output (Q)             |
| Logics.LE48.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE49.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE49.Timer Out    | Signal: Timer Output                   |
| Logics.LE49.Out          | Signal: Latched Output (Q)             |
| Logics.LE49.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE50.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE50.Timer Out    | Signal: Timer Output                   |
| Logics.LE50.Out          | Signal: Latched Output (Q)             |
| Logics.LE50.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE51.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE51.Timer Out    | Signal: Timer Output                   |
| Logics.LE51.Out          | Signal: Latched Output (Q)             |
| Logics.LE51.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE52.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE52.Timer Out    | Signal: Timer Output                   |
| Logics.LE52.Out          | Signal: Latched Output (Q)             |
| Logics.LE52.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE53.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE53.Timer Out    | Signal: Timer Output                   |
| Logics.LE53.Out          | Signal: Latched Output (Q)             |
| Logics.LE53.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE54.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE54.Timer Out    | Signal: Timer Output                   |
| Logics.LE54.Out          | Signal: Latched Output (Q)             |
| Logics.LE54.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE55.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE55.Timer Out    | Signal: Timer Output                   |
| Logics.LE55.Out          | Signal: Latched Output (Q)             |
| Logics.LE55.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE56.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE56.Timer Out    | Signal: Timer Output                   |
| Logics.LE56.Out          | Signal: Latched Output (Q)             |
| Logics.LE56.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE57.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE57.Timer Out    | Signal: Timer Output                   |
| Logics.LE57.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE57.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE58.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE58.Timer Out    | Signal: Timer Output                   |
| Logics.LE58.Out          | Signal: Latched Output (Q)             |
| Logics.LE58.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE59.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE59.Timer Out    | Signal: Timer Output                   |
| Logics.LE59.Out          | Signal: Latched Output (Q)             |
| Logics.LE59.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE60.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE60.Timer Out    | Signal: Timer Output                   |
| Logics.LE60.Out          | Signal: Latched Output (Q)             |
| Logics.LE60.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE61.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE61.Timer Out    | Signal: Timer Output                   |
| Logics.LE61.Out          | Signal: Latched Output (Q)             |
| Logics.LE61.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE62.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE62.Timer Out    | Signal: Timer Output                   |
| Logics.LE62.Out          | Signal: Latched Output (Q)             |
| Logics.LE62.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE63.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE63.Timer Out    | Signal: Timer Output                   |
| Logics.LE63.Out          | Signal: Latched Output (Q)             |
| Logics.LE63.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE64.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE64.Timer Out    | Signal: Timer Output                   |
| Logics.LE64.Out          | Signal: Latched Output (Q)             |
| Logics.LE64.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE65.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE65.Timer Out    | Signal: Timer Output                   |
| Logics.LE65.Out          | Signal: Latched Output (Q)             |
| Logics.LE65.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE66.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE66.Timer Out    | Signal: Timer Output                   |
| Logics.LE66.Out          | Signal: Latched Output (Q)             |
| Logics.LE66.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE67.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE67.Timer Out    | Signal: Timer Output                   |
| Logics.LE67.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE67.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE68.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE68.Timer Out    | Signal: Timer Output                   |
| Logics.LE68.Out          | Signal: Latched Output (Q)             |
| Logics.LE68.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE69.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE69.Timer Out    | Signal: Timer Output                   |
| Logics.LE69.Out          | Signal: Latched Output (Q)             |
| Logics.LE69.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE70.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE70.Timer Out    | Signal: Timer Output                   |
| Logics.LE70.Out          | Signal: Latched Output (Q)             |
| Logics.LE70.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE71.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE71.Timer Out    | Signal: Timer Output                   |
| Logics.LE71.Out          | Signal: Latched Output (Q)             |
| Logics.LE71.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE72.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE72.Timer Out    | Signal: Timer Output                   |
| Logics.LE72.Out          | Signal: Latched Output (Q)             |
| Logics.LE72.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE73.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE73.Timer Out    | Signal: Timer Output                   |
| Logics.LE73.Out          | Signal: Latched Output (Q)             |
| Logics.LE73.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE74.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE74.Timer Out    | Signal: Timer Output                   |
| Logics.LE74.Out          | Signal: Latched Output (Q)             |
| Logics.LE74.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE75.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE75.Timer Out    | Signal: Timer Output                   |
| Logics.LE75.Out          | Signal: Latched Output (Q)             |
| Logics.LE75.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE76.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE76.Timer Out    | Signal: Timer Output                   |
| Logics.LE76.Out          | Signal: Latched Output (Q)             |
| Logics.LE76.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE77.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE77.Timer Out    | Signal: Timer Output                   |
| Logics.LE77.Out          | Signal: Latched Output (Q)             |

#### Parameters

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE77.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE78.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE78.Timer Out    | Signal: Timer Output                   |
| Logics.LE78.Out          | Signal: Latched Output (Q)             |
| Logics.LE78.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE79.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE79.Timer Out    | Signal: Timer Output                   |
| Logics.LE79.Out          | Signal: Latched Output (Q)             |
| Logics.LE79.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE80.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE80.Timer Out    | Signal: Timer Output                   |
| Logics.LE80.Out          | Signal: Latched Output (Q)             |
| Logics.LE80.Out inverted | Signal: Negated Latched Output (Q NOT) |

### Parameter Setting at the HMI

Every parameter belongs to an access area. Editing and changing of a parameter requires a sufficient access authorization.

The User can obtain the required access authorizations by unlocking access areas in advance of parameter changes or context-dependent. In the following sections both options will be explained.

#### Option 1: Direct Authorization for an Access Area

Call up menu [Device Para\Access level].

Select the required access level respectively navigate to the required access authorization (level). Enter the required password. If the correct password has been entered, the required access authorization will be obtained. In order to do the parameter changes please proceed as follows:

Move to the parameter you want to change by using the Softkeys. If the parameter is selected, the lower right corner of the display should show a »Wrench« symbol.



This symbol indicates, that the parameter is unlocked and can be edited, because the required access authorization is available. Confirm the Softkey »Wrench«, in order to edit the parameter. Change the parameter.

Now you can:

- save the change you made and have them adopted by the system or:
- change additional parameters and save finally all the altered parameters and have them adopted by the system.

To save parameter changes immediately,

press the »OK« key for saving changed parameters directly and to have them adopted by the device. Confirm the parameter changes by pressing the »Yes« Softkey or dismiss by pressing »No«.

To change additional parameters and save afterwards,

move to other parameters and change them

# NOTICE

A star symbol in front of the changed parameters indicates that the modifications have only been saved temporarily, they are not yet finally stored and adopted by the device.

In order to make things easier to follow, especially where complex parameter changes are involved, on every superior/higher-ranking menu level the intended change of the parameter is indicated by the star symbol (star trace). This makes it possible to control or follow up from the main menu level at any time where parameter changes have been made and have not been saved finally.

In addition to the star trace to the temporary saved parameter changes, a general parameter changing symbol is faded-in at the left corner of the display,

and so it is possible from each point of the menu tree to see that there are parameter changes still not adopted by the device.

Press the »OK« key to initiate the final storage of all parameter changes. Confirm the parameter changes by pressing the »Yes« softkey or dismiss by pressing Softkey »No«.



If the display shows a Key Symbol instead of a Wrench-Symbol, this will indicate, that the required access authorization is not available.



In order to edit this parameter, a password is required, that provides the required authorization.

# NOTICE

Plausibility check: In order to prevent obvious wrong settings the device monitors constantly all temporary saved parameter changes. If the device detects an implausibility, this is indicated by a question mark in front of the respective parameter.

In order to make things easier to follow up, especially where complex parameter changes are involved, on every superior/higher-ranking menu level, above the temporarily saved parameters an invalidity is indicated by the question mark (plausibility trace). This makes it possible to control or follow from the main menu level at any time where implausibilities are intended to be saved.

In addition to the question mark trace to the temporary saved implausible parameter changes a general implausibility symbol/question mark is faded-in at the left corner of the display, and so it is possible to see from each point of the menu tree that implausibilities have been detected by the device.

A star/parameter change indication is always overwritten by the question mark/implausibility symbol.

If a device detects an implausibility, it rejects saving and adopting of the parameters.

### **Option 2: Context-dependent Access Authorization**

Navigate to the parameter, that is to be changed. If the parameter is selected, the lower right corner of the display shows a *Key«*-Symbol.



This symbol indicates, that the device is still within the *»Read Only Lv0«*-Level, or that the current level does not provide sufficient access rights to allow editing of this parameter.

Press this Softkey and enter the password<sup>1)</sup> that provides access to this parameter. Please change the parameter settings.

<sup>1)</sup> This page provides also information, which password/access authorization is required to do changes on this parameter.

Now you can:

- save the change you made and have them adopted by the system or:
- change additional parameters and save finally all the altered parameters and have them adopted by the system.

To save parameter changes immediately,

press the »OK« key for saving changed parameters directly and to have them adopted by the device. Confirm the parameter changes by pressing the »Yes« Softkey or dismiss by pressing »No«.

To change additional parameters and save afterwards,

move to other parameters and change them

# NOTICE

A star symbol in front of the changed parameters indicates that the modifications have only been saved temporary, they are not yet finally stored and adopted by the device.

In order to make things easier to follow up, especially where complex parameter changes are involved, on every superior/higher-ranking menu level the intended change of the parameter is indicated by the star symbol (star trace). This makes it possible to control or follow from the main menu level at any time where parameter changes have been made and have not been saved finally.

In addition to the star trace to the temporary saved parameter changes, a general parameter changing symbol is faded-in at the left corner of the display, and so it is possible from each point of the menu tree to see that there are parameter changes still not adopted by the device.

Press the »OK« key to initiate the final storage of all parameter changes. Confirm the parameter changes by pressing the »Yes« Softkey or dismiss by pressing Softkey »No«.

# NOTICE

Plausibility check: In order to prevent obvious wrong settings the device monitors constantly all temporary saved parameter changes. If the device detects an implausibility, this is indicated by a question mark in front of the respective parameter.

In order to make things easier to follow up, especially where complex parameter changes are involved, on every superior/higher-ranking menu level, above the temporary saved parameters an invalidity is indicated by the question mark (plausibility trace). This makes it possible to control or follow from the main menu level at any time where implausibilities are intended to be saved.

In addition to the question mark trace to the temporary saved implausible parameter changes a general implausibility symbol/question mark is faded-in at the left corner of the display, and so it is possible to see from each point of the menu tree that implausibilities have been detected by the device.

A star/parameter change indication is always overwritten by the question mark/implausibility symbol.

If a device detects an implausibility, it rejects saving and adopting of the parameters.

### **Setting Groups**

Within the menu »Protection Para/P-Set Switch« you have the following possibilities:

- To set one of the four setting groups active manually.
- To assign a signal to each setting group that sets this group to active.
- Scada switches the setting groups.

# **NOTICE** Switching over to another (already configured) setting group is done very quickly (usually within a time of approx. 10 ms).

| Option                                     | Setting Group Switch                                                                                                                                                                           |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manual Selection                           | Switch over, if another setting group is chosen manually within the menu<br>»Protection Para/P-Set Switch«                                                                                     |
| Via Input Function<br>(e.g. Digital Input) | Switch over not until the request is clear.<br>That means, if there is more or less than one request signal active, no switch<br>over will be executed.                                        |
|                                            | Example:                                                                                                                                                                                       |
|                                            | • DI3 is assigned onto Parameter set 1. DI3 is active "1".                                                                                                                                     |
|                                            | • DI4 is assigned onto Parameter set 2. DI4 is inactive "0".                                                                                                                                   |
|                                            | Now the device should switch from parameter set 1 to parameter set 2. Therefore at first DI3 has to become inactive "0". Than DI4 has to be active "1".                                        |
|                                            | If DI4 becomes again inactive "0", parameter set 2 will remain active "1" as long<br>as there is no clear request (e.g. DI3 becomes active "1", all the other<br>assignments are inactive "0") |
| Via SCADA                                  | Switch over if there is a clear SCADA request.                                                                                                                                                 |
|                                            | Otherwise no switch over will be executed.                                                                                                                                                     |

# NOTICE

*Setting group switch:* Whenever another setting group gets activated, all memory-related values (e.g. timers) are reset for all protection functions.

*Configuration change:* Whenever changes are made to the settings of protection parameters (device planning, global parameters or setting group parameters for more than one setting group) all protection functionality is completely deactivated for a short time. This means that all protection modules are inactive for some time, so that they can be restarted with the new settings. This way it is made sure that all protection behavior is consistent with respect to the new settings.

An *exception* from this is a configuration change that is restricted to settings from only one setting group. In this case all protection functions are only reset (exactly as for a setting group switch, see above).

# Signals that can be used for PSS

| Name                    | Description                                                     |
|-------------------------|-----------------------------------------------------------------|
|                         | No assignment                                                   |
| CTS.Alarm               | Signal: Alarm Current Transformer Measuring Circuit Supervision |
| LOP.Alarm               | Signal: Alarm Loss of Potential                                 |
| DI Slot X1.DI 1         | Signal: Digital Input                                           |
| DI Slot X1.DI 2         | Signal: Digital Input                                           |
| DI Slot X1.DI 3         | Signal: Digital Input                                           |
| DI Slot X1.DI 4         | Signal: Digital Input                                           |
| DI Slot X1.DI 5         | Signal: Digital Input                                           |
| DI Slot X1.DI 6         | Signal: Digital Input                                           |
| DI Slot X1.DI 7         | Signal: Digital Input                                           |
| DI Slot X1.DI 8         | Signal: Digital Input                                           |
| Logics.LE1.Gate Out     | Signal: Output of the logic gate                                |
| Logics.LE1.Timer Out    | Signal: Timer Output                                            |
| Logics.LE1.Out          | Signal: Latched Output (Q)                                      |
| Logics.LE1.Out inverted | Signal: Negated Latched Output (Q NOT)                          |
| Logics.LE2.Gate Out     | Signal: Output of the logic gate                                |
| Logics.LE2.Timer Out    | Signal: Timer Output                                            |
| Logics.LE2.Out          | Signal: Latched Output (Q)                                      |
| Logics.LE2.Out inverted | Signal: Negated Latched Output (Q NOT)                          |
| Logics.LE3.Gate Out     | Signal: Output of the logic gate                                |
| Logics.LE3.Timer Out    | Signal: Timer Output                                            |
| Logics.LE3.Out          | Signal: Latched Output (Q)                                      |
| Logics.LE3.Out inverted | Signal: Negated Latched Output (Q NOT)                          |
| Logics.LE4.Gate Out     | Signal: Output of the logic gate                                |
| Logics.LE4.Timer Out    | Signal: Timer Output                                            |
| Logics.LE4.Out          | Signal: Latched Output (Q)                                      |
| Logics.LE4.Out inverted | Signal: Negated Latched Output (Q NOT)                          |
| Logics.LE5.Gate Out     | Signal: Output of the logic gate                                |
| Logics.LE5.Timer Out    | Signal: Timer Output                                            |
| Logics.LE5.Out          | Signal: Latched Output (Q)                                      |
| Logics.LE5.Out inverted | Signal: Negated Latched Output (Q NOT)                          |
| Logics.LE6.Gate Out     | Signal: Output of the logic gate                                |
| Logics.LE6.Timer Out    | Signal: Timer Output                                            |
| Logics.LE6.Out          | Signal: Latched Output (Q)                                      |
| Logics.LE6.Out inverted | Signal: Negated Latched Output (Q NOT)                          |
| Logics.LE7.Gate Out     | Signal: Output of the logic gate                                |
| Logics.LE7.Timer Out    | Signal: Timer Output                                            |
| Logics.LE7.Out          | Signal: Latched Output (Q)                                      |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE7.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE8.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE8.Timer Out     | Signal: Timer Output                   |
| Logics.LE8.Out           | Signal: Latched Output (Q)             |
| Logics.LE8.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE9.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE9.Timer Out     | Signal: Timer Output                   |
| Logics.LE9.Out           | Signal: Latched Output (Q)             |
| Logics.LE9.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE10.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE10.Timer Out    | Signal: Timer Output                   |
| Logics.LE10.Out          | Signal: Latched Output (Q)             |
| Logics.LE10.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE11.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE11.Timer Out    | Signal: Timer Output                   |
| Logics.LE11.Out          | Signal: Latched Output (Q)             |
| Logics.LE11.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE12.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE12.Timer Out    | Signal: Timer Output                   |
| Logics.LE12.Out          | Signal: Latched Output (Q)             |
| Logics.LE12.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE13.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE13.Timer Out    | Signal: Timer Output                   |
| Logics.LE13.Out          | Signal: Latched Output (Q)             |
| Logics.LE13.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE14.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE14.Timer Out    | Signal: Timer Output                   |
| Logics.LE14.Out          | Signal: Latched Output (Q)             |
| Logics.LE14.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE15.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE15.Timer Out    | Signal: Timer Output                   |
| Logics.LE15.Out          | Signal: Latched Output (Q)             |
| Logics.LE15.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE16.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE16.Timer Out    | Signal: Timer Output                   |
| Logics.LE16.Out          | Signal: Latched Output (Q)             |
| Logics.LE16.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE17.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE17.Timer Out    | Signal: Timer Output                   |
| Logics.LE17.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE17.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE18.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE18.Timer Out    | Signal: Timer Output                   |
| Logics.LE18.Out          | Signal: Latched Output (Q)             |
| Logics.LE18.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE19.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE19.Timer Out    | Signal: Timer Output                   |
| Logics.LE19.Out          | Signal: Latched Output (Q)             |
| Logics.LE19.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE20.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE20.Timer Out    | Signal: Timer Output                   |
| Logics.LE20.Out          | Signal: Latched Output (Q)             |
| Logics.LE20.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE21.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE21.Timer Out    | Signal: Timer Output                   |
| Logics.LE21.Out          | Signal: Latched Output (Q)             |
| Logics.LE21.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE22.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE22.Timer Out    | Signal: Timer Output                   |
| Logics.LE22.Out          | Signal: Latched Output (Q)             |
| Logics.LE22.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE23.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE23.Timer Out    | Signal: Timer Output                   |
| Logics.LE23.Out          | Signal: Latched Output (Q)             |
| Logics.LE23.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE24.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE24.Timer Out    | Signal: Timer Output                   |
| Logics.LE24.Out          | Signal: Latched Output (Q)             |
| Logics.LE24.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE25.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE25.Timer Out    | Signal: Timer Output                   |
| Logics.LE25.Out          | Signal: Latched Output (Q)             |
| Logics.LE25.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE26.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE26.Timer Out    | Signal: Timer Output                   |
| Logics.LE26.Out          | Signal: Latched Output (Q)             |
| Logics.LE26.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE27.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE27.Timer Out    | Signal: Timer Output                   |
| Logics.LE27.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE27.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE28.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE28.Timer Out    | Signal: Timer Output                   |
| Logics.LE28.Out          | Signal: Latched Output (Q)             |
| Logics.LE28.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE29.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE29.Timer Out    | Signal: Timer Output                   |
| Logics.LE29.Out          | Signal: Latched Output (Q)             |
| Logics.LE29.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE30.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE30.Timer Out    | Signal: Timer Output                   |
| Logics.LE30.Out          | Signal: Latched Output (Q)             |
| Logics.LE30.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE31.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE31.Timer Out    | Signal: Timer Output                   |
| Logics.LE31.Out          | Signal: Latched Output (Q)             |
| Logics.LE31.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE32.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE32.Timer Out    | Signal: Timer Output                   |
| Logics.LE32.Out          | Signal: Latched Output (Q)             |
| Logics.LE32.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE33.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE33.Timer Out    | Signal: Timer Output                   |
| Logics.LE33.Out          | Signal: Latched Output (Q)             |
| Logics.LE33.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE34.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE34.Timer Out    | Signal: Timer Output                   |
| Logics.LE34.Out          | Signal: Latched Output (Q)             |
| Logics.LE34.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE35.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE35.Timer Out    | Signal: Timer Output                   |
| Logics.LE35.Out          | Signal: Latched Output (Q)             |
| Logics.LE35.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE36.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE36.Timer Out    | Signal: Timer Output                   |
| Logics.LE36.Out          | Signal: Latched Output (Q)             |
| Logics.LE36.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE37.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE37.Timer Out    | Signal: Timer Output                   |
| Logics.LE37.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE37.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE38.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE38.Timer Out    | Signal: Timer Output                   |
| Logics.LE38.Out          | Signal: Latched Output (Q)             |
| Logics.LE38.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE39.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE39.Timer Out    | Signal: Timer Output                   |
| Logics.LE39.Out          | Signal: Latched Output (Q)             |
| Logics.LE39.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE40.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE40.Timer Out    | Signal: Timer Output                   |
| Logics.LE40.Out          | Signal: Latched Output (Q)             |
| Logics.LE40.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE41.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE41.Timer Out    | Signal: Timer Output                   |
| Logics.LE41.Out          | Signal: Latched Output (Q)             |
| Logics.LE41.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE42.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE42.Timer Out    | Signal: Timer Output                   |
| Logics.LE42.Out          | Signal: Latched Output (Q)             |
| Logics.LE42.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE43.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE43.Timer Out    | Signal: Timer Output                   |
| Logics.LE43.Out          | Signal: Latched Output (Q)             |
| Logics.LE43.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE44.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE44.Timer Out    | Signal: Timer Output                   |
| Logics.LE44.Out          | Signal: Latched Output (Q)             |
| Logics.LE44.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE45.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE45.Timer Out    | Signal: Timer Output                   |
| Logics.LE45.Out          | Signal: Latched Output (Q)             |
| Logics.LE45.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE46.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE46.Timer Out    | Signal: Timer Output                   |
| Logics.LE46.Out          | Signal: Latched Output (Q)             |
| Logics.LE46.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE47.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE47.Timer Out    | Signal: Timer Output                   |
| Logics.LE47.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE47.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE48.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE48.Timer Out    | Signal: Timer Output                   |
| Logics.LE48.Out          | Signal: Latched Output (Q)             |
| Logics.LE48.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE49.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE49.Timer Out    | Signal: Timer Output                   |
| Logics.LE49.Out          | Signal: Latched Output (Q)             |
| Logics.LE49.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE50.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE50.Timer Out    | Signal: Timer Output                   |
| Logics.LE50.Out          | Signal: Latched Output (Q)             |
| Logics.LE50.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE51.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE51.Timer Out    | Signal: Timer Output                   |
| Logics.LE51.Out          | Signal: Latched Output (Q)             |
| Logics.LE51.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE52.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE52.Timer Out    | Signal: Timer Output                   |
| Logics.LE52.Out          | Signal: Latched Output (Q)             |
| Logics.LE52.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE53.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE53.Timer Out    | Signal: Timer Output                   |
| Logics.LE53.Out          | Signal: Latched Output (Q)             |
| Logics.LE53.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE54.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE54.Timer Out    | Signal: Timer Output                   |
| Logics.LE54.Out          | Signal: Latched Output (Q)             |
| Logics.LE54.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE55.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE55.Timer Out    | Signal: Timer Output                   |
| Logics.LE55.Out          | Signal: Latched Output (Q)             |
| Logics.LE55.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE56.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE56.Timer Out    | Signal: Timer Output                   |
| Logics.LE56.Out          | Signal: Latched Output (Q)             |
| Logics.LE56.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE57.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE57.Timer Out    | Signal: Timer Output                   |
| Logics.LE57.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE57.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE58.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE58.Timer Out    | Signal: Timer Output                   |
| Logics.LE58.Out          | Signal: Latched Output (Q)             |
| Logics.LE58.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE59.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE59.Timer Out    | Signal: Timer Output                   |
| Logics.LE59.Out          | Signal: Latched Output (Q)             |
| Logics.LE59.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE60.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE60.Timer Out    | Signal: Timer Output                   |
| Logics.LE60.Out          | Signal: Latched Output (Q)             |
| Logics.LE60.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE61.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE61.Timer Out    | Signal: Timer Output                   |
| Logics.LE61.Out          | Signal: Latched Output (Q)             |
| Logics.LE61.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE62.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE62.Timer Out    | Signal: Timer Output                   |
| Logics.LE62.Out          | Signal: Latched Output (Q)             |
| Logics.LE62.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE63.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE63.Timer Out    | Signal: Timer Output                   |
| Logics.LE63.Out          | Signal: Latched Output (Q)             |
| Logics.LE63.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE64.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE64.Timer Out    | Signal: Timer Output                   |
| Logics.LE64.Out          | Signal: Latched Output (Q)             |
| Logics.LE64.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE65.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE65.Timer Out    | Signal: Timer Output                   |
| Logics.LE65.Out          | Signal: Latched Output (Q)             |
| Logics.LE65.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE66.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE66.Timer Out    | Signal: Timer Output                   |
| Logics.LE66.Out          | Signal: Latched Output (Q)             |
| Logics.LE66.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE67.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE67.Timer Out    | Signal: Timer Output                   |
| Logics.LE67.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE67.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE68.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE68.Timer Out    | Signal: Timer Output                   |
| Logics.LE68.Out          | Signal: Latched Output (Q)             |
| Logics.LE68.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE69.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE69.Timer Out    | Signal: Timer Output                   |
| Logics.LE69.Out          | Signal: Latched Output (Q)             |
| Logics.LE69.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE70.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE70.Timer Out    | Signal: Timer Output                   |
| Logics.LE70.Out          | Signal: Latched Output (Q)             |
| Logics.LE70.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE71.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE71.Timer Out    | Signal: Timer Output                   |
| Logics.LE71.Out          | Signal: Latched Output (Q)             |
| Logics.LE71.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE72.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE72.Timer Out    | Signal: Timer Output                   |
| Logics.LE72.Out          | Signal: Latched Output (Q)             |
| Logics.LE72.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE73.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE73.Timer Out    | Signal: Timer Output                   |
| Logics.LE73.Out          | Signal: Latched Output (Q)             |
| Logics.LE73.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE74.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE74.Timer Out    | Signal: Timer Output                   |
| Logics.LE74.Out          | Signal: Latched Output (Q)             |
| Logics.LE74.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE75.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE75.Timer Out    | Signal: Timer Output                   |
| Logics.LE75.Out          | Signal: Latched Output (Q)             |
| Logics.LE75.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE76.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE76.Timer Out    | Signal: Timer Output                   |
| Logics.LE76.Out          | Signal: Latched Output (Q)             |
| Logics.LE76.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE77.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE77.Timer Out    | Signal: Timer Output                   |
| Logics.LE77.Out          | Signal: Latched Output (Q)             |

#### Parameters

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE77.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE78.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE78.Timer Out    | Signal: Timer Output                   |
| Logics.LE78.Out          | Signal: Latched Output (Q)             |
| Logics.LE78.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE79.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE79.Timer Out    | Signal: Timer Output                   |
| Logics.LE79.Out          | Signal: Latched Output (Q)             |
| Logics.LE79.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE80.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE80.Timer Out    | Signal: Timer Output                   |
| Logics.LE80.Out          | Signal: Latched Output (Q)             |
| Logics.LE80.Out inverted | Signal: Negated Latched Output (Q NOT) |

## Setting Lock

By means of the <u>Setting Lock</u>, parameter settings can be locked against any changes as long as the assigned signal is true (active). The <u>Setting Lock</u> can be activated within menu [Field Para/General Settings/Lock Settings].

## Bypass of the Setting Lock

The setting lock can be overwritten (temporarily) in case that the status of the signal that activates the setting lock cannot be modified or should not be modified (spare key).

The <u>Setting Lock</u> can be bypassed by means of the Direct Control Parameter » Setting Lock Bypass« [Field Para/General Settings/Setting Lock Bypass]. The protective device will fall back into the <u>Setting Lock</u> either:

- Directly after a parameter change has been saved, else
- 10 minutes after the bypass has been activated.

# **Device Parameters**

<u>Sys</u>

## **Date and Time**

In menu *»Device parameters/Date/Time«* you can set date and time.

## Version

Within this menu *»Device parameters/Version«* you can obtain information on the soft- and hardware version.

## **Display of ANSI-Codes**

The display of ANSI codes can be activated within menu »Device parameters/HMI//Display ANSI device numbers«

## **TCP/IP Settings**

Within menu »Device Para / TCP/IP/TCP/IP Config« the TCP/IP settings have to be set.

The first-time setting of the TCP/IP Parameters can be done at the panel (HMI) only.



Establishing a connection via TCP/IP to the device is only possible if your device is equipped with an Ethernet Interface (RJ45).

Contact your IT administrator in order to establish the network connection.

#### Set the TCP/IP Parameters

Call up »Device parameter/TCP/IP« at the HMI (panel) and set the following parameters:

- TCP/IP address
- Subnetmask
- Gateway

# Direct Commands of the System Module

| Parameter              | Description                                                       | Setting range       | Default  | Menu path                              |
|------------------------|-------------------------------------------------------------------|---------------------|----------|----------------------------------------|
| Ack BO LED Scd<br>TCmd | Reset the binary output relays, LEDs, SCADA and the Trip Command. | inactive,<br>active | inactive | [Operation<br>/                        |
| $(\mathbf{k})$         |                                                                   |                     |          | Reset/Acknowle<br>dge                  |
|                        |                                                                   |                     |          | /Acknowledge]                          |
| Ack LED                | All acknowledgeable LEDs will be acknowledged.                    | inactive,<br>active | inactive | [Operation<br>/<br>Reset/Acknowle      |
|                        |                                                                   |                     |          | dge<br>/Acknowledge]                   |
| Ack BO                 | All acknowledgeable binary output relays will be acknowledged.    | inactive,<br>active | inactive | [Operation<br>/                        |
| $\bigotimes$           |                                                                   |                     |          | Reset/Acknowle<br>dge<br>/Acknowledge] |
| Ack Scada              | SCADA will be acknowledged.                                       | inactive,<br>active | inactive | [Operation<br>/                        |
| $\bigotimes$           |                                                                   |                     |          | ,<br>Reset/Acknowle<br>dge             |
|                        |                                                                   |                     |          | /Acknowledge]                          |
| Res<br>OperationsCr    | Reset all counters in history group operations                    | inactive,<br>active | inactive | [Operation<br>/<br>Reset/Acknowle      |
| $\bigotimes$           |                                                                   |                     |          | dge<br>/History]                       |
| Res AlarmCr            | Reset all counters in history group alarms                        | inactive,<br>active | inactive | [Operation<br>/                        |
| $\bigotimes$           |                                                                   |                     |          | Reset/Acknowle<br>dge<br>/History]     |
| Res TripCmdCr          | Reset all counters in history group trips                         | inactive,<br>active | inactive | [Operation                             |
| $\bigotimes$           |                                                                   |                     |          | ,<br>Reset/Acknowle<br>dge             |
|                        |                                                                   |                     |          | /History]                              |
| Res TotalCr            | Reset all counters in history group total                         | inactive,<br>active | inactive | [Operation<br>/                        |
|                        |                                                                   |                     |          | ,<br>Reset/Acknowle<br>dge             |
|                        |                                                                   |                     |          | /History]                              |

| Parameter    | Description                             | Setting range | Default  | Menu path                  |
|--------------|-----------------------------------------|---------------|----------|----------------------------|
| Res All      | Reset of all Counters                   | inactive,     | inactive | [Operation                 |
| $\bigotimes$ |                                         | active        |          | /<br>Reset/Acknowle<br>dge |
|              |                                         |               |          | /History]                  |
| Reboot       | Rebooting the device.                   | no,           | no       | [Service                   |
| $\bigcirc$   |                                         | yes           |          | /General]                  |
| Setting Lock | Short-period unlock of the Setting Lock | inactive,     | inactive | [Field Para                |
| Bypass       |                                         | active        |          | /General<br>Settings]      |
| $\bigotimes$ |                                         |               |          |                            |

# CAUTION

CAUTION, rebooting the device manually will release the Supervision Contact.

# **Global Protection Parameters of the System**

| Parameter            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Setting range    | Default | Menu path                            |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|--------------------------------------|
| PSet-Switch          | Switching Parameter Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PS1,             | PS1     | [Protection                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PS2,             |         | Para<br>/PSet-Switch]                |
| $\bigcirc$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PS3,             |         |                                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PS4,             |         |                                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSS via Inp fct, |         |                                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSS via Scada    |         |                                      |
| PS1: activated<br>by | This Setting Group will be the active one if:<br>The Parameter Setting Group Switch is set<br>to "Switch via Input" and the other three<br>input functions are inactive at the same<br>time. In case that there is more than one<br>input function active, no Parameter Setting<br>Group Switch will be executed. In case all<br>input functions are inactive, the device will<br>keep working with the Setting Group that<br>was activated lastly.<br>Only available if: PSet-Switch = PSS via Inp<br>fct | 1n, PSS          |         | [Protection<br>Para<br>/PSet-Switch] |

| Parameter            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Setting range                                                   | Default  | Menu path                            |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------|--------------------------------------|
| PS2: activated<br>by | This Setting Group will be the active one if:<br>The Parameter Setting Group Switch is set<br>to "Switch via Input" and the other three<br>input functions are inactive at the same<br>time. In case that there is more than one<br>input function active, no Parameter Setting<br>Group Switch will be executed. In case all<br>input functions are inactive, the device will<br>keep working with the Setting Group that<br>was activated lastly.<br>Only available if: PSet-Switch = PSS via Inp               | 1n, PSS                                                         |          | [Protection<br>Para<br>/PSet-Switch] |
| PS3: activated by    | fct<br>This Setting Group will be the active one if:<br>The Parameter Setting Group Switch is set<br>to "Switch via Input" and the other three<br>input functions are inactive at the same<br>time. In case that there is more than one<br>input function active, no Parameter Setting<br>Group Switch will be executed. In case all<br>input functions are inactive, the device will<br>keep working with the Setting Group that<br>was activated lastly.<br>Only available if: PSet-Switch = PSS via Inp        | 1n, PSS                                                         |          | [Protection<br>Para<br>/PSet-Switch] |
| PS4: activated by    | fct<br>This Setting Group will be the active one if:<br>The Parameter Setting Group Switch is set<br>to "Switch via Input" and the other three<br>input functions are inactive at the same<br>time. In case that there is more than one<br>input function active, no Parameter Setting<br>Group Switch will be executed. In case all<br>input functions are inactive, the device will<br>keep working with the Setting Group that<br>was activated lastly.<br>Only available if: PSet-Switch = PSS via Inp<br>fct | 1n, PSS                                                         |          | [Protection<br>Para<br>/PSet-Switch] |
| Ack via »C« key      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nothing,<br>Ack LEDs,<br>Ack LEDs,<br>relays,<br>Ack Everything | Ack LEDs | [Device Para<br>/Acknowledge]        |
| Remote Reset         | Enables or disables the option to<br>acknowledge from external/remote via<br>signals (assignments) and SCADA.                                                                                                                                                                                                                                                                                                                                                                                                     | inactive,<br>active                                             | active   | [Device Para<br>/Acknowledge]        |
| Ack LED              | All acknowledgeable LEDs will be<br>acknowledged if the state of the assigned<br>signal becomes true.<br>Only available if: Remote Reset = active                                                                                                                                                                                                                                                                                                                                                                 | 1n,<br>Assignment List                                          |          | [Device Para<br>/Acknowledge]        |

| Parameter    | Description                                                                                                                                                       | Setting range                                              | Default                               | Menu path                                                     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------|
| Ack BO       | All acknowledgeable binary output relays<br>will be acknowledged if the state of the<br>assigned signal becomes true.<br>Only available if: Remote Reset = active | 1n,<br>Assignment List                                     |                                       | [Device Para<br>/Acknowledge]                                 |
| Ack Scada    | SCADA will be acknowledged if the state of<br>the assigned signal becomes true.<br>Only available if: Remote Reset = active                                       | 1n,<br>Assignment List                                     |                                       | [Device Para<br>/Acknowledge]                                 |
| Scaling      | Display of the measured values as primary, secondary or per unit values                                                                                           | Per unit values,<br>Primary values,<br>Secondary<br>values | Per unit<br>values                    | [Device Para<br>/Measurem<br>Display<br>/General<br>Settings] |
| Program Mode | Program Mode                                                                                                                                                      | Either Motor<br>Stopped or<br>Running,<br>Motor Stop       | Either Motor<br>Stopped or<br>Running | [Field Para<br>/General<br>Settings]                          |

# System Module Input States

| Name                   | Description                                                           | Assignment via   |
|------------------------|-----------------------------------------------------------------------|------------------|
| Ack LED-I              | Module input state: LEDs acknowledgement by                           | [Device Para     |
|                        | digital input                                                         | /Acknowledge]    |
| Ack BO-I               | Module input state: Acknowledgement of the binary                     | [Device Para     |
|                        | Output Relays                                                         | /Acknowledge]    |
| Ack Scada-I            | Module input state: Acknowledge Scada via digital                     | [Device Para     |
|                        | input. The replica that SCADA has got from the device is to be reset. | /Acknowledge]    |
| PS1-I                  | State of the module input respectively of the signal,                 | [Protection Para |
|                        | that should activate this Parameter Setting Group.                    | /PSet-Switch]    |
| PS2-I                  | State of the module input respectively of the signal,                 | [Protection Para |
|                        | that should activate this Parameter Setting Group.                    | /PSet-Switch]    |
| PS3-I                  | State of the module input respectively of the signal,                 | [Protection Para |
|                        | that should activate this Parameter Setting Group.                    | /PSet-Switch]    |
| PS4-I                  | State of the module input respectively of the signal,                 | [Protection Para |
|                        | that should activate this Parameter Setting Group.                    | /PSet-Switch]    |
| Internal test<br>state | Auxiliary state for testing purposes.                                 | []               |

# System Module Signals

| Signal              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reboot              | Signal: Rebooting the device: 1=Normal Start-up; 2=Reboot by the<br>Operator; 3=Reboot by means of Super Reset; 4=outdated; 5=outdated;<br>6=Unknown Error Source; 7=Forced Reboot (initiated by the main<br>processor); 8=Exceeded Time Limit of the Protection Cycle; 9= Forced<br>Reboot (initiated by the digital signal processor); 10=Exceeded Time Limit<br>of the Measured Value Processing; 11=Sags of the Supply Voltage;<br>12=Illegal Memory Access. |
| Act Set             | Signal: Active Parameter Set                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PS 1                | Signal: Parameter Set 1                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PS 2                | Signal: Parameter Set 2                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PS 3                | Signal: Parameter Set 3                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PS 4                | Signal: Parameter Set 4                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PSS manual          | Signal: Manual Switch over of a Parameter Set                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PSS via Scada       | Signal: Parameter Set Switch via Scada. Write into this output byte the integer of the parameter set that should become active (e.g. $4 =>$ Switch onto parameter set 4).                                                                                                                                                                                                                                                                                        |
| PSS via Inp fct     | Signal: Parameter Set Switch via input function                                                                                                                                                                                                                                                                                                                                                                                                                  |
| min 1 param changed | Signal: At least one parameter has been changed                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Setting Lock Bypass | Signal: Short-period unlock of the Setting Lock                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Param to be saved   | Number of parameters to be saved. 0 means that all parameter changes are overtaken.                                                                                                                                                                                                                                                                                                                                                                              |
| Ack LED             | Signal: LEDs acknowledgement                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ack BO              | Signal: Acknowledgement of the Binary Outputs                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ack Counter         | Signal: Reset of all Counters                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ack Scada           | Signal: Acknowledge Scada                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ack TripCmd         | Signal: Reset Trip Command                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ack LED-HMI         | Signal: LEDs acknowledgement :HMI                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ack BO-HMI          | Signal: Acknowledgement of the Binary Outputs :HMI                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ack Counter-HMI     | Signal: Reset of all Counters :HMI                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ack Scada-HMI       | Signal: Acknowledge Scada :HMI                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ack TripCmd-HMI     | Signal: Reset Trip Command :HMI                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ack LED-Sca         | Signal: LEDs acknowledgement :SCADA                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ack BO-Sca          | Signal: Acknowledgement of the Binary Outputs :SCADA                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ack Counter-Sca     | Signal: Reset of all Counters :SCADA                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ack Scada-Sca       | Signal: Acknowledge Scada :SCADA                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ack TripCmd-Sca     | Signal: Reset Trip Command :SCADA                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Res OperationsCr    | Signal:: Res OperationsCr                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Res AlarmCr         | Signal:: Res AlarmCr                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Res TripCmdCr       | Signal:: Res TripCmdCr                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Res TotalCr         | Signal:: Res TotalCr                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# Special Values of the System Module

| Value              | Description                                      | Menu path          |
|--------------------|--------------------------------------------------|--------------------|
| Build              | Build                                            | [Device Para       |
|                    |                                                  | /Version]          |
|                    |                                                  |                    |
| DM-Version         | Version                                          | [Device Para       |
|                    |                                                  | /Version]          |
|                    |                                                  |                    |
| Operating hours Cr | Operating hours counter of the protective device | [Operation         |
|                    |                                                  | /Count and RevData |
|                    |                                                  | /Sys]              |
| Hours Counter      | Hours Counter                                    | [Operation         |
|                    |                                                  | /History           |
|                    |                                                  | /TotalCr]          |

# **Field Parameters**

### Field Para

Within the field parameters you can set all parameters, that are relevant for the primary side and the mains operational method like frequency, primary and secondary values...

## **General Field Parameters**

| Parameter    | Description              | Setting range | Default | Menu path             |
|--------------|--------------------------|---------------|---------|-----------------------|
| Phase        | Phase Sequence direction | ABC,          | ABC     | [Field Para           |
| Sequence     |                          | ACB           |         | /General<br>Settings] |
| $\otimes$    |                          |               |         |                       |
| f            | Nominal frequency        | 50Hz,         | 50Hz    | [Field Para           |
| $\bigotimes$ |                          | 60Hz          |         | /General<br>Settings] |

# Field Parameters – Current Related

| Parameter | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Setting range | Default | Menu path           |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|---------------------|
| CT pri    | Nominal current of the primary side of the current transformers.                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 - 50000A    | 10A     | [Field Para<br>/CT] |
| CT sec    | Nominal current of the secondary side of the current transformers.                                                                                                                                                                                                                                                                                                                                                                                                                       | 1A,<br>5A     | 1A      | [Field Para<br>/CT] |
| CT dir    | Protection functions with directional feature<br>can only work properly if the connection of<br>the current transformers is free of wiring<br>errors. If all current transformers are<br>connected to the device with an incorrect<br>polarity, the wiring error can be<br>compensated by this parameter. This<br>parameter turns the current vectors by 180<br>degrees.                                                                                                                 | 0°,<br>180°   | 0°      | [Field Para<br>/CT] |
| ECT pri   | This parameter defines the primary nominal<br>current of the connected earth current<br>transformer. If the earth current is<br>measured via the Holmgreen connection,<br>the primary value of the phase current<br>transformer must be entered here.                                                                                                                                                                                                                                    | 1 - 50000A    | 50A     | [Field Para<br>/CT] |
| ECT sec   | This parameter defines the secondary<br>nominal current of the connected earth<br>current transformer. If the earth current is<br>done via the Holmgreen connection, the<br>primary value of the phase current<br>transformer must be entered here.                                                                                                                                                                                                                                      | 1A,<br>5A     | 1A      | [Field Para<br>/CT] |
| ECT dir   | Earth fault protection with directional<br>feature depends also on the correct wiring<br>of the earth current transformer. An<br>incorrect polarity/wiring can be corrected by<br>means of the settings "0°" or "180°". The<br>operator has the possibility of turning the<br>current vector by 180 degrees (change of<br>sign) without modification of the wiring. This<br>means, that - in terms of figures - the<br>determined current indicator was turned by<br>180° by the device. | 0°,<br>180°   | 0°      | [Field Para<br>/CT] |

| Parameter                     | Description                                                                                                                                                                                                                  | Setting range | Default | Menu path                                         |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|---------------------------------------------------|
| IL1, IL2, IL3<br>Cutoff Level | The Current shown in the Display or within<br>the PC Software will be displayed as zero, if<br>the Current falls below this Cutoff Level.<br>This parameter has no impact on recorders.                                      | 0.0 - 0.100In | 0.005In | [Device Para<br>/Measurem<br>Display<br>/Current] |
| IG meas Cutoff<br>Level       | The measured Earth Current shown in the<br>Display or within the PC Software will be<br>displayed as zero, if the measured Earth<br>Current falls below this Cutoff Level. This<br>parameter has no impact on recorders.     | 0.0 - 0.100In | 0.005In | [Device Para<br>/Measurem<br>Display<br>/Current] |
| IG calc Cutoff<br>Level       | The calculated Earth Current shown in the<br>Display or within the PC Software will be<br>displayed as zero, if the calculated Earth<br>Current falls below this Cutoff Level. This<br>parameter has no impact on recorders. | 0.0 - 0.100ln | 0.005In | [Device Para<br>/Measurem<br>Display<br>/Current] |
| I012 Cutoff<br>Level          | The Symmetrical Component shown in the<br>Display or within the PC Software will be<br>displayed as zero, if the Symmetrical<br>Component falls below this Cutoff Level.<br>This parameter has no impact on recorders.       | 0.0 - 0.100ln | 0.005In | [Device Para<br>/Measurem<br>Display<br>/Current] |

# Field Parameters – Voltage Related

| Parameter           | Description                                                                                                                                                                                                                                                                                                               | Setting range                             | Default            | Menu path                                         |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|---------------------------------------------------|
| VT pri              | Nominal voltage of the Voltage<br>Transformers at the primary side. The phase<br>to phase voltage is to be entered even if the<br>load is in delta connection.                                                                                                                                                            | 60 - 500000V                              | 10000V             | [Field Para<br>/VT]                               |
| VT sec              | Nominal voltage of the Voltage<br>Transformers at the secondary side. The<br>phase to phase voltage is to be entered<br>even if the load is in delta connection.                                                                                                                                                          | 60.00 -<br>520.00V                        | 100V               | [Field Para<br>/VT]                               |
| VT con              | This parameter has to be set in order to<br>ensure the correct assignment of the<br>voltage measurement channels in the<br>device.                                                                                                                                                                                        | Phase to Phase,<br>Phase to<br>Ground     | Phase to<br>Ground | [Field Para<br>/VT]                               |
| EVT pri             | Primary nominal voltage of the e-n winding<br>of the voltage transformers, which is only<br>taken into account in the direct<br>measurement of the residual voltage (GVT<br>con=measured/broken delta).                                                                                                                   | 60 - 500000V                              | 10000V             | [Field Para<br>/VT]                               |
| EVT sec             | Secondary nominal voltage of the e-n<br>winding of the voltage transformers, which<br>is only taken into account in the direct<br>measurement of the residual voltage.                                                                                                                                                    | 35.00 -<br>520.00V                        | 100V               | [Field Para<br>/VT]                               |
| V Block f           | Threshold for the release of the frequency stages                                                                                                                                                                                                                                                                         | 0.15 - 1.00Vn                             | 0.5Vn              | [Field Para<br>/General<br>Settings]              |
| delta phi -<br>Mode | The delta phi element (vector surge) trips, if<br>the permissable voltage angle shift (delta<br>phi) of the three measured voltages (phase-<br>ground or phase-phase) in: one phase, two<br>phases or within all phases is exceeded.                                                                                      | one phase,<br>two phases,<br>three phases | two phases         | [Field Para<br>/VT]                               |
| V Cutoff Level      | The Phase Voltage shown in the Display or<br>within the PC Software will be displayed as<br>zero, if the Phase Voltage falls below this<br>Cutoff Level. This parameter has no impact<br>on recorders. This parameter is related to<br>the voltage that is connected to the device<br>(phase-to-phase or phase-to-earth). | 0.0 - 0.100Vn                             | 0.005Vn            | [Device Para<br>/Measurem<br>Display<br>/Voltage] |

| Parameter                 | Description                                                                                                                                                                                                                        | Setting range | Default | Menu path                                         |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|---------------------------------------------------|
| VG meas Cutoff<br>Level   | The measured Residual Voltage shown in<br>the Display or within the PC Software will be<br>displayed as zero, if the measured Residual<br>Voltage falls below this Cutoff Level. This<br>parameter has no impact on recorders.     | 0.0 - 0.100Vn | 0.005Vn | [Device Para<br>/Measurem<br>Display<br>/Voltage] |
| VG calc Cutoff<br>Level   | The calculated Residual Voltage shown in<br>the Display or within the PC Software will be<br>displayed as zero, if the calculated Residual<br>Voltage falls below this Cutoff Level. This<br>parameter has no impact on recorders. | 0.0 - 0.100Vn | 0.005Vn | [Device Para<br>/Measurem<br>Display<br>/Voltage] |
| V012 Comp<br>Cutoff Level | The Symmetrical Component shown in the<br>Display or within the PC Software will be<br>displayed as zero, if the Symmetrical<br>Component falls below this Cutoff Level.<br>This parameter has no impact on recorders.             | 0.0 - 0.100Vn | 0.005Vn | [Device Para<br>/Measurem<br>Display<br>/Voltage] |

# **Blockings**

The device provides a function for temporary and permanent blocking of the complete protection functionality or of single protection stages.



Make absolutely sure that no illogical or even life-threatening blockings are allocated.

Make sure that you do not carelessly deactivate protection functions which have to be available according to the protection concept.

## **Permanent Blocking**

#### Switching ON or OFF the complete protection functionality

In module <u>»Protection«</u> the complete protection of the device can be switched on or off. Set the parameter Function to *»active«* or *»inactive«* in module *»Prot«*.

**WARNING** Only if in module »Prot« the parameter *»Function«* is = *»active«*, the protection is activated; i.e. with *»Function« = »inactive«*, no protection function is operating. Then the device cannot protect any components.

#### Switching modules ON or OFF

Each of the modules can be switched on or off (permanently). This is achieved when the parameter »Function« is set to »active« or »inactive« in the respective module.

Activating or deactivating the tripping command of a protection stage permanently

In each of the protection stages the tripping command to the CB can be permanently blocked. For this purpose the parameter »TripCmd Blo« has to be set to »active«.

## **Temporary Blocking**

#### To block the complete protection of the device temporarily by a signal

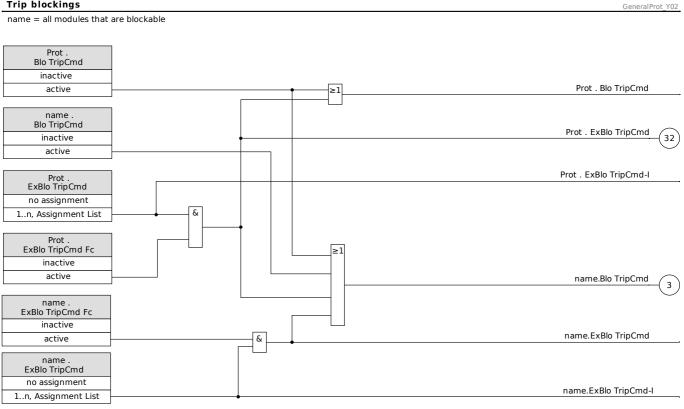
In module *»Prot«* the complete protection of the device can be blocked temporarily by a signal. On condition that a module-external blocking is permitted »ExBlo Fc=active«. In addition to this, a related blocking signal from the »assignment list« must have been assigned. For the time the allocated blocking signal is active, the module is blocked.

# **WARNING**

#### If the module *»Prot* is blocked, the complete protection function does not work. As long as the blocking signal is active, the device cannot protect any components.

#### To block a complete protection module temporarily by an active assignment

- In order to establish a temporary blockage of a protection module, the parameter »ExBlo Fc« of the module has to be set to *»active«*. This gives the permission: »This module can be blocked«.
- Within the general protection parameters a signal has to be additionally chosen from the »ASSIGNMENT LIST«. The blocking only becomes active when the assigned signal is active.


#### To block the tripping command of a protection stage temporarily by an active assignment.

The tripping command of any of the protection modules can be blocked from external. In this case, external does not only mean from outside the device, but also from outside the module. Not only real external signals are permitted to be used as blocking signals, as for example, the state of a digital input, but you can also choose any other signal from the »assignment list«.

- In order to establish a temporary blockage of a protection stage, the parameter »ExBlo TripCmd Fc« of the module has to be set to »active«. This gives the permission: »The tripping command of this stage can be blocked«.
- Within the general protection parameters, a signal has to be chosen additionally and assigned to the parameter *»ExBlo«* from the *»*assignment list«. If the selected signal is activated, the temporary blockage becomes effective.

## To Activate or Deactivate the Tripping Command of a Protection Module

#### Trip blockings



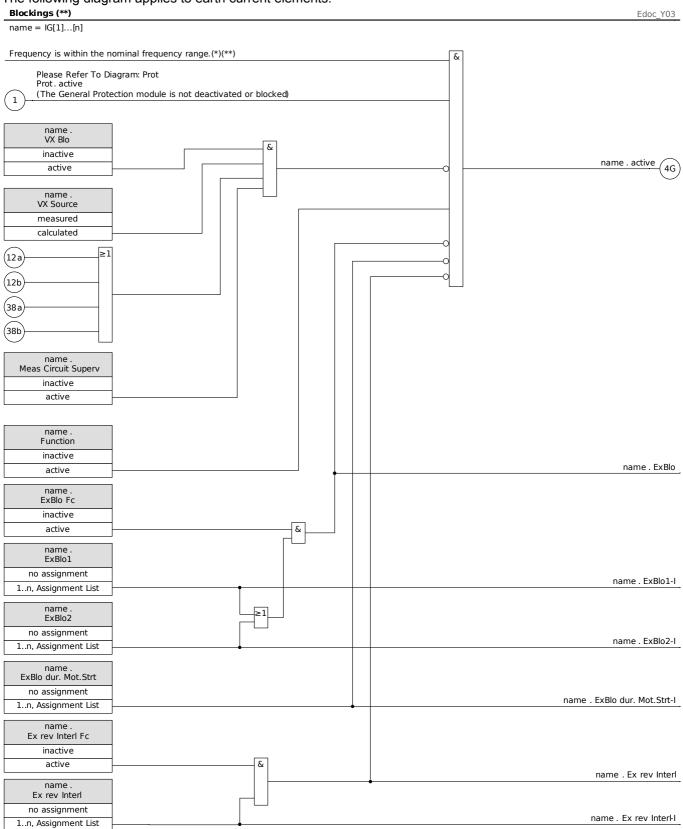
## Activate, Deactivate Respectively Block Temporarily Protection Functions

The following diagram applies to all protective elements except: Phase current and Earth current protection elements.

| Blockings                          |                                                                                    |               |            |   | GeneralProt_Y05              |
|------------------------------------|------------------------------------------------------------------------------------|---------------|------------|---|------------------------------|
| name = all modules that            | are blockable                                                                      |               |            |   |                              |
| Please Refer To Di<br>Prot. active | ominal frequency range.(*)(**)<br>iagram: Prot<br>ection module is not deactivated | d or blocked) |            | ۵ |                              |
| name .<br>Function                 | ]                                                                                  |               |            |   | name . active 2              |
| inactive                           | ]                                                                                  |               |            |   |                              |
| active                             | ]                                                                                  |               |            |   |                              |
| name .<br>ExBlo Fc                 |                                                                                    |               |            |   |                              |
| inactive                           | ]                                                                                  | _             |            |   |                              |
| active                             | <u>]</u>                                                                           | &             | _ <b>_</b> |   | name . ExBlo                 |
| name .<br>ExBlo 1                  | ]                                                                                  |               |            |   |                              |
| no assignment                      |                                                                                    |               |            |   | name . ExBlo1-I              |
| 1n, Assignment List                | <u></u>                                                                            | •             |            |   |                              |
| name .<br>ExBlo 2                  |                                                                                    |               |            |   |                              |
| no assignment                      | ]                                                                                  |               |            |   | name . ExBlo2-I              |
| 1n, Assignment List                | <u></u>                                                                            | •             |            |   | Hame . Exbloz-i              |
| name .<br>ExBlo dur. Mot Strt      | - (***)                                                                            |               |            |   |                              |
| no assignment                      | ()                                                                                 |               |            |   | name . ExBlo dur. Mot.Strt-I |
| 1n, Assignment List                |                                                                                    |               |            | • |                              |

(\*) All protective elements will be blocked that are using fundamental or harmonics measured values, if the frequency leaves the nominal frequency range. Protective elements that are using RMS values will remain active.

(\*\*) This applies to devices that offer wide frequency range measurement only.


(\*\*\*) Applies only to protective elements that are blocked during motor start.

Current protective functions cannot only be blocked permanently (*»function = inactive«*) or temporarily by any blocking signal from the *»*assignment list«, but also by *»reverse Interlocking«*. The following diagram applies phase current elements:

| Blockings (**)                                                    | Pdoc                              |
|-------------------------------------------------------------------|-----------------------------------|
| I = I[1][n]                                                       |                                   |
| Frequency is within the nominal frequency range.(*)(**)           | &                                 |
| Please Refer To Diagram Prot                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Prot. active                                                      |                                   |
| (1) (The General Protection module is not deactivated or blocked) |                                   |
| $\bigcirc$                                                        |                                   |
| 1.                                                                |                                   |
| VRestraint                                                        |                                   |
| inactive                                                          | I . active                        |
| active                                                            |                                   |
| (12a)≥1                                                           |                                   |
|                                                                   |                                   |
| (12b)                                                             |                                   |
|                                                                   | o                                 |
|                                                                   |                                   |
| (38b)                                                             |                                   |
|                                                                   |                                   |
| l .<br>Meas Circuit Superv                                        |                                   |
| inactive                                                          |                                   |
| active                                                            |                                   |
|                                                                   |                                   |
|                                                                   |                                   |
| l .<br>Function                                                   |                                   |
| inactive                                                          |                                   |
| active                                                            |                                   |
| 1.                                                                |                                   |
| ExBlo Fc                                                          |                                   |
| inactive                                                          |                                   |
| active                                                            | I.E                               |
| Ι.                                                                |                                   |
| ExBlo 1                                                           |                                   |
| no assignment                                                     | I . ExB                           |
| 1n, Assignment List                                               |                                   |
|                                                                   |                                   |
|                                                                   |                                   |
| no assignment<br>1n, Assignment List                              | I. ExB                            |
|                                                                   |                                   |
| l .<br>ExBlo dur. Mot.Strt                                        |                                   |
| no assignment                                                     |                                   |
| 1n, Assignment List                                               | I . ExBlo dur. Mot.               |
|                                                                   |                                   |
| I .<br>Ex rev Interl Fc                                           |                                   |
| inactive                                                          |                                   |
| active                                                            |                                   |
| I.                                                                | I . Ex rev I                      |
| Ex rev Interl                                                     |                                   |
| no assignment                                                     |                                   |
| 1n, Assignment List                                               | I . Ex rev In                     |

(\*) All protective elements will be blocked that are using fundamental or harmonics measured values, if the frequency leaves the nominal frequency range. Protective elements that are using RMS values will remain active. (\*\*) This applies to devices that offer wide frequency range measurement only.

Ground (earth) current protective functions cannot only be blocked permanently (*»function = inactive«*) or temporarily by any blocking signal from the *»*assignment list«, but also by *»reverse Interlocking«*. The following diagram applies to earth current elements:



(\*) All protective elements will be blocked that are using fundamental or harmonics measured values, if the frequency leaves the nominal frequency range. Protective elements that are using RMS values will remain active. (\*\*) This applies to devices that offer wide frequency range measurement only.

# Module: Protection (Prot)

<u>Prot</u>

The module »Module General Protection« (»Prot«) serves as outer frame for all other protection modules, i.e. they are all enclosed by this module.



If in the »Prot« module the parameter [Protection Para / Global Prot Para / Prot] *»Function«* is set on "inactive" or in case the module is blocked, then no protective function of the device is effective.

#### Blocking all Protective Elements Permanently

In order to allow (the principle use) of blocking the entire protection call up the menu [Protection/Para/Global Prot Para/Prot]:

Set the parameter »*Function = inactive«*.

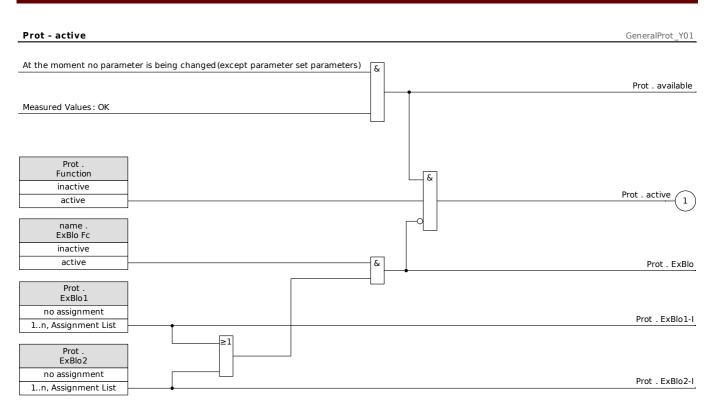
#### Blocking all Protective Elements Temporarily

In order to allow (the principle use) of blocking the entire protection call up the menu [Protection/Para/Global Prot Para/Prot]:

- Set the parameter » ExBlo Fc = active«;
- Choose an assignment for » *ExBlo1«*; and
- Optionally choose an assignment for »*ExBlo2*«.

If one of the signals becomes true, then the entire protection will be blocked as long as one of these signals are true.

#### Blocking all Trip Commands Permanently


In order to allow (the principle use) of blocking the entire protection call up the menu [Protection/Para/Global Prot Para/Prot]:

Set the parameter »*Blo TripCmd = active«*.

#### Blocking all Trip Commands Temporarily

In order to allow (the principle use) of blocking the entire protection, call up the menu [Protection/Para/Global Prot Para/Prot]:

- Set the parameter »*ExBlo TripCmd Fc= active«*.
- Choose an assignment for »ExBlo TripCmd«. All Trip commands will be blocked temporarily if this assginment becomes true.



## **General Alarms and General Trips**

Each protective element generates it's own alarm and trip signals. All alarms and trip decision are passed on to the master module <u>*»Prot«.*</u>

If a protective element picks up, respectively has decided about a trip, two signals will be issued:

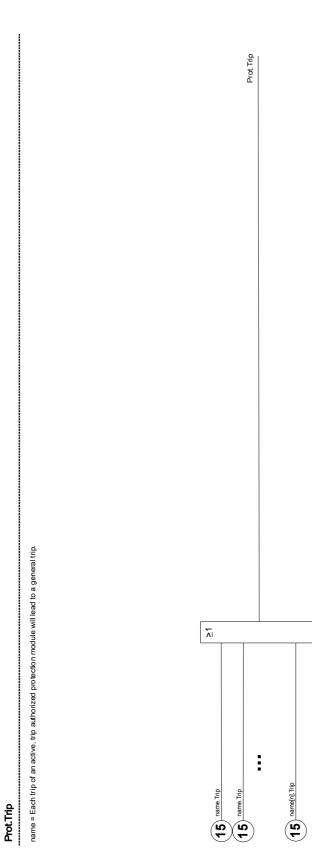
1. The module or the protection stage issues an alarm e.g. »I[1].ALARM« or »I[1].TRIP«.

2. The master module <u>*»Prot«*</u> collects/summarizes the signals and issues an alarm or a trip signal *»Prot.Alarm« »Prot.Trip«*.

Further examples: »PROT.ALARM L1« is a collective signal (OR-connected) for all alarms issued by any of the protective elements concerning Phase L1.

»PROT.TRIP L1« is a collective signal (OR-connected) for all trips issued by any of the protective elements concerning Phase L1.

»PROT.ALARM« is the collective alarm signal OR-ed from all protection elements.»PROT.TRIP« is the collective alarm signal OR-ed from all protection elements.

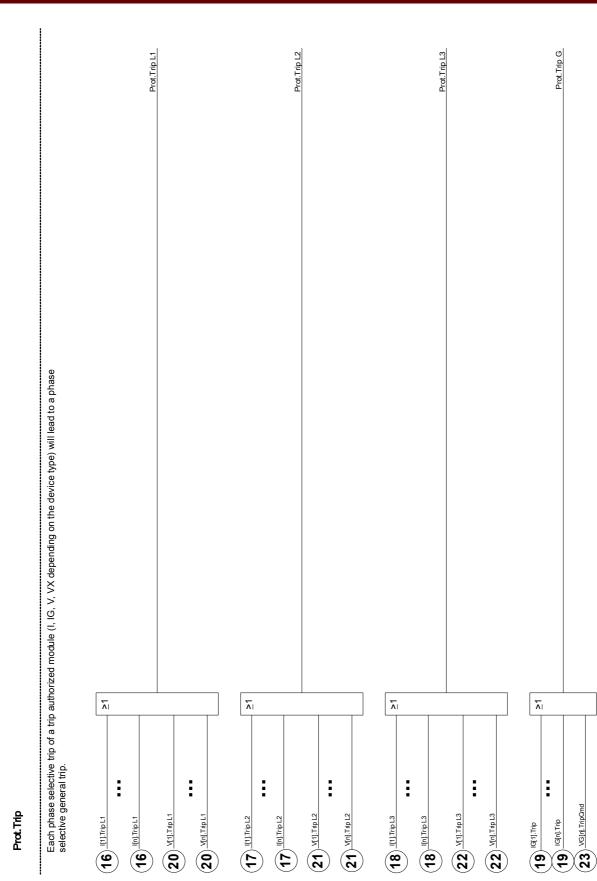

The trip commands of a the protective elements have to be assigned within the Circuit Breaker Manager <u>CB</u> <u>Manager</u>. Only those trip decisions that are assigned within the <u>CB Manager</u> are issued to the Circuit Breaker.

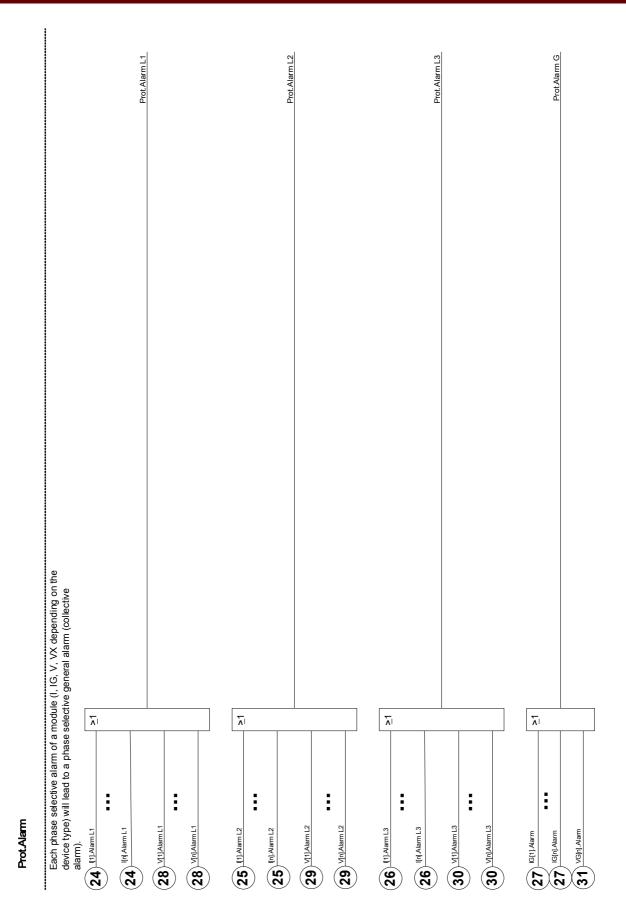


Caution: Trip commands that are not assigned within the Circuit Breaker Manager (CB Manager) are not issued to a circuit breaker.

The CB Manager issues the trip commands to a circuit breaker.

Assign within the Circuit Breaker Manager all trip commands that have to switch a circuit breaker.




name = Each alarm of a module (except from supervision modules but induding CBF) will lead to a general alarm (collective alarm).



Prot.Aarm





428

## **Direction Determination**

The direction determination of the device is built in as part of the »Prot« module. This functionality is triggered as soon as any of the overcurrent modules I[1] ... [6] has been configured to work in directional mode (ANSI 67), and the same is true of the directional mode of the measured and calculated ground fault protection (IG[1] ... [4], ANSI 67N).

#### Measurement Values of the Direction Determination

Three directional values are permanently available under the menu path [Operation / Measured Values / Direction detection]:

- *»Direction I«* Determined direction of the phase currents. (See also below, --> Directional\_Feature\_PhaseOvercurrent.)
- *»Direction IG meas.«* Determined direction of the measured ground current. (See also below, --> Directional\_Feature\_EarthOvercurrent\_IX.)
- *»Direction IG calc.«* Determined direction of the calculated ground current. (See also below, --> Directional\_Feature\_EarthOvercurrent\_IR.)

These values offer the same information as can be seen in case of an alarm when checking the status flags under [Operation / Status Display / Prot].

*Only for the MCDGV4:* As the MCDGV4 is fitted with two CT measuring inputs, the direction determination is based on the current values of the CT Ntrl input (Current transformers on the neutral side, slot X3).

**Only for the MCDTV4:** As the MCDTV4 is fitted with two CT measuring inputs, the direction determination is based on the current values according to the Field Parameter setting *»VX Winding Side«*.

## **Direct Commands of the Protection Module**

| Parameter                    | Description                                      | Setting range       | Default  | Menu path                                           |
|------------------------------|--------------------------------------------------|---------------------|----------|-----------------------------------------------------|
| Res FaultNo a<br>GridFaultNo | Resetting of fault number and grid fault number. | inactive,<br>active | inactive | [Operation<br>/<br>Reset/Acknowle<br>dge<br>/Reset] |

## **Global Protection Parameters of the Protection Module**

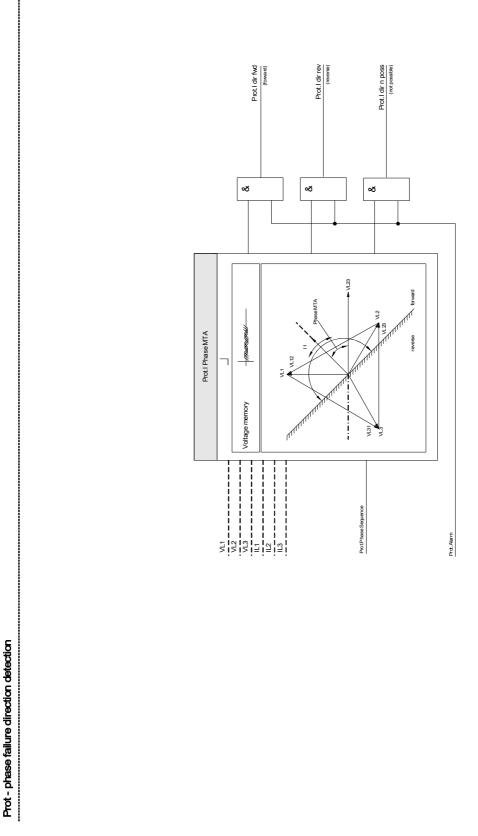
| Parameter           | Description                                                                                         | Setting range          | Default  | Menu path            |
|---------------------|-----------------------------------------------------------------------------------------------------|------------------------|----------|----------------------|
| Function            | Permanent activation or deactivation of module/stage.                                               | inactive,<br>active    | active   | [Protection<br>Para  |
| $\bigotimes$        |                                                                                                     |                        |          | /Global Prot<br>Para |
|                     |                                                                                                     |                        |          | /Prot]               |
| ExBlo Fc            | Activate (allow) the external blocking of the global protection functionality of the device.        | inactive,<br>active    | inactive | [Protection<br>Para  |
|                     |                                                                                                     |                        |          | /Global Prot<br>Para |
|                     |                                                                                                     |                        |          | /Prot]               |
| ExBlo1              | If external blocking of this module is activated (allowed), the global protection                   | 1n,<br>Assignment List |          | [Protection<br>Para  |
| $\bigotimes$        | functionality of the device will be blocked if<br>the state of the assigned signal becomes<br>true. |                        |          | /Global Prot<br>Para |
|                     |                                                                                                     |                        |          | /Prot]               |
| ExBlo2              | If external blocking of this module is activated (allowed), the global protection                   | 1n,<br>Assignment List |          | [Protection<br>Para  |
| $\bigotimes$        | functionality of the device will be blocked if<br>the state of the assigned signal becomes<br>true. |                        |          | /Global Prot<br>Para |
|                     |                                                                                                     |                        |          | /Prot]               |
| Blo TripCmd         | Permanent blocking of the Trip Command of the entire Protection.                                    | inactive,<br>active    | inactive | [Protection<br>Para  |
| $\bigotimes$        |                                                                                                     | active                 |          | /Global Prot<br>Para |
|                     |                                                                                                     |                        |          | /Prot]               |
| ExBlo TripCmd<br>Fc | Activate (allow) the external blocking of the trip command of the entire device.                    | inactive,<br>active    | inactive | [Protection<br>Para  |
|                     |                                                                                                     |                        |          | /Global Prot<br>Para |
|                     |                                                                                                     |                        |          | /Prot]               |

| Parameter     | Description                                                                                                                                                                                  | Setting range          | Default | Menu path                                             |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|-------------------------------------------------------|
| ExBlo TripCmd | If external blocking of the tripping command<br>is activated (allowed), the tripping<br>command of the entire device will be<br>blocked if the state of the assigned signal<br>becomes true. | 1n,<br>Assignment List |         | [Protection<br>Para<br>/Global Prot<br>Para<br>/Prot] |

# **Protection Module Input States**

| Name            | Description                                       | Assignment via    |
|-----------------|---------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /Prot]            |
| ExBlo2-I        | Module input state: External blocking2            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /Prot]            |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip | [Protection Para  |
|                 | Command                                           | /Global Prot Para |
|                 |                                                   | /Prot]            |

# Protection Module Signals (Output States)


| Signal                    | Description                                              |
|---------------------------|----------------------------------------------------------|
| available                 | Signal: Protection is available                          |
| active                    | Signal: active                                           |
| ExBlo                     | Signal: External Blocking                                |
| Blo TripCmd               | Signal: Trip Command blocked                             |
| ExBlo TripCmd             | Signal: External Blocking of the Trip Command            |
| Alarm L1                  | Signal: General-Alarm L1                                 |
| Alarm L2                  | Signal: General-Alarm L2                                 |
| Alarm L3                  | Signal: General-Alarm L3                                 |
| Alarm G                   | Signal: General-Alarm - Earth fault                      |
| Alarm                     | Signal: General Alarm                                    |
| Trip L1                   | Signal: General Trip L1                                  |
| Trip L2                   | Signal: General Trip L2                                  |
| Trip L3                   | Signal: General Trip L3                                  |
| Trip G                    | Signal: General Trip Ground fault                        |
| Trip                      | Signal: General Trip                                     |
| Res FaultNo a GridFaultNo | Signal: Resetting of fault number and grid fault number. |

# **Protection Module Values**

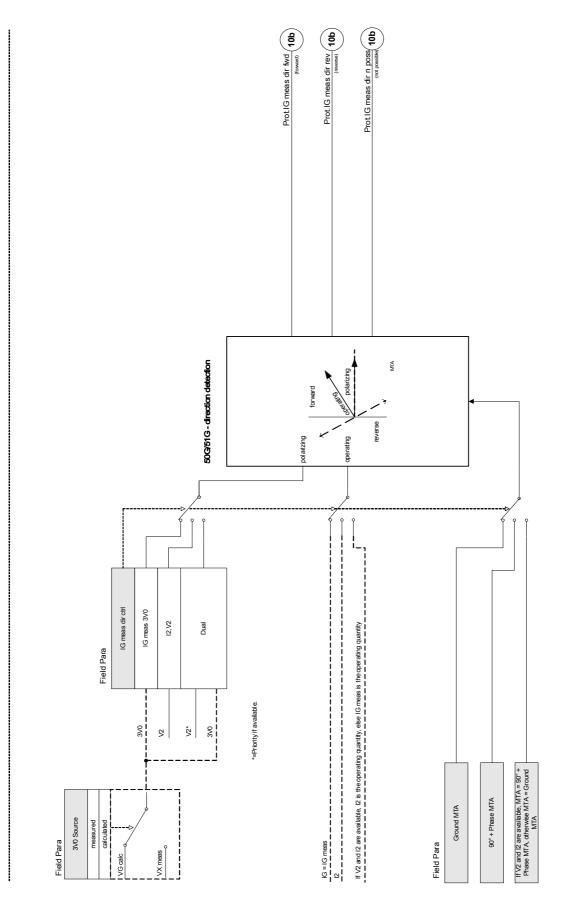
| Parameter        | Description                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FaultNo          | Fault number                                                                                                                                                                                                                                                                                                                                                                               |
| No of GridFaults | Number of grid faults: A grid fault, e.g. a short circuit, might cause several faults with trip and autoreclosing, each fault being identified by an increased fault number. In this case, the grid fault number remains the same.                                                                                                                                                         |
| Trip             | Initial reason of trip. It is transferred as an integer value in the MODBUS register 5004 and essentially corresponds to the "Trip" entry in the fault record, i. e. to the name of the protective module that tripped first. Look up the definition of these integer values (i. e. the mapping trip code number>module name) in the "Cause of Trip" table within the SCADA documentation. |

§(Measured\_Values:GeneralProt\_values)

# Directional Features of the Overcurrent Stages I[n]



## Directional Features for Measured Ground Fault Elements 50N/51N


All ground fault elements can be selected as »n*on-directional/forward/reverse«* operated. This has to be done in the »*Device Planning«* menu.

#### Important Definitions

- *Polarizing Quantity:* This is the quantity that is used as a reference value. The *polarizing quantity* can be selected by the parameter »*IG meas dir ctrl«* in the [Field Para/Direction] menu as follows:
  - *»IG meas 3V0«*: The neutral voltage selected by the parameter *»3V0 Source«* will be used as the polarizing quantity. The traditional way to polarize a ground fault element is to use neutral voltage (3V0). The neutral voltage can, however, be either *»measured«* or *»calculated«*. This can be selected by the parameter *»3V0 Source«* in the [Field Para/Direction] menu.
  - »I2, V2«: With this selection, the negative phase sequence voltage and current (Polarizing: V2/Operating: I2) will be used to detect direction. The monitored current is still the measured residual current IG meas.
  - *»Dual«*: For this method, the negative phase sequence voltage *»V2«* will be used as polarizing quantity if *»V2«* and *»I2«* are available, otherwise 3V0 will be used. The operating quantity is either I2 if *»V2«* and *»I2«* are available, else IG meas.

| The following table gives the User a quick overview of all possib | le directional settings. |
|-------------------------------------------------------------------|--------------------------|
|-------------------------------------------------------------------|--------------------------|

| 50N/51N Direction Decision<br>by Angle Between:                                                                                                       | [Field Para/<br>Direction]                                 | [Field<br>Para/Direction]: | [Field<br>Para/Direction]: |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------|----------------------------|
|                                                                                                                                                       | The Following Angle<br>Has to Be Set:                      | IG meas dir ctrl =         | 3V0 Source =               |
| Measured ground current and neutral voltage:<br>IG meas, 3V0 (measured)                                                                               | Ground MTA                                                 | IG meas 3V0                | measured                   |
| Measured ground current and neutral voltage:<br>IG meas, 3V0 (calculated)                                                                             | Ground MTA                                                 | IG meas 3V0                | calculated                 |
| Negative sequence voltage and current I2, V2                                                                                                          | 90° + Phase MTA                                            | I2,V2                      | not used                   |
| Negative phase sequence current and voltage (preferred), measured ground current and neutral voltage (alternatively):<br><b>I2, V2 (if available)</b> | If V2 and I2 are<br>available:<br>90° + Phase MTA<br>else: | Dual                       | measured                   |
| or else:<br>IG meas, 3V0 (measured)                                                                                                                   | Ground MTA                                                 |                            |                            |
| Negative phase sequence current and voltage (preferred), measured ground current and neutral voltage (alternatively):                                 | If V2 and I2 are<br>available:<br>90° + Phase MTA          | Dual                       | calculated                 |
| I2, V2 (if available)<br>or else:<br>IG meas, 3V0 (calculated)                                                                                        | else:<br>Ground MTA                                        |                            |                            |

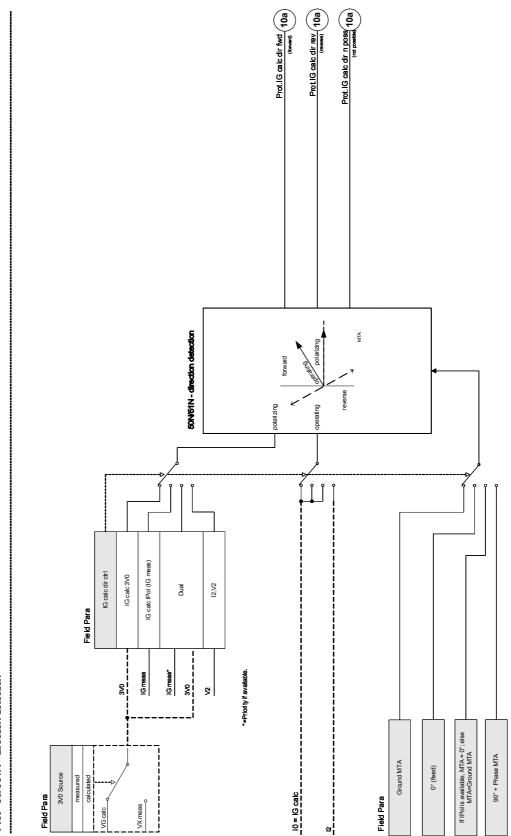


Prot - 50G/51G - direction detection

# Directional Features for Calculated (IG calc) Ground Fault 50N/51N

All ground fault elements can be selected as *»non-directional/forward/reverse«* operated. This has to be done in the *»Device Planning«* menu.

#### Important Definitions


- *Polarizing Quantity:* This is the quantity that is used as a reference value. The *polarizing quantity* can be selected by the parameter »*IG calc dir ctrl*« in the [Field Para/Direction] menu as follows:
  - *»IG calc 3V0«*: The neutral voltage selected by the parameter *»3V0 Source«* will be used as the polarizing quantity. The traditional way to polarize a ground fault element is to use neutral voltage (3V0). The neutral voltage can, however, be either *»measured«* or *»calculated«*. This can be selected by the parameter *»3V0 Source«* in the [Field Para/Direction] menu.
  - »IG calc lpol (IG meas)«: The measured neutral current (usually = IG meas) will be used as polarizing quantity.
  - *»Dual«*: For this method, the measured neutral current lpol=IG meas will be used as polarizing quantity, if available, otherwise 3V0 will be used.
  - *»I2,V2«*: With this selection, the negative phase sequence voltage and current will be used to detect the direction. The monitored current is still the calculated residual current IG calc.
- *Operating Quantity:* For the directional IG calc elements, the *operating quantity* is in general the *calculated neutral current IG calc* (except from »*I2*,*V2*« mode, where »*I2*« is the operating quantity).

The ground maximum torque angles (MTA) can be adjusted from 0° to 360°, except, if »*IG calc lpol (IG meas)*« is selected. In this case it is set to 0° (fixed).

The MTA will also be set internally to 0° in case that Ipol=IG meas is available within the Dual-Mode

| 50N/51N Direction Decision by Angle Between:                                                                                                                                                     | [Field Para/<br>Direction]                                                      | [Field<br>Para/Direction]: | [Field<br>Para/Direction]: |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|----------------------------|
|                                                                                                                                                                                                  | The Following Angle<br>Has to Be Set:                                           | IG calc dir ctrl =         | 3V0 Source =               |
| Residual current and neutral voltage:<br>IG calc, 3V0 (measured)                                                                                                                                 | Ground MTA                                                                      | IG calc 3V0                | measured                   |
| Residual current and neutral voltage:<br>IG calc, 3V0 (calculated)                                                                                                                               | Ground MTA                                                                      | IG calc 3V0                | calculated                 |
| Residual current and neutral/ground current IG calc, IG meas                                                                                                                                     | 0° (fixed)                                                                      | IG calc lpol (IG meas)     | not used                   |
| Residual current and neutral/ground current<br>(preferred), residual current and neutral<br>voltage (alternatively):<br>IG calc, IG meas (if available)<br>or else:<br>IG calc, 3V0 (measured)   | If Ipol (=IG meas) is<br>available, MTA = 0°<br>(fixed); else<br>MTA=Ground MTA | Dual                       | measured                   |
| Residual current and neutral/ground current<br>(preferred), residual current and neutral<br>voltage (alternatively):<br>IG calc, IG meas (if available)<br>or else:<br>IG calc, 3V0 (calculated) | If Ipol (=IG meas) is<br>available, MTA = 0°<br>(fixed); else<br>MTA=Ground MTA | Dual                       | calculated                 |
| Negative sequence voltage and current I2, V2                                                                                                                                                     | 90° + Phase MTA                                                                 | 12,V2                      | not used                   |

The following table gives the User a quick overview of all possible directional settings.



Prot - 50N/51N - direction detection

# Switchgear/Breaker - Manager



WARNING Misconfiguration of the switchgear can result in death or serious injury.

Beside protection functions, protective relays more and more will take care about controlling switchgear, like circuit breakers, load break switches, disconnectors and ground connectors.

The Switchgear/Breaker-Manager of this protective device is designed to manage one switchgear.

The correct configuration is an indispensable precondition for the proper functioning of the protective device. This also is the case, when the switchgear is not controlled, but supervised only.

## Single Line Diagram

The user can create and modify Single Lines (pages) by means of the Page Editor.

The Single Lines (Control Pages) have to be loaded into the protective device by means of *Smart view*. For details on the creation, modification and upload of Single Lines (Control Pages) please refer to the manual "page\_editor\_uk.pdf" or contact the technical support. The manual can be accessed via the *Page Editor* help menu.

The single line diagram includes the graphically description of the switchgear and its designation (name) as well as its features (short circuit proof or not ...). For displaying in the devices software, the switchgears' designations (e. g. QA1, QA2, instead of SG[x]) will be taken from the single line diagram (configuration file).

The configuration file includes the single line diagram and the switchgear properties. Switchgear properties and single line diagram are coupled via the configuration file.

## Switchgear Configuration

### Wiring

At first the switchgears' positioning indicators have to be connected to the digital inputs of the protection device.

One of the position indicators (either the »Aux ON« or the »Aux OFF«) contact has to be connected necessarily. It is recommended to connect both contacts.

Thereafter the command outputs (relay outputs) have to be connected with the switchgear.

# NOTICE

Please observe the following option: In the general settings of a circuit breaker, the ON/OFF commands of a protection element can be issued to the same output relays, where the other control commands are issued. If the commands are issued to different relays output relays the amount of wiring

increases.

### **Assignment of Position Indications**

The position indication is needed by the device to get (evaluate) the information about the current status /position of the breaker. The switchgears' position is shown in the devices display. Each position change results in a change of the switchgear symbol.

# NOTICE

For the detection of a switchgear's position always two separate Aux contacts are recommended! If only one Aux contact is used, no intermediate or disturbed positions can be detected. A reduced transition supervision (time between issue of the command and position

feedback indication of the switchgear) is also possible by one Aux contact.

In the menu [Control/Bkr/Pos Indicators wiring] the assignments for the position indications have to be set.

#### Detection of switchgear position with two Aux contacts - Aux ON and Aux OFF (recommended!)

For detection of position the switchgear is provided with Aux contacts (Aux ON and Aux OFF). It is recommended to use both contacts to detect intermediate and disturbed positions too.

The protection device continuously supervises the status of the inputs *»Aux ON-I«* and *»Aux OFF-I«.* These signals are validated based on the supervision timers *»t-Move ON«* and *»t-Move OFF«* validation functions. As a result, the switchgear position will be detected by the following signals:

- Pos ON
- Pos OFF
- Pos Indeterm
- Pos Disturb.
- Pos (State=0,1,.2 or 3)

#### Supervision of the ON command

When an ON command is initiated, the *»t-Move ON«* timer will be started. While the timer is running, the *»POS* INDETERM« State will become true. If the command is executed and properly fed back from the switchgear before the timer has run down, *»POS ON«* will become true. Otherwise, if the timer has expired *»POS DISTURB«* will become true.

#### Supervision of the OFF command

When an OFF command is initiated, the *»t-Move OFF«* timer will be started. While the timer is running, the *»POS* INDETERM« State will become true. If the command is executed and properly fed back before the timer has run down, *»POS OFF«* will become true. Otherwise, if the timer has expired *»POS DISTURB«* will become true.

States of the Digital Inputs Validated Switchgear Positions POS ON POS OFF POS POS Aux ON-I Aux OFF-I POS Disturb State Indeterm 0 0 0 0 1 0 0 (while a Moving (while a Moving Intermediate timer is running) timer is running) 1 1 0 0 0 1 0 (while a Moving (while a Moving Intermediate timer is running) timer is running) 0 1 0 1 0 0 1 OFF 1 2 0 1 0 0 0 ON 0 0 0 0 3 0 1 (Moving timer (Moving timer Disturbed elapsed) elapsed) 1 1 0 0 0 1 3 (Moving timer (Moving timer Disturbed elapsed) elapsed)

The following table shows how switchgear positions are validated:

#### Single Position Indication Aux ON or Aux OFF

If the single pole indication is used, the »SI SINGLECONTACTIND« will become true.

The moving time supervision works only in one direction. If the Aux OFF signal is connected to the device, only the "OFF command" can be supervised and if the Aux ON signal is connected to the device, only the "ON command" can be supervised.

#### Single Position Indication – Aux ON

If only the Aux ON signal is used for the Status Indication of an "ON command", the switch command will also start the moving time, the position indication indicates an INTERMEDIATE position during this time interval. When the switchgear reaches the end position indicated by the signals »Pos ON« and »CES success before the moving time has elapsed the signal Pos Indeterm disappears.

If the moving time elapsed before the switchgear has reached the end position, the switching operation was not successful and the Position Indication will change to POS Disturb and the signal Pos Indeterm disappears.

The following table shows how breaker positions are validated based on Aux ON:

| States of the | e Digital Input | Validated Switchgear Positions |         |                                      |                                      |                   |
|---------------|-----------------|--------------------------------|---------|--------------------------------------|--------------------------------------|-------------------|
| Aux ON-I      | Aux OFF-I       | POS ON                         | POS OFF | POS<br>Indeterm                      | POS Disturb                          | POS<br>State      |
| 0             | Not wired       | 0                              | 0       | 1<br>(while t-Move<br>ON is running) | 0<br>(while t-Move<br>ON is running) | 0<br>Intermediate |
| 0             | Not wired       | 0                              | 1       | 0                                    | 0                                    | 1<br>OFF          |
| 1             | Not wired       | 1                              | 0       | 0                                    | 0                                    | 2<br>ON           |

If there is no digital input assigned to the »Aux On« contact, the position indication will have the value 3 (disturbed).

#### Single Position Indication – Aux OFF

If only the Aux OFF signal is used for the monitoring of the "OFF command", the switch command will start the moving timer. The Position Indication will indicate an INTERMEDIATE position. When the the switchgear reaches its end position before the moving timer elapses, and »CES succesf« will be indicated. At the same time the signal »Pos Indeterm« disappears.

If the moving time elapsed before the switchgear has reached the OFF position, the switching operation was not successful and the Position Indication will change to »Pos Disturb« and the signal »Pos Indeterm« disappears.

The following table shows how breaker positions are validated based on Aux OFF:

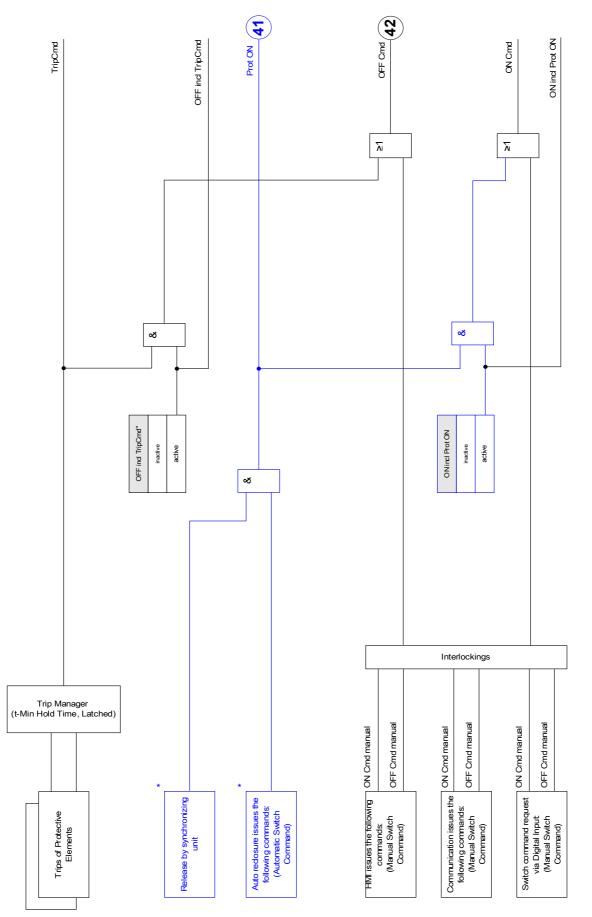
| States of the | States of the Digital Input |        | Validated Switchgear Positions |                                       |                                       |                   |
|---------------|-----------------------------|--------|--------------------------------|---------------------------------------|---------------------------------------|-------------------|
| Aux ON-I      | Aux OFF-I                   | POS ON | POS OFF                        | POS<br>Indeterm                       | POS Disturb                           | POS<br>State      |
| Not wired     | 0                           | 0      | 0                              | 1<br>(while t-Move<br>OFF is running) | 0<br>(while t-Move<br>OFF is running) | 0<br>Intermediate |
| Not wired     | 1                           | 0      | 1                              | 0                                     | 0                                     | 1<br>OFF          |
| Not wired     | 0                           | 1      | 0                              | 0                                     | 0                                     | 2<br>ON           |

If there is no digital input assigned to the *»Aux OFF«* contact, the position indication will have the value 3 (disturbed).

### Setting of Supervision Times

In the menu [Control/Bkr/General Settings] the supervision times of the individual switchgear have to be set. Dependent on the type of switchgear it can be necessary to set further parameters.

### Interlockings

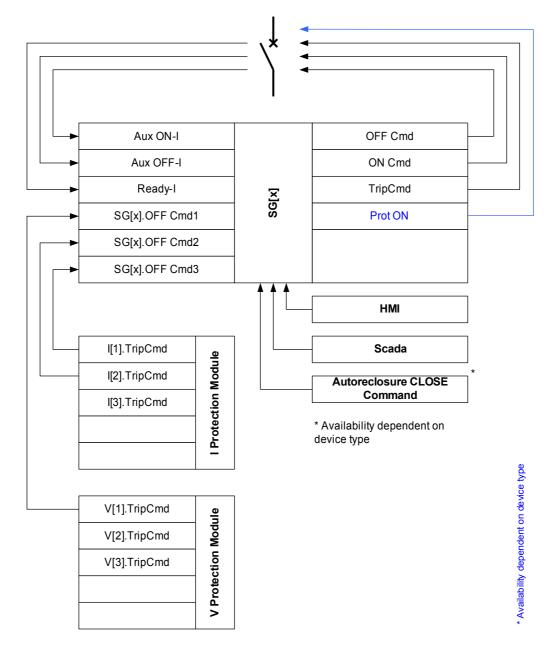

To avoid faulty operations, interlockings have to be provided. This can be realised mechanically, or electrically within the menu [Control/Bkr/General Settings].

For a controllable switchgear up to three interlockings can be assigned in both switching directions (ON/OFF). These interlockings prevent switching in the corresponding direction.

The protection OFF command and the reclosing command of the AR\* module are always executed without interlockings. For the case, that a protection OFF command must not be issued, this must be blocked separately.

Further interlockings can be realised by means of the Logic module.

\*=availability depends on ordered device.




\* Availability dependent on device type


### Trip Manager – Assignment of commands

The trip commands of the protection elements have to be assigned within menu [Control/Bkr/Trip Manager] to the switchgear (presumed, that the switchgear is make/break capable).

In the Trip Manger all tripping commands are combined by an "OR" logic. The actual tripping command to the switchgear is exclusively given by the Trip Manager. This means, that only tripping commands which are assigned in the Trip Manager lead to an operation of the switchgear. In addition to that, the User can set the minimum hold time of the tripping command within this module and define whether the tripping command is latched or not.



The exact name of the Switchgear is defined in the Single Line file

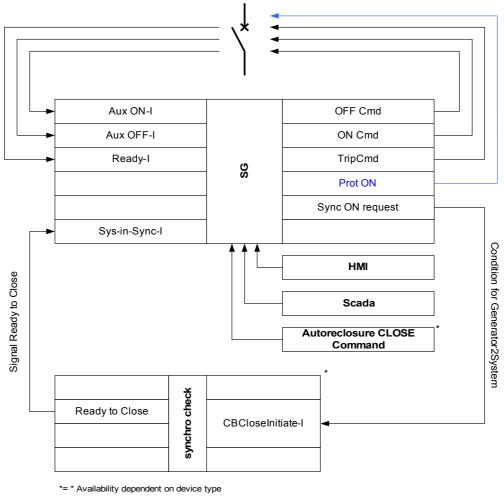


### **Ex ON/OFF**

If the switchgear should be opened or closed by an external signal, the User can assign one signal that will trigger the OFF command (e.g. digital inputs or output signals of the Logics) within menu [Control/Bkr/Ex ON/OFF Cmd] . An OFF command has priority. ON commands are slope oriented, OFF commands are level oriented

### Synchronised Switching\*

\*=availability depends on ordered device type


Before a switchgear may connect two mains sections, synchronism of these sections must be assured.

In the submenu [Synchronous Switching] the parameter »Synchronism« defines which signal indicates synchronism.

If the synchronism condition shall be evaluated by the internal Synch-Check module the signal *»Sync. Ready to Close«* (release by synch-check module) has to be assigned. Alternatively a digital input or a logic output can be assigned.

In the synchronisation mode "Generator-to-System" additionally the synchronism request has to be assigned to the Sync-check function in the menu [Protection Para\Global Prot Para\Sync].

If a synchronism signal is assigned, the switching command will only be executed, when the synchronism signal will become true within the maximum supervision time »*t-MaxSyncSuperv«.* This supervision time will be started with the issued ON command. If no synchronism signal has been assigned, the synchronism release is permanently.



\*\*=\* Availability dependent on device type

## **Switching Authority**

For the Switching Authority [Control\General Settings], the following general settings are possible:

| NONE:         | No control function;                                                  |
|---------------|-----------------------------------------------------------------------|
| LOCAL:        | Control only via push buttons at the panel;                           |
| REMOTE:       | Control only via SCADA, digital inputs, or internal signals; and      |
| LOCAL&REMOTE: | Control via push buttons, SCADA, digital inputs, or internal signals. |

### Non interlocked Switching

For test purposes, during commissioning and temporarily operations, interlockings can be disabled.

# **WARNING**

#### WARNING: Non interlocked Switching can lead to serious injuries or death!

For non interlocked switching the menü [Control\General Settings] provides the following options:

- Non interlocked switching for one single command
- Permanent
- Non interlocked switching for a certain time
- Non interlocked switching, activated by an assigned signal

The set time for non interlocked switching applies also for the "single Operation" mode.

### Manual Manipulation of the Switchgear Position

In case of faulty position indication contacts (Aux contacts) or broken wires, the position indication resulted from the assigned signals can be manipulated (overwritten) manually, to keep the ability to switch the affected switchgear. A manipulated switchgearposition will be indicated on the display by an exclamation mark "!" beside the switchgear symbol.

# **WARNING**

WARNING: Manipulation of the Switchgear Position can lead to serious injuries or death!

### **Double Operation Locking**

All control commands to any switchgear in a bay have to be processed sequentially. During a running control command no other command will be handled.

### Switch Direction Control

Switching command are validated before execution. When the switchgear is already in the desired position, the switch command will not be issued again. An opened circuit breaker cannot be opened again. This also applies for switching command at the HMI or via SCADA.

### Anti Pumping

By pressing the ON command softkey only a single switching ON impulse will be issued independent, how low the softkey is actuated. The switchgear will close only once per close command.

# **Counters of the Command Excecution Supervision**

| Parameter           | Description                                                                                                                   |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|
| CES SAuthority      | Command Execution Supervision: Number of rejected Commands because of missing switching authority.                            |
| CES DoubleOperating | Command Execution Supervision: Number of rejected Commands because a second switch command is in conflict with a pending one. |
| CES No. of rej. Com | Command Execution Supervision: Number of rejected Commands because<br>Locked by ParaSystem                                    |

### Switchgear Wear



**NOTICE:** Current related functions of the swichtgear wear element (e.g. breaker wear curve) are available in devices only, that offer minimum one current measurement (card).

### Switchgear Wear Features

The sum of the accumulated interrupted currents.

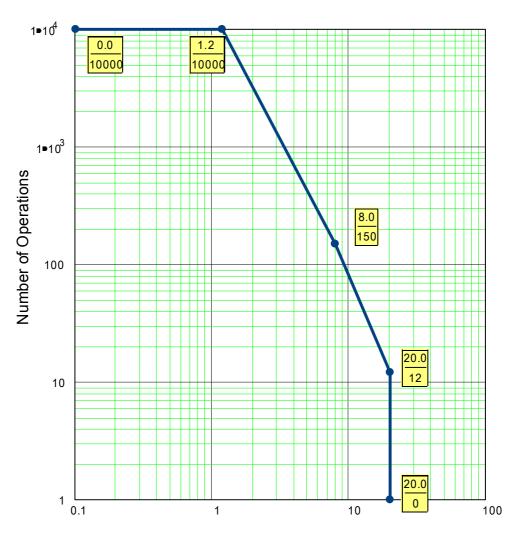
A »SGwear Slow Switchgear« might indicate malfunction at an early stage.

The protective relay will calculate the »SG OPEN Capacity « continuously. 100% means, that switchgear maintenance is mandatory now.

The protective relay will make a alarm decision based on the curve that the user provides.

The relay will monitor the frequency of ON/OFF cycles. The User can set thresholds for the maximum allowed sum of interrupt currents and the maximum allowed sum of interrupt currents per hour. By means of this alarm, excessive switchgear operations can be detected at an early stage.

### Slow Switchgear Alarm


An increase of the close or opening time of the switchgear is an indication for the maintenance need. If the measured time exceeds the time *»t-Move OFF«* or *»t-Move ON«,* the signal *»SGwear Slow Switchgear« will be activated.* 

### Switchgear Wear Curve

In order to keep the switchgear in good working condition, the switchgear needs to be monitored. The switchgear health (operation life) depends above all on:

- The number of CLOSE/OPEN cycles.
- The amplitudes of the interrupting currents.
- The frequency that the switchgear operates (Operations per hour).

The User has to maintain the switchgear accordingly to the maintenance schedule that is to be provided by the manufacturer (switchgear operation statistics). By means of up to ten points that the user can replicate the switchgear wear curve within menu [Control/SG/SG[x]/SGW]. Each point has two settings: the interrupt current in kilo amperes and the allowed operation counts. No matter how many points are used, the operation counts the last point as zero. The protective relay will interpolate the allowed operations based on the switchgear wear curve. When the interrupted current is greater than the interrupt current at the last point, the protective relay will assume zero operation counts.



Breaker Maintenance Curve for a typical 25kV Breaker

Interrupted Current in kA per operation

# Global Protection Parameters of the Breaker Wear Module

| Parameter       | Description                                                                           | Setting range  | Default  | Menu path |
|-----------------|---------------------------------------------------------------------------------------|----------------|----------|-----------|
| Operations      | Service Alarm, too many Operations                                                    | 1 - 100000     | 9999     | [Control  |
| Alarm           |                                                                                       |                |          | /SG       |
| <del>(</del>    |                                                                                       |                |          | /SG[1]    |
| $\bigotimes$    |                                                                                       |                |          | /SG Wear] |
| Isum Intr Alarm |                                                                                       | 0.00 -         | 100.00kA | [Control  |
|                 | currents has been exceeded.                                                           | 2000.00kA      |          | /SG       |
| (               |                                                                                       |                |          | /SG[1]    |
| •               |                                                                                       |                |          | /SG Wear] |
| Isum Intr ph    | Alarm, the per hour Sum (Limit) of                                                    | 0.00 -         | 100.00kA | [Control  |
| Alm             | interrupting currents has been exceeded.                                              | 2000.00kA      |          | /SG       |
| $\frown$        |                                                                                       |                |          | /SG[1]    |
| $\bigotimes$    |                                                                                       |                |          | /SG Wear] |
| SGwear Curve    | The Circuit Breaker (load-break switch)<br>Wear Curve defines the maximum allowed     | inactive,      | inactive | [Control  |
| Fc              | CLOSE/OPEN cycles depending on the brake                                              | active         |          | /SG       |
|                 | currents. If the circuit breaker maintenance                                          |                |          | /SG[1]    |
| $(\mathbf{X})$  | curve is exceeded, an alarm will be issued.<br>The breaker maintenance curve is to be |                |          | /SG Wear] |
|                 | taken from the technical data sheet of the                                            |                |          |           |
|                 | breaker manufactor. By means of the available points this curve is to be              |                |          |           |
|                 | replicated.                                                                           |                |          |           |
|                 |                                                                                       |                |          |           |
| WearLevel       | Threshold for the Alarm                                                               | 0.00 - 100.00% | 80.00%   | [Control  |
| Alarm           | Only available if:SGwear Curve Fc = active                                            |                |          | /SG       |
|                 |                                                                                       |                |          | /SG[1]    |
| $\bigotimes$    |                                                                                       |                |          | /SG Wear] |
| WearLevel       | Threshold for the Lockout Level                                                       | 0.00 - 100.00% | 95.00%   | [Control  |
| Lockout         | Only available if:SGwear Curve Fc = active                                            |                |          | /SG       |
| _               | only available h.Sowear curver c = active                                             |                |          | /SG[1]    |
| $\bigotimes$    |                                                                                       |                |          | /SG Wear] |
| Current1        | Interrupted Current Level #1                                                          | 0.00 -         | 0.00kA   | [Control  |
|                 | Only available if:SGwear Curve Fc = active                                            | 2000.00kA      |          | /SG       |
| $\bigotimes$    |                                                                                       |                |          | /SG[1]    |
|                 |                                                                                       |                |          | /SG Wear] |
| Count1          | Open Counts Allowed #1                                                                | 1 - 32000      | 10000    | [Control  |
|                 | Only available if:SGwear Curve Fc = active                                            |                |          | /SG       |
|                 |                                                                                       |                |          | /SG[1]    |
| <b>V</b>        |                                                                                       |                |          | /SG Wear] |

| Parameter    | Description                                  | Setting range       | Default | Menu path |
|--------------|----------------------------------------------|---------------------|---------|-----------|
| Current2     | Interrupted Current Level #2                 | 0.00 -<br>2000.00kA | 1.20kA  | [Control  |
|              | Only available if:SGwear Curve Fc = active   | 2000.00KA           |         | /SG       |
| $\bigotimes$ |                                              |                     |         | /SG[1]    |
|              |                                              |                     |         | /SG Wear] |
| Count2       | Open Counts Allowed #2                       | 1 - 32000           | 10000   | [Control  |
|              | Only available if:SGwear Curve Fc = active   |                     |         | /SG       |
| $\bigotimes$ |                                              |                     |         | /SG[1]    |
|              |                                              |                     |         | /SG Wear] |
| Current3     | Interrupted Current Level #3                 | 0.00 -<br>2000.00kA | 8.00kA  | [Control  |
|              | Only available if:SGwear Curve Fc = active   | 2000.0084           |         | /SG       |
| $\bigotimes$ |                                              |                     |         | /SG[1]    |
|              |                                              |                     |         | /SG Wear] |
| Count3       | Open Counts Allowed #3                       | 1 - 32000           | 150     | [Control  |
|              | Only available if:SGwear Curve $Fc = active$ |                     |         | /SG       |
| $\bigotimes$ |                                              |                     |         | /SG[1]    |
|              |                                              |                     |         | /SG Wear] |
| Current4     | Interrupted Current Level #4                 | 0.00 -<br>2000.00kA | 20.00kA | [Control  |
| _            | Only available if:SGwear Curve Fc = active   | 2000.00KA           |         | /SG       |
| $\bigotimes$ |                                              |                     |         | /SG[1]    |
|              |                                              |                     |         | /SG Wear] |
| Count4       | Open Counts Allowed #4                       | 1 - 32000           | 12      | [Control  |
| -            | Only available if:SGwear Curve Fc = active   |                     |         | /SG       |
| $\bigotimes$ |                                              |                     |         | /SG[1]    |
|              |                                              |                     |         | /SG Wear] |
| Current5     | Interrupted Current Level #5                 | 0.00 -<br>2000.00kA | 20.00kA | [Control  |
| ~            | Only available if:SGwear Curve Fc = active   | 2000.000            |         | /SG       |
| $\bigotimes$ |                                              |                     |         | /SG[1]    |
|              |                                              |                     |         | /SG Wear] |
| Count5       | Open Counts Allowed #5                       | 1 - 32000           | 1       | [Control  |
| Æ            | Only available if:SGwear Curve Fc = active   |                     |         | /SG       |
| $\bigotimes$ |                                              |                     |         | /SG[1]    |
| <u> </u>     |                                              |                     |         | /SG Wear] |
| Current6     | Interrupted Current Level #6                 | 0.00 -<br>2000.00kA | 20.00kA | [Control  |
| $\leftarrow$ | Only available if:SGwear Curve Fc = active   |                     |         | /SG       |
| $\bigotimes$ |                                              |                     |         | /SG[1]    |
|              |                                              |                     |         | /SG Wear] |

| Parameter    | Description                                | Setting range       | Default  | Menu path           |
|--------------|--------------------------------------------|---------------------|----------|---------------------|
| Count6       | Open Counts Allowed #6                     | 1 - 32000           | 1        | [Control            |
|              | Only available if:SGwear Curve Fc = active |                     |          | /SG                 |
| $\bigotimes$ |                                            |                     |          | /SG[1]              |
|              |                                            |                     |          | /SG Wear]           |
| Current7     | Interrupted Current Level #7               | 0.00 -              | 20.00kA  | [Control            |
|              | Only available if:SGwear Curve Fc = active | 2000.00kA           |          | /SG                 |
| $\bigotimes$ |                                            |                     |          | /SG[1]              |
| )            |                                            |                     |          | /SG Wear]           |
| Count7       | Open Counts Allowed #7                     | 1 - 32000           | 1        | [Control            |
|              | Only available if:SGwear Curve Fc = active |                     |          | /SG                 |
| $\bigotimes$ |                                            |                     |          | /SG[1]              |
| -            |                                            |                     |          | /SG Wear]           |
| Current8     | Interrupted Current Level #8               | 0.00 -<br>2000.00kA | 20.00kA  | [Control            |
|              | Only available if:SGwear Curve Fc = active |                     | /SG      |                     |
| $\bigotimes$ |                                            |                     |          | /SG[1]              |
|              |                                            |                     |          | /SG Wear]           |
| Count8       | Open Counts Allowed #8                     | 1 - 32000           | 1        | [Control            |
| -            | Only available if:SGwear Curve Fc = active |                     |          | /SG                 |
| $\bigotimes$ |                                            |                     |          | /SG[1]              |
|              |                                            |                     |          | /SG Wear]           |
| Current9     | Interrupted Current Level #9               | 0.00 -<br>2000.00kA | 20.00kA  | [Control            |
| ~            | Only available if:SGwear Curve Fc = active | 2000.000            |          | /SG                 |
| $\bigotimes$ |                                            |                     |          | /SG[1]              |
| <b>0</b> 10  |                                            |                     |          | /SG Wear]           |
| Count9       | Open Counts Allowed #9                     | 1 - 32000           | 1        | [Control            |
| $\frown$     | Only available if:SGwear Curve Fc = active |                     |          | /SG                 |
| $\bigotimes$ |                                            |                     |          | /SG[1]              |
| Current 10   | Intermusted Correct Level #10              | 0.00                | 20.001/4 | /SG Wear]           |
| Current10    | Interrupted Current Level #10              | 0.00 -<br>2000.00kA | 20.00kA  | [Control            |
|              | Only available if:SGwear Curve Fc = active |                     |          | /SG                 |
| $\bigotimes$ |                                            |                     |          | /SG[1]<br>/SG Wear] |
| Count10      | Open Counts Allowed #10                    | 1 - 32000           | 1        | [Control            |
| COUNTIN      |                                            | 1 52000             | 1        | /SG                 |
|              | Only available if:SGwear Curve Fc = active |                     |          | /SG[1]              |
| $\checkmark$ |                                            |                     |          | /SG Wear]           |
|              |                                            |                     |          | /SG wedi]           |

# Breaker Wear Signals (Output States)

| Signal               | Description                                                                                                   |
|----------------------|---------------------------------------------------------------------------------------------------------------|
| Operations Alarm     | Signal: Service Alarm, too many Operations                                                                    |
| Isum Intr trip: IL1  | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL1                   |
| Isum Intr trip: IL2  | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL2                   |
| Isum Intr trip: IL3  | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL3                   |
| lsum Intr trip       | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded in at least one phase. |
| Res TripCmd Cr       | Signal: Resetting of the Counter: total number of trip commands                                               |
| Res Sum trip         | Signal: Reset summation of the tripping currents                                                              |
| WearLevel Alarm      | Signal: Threshold for the Alarm                                                                               |
| WearLevel Lockout    | Signal: Threshold for the Lockout Level                                                                       |
| Res CB OPEN capacity | Signal: Reset of the wear maintenance curve (i. e. of the counter for the Circuit Breaker OPEN capacity.      |
| lsum Intr ph Alm     | Signal: Alarm, the per hour Sum (Limit) of interrupting currents has been exceeded.                           |
| Res Isum Intr ph Alm | Signal: Reset of the Alarm, "the per hour Sum (Limit) of interrupting currents has been exceeded".            |

## **Breaker Wear Counter Values**

| Value      | Description                                                                                                                | Default | Size | Menu path                                               |
|------------|----------------------------------------------------------------------------------------------------------------------------|---------|------|---------------------------------------------------------|
| TripCmd Cr | Counter: Total number of trips of the<br>switchgear (circuit breaker, load break<br>switch). Resettable with Total or All. | 0       |      | [Operation<br>/Count and RevData<br>/Control<br>/SG[1]] |

### **Breaker Wear Values**

| Value        | Description                              | Default | Size               | Menu path          |
|--------------|------------------------------------------|---------|--------------------|--------------------|
| Sum trip IL1 | 11 5                                     | 0.00A   | 0.00 -             | [Operation         |
|              | phase                                    |         | 1000.00A           | /Count and RevData |
|              |                                          |         |                    | /Control           |
|              |                                          |         |                    | /SG[1]]            |
| Sum trip IL2 | Summation of the tripping currents phase | 0.00A   | 0.00 -<br>1000.00A | [Operation         |
|              |                                          |         |                    | /Count and RevData |
|              |                                          |         |                    | /Control           |
|              |                                          |         |                    | /SG[1]]            |

| Value         | Description                                                 | Default | Size         | Menu path          |
|---------------|-------------------------------------------------------------|---------|--------------|--------------------|
| Sum trip IL3  |                                                             | 0.00A   | 0.00 -       | [Operation         |
|               | phase                                                       |         | 1000.00A     | /Count and RevData |
|               |                                                             |         |              | /Control           |
|               |                                                             |         |              | /SG[1]]            |
| Isum Intr per | Sum per hour of interrupting currents.                      | 0.00kA  | 0.00 -       | [Operation         |
| hour          |                                                             |         | 1000.00kA    | /Count and RevData |
|               |                                                             |         |              | /Control           |
|               |                                                             |         |              | /SG[1]]            |
| CB OPEN       | Used capacity of the circuit breaker.                       | 0.0%    | 0.0 - 100.0% | [Operation         |
| capacity      | (100% means that the circuit breaker has to be maintained.) |         |              | /Count and RevData |
|               |                                                             |         |              | /Control           |
|               |                                                             |         |              | /SG[1]]            |

# Direct Commands of the Breaker Wear Module

| Parameter                 | Description                                                                                       | Setting range       | Default  | Menu path                         |
|---------------------------|---------------------------------------------------------------------------------------------------|---------------------|----------|-----------------------------------|
| Res TripCmd Cr            | Resetting of the Counter: total number of                                                         | inactive,           | inactive | [Operation                        |
| $\otimes$                 | trip commands                                                                                     | active              |          | /<br>Reset/Acknowle<br>dge        |
|                           |                                                                                                   |                     |          | /Reset]                           |
| Res Sum trip              | Reset summation of the tripping currents                                                          | inactive,           | inactive | [Operation                        |
|                           |                                                                                                   | active              |          | /<br>Reset/Acknowle<br>dge        |
|                           |                                                                                                   |                     |          | /Reset]                           |
| Res Isum Intr<br>per hour | Reset of the Sum per hour of interrupting currents.                                               | inactive,<br>active | inactive | [Operation<br>/<br>Reset/Acknowle |
| $\bigotimes$              |                                                                                                   |                     |          | dge<br>/Reset]                    |
| Res CB OPEN<br>capacity   | Reset the CB OPEN capacity.                                                                       | inactive,<br>active | inactive | [Operation<br>/<br>Reset/Acknowle |
|                           | (Remark: A »CB OPEN capacity« value of 100% means that the circuit breaker has to be maintained.) |                     |          | dge<br>/Reset]                    |

## **Control Parameters**

<u>Ctrl</u>

## **Direct Commands of the Control Module**

| Parameter | Description             | Setting range       | Default  | Menu path             |
|-----------|-------------------------|---------------------|----------|-----------------------|
| Switching | Switching Authority     | None,               | Local    | [Control              |
| Authority |                         | Local,              |          | /General              |
| <u>_</u>  |                         | Remote,             |          | Settings]             |
|           |                         | Local and<br>Remote |          |                       |
| NonInterl | DC for Non-Interlocking | inactive,           | inactive | [Control              |
|           |                         | active              |          | /General<br>Settings] |

## **Global Protection Parameters of the Control Module**

| Parameter     | Description                                                         | Setting range                                 | Default             | Menu path                         |
|---------------|---------------------------------------------------------------------|-----------------------------------------------|---------------------|-----------------------------------|
| Res NonIL     | Resetmode Non-Interlocking                                          | single<br>Operation,<br>timeout,<br>permanent | single<br>Operation | [Control<br>/General<br>Settings] |
| Timeout NonIL | Timeout Non-Interlocking<br>Only available if: Res NonIL<>permanent | 2 - 3600s                                     | 60s                 | [Control<br>/General<br>Settings] |
| NonIL Assign  | Assignment Non-Interlocking                                         | 1n,<br>Assignment List                        |                     | [Control<br>/General<br>Settings] |

# **Control Moduel Input States**

| Name        | Description      | Assignment via     |
|-------------|------------------|--------------------|
| NonInterl-I | Non-Interlocking | [Control           |
|             |                  | /General Settings] |

## Signals of the Control Module

| Signal | Description                 |
|--------|-----------------------------|
| Local  | Switching Authority: Local  |
| Remote | Switching Authority: Remote |

| Signal      | Description                                                       |
|-------------|-------------------------------------------------------------------|
| NonInterl   | Non-Interlocking is active                                        |
| SG Indeterm | Minimum one Switchgear is moving (Position cannot be determined). |
| SG Disturb  | Minimum one Switchgear is disturbed.                              |

# Synchronization inputs

| Parameter | Description   |
|-----------|---------------|
|           | No assignment |

# Assignable Trip Commands (Trip Manager)

| Name           | Description          |
|----------------|----------------------|
|                | No assignment        |
| MStart.TripCmd | Signal: Trip Command |
| I[1].TripCmd   | Signal: Trip Command |
| I[2].TripCmd   | Signal: Trip Command |
| I[3].TripCmd   | Signal: Trip Command |
| I[4].TripCmd   | Signal: Trip Command |
| I[5].TripCmd   | Signal: Trip Command |
| I[6].TripCmd   | Signal: Trip Command |
| IG[1].TripCmd  | Signal: Trip Command |
| IG[2].TripCmd  | Signal: Trip Command |
| IG[3].TripCmd  | Signal: Trip Command |
| IG[4].TripCmd  | Signal: Trip Command |
| ThR.TripCmd    | Signal: Trip Command |
| Jam[1].TripCmd | Signal: Trip Command |
| Jam[2].TripCmd | Signal: Trip Command |
| I<[1].TripCmd  | Signal: Trip Command |
| I<[2].TripCmd  | Signal: Trip Command |
| I<[3].TripCmd  | Signal: Trip Command |
| V[1].TripCmd   | Signal: Trip Command |
| V[2].TripCmd   | Signal: Trip Command |
| V[3].TripCmd   | Signal: Trip Command |
| V[4].TripCmd   | Signal: Trip Command |
| V[5].TripCmd   | Signal: Trip Command |
| V[6].TripCmd   | Signal: Trip Command |
| VG[1].TripCmd  | Signal: Trip Command |
| VG[2].TripCmd  | Signal: Trip Command |
| I2>[1].TripCmd | Signal: Trip Command |

| Name            | Description          |
|-----------------|----------------------|
| I2>[2].TripCmd  | Signal: Trip Command |
| V012[1].TripCmd | Signal: Trip Command |
| V012[2].TripCmd | Signal: Trip Command |
| V012[3].TripCmd | Signal: Trip Command |
| V012[4].TripCmd | Signal: Trip Command |
| V012[5].TripCmd | Signal: Trip Command |
| V012[6].TripCmd | Signal: Trip Command |
| f[1].TripCmd    | Signal: Trip Command |
| f[2].TripCmd    | Signal: Trip Command |
| f[3].TripCmd    | Signal: Trip Command |
| f[4].TripCmd    | Signal: Trip Command |
| f[5].TripCmd    | Signal: Trip Command |
| f[6].TripCmd    | Signal: Trip Command |
| PQS[1].TripCmd  | Signal: Trip Command |
| PQS[2].TripCmd  | Signal: Trip Command |
| PQS[3].TripCmd  | Signal: Trip Command |
| PQS[4].TripCmd  | Signal: Trip Command |
| PQS[5].TripCmd  | Signal: Trip Command |
| PQS[6].TripCmd  | Signal: Trip Command |
| PF[1].TripCmd   | Signal: Trip Command |
| PF[2].TripCmd   | Signal: Trip Command |
| ExP[1].TripCmd  | Signal: Trip Command |
| ExP[2].TripCmd  | Signal: Trip Command |
| ExP[3].TripCmd  | Signal: Trip Command |
| ExP[4].TripCmd  | Signal: Trip Command |
| RTD.TripCmd     | Signal: Trip Command |

# **Controlled Circuit Breaker**

<u>SG[1]</u>

## Direct Commands of a Controlled Circuit Breaker

| Parameter      | Description                              | Setting range | Default  | Menu path                  |
|----------------|------------------------------------------|---------------|----------|----------------------------|
| Manipulate     | WARNING! Fake Position - Manual Position | inactive,     | inactive | [Control                   |
| Position       | Manipulation                             | Pos OFF,      |          | /SG                        |
| <b></b>        |                                          | Pos ON        |          | /SG[1]                     |
|                |                                          |               |          | /General<br>Settings]      |
| Res SGwear SI  | Resetting the slow Switchgear Alarm      | inactive,     | inactive | [Operation                 |
| SG             |                                          | active        |          | /<br>Reset/Acknowle<br>dge |
| $(\mathbf{X})$ |                                          |               |          | /Reset]                    |
| Ack TripCmd    | Acknowledge Trip Command                 | inactive,     | inactive | [Operation                 |
|                |                                          | active        |          | /<br>Reset/Acknowle<br>dge |
|                |                                          |               |          | /Acknowledge]              |

## Global Protection Parameters of a Controlled Circuit Breaker

| Parameter | Description                                                                                                                                                                                                                                                 | Setting range        | Default            | Menu path                |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------|
| Aux ON    | The CB is in ON-position if the state of the assigned signal is true (52a).                                                                                                                                                                                 | 1n, DI-<br>LogicList | DI Slot X1.DI<br>1 | [Control                 |
|           |                                                                                                                                                                                                                                                             |                      |                    | /SG                      |
|           |                                                                                                                                                                                                                                                             |                      |                    | /SG[1]                   |
|           |                                                                                                                                                                                                                                                             |                      |                    | /Pos Indicatrs<br>Wirng] |
| Aux OFF   | The CB is in OFF-position if the state of the assigned signal is true (52b).                                                                                                                                                                                | 1n, DI-<br>LogicList | DI Slot X1.DI<br>2 | [Control                 |
|           |                                                                                                                                                                                                                                                             |                      |                    | /SG                      |
|           |                                                                                                                                                                                                                                                             |                      |                    | /SG[1]                   |
|           |                                                                                                                                                                                                                                                             |                      |                    | /Pos Indicatrs<br>Wirng] |
| Ready     | Circuit breaker is ready for operation if the<br>state of the assigned signal is true. This<br>digital input can be used by some protective<br>elements (if they are available within the<br>device) like Auto Reclosure (AR), e.g. as a<br>trigger signal. | 1n, DI-<br>LogicList |                    | [Control                 |
|           |                                                                                                                                                                                                                                                             |                      |                    | /SG                      |
|           |                                                                                                                                                                                                                                                             |                      |                    | /SG[1]                   |
|           |                                                                                                                                                                                                                                                             |                      |                    | /Pos Indicatrs<br>Wirng] |
|           |                                                                                                                                                                                                                                                             |                      |                    |                          |

| Parameter    | Description                                                                              | Setting range          | Default    | Menu path                |
|--------------|------------------------------------------------------------------------------------------|------------------------|------------|--------------------------|
| Removed      | The withdrawable circuit breaker is                                                      | 1n, DI-                |            | [Control                 |
|              | Removed                                                                                  | LogicList              |            | /SG                      |
| $\bigotimes$ | Dependency                                                                               |                        |            | /SG[1]                   |
|              |                                                                                          |                        |            | /Pos Indicatrs<br>Wirng] |
| Interl ON1   | Interlocking of the ON command                                                           | 1n,                    |            | [Control                 |
|              |                                                                                          | Assignment List        |            | /SG                      |
| $\bigotimes$ |                                                                                          |                        |            | /SG[1]                   |
|              |                                                                                          |                        |            | /Interlockings]          |
| Interl ON2   | Interlocking of the ON command                                                           | 1n,                    | MStart.Blo | [Control                 |
|              |                                                                                          | Assignment List        |            | /SG                      |
| $\bigotimes$ |                                                                                          |                        |            | /SG[1]                   |
|              |                                                                                          |                        |            | /Interlockings]          |
| Interl ON3   | Interlocking of the ON command                                                           | 1n,                    |            | [Control                 |
|              |                                                                                          | Assignment List        |            | /SG                      |
| $\bigotimes$ |                                                                                          |                        |            | /SG[1]                   |
|              |                                                                                          |                        |            | /Interlockings]          |
| Interl OFF1  | Interlocking of the OFF command                                                          | 1n,                    |            | [Control                 |
|              |                                                                                          | Assignment List        |            | /SG                      |
| $\bigotimes$ |                                                                                          |                        |            | /SG[1]                   |
|              |                                                                                          |                        |            | /Interlockings]          |
| Interl OFF2  | Interlocking of the OFF command                                                          | 1n,<br>Assignment List |            | [Control                 |
|              |                                                                                          |                        |            | /SG                      |
|              |                                                                                          |                        |            | /SG[1]                   |
|              |                                                                                          |                        |            | /Interlockings]          |
| Interl OFF3  | Interlocking of the OFF command                                                          | 1n,<br>Assignment List |            | [Control                 |
|              |                                                                                          |                        |            | /SG                      |
| $\bigotimes$ |                                                                                          |                        |            | /SG[1]                   |
|              |                                                                                          |                        |            | /Interlockings]          |
| SCmd ON      | Switching ON Command, e.g. the state of the Logics or the state of the digital input     | 1n, DI-<br>LogicList   |            | [Control                 |
|              |                                                                                          |                        |            | /SG                      |
|              |                                                                                          |                        |            | /SG[1]                   |
|              |                                                                                          |                        |            | /Ex ON/OFF<br>Cmd]       |
| SCmd OFF     | Switching OFF Command, e.g. the state of<br>the Logics or the state of the digital input | 1n, DI-<br>LogicList   |            | [Control                 |
|              |                                                                                          |                        |            | /SG                      |
|              |                                                                                          |                        |            | /SG[1]                   |
|              |                                                                                          |                        |            | /Ex ON/OFF<br>Cmd]       |

| Parameter    | Description                                | Setting range   | Default      | Menu path      |
|--------------|--------------------------------------------|-----------------|--------------|----------------|
| t-TripCmd    | Minimum hold time of the OFF-command       | 0 - 300.00s     | 0.2s         | [Control       |
|              | (circuit breaker, load break switch)       |                 |              | /SG            |
| $\bigcirc$   |                                            |                 |              | /SG[1]         |
| •            |                                            |                 |              | /Trip Manager] |
| Latched      | Defines whether the Binary Output Relay    | inactive,       | inactive     | [Control       |
|              | will be Latched when it picks up.          | active          |              | /SG            |
| $\checkmark$ |                                            |                 |              | /SG[1]         |
| •            |                                            |                 |              | /Trip Manager] |
| Ack TripCmd  | Ack TripCmd                                | 1n,             |              | [Control       |
|              |                                            | Assignment List |              | /SG            |
| $\bigotimes$ |                                            |                 |              | /SG[1]         |
| •            |                                            |                 |              | /Trip Manager] |
| Off Cmd1     | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds   | MStart.TripC | [Control       |
|              | state of the assigned signal becomes true. |                 | md           | /SG            |
| $\bigotimes$ |                                            |                 |              | /SG[1]         |
| •            |                                            |                 |              | /Trip Manager] |
| Off Cmd2     | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds   | I[1].TripCmd | [Control       |
|              | state of the assigned signal becomes true. |                 |              | /SG            |
| $\bigotimes$ |                                            |                 |              | /SG[1]         |
| •            |                                            |                 |              | /Trip Manager] |
| Off Cmd3     | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds   | I[2].TripCmd | [Control       |
|              | state of the assigned signal becomes true. |                 |              | /SG            |
| $\bigotimes$ |                                            |                 |              | /SG[1]         |
| -            |                                            |                 |              | /Trip Manager] |
| Off Cmd4     | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds   |              | [Control       |
|              | state of the assigned signal becomes true. |                 | d            | /SG            |
| $\bigotimes$ |                                            |                 |              | /SG[1]         |
| Ť            |                                            |                 |              | /Trip Manager] |
| Off Cmd5     | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds   | ThR.TripCmd  | [Control       |
|              | state of the assigned signal becomes true. |                 |              | /SG            |
| $\bigotimes$ |                                            |                 |              | /SG[1]         |
| *            |                                            |                 |              | /Trip Manager] |
| Off Cmd6     | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds   | Jam[1].TripC | [Control       |
|              | state of the assigned signal becomes true. |                 | md           | /SG            |
| $\bigotimes$ |                                            |                 |              | /SG[1]         |
| $\checkmark$ |                                            |                 |              | /Trip Manager] |

| Parameter    | Description                                                                          | Setting range | Default       | Menu path      |
|--------------|--------------------------------------------------------------------------------------|---------------|---------------|----------------|
| Off Cmd7     | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds | I<[1].TripCmd | [Control       |
|              | state of the assigned signal becomes true.                                           |               |               | /SG            |
| $\bigotimes$ |                                                                                      |               |               | /SG[1]         |
|              |                                                                                      |               |               | /Trip Manager] |
| Off Cmd8     | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |               | [Control       |
|              | state of the assigned signal becomes true.                                           |               |               | /SG            |
|              |                                                                                      |               |               | /SG[1]         |
|              |                                                                                      |               |               | /Trip Manager] |
| Off Cmd9     | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |               | [Control       |
|              | state of the assigned signal becomes true.                                           |               |               | /SG            |
| $\bigcirc$   |                                                                                      |               |               | /SG[1]         |
|              |                                                                                      |               |               | /Trip Manager] |
| Off Cmd10    | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |               | [Control       |
|              | state of the assigned signal becomes true.                                           |               |               | /SG            |
| $\bigcirc$   |                                                                                      |               |               | /SG[1]         |
|              |                                                                                      |               |               | /Trip Manager] |
| Off Cmd11    | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |               | [Control       |
|              |                                                                                      |               |               | /SG            |
| $\bigcirc$   |                                                                                      |               |               | /SG[1]         |
|              |                                                                                      |               |               | /Trip Manager] |
| Off Cmd12    | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |               | [Control       |
|              |                                                                                      |               |               | /SG            |
|              |                                                                                      |               |               | /SG[1]         |
|              |                                                                                      |               |               | /Trip Manager] |
| Off Cmd13    | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |               | [Control       |
|              |                                                                                      |               |               | /SG            |
| $\bigcirc$   |                                                                                      |               |               | /SG[1]         |
|              |                                                                                      |               |               | /Trip Manager] |
| Off Cmd14    | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |               | [Control       |
|              |                                                                                      |               |               | /SG            |
| $\mathbf{R}$ |                                                                                      |               |               | /SG[1]         |
|              |                                                                                      |               |               | /Trip Manager] |
| Off Cmd15    | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |               | [Control       |
|              | state of the assigned signal becomes true.                                           |               |               | /SG            |
| $\mathbf{R}$ |                                                                                      |               |               | /SG[1]         |
|              |                                                                                      |               |               | /Trip Manager] |

| Parameter    | Description                                                                          | Setting range | Default | Menu path      |
|--------------|--------------------------------------------------------------------------------------|---------------|---------|----------------|
| Off Cmd16    | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |         | [Control       |
|              |                                                                                      |               |         | /SG            |
|              |                                                                                      |               |         | /SG[1]         |
| •            |                                                                                      |               |         | /Trip Manager] |
| Off Cmd17    | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true.                                           |               |         | /SG            |
| $\bigcirc$   |                                                                                      |               |         | /SG[1]         |
| -            |                                                                                      |               |         | /Trip Manager] |
| Off Cmd18    | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true.                                           |               |         | /SG            |
| $\bigotimes$ |                                                                                      |               |         | /SG[1]         |
| •            |                                                                                      |               |         | /Trip Manager] |
| Off Cmd19    | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true.                                           |               |         | /SG            |
| $\bigcirc$   |                                                                                      |               |         | /SG[1]         |
|              |                                                                                      |               |         | /Trip Manager] |
| Off Cmd20    | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true.                                           |               |         | /SG            |
| $\bigotimes$ |                                                                                      |               |         | /SG[1]         |
| -            |                                                                                      |               |         | /Trip Manager] |
| Off Cmd21    | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true.                                           |               |         | /SG            |
| $\bigcirc$   |                                                                                      |               |         | /SG[1]         |
| <u> </u>     |                                                                                      |               |         | /Trip Manager] |
| Off Cmd22    | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |         | [Control       |
|              |                                                                                      |               |         | /SG            |
| $\bigotimes$ |                                                                                      |               |         | /SG[1]         |
|              |                                                                                      |               |         | /Trip Manager] |
| Off Cmd23    | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |         | [Control       |
|              |                                                                                      |               |         | /SG            |
|              |                                                                                      |               |         | /SG[1]         |
| <b>~</b>     |                                                                                      |               |         | /Trip Manager] |
| Off Cmd24    | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |         | [Control       |
|              |                                                                                      |               |         | /SG            |
| $\bigotimes$ |                                                                                      |               |         | /SG[1]         |
| $\checkmark$ |                                                                                      |               |         | /Trip Manager] |

| Parameter             | Description                                                                          | Setting range | Default | Menu path      |
|-----------------------|--------------------------------------------------------------------------------------|---------------|---------|----------------|
| Off Cmd25             | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|                       | state of the assigned signal becomes true.                                           |               |         | /SG            |
|                       |                                                                                      |               |         | /SG[1]         |
| <u> </u>              |                                                                                      |               |         | /Trip Manager] |
| Off Cmd26             | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|                       | state of the assigned signal becomes true.                                           |               |         | /SG            |
| $\bigotimes$          |                                                                                      |               |         | /SG[1]         |
| <u> </u>              |                                                                                      |               |         | /Trip Manager] |
| Off Cmd27             | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|                       | state of the assigned signal becomes true.                                           |               |         | /SG            |
| $\bigotimes$          |                                                                                      |               |         | /SG[1]         |
|                       |                                                                                      |               |         | /Trip Manager] |
| Off Cmd28             | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|                       | state of the assigned signal becomes true.                                           |               |         | /SG            |
| $\bigotimes$          |                                                                                      |               |         | /SG[1]         |
| )                     |                                                                                      |               |         | /Trip Manager] |
| Off Cmd29             | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|                       | state of the assigned signal becomes true.                                           |               |         | /SG            |
| $\mathbf{\mathbf{k}}$ |                                                                                      |               |         | /SG[1]         |
|                       |                                                                                      |               |         | /Trip Manager] |
| Off Cmd30             | Off Command to the Circuit Breaker if the                                            | 1n, Trip Cmds |         | [Control       |
|                       | state of the assigned signal becomes true.                                           |               |         | /SG            |
| $\mathbf{\mathbf{k}}$ |                                                                                      |               |         | /SG[1]         |
|                       |                                                                                      |               |         | /Trip Manager] |
| Off Cmd31             | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |         | [Control       |
|                       |                                                                                      |               |         | /SG            |
| $\bigotimes$          |                                                                                      |               |         | /SG[1]         |
| -                     |                                                                                      |               |         | /Trip Manager] |
| Off Cmd32             | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |         | [Control       |
|                       |                                                                                      |               |         | /SG            |
|                       |                                                                                      |               |         | /SG[1]         |
|                       |                                                                                      |               |         | /Trip Manager] |
| Off Cmd33             | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1n, Trip Cmds |         | [Control       |
|                       |                                                                                      |               |         | /SG            |
| $\bigotimes$          |                                                                                      |               |         | /SG[1]         |
| ~                     |                                                                                      |               |         | /Trip Manager] |

| Parameter    | Description                                | Setting range | Default | Menu path      |
|--------------|--------------------------------------------|---------------|---------|----------------|
| Off Cmd34    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigcirc$   |                                            |               |         | /SG[1]         |
| •            |                                            |               |         | /Trip Manager] |
| Off Cmd35    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
| -            |                                            |               |         | /Trip Manager] |
| Off Cmd36    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
| <u> </u>     |                                            |               |         | /Trip Manager] |
| Off Cmd37    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd38    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
| -            |                                            |               |         | /Trip Manager] |
| Off Cmd39    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd40    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
| -            |                                            |               |         | /Trip Manager] |
| Off Cmd41    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigcirc$   |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd42    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
| ~            |                                            |               |         | /Trip Manager] |

| Parameter    | Description                                | Setting range | Default | Menu path      |
|--------------|--------------------------------------------|---------------|---------|----------------|
| Off Cmd43    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigcirc$   |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd44    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd45    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigcirc$   |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd46    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd47    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd48    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd49    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
|              |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd50    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigotimes$ |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |
| Off Cmd51    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds |         | [Control       |
|              | state of the assigned signal becomes true. |               |         | /SG            |
| $\bigcirc$   |                                            |               |         | /SG[1]         |
|              |                                            |               |         | /Trip Manager] |

| Parameter    | Description                                | Setting range  | Default | Menu path             |
|--------------|--------------------------------------------|----------------|---------|-----------------------|
| Off Cmd52    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds  |         | [Control              |
|              | state of the assigned signal becomes true. |                |         | /SG                   |
| $\bigcirc$   |                                            |                |         | /SG[1]                |
|              |                                            |                |         | /Trip Manager]        |
| Off Cmd53    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds  |         | [Control              |
|              | state of the assigned signal becomes true. |                |         | /SG                   |
| $\bigcirc$   |                                            |                |         | /SG[1]                |
| Ŷ            |                                            |                |         | /Trip Manager]        |
| Off Cmd54    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds  |         | [Control              |
|              | state of the assigned signal becomes true. |                |         | /SG                   |
| $\bigcirc$   |                                            |                |         | /SG[1]                |
|              |                                            |                |         | /Trip Manager]        |
| Off Cmd55    | Off Command to the Circuit Breaker if the  | 1n, Trip Cmds  |         | [Control              |
|              | state of the assigned signal becomes true. |                |         | /SG                   |
| $\mathbf{k}$ |                                            |                |         | /SG[1]                |
|              |                                            |                |         | /Trip Manager]        |
| OFF incl     | The OFF Command includes the OFF           | inactive,      | active  | [Control              |
| TripCmd      | Command issued by the Protection module.   | active         |         | /SG                   |
| <i>—</i>     |                                            |                |         | /SG[1]                |
|              |                                            |                |         | /General<br>Settings] |
| t-Move ON    | Time to move to the ON Position            | 0.01 - 100.00s | 0.1s    | [Control              |
|              |                                            |                |         | /SG                   |
|              |                                            |                |         | /SG[1]                |
|              |                                            |                |         | /General<br>Settings] |
| t-Move OFF   | Time to move to the OFF Position           | 0.01 - 100.00s | 0.1s    | [Control              |
|              |                                            |                |         | /SG                   |
|              |                                            |                |         | /SG[1]                |
|              |                                            |                |         | /General<br>Settings] |
| t-Dwell      | Dwell time                                 | 0 - 100.00s    | 0s      | [Control              |
|              |                                            |                |         | /SG                   |
|              |                                            |                |         | /SG[1]                |
|              |                                            |                |         | /General<br>Settings] |

# **Controlled Circuit Breaker Input States**

| Name          | Description                                                                                                      | Assignment via        |
|---------------|------------------------------------------------------------------------------------------------------------------|-----------------------|
| Aux ON-I      | Module Input State: Position indicator/check-back                                                                | [Control              |
|               | signal of the CB (52a)                                                                                           | /SG                   |
|               |                                                                                                                  | /SG[1]                |
|               |                                                                                                                  | /Pos Indicatrs Wirng] |
| Aux OFF-I     | Module input state: Position indicator/check-back                                                                | [Control              |
|               | signal of the CB (52b)                                                                                           | /SG                   |
|               |                                                                                                                  | /SG[1]                |
|               |                                                                                                                  | /Pos Indicatrs Wirng] |
| Ready-I       | Module input state: CB ready                                                                                     | [Control              |
|               |                                                                                                                  | /SG                   |
|               |                                                                                                                  | /SG[1]                |
|               |                                                                                                                  | /Pos Indicatrs Wirng] |
| Removed-I     | State of the module input: The withdrawable circuit                                                              | [Control              |
|               | breaker is Removed                                                                                               | /SG                   |
|               |                                                                                                                  | /SG[1]                |
|               |                                                                                                                  | /Pos Indicatrs Wirng] |
| Ack TripCmd-I | State of the module input: Acknowledgement Signal<br>(only for automatic acknowledgement) Module input<br>signal | [Control              |
|               |                                                                                                                  | /SG                   |
|               |                                                                                                                  | /SG[1]                |
|               |                                                                                                                  | /Trip Manager]        |
| Interl ON1-I  | State of the module input: Interlocking of the ON                                                                | [Control              |
|               | command                                                                                                          | /SG                   |
|               |                                                                                                                  | /SG[1]                |
|               |                                                                                                                  | /Interlockings]       |
| Interl ON2-I  | State of the module input: Interlocking of the ON                                                                | [Control              |
|               | command                                                                                                          | /SG                   |
|               |                                                                                                                  | /SG[1]                |
|               |                                                                                                                  | /Interlockings]       |
| Interl ON3-I  | State of the module input: Interlocking of the ON                                                                | [Control              |
|               | command                                                                                                          | /SG                   |
|               |                                                                                                                  | /SG[1]                |
|               |                                                                                                                  | /Interlockings]       |
| Interl OFF1-I | State of the module input: Interlocking of the OFF                                                               | [Control              |
|               | command                                                                                                          | /SG                   |
|               |                                                                                                                  | /SG[1]                |
|               |                                                                                                                  | /Interlockings]       |

| Name          | Description                                                                                                           | Assignment via  |
|---------------|-----------------------------------------------------------------------------------------------------------------------|-----------------|
| Interl OFF2-I | State of the module input: Interlocking of the OFF                                                                    | [Control        |
|               | command                                                                                                               | /SG             |
|               |                                                                                                                       | /SG[1]          |
|               |                                                                                                                       | /Interlockings] |
| Interl OFF3-I | State of the module input: Interlocking of the OFF                                                                    | [Control        |
|               | command                                                                                                               | /SG             |
|               |                                                                                                                       | /SG[1]          |
|               |                                                                                                                       | /Interlockings] |
| SCmd ON-I     | State of the module input: Switching ON Command,<br>e.g. the state of the Logics or the state of the digital<br>input | [Control        |
|               |                                                                                                                       | /SG             |
|               |                                                                                                                       | /SG[1]          |
|               |                                                                                                                       | /Ex ON/OFF Cmd] |
| SCmd OFF-I    | State of the module input: Switching OFF Command,                                                                     | [Control        |
|               | e.g. the state of the Logics or the state of the digital input                                                        | /SG             |
|               |                                                                                                                       | /SG[1]          |
|               |                                                                                                                       | /Ex ON/OFF Cmd] |

# Signals of a Controlled Circuit Breaker

| Signal              | Description                                                                                                                                                                          |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SI SingleContactInd | Signal: The Position of the Switchgear is detected by one auxiliary contact (pole) only. Thus indeterminate and disturbed Positions cannot be detected.                              |
| Pos not ON          | Signal: Pos not ON                                                                                                                                                                   |
| Pos ON              | Signal: Circuit Breaker is in ON-Position                                                                                                                                            |
| Pos OFF             | Signal: Circuit Breaker is in OFF-Position                                                                                                                                           |
| Pos Indeterm        | Signal: Circuit Breaker is in Indeterminate Position                                                                                                                                 |
| Pos Disturb         | Signal: Circuit Breaker Disturbed - Undefined Breaker Position. The Position<br>Indicators contradict themselves. After expiring of a supervision timer this<br>signal becomes true. |
| Pos                 | Signal: Circuit Breaker Position ( $0 = $ Indeterminate, $1 = $ OFF, $2 = $ ON, $3 = $ Disturbed)                                                                                    |
| Ready               | Signal: Circuit breaker is ready for operation.                                                                                                                                      |
| t-Dwell             | Signal: Dwell time                                                                                                                                                                   |
| Removed             | Signal: The withdrawable circuit breaker is Removed                                                                                                                                  |
| Interl ON           | Signal: One or more IL_On inputs are active.                                                                                                                                         |
| Interl OFF          | Signal: One or more IL_Off inputs are active.                                                                                                                                        |
| CES succesf         | Signal: Command Execution Supervision: Switching command executed successfully.                                                                                                      |
| CES Disturbed       | Signal: Command Execution Supervision: Switching Command unsuccessful.<br>Switchgear in disturbed position.                                                                          |
| CES Fail TripCmd    | Signal: Command Execution Supervision: Command execution failed because trip command is pending.                                                                                     |

| Signal               | Description                                                                                                                                                                                                                                                                                                                               |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CES SwitchDir        | Signal: Command Execution Supervision respectively Switching Direction<br>Control: This signal becomes true, if a switch command is issued even<br>though the switchgear is already in the requested position. Example: A<br>switchgear that is already OFF should be switched OFF again (doubly). The<br>same applies to CLOSE commands. |
| CES ON d OFF         | Signal: Command Execution Supervision: On Command during a pending OFF Command.                                                                                                                                                                                                                                                           |
| CES SG not ready     | Signal: Command Execution Supervision: Switchgear not ready                                                                                                                                                                                                                                                                               |
| CES Fiel Interl      | Signal: Command Execution Supervision: Switching Command not executed because of field interlocking.                                                                                                                                                                                                                                      |
| CES SG removed       | Signal: Command Execution Supervision: Switching Command unsuccessful, Switchgear removed.                                                                                                                                                                                                                                                |
| TripCmd              | Signal: Trip Command                                                                                                                                                                                                                                                                                                                      |
| Ack TripCmd          | Signal: Acknowledge Trip Command                                                                                                                                                                                                                                                                                                          |
| OFF incl TripCmd     | Signal: The OFF Command includes the OFF Command issued by the Protection module.                                                                                                                                                                                                                                                         |
| Position Ind manipul | Signal: Position Indicators faked                                                                                                                                                                                                                                                                                                         |
| SGwear Slow SG       | Signal: Alarm, the circuit breaker (load-break switch) becomes slower                                                                                                                                                                                                                                                                     |
| Res SGwear SI SG     | Signal: Resetting the slow Switchgear Alarm                                                                                                                                                                                                                                                                                               |
| ON Cmd               | Signal: ON Command issued to the switchgear. Depending on the setting the signal may include the ON command of the Prot module.                                                                                                                                                                                                           |
| OFF Cmd              | Signal: OFF Command issued to the switchgear. Depending on the setting the signal may include the OFF command of the Prot module.                                                                                                                                                                                                         |
| ON Cmd manual        | Signal: ON Cmd manual                                                                                                                                                                                                                                                                                                                     |
| OFF Cmd manual       | Signal: OFF Cmd manual                                                                                                                                                                                                                                                                                                                    |

# Control - Example: Switching of a Circuit Breaker

The following example shows how to switch a circuit breaker via the HMI at the device.

| Control | <u> </u> | Change into the menu »Control« or alternatively push the »CTRL« button at the device front. |
|---------|----------|---------------------------------------------------------------------------------------------|
|---------|----------|---------------------------------------------------------------------------------------------|

| Control<br>Control Page<br>General settings<br>Bkr | Change to the control page by pushing the »right arrow« softkey. |
|----------------------------------------------------|------------------------------------------------------------------|
|                                                    |                                                                  |

| Remote | Information only: On the control page the current switchgear positions is displayed.<br>By means of the softkey »Mode« it can be switched to the menu »General<br>Settings«. In this menu switching authority and interlockings can be set.<br>By means of the softkey »SG« it can be switched to the menu »SG«. In this menu<br>specific settings for the switch gear can be done. |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

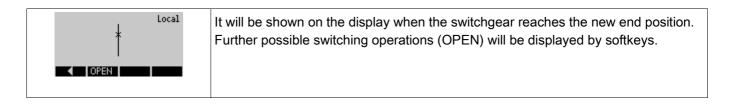
|--|

| Warning<br>No LOCAL<br>Switching<br>Authority<br>OK | Executing a switching command via the devices HMI is only possible when the switching authority is set to »Local«. If no switching authority is given, this has to be set first to »Local« or »Local and Remote«.<br>With the softkey »OK« it can be switched back to the single line diagram page. |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Remote    | Pushing the softkey »Mode« leads to the menu »General Settings«. |
|-----------|------------------------------------------------------------------|
| Ŷ         |                                                                  |
| ✓ Mode SG |                                                                  |
|           |                                                                  |

| General settings<br>Switching Ruthority<br>Remote<br>Switching Ruthority<br>Switching Ruthority | In this menu the switching authority can be changed. |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------|
|-------------------------------------------------------------------------------------------------|------------------------------------------------------|

| Switching Authority<br>None<br>Local<br>Remote | Select between »Local« or »Local and Remote«. |
|------------------------------------------------|-----------------------------------------------|
|                                                |                                               |


|             | Now it is possible to execute switching commands at the HMI. |
|-------------|--------------------------------------------------------------|
| Local       |                                                              |
| Ŷ           |                                                              |
| ▲ Mode SG ▶ |                                                              |
|             |                                                              |

| Local | Push the »right arrow« softkey to get to the control page. |
|-------|------------------------------------------------------------|
| Ŷ     |                                                            |
|       |                                                            |
|       |                                                            |

|  | The circuit breaker is opened, therefore it can be closed only.<br>After pushing the softkey »CLOSE« a confirmation window appears. |
|--|-------------------------------------------------------------------------------------------------------------------------------------|
|--|-------------------------------------------------------------------------------------------------------------------------------------|

| Confirmation<br>Bkr.CLOSE<br>Are you sure? | When you are sure to proceed with the switching operation, press the softkey »YES«. |
|--------------------------------------------|-------------------------------------------------------------------------------------|
|--------------------------------------------|-------------------------------------------------------------------------------------|

| Local | The switching command will be given to the circuit breaker. The display shows the intermediate position of the switchgear. |
|-------|----------------------------------------------------------------------------------------------------------------------------|
|-------|----------------------------------------------------------------------------------------------------------------------------|



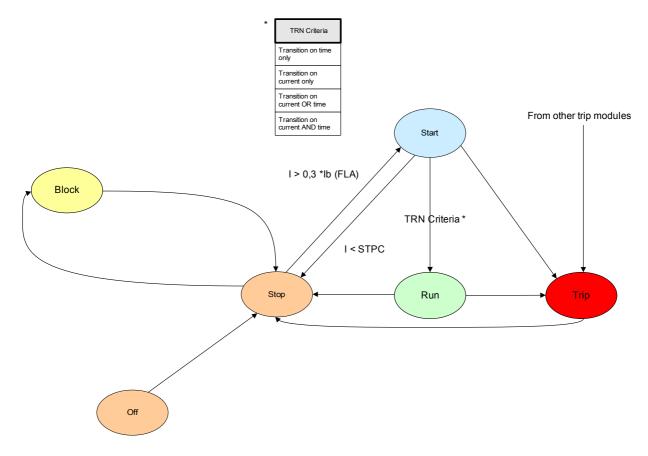


Notice: For the case, the switchgear does not reach the new end position within the set supervision time the following Warning appears on the display.

# **Protective Elements**

# MStart - Motor Starting and Control [48,66]

Available elements: <u>MStart</u>


## General – Principle Use

The motor start control logic is the core control and protective function for a motor protection device. The logic comprises:

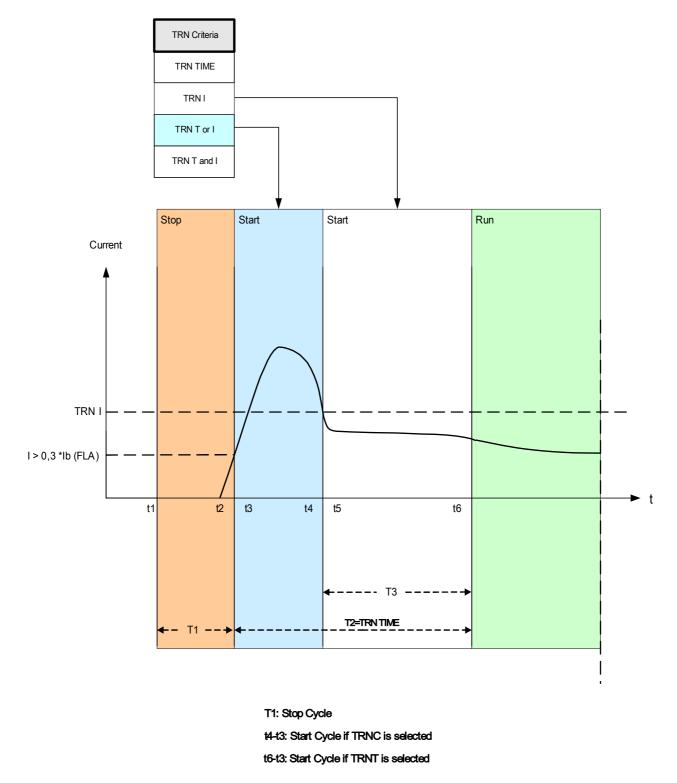
- Motor Operation States,
- Motor Start Control
- Motor Start Blockings
- Motor Start / Transition Trips
- Motor Cold Warm Detection
- Emergency Override.

# **Motor Operation States**

#### Motor Operation States



The basic motor operation states can be classified as four states that include:


- 1. Start cycle;
- 2. Run cycle;
- 3. Stop cycle; and
- 4. Trip state.

Under normal conditions, the motor operations should go through »stop«, »start«, »run«, and »stop« cycles that are referred to as a complete operation sequence; while under certain abnormal conditions, the motor could go from »start« to »stop«, or »start« to »trip«, or »run« to »trip«.

If other protection trips occur at either the »start« or »run« cycle, the motor will be forced to go to »trip« mode. After motor currents are terminated, the motor will go into the »stop« cycle.

# Start Control

The parameters for the Start Control have to be set within menu [Protection Para\MStart\StartControl]



The Start Control Module drawing shows an example of how the protective device reacts to a normal operatingcycle current profile. Initially, the motor is stopped and the current is zero. As long as the protective device is not in a »trip« state, it permits contactor energization by closing its trip contact in series with the contactor. The contactor is energized by the operator or process control system through a normal two-wire or three-wire motor control scheme, external to the protective device. The protective device declares a motor start when it senses a motor current that exceeds 30% of the *»Ib«* (FLA) setting. Meanwhile, the transition timer *»TRNT«* begins to run. The protective device also monitors the large starting current, noting when the current falls below the transition level *»TRNC«*.

The Start to Run transition is based on the setting » *TRN Criteria«*, which has four transition behaviors for the User to select:

| •TRN T - Transition to RUN after time setting TRNT only. Curren | t is ignored. |
|-----------------------------------------------------------------|---------------|
|-----------------------------------------------------------------|---------------|

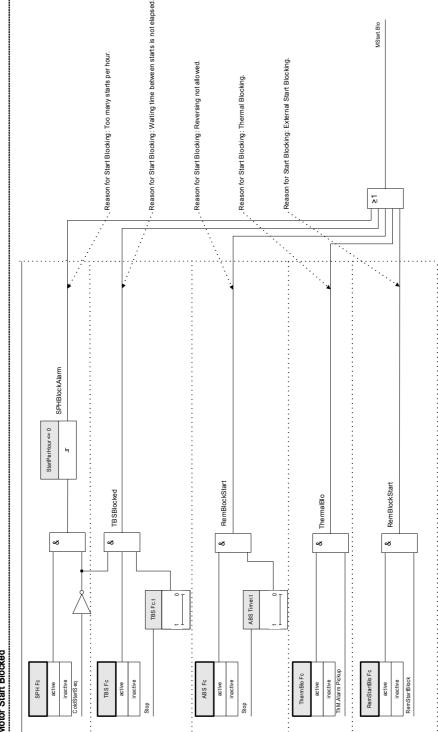
- •TRN C Transition when starting current drops below the setting only. If the time set in TRNT expires before the current transition, the motor trips.
- •TRN T or C Transition on time or current, whichever comes first.
- •TRN T and C Transition on time and current. Both must occur, and the current must drop below the setting before the time delay expires. If the timer expires before the current falls below the set transition level, the motor trips.

If there is no transition trip, the protective device relay declares a successful transition to »RUN« cycle and the corresponding transition signal(s) (current or time, or both, depending on the settings and motor current) is set. The transition signal(s) is the part of the global output list, which can be assigned to any module input or relay output. If it is assigned to a relay output, it can control a reduced-voltage starter, switching to full running voltage.

Even if the transition control output contact is not used, the transition function can provide clear indications of the actual state of the motor (»START« versus »RUN«) on the front panel display and via data communications. A good way to do this is to use the settings of TRN Criteria = TRN T or C and TRNC = 130% of »*Ib*« (FLA). Modify the latter, if needed, to lie at a transition value between the starting current and post-start maximum load current. Set the transition timer well beyond the normal start time to avoid a transition trip.

#### Start Delays

The parameters for the Start Delays have to be set within menu [Protection Para\MStart\Start Delay Timer]


When the protective device declares a »START«, all start timers of the enabled functions begin to time. Each of these timers blocks the respective function until the set delay expires. These start timers are affected by transitions - they run for the set time, which may be less than or greater than the time of transition. These start delay timers include:

- IOC (Instantaneous overcurrent start delay);
- GOC (Ground fault start delay);
- UnderLoad (Underload trip and alarm start delay);
- IUnbalance (Current unbalance trip and alarm start delay);
- JAM (Jam trip and alarm start delay); and
- Generic1 to Generic5 (Generic start delay).

Note that the generic start delays are not tied to anything, and they can be used to block anything at the User's choice.

# **Motor Start Blocked**

A Motor Start can be blocked by certain events, if any of the following conditions are noted - motor starts limit, starting frequency, thermal and mechanical constraints. The User may choose to use the states to block the motor from starting or use it as an alarm or indication.



# Motor Start Blocked

#### **Blocking Conditions**

The reasons for a Motor Start Blocking are as follows:

The Motor Start will be blocked due to:

- There are too many starts per hour (if configured).
- The waiting time between starts is not elapsed (if configured).
- If the Anti Backspin protection detects a reversing of the motor (reversing not allowed, if configured).
- The thermal model blocks the motor (if configured).
- External Blocking becomes active (if configured).

When any of Anti-Backspin, thermal, and external blocks are on, the *»MStart.Blo«* signal will be set. The *»TBS«* and *»SPH«* can turn on the *»MStart.Blo«* signal only if the motor is not in a cold start sequence; *»NOCS«* block can not cause the *»MStart.Blo«* signal to be set.

#### Start Limits

Because motor starting consumes a considerable amount of thermal energy compared to its normal load conditions, the number of starts in a given time period must be monitored and controlled. The protective device has three functions that contribute to the start limits monitoring. These are:

- TBS (Time between Starts);
- SPH (Starts per Hour); and
- NOCS (Number of Cold Starts).

Most motors can tolerate some number of consecutive cold starts before the time between starts is enforced. The protective device treats a start as the first in a sequence of cold starts if the motor has been stopped for at least the time period that is the greatest of *»one hour«* and *»TBS«*. Subsequent starts are treated as additional cold starts in the same sequence, only if they run no more than ten minutes, until the set number of cold starts is reached. Once the motor is in the cold starting sequence, it will ignore *»TBS«* and *»SPH«* limits. The cold start sequence will be terminated if the motor has run for more than ten minutes for a cold start before it exhausts *»NOCS«*, then starts after this are subject to time and count limits imposed by *»TBS«* and *»SPH«.* If the motor reaches the *»NOCS«* limit in a cold start sequence, *»NOCS«* block signal will be set and *»TBS«* will start to time. When *»TBS«* reaches its limit while the *»NOCS«* block signal is still set, the cold start sequence will be terminated and the *»NOCS«* block will be released. Meanwhile, the *»SPH«* will start to count at the last start in the complete cold start sequence.

#### Stop Cycle

The run cycle continues until the motor current level falls below the Stop Current Threshold setting current on all three phases. Then a stop is declared. The start limits (also referred as Jogging start limits) and the anti-backspin time delay (ABS) are checked. If blocking conditions exist, the protective device can be configured to block a motor from starting. Remaining jogging block times are displayed and counted down, indicating how long to wait. If there are no such starting block conditions in effect, the protective device is ready for a new start.

#### Anti-Backspin Delay Time (ABS)

*»ABS«* sets the time in seconds before a motor restart is permitted after a trip or stop condition. This function can be set to *»inactive«*.

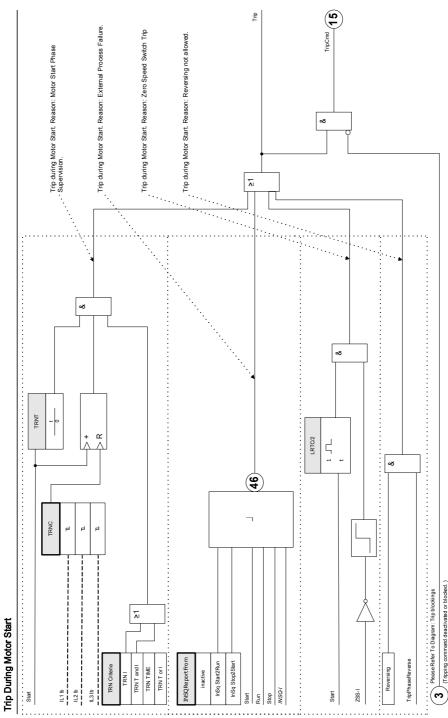
This function is used with a motor driving a pump working into a head, or any other load that tends to spin in a reverse direction (backspin) when the motor is de-energized. It blocks starting during the time when the motor might be rotating in reverse following a trip. Also, this function may be used simply to set idle time (time between stop and start) before a restart is permitted.

#### **External Start Blocking**

A motor can be blocked through a digital input. If this feature is enabled, the User must make sure that both the Motor Start and Digital Input modules are configured properly.

#### **Thermal Block**

Besides the previously mentioned start monitoring and controlling means, the motor can be blocked if the thermal capacity used exceeds the alarm level. It is the User's choice to turn on or off this feature and set an appropriate alarm level in the thermal model module.

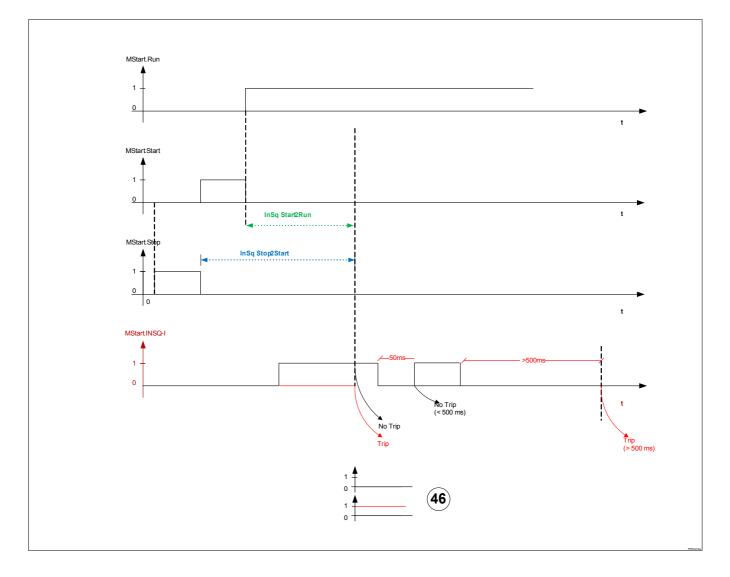

#### **Forced Starting**

It is recommended that the User wires the »MSTART.BLO« output to the motor trip circuit for preventing the motor from starting under these blocked conditions. If the User chooses not to do this for their applications, a Forced Starting signal will be set when the motor is started with the blocked conditions. This signal can only be reset manually though *Smart view* or from the front panel (please refer to section Emergency Override).

# Motor Start / Transition Trips

The Motor will be tripped during the start phase, in case that:

- The Start Control detects an unsuccessful Start. (Please see section Start Control Module)
- There is an Incomplete Start Sequence. The device detects via an digital input, that the external process is not properly started.
- If a reverse direction is detected but reversing is not allowed.
- If case of a Zero Speed Switch trip.

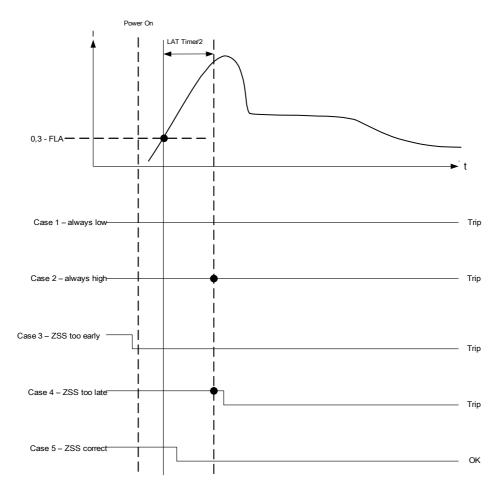



#### Incomplete Sequence Report Back Time (INSQ)

The incomplete sequence function requires an input from the report back contact from the process that the motor is running. Shortly after the motor starts, the report back contact provides an indication that the process has started to operate as expected. If the process does not start up correctly, the contact does not close within the expected time. If a problem develops later on, the report back contact opens. In either case, the open contact state indicates that the motor should be tripped.

To use this function, set a time limit for report back here and define the start of report back timing. Connect the report back contact to one of the protective device Discrete Inputs. If this input is not energized before the set time expires, the relay will trip on an "Incomplete Sequence".

Note that the input must be energized continuously after the time delay has expired to hold off this trip. Otherwise, if the incomplete sequence report back contact changes state for a period greater than 0.5 seconds, the relay will trip on an incomplete sequence. This delay allows for any momentary transient switching that may occur in the process report back contact, such as that which can occur in an open transition reduced voltage start.




#### Zero Speed Switch (ZSS ON or OFF)

ZSS enables the function that verifies if the motor begins to physically spin after a start. It requires a zero-speed switch (digital switch) on the motor, which is closed at rest and opens as the rotor reaches (5%-10%) its normal speed. Connect the zero-speed switch contact to one of the protective device Digital Inputs. If the contact fails to open within \*LRT/2\* (one-half of locked-rotor time) after a start, the relay trips with a zero-speed switch trip message.

This protection is always useful, but is essential if the Long Acceleration Time (LAT) function setting is used.

With ZSS being enabled and being mapped to one of the digital inputs, the protective device checks the ZSS input status at the very moment it sees a start - it wants to sense the initially closed zero-speed switch, which opens shortly thereafter as the motor spins. If it fails to find the closed contact, it trips immediately. Check the wiring and contact for problems.



#### Long Acceleration Time (LAT)

When the LAT function is enabled, the *»LAT«* timer is used to set a time interval during which the motor is permitted to accelerate a high-inertia load, which is longer than the locked-rotor time. This function can be (and usually should be) set to *»inactive«*. If the thermal-model accumulator bucket fills to 100% during the long acceleration time, it is limited to that value and the thermal trip is held off until the LAT timer expires. By then, the thermal bucket level must have decreased (thermal model cooled) below 100% or the motor trips.

The LAT function should be used but not limited only on motors with a zero-speed switch (a normally-closed contact

that opens when the motor actually begins to spin). Connect the zero-speed switch contact to one of the protective device Digital Inputs. The Zero-Speed Switch function must be enabled (ZSS ON). The protective device requires the zero-speed switch to open within LRT/2 (one-half of locked-rotor time) after a start, or the motor is tripped by the ZSS function. This protects a completely stalled motor from being damaged when the LAT timer blocks the locked-rotor thermal trip.

# CAUTION

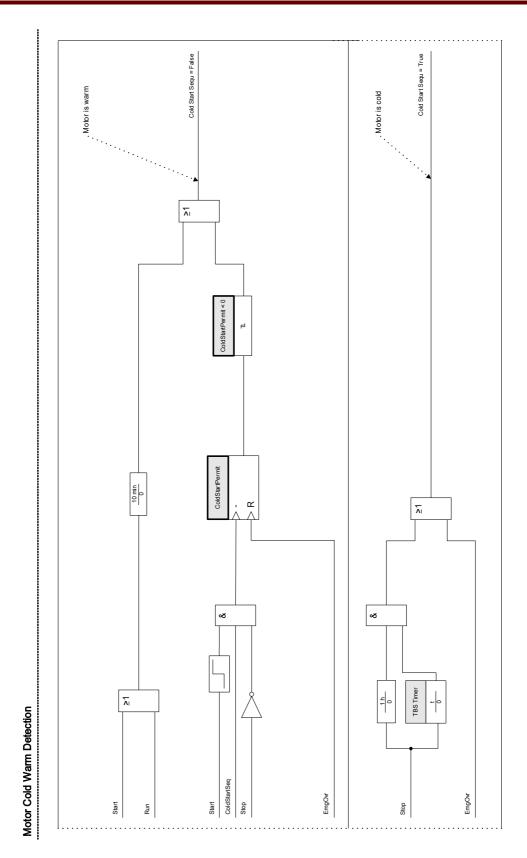
The long acceleration time (LAT) function can block the critical LRC-LRT rotor thermal protection during a start and destroy the motor. Turn LAT OFF unless absolutely needed and the motor's suitability for this starting duty has been confirmed. Use only with zero speed switch function ZSS ON and switch input connected to protect a stalled motor.

The User can temporarily defeat the I2t thermal protection limit after a start by setting a Long Acceleration Time delay. This can be a dangerous setting that blocks thermal tripping and holds the bucket at a 100% level if the load takes a long time to reach running speed. An example is a motor spinning a large centrifuge. In using LAT, the User can take advantage of the partial cooling from airflow produced by the motor spinning at below-normal speed, as compared to unfanned heating of a locked rotor. The motor must be rated for this severe starting duty. Also, the User must ensure that the motor actually has begun to spin well before the locked-rotor time has expired. This is accomplished by connecting a zero-speed switch to a Digital Input and turning on ZSS function. The zero-speed switch is a contact that is closed when the motor is at rest, and opens as the motor begins to spin, usually at 5-10% of running speed. If ZSS is set to ON and the protective device relay does not sense the contact open in one-half the locked-rotor time setting, it trips the motor.

# **WARNING** Turn OFF LAT unless the application specifically demands it. Use a zero speed switch with LAT. Using an LAT setting greater than locked rotor time without a zero speed switch temporarily defeats thermal protection and damages the motor if the rotor actually is locked.

If »LAT« is used, check the settings of transition time » TRNT« and jam start delay to be sure they are coordinated with the prolonged starting cycle.

#### Anti-Backspin Delay Time (ABS)


*»ABS«* sets the time in seconds before a motor restart is permitted after a trip or stop condition. This function can be set to *»inactive«*.

This function is used with a motor driving a pump working into a head, or any other load that tends to spin in a reverse direction (backspin) when the motor is de-energized. It blocks starting during the time when the motor might be rotating in reverse following a trip. Also, this function may be used simply to set idle time (time between stop and start) before a restart is permitted.

## Motor Cold Warm Detection

The motor will be considered as cold (»COLD SEQU = TRUE«) after being in the »stop« mode for more than one hour if the time between starts timer is set to a lower value than 1 hour.

Else, the motor will fall back into the »cold« state if the time between starts timer is elapsed. By means of the Emergency Override function, the motor can be forced to switch to the cold state.



# **Emergency Override**

The Emergency Override function can be enabled or disabled in the following menu [Protection Para\Global Prot Para\MStart\Start Control\EMGOVR]. Also it can be determined whether this function can be executed by a DI or by a softkey at the HMI or both.

If enabled, an emergency override can be executed by pushing the *»Emrg Override«* Softkey at the front panel. In any case, an emergency override can be performed by a remote contact connected to any one of the digital inputs programmed as *»EMG OVR«*, or via front panel under [Operations\Reset\EMGOVR] menu. The as-shipped setting is disabled.

Emergency override allows a panic restart of a tripped motor without completely disabling protection. When the override request is received, the thermal-model accumulator bucket is drained to its initial level of 40°C (104°F). Cold starts are fully restored.

The motor protection is now in the state it would be in if the motor had been standing for a long time prior to the moment of the override. This allows an immediate restart of the motor. The override can also delay an impending thermal trip of a running motor. The emergency override action is counted in the history record, and noted with its time tag in the logbook record.

# CAUTION

The emergency override function clears and restarts all protective functions of the protective device. Using this function can damage the motor. Use it only for true emergencies, when it is known what caused the trip. Override permits the risk of motor damage to avoid an even more dangerous process situation caused by the tripping of the motor.

# Global Protection Parameters of the Motor Start Module

| Parameter     | Description                                                                                                                                                                                                                                                    | Setting range   | Default  | Menu path                    |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|------------------------------|
| Reversing     | Reversing or non reversing starter. This                                                                                                                                                                                                                       | inactive,       | inactive | [Field Para                  |
|               | option will affect the sequence current calculations.                                                                                                                                                                                                          | active          |          | /Motor Nominal<br>Values]    |
| lb            | Full load current (amperes). Set to                                                                                                                                                                                                                            | 10 - 6000A      | 10A      | [Field Para                  |
|               | maximum stator continuous RMS current<br>primary (actual motor winding) amperes in<br>each phase. Use motor nameplate or<br>manufacturers data. Note that the ratio<br>Ib/CT prim must lie between 0.25 and 1.5 in<br>order to have reliable motor protection. |                 |          | /Motor Nominal<br>Values]    |
| LRC           | Set to the locked-rotor current (the current                                                                                                                                                                                                                   | 3.00 - 12.00lb  | 3.00lb   | [Field Para                  |
|               | the motor draws when stalled), in times of<br>lb. Use motor nameplate or manufacturers<br>data.                                                                                                                                                                |                 |          | /Motor Nominal<br>Values]    |
| LRTC          | Specifies how long a locked-rotor or stall                                                                                                                                                                                                                     | 1 - 120s        | 1s       | [Field Para                  |
| _             | condition can be maintained before the motor is damaged, in seconds, for a cold                                                                                                                                                                                |                 |          | /Motor Nominal<br>Values]    |
|               | start. Use motor nameplate or manufacturers data.                                                                                                                                                                                                              |                 |          | valuesj                      |
| STPC          | Stop current threshold, in percent of lb, if                                                                                                                                                                                                                   | 0.02 - 0.20lb   | 0.02lb   | [Field Para                  |
| <i>(</i>      | the actual current is below the threshold for<br>at least 300 milliseconds. If a stop state                                                                                                                                                                    |                 |          | /Motor Nominal<br>Values]    |
|               | occurs, the jogging functions Starts per Hour<br>Allowed (SPH), Time Between Starts (TBS)<br>and Anti-Backspin (ABS) are enforced. All<br>phases of the current must be below this<br>level before a stop will be declared.                                    |                 |          | Values                       |
| k-Factor      | The k-Factor is to be calculated by the maximum allowed continuous current over                                                                                                                                                                                | 0.25 - 1.50     | 0.85     | [Field Para                  |
|               | the rated current transformer current (e.g.<br>1.2 times rated motor current over rated<br>transformer current).                                                                                                                                               |                 |          | /Motor Nominal<br>Values]    |
| ExBlo TripCmd | External blocking of the Trip Command of                                                                                                                                                                                                                       | 1n,             |          | [Protection                  |
| $\bigotimes$  | the module/the stage, if blocking is<br>activated (allowed) within a parameter set<br>and if the state of the assigned signal is                                                                                                                               | Assignment List |          | Para<br>/Global Prot<br>Para |
|               | true.                                                                                                                                                                                                                                                          |                 |          | /MStart                      |
|               |                                                                                                                                                                                                                                                                |                 |          | /Start Control]              |

| Parameter      | Description                                                                 | Setting range       | Default     | Menu path            |
|----------------|-----------------------------------------------------------------------------|---------------------|-------------|----------------------|
| RemStartBlo Fc | RemStartBlo Fc                                                              | inactive,<br>active | inactive    | [Protection<br>Para  |
|                |                                                                             | active              |             | /Global Prot<br>Para |
|                |                                                                             |                     |             | /MStart              |
|                |                                                                             |                     |             | /Start Control]      |
| ThermBlo Fc    | ThermBlo Fc                                                                 | inactive,<br>active | inactive    | [Protection<br>Para  |
|                |                                                                             |                     |             | /Global Prot<br>Para |
|                |                                                                             |                     |             | /MStart              |
|                |                                                                             |                     |             | /Start Control]      |
| TRN Criteria   | Start transition criterion                                                  | TRN I,              | TRN T and I | [Protection          |
|                |                                                                             | TRN TIME,           |             | Para                 |
|                |                                                                             | TRN T and I,        |             | /Global Prot<br>Para |
|                |                                                                             | TRN T or I          |             | /MStart              |
|                |                                                                             |                     |             | /Start Control]      |
| TRNT           | Motor start transition time limit                                           | 0 - 1200s           | 10s         | [Protection<br>Para  |
|                | Only available if: TRN Criteria = TRN T and I<br>Or TRN Criteria = TRN TIME |                     |             | /Global Prot<br>Para |
|                |                                                                             |                     |             | /MStart              |
|                |                                                                             |                     |             | /Start Control]      |
| TRNC           | Motor start transitions current level in Ib%                                | 0.10 - 3.00lb       | 1.30lb      | [Protection<br>Para  |
|                | Only available if: TRN Criteria = TRN T and I<br>Or TRN Criteria = TRN I    |                     |             | /Global Prot<br>Para |
|                |                                                                             |                     |             | /MStart              |
|                |                                                                             |                     |             | /Start Control]      |
| NOCS           | Number of cold starts limit                                                 | 1 - 5               | 1           | [Protection<br>Para  |
|                |                                                                             |                     |             | /Global Prot<br>Para |
|                |                                                                             |                     |             | /MStart              |
|                |                                                                             |                     |             | /Start Control]      |
| TBS Fc         | Time Between Starts on/off                                                  | inactive,<br>active | inactive    | [Protection<br>Para  |
|                |                                                                             |                     |             | /Global Prot<br>Para |
|                |                                                                             |                     |             | /MStart              |
|                |                                                                             |                     |             | /Start Control]      |

| Parameter          | Description                                    | Setting range                | Default  | Menu path            |
|--------------------|------------------------------------------------|------------------------------|----------|----------------------|
| TBS Timer          | Time Between Starts Limit                      | 1 - 240min                   | 60min    | [Protection<br>Para  |
|                    | Only available if: TBS Fc = active             |                              |          | /Global Prot<br>Para |
|                    |                                                |                              |          | /MStart              |
|                    |                                                |                              |          | /Start Control]      |
| SPH Fc             | Starts Per Hour                                | inactive,<br>active          | inactive | [Protection<br>Para  |
|                    |                                                |                              |          | /Global Prot<br>Para |
|                    |                                                |                              |          | /MStart              |
|                    |                                                |                              |          | /Start Control]      |
| SPH                | SPH                                            | 1 - 10                       | 1        | [Protection<br>Para  |
|                    | Only available if: SPH Fc = active             |                              |          | /Global Prot<br>Para |
|                    |                                                |                              |          | /MStart              |
|                    |                                                |                              |          | /Start Control]      |
| INSQReportFro<br>m | INcomplete SeQuence report time starting point | inactive,<br>InSq Start2Run, | inactive | [Protection<br>Para  |
|                    |                                                | InSq Stop2Start              |          | /Global Prot<br>Para |
|                    |                                                |                              |          | /MStart              |
|                    |                                                |                              |          | /Start Control]      |
| INSQReportTim<br>e | INSQ Report back time                          | 1 - 240s                     | 1s       | [Protection<br>Para  |
|                    | Only available if: INSQReportFrom = active     |                              |          | /Global Prot<br>Para |
|                    |                                                |                              |          | /MStart              |
|                    |                                                |                              |          | /Start Control]      |
| LAT Fc             | Long Time Acceleration Timer                   | inactive,<br>active          | inactive | [Protection<br>Para  |
| $\bigotimes$       |                                                |                              |          | /Global Prot<br>Para |
|                    |                                                |                              |          | /MStart              |
|                    |                                                |                              |          | /Start Control]      |

| Parameter     | Description                                                                                                                                                                                                                                                                                                                                                                                   | Setting range                         | Default  | Menu path                                                                 |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|---------------------------------------------------------------------------|
| LAT Timer     | Large motors with a high inertia may<br>experience starting currents that exceed the<br>locked rotor current and time. The<br>protective relay has logic and provisions for<br>a zero speed switch input to differentiate<br>between a stall and start condition. If the<br>motor is spinning then the relay will not trip<br>on the normal locked rotor time allowing the<br>motor to start. | 1 - 1200s                             | 1200s    | [Protection<br>Para<br>/Global Prot<br>Para<br>/MStart<br>/Start Control] |
|               | Only available if: LAT $Fc = active$                                                                                                                                                                                                                                                                                                                                                          |                                       |          |                                                                           |
| ABS Fc        | For certain applications, such as pumping a<br>fluid up a pipe, the motor may be driven<br>backward for a period of time after it stops.<br>The protective relay provides an anti-<br>backspin timer to prevent starting the motor<br>while it is spinning in the reverse direction.<br>The timer begins counting from the moment<br>a stop is declared by the relay.                         | inactive,<br>active                   | inactive | [Protection<br>Para<br>/Global Prot<br>Para<br>/MStart<br>/Start Control] |
| ABS Timer     | For certain applications, such as pumping a<br>fluid up a pipe, the motor may be driven<br>backward for a period of time after it stops.<br>The protective relay provides an anti-<br>backspin timer to prevent starting the motor<br>while it is spinning in the reverse direction.<br>The timer begins counting from the moment<br>a stop is declared by the relay.                         | 1 - 3600s                             | 3600s    | [Protection<br>Para<br>/Global Prot<br>Para<br>/MStart<br>/Start Control] |
| 700           | Only available if: ABS Fc = active                                                                                                                                                                                                                                                                                                                                                            |                                       |          | [Ducto at ] and                                                           |
| ZSS           | Zero Speed Switch                                                                                                                                                                                                                                                                                                                                                                             | inactive,                             | inactive | [Protection<br>Para                                                       |
|               |                                                                                                                                                                                                                                                                                                                                                                                               | active                                |          | /Global Prot<br>Para<br>/MStart<br>/Start Control]                        |
| EmgOvr        | Emergency override options. Signal has to<br>be active in order to release the thermal<br>capacity of the motor. Please notice that by<br>doing this you run the risk of damaging the<br>motor. "EMGOVR" has to be set to "DI" or<br>"DI or UI" for this input to take effect.                                                                                                                | inactive,<br>DI,<br>HMI,<br>DI or HMI | inactive | [Protection<br>Para<br>/Global Prot<br>Para<br>/MStart<br>/Start Control] |
| RemStartBlock | Remote Motor Start Blocking<br>Only available if: RemStartBlo Fc = active                                                                                                                                                                                                                                                                                                                     | 1n, Dig Inputs                        |          | [Protection<br>Para<br>/Global Prot<br>Para<br>/MStart                    |
|               |                                                                                                                                                                                                                                                                                                                                                                                               |                                       |          | /Motor Inputs]                                                            |

| Parameter | Description                                                                                                                                                                                                                      | Setting range  | Default | Menu path                                   |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|---------------------------------------------|
| EmgOvr    | Emergency Override. Signal has to be active<br>in order to release the thermal capacity of<br>the motor. Please notice that by doing this<br>you run the risk of damaging the motor.<br>"EMGOVR" has to be set to "DI" or "DI or | 1n, Dig Inputs |         | [Protection<br>Para<br>/Global Prot<br>Para |
| -         | UI" for this input to take effect                                                                                                                                                                                                |                |         | /MStart                                     |
|           |                                                                                                                                                                                                                                  |                |         | /Motor Inputs]                              |
| INSQ      | INcomplete SeQuence                                                                                                                                                                                                              | 1n, Dig Inputs |         | [Protection<br>Para                         |
|           | Only available if: INSQReportFrom = active                                                                                                                                                                                       |                |         | /Global Prot<br>Para                        |
|           |                                                                                                                                                                                                                                  |                |         | /MStart                                     |
|           |                                                                                                                                                                                                                                  |                |         | /Motor Inputs]                              |
| ZSS       | Zero Speed Switch                                                                                                                                                                                                                | 1n, Dig Inputs |         | [Protection<br>Para                         |
|           | Only available if: ZSS = active                                                                                                                                                                                                  |                |         | /Global Prot<br>Para                        |
|           |                                                                                                                                                                                                                                  |                |         | /MStart                                     |
|           |                                                                                                                                                                                                                                  |                |         | /Motor Inputs]                              |
| STPC Blo  | With this setting a Digital Input keeps the<br>Motor in the RUN mode, even when the                                                                                                                                              | 1n, Dig Inputs |         | [Protection<br>Para                         |
|           | motor current drops below STPC (motor stop current).                                                                                                                                                                             |                |         | /Global Prot<br>Para                        |
|           |                                                                                                                                                                                                                                  |                |         | /MStart                                     |
|           |                                                                                                                                                                                                                                  |                |         | /Motor Inputs]                              |
| t-Blo-IOC | Phase Overcurrent Start Delay.Phase<br>Overcurrent elements are blocked for the                                                                                                                                                  | 0.03 - 1.00s   | 0.05s   | [Protection<br>Para                         |
|           | time programmed under this parameter,<br>while the motor is starting.                                                                                                                                                            |                |         | /Global Prot<br>Para                        |
|           |                                                                                                                                                                                                                                  |                |         | /MStart                                     |
|           |                                                                                                                                                                                                                                  |                |         | /Start Delay<br>Timer]                      |
| t-Blo-GOC | Ground Overcurrent Start Delay. Ground Overcurrent elements are blocked for the                                                                                                                                                  | 0.03 - 1.00s   | 0.08s   | [Protection<br>Para                         |
|           | time programmed under this parameter,<br>while the motor is starting                                                                                                                                                             |                |         | /Global Prot<br>Para                        |
|           |                                                                                                                                                                                                                                  |                |         | /MStart                                     |
|           |                                                                                                                                                                                                                                  |                |         | /Start Delay<br>Timer]                      |

| Parameter              | Description                                                                                                                       | Setting range   | Default | Menu path                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|---------------------------------------------|
| t-Blo-I<               | Underload Start Delay. 37[x] elements are<br>blocked for the time programmed under this<br>parameter, while the motor is starting | 0 - 1200s       | 60s     | [Protection<br>Para<br>/Global Prot<br>Para |
|                        |                                                                                                                                   |                 |         | /MStart                                     |
|                        |                                                                                                                                   |                 |         | /Mstart<br>/Start Delay<br>Timer]           |
| t-Blo-I2>              | Current Unbalance Start Delay. 46[x]<br>elements are blocked for the time                                                         | 0.03 - 1200.00s | 10.00s  | [Protection<br>Para                         |
|                        | programmed under this parameter, while the motor is starting                                                                      |                 |         | /Global Prot<br>Para                        |
|                        |                                                                                                                                   |                 |         | /MStart                                     |
|                        |                                                                                                                                   |                 |         | /Start Delay<br>Timer]                      |
| t-Blo-JAM              | Jam Start Delay. 50J[x] elements are<br>blocked for the time programmed under this                                                | 0.03 - 1200.00s | 60.00s  | [Protection<br>Para                         |
| $\bigotimes$           | parameter, while the motor is starting                                                                                            |                 |         | /Global Prot<br>Para                        |
|                        |                                                                                                                                   |                 |         | /MStart                                     |
|                        |                                                                                                                                   |                 |         | /Start Delay<br>Timer]                      |
| t-Blo-U2>              | Voltage Unbalance Start Delay. These elements are blocked for the time                                                            | 0 - 1200s       | 1s      | [Protection<br>Para                         |
|                        | programmed under this parameter, while the motor is starting.                                                                     |                 |         | /Global Prot<br>Para                        |
|                        |                                                                                                                                   |                 |         | /MStart                                     |
|                        |                                                                                                                                   |                 |         | /Start Delay<br>Timer]                      |
| t-Blo-<br>Undervoltage | Undervoltage Start Delay. These elements are blocked for the time programmed under                                                | 0 - 1200s       | 1s      | [Protection<br>Para                         |
|                        | this parameter, while the motor is starting                                                                                       |                 |         | /Global Prot<br>Para                        |
|                        |                                                                                                                                   |                 |         | /MStart                                     |
|                        |                                                                                                                                   |                 |         | /Start Delay<br>Timer]                      |
| t-Blo-<br>Overvoltage  | Overvoltage Start Delay. These elements are blocked for the time programmed under                                                 | 0 - 1200s       | 1s      | [Protection<br>Para                         |
|                        | this parameter, while the motor is starting                                                                                       |                 |         | /Global Prot<br>Para                        |
|                        |                                                                                                                                   |                 |         | /MStart                                     |
|                        |                                                                                                                                   |                 |         | /Start Delay<br>Timer]                      |

| Parameter             | Description                                                                                                                   | Setting range   | Default | Menu path                                   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|---------------------------------------------|
| t-Blo-Power           | Power Start Delay. These elements are<br>blocked for the time programmed under this<br>parameter, while the motor is starting | 0.03 - 1200.00s | 0.03s   | [Protection<br>Para<br>/Global Prot<br>Para |
|                       |                                                                                                                               |                 |         | /MStart<br>/Start Delay                     |
| t-Blo-<br>PowerFactor | Power Factor Start Delay. These elements                                                                                      | 0.03 - 1200.00s | 0.03s   | Timer]<br>[Protection<br>Para               |
|                       | are blocked for the time programmed under<br>this parameter, while the motor is starting                                      |                 |         | /Global Prot<br>Para                        |
|                       |                                                                                                                               |                 |         | /MStart                                     |
|                       |                                                                                                                               |                 |         | /Start Delay<br>Timer]                      |
| t-Blo-Frequency       | Frequency Start Delay. These elements are blocked for the time programmed under this                                          | 0 - 1200s       | 1s      | [Protection<br>Para                         |
|                       | parameter, while the motor is starting                                                                                        |                 |         | /Global Prot<br>Para                        |
|                       |                                                                                                                               |                 |         | /MStart                                     |
|                       |                                                                                                                               |                 |         | /Start Delay<br>Timer]                      |
| t-Blo-Generic1        | t-Blo-Generic1                                                                                                                | 0 - 1200s       | 0s      | [Protection<br>Para                         |
|                       |                                                                                                                               |                 |         | /Global Prot<br>Para                        |
|                       |                                                                                                                               |                 |         | /MStart                                     |
|                       |                                                                                                                               |                 |         | /Start Delay<br>Timer]                      |
| t-Blo-Generic2        | t-Blo-Generic2                                                                                                                | 0 - 1200s       | 0s      | [Protection<br>Para                         |
|                       |                                                                                                                               |                 |         | /Global Prot<br>Para                        |
|                       |                                                                                                                               |                 |         | /MStart                                     |
|                       |                                                                                                                               |                 |         | /Start Delay<br>Timer]                      |
| t-Blo-Generic3        | t-Blo-Generic3                                                                                                                | 0 - 1200s       | 0s      | [Protection<br>Para                         |
|                       |                                                                                                                               |                 |         | /Global Prot<br>Para                        |
|                       |                                                                                                                               |                 |         | /MStart                                     |
|                       |                                                                                                                               |                 |         | /Start Delay<br>Timer]                      |

#### **Protective Elements**

| Parameter      | Description    | Setting range | Default | Menu path              |
|----------------|----------------|---------------|---------|------------------------|
| t-Blo-Generic4 | t-Blo-Generic4 | 0 - 1200s     | 0s      | [Protection<br>Para    |
|                |                |               |         | /Global Prot<br>Para   |
|                |                |               |         | /MStart                |
|                |                |               |         | /Start Delay<br>Timer] |
| t-Blo-Generic5 | t-Blo-Generic5 | 0 - 1200s     | 0s      | [Protection<br>Para    |
| $\bigotimes$   |                |               |         | /Global Prot<br>Para   |
|                |                |               |         | /MStart                |
|                |                |               |         | /Start Delay<br>Timer] |

# Motor Start Module Input States

| Name            | Description                                                                                                                                                  | Assignment via    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip                                                                                                            | [Protection Para  |
|                 | Command                                                                                                                                                      | /Global Prot Para |
|                 |                                                                                                                                                              | /MStart           |
|                 |                                                                                                                                                              | /Start Control]   |
| RemStartBlock-I | Blocking                                                                                                                                                     | [Protection Para  |
|                 |                                                                                                                                                              | /Global Prot Para |
|                 |                                                                                                                                                              | /MStart           |
|                 |                                                                                                                                                              | /Motor Inputs]    |
| EmgOvr-l        | State of the module input: Emergency Override.                                                                                                               | [Protection Para  |
|                 | Signal has to be active in order to release the thermal capacity of the motor. Please notice that by                                                         | /Global Prot Para |
|                 | doing this you run the risk of damaging the motor.<br>"EMGOVR" has to be set to "DI" or "DI or UI" for this<br>input to take effect                          | /MStart           |
|                 |                                                                                                                                                              | /Motor Inputs]    |
| INSQ-I          | State of the module input: INcomplete SeQuence                                                                                                               | [Protection Para  |
|                 |                                                                                                                                                              | /Global Prot Para |
|                 |                                                                                                                                                              | /MStart           |
|                 |                                                                                                                                                              | /Motor Inputs]    |
| ZSS-I           | State of the module input: Zero Speed Switch                                                                                                                 | [Protection Para  |
|                 |                                                                                                                                                              | /Global Prot Para |
|                 |                                                                                                                                                              | /MStart           |
|                 |                                                                                                                                                              | /Motor Inputs]    |
| STPC Blo-I      | State of the module input: With this setting a Digital<br>Input keeps the Motor in the RUN mode, even when<br>the motor current drops below STPC (motor stop | [Protection Para  |
|                 |                                                                                                                                                              | /Global Prot Para |
|                 | current).                                                                                                                                                    | /MStart           |
|                 |                                                                                                                                                              | /Motor Inputs]    |

# Motor Start Module Signals (Output States)

| Signal                                                                                                                                                                      | Description                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| active                                                                                                                                                                      | Signal: active                                                                                                                                                                                                                                                         |
| Blo TripCmd                                                                                                                                                                 | Signal: Trip Command blocked                                                                                                                                                                                                                                           |
| Trip                                                                                                                                                                        | Signal: Trip                                                                                                                                                                                                                                                           |
| TripCmd                                                                                                                                                                     | Signal: Trip Command                                                                                                                                                                                                                                                   |
| Start                                                                                                                                                                       | Signal: Motor is in start mode                                                                                                                                                                                                                                         |
| Run                                                                                                                                                                         | Signal: Motor is in run mode                                                                                                                                                                                                                                           |
| Stop                                                                                                                                                                        | Signal: Motor is in stop mode                                                                                                                                                                                                                                          |
| Blo                                                                                                                                                                         | Signal: Motor is blocked for starting or transition to Run mode                                                                                                                                                                                                        |
| NOCSBlocked                                                                                                                                                                 | Signal: Motor is prohibited to start due to number of cold start limits                                                                                                                                                                                                |
| SPHBlocked                                                                                                                                                                  | Signal: Motor is prohibited to start due to starts per hour limits                                                                                                                                                                                                     |
| SPHBlockAlarm                                                                                                                                                               | Signal: Motor is prohibited to start due to starts per hour limits, would come active in the next stop                                                                                                                                                                 |
| TBSBlocked                                                                                                                                                                  | Signal: Motor is prohibited to start due to time between starts limits                                                                                                                                                                                                 |
| ThermalBlo                                                                                                                                                                  | Signal: Thermal block                                                                                                                                                                                                                                                  |
| RemBlockStart                                                                                                                                                               | Signal: Motor is prohibited to start due to external blocking through digital input DI                                                                                                                                                                                 |
| TransitionTrip                                                                                                                                                              | Signal: Start transition fail trip                                                                                                                                                                                                                                     |
| ZSSTrip                                                                                                                                                                     | Signal: Zero speed trip (possible locked rotor)                                                                                                                                                                                                                        |
| INSQSP2STFaill                                                                                                                                                              | Signal: Fail to transit from stop to start based on reported back time                                                                                                                                                                                                 |
| INSQSt2RunFail                                                                                                                                                              | Signal: Fail to transit from start to run based on reported back time                                                                                                                                                                                                  |
| LATBlock                                                                                                                                                                    | Signal: Long acceleration timer enforced                                                                                                                                                                                                                               |
| ColdStartSeq                                                                                                                                                                | Signal: Motor cold start sequence flag                                                                                                                                                                                                                                 |
| ForcedStart                                                                                                                                                                 | Signal: Motor being forced to start                                                                                                                                                                                                                                    |
| TripPhaseReverse                                                                                                                                                            | Signal: Relay tripped because of phase reverse detection                                                                                                                                                                                                               |
| EmergOverrideDI                                                                                                                                                             | Signal: Emergency override start blocking through digital input DI                                                                                                                                                                                                     |
| EmergOverrideUI                                                                                                                                                             | Signal: Emergency override start blocking through front panel                                                                                                                                                                                                          |
| ABSActive                                                                                                                                                                   | Signal: Anti-backspin is active. For certain applications, such as pumping a fluid up a pipe, the motor may be driven backward for a period of time after it stops. The anti-backspin timer prevents starting the motor while it is spinning in the reverse direction. |
| Blo-GOCStart                                                                                                                                                                | Signal: Ground Instantaneous Overcurrent Start Delay. GOC (Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter                                                                                                                |
| Blo-IOCStart                                                                                                                                                                | Signal: Phase Instantaneous Overcurrent Start Delay. IOC (Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter                                                                                                                 |
| Blo-I <start< td=""><td>Signal: Underload Start Delay. Underload(Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter</td></start<> | Signal: Underload Start Delay. Underload(Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter                                                                                                                                  |
| Blo-JamStart                                                                                                                                                                | Signal: JAM Start Delay. JAM(Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter                                                                                                                                              |
| Blo-I2>Start                                                                                                                                                                | Signal: Motor start block current unbalance signal                                                                                                                                                                                                                     |

| Signal            | Description                                                                                                      |
|-------------------|------------------------------------------------------------------------------------------------------------------|
| Blo-Generic1      | Generic Start Delay. This value can be used to block any protective element.1                                    |
| Blo-Generic2      | Generic Start Delay. This value can be used to block any protective element.2                                    |
| Blo-Generic3      | Generic Start Delay. This value can be used to block any protective element.3                                    |
| Blo-Generic4      | Generic Start Delay. This value can be used to block any protective element.4                                    |
| Blo-Generic5      | Generic Start Delay. This value can be used to block any protective element.5                                    |
| I_Transit         | Signal: Current transition signal                                                                                |
| T_Transit         | Signal: Time transition signal                                                                                   |
| MotorStopBlo      | Signal: Motor stop block other protection functions                                                              |
| Rotating forward  | Signal: Rotation Direction forward                                                                               |
| Rotating backward | Signal: Rotation Direction reverse                                                                               |
| Blo-U2>           | Signal: Motor start block voltage unbalance signal.                                                              |
| Blo-UnderV Start  | Signal: Undervoltage Start Delay. Undervoltage elements are blocked for the time programmed under this parameter |
| Block-OverVStart  | Signal: Overvoltage Start Delay. Overvoltage elements are blocked for the time programmed under this parameter   |
| Blo-PowerStart    | Signal: Power Start Delay. Power elements are blocked for the time programmed under this parameter               |
| Blo-PFacStart     | Signal: Power Factor Start Delay. Power Factor elements are blocked for the time programmed under this parameter |
| Blo-FrqStart      | Signal: Frequency Start Delay. Frequency elements are blocked for the time programmed under this parameter       |

# Direct Commands of the Motor Start Module

| Parameter      | Description                              | Setting range | Default  | Menu path                  |
|----------------|------------------------------------------|---------------|----------|----------------------------|
| EmergOverHMI   | Emergency override through front display | inactive,     | inactive | [Operation                 |
| $\otimes$      | Only available if: EmgOvr = active       | active        |          | /<br>Reset/Acknowle<br>dge |
|                |                                          |               |          | /EmgOvr]                   |
| RstForcedStart | Reset Forced Start flag                  | inactive,     | inactive | [Operation                 |
| $\otimes$      |                                          | active        |          | /<br>Reset/Acknowle<br>dge |
|                |                                          |               |          | /Reset]                    |

### Motor Start Module Counter Values

| Value           | Description                                                                                                                                                                                                                          | Default | Size                      | Menu path                                       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------|-------------------------------------------------|
| WaitTimeStarts  | Wait time between starts remained                                                                                                                                                                                                    | 0s      | 0 -<br>999999999999       | [Operation<br>/Measured Values<br>/Motor]       |
| ColdStartPermit | Number of cold starts remaining                                                                                                                                                                                                      | 0       | 0 -<br>99999999999        | [Operation<br>/Measured Values<br>/Motor]       |
| StartPerHour    | StartPerHour                                                                                                                                                                                                                         | 0       | 0 -<br>999999999999       | [Operation<br>/Measured Values<br>/Motor]       |
| SPH Release     | In case that the Motor is blocked by a<br>SPH blocking, this timer needs to be<br>expired before the blocking is released<br>and the next motor start is permitted.<br>The next Motor Start will increment the<br>SPH counter again. | 0min    | 0 -<br>99999999999<br>min | [Operation<br>/Measured Values<br>/Motor]       |
| AntiBackSpin    | Anti-BackspinTimer                                                                                                                                                                                                                   | 0s      | 0 -<br>999999999999       | [Operation<br>/Measured Values<br>/Motor]       |
| IL1 Ib          | Measured value: Phase current as multiple of Ib                                                                                                                                                                                      | Olb     | 0 - 1000lb                | [Operation<br>/Measured Values<br>/Current RMS] |
| IL2 lb          | Measured value: Phase current as multiple of Ib                                                                                                                                                                                      | Olb     | 0 - 1000lb                | [Operation<br>/Measured Values<br>/Current RMS] |
| IL3 lb          | Measured value: Phase current as multiple of Ib                                                                                                                                                                                      | Olb     | 0 - 1000lb                | [Operation<br>/Measured Values<br>/Current RMS] |
| 13 P (%lb) avg  | Average RMS current of all 3 phases as percentages of lb                                                                                                                                                                             | Olb     | 0 - 1000lb                | [Operation<br>/Measured Values<br>/Current RMS] |
| OCNT            | Motor Operation count since last reset.                                                                                                                                                                                              | 0       | 0 - 65535                 | [Operation<br>/History<br>/OperationsCr]        |

| Value         | Description                                                                                                                | Default | Size              | Menu path                                |
|---------------|----------------------------------------------------------------------------------------------------------------------------|---------|-------------------|------------------------------------------|
| HighestStartI | Highest starting phase current. The<br>time stamp indicates the point in time<br>when the maximum current has<br>occurred. | 0A      | 0 -<br>999999999A | [Operation<br>/History<br>/OperationsCr] |
| HighestRunI   | Highest running phase current. The<br>time stamp indicates the point in time<br>when the maximum current has<br>occurred.  | 0A      | 0 - 999999A       | [Operation<br>/History<br>/OperationsCr] |
| nEmrgOvr      | Number of emergency overrides since last reset.                                                                            | 0       | 0 - 65535         | [Operation<br>/History<br>/OperationsCr] |
| nISQT         | Number of incomplete sequence trips since last reset.                                                                      | 0       | 0 - 65535         | [Operation<br>/History<br>/TripCmdCr]    |
| nSPHBlocks    | Number of start per hour blocks since last reset.                                                                          | 0       | 0 - 65535         | [Operation<br>/History<br>/TripCmdCr]    |
| nTBSBlocks    | Number of time between start blocks since last reset.                                                                      | 0       | 0 - 65535         | [Operation<br>/History<br>/TripCmdCr]    |
| nTRNTrips     | Number of transition trips since last reset.                                                                               | 0       | 0 - 65535         | [Operation<br>/History<br>/TripCmdCr]    |
| nZSWTrips     | Number of zero speed switch trips since last reset.                                                                        | 0       | 0 - 65535         | [Operation<br>/History<br>/TripCmdCr]    |
| nRevTrips     | Number of reverse spinning trips since last reset.                                                                         | 0       | 0 - 65535         | [Operation<br>/History<br>/TripCmdCr]    |
| TOCS          | Total Motor Operation count since last reset.                                                                              | 0       | 0 - 65535         | [Operation<br>/History<br>/TotalCr]      |

### Motor Start Module Values

| Description                                                                                                                           | Menu path                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Average RMS current of all 3 phases                                                                                                   | [Operation                                                                                                                                                                                                              |
|                                                                                                                                       | /Measured Values                                                                                                                                                                                                        |
|                                                                                                                                       | /Current RMS]                                                                                                                                                                                                           |
| Motor Operation time since last reset.                                                                                                | [Operation                                                                                                                                                                                                              |
|                                                                                                                                       | /History                                                                                                                                                                                                                |
|                                                                                                                                       | /OperationsCr]                                                                                                                                                                                                          |
| Highest %I2/I1 value since last reset. The time stamp<br>indicates the point in time when the maximum<br>unbalanced load has occurred | [Operation                                                                                                                                                                                                              |
|                                                                                                                                       | /History                                                                                                                                                                                                                |
|                                                                                                                                       | /OperationsCr]                                                                                                                                                                                                          |
|                                                                                                                                       |                                                                                                                                                                                                                         |
| Motor Operation (Motor run time) time since last                                                                                      | [Operation                                                                                                                                                                                                              |
| reset.                                                                                                                                | /History                                                                                                                                                                                                                |
|                                                                                                                                       | /TotalCr]                                                                                                                                                                                                               |
|                                                                                                                                       | Average RMS current of all 3 phases<br>Motor Operation time since last reset.<br>Highest %I2/I1 value since last reset. The time stamp<br>indicates the point in time when the maximum<br>unbalanced load has occurred. |

# Motor Start Module Statistics

| Value      | Description                         | Menu path        |
|------------|-------------------------------------|------------------|
| IL1 max lb | IL1 maximum value as multiple of Ib | [Operation       |
|            |                                     | /Statistics      |
|            |                                     | /Max             |
|            |                                     | /Current]        |
| IL1 avg Ib | IL1 average value as multiple of lb | [Operation       |
|            |                                     | /Statistics      |
|            |                                     | /Demand          |
|            |                                     | /Current Demand] |
| IL1 min Ib | IL1 minimum value as multiple of Ib | [Operation       |
|            |                                     | /Statistics      |
|            |                                     | /Min             |
|            |                                     | /Current]        |
| IL2 max lb | IL2 maximum value as multiple of Ib | [Operation       |
|            |                                     | /Statistics      |
|            |                                     | /Max             |
|            |                                     | /Current]        |
| IL2 avg lb | IL2 average value as multiple of lb | [Operation       |
|            |                                     | /Statistics      |
|            |                                     | /Demand          |
|            |                                     | /Current Demand] |

| Value          | Description                                       | Menu path        |
|----------------|---------------------------------------------------|------------------|
| IL2 min Ib     | IL2 minimum value as multiple of Ib               | [Operation       |
|                |                                                   | /Statistics      |
|                |                                                   | /Min             |
|                |                                                   | /Current]        |
| IL3 max lb     | IL3 maximum value as multiple of lb               | [Operation       |
|                |                                                   | /Statistics      |
|                |                                                   | /Max             |
|                |                                                   | /Current]        |
| IL3 avg Ib     | IL3 average value as multiple of Ib               | [Operation       |
|                |                                                   | /Statistics      |
|                |                                                   | /Demand          |
|                |                                                   | /Current Demand] |
| IL3 min Ib     | IL3 minimum value as multiple of Ib               | [Operation       |
|                |                                                   | /Statistics      |
|                |                                                   | /Min             |
|                |                                                   | /Current]        |
| I3P Fla Demand | RMS current of all 3 phases calculated in a fixed | [Operation       |
|                | demand window as percentages of lb                | /Statistics      |
|                |                                                   | /Demand          |
|                |                                                   | /Current Demand] |

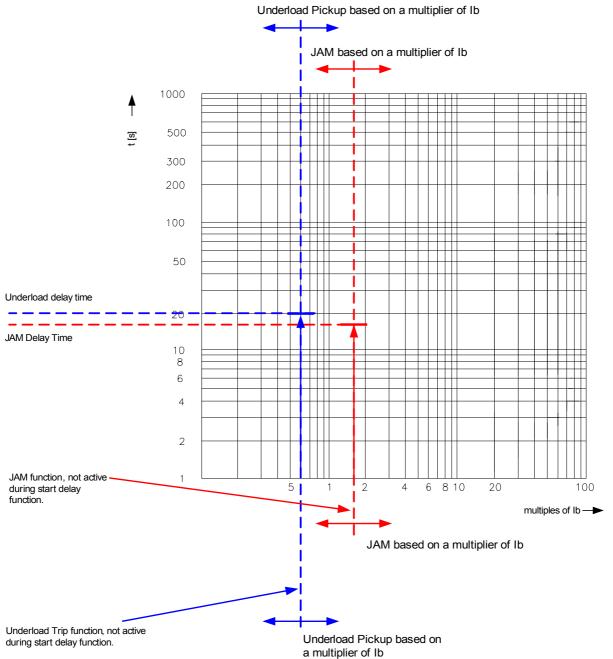
# Protection elements that might be blocked by the Motor Start Module

These protection elements can be blocked during the motor start.

| Name                                                                                                                                                                               | Description                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                    | No assignment                                                                                                                                           |
| MStart.Blo-GOCStart                                                                                                                                                                | Signal: Ground Instantaneous Overcurrent Start Delay. GOC (Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter |
| MStart.Blo-IOCStart                                                                                                                                                                | Signal: Phase Instantaneous Overcurrent Start Delay. IOC (Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter  |
| MStart.Blo-I <start< td=""><td>Signal: Underload Start Delay. Underload(Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter</td></start<> | Signal: Underload Start Delay. Underload(Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter                   |
| MStart.Blo-JamStart                                                                                                                                                                | Signal: JAM Start Delay. JAM(Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter                               |
| MStart.Blo-I2>Start                                                                                                                                                                | Signal: Motor start block current unbalance signal                                                                                                      |
| MStart.Blo-Generic1                                                                                                                                                                | Generic Start Delay. This value can be used to block any protective element.1                                                                           |
| MStart.Blo-Generic2                                                                                                                                                                | Generic Start Delay. This value can be used to block any protective element.2                                                                           |
| MStart.Blo-Generic3                                                                                                                                                                | Generic Start Delay. This value can be used to block any protective element.3                                                                           |
| MStart.Blo-Generic4                                                                                                                                                                | Generic Start Delay. This value can be used to block any protective element.4                                                                           |
| MStart.Blo-Generic5                                                                                                                                                                | Generic Start Delay. This value can be used to block any protective element.5                                                                           |

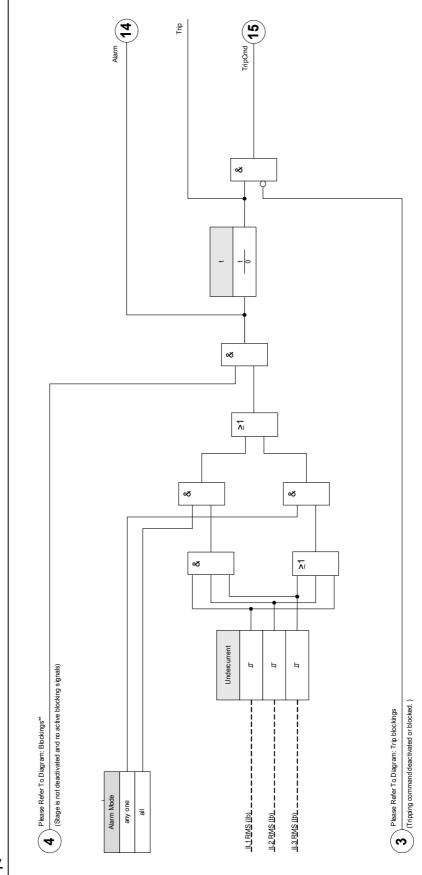
| Name                    | Description                                                                                                      |
|-------------------------|------------------------------------------------------------------------------------------------------------------|
| MStart.Blo-U2>          | Signal: Motor start block voltage unbalance signal.                                                              |
| MStart.Blo-UnderV Start | Signal: Undervoltage Start Delay. Undervoltage elements are blocked for the time programmed under this parameter |
| MStart.Block-OverVStart | Signal: Overvoltage Start Delay. Overvoltage elements are blocked for the time programmed under this parameter   |
| MStart.Blo-PowerStart   | Signal: Power Start Delay. Power elements are blocked for the time programmed under this parameter               |
| MStart.Blo-PFacStart    | Signal: Power Factor Start Delay. Power Factor elements are blocked for the time programmed under this parameter |
| MStart.Blo-FrqStart     | Signal: Frequency Start Delay. Frequency elements are blocked for the time programmed under this parameter       |

### I< - Undercurrent [37]


Available Elements: <u>I<[1]</u>,I<[2],I<[3]

#### **Functional Description**

When the motor is running, a current reduction might indicate a malfunction in the load. <u>Underload</u> protection recognizes mechanical problems, such as a blocked flow or loss of back pressure in a pump, or a broken drive belt or drive shaft.


Refer to the underload protection limit - the left vertical line in the "Underload and Jam Trip Function example". In the example, the underload trip is set at 60% of Ib (FLA). The protective device can be configured for underload alarm (if the trip command is blocked) and underload trip.

#### Underload and JAM Trip Function



These would be represented by two such vertical lines, both below the normal load current. Be sure to set the

alarm level *above* the trip level. Each element has its own delay timer. Use the start delay to block tripping until the load stabilizes after a start. Use run delays to avoid nuisance alarms or trips for load transients.



<u>v</u>

DOK-HB-MRMV4-2E

# Device Planning Parameters of the Underload Module

| Parameter | Description | Options     | Default              | Menu path         |
|-----------|-------------|-------------|----------------------|-------------------|
| Mode      | Mode        | do not use, | I<[1]: use           | [Device planning] |
|           |             | use         | I<[2]: do not<br>use |                   |
|           |             |             | I<[3]: do not<br>use |                   |

### Global Protection Parameters of the Underload Module

| Parameter              | Description                                                                                                                                          | Setting range          | Default                                                               | Menu path            |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------|----------------------|
| ExBlo1                 | External blocking of the module, if blocking<br>is activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true. | 1n,<br>Assignment List |                                                                       | [Protection<br>Para  |
|                        |                                                                                                                                                      |                        |                                                                       | /Global Prot<br>Para |
|                        |                                                                                                                                                      |                        |                                                                       | /Underload-Prot      |
|                        |                                                                                                                                                      |                        |                                                                       | /I<[1]]              |
| ExBlo2                 | External blocking of the module, if blocking is activated (allowed) within a parameter set                                                           | 1n,<br>Assignment List |                                                                       | [Protection<br>Para  |
|                        | and if the state of the assigned signal is true.                                                                                                     |                        |                                                                       | /Global Prot<br>Para |
|                        |                                                                                                                                                      |                        |                                                                       | /Underload-Prot      |
|                        |                                                                                                                                                      |                        |                                                                       | /I<[1]]              |
| ExBlo dur.<br>Mot.Strt | External blocking of the module, if the state of the assigned signal is true. This way it is                                                         | 1n, Trip Cmds          | MStart.Blo-<br>I <start< td=""><td>[Protection<br/>Para</td></start<> | [Protection<br>Para  |
|                        | possible to block the module during the motor start phase.                                                                                           |                        |                                                                       | /Global Prot<br>Para |
|                        |                                                                                                                                                      |                        |                                                                       | /Underload-Prot      |
|                        |                                                                                                                                                      |                        |                                                                       | /I<[1]]              |
| ExBlo TripCmd          | External blocking of the Trip Command of the module/the stage, if blocking is                                                                        | 1n,<br>Assignment List |                                                                       | [Protection<br>Para  |
|                        | activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true.                                                    |                        |                                                                       | /Global Prot<br>Para |
|                        |                                                                                                                                                      |                        |                                                                       | /Underload-Prot      |
|                        |                                                                                                                                                      |                        |                                                                       | /I<[1]]              |

# Setting Group Parameters of the Underload Module

| Parameter           | Description                                                                                    | Setting range       | Default  | Menu path           |
|---------------------|------------------------------------------------------------------------------------------------|---------------------|----------|---------------------|
| Function            | Permanent activation or deactivation of module/stage.                                          | inactive,           | inactive | [Protection<br>Para |
| $\frown$            | mouule, stage.                                                                                 | active              |          | /<14>               |
| $\bigotimes$        |                                                                                                |                     |          | /Underload-Prot     |
|                     |                                                                                                |                     |          | /I<[1]]             |
| ExBlo Fc            | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This                | inactive,<br>active | inactive | [Protection<br>Para |
| ( )                 | parameter is only effective if a signal is<br>assigned to the corresponding global             |                     |          | /<14>               |
|                     | protection parameter. If the signal becomes                                                    |                     |          | /Underload-Prot     |
|                     | true, those modules/stages are blocked that are parameterized "ExBlo Fc=active".               |                     |          | /I<[1]]             |
| Blo TripCmd         | Permanent blocking of the Trip Command of                                                      | inactive,           | inactive | [Protection         |
|                     | the module/stage.                                                                              | active              |          | Para                |
|                     |                                                                                                |                     |          | /<14>               |
|                     |                                                                                                |                     |          | /Underload-Prot     |
|                     |                                                                                                |                     |          | /I<[1]]             |
| ExBlo TripCmd<br>Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This                   | inactive,           | inactive | [Protection<br>Para |
|                     | parameter is only effective if a signal is                                                     | active              |          | /<14>               |
|                     | assigned to the corresponding global protection parameter. If the signal becomes               |                     |          | /Underload-Prot     |
|                     | true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active". |                     |          | /I<[1]]             |
| Undercurrent        | Underload Pickup based on a multiplier of Ib                                                   | 0.05 - 0.90lb       | 0.50lb   | [Protection<br>Para |
|                     |                                                                                                |                     |          | /<14>               |
|                     |                                                                                                |                     |          | /Underload-Prot     |
|                     |                                                                                                |                     |          | /I<[1]]             |
| Alarm Mode          | Indicates if one, two of three or all phases are required for operation                        | any one,<br>all     | any one  | [Protection<br>Para |
|                     |                                                                                                | -                   |          | /<14>               |
|                     |                                                                                                |                     |          | /Underload-Prot     |
|                     |                                                                                                |                     |          | /I<[1]]             |
| t                   | Tripping delay                                                                                 | 0.4 - 1200.0s       | 10.0s    | [Protection<br>Para |
| $\bigcirc$          |                                                                                                |                     |          | /<14>               |
|                     |                                                                                                |                     |          | /Underload-Prot     |
|                     |                                                                                                |                     |          | /l<[1]]             |

| Parameter          | Description                          | Setting range       | Default  | Menu path                    |
|--------------------|--------------------------------------|---------------------|----------|------------------------------|
| MeasCircSv<br>Curr | Measuring Circuit Supervision Curent | inactive,<br>active | inactive | [Protection<br>Para<br>/<14> |
|                    |                                      |                     |          | /Underload-Prot<br>/I<[1]]   |

# Underload Module Input States

| Name            | Description                                       | Assignment via    |
|-----------------|---------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /Underload-Prot   |
|                 |                                                   | /l<[1]]           |
| ExBlo2-I        | Module input state: External blocking2            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /Underload-Prot   |
|                 |                                                   | /l<[1]]           |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip | [Protection Para  |
|                 | Command                                           | /Global Prot Para |
|                 |                                                   | /Underload-Prot   |
|                 |                                                   | /I<[1]]           |

# Underload Module Signals (Output States)

| Signal        | Description                                   |
|---------------|-----------------------------------------------|
| active        | Signal: active                                |
| ExBlo         | Signal: External Blocking                     |
| Blo TripCmd   | Signal: Trip Command blocked                  |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm         | Signal: Alarm                                 |
| Trip          | Signal: Trip                                  |
| TripCmd       | Signal: Trip Command                          |

### **Underload Module Counter Values**

| Value          | Description                        | Default | Size        | Menu path   |
|----------------|------------------------------------|---------|-------------|-------------|
| NumberOfAlarms | Number of alarms since last reset. | 0       | 0 -         | [Operation  |
|                |                                    |         | 99999999999 | /History    |
|                |                                    |         |             | /AlarmCr]   |
|                | Number of trip commands since last | 0       | 0 -         | [Operation  |
| ds             | reset                              |         | 99999999999 | /History    |
|                |                                    |         |             | /TripCmdCr] |

### Commissioning: Undercurrent [ANSI 37]

Object to be tested

•Testing the pick-up value for Undercurrent protection

•Testing the trip delay

•Testing the fallback ratio

Necessary means •3-phase current source •Ammemeter •Timer for measuring of the tripping time

#### Procedure

#### Testing the threshold values( single-phase, three phase)

Feed in a testing current significantly greater than the pick-up value.

For testing the threshold values and fallback values, the test current has to be decreased until the relay is energized. When comparing the displayed values with those of the ammeter, the deviation must be within the permissible tolerances.

#### Testing the trip delay

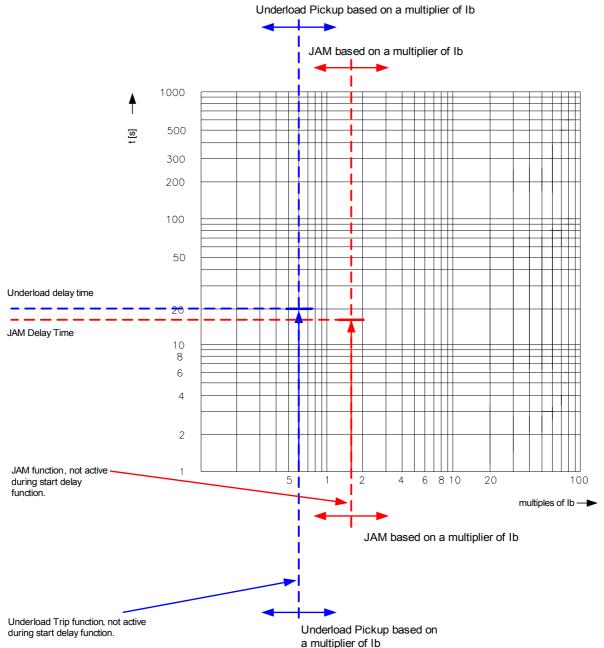
For testing the trip delay, a timer is to be connected to the contact of the associated trip relay. Feed in a testing current significantly greater than the pick-up value, the test current has to be decreased suddenly below the threshold value. The timer is started when the limiting value of the tripping current falls below the threshold and the operating time is elapsed and it is stopped when the relay trips.

#### Testing the fallback ratio

Enlarge the measuring quantity to more than 103% of the trip value. The relay must only fall back at 103% of the trip value at the earliest.

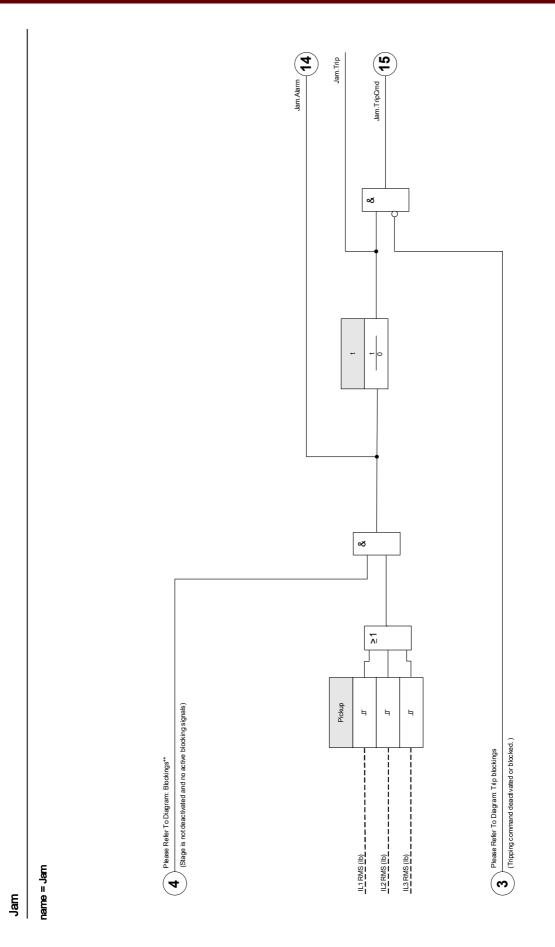
#### Successful test result

The measured tripping delays, threshold values and fallback ratio comply with those specified in the adjustment list. Permissible deviations/tolerances can be ftaken from Technical Data.


# JAM [51LR]

Elements Jam[1] ,Jam[2]

#### **Functional Description**


When the motor is running, a current increase above normal load may be an indication of a malfunction in the load. <u>JAM</u> protection recognizes mechanical problems, such as broken drive gears. Refer to the <u>JAM</u> protection limit (the right vertical line in the "Underload and JAM Trip Function" curve example). In this curve example, the JAM trip is set at 150% of Ib (FLA).

#### Underload and JAM Trip Function



The protective device issues an alarm when the pickup is exceeded. If the timer has elapsed, a trip signal will be issued. In the "Underload and JAM Trip Function" curve, the »TRIP« settings are represented by vertical lines, well above the normal load current. This curve also applies to JAM setting configured as an alarm element (blocked trip

command). The trips are held off by the delay timer \*t. Use the start delay to block tripping and alarming until the motor current drops to continuous load level. Use run delays to avoid nuisance alarms or trips for load transients.



# **Device Planning Parameters for JAM Protection**

| Parameter    | Description | Options     | Default               | Menu path         |
|--------------|-------------|-------------|-----------------------|-------------------|
| Mode         | Mode        | do not use, | Jam[1]: use           | [Device planning] |
| $\bigotimes$ |             | use         | Jam[2]: do not<br>use |                   |

# Global Protection Parameters for JAM Protection

| Parameter              | Description                                                                                  | Setting range          | Default                 | Menu path            |
|------------------------|----------------------------------------------------------------------------------------------|------------------------|-------------------------|----------------------|
| ExBlo1                 | External blocking of the module, if blocking is activated (allowed) within a parameter set   | ,                      |                         | [Protection<br>Para  |
| $\bigotimes$           | and if the state of the assigned signal is true.                                             |                        |                         | /Global Prot<br>Para |
|                        |                                                                                              |                        |                         | /JAM-Prot            |
|                        |                                                                                              |                        |                         | /Jam[1]]             |
| ExBlo2                 | External blocking of the module, if blocking is activated (allowed) within a parameter set   | 1n,<br>Assignment List |                         | [Protection<br>Para  |
| $\bigotimes$           | and if the state of the assigned signal is true.                                             |                        |                         | /Global Prot<br>Para |
|                        |                                                                                              |                        |                         | /JAM-Prot            |
|                        |                                                                                              |                        |                         | /Jam[1]]             |
| ExBlo dur.<br>Mot.Strt | External blocking of the module, if the state of the assigned signal is true. This way it is | 1n, Trip Cmds          | MStart.Blo-<br>JamStart | [Protection<br>Para  |
|                        | possible to block the module during the motor start phase.                                   |                        |                         | /Global Prot<br>Para |
|                        |                                                                                              |                        |                         | /JAM-Prot            |
|                        |                                                                                              |                        |                         | /Jam[1]]             |
| ExBlo TripCmd          | 5 1                                                                                          | 1n,<br>Assignment List | <br>t                   | [Protection<br>Para  |
| $\bigotimes$           |                                                                                              |                        |                         | /Global Prot<br>Para |
|                        |                                                                                              |                        |                         | /JAM-Prot            |
|                        |                                                                                              |                        |                         | /Jam[1]]             |

# Setting Group Parameters for JAM Protection

| Parameter           | Description                                                                                    | Setting range       | Default            | Menu path           |
|---------------------|------------------------------------------------------------------------------------------------|---------------------|--------------------|---------------------|
| Function            | Permanent activation or deactivation of module/stage.                                          | inactive,<br>active | inactive           | [Protection<br>Para |
| $\mathbf{A}$        |                                                                                                |                     |                    | /<14>               |
|                     |                                                                                                |                     |                    | /JAM-Prot           |
|                     |                                                                                                |                     |                    | /Jam[1]]            |
| ExBlo Fc            | Activate (allow) or inactivate (disallow) blocking of the module/stage. This                   | inactive,<br>active | inactive           | [Protection<br>Para |
|                     | parameter is only effective if a signal is<br>assigned to the corresponding global             |                     |                    | /<14>               |
|                     | protection parameter. If the signal becomes                                                    |                     |                    | /JAM-Prot           |
|                     | true, those modules/stages are blocked that are parameterized "ExBlo Fc=active".               |                     |                    | /Jam[1]]            |
| Blo TripCmd         | Permanent blocking of the Trip Command of the module/stage.                                    |                     | inactive           | [Protection<br>Para |
| -                   | the module/stage.                                                                              | active              |                    | /<14>               |
| $\bigotimes$        |                                                                                                |                     |                    | /JAM-Prot           |
|                     |                                                                                                |                     |                    | /Jam[1]]            |
| ExBlo TripCmd<br>Fc | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This                | inactive,<br>active | inactive           | [Protection<br>Para |
|                     | parameter is only effective if a signal is<br>assigned to the corresponding global             |                     |                    | /<14>               |
| $\mathbf{k}$        | protection parameter. If the signal becomes                                                    |                     |                    | /JAM-Prot           |
|                     | true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active". |                     |                    | /Jam[1]]            |
| Pickup              | JAM based on a multiplier of Ib                                                                | 1.00 - 12.00lb      | Jam[1]: 10lb       | [Protection<br>Para |
|                     |                                                                                                |                     | Jam[2]:<br>10.00lb | /<14>               |
|                     |                                                                                                |                     |                    | /JAM-Prot           |
|                     |                                                                                                |                     |                    | /Jam[1]]            |
| t                   | Tripping delay                                                                                 | 0.0 - 1200.0s       | 2.0s               | [Protection<br>Para |
|                     |                                                                                                |                     |                    | /<14>               |
| $\checkmark$        |                                                                                                |                     |                    | /JAM-Prot           |
|                     |                                                                                                |                     |                    | /Jam[1]]            |

# JAM Protection Module Input States

| Name            | Description                                       | Assignment via    |
|-----------------|---------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /JAM-Prot         |
|                 |                                                   | /Jam[1]]          |
| ExBlo2-I        | Module input state: External blocking2            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /JAM-Prot         |
|                 |                                                   | /Jam[1]]          |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip | [Protection Para  |
|                 | Command                                           | /Global Prot Para |
|                 |                                                   | /JAM-Prot         |
|                 |                                                   | /Jam[1]]          |

# JAM Protection Signals (Output States)

| Signal        | Description                                   |
|---------------|-----------------------------------------------|
| active        | Signal: active                                |
| ExBlo         | Signal: External Blocking                     |
| Blo TripCmd   | Signal: Trip Command blocked                  |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm         | Signal: Alarm                                 |
| Trip          | Signal: Trip                                  |
| TripCmd       | Signal: Trip Command                          |

# **JAM Protection** Values

| Value                | Description                                 | Default | Size                | Menu path                             |
|----------------------|---------------------------------------------|---------|---------------------|---------------------------------------|
| NumberOfAlarms       | Number of alarms since last reset.          | 0       | 0 -<br>999999999999 | [Operation<br>/History<br>/AlarmCr]   |
| NumberOfTripCm<br>ds | Number of trip commands since last<br>reset | 0       | 0 -<br>999999999999 | [Operation<br>/History<br>/TripCmdCr] |

### Commissioning: JAM [51LR]

Object to be tested

•Testing the pick-up value for JAM protection

•Testing the trip delay

•Testing the fallback ratio

Necessary means •3-phase current source •Ammeter •Timer for measuring of the tripping time

#### Procedure

#### *Testing the threshold values(single-phase)*

Feed in a testing current significantly smaller than the pick-up value.

For testing the threshold values and fallback values, the test current has to be increased until the relay is energized. When comparing the displayed values with those of the ammeter, the deviation must be within the permissible tolerances.

#### Testing the tripping delay

For testing the trip delay, a timer is to be connected to the contact of the associated trip relay. Feed in a testing current significantly smaller than the pick-up value, the test current has to be increased suddenly above the threshold value. The timer is started when the limiting value of the tripping current exceeded the threshold and the operating time is elapsed and it is stopped when the relay trips.

#### Testing the fallback ratio

Enlarge the measuring quantity to less than 97% of the trip value. The relay must only fall back at 98% of the trip value at the earliest.

#### Successful test result

The measured tripping delays, threshold values and fallback ratio comply with those values, specified in the adjustment list. Permissible deviations/tolerances can be found under Technical data.

# LRC - Locked Rotor during Start

#### **Functional Description**

The Locked-rotor protection function is an integral part of the thermal model and is used to protect the motor in the event that the motor fails to start or accelerate after being energized. The heating in the motor during this period of time can behigher significantly than the heating at rated current, ranging from 10 to 50 times the normal rated heating. The time that a motor can remain at a standstill after being energized varies with the applied voltage and has an I<sup>2</sup>T limit.

When determining the heat in the motor during this period of time, both the negative and positive sequence currents are used in the equation that approximates the heat generated in a locked rotor condition. The heat can be approximated by the equation:

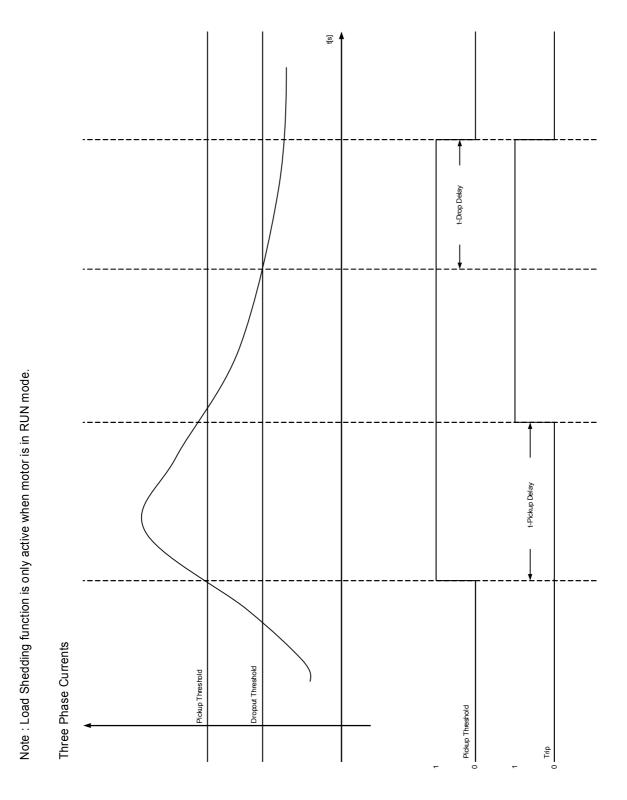
$$|^{2}_{H} = |_{1}^{2} + K |_{2}^{2}$$

where :

- $I_1$  = the per unit stator positive sequence current;
- K = weighting factor for the value of  $I_2$  resulting from the disproportionate heating caused by the negative sequence current component due to skin effect in the rotor bar; and
- I<sub>2</sub> = per unit stator negative sequence current.

Settings for the Locked Rotor Current can be found under the [Field Parameters]. The LRC value is a multiplier of Ib (FLA).

# MLS - Mechanical Load Shedding


Available elements: <u>MLS</u>

#### **Functional Description**

In some applications, the protective device can forestall a JAM alarm or trip, or a thermal trip, by sending a signal to the process to reduce loading. The load-shedding function, if enabled, closes or opens a relay contact to shed process load when the motor load current goes above the Load-shed threshold, for a time exceeding the *»t-Pickup Delay«*. The pickup-delay can be used to stop or reduce the flow of material into the driven process until the load current falls below the threshold. The *»t-Drop Delay«* is the timer that has to elapse before the normal flow of material will be fed again into the process.

Set the load-shed drop current comfortably below the JAM trip level. It may be useful to set it below the Ultimate Trip Current, particularly if Remote Temperature Detection is not used.

The load shed function is only active during the »RUN« state of the motor.



# Device Planning Parameters of the Load Shedding

| Parameter    | Description | Options     | Default | Menu path         |
|--------------|-------------|-------------|---------|-------------------|
| Mode         | Mode        | do not use, | use     | [Device planning] |
|              |             | use         |         |                   |
| $\bigotimes$ |             |             |         |                   |

# Global Protection Parameters of the Load Shedding

| Parameter | Description                                                                                                                                          | Setting range          | Default | Menu path                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|------------------------------------------------------|
| ExBlo1    | External blocking of the module, if blocking<br>is activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true. | 1n,<br>Assignment List |         | [Protection<br>Para<br>/Global Prot<br>Para<br>/MLS] |
| ExBlo2    | External blocking of the module, if blocking<br>is activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true. | 1n,<br>Assignment List |         | [Protection<br>Para<br>/Global Prot<br>Para<br>/MLS] |

# Setting Group Parameters of the Load Shedding

| Parameter            | Description                                                                                                                                                                                                                                                                                                 | Setting range       | Default  | Menu path                             |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|---------------------------------------|
| Function             | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                       | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/MLS] |
| ExBlo Fc             | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active". | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/MLS] |
| Pickup<br>Threshold  | Mechanical load shedding pickup current as multiplier of lb                                                                                                                                                                                                                                                 | 0.50 - 1.50lb       | 0.90lb   | [Protection<br>Para<br>/<14><br>/MLS] |
| t-Pickup Delay       | Trip delay time                                                                                                                                                                                                                                                                                             | 0.0 - 5.0s          | 1.0s     | [Protection<br>Para<br>/<14><br>/MLS] |
| Dropout<br>Threshold | Mechanical load reclosure current (Dropout<br>of Load shedding) as multiplier of Ib                                                                                                                                                                                                                         | 0.50 - 1.50lb       | 0.50lb   | [Protection<br>Para<br>/<14><br>/MLS] |
| t-Drop Delay         | Dropout delay time                                                                                                                                                                                                                                                                                          | 0.0 - 5.0s          | 1.0s     | [Protection<br>Para<br>/<14><br>/MLS] |

# Load Shedding Input States

| Name     | Description                            | Assignment via    |
|----------|----------------------------------------|-------------------|
| ExBlo1-I | Module input state: External blocking1 | [Protection Para  |
|          |                                        | /Global Prot Para |
|          |                                        | /MLS]             |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para  |
|          |                                        | /Global Prot Para |
|          |                                        | /MLS]             |

# Load Shedding Signals (Output States)

| Signal | Description               |
|--------|---------------------------|
| active | Signal: active            |
| ExBlo  | Signal: External Blocking |
| Alarm  | Signal: Alarm             |
| Trip   | Signal: Trip              |

### Commissioning: Mechanical Load Shedding

Object to be tested

- •Testing the pick-up and drop-out tresholds
- Testing the delay times

Necessary means •3-phase current source •Ammemeter •Timer for measuring of the tripping times

#### Procedure

*Testing the threshold values (three-phase)* This test is only possible, if the motor is in run mode.

#### Testing pick-up threshold

The drop-out delay time should be "0s" for this test.

Feed in a testing current significantly lower than the threshold of the mechanical load shedding. The test current has to be increased until the relay is energized. When comparing the measured values with those of the ammeter, the deviation must be within the permissible tolerances.

#### Testing drop-out threshold

For testing the drop-out threshold the testing current has to be significantly greater than the pick-up threshold value. The test current has to be decreased until the relay is falls back. When comparing the measured values with those of the ammeter, the deviation must be within the permissible tolerances.

*Testing the delay times* This test is only possible, if the motor is in run mode.

#### Testing the trip delay

For testing the pick-up delay, a timer is to be connected to the contact of the associated trip relay. Feed in a testing current significantly lower than the pick-up value, the test current has to be increased suddenly above the threshold. The timer is started when the limiting value of the tripping current exceeded the threshold and it is stopped when the relay trips and the operating time is elapsed.

#### Testing the drop-out delay

For testing the drop-out threshold, the testing current has to be significantly greater than the pick-up threshold. A timer is to be connected to the contact of the associated trip relay. The test current has to be decreased suddenly below the drop-out threshold. The timer has to be started when the limiting value of the tripping current falls below the threshold and it has to be stopped when the relay falls back.

#### Successful test result

The measured tripping delays and threshold values comply with those values, specified in the adjustment list. Permissible deviations/tolerances can be found under Technical data.

# UTC - Ultimate Trip Current

#### **Functional Description**

The Ultimate Trip Current (UTC) sets the current level at which a trip eventually occurs and is settable to a value as a multiples of »*Ib*« (Full Load Amps (FLA)). This value represents the vertical line on the upper portion of the non-RTD as shown in the protection trip curve labeled "Motor Protection Curve Example 2 (without RTD)". The ultimate trip current setting in this example is at 1 times the of »*Ib*« (FLA).

The user has to set the k-Factor which can be calculated by the following formula:

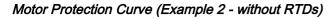
$$k_{Factor} = \frac{UTC}{CT_{PRI}} = \frac{Overload_{factor} \cdot I_{b}}{CT_{PRI}}$$

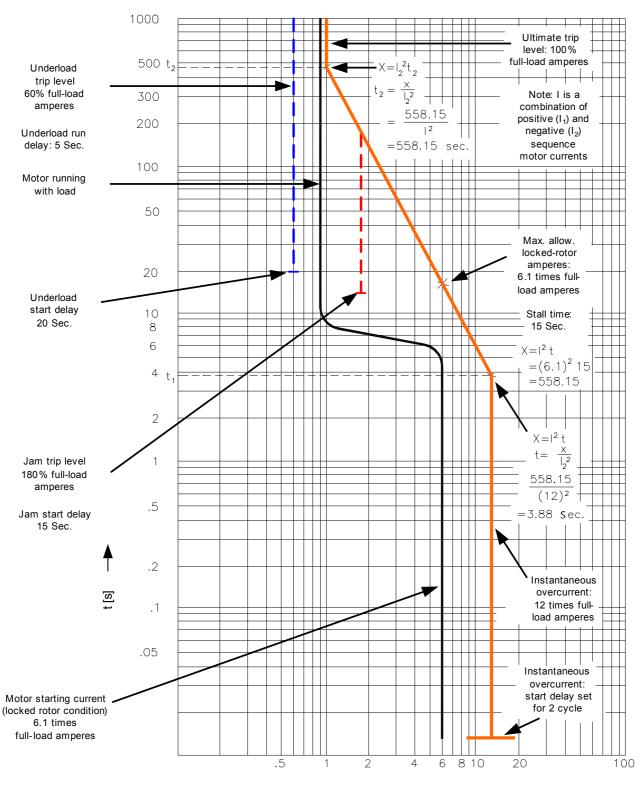
Please note that the settings for k-Factor and Ib have to be set within the *Field Parameter* menu.

The »Overload *Factor*« is found on the motor nameplate or in the manufacturer's data. Note that the relay does not trip at the moment the current goes above »*UTC*« during motor running. Instead, it models the gradual stator heating for currents above »*UTC*« , and trips only after some time has passed. The trip time depends on a variety of setting and operating factors, including the motor nameplate data contained in other setting values.

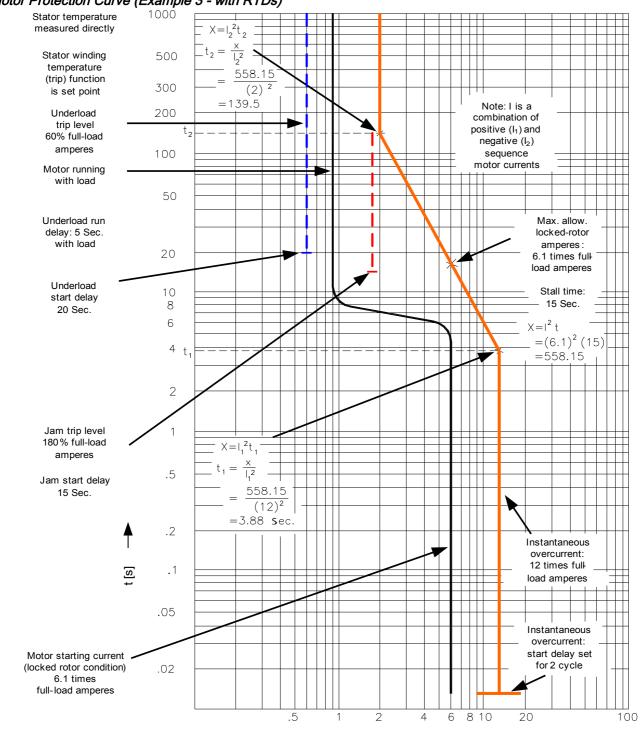
Use a conservative value. In this case, a lower value of »UTC« than that dictated by the »*k*-Factor« if the motor ambient temperatures may rise above 40°C (104°F) and the optional <u>URTD</u> Module is not used, otherwise stator insulation damage or loss of motor life may occur. Also, consider lowering the »UTC« value if the motor is suitably rated, yet additional safety is critical for the application.




# If UTC is set above 100% times the service factor, motor damage could result.


In systems where an RTD is used the "UTC" pick-up point is biased by the measured temperature. This is shown in the example trip curve labeled "Motor Protection Curve Example 3" (with RTD) were you will see a shift in the "UTC" value to 2 times of "*Ib*" (FLA)

If stator temperature measurements are available, the algorithm may keep from tripping, even if the effective current is above the ultimate trip current setting, depending on stator temperature reports. It is still important to set a correct ultimate trip current so that the motor is well protected. If the RTDs, the module, or its communications to the relay fail, the algorithm falls back to use of »UTC«. Also, note that if all RTD channels are set to »*OFF*«, the algorithm reverts to the non-RTD calculation, which is based strictly on »*UTC*«.


### **Motor Protection Curves**







multiples of Ib ---



Motor Protection Curve (Example 3 - with RTDs)

multiples of Ib-

# I - Overcurrent Protection [50, 51,51Q, 51V\*]

#### Available stages: [[1] ,[2] ,[3] ,[4] ,[5] ,[6]



If you are using inrush blockings the tripping delay of the current protection functions must be at least 30ms or more in order to prevent faulty trippings.

# NOTICE

All overcurrent protective elements are identically structured.

**NOTICE** This module offers Adaptive Parameter Sets. Parameters can be modified within parameter sets dynamically by means of Adaptive Parameter Sets. Please refer to chapter Parameter / Adaptive Parameter Sets.

The following table shows the application options of the Overcurrent Protection element

| Applications of the I-Protection Module                          | Setting in                                                               | Option                                                                                  |
|------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| ANSI 50 – Overcurrent protection, non-<br>directional            | Device Planning menu                                                     | Measuring Mode:<br>Fundamental/TrueRMS/negative<br>phase sequence current (I2)          |
| ANSI 51 – Short circuit protection, non-<br>directional          | Device Planning menu                                                     | Measuring Mode:<br>Fundamental/TrueRMS/negative<br>phase sequence current (I2)          |
| ANSI 51V – Voltage restraint overcurrent protection <sup>*</sup> | Parameter Set:<br>VRestraint = active                                    | Measuring Mode:<br>Fundamental/TrueRMS/negative<br>phase sequence current (I2)          |
|                                                                  |                                                                          | Measuring Channel:<br>Phase to Phase/Phase to Neutral                                   |
| ANSI 51Q Negative Phase Sequence<br>Overcurrent Protection       | Parameter Set:<br>Measuring Method =I2<br>(Negative Sequence<br>Current) |                                                                                         |
| 51C Voltage controlled overcurrent protection <sup>*</sup>       | Adaptive Parameters                                                      | Measuring Mode:<br>Fundamental/TrueRMS/negative<br>phase sequence current (I2)          |
| (Please refer to the chapter<br>Parameter/Adaptive Parameter)    |                                                                          | Measuring Channel:<br>(in voltage protection module)<br>Phase to Phase/Phase to Neutral |

\*=available only for devices that offer voltage measurement.

#### Measuring Mode

For all protection elements it can be determined, whether the measurement is done on basis of the *»Fundamental«* or if *»TrueRMS«* measurement is used.

Alternatively the *»Measuring Mode«* can be set to *»l2«*. In this case the negative phase sequence current will be measured. This is to detect unbalanced faults.

#### Voltage restraint overcurrent protection 51V\*

When the Parameter »*VRestraint*« is set to active the overcurrent protection element works voltage restraint. That means, the overcurrent pickup threshold will be lowered during voltage drops. This results in a more sensitive overcurrent protection. For the voltage threshold »*VRestraint max*« additionally the »*Measuring Channel*« can be determined.

\*=available only for devices that offer voltage measurement.

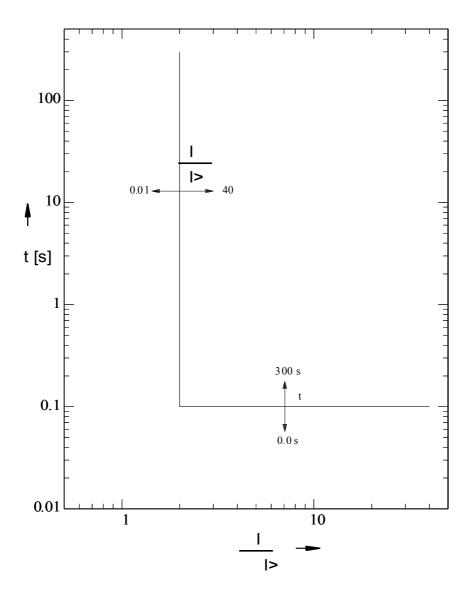
#### Measuring Channel

With the parameter *»Measuring Channel«* it can be determined, whether the *»Phase to Phase«* voltage or the *»Phase to Neutral«* voltage is measured.

For each element the following characteristics are available:

- DEFT (UMZ) Definite Time-Overcurrent
- NINV (IEC/AMZ) IEC Normal Inverse
- VINV (IEC/AMZ) IEC Very Inverse
- LINV (IEC/AMZ) IEC Long Time Inverse
- EINV (IEC/AMZ) *IEC Extremely Inverse*
- MINV (ANSI/AMZ) ANSI Moderately Inverse
- VINV (ANSI/AMZ) ANSI Very Inverse
- EINV (ANSI/AMZ) ANSI Extremely Inverse
- RINV R Inverse
- Thermal Flat
- IT 📃
- I2T
- I4T

Explanation:


#### t = Tripping delay

t-char = Time multiplier/tripping characteristic factor. The setting range depends on the selected tripping curve. I = Fault current

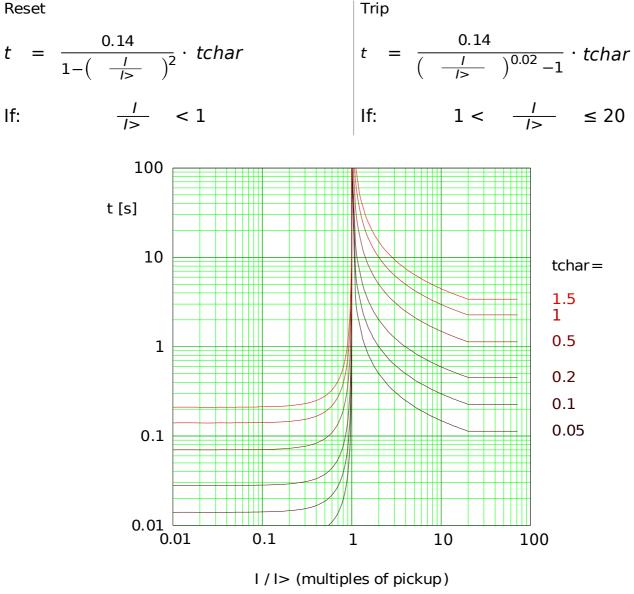
I> = If the pickup value is exceeded, the module/element starts to time out to trip.

DEFT – Definite Time-Overcurrent





## **IEC Normal Inverse**


NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

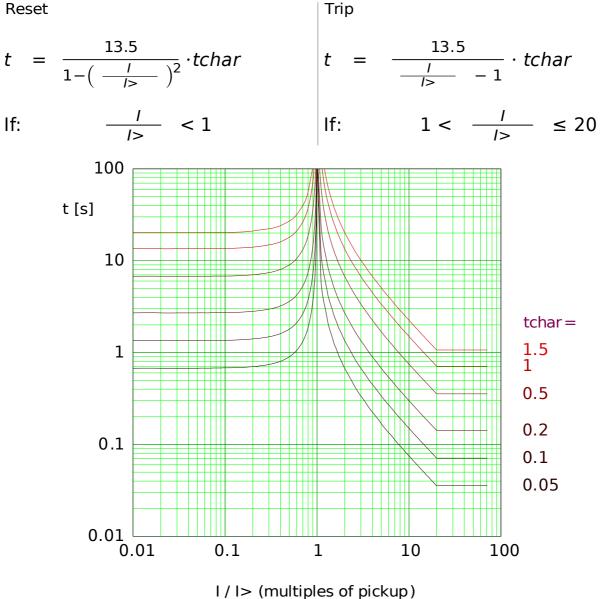
Remark: For /> 20·/>, the curve stops decreasing, the t-values are kept constant at the value for /= 20·/>.

## »Char« = IEC NINV

Reset



# **IEC Very Inverse**


NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

Remark: For /> 20·/>, the curve stops decreasing, the t-values are kept constant at the value for /= 20·/>.

# »Char« = IEC VINV

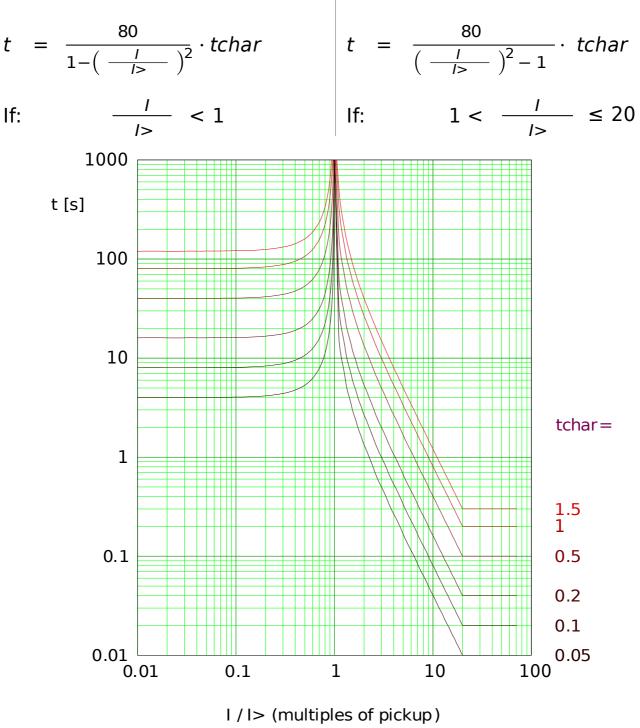
Reset



Pd oc\_Z02

# **IEC Extremely Inverse**

NOTICE


Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

Remark: For  $l > 20 \cdot l_{s}$ , the curve stops decreasing, the t-values are kept constant at the value for  $l = 20 \cdot l_{s}$ .

Trip

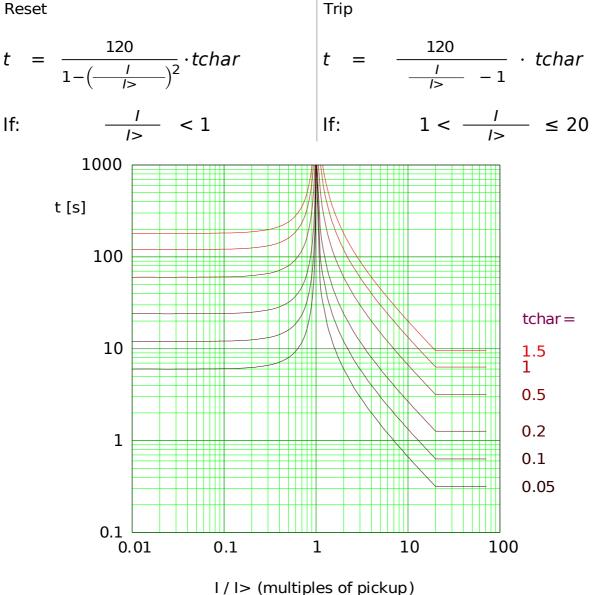
# *»Char«* = IEC EINV

Reset



odoc\_Z04

## **IEC Long Time Inverse**


NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

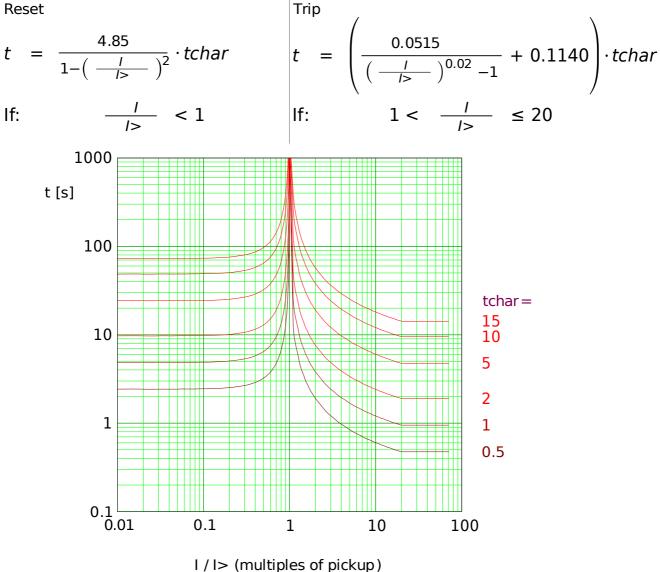
Remark: For /> 20·/>, the curve stops decreasing, the t-values are kept constant at the value for /= 20·/>.

# »Char« = IEC LINV

Reset



## **ANSI Moderately Inverse**


NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

Remark: For  $l > 20 \cdot l_{2}$ , the curve stops decreasing, the t-values are kept constant at the value for  $l = 20 \cdot l_{2}$ .

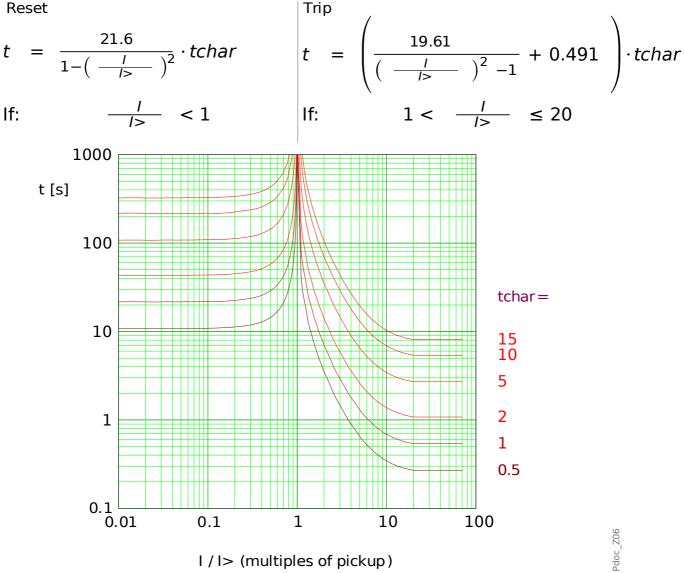
#### »Char« = ANSI MINV

Reset



Pdoc\_Z05

## **ANSI Very Inverse**


NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

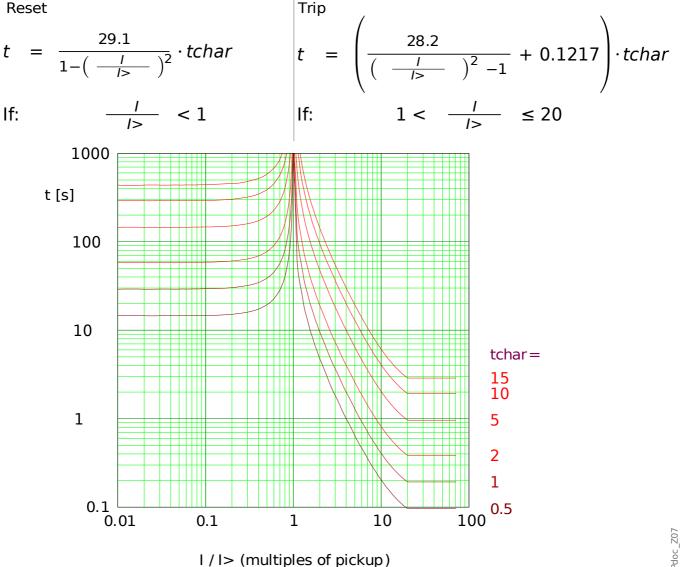
Remark: For  $l > 20 \cdot l_{2}$ , the curve stops decreasing, the t-values are kept constant at the value for  $l = 20 \cdot l_{2}$ .

## »Char« = ANSI VINV

Reset



## **ANSI Extremely Inverse**


NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

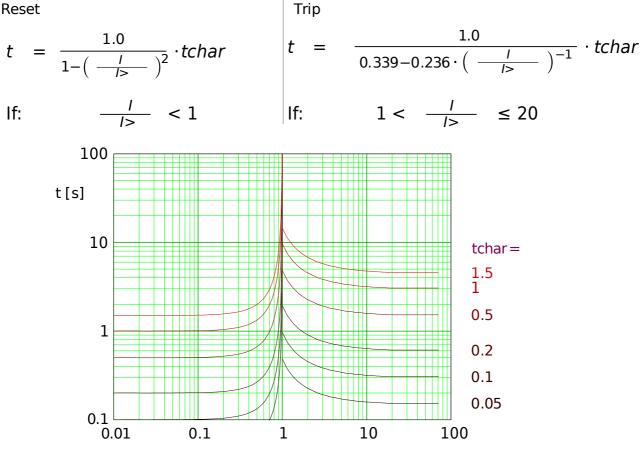
Remark: For  $l > 20 \cdot l_{2}$ , the curve stops decreasing, the t-values are kept constant at the value for  $l = 20 \cdot l_{2}$ .

## »Char« = ANSI EINV

Reset



## **R** Inverse


NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

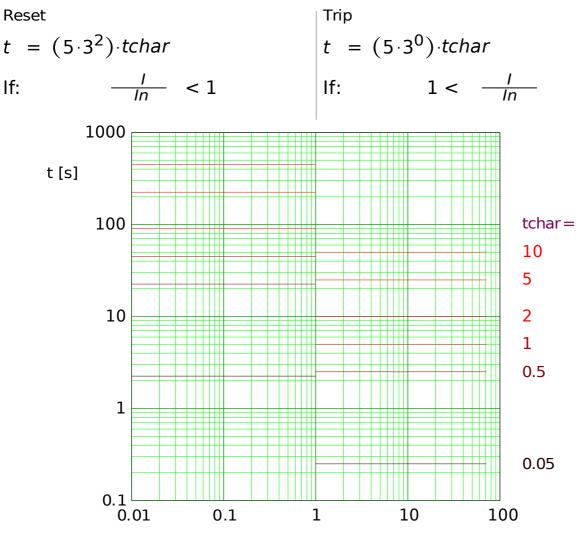
Remark: For /> 20·/>, the curve stops decreasing, the t-values are kept constant at the value for /= 20·/>.

#### »Char« = RINV

Reset



I / I> (multiples of pickup)


# **Thermal Flat Curve**

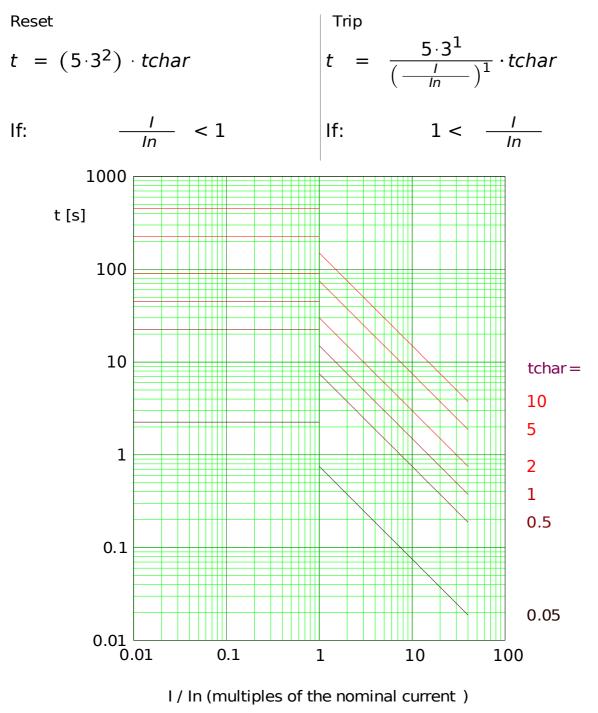
NOTICE

Various reset modes are available:

Resetting via characteristic, delayed and instantaneous.

# »Char« = Therm Flat




I / In (multiples of the nominal current )

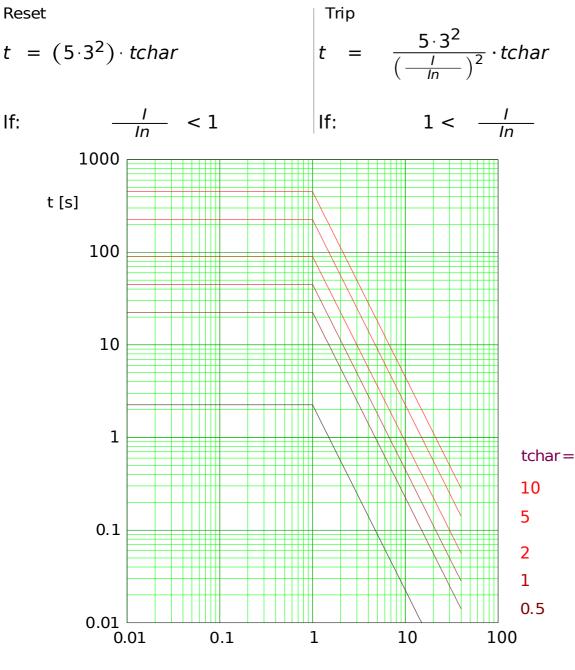
# **Thermal Curve IT**

NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

## *»Char«* = IT




# Thermal Curve I2T

NOTICE

Various reset modes are available:

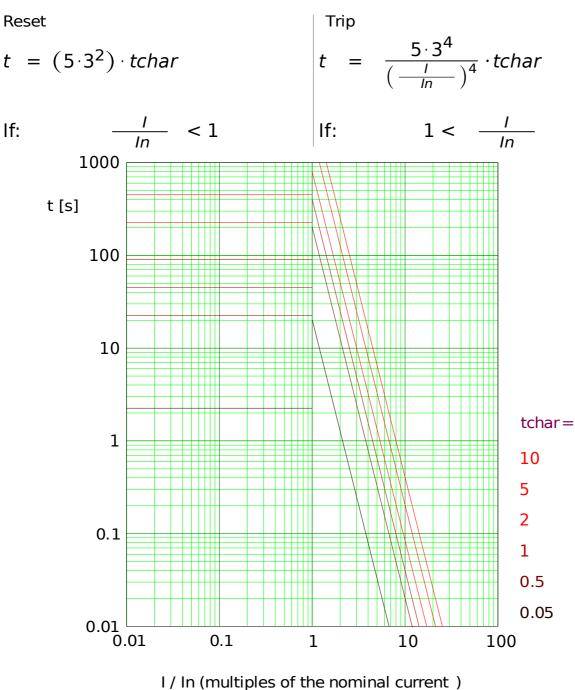
Resetting via characteristic, delayed and instantaneous.

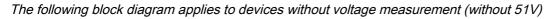
# *»Char«* = I2T

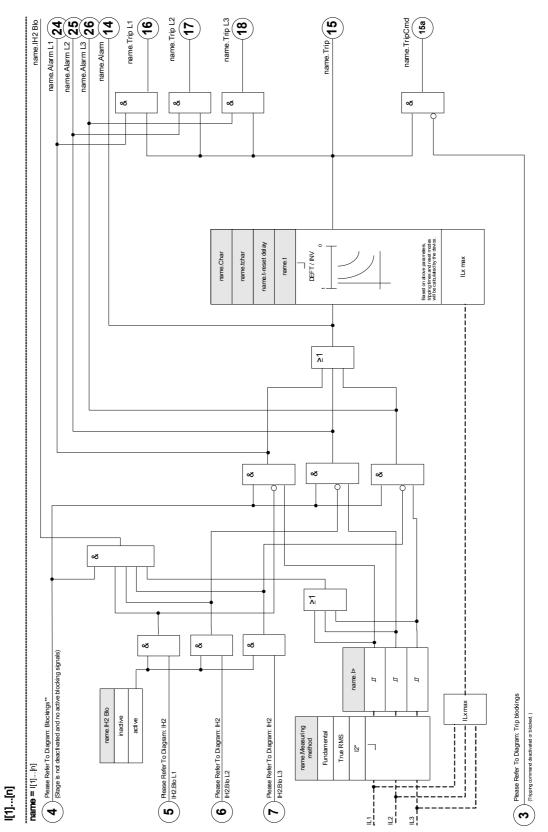


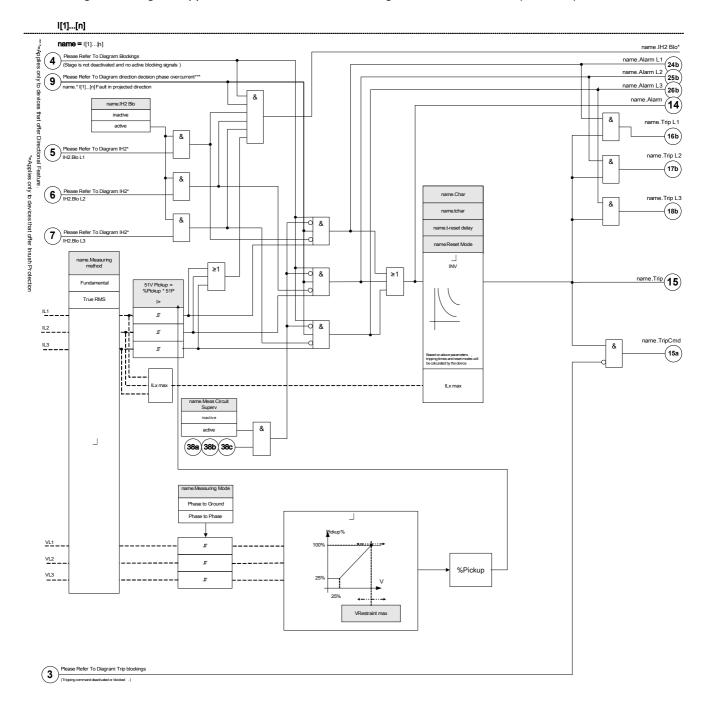
I / In (multiples of the nominal current )

Pdoc\_Z10


# Thermal Curve I4T


NOTICE


Various reset modes are available:


Resetting via characteristic, delayed and instantaneous.

# *»Char«* = I4T









The following block diagram applies to devices that offer a voltage measurement card (with 51V)

# Device Planning Parameters of the I Module

| Parameter | Description | Options                        | Default                                    | Menu path         |
|-----------|-------------|--------------------------------|--------------------------------------------|-------------------|
| Mode      | Mode        | do not use,<br>non directional | l[1]: non<br>directional<br>l[2]: non      | [Device planning] |
|           |             |                                | directional<br>I[3]: do not<br>use         |                   |
|           |             |                                | l[4]: do not<br>use<br>l[5]: do not<br>use |                   |
|           |             |                                | l[6]: do not<br>use                        |                   |

# Global Protection Parameters of the I Module

| Parameter              | Description                                                                                  | Setting range          | Default                                      | Menu path            |
|------------------------|----------------------------------------------------------------------------------------------|------------------------|----------------------------------------------|----------------------|
| ExBlo1                 | External blocking of the module, if blocking is activated (allowed) within a parameter set   | 1n,<br>Assignment List |                                              | [Protection<br>Para  |
| $\bigotimes$           | and if the state of the assigned signal is true.                                             |                        |                                              | /Global Prot<br>Para |
|                        |                                                                                              |                        |                                              | /I-Prot              |
|                        |                                                                                              |                        |                                              | /I[1]]               |
| ExBlo2                 | External blocking of the module, if blocking is activated (allowed) within a parameter set   | 1n,<br>Assignment List |                                              | [Protection<br>Para  |
|                        | and if the state of the assigned signal is true.                                             |                        |                                              | /Global Prot<br>Para |
|                        |                                                                                              |                        |                                              | /I-Prot              |
|                        |                                                                                              |                        |                                              | /[1]]                |
| ExBlo dur.<br>Mot.Strt | External blocking of the module, if the state of the assigned signal is true. This way it is | 1n, Trip Cmds          | I[1]:<br>MStart.Blo-                         | [Protection<br>Para  |
|                        | possible to block the module during the motor start phase.                                   |                        | IOCStart<br>I[2]:<br>MStart.Blo-<br>IOCStart | /Global Prot         |
|                        |                                                                                              |                        |                                              | Para<br>/I-Prot      |
|                        |                                                                                              |                        | I[3]:                                        | /I[1]]               |
|                        |                                                                                              |                        | I[4]:                                        |                      |
|                        |                                                                                              |                        | I[5]:                                        |                      |
|                        |                                                                                              |                        | l[6]:                                        |                      |

| Parameter     | Description                                                                                       | Setting range          | Default | Menu path            |
|---------------|---------------------------------------------------------------------------------------------------|------------------------|---------|----------------------|
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is                     | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$  | activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true. |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /I-Prot              |
|               |                                                                                                   |                        |         | /[1]]                |
| Ex rev Interl | External blocking of the module by external reverse interlocking, if blocking is activated        | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$  | (allowed) within a parameter set and if the state of the assigned signal is true.                 |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /I-Prot              |
|               |                                                                                                   |                        |         | /[1]]                |
| AdaptSet 1    | Assignment Adaptive Parameter 1                                                                   | AdaptSet               |         | [Protection<br>Para  |
|               |                                                                                                   |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /I-Prot              |
|               |                                                                                                   |                        |         | /[1]]                |
| AdaptSet 2    | Assignment Adaptive Parameter 2                                                                   | AdaptSet               |         | [Protection<br>Para  |
|               |                                                                                                   |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /I-Prot              |
|               |                                                                                                   |                        |         | /[1]]                |
| AdaptSet 3    | Assignment Adaptive Parameter 3                                                                   | AdaptSet               |         | [Protection<br>Para  |
| $\bigotimes$  |                                                                                                   |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /I-Prot              |
|               |                                                                                                   |                        |         | /[1]]                |
| AdaptSet 4    | Assignment Adaptive Parameter 4                                                                   | AdaptSet               |         | [Protection<br>Para  |
| $\bigotimes$  |                                                                                                   |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /I-Prot              |
|               |                                                                                                   |                        |         | /[1]]                |

# Setting Group Parameters of the I Module

| Parameter           | Description                                                                                                                                                                                                                                                                                                              | Setting range                   | Default                                                                            | Menu path                                         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|
| Function            | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                                    | inactive,<br>active             | I[1]: active<br>I[2]: active<br>I[3]: inactive<br>I[4]: inactive<br>I[5]: inactive | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |
| ExBlo Fc            | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active".              | inactive,<br>active             | I[6]: inactive                                                                     | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |
| Ex rev Interl Fc    | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "Ex rev Interl Fc =<br>active". | inactive,<br>active             | inactive                                                                           | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |
| Blo TripCmd         | Permanent blocking of the Trip Command of the module/stage.                                                                                                                                                                                                                                                              | inactive,<br>active             | inactive                                                                           | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |
| ExBlo TripCmd<br>Fc | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active".   | inactive,<br>active             | inactive                                                                           | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |
| Measuring<br>method | Measuring method: fundamental or rms or<br>3rd harmonic (only generator protection<br>relays)                                                                                                                                                                                                                            | Fundamental,<br>True RMS,<br>I2 | Fundamental                                                                        | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |

| Parameter  | Description                                                                                                                                                                                                                                                                                   | Setting range                                                                                                                            | Default                                                                                            | Menu path                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| I>         | If the pickup value is exceeded, the<br>module/element starts to time out to trip.<br>Only available if: Characteristic = DEFT Or<br>Characteristic = INV Minimum of the setting<br>range If: VRestraint = active Minimum of the<br>setting range If: VRestraint = inactive<br>Characteristic | 0.02 - 40.00In<br>DEFT,                                                                                                                  | I[1]: 2.0In<br>I[2]: 5.0In<br>I[3]: 1.00In<br>I[4]: 1.00In<br>I[5]: 1.00In<br>I[6]: 1.00In<br>DEFT | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]]<br>[Protection |
|            |                                                                                                                                                                                                                                                                                               | IEC NINV,<br>IEC VINV,<br>IEC EINV,<br>IEC LINV,<br>RINV,<br>ANSI MINV,<br>ANSI VINV,<br>ANSI EINV,<br>Therm Flat,<br>IT,<br>I2T,<br>I4T |                                                                                                    | Para<br>/<14><br>/I-Prot<br>/I[1]]                               |
| t          | Tripping delay<br>Only available if: Characteristic = DEFT                                                                                                                                                                                                                                    | 0.00 - 300.00s                                                                                                                           | I[1]: 0.5s<br>I[2]: 0.5s<br>I[3]: 1.00s<br>I[4]: 1.00s<br>I[5]: 1.00s<br>I[6]: 1.00s               | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]]                |
| tchar      | Time multiplier/tripping characteristic factor.<br>The setting range depends on the selected<br>tripping curve.<br>Only available if: Characteristic = INV Or<br>Characteristic = Therm Flat Or<br>Characteristic = IT Or Characteristic = I2T<br>Or Characteristic = I4T                     | 0.02 - 20.00                                                                                                                             | 1                                                                                                  | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]]                |
| Reset Mode | Reset Mode<br>Only available if: Characteristic = INV Or<br>Characteristic = Therm Flat Or<br>Characteristic = IT Or Characteristic = I2T<br>Or Characteristic = I4T                                                                                                                          | instantaneous,<br>delayed,<br>calculated                                                                                                 | instantaneous                                                                                      | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]]                |

| Parameter              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Setting range                         | Default            | Menu path                                         |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|---------------------------------------------------|
| t-reset delay          | Reset delay for intermittent phase failures<br>(INV characteristics only)<br>Available if:Reset Mode = delayed                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00 - 60.00s                         | 0s                 | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |
| nondir Trip at<br>V=0  | Only relevant for current protection<br>modules/stages with directional feature! The<br>device will trip non directional if this<br>parameter is set to active and no direction<br>could be determined because no reference<br>voltage (V=0) could be measured any more<br>(e.g. if there is a three-phase short circuit<br>close to the device). If this parameter is set<br>to inactive, the protection stage will be<br>blocked in case of V=0.<br>Only available if: Device planning: I.Mode =<br>directional | inactive,<br>active                   | inactive           | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |
| VRestraint             | Voltage Restraint Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inactive,<br>active                   | inactive           | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |
| Measuring<br>Mode      | Measuring Mode<br>Only available if: VRestraint = active                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phase to<br>Ground,<br>Phase to Phase | Phase to<br>Ground | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |
| VRestraint max         | Maximum voltage restraint level. Definition<br>of Vn: Vn is dependent on the System<br>Parameter setting of "VT con". When the<br>System Parameters "VT con" is set to<br>"phase-to-phase", "Vn = VT sec ". When the<br>System Parameters "VT con" is set to<br>"phase-to-ground", "Vn = VT sec/SQRT(3)".                                                                                                                                                                                                         | 0.04 - 2.00Vn                         | 1.00Vn             | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |
| Meas Circuit<br>Superv | Only available if: VRestraint = active<br>Activates the use of the measuring circuit<br>supervision. In this case the module will be<br>blocked if a measuring circuit supervision<br>module (e.g. LOP, VTS) signals a disturbed<br>measuring circuit (e.g. caused by a fuse<br>failure).<br>Only available if: VRestraint = active                                                                                                                                                                               | inactive,<br>active                   | inactive           | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I[1]] |

# I Module Input States

| Name            | Description                                       | Assignment via    |
|-----------------|---------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | //[1]]            |
| ExBlo2-I        | Module input state: External blocking2            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | //[1]]            |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip | [Protection Para  |
|                 | Command                                           | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | //[1]]            |
| Ex rev Interl-I | Module input state: External reverse interlocking | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | //[1]]            |
| AdaptSet1-I     | Module input state: Adaptive Parameter1           | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | /[1]]             |
| AdaptSet2-I     | Module input state: Adaptive Parameter2           | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | //[1]]            |
| AdaptSet3-I     | Module input state: Adaptive Parameter3           | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | //[1]]            |
| AdaptSet4-I     | Module input state: Adaptive Parameter4           | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | //[1]]            |

# I Module Signals (Output States)

| Signal | Description               |
|--------|---------------------------|
| active | Signal: active            |
| ExBlo  | Signal: External Blocking |

| Signal          | Description                                   |
|-----------------|-----------------------------------------------|
| Ex rev Interl   | Signal: External reverse Interlocking         |
| Blo TripCmd     | Signal: Trip Command blocked                  |
| ExBlo TripCmd   | Signal: External Blocking of the Trip Command |
| Alarm L1        | Signal: Alarm L1                              |
| Alarm L2        | Signal: Alarm L2                              |
| Alarm L3        | Signal: Alarm L3                              |
| Alarm           | Signal: Alarm                                 |
| Trip L1         | Signal: General Trip Phase L1                 |
| Trip L2         | Signal: General Trip Phase L2                 |
| Trip L3         | Signal: General Trip Phase L3                 |
| Trip            | Signal: Trip                                  |
| TripCmd         | Signal: Trip Command                          |
| Active AdaptSet | Active Adaptive Parameter                     |
| DefaultSet      | Signal: Default Parameter Set                 |
| AdaptSet 1      | Signal: Adaptive Parameter 1                  |
| AdaptSet 2      | Signal: Adaptive Parameter 2                  |
| AdaptSet 3      | Signal: Adaptive Parameter 3                  |
| AdaptSet 4      | Signal: Adaptive Parameter 4                  |

# Counter Values of the I Module

| Value                | Description                                 | Default | Size                 | Menu path                             |
|----------------------|---------------------------------------------|---------|----------------------|---------------------------------------|
| NumberOfAlarms       | Number of alarms since last reset.          | 0       | 0 -<br>999999999999  | [Operation<br>/History<br>/AlarmCr]   |
| NumberOfTripCm<br>ds | Number of trip commands since last<br>reset | 0       | 0 -<br>9999999999999 | [Operation<br>/History<br>/TripCmdCr] |

# Commissioning: Overcurrent Protection, non-directional [50, 51]

Object to be tested

Signals to be measured for each current protection element, the threshold values, total tripping time (recommended), or alternatively tripping delays and the fallback ratios; each time 3 x single-phase and 1 x three-phase.

# NOTICE

Especially in Holmgreen connections, wiring errors can easily happen, and these are then detected safely. Measuring the total tripping time can ensure that the secondary wiring is o.k. (from the terminal on, up to the trip coil of the CB).

# **NOTICE** It is recommended to measure the total tripping time instead of the tripping delay. The tripping delay should be specified by the customer. The total tripping time is measured at the position signalling contact of the CB (not at the relay output!).

Total tripping time = tripping delay (please refer to the tolerances of the protection stages) + CB operating time (about 50 ms)

Please take the CB operating times from the technical data specified in the relevant documentation provided by the CB manufacturer.

#### Necessary means

#### Current source

- May be: ampere meters
- Timer

#### Procedure

*Testing the threshold values (3 x single-phase and 1 x three-phase)* Each time feed a current which is about 3-5% above the threshold value for activation/tripping. Then check the threshold values.

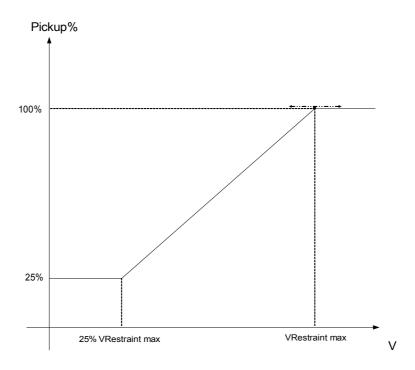
*Testing the total tripping delay (recommendation)* Measure the total tripping times at the auxiliary contacts of the CB (CB tripping).

*Testing the tripping delay* (measuring at the relay output) Measure the tripping times at the relay output.

#### Testing the fallback ratio

Reduce the current to 97% below the trip value and check the fallback ratio.

#### Successful test result


The measured total tripping delays or individual tripping delays, threshold values and fallback ratios correspond with those values, specified in the adjustment list. Permissible deviations/tolerances can be found under Technical Data.

# 51V - Voltage Restraint Overcurrent\*

\*=available only for devices that offer voltage measurement.

For activating this function, the parameter »*VRestraint*« has to be set to *active* in the parameter set of the corresponding overcurrent element I[x]. The <u>51V</u> protection function restrains operation which reduces pickup levels. This allows the User to lower the pickup value of the <u>51V</u> protection function with the corresponding phase input voltage (phase-to-phase or phase-to-ground, depending on the setting of »*Measuring Channel«* within the current protection module). When the minimum fault phase current is close to the load current, it may make the phase time overcurrent protection coordination difficult. In this case, an undervoltage function may be used to alleviate this situation. When the voltage is low, the phase time overcurrent pickup threshold may be set low accordingly, so that the phase time overcurrent protection may achieve adequate sensitivity and better coordination. The device uses a simple linear model to determine the effective pickup by characterizing the relationship between the voltage and the phase time overcurrent pickup threshold.

Once the voltage restraint protection function is activated, the effective phase time overcurrent pickup threshold will be the calculated Pickup% times the phase time overcurrent pickup setting. The effective pickup threshold must be within the setting range allowed and, if it is less, the minimum pickup value will be used.



That means:

Vmin = 0.25\*Vmax; •Pickup%min = 25%; •Pickup% = 25%, if V <= Vmin; •Pickup% = 1/Vmax\*(V - Vmin) + 25%, if Vmin < V < Vmax; •Pickup% = 100%, if V >= Vmax;

The tripping curves (characteristic) will not be influenced by the voltage restraint function. If the voltage transformer supervision is activated, the voltage restraint overcurrent protection element is blocked in case of m.c.b. trip to avoid false trippings.

# NOTICE D

Definition of Vn:

Vn is dependent on the *»Measuring Channel«* setting in the current protection modules.

In case that this parameter is set to "Phase to Phase":

In case that this parameter is set to "Phase to Neutral":

$$Vn = \frac{Main \, VT \, sec}{\sqrt{3}}$$

If the parameter *»VT con«* within the field parameters is set to *»Phase to Phase«* the setting *»Phase to Neutral«* in the current modules is effectless.

# Commissioning: Overcurrent Protection, Non-directional [ANSI 51V]\*

\*=available only for devices that offer voltage measurement.

#### Object to be tested:

Signals to be measured for Voltage Restraint protection function: the threshold values, total tripping time (recommended), or alternatively tripping delays and the dropout ratios; each time 3 x single-phase and 1 x three-phase.

# NOTICE

It is recommended to measure the total tripping time instead of the tripping time. The tripping delay should be specified by the customer. The total tripping time is measured at the position signaling contacts of the CBs (not at the relay output!).

Total tripping time: = tripping delay (please refer to the tolerances of the protection stages) + CB operating time (about 50 ms)

Please take the CB switching times from the technical data, specified in the relevant documentation, provided by the CB manufacturer.

#### Necessary means:

- Current source;
- Voltage Source;
- Current and Voltage meters; and
- Timer.

#### Procedure:

#### Testing the threshold values (3 x single-phase and 1 x three-phase)

Feed %Pickup voltage. For each test performed, feed a current that is about 3-5% above the threshold value for activation/tripping. Then check if the pickup values are %Pickup of the value according to the standard overcurrent protection.

*Testing the total tripping delay (recommendation)* Measure the total tripping times at the auxiliary contacts of the breakers (breaker tripping).

*Testing the tripping delay* (measuring at the relay output contact) Measure the tripping times at the relay output contact.

#### Testing the dropout ratio

Reduce the current to 97% below the trip value and check the dropout ratio.

#### Successful test result

The measured total tripping delays or individual tripping delays, threshold values, and dropout ratios correspond with those values specified in the adjustment list. Permissible deviations/tolerances can be found under Technical Data.

# I2> - Negative-Sequence Overcurrent [51Q]

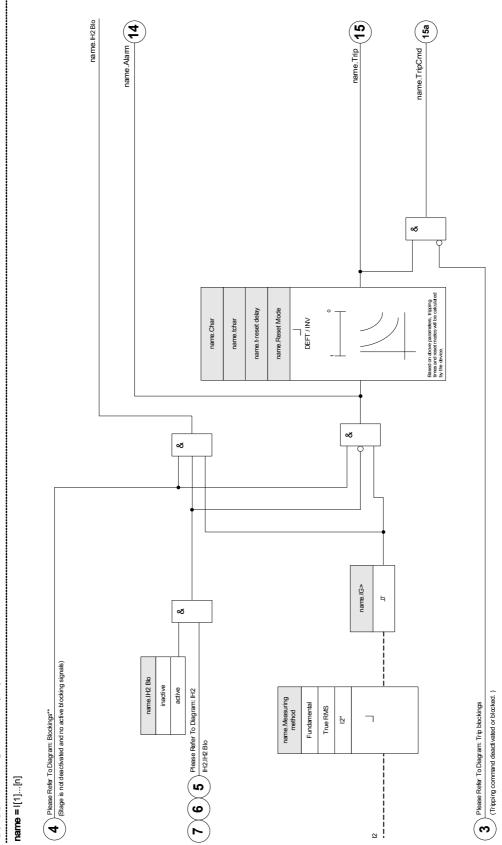
For activating this function, the parameter *»Measuring Mode«* has to be set to *»I2«* in the parameter set of the corresponding overcurrent element I[x].

The negative-sequence overcurrent protection function (<u>12></u>) is to be seen as an equivalent to the phase overcurrent protection with the exception that it uses negative-sequence current (12>) as measured quantities instead of the three phase currents used by phase overcurrent protection function. The negative-sequence current used by <u>12></u> is derived from the following well-known symmetrical component transformation:

$$I_2 = \frac{1}{3} (I_{LI} + a^2 I_{L2} + a I_{L3})$$

The pickup set value of a <u>*12>*</u> protection function should be set in accordance of the negative-sequence current occurrence in the protected object.

Besides that, the negative-sequence overcurrent protection function (<u>12></u>) uses the same setting parameters as the phase overcurrent protection function, like trip and reset characteristics from both IEC/ANSI standards, time multiplier, etc.


The negative-sequence overcurrent protection function (<u>12></u>) can be used for line, generator, transformer and motor protection to protect the system from unbalanced faults. Because the <u>12></u> protection function operates on the negative-sequence current component which is normally absent during load conditions, the <u>12></u> can, therefore, be set more sensitive than the phase overcurrent protection functions. On the other hand, coordination of negative-sequence overcurrent protection function in a radial system does not mean automatically very long fault clearing time for the furthest upstream protection devices, because the tripping time of concerned negative-sequence overcurrent protection function. This makes the <u>12></u> in many cases as an advantageous protection concept in addition to the phase overcurrent protection function.

# **WARNING**

If you are using inrush blockings, the tripping delay of the current protection functions must be at least 30 ms or more in order to prevent faulty trippings.

# NOTICE

At the moment of breaker closure, negative-sequence current might be the result of transients.



I[1]...[n]: Measuring method = (I2>)

## **Commissioning: Negative Sequence Overcurrent**

#### Object to be tested

Signals to be measured for each current protection function: the threshold values, total tripping time (recommended), or alternatively tripping delays and the dropout ratios.

# NOTICE

It is recommended to measure the total tripping time instead of the tripping time. The tripping delay should be specified by the customer. The total tripping time is measured at the position signalling contacts of the CBs (not at the relay output!).

Total tripping time: = tripping delay (please refer to the tolerances of the protection stages) + CB operating time (about 50 ms)

Please take the CB switching times from the technical data, specified in the relevant documentation, provided by the CB manufacturer.

#### Necessary means:

- Current source
- Current meters
- Timer

#### Procedure:

#### Testing the threshold values

In order to get a negative-sequence current, please change the phase sequence at the terminals of the current source (in case of ABC sequence to ACB – in case of a ACB sequence to ABC).

For each test performed, feed a current that is about 3-5% above the threshold value for activation/tripping. Then check the threshold values.

#### Testing the total tripping delay (recommendation)

Measure the total tripping times at the auxiliary contacts of the breakers (breaker tripping).

*Testing the tripping delay* (measuring at the relay output contact) Measure the tripping times at the relay output contact.

#### Testing the dropout ratio

Reduce the current to 97% below the trip value and check the dropout ratio.

#### Successful test result

The measured total tripping delays or individual tripping delays, threshold values, and dropout ratios correspond with those values specified in the adjustment list. Permissible deviations/tolerances can be found under Technical Data.

# Voltage Controlled Overcurrent Protection [51C]\*

\*=available only for devices that offer voltage measurement.

When a sort circuit is near the generator, the voltage might drop down. By means of *Adaptive Parameters* (Please refer to chapter Parameter) the tripping times or tripping characteristics can be modified by the output signal of a voltage element (depending on a threshold). The device might change a load curve to a fault curve (taking influence on tripping time, trip curves and reset modes).

Please proceed as follows:

- Read and understand the section "Adaptive Parameters" within the chapter Parameter.
- Do the device planning and set all required parameters for the Undervoltage element.
- Do the device planning and set all required parameters for the Overcurrent element.
- Set the Adaptive Parameters within the Overcurrent element in the relevant parameter sets (e.g. Curve multiplier, curve type...).
- Assign the Undervoltage alarm (pickup) within the *Global Parameters* as an activation signal for the corresponding *Adaptive Parameter set* of the overcurrent element that should be modified.
- Check the functionality by a commissioning test.

# IG - Ground Fault [50N/G, 51N/G, 67N/G]

Available elements: IG[1],IG[2],IG[3],IG[4]



If you are using inrush blockings the tripping delay of the earth current protection functions must be at least 30ms or more in order to prevent faulty trippings.



All earth current elements are identically structured.



This module offers Adaptive Parameter Sets. Parameters can be modified within parameter sets dynamically by means of Adaptive Parameter Sets. Please refer to chapter Parameter / Adaptive Parameter Sets.

The following table shows the application options of the earth overcurrent protection element

| Applications of the IE-Protection Module                                   | Setting in                                                 | Option                                                           |
|----------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|
| ANSI 50N/G – Earth overcurrent protection,<br>non directional              | Device Planning menu<br>Setting: non directional           | Measuring Mode:<br>Fundamental/TrueRMS                           |
| ANSI 51N/G – Earth short circuit protection, non directional               | Device Planning menu<br>Setting: non directional           | Measuring Mode:<br>Fundamental/TrueRMS                           |
| ANSI 67N/G – Earth overcurrent/Earth short circuit protection, directional | Device Planning menu<br>Setting: directional               | Measuring Mode:<br>Fundamental/TrueRMS                           |
|                                                                            | Field parameter menu<br>3V0 Source:<br>measured/calculated | IG Source: measured/calculated<br>VG Source: measured/calculated |
|                                                                            | 3I0 Source:<br>measured/calculated                         |                                                                  |

#### Measuring Mode

For all protection elements it can be determined, whether the measurement is done on basis of the *»Fundamental«* or if *»TrueRMS«* measurement is used.

#### IG Source/VG Source

Within the parameter menu, this parameter determines, whether the earth current and the residual voltage is *»measured«* or *»calculated«*.

#### Direction detection (3V0 Source und 3I0 Source)

In the field parameter menu it can be determined, if the earth current directional detection should be based on measured or calculated values of currents and voltages. This setting takes effect on all earth current elements.

# **WARNING**

Calculation of the residual voltage is only possible, when phase to neutral voltage is applied to the voltage inputs.

At setting »*measured*« the quantities to be measured, i. e. Residual voltage and the measured earth current have to be applied to the corresponding  $4^{th}$  measuring input.

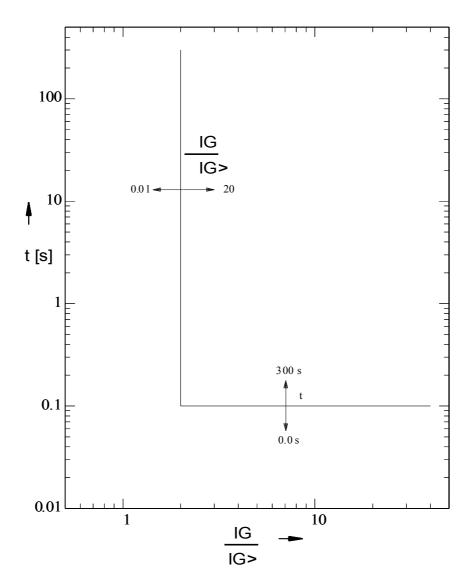
All earth current protective elements can be planned user defined as non-directional or as directional stages. This means, for instance, all 4 elements can be projected in forward/reverse direction. For each element the following characteristics are available:

- DEFT (UMZ) Definite Time-Overcurrent
- NINV (IEC/AMZ) IEC Normal Inverse
- VINV (IEC/AMZ) IEC Very Inverse
- LINV (IEC/AMZ) IEC Long Time Inverse
- EINV (IEC/AMZ) *IEC Extremely Inverse*
- MINV (ANSI/AMZ) ANSI Moderately Inverse
- VINV (ANSI/AMZ) ANSI Very Inverse
- EINV (ANSI/AMZ) ANSI Extremely Inverse
- RINV R Inverse
- RXIDG
- Thermal Flat
- IT 📃
- I2T
- I4T

Explanation:

t = Tripping delay

t-char = Time multiplier/tripping characteristic factor. The setting range depends on the selected tripping curve. IG = Fault current


IG> = If the pickup value is exceeded, the module/element starts to time out to trip.

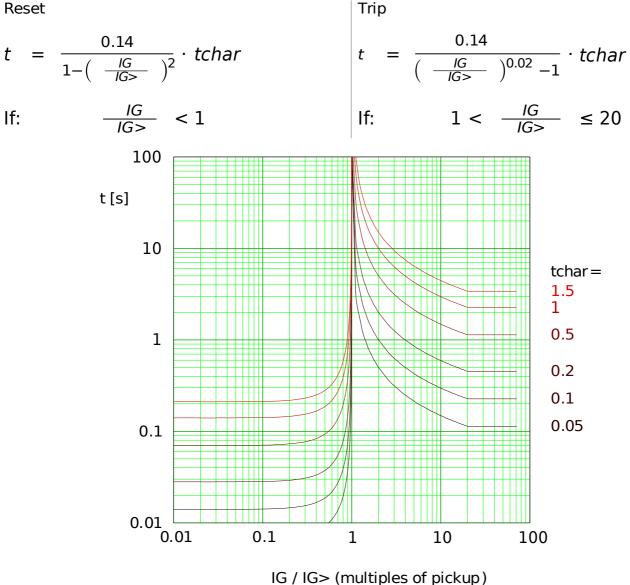
The earth current can be measured either directly via a cable-type transformer or detected by a Holmgreen connection. The earth current can alternatively be calculated from the phase currents; but this is only possible if the phase currents are not ascertained by a V-connection.

The device can optionally be procured with a sensitive earth current measuring input.

DEFT – Definite Time-Overcurrent






## **IEC Normal Inverse**

NOTICE

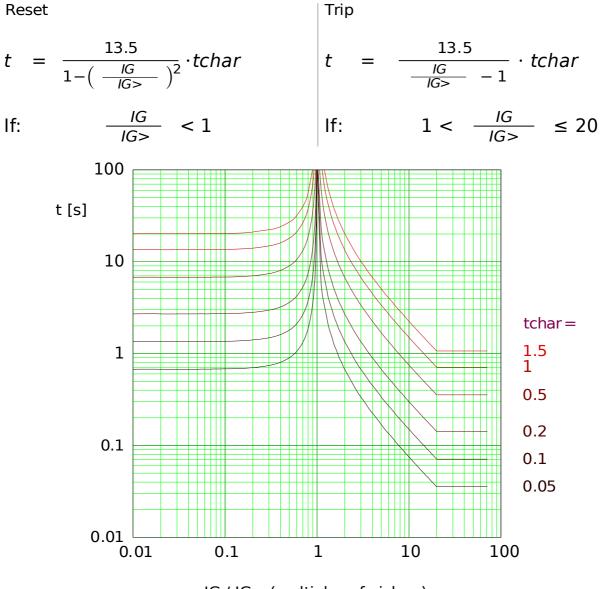
Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

Remark: For  $I_G > 20 \cdot I_{G>}$ , the curve stops decreasing, the t-values are kept constant at the value for  $I_G = 20 \cdot I_{G>}$ .

## »Char« = IEC NINV



## **IEC Very Inverse**


NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

Remark: For  $I_G > 20 \cdot I_{G>}$ , the curve stops decreasing, the t-values are kept constant at the value for  $I_G = 20 \cdot I_{G>}$ .

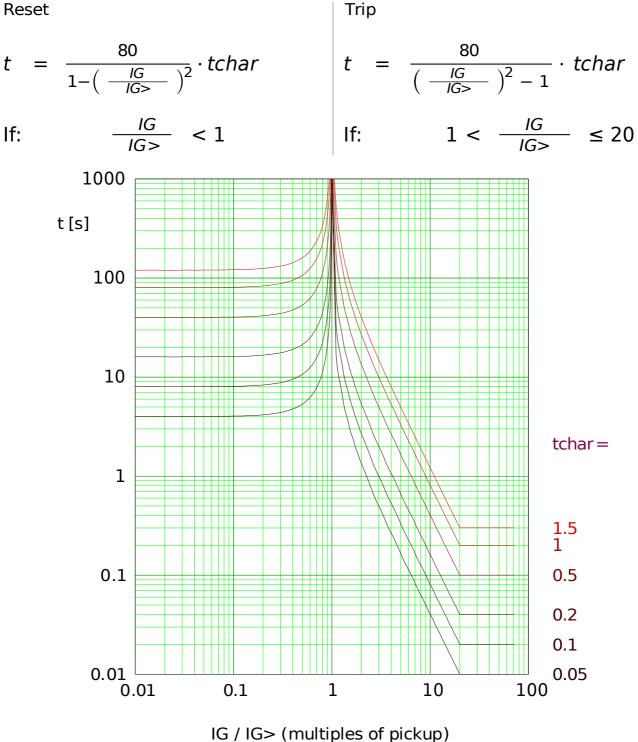
## »Char« = IEC VINV

Reset



IG / IG> (multiples of pickup)

Edoc\_Z02


## **IEC Extremely Inverse**

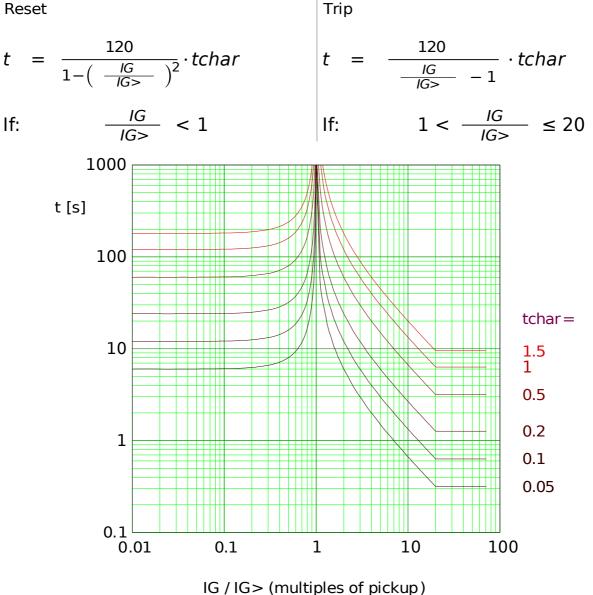
NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

Remark: For  $I_G > 20 \cdot I_{G>}$ , the curve stops decreasing, the t-values are kept constant at the value for  $I_G = 20 \cdot I_{G>}$ .

## »Char« = IEC EINV




## **IEC Long Time Inverse**

NOTICE

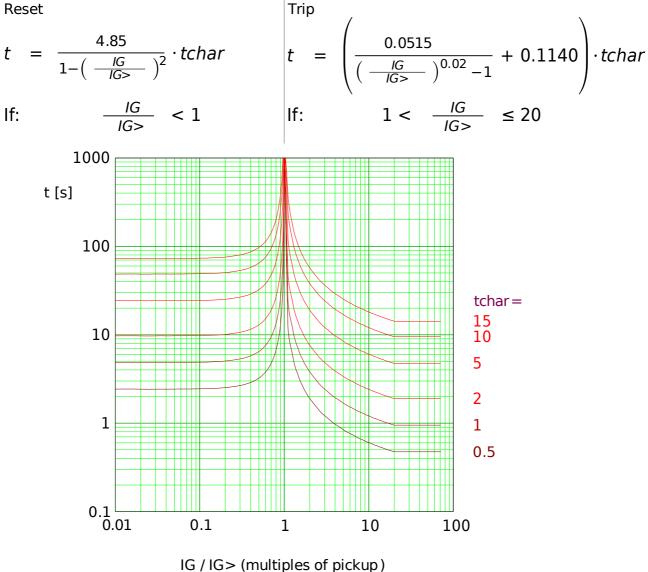
Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

Remark: For  $I_G > 20 \cdot I_{G>}$ , the curve stops decreasing, the t-values are kept constant at the value for  $I_G = 20 \cdot I_{G>}$ .

## »Char« = IEC LINV



## **ANSI Moderately Inverse**


NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

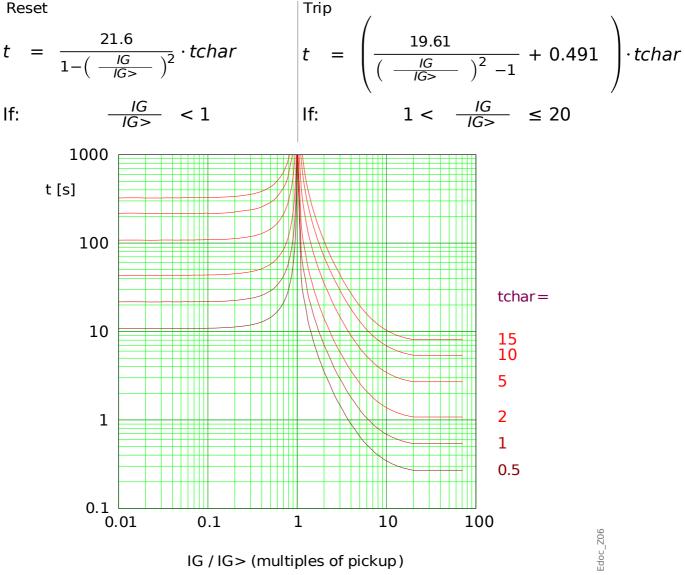
Remark: For  $I_G > 20 \cdot I_{G>}$ , the curve stops decreasing, the t-values are kept constant at the value for  $I_G = 20 \cdot I_{G>}$ .

#### »Char« = ANSI MINV

Reset



Edoc\_Z05


## **ANSI Very Inverse**

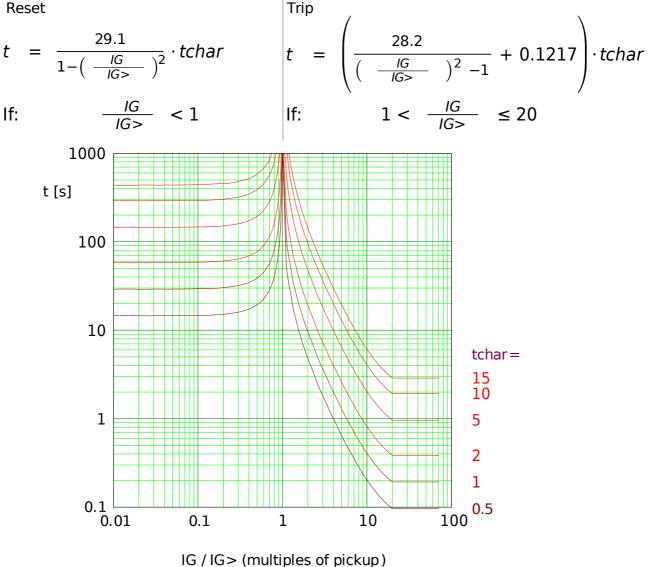
NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

Remark: For  $I_G > 20 \cdot I_{G>}$ , the curve stops decreasing, the t-values are kept constant at the value for  $I_G = 20 \cdot I_{G>}$ .

## »Char« = ANSI VINV




## **ANSI Extremely Inverse**

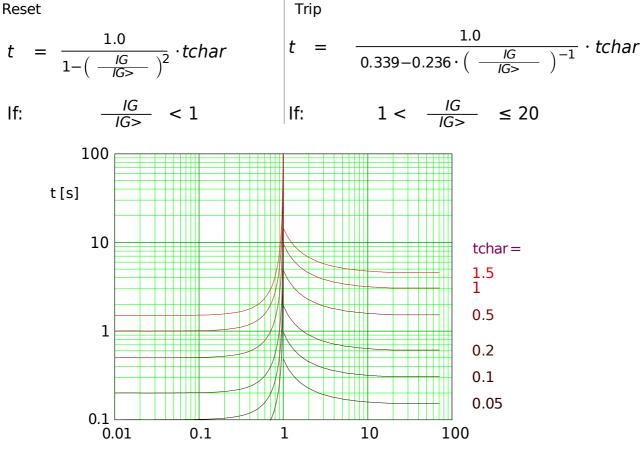
NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

Remark: For  $I_G > 20 \cdot I_{G>}$ , the curve stops decreasing, the t-values are kept constant at the value for  $I_G = 20 \cdot I_{G>}$ .

## »Char« = ANSI EINV




## **R** Inverse

NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

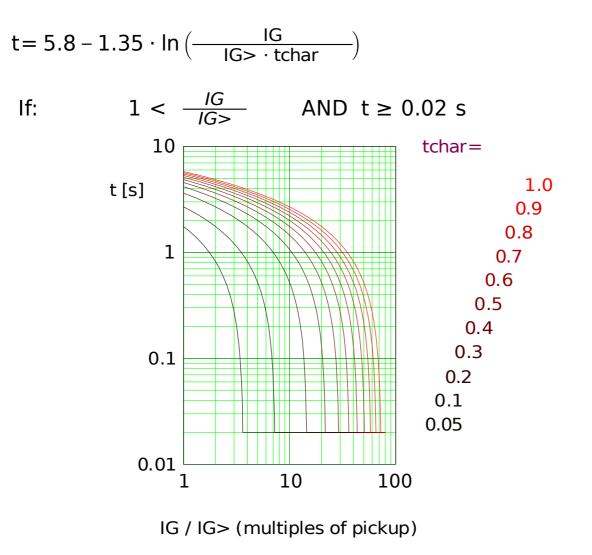
Remark: For  $I_G > 20 \cdot I_{G>}$ , the curve stops decreasing, the t-values are kept constant at the value for  $I_G = 20 \cdot I_{G>}$ .

## »Char« = RINV



IG / IG> (multiples of pickup)

## **RXIDG**


NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

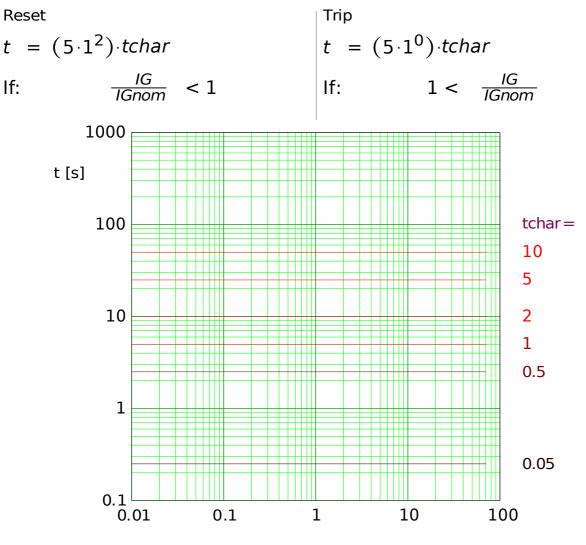
Remark: The curve stops decreasing at t = 0.02 s and is kept constant for higher  $I_G$  values.

## »Char« = RXIDG

Trip



Edoc\_Z13


## **Thermal Flat Curve**

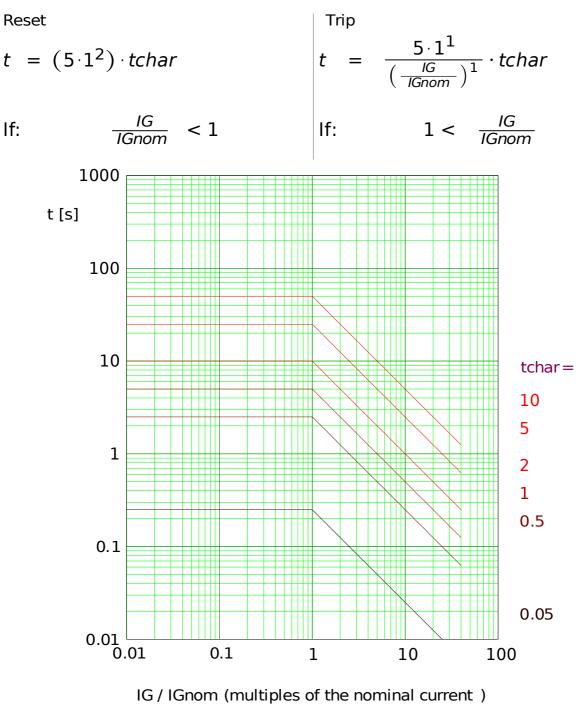
NOTICE

Various reset modes are available:

Resetting via characteristic, delayed and instantaneous.

## »Char« = Therm Flat




IG / IGnom (multiples of the nominal current )

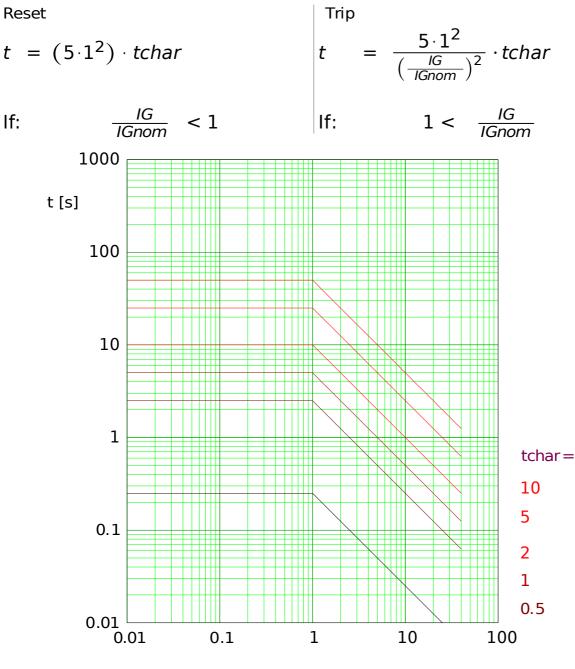
## **Thermal Curve IT**

NOTICE

Various reset modes are available: Resetting via characteristic, delayed and instantaneous.

## *»Char«* = IT




## Thermal Curve I2T

NOTICE

Various reset modes are available:

Resetting via characteristic, delayed and instantaneous.

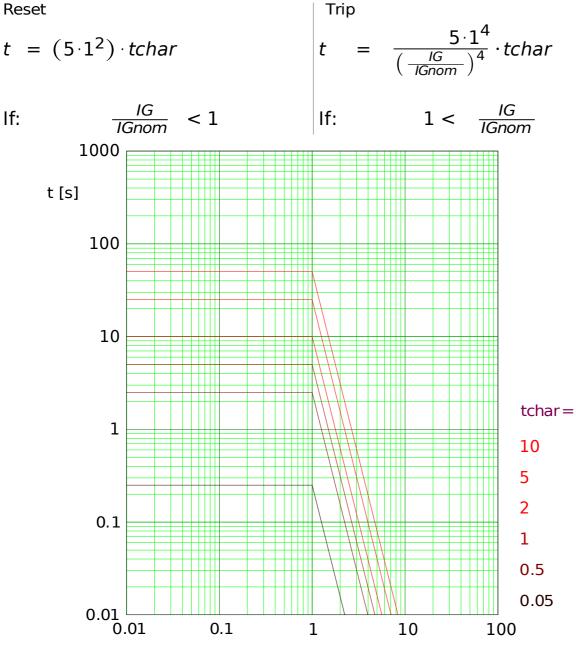
## *»Char«* = I2T



IG / IGnom (multiples of the nominal current )

Edoc\_Z10

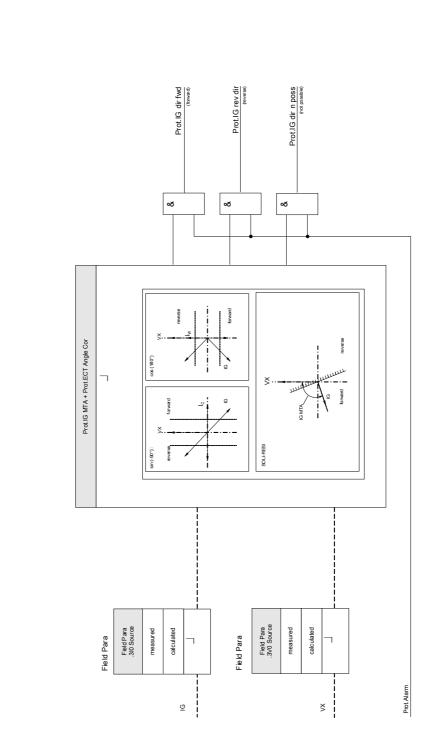
## **Thermal Curve I4T**


NOTICE

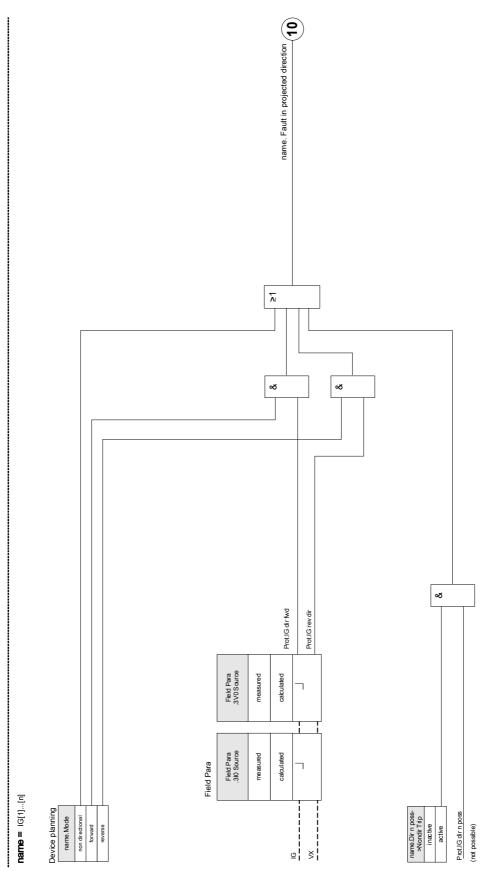
Various reset modes are available:

Resetting via characteristic, delayed and instantaneous.

## \*Char = 14T


Reset

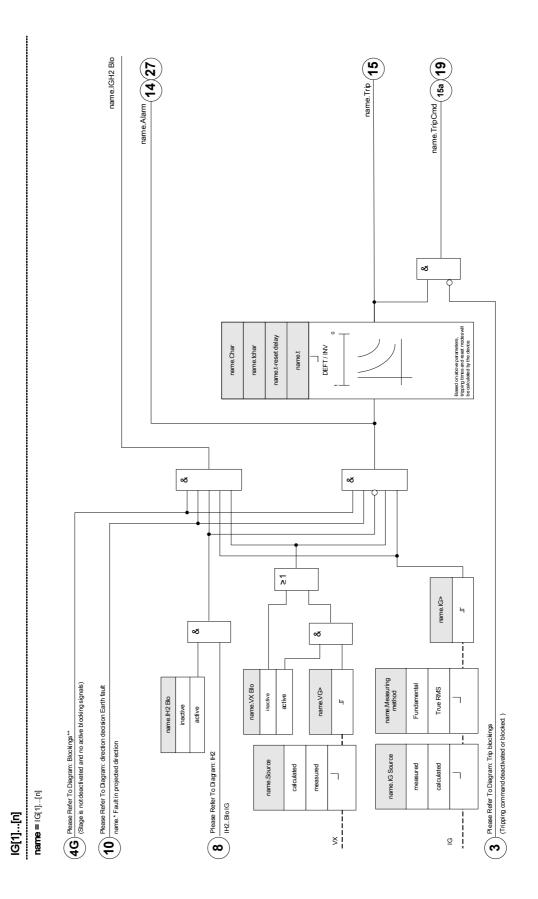



IG / IGnom (multiples of the nominal current )

## **Direction Determination**

The direction determination is based on the »Prot« module. See the chapter *"Module: Protection (Prot)"* for more information.




Prot - Earth fault - direction detection



# direction decision Earth fault

DOK-HB-MRMV4-2E

591



592

## Device Planning Parameters of the Ground Fault Protection

| Parameter    | Description | Options         | Default    | Menu path         |
|--------------|-------------|-----------------|------------|-------------------|
| Mode         | Mode        | do not use,     | do not use | [Device planning] |
|              |             | non directional |            |                   |
| $\bigotimes$ |             |                 |            |                   |

## Global Protection Parameters of the Ground Fault Protection

| Parameter              | Description                                                                                                                                                      | Setting range          | Default | Menu path            |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|----------------------|
| ExBlo1                 | External blocking of the module, if blocking is activated (allowed) within a parameter set                                                                       | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$           | and if the state of the assigned signal is true.                                                                                                                 |                        |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                        |         | /I-Prot              |
|                        |                                                                                                                                                                  |                        |         | /IG[1]]              |
| ExBlo2                 | External blocking of the module, if blocking is activated (allowed) within a parameter set                                                                       | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$           | and if the state of the assigned signal is true.                                                                                                                 | <u> </u>               |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                        |         | /I-Prot              |
|                        |                                                                                                                                                                  |                        |         | /IG[1]]              |
| ExBlo dur.<br>Mot.Strt | External blocking of the module, if the state<br>of the assigned signal is true. This way it is<br>possible to block the module during the<br>motor start phase. | 1n, Trip Cmds          |         | [Protection<br>Para  |
|                        |                                                                                                                                                                  |                        |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                        |         | /I-Prot              |
|                        |                                                                                                                                                                  |                        |         | /IG[1]]              |
| ExBlo TripCmd          | External blocking of the Trip Command of the module/the stage, if blocking is                                                                                    | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$           | activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true.                                                                |                        |         | /Global Prot<br>Para |
|                        | liue.                                                                                                                                                            |                        |         | /I-Prot              |
|                        |                                                                                                                                                                  |                        |         | /IG[1]]              |
| Ex rev Interl          |                                                                                                                                                                  | 1n,<br>Assignment List |         | [Protection<br>Para  |
|                        |                                                                                                                                                                  |                        |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                        |         | /I-Prot              |
|                        |                                                                                                                                                                  |                        |         | /IG[1]]              |

| Parameter    | Description                     | Setting range | Default | Menu path            |
|--------------|---------------------------------|---------------|---------|----------------------|
| AdaptSet 1   | Assignment Adaptive Parameter 1 | AdaptSet      |         | [Protection<br>Para  |
|              |                                 |               |         | /Global Prot<br>Para |
|              |                                 |               |         | /I-Prot              |
|              |                                 |               |         | /IG[1]]              |
| AdaptSet 2   | Assignment Adaptive Parameter 2 | AdaptSet      |         | [Protection<br>Para  |
| $\bigotimes$ |                                 |               |         | /Global Prot<br>Para |
|              |                                 |               |         | /I-Prot              |
|              |                                 |               |         | /IG[1]]              |
| AdaptSet 3   | Assignment Adaptive Parameter 3 | AdaptSet      |         | [Protection<br>Para  |
|              |                                 |               |         | /Global Prot<br>Para |
|              |                                 |               |         | /I-Prot              |
|              |                                 |               |         | /IG[1]]              |
| AdaptSet 4   | Assignment Adaptive Parameter 4 | AdaptSet      |         | [Protection<br>Para  |
|              |                                 |               |         | /Global Prot<br>Para |
|              |                                 |               |         | /I-Prot              |
|              |                                 |               |         | /IG[1]]              |

# Setting Group Parameters of the Ground Fault Protection

| Parameter | Description                                                                                                                                                                                                                                                                                                 | Setting range       | Default  | Menu path                                          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|----------------------------------------------------|
| Function  | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                       | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| ExBlo Fc  | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active". | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |

| Parameter              | Description                                                                                                                                                                                                                                                                                                              | Setting range                                        | Default     | Menu path                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------|----------------------------------------------------|
| Ex rev Interl Fc       | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "Ex rev Interl Fc =<br>active". | inactive,<br>active                                  | inactive    | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| Blo TripCmd            | Permanent blocking of the Trip Command of the module/stage.                                                                                                                                                                                                                                                              | inactive,<br>active                                  | inactive    | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| ExBlo TripCmd<br>Fc    | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active".   | inactive,<br>active                                  | inactive    | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| IG Source              | Selection if measured or calculated ground current should be used.                                                                                                                                                                                                                                                       | sensitive<br>measurement,<br>measured,<br>calculated | calculated  | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| Measuring<br>method    | Measuring method: fundamental or rms or<br>3rd harmonic (only generator protection<br>relays)                                                                                                                                                                                                                            | Fundamental,<br>True RMS                             | Fundamental | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| VX Source              | Selection if VG is measured or calculated (neutral voltage or residual voltage)                                                                                                                                                                                                                                          | measured,<br>calculated                              | measured    | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| Meas Circuit<br>Superv | Activates the use of the measuring circuit<br>supervision. In this case the module will be<br>blocked if a measuring circuit supervision<br>module (e.g. LOP, VTS) signals a disturbed<br>measuring circuit (e.g. caused by a fuse<br>failure).<br>Only available if "VX Source" ist set to<br>"calculated".             | inactive,<br>active                                  | inactive    | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |

| Parameter    | Description                                                                                                                                                                                                                                                                                                            | Setting range                                                                                                                                                                 | Default       | Menu path                                          |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------|
| IG>          | If the pickup value is exceeded, the module/stage will be started.                                                                                                                                                                                                                                                     | 0.02 - 20.00In                                                                                                                                                                | 0.02In        | [Protection<br>Para<br>/<14><br>/I-Prot            |
| +            |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               |               | /IG[1]]                                            |
| IGs>         | If the pickup value is exceeded, the module/stage will be started.                                                                                                                                                                                                                                                     | 0.002 - 2.000ln                                                                                                                                                               | 0.02In        | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| Char<br>Char | Characteristic                                                                                                                                                                                                                                                                                                         | DEFT,<br>IEC NINV,<br>IEC VINV,<br>IEC EINV,<br>IEC LINV,<br>RINV,<br>ANSI MINV,<br>ANSI VINV,<br>ANSI EINV,<br>Therm Flat,<br>IT,<br>I2T,<br>I4T,<br>RXIDG<br>0.00 - 300.00s | DEFT<br>0.00s | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
|              | Only available if: Characteristic = DEFT                                                                                                                                                                                                                                                                               |                                                                                                                                                                               |               | Para<br>/<14><br>/I-Prot<br>/IG[1]]                |
| tchar        | <ul> <li>Time multiplier/tripping characteristic factor.</li> <li>The setting range depends on the selected tripping curve.</li> <li>Only available if: Characteristic = INV Or Characteristic = Therm Flat Or Characteristic = IT Or Characteristic = I2T Or Characteristic = I4TOr Characteristic = RXIDG</li> </ul> | 0.02 - 20.00                                                                                                                                                                  | 1             | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |

| Parameter                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Setting range                            | Default       | Menu path                                          |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|----------------------------------------------------|
| Reset Mode                  | Reset Mode<br>Only available if: Characteristic = INV Or<br>Characteristic = Therm Flat Or<br>Characteristic = IT Or Characteristic = I2T<br>Or Characteristic = I4TOr Characteristic =<br>RXIDG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | instantaneous,<br>delayed,<br>calculated | instantaneous | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| t-reset delay               | Reset delay for intermittent phase failures<br>(INV characteristics only)<br>Only available if: Characteristic = INV Or<br>Characteristic = Therm Flat Or<br>Characteristic = IT Or Characteristic = I2T<br>Or Characteristic = I4TOr Characteristic =<br>RXIDG Only available if:Reset Mode =<br>delayed                                                                                                                                                                                                                                                                                                                                                                                   | 0.00 - 60.00s                            | 0.00s         | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| Dir n poss-<br>>Nondir Trip | Only relevant for current protection<br>elements with directional feature! The<br>device will trip non directional if this<br>parameter is set to active and no direction<br>could be determined. Direction detection is<br>impossible e.g. if the required quantities for<br>the direction detection cannot be measured<br>or validated. Direction detection is also<br>impossible if the frequency deviates<br>significantly from the nominal frequency.<br>Caution: If this parameter is set to inactive,<br>the protective element will trip only if the<br>direction can be detected.<br>Only available if: Device planning: Earth<br>current protection - Stage.Mode =<br>directional | inactive,<br>active                      | inactive      | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| VX BIO                      | VX Blo = active means that the IG-stage will<br>only excite if a residual voltage higher than<br>the pickup value is measured at the same<br>time. VX Blo = inactive means that the<br>excitation of the IG stage does not depend<br>on any residual voltage stage.                                                                                                                                                                                                                                                                                                                                                                                                                         | inactive,<br>active                      | inactive      | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |
| VG>                         | If the pickup value is exceeded, the<br>module/stage will be started.<br>Only available if: VX Blo = active                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01 - 2.00Vn                            | 1.00Vn        | [Protection<br>Para<br>/<14><br>/I-Prot<br>/IG[1]] |

# Ground Fault Protection Input States

| Name            | Description                                       | Assignment via    |
|-----------------|---------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | /IG[1]]           |
| ExBlo2-I        | Module input state: External blocking2            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | /IG[1]]           |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip | [Protection Para  |
|                 | Command                                           | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | /IG[1]]           |
| Ex rev Interl-I | Module input state: External reverse interlocking | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | /IG[1]]           |
| AdaptSet1-I     | Module input state: Adaptive Parameter1           | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | /IG[1]]           |
| AdaptSet2-I     | Module input state: Adaptive Parameter2           | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | /IG[1]]           |
| AdaptSet3-I     | Module input state: Adaptive Parameter3           | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | /IG[1]]           |
| AdaptSet4-I     | Module input state: Adaptive Parameter4           | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /I-Prot           |
|                 |                                                   | /IG[1]]           |

# Ground Fault Protection Signals (Output States)

| Signal | Description               |
|--------|---------------------------|
| active | Signal: active            |
| ExBlo  | Signal: External Blocking |

| Signal          | Description                                   |
|-----------------|-----------------------------------------------|
| Ex rev Interl   | Signal: External reverse Interlocking         |
| Blo TripCmd     | Signal: Trip Command blocked                  |
| ExBlo TripCmd   | Signal: External Blocking of the Trip Command |
| Alarm           | Signal: Alarm IG                              |
| Trip            | Signal: Trip                                  |
| TripCmd         | Signal: Trip Command                          |
| Active AdaptSet | Active Adaptive Parameter                     |
| DefaultSet      | Signal: Default Parameter Set                 |
| AdaptSet 1      | Signal: Adaptive Parameter 1                  |
| AdaptSet 2      | Signal: Adaptive Parameter 2                  |
| AdaptSet 3      | Signal: Adaptive Parameter 3                  |
| AdaptSet 4      | Signal: Adaptive Parameter 4                  |

# **Ground Fault Protection Counter Values**

| Value          | Description                        | Default | Size               | Menu path   |
|----------------|------------------------------------|---------|--------------------|-------------|
| NumberOfAlarms | Number of alarms since last reset. | 0       | 0 -<br>99999999999 | [Operation  |
|                |                                    |         |                    | /History    |
|                |                                    |         |                    | /AlarmCr]   |
|                | Number of trip commands since last | 0       | 0 -                | [Operation  |
| ds             | reset                              |         | 99999999999        | /History    |
|                |                                    |         |                    | /TripCmdCr] |

## Commissioning: Ground Fault Protection – non-directional [50N/G, 51N/G]

Please test the non-directional earth overcurrent analog to the non-directional phase overcurrent protection.

## Commissioning: Ground Fault Protection – directional [50N/G, 51N/G, 67N/G]

Please test the directional earth overcurrent analog to the directional phase overcurrent protection.

# I2> and %I2/I1> - Unbalanced Load [46]

Elements: 12>[1],12>[2]

The *I2>* Current Unbalance module works similar to the *V 012* Voltage Unbalance module. The positive and negative sequence currents are calculated from the 3-phase currents. The threshold setting (either »*I2>«* or »*I2/FLA«*) defines a minimum operating current magnitude of I2 for the 46 function to operate, which insures that the relay has a solid basis for initiating a current unbalance trip. The »%(I2/I1)« (option) setting is the unbalance trip pickup setting. It is defined by the ratio of negative sequence current to positive sequence current »%(I2/I1)«.

# **NOTICE** All I2> Current Unbalance modules are identically structured.

The condition for a trip of this module is that the negative sequence current I2 is above the set threshold **and** – if configured – the percentage current unbalance is above the setting (12/11)«. The module initiates a trip if this condition is fulfilled for a specific tripping delay time.

For this tripping delay time, there are two characteristics available as configuring options, a definite time characteristic (DEFT, where the tripping delay is a setting value) and an inverse characteristic (INV, where the tripping delay is calculated).

The setting of »CurrentBase « decides about whether »*I2>*« or »*I2/FLA*« is used as the threshold value. This rating value – »*I2>*« or »*I2/FLA*« – is the permitted continuous unbalanced load current, and it is specified in units of either  $I_n$  (for »CurrentBase « = 'Device Rating') or  $I_b$  (for »CurrentBase « = 'Protected Object Rating').

The principle of the definite time characteristic (DEFT) is as follows:

The module trips if for the tripping delay time (which is set as the Setting Group parameter »t«) the negative sequence current l2 is above the set threshold and (if configured) the percentage current unbalance is above the setting » %(l2/l1)«.

The principle of the inverse time characteristic (INV) is as follows:

- The protective device permanently calculates the heat (thermal) energy θ of the object to be protected. This happens all the time, independent of any alarm or tripping decisions.
   The module trips if for the tripping delay time t<sub>trip</sub> which is dependent on θ the following conditions are all fulfilled:
  - 1. The negative sequence current *l2* is above the set threshold (»*l2>*« or »*l2/FLA*«) and
  - 2. the percentage current unbalance is above the setting »%(12/11)« (if »%(12/11)« is set to active) and
  - 3. the calculated thermal energy  $\theta$  exceeds a maximum value  $\theta_{max}$ , which is calculated based on the setting *K* for the thermal load capability.

 $t_A = \frac{K \cdot I_b^2}{I_2^2 - I_2^2}$ 

for »CurrentBase « = "Protected Object Rating"

• For  $\theta = 0$  the tripping delay time is calculated as follows:

for *»CurrentBase« = "*Device Rating"

$$t_{A} = \frac{K \cdot I_{n}^{2}}{I_{2}^{2} - I_{2}^{2}}$$

where

 $t_{trip}$  = tripping delay in seconds,

601

- *K* = thermal load capability of the object while running with 100% unbalanced load current.
   This is an intrinsic property of the object that is to be protected, and therefore it must be specified as a setting value (Setting Group parameter »*K*«).
- $I_n$  = nominal current, in case of *»CurrentBase« = "Device Rating"*,
- I<sub>b</sub> = nominal current of the protected object, in case of *»CurrentBase« = "*Protected Object Rating".
- = unbalanced load current I2 (calculated from measured current values),
- *I*<sub>2></sub> = Setting value »*I*2>«, in case of »*CurrentBase*« = "Device Rating",
- *I*<sub>2/FLA</sub> = Setting value »/2/FLA«, in case of »CurrentBase« = "Protected Object Rating".
- In case of a still present residual heat, θ > 0, the tripping delay t<sub>trip</sub> is reduced accordingly, so that an earlier tripping occurs.
- As long as the unbalanced load current *l2* is *greater* than the threshold »*l2>«* it is assumed that the object is *heating up*. During this phase, the heat (thermal) energy is calculated by an integration of the current value *l2*:

 $\theta(t) = \theta_{0, cool} + f \cdot \int \left| \vec{I}_2 \right|^2 dt$ 

- $\theta(t)$  = actual value of the thermal energy,
- $\theta_{0,cool}$  = initial value at the beginning of the heating phase, i. e. the thermal energy at the end of the last cooling-down phase (or = 0, if the last cooling-down phase has ended, see below, or if there has not been any cooling-down phase yet),
- *f* = scaling factor.
- As long as the unbalanced load current *l2* is *less* than the threshold (*»l2>«* or *»l2/FLA«*) it is assumed that the object is *cooling down*. During this phase, the heat (thermal) energy is calculated based on a cooling-down constant. This constant is another intrinsic property of the object that is to be protected, and therefore it must be specified as a setting value (Setting Group parameter *»r-cool«*):

$$\theta(t) = \theta_{0,heat} \cdot e^{-\frac{t}{\tau_{cool}}}$$

- $\theta(t)$  = actual value of the thermal energy,
- $\theta_{0,heat}$  = initial value at the beginning of the cooling-down phase,
  - i. e. the thermal energy at the end of the last heating-up phase
- $r_{cool}$  = object property, setting value »*r-cool*«.
- The cooling-down phase always continues as long as I2 is below the threshold, i. e. θ(t) is calculated continuously. (Only after θ(t) has dropped below 0.01·θ<sub>max</sub> the calculation ends and θ gets reset to 0, i. e. a subsequent heating-up phase will start with initial value θ<sub>0,cool</sub> = 0.)

# NOTICE

The heat (thermal) energy is an auxiliary value that is calculated and maintained internally, i. e. it can neither be displayed at the HMI nor be retrieved via any communication protocol.





## Device Planning Parameters of the Current Unbalance Module

| Parameter    | Description | Options     | Default               | Menu path         |
|--------------|-------------|-------------|-----------------------|-------------------|
| Mode         | Mode        | do not use, | l2>[1]: use           | [Device planning] |
| $\bigotimes$ |             | use         | I2>[2]: do not<br>use |                   |

# Global Protection Parameters of the Current Unbalance Module

| Parameter              | Description                                                                                                                                                                           | Setting range          | Default                                       | Menu path                                   |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------|---------------------------------------------|
| ExBlo1                 | External blocking of the module, if blocking<br>is activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true.                                  | 1n,<br>Assignment List |                                               | [Protection<br>Para<br>/Global Prot<br>Para |
|                        |                                                                                                                                                                                       |                        |                                               | /I-Prot                                     |
|                        |                                                                                                                                                                                       |                        |                                               | /l2>[1]]                                    |
| ExBlo2                 | External blocking of the module, if blocking<br>is activated (allowed) within a parameter set<br>and if the state of the assigned signal is                                           | 1n,<br>Assignment List |                                               | [Protection<br>Para                         |
|                        | true.                                                                                                                                                                                 |                        |                                               | /Global Prot<br>Para                        |
| 2                      |                                                                                                                                                                                       |                        |                                               | /I-Prot                                     |
|                        |                                                                                                                                                                                       |                        |                                               | /l2>[1]]                                    |
| ExBlo dur.<br>Mot.Strt | External blocking of the module, if the state<br>of the assigned signal is true. This way it is<br>possible to block the module during the<br>motor start phase.                      | 1n, Trip Cmds          | 12>[1]:<br>MStart.Blo-<br>12>Start<br>12>[2]: | [Protection<br>Para                         |
|                        |                                                                                                                                                                                       |                        |                                               | /Global Prot<br>Para                        |
|                        |                                                                                                                                                                                       |                        |                                               | /I-Prot                                     |
|                        |                                                                                                                                                                                       |                        |                                               | /l2>[1]]                                    |
| ExBlo TripCmd          | External blocking of the Trip Command of<br>the module/the stage, if blocking is<br>activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true. | 1n,<br>Assignment List |                                               | [Protection<br>Para                         |
|                        |                                                                                                                                                                                       |                        |                                               | /Global Prot<br>Para                        |
|                        |                                                                                                                                                                                       |                        |                                               | /I-Prot                                     |
|                        |                                                                                                                                                                                       |                        |                                               | /l2>[1]]                                    |

# Setting Group Parameters of the Current Unbalance Module

| Parameter | Description                                           | Setting range       | Default  | Menu path                                           |
|-----------|-------------------------------------------------------|---------------------|----------|-----------------------------------------------------|
| Function  | Permanent activation or deactivation of module/stage. | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I2>[1]] |

| Parameter           | Description                                                                                                                                                                                                                                                                                                                    | Setting range       | Default                          | Menu path                                           |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|-----------------------------------------------------|
| ExBlo Fc            | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active".                    | inactive,<br>active | inactive                         | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I2>[1]] |
| Blo TripCmd         | Permanent blocking of the Trip Command of the module/stage.                                                                                                                                                                                                                                                                    | inactive,<br>active | inactive                         | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I2>[1]] |
| ExBlo TripCmd<br>Fc | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active".         | inactive,<br>active | inactive                         | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I2>[1]] |
| 12>                 | The Threshold setting defines a minimum<br>operating current magnitude of I2 for the 46<br>function to operate, which ensures that the<br>relay has a solid basis for initiating a current<br>unbalance trip. This is a supervisory function<br>and not a trip level.<br>Only available if: I2>.CurrentBase = Device<br>Rating | 0.01 - 4.00In       | I2>[1]: 0.08In<br>I2>[2]: 0.01In | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I2>[1]] |
| %(I2/I1)            | The %(I2/I1) setting is the unbalance trip<br>pickup setting. It is defined by the ratio of<br>negative sequence current to positive<br>sequence current (% Unbalance=I2/I1).<br>Phase sequence will be taken into account<br>automatically.                                                                                   | inactive,<br>active | inactive                         | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I2>[1]] |
| %(I2/I1)            | The %(I2/I1) setting is the unbalance trip<br>pickup setting. It is defined by the ratio of<br>negative sequence current to positive<br>sequence current (% Unbalance=I2/I1).<br>Phase sequence will be taken into account<br>automatically.<br>Only available if: %(I2/I1) = use                                              | 2 - 40%             | 20%                              | [Protection<br>Para<br>/<14><br>/I-Prot<br>/I2>[1]] |

| Parameter | Description                                                                          | Setting range  | Default | Menu path           |
|-----------|--------------------------------------------------------------------------------------|----------------|---------|---------------------|
| Char      | Characteristic                                                                       | DEFT,<br>INV   | DEFT    | [Protection<br>Para |
|           |                                                                                      |                |         | /<14>               |
|           |                                                                                      |                |         | /I-Prot             |
|           |                                                                                      |                |         | /I2>[1]]            |
| t         | Tripping delay                                                                       | 0.00 - 300.00s | 0.00s   | [Protection<br>Para |
|           | Only available if: Characteristic = DEFT                                             |                |         | /<14>               |
|           |                                                                                      |                |         | /I-Prot             |
|           |                                                                                      |                |         | /l2>[1]]            |
| К         | This setting is the negative sequence capability constant. This value is normally    | 1.00 - 200.00s | 10.0s   | [Protection<br>Para |
|           | provided by the generator manufacturer.                                              |                |         | /<14>               |
|           | Only available if: Characteristic = INV                                              |                |         | /I-Prot             |
|           |                                                                                      |                |         | /l2>[1]]            |
| τ-cool    | If the unbalanced load current falls below the pickup value, the cooling-off time is | 0.0 - 60000.0s | 0.0s    | [Protection<br>Para |
|           | taken into account. If the unbalanced load exceeds the pickup value again, than the  |                |         | /<14>               |
|           | saved heat within the electrical equipment                                           |                |         | /I-Prot             |
|           | will lead to an accelerated trip.                                                    |                |         | /l2>[1]]            |
|           | Only available if: Characteristic = INV                                              |                |         |                     |

# Current Unbalance Module Input States

| Name            | Description                                                  | Assignment via    |
|-----------------|--------------------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1                       | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /I-Prot           |
|                 |                                                              | /l2>[1]]          |
| ExBlo2-I        | Module input state: External blocking2                       | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /I-Prot           |
|                 |                                                              | /l2>[1]]          |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip<br>Command | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /I-Prot           |
|                 |                                                              | /l2>[1]]          |

# Current Unbalance Module Signals (Output States)

| Signal        | Description                                   |
|---------------|-----------------------------------------------|
| active        | Signal: active                                |
| ExBlo         | Signal: External Blocking                     |
| Blo TripCmd   | Signal: Trip Command blocked                  |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm         | Signal: Alarm Negative Sequence               |
| Trip          | Signal: Trip                                  |
| TripCmd       | Signal: Trip Command                          |

# **Current Unbalance Module Counter Values**

| Value          | Description                                   | Default | Size               | Menu path   |
|----------------|-----------------------------------------------|---------|--------------------|-------------|
| NumberOfAlarms | fAlarmsNumber of alarms since last reset.00 - | -       | [Operation         |             |
|                |                                               |         | 99999999999        | /History    |
|                |                                               |         |                    | /AlarmCr]   |
| NumberOfTripCm | Number of trip commands since last            | 0       | 0 -<br>99999999999 | [Operation  |
| ds             | reset                                         |         |                    | /History    |
|                |                                               |         |                    | /TripCmdCr] |

## Commissioning: Current Unbalance Module

Object to be tested:

Test of the unbalanced load protection function.

Necessary means:

- Three-phase current source with adjustable current unbalance; and
- Timer.

#### Procedure:

Check the phase sequence:

- Ensure that the phase sequence is the same as that set in the field parameters.
- Feed-in a three-phase nominal current.
- Change to the »Measuring Values« menu.
- Check the measuring value for the unbalanced current »l2«. The measuring value displayed for »l2« should be zero (within the physical measuring accuracy).



If the displayed magnitude for I2 is the same as that for the symmetrical nominal currents fed to the relay, it implies that the phase sequence of the currents seen by the relay is reversed.

- Now turn-off phase L1.
- Again check the measuring value of the unbalanced current »*I2*« in the »Measuring Values« menu. The measuring value of the asymmetrical current »*I2*« should now be 33%.
- Turn-on phase L1, but turn-off phase L2.
- Once again check the measuring value of the asymmetrical current I2 in the »Measuring Values« menu. The measuring value of the asymmetrical current »*I2*« should be again 33%.
- Turn-on phase L2, but turn-off phase L3.
- Again check the measuring value of asymmetrical current »*I2*« in the »Measuring Values« menu. The measuring value of the asymmetrical current »*I2*« should still be 33%.

#### Testing the trip delay:

- Apply a symmetrical three-phase current system (nominal currents).
- Switch off IL1 (the threshold value » *Threshold* « for »*I2* « must be below 33%).
- Measure the tripping time.

The present current unbalance »*I2«* corresponds with 1/3 of the existing phase current displayed.

#### Testing the threshold values

- Configure minimum » %12/11« setting (2%) and an arbitrary threshold value » Threshold« (I2).
- For testing the threshold value, a current has to be fed to phase A which is lower than three times the adjusted threshold value » *Threshold* « (I2).
- Feeding only phase A results in » %12/11 = 100% «, so the first condition » %12/11 >= 2% « is always fulfilled.
- Now increase the phase L1 current until the relay is activated.

#### Testing the dropout ratio of the threshold values

Having tripped the relay in the previous test, now decrease the phase A current. The dropout ratio must not be higher than 0.97 times the threshold value.

#### Testing %I2/I1

- Configure minimum threshold value » *Threshold* « (I2) (0.01 x In) and set » % *I2/I1* « greater or equal to 10%.
- Apply a symmetrical three-phase current system (nominal currents). The measuring value of » %12/11« should be 0%.
- Now increase the phase L1 current. With this configuration, the threshold value » *Threshold* « (I2) should be reached before the value » %I2/I1 « reaches the set » %I2/I1 « ratio threshold.
- Continue increasing the phase 1 current until the relay is activated.

#### Testing the dropout ratio of %I2/I1

Having tripped the relay in the previous test, now decrease the phase L1 current. The dropout of  $\frac{32}{12} \frac{32}{14}$  has to be 1% below the  $\frac{32}{12} \frac{32}{14}$  setting.

#### Successful test result:

The measured trip delays, threshold values, and dropout ratios are within the permitted deviations/tolerances, specified under Technical Data.

# Theta - Thermal Model [49M, 49R]

Available Elements: <u>ThR</u>

## **General – Principle Use**

#### **Thermal Protection and Alarm**

This protective device provides a thermal model. The thermal model can work with or without the URTD. The RTDbased direct temperature trips and alarms are independent of the thermal model. Without the URTD, meaning the URTD is not connected to the protective device or it is connected but not configured for the thermal protection trips, the thermal model protection will be solely based on the following settings:

Ib Full Load Ampere (FLA);
 Locked Rotor Current (LRC);
 Maximum Allowable Stall Time (Tc);
 k-Factor;
 Thermal Model Trip Threshold if enabled;
 Trip Delay;
 Thermal Model Alarm Threshold if enabled; and
 Alarm Delay.

The first four settings (1-4) dictate the maximum allowable thermal limit curve of the protected equipment, and the last four settings (5-8) define the thermal trip and alarm curves relative to the thermal limit curve.

Mathematically, the thermal limit curve can be expressed as the following:

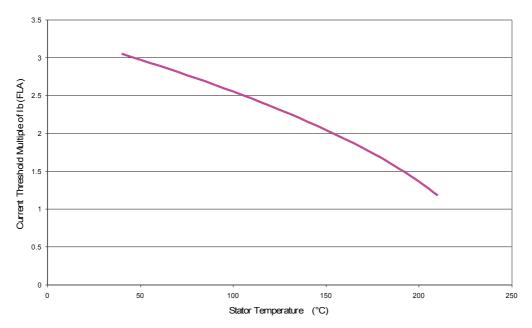
$$TripTime = \frac{I_{LR}^2 \cdot T_{LR}}{I_{ef}^2} \quad \text{when} \quad I_{ef} > k_{Factor} \cdot CT_{pri}$$

If the direct stator temperature measurements are available, the thermal replica model will be modified to include the heat loss between stator and rotor. As a result, the motor will be able to run longer under overload conditions. The heat loss serves as a cooling. At some point, the cooling effect will cancel the heat increment so that the thermal capacity used will reach some steady-state level that may be below the trip or alarm limit. This equivalently raises the *»k-factor«* and shifts the trip curve right.

If the thermal capacity used is held at a level that is below the trip threshold, the thermal model will not trip. To prevent the protected equipment from overheating, the direct temperature trip function must be enabled. Keep in mind that in order for the stator temperature to be effective in the thermal replica model, the following conditions must be met:

- Some RTD channels must be configured to measure the winding temperatures; and
- These RTD channels must be enabled for trip.

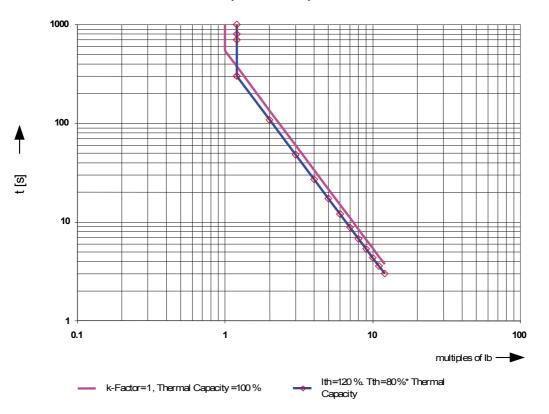
In addition, at least one of these winding temperatures must be valid.


Knowing the maximum steady stator temperature  $\Theta_{S}$  (°C), the thermal capacity used can be estimated by the following formula.

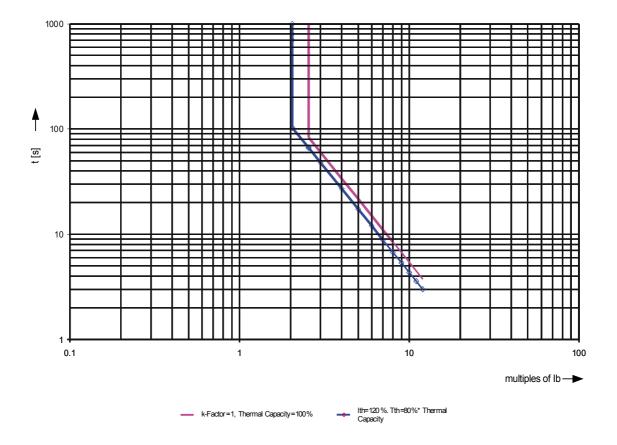
$$TC_{Used} \% = \left(\frac{\Theta_s}{240} + \frac{I_{ef}^2 \cdot 50}{I_{LR}^2 \cdot T_{LR}}\right) \text{ when } I_{ef} > Ith \cdot FLA$$

Take for example,  $ILR = 6 \cdot FLA$ , TLR = 15, and thermal trip level of 100%. The relationship between the effective current threshold and the stator temperature can be seen in the Stator Temperature Effect on Current Threshold Curve.

#### Stator Temperature Effect on Current Threshold Curve


From the graph, it is seen that the lower the stator temperature, the higher the effective current threshold.




#### Effective Current Threshold vs . Maximum Stator Temperature

Without stator temperature, given the current threshold of  $1.0 \cdot lb$  (FLA) and  $2.0 \cdot lb$  (FLA) of the stator phase current, the thermal model will use the full thermal capacity in 139.54 seconds. However, if the stator temperature is known as  $100^{\circ}C$  ( $212^{\circ}F$ ), the effective ultimate trip current threshold is raised to  $2.55 \cdot lb$  (FLA) and the thermal capacity used will reach a steady state of 77.5%. As a result, the thermal model will never trip under this condition. From this example, it can be seen that the stator RTD could keep the motor running under overload condition. In this case, the appropriate direct stator temperature trip function must be enabled.

In the Thermal Replica Model Trip Curves with and without RTD, the unmarked lines are the thermal limit curves and the marked lines are the trip curves. From the curve without RTD, it can be seen that one can change the thermal current threshold to shift the upper portion of the trip curve right to allow the motor to run at a higher overload condition than is specified with the service factor. From the curve with RTD, it can be seen that the stator RTD pushes the effective thermal current threshold to  $2.55 \cdot lb$  (FLA) on the thermal limit curve (unmarked line). The marked line is the trip curve with 80% thermal capacity trip threshold, so actual effective thermal current threshold is set to  $1.50 \cdot lb$  (FLA), it is effectively raised to a higher level with the stator RTD. Keep in mind that thermal limit and trip curves shown are based on the example above. They will vary with other sets of the settings.



#### Thermal Replica and Trip Curves without RTD



Thermal Replica Limit and Trip Curves with RTD =100°C



The thermal model of the motor protection devices uses the hottest winding "WD" RTD value

### Global Protection Parameters of the Thermal Model

| Parameter      | Description                                                                                                                                 | Setting range          | Default  | Menu path            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|----------------------|
| ExBlo1         | External blocking of the module, if blocking<br>is activated (allowed) within a parameter set<br>and if the state of the assigned signal is | 1n,<br>Assignment List |          | [Protection<br>Para  |
| $\bigotimes$   | true.                                                                                                                                       |                        |          | /Global Prot<br>Para |
|                |                                                                                                                                             |                        |          | /I-Prot              |
|                |                                                                                                                                             |                        |          | /ThR]                |
| ExBlo2         | External blocking of the module, if blocking is activated (allowed) within a parameter set                                                  | 1n,<br>Assignment List |          | [Protection<br>Para  |
| $\bigotimes$   | and if the state of the assigned signal is true.                                                                                            |                        |          | /Global Prot<br>Para |
|                |                                                                                                                                             |                        |          | /I-Prot              |
|                |                                                                                                                                             |                        |          | /ThR]                |
| ExBlo TripCmd  | External blocking of the Trip Command of the module/the stage, if blocking is                                                               | 1n,<br>Assignment List |          | [Protection<br>Para  |
|                | activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true.                                           |                        |          | /Global Prot<br>Para |
|                |                                                                                                                                             |                        |          | /I-Prot              |
|                |                                                                                                                                             |                        |          | /ThR]                |
| Use RTD values | Take RTD values into account for the calculation of the Thermal Model.                                                                      | inactive,<br>active    | inactive | [Protection<br>Para  |
|                |                                                                                                                                             | active                 |          | /Global Prot<br>Para |
|                |                                                                                                                                             |                        |          | /I-Prot              |
|                |                                                                                                                                             |                        |          | /ThR]                |
| K2             | This value represents the negative sequence current weighting factor of the                                                                 | 0.10 - 10.00           | 6.01     | [Protection<br>Para  |
|                | motor.                                                                                                                                      |                        |          | /Global Prot<br>Para |
|                |                                                                                                                                             |                        |          | /I-Prot              |
|                |                                                                                                                                             |                        |          | /ThR]                |
| τ-cool         | Cooling time constant                                                                                                                       | 5 - 240s               | 60s      | [Protection<br>Para  |
|                |                                                                                                                                             |                        |          | /Global Prot<br>Para |
|                |                                                                                                                                             |                        |          | /I-Prot              |
|                |                                                                                                                                             |                        |          | /ThR]                |

# Setting Group Parameters of the Thermal Model

| Parameter                                                                          | Description                                                                                                                                                                                                          | Setting range       | Default    | Menu path           |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|---------------------|
| Function                                                                           | Permanent activation or deactivation of module/stage.                                                                                                                                                                | inactive,<br>active | active     | [Protection<br>Para |
|                                                                                    |                                                                                                                                                                                                                      | active              |            | /<14>               |
|                                                                                    |                                                                                                                                                                                                                      |                     |            | /I-Prot             |
|                                                                                    |                                                                                                                                                                                                                      |                     |            | /ThR]               |
| ExBlo Fc                                                                           | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This                                                                                                                                      | inactive,<br>active | inactive   | [Protection<br>Para |
|                                                                                    | parameter is only effective if a signal is assigned to the corresponding global                                                                                                                                      |                     |            | /<14>               |
|                                                                                    | protection parameter. If the signal becomes                                                                                                                                                                          |                     |            | /I-Prot             |
|                                                                                    | true, those modules/stages are blocked that are parameterized "ExBlo Fc=active".                                                                                                                                     |                     |            | /ThR]               |
| Blo TripCmd                                                                        | Permanent blocking of the Trip Command of                                                                                                                                                                            | inactive,           | inactive   | [Protection         |
|                                                                                    | the module/stage.                                                                                                                                                                                                    | active              |            | Para                |
| $\bigotimes$                                                                       |                                                                                                                                                                                                                      |                     |            | /<14>               |
| -                                                                                  |                                                                                                                                                                                                                      |                     |            | /I-Prot             |
|                                                                                    |                                                                                                                                                                                                                      | in a still is       | in a ative | /ThR]               |
| ExBlo TripCmd<br>Fc                                                                | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes | inactive,<br>active | inactive   | [Protection<br>Para |
|                                                                                    |                                                                                                                                                                                                                      | active              |            | /<14>               |
| $\bigotimes$                                                                       |                                                                                                                                                                                                                      |                     |            | /I-Prot             |
|                                                                                    | true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active".                                                                                                                       |                     |            | /ThR]               |
| Trip Function                                                                      | Turn on or off the trip function                                                                                                                                                                                     | inactive,<br>active | active     | [Protection<br>Para |
|                                                                                    |                                                                                                                                                                                                                      | active              |            | /<14>               |
|                                                                                    |                                                                                                                                                                                                                      |                     |            | /I-Prot             |
|                                                                                    |                                                                                                                                                                                                                      |                     |            | /ThR]               |
| Trip Threshold                                                                     | Trip threshold at which the thermal model will trip, based on percentage of thermal                                                                                                                                  | 0.60 - 0.99         | 0.99       | [Protection<br>Para |
| $\bigcirc$                                                                         | capacity used. This value should typically always be set at 0.99                                                                                                                                                     |                     |            | /<14>               |
| $\langle \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                                                                                                                                                                                                                      |                     |            | /I-Prot             |
|                                                                                    | Only available if: Trip Function = active                                                                                                                                                                            |                     |            | /ThR]               |
| t-Trip Delay                                                                       | Thermal capacity used trip delay                                                                                                                                                                                     | 0.0 - 3600.0s       | 0.0s       | [Protection<br>Para |
|                                                                                    | Only available if: Trip Function = active                                                                                                                                                                            |                     |            | /<14>               |
| $\checkmark$                                                                       |                                                                                                                                                                                                                      |                     |            | /I-Prot             |
|                                                                                    |                                                                                                                                                                                                                      |                     |            | /ThR]               |

| Parameter          | Description                                                                          | Setting range       | Default | Menu path           |
|--------------------|--------------------------------------------------------------------------------------|---------------------|---------|---------------------|
| Alarm Function     | Turn on or off the alarm function                                                    | inactive,<br>active | active  | [Protection<br>Para |
|                    |                                                                                      | active              |         | /<14>               |
| $\checkmark$       |                                                                                      |                     |         | /I-Prot             |
|                    |                                                                                      |                     |         | /ThR]               |
| Alarm<br>Threshold | Alarm threshold at which the thermal model will trip, based on percentage of thermal | 0.60 - 0.99         | 0.70    | [Protection<br>Para |
|                    | capacity used                                                                        |                     |         | /<14>               |
| $\bigcirc$         | Only available if: Alarm Function = active                                           |                     |         | /I-Prot             |
|                    |                                                                                      |                     |         | /ThR]               |
| t-Alarm Delay      | Thermal capacity used alarm delay                                                    | 1 - 360min          | 1min    | [Protection<br>Para |
|                    | Only available if: Alarm Function = active                                           |                     |         | /<14>               |
|                    |                                                                                      |                     |         | /I-Prot             |
|                    |                                                                                      |                     |         | /ThR]               |

### Thermal Model Module Input States

| Name          | Description                                       | Assignment via    |
|---------------|---------------------------------------------------|-------------------|
| ExBlo1        | Module input state: External blocking             | [Protection Para  |
|               |                                                   | /Global Prot Para |
|               |                                                   | /I-Prot           |
|               |                                                   | /ThR]             |
| ExBlo2        | Module input state: External blocking             | [Protection Para  |
|               |                                                   | /Global Prot Para |
|               |                                                   | /I-Prot           |
|               |                                                   | /ThR]             |
| ExBlo TripCmd | Module input state: External Blocking of the Trip | [Protection Para  |
|               | Command                                           | /Global Prot Para |
|               |                                                   | /I-Prot           |
|               |                                                   | /ThR]             |

# Thermal Model Module Signals (Output States)

| Signal        | Description                                                                                                                                                                                                                                                           |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alarm Pickup  | Signal: Alarm Pickup                                                                                                                                                                                                                                                  |
| Alarm Timeout | Signal: Alarm Timeout                                                                                                                                                                                                                                                 |
| RTD effective | This state becomes true if the following conditions are all fulfilled:                                                                                                                                                                                                |
|               | - the state "Load above SF" is true,                                                                                                                                                                                                                                  |
|               | - RTD functionality is active,                                                                                                                                                                                                                                        |
|               | - for at least one temperature a valid value above 0°C is being displayed.                                                                                                                                                                                            |
| Load above SF | "Load above Service Factor": If the current exceeds the set value of "UTC"<br>("Ultimate trip threshold") then the used thermal capacity counts up and<br>the state "Load above SF" is becoming true. If the current is below the<br>"UTC" value this state is false. |
| active        | Signal: active                                                                                                                                                                                                                                                        |
| ExBlo         | Signal: External Blocking                                                                                                                                                                                                                                             |
| Blo TripCmd   | Signal: Trip Command blocked                                                                                                                                                                                                                                          |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command                                                                                                                                                                                                                         |
| Alarm         | Signal: Alarm                                                                                                                                                                                                                                                         |
| Trip          | Signal: Trip                                                                                                                                                                                                                                                          |
| TripCmd       | Signal: Trip Command                                                                                                                                                                                                                                                  |

### Direct Commands of the Thermal Model Module

| Parameter    | Description                  | Setting range | Default  | Menu path                  |
|--------------|------------------------------|---------------|----------|----------------------------|
| Res I2T Used | Reset thermal capacity used. | inactive,     | inactive | [Operation                 |
| $\otimes$    |                              | active        |          | /<br>Reset/Acknowle<br>dge |
|              |                              |               |          | /Reset]                    |

### Thermal Model Module Counter Values

| Value          | Description                | Default | Size      | Menu path        |
|----------------|----------------------------|---------|-----------|------------------|
| I2T Used       | Thermal capacity used.     | 0%      | 0 - 1000% | [Operation       |
|                |                            |         |           | /Measured Values |
|                |                            |         |           | /ThR]            |
| I2T Remained   | Thermal capacity remained. | 0%      | 0 - 1000% | [Operation       |
|                |                            |         |           | /Measured Values |
|                |                            |         |           | /ThR]            |
| NumberOfTripCm | •                          | 0       | 0 - 65535 | [Operation       |
| ds             | reset                      |         |           | /History         |
|                |                            |         |           | /TripCmdCr]      |
| nAlarms        | nAlarms                    | 0       | 0 - 65535 | [Operation       |
|                |                            |         |           | /History         |
|                |                            |         |           | /AlarmCr]        |

### V - Voltage Protection [27,59]

Available stages: V[1],V[2],V[3],V[4],V[5],V[6]

# CAUTION

If the VT measurement location is not at the bus bar side but at the output side, the following has to be taken into account:

When disconnecting the line is it has to be ensured that by an *»External Blocking«* undervoltage tripping of the U<-elements cannot happen. This is realized through detecting of the CB position (via digital inputs).

When the aux. voltage is switched on and the measuring voltage has not yet been applied, undervoltage tripping has to be prevented by an *»External Blocking«* 

CAUTION

In case of an fuse failure, it is important to block the *»U<-stages«* so that an undesired operation can be prevented.

To do this, set »*Meas Circuit Superv*« to "active" and activate the required VT supervision module (e. g. LOP, VTS).

Moreover, set the tripping delay of the undervoltage protection *»t«* to some value that is longer than the detection time of the VT supervision module. Take into account the following times:

- VTS, fuse failure determination via digital input: 20 ms
- VTS, determination via measurements / internal calculation: 20 ms
- LOP, fuse failure determination via digital input: 20 ms
- LOP, determination via measurements / internal calculation: 30 ms

(The "digital input times" do not cover the time-span from the fuse failure occurrence until the signal is available at the digital input.)

**WARNING** 

(For devices featuring the LOP module:)

The LOP (Loss of Potential) module has a fixed built-in undervoltage threshold of  $0.03 \cdot V_n$ .

Therefore, while commissioning undervoltage protection, do not use a pickup value V< below  $0.03 \cdot V_n$  because then the undervoltage module will always be blocked before it can trip.

# NOTICE

All voltage elements are identically structured and can optionally be projected as over- or undervoltage element.

# NOTICE

If phase voltages are applied to the measuring inputs of the device and field parameter *»VT con«* is set to *»Phase-to-neutral«*, the messages issued by the voltage protection module in case of actuation or trip should be interpreted as follows:

»V[1].ALARM L1« or »V[1].TRIP L1« => alarm or trip caused by phase voltage »VL1«.

»V[1].ALARM L2« or »V[1].TRIP L2« => alarm or trip caused by phase voltage »VL2«.

»V[1].ALARM L3« or »V[1].TRIP L3« => alarm or trip caused by phase voltage »VL3«.

If, however, line-to-line voltages are applied to the measuring inputs and field parameter *»VT con«* is set to *»Phase to Phase«*, then the messages should be interpreted as follows:

»V[1].ALARM L1« or »V[1].TRIP L1« => alarm or trip caused by line-to-line voltage *»V12«*.

»V[1].ALARM L2« or »V[1].TRIP L2« => alarm or trip caused by line-to-line voltage *»V23«*.

»V[1].ALARM L3« or »V[1].TRIP L3« => alarm or trip caused by line-to-line voltage *»V31«* 

| Applications of the V-Protection Module   | Setting in                          | Option                                                                                                 |
|-------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|
| ANSI 27 Undervoltage protection           | Device Planning menu<br>Setting: V< | <i>Measuring Method</i> :<br>Fundamental/TrueRMS                                                       |
|                                           |                                     | Measuring Mode:<br>Phase to ground, Phase-to-Phase                                                     |
| 10 minutes sliding average supervision V< | Device Planning menu<br>Setting: V< | <i>Measuring Method</i> : Umit<br>Measuring Mode:<br>Phase to ground, Phase-to-Phase                   |
| ANSI 59 Overvoltage protection            | Device Planning menu<br>Setting: V> | <i>Measuring Method</i> :<br>Fundamental/TrueRMS<br>Measuring Mode:<br>Phase to ground, Phase-to-Phase |
| Sliding average supervision V>            | Device Planning menu<br>Setting: V> | <i>Measuring Method</i> : Vavg<br>Measuring Mode:<br>Phase to ground, Phase-to-Phase                   |

### Measuring Method

For all protection elements it can be determined, whether the measurement is done on basis of the *»Fundamental«* or if *»TrueRMS«* measurement is used. In addition to that a sliding average supervision *»Vavg«* can be parametrized.

# NOTICE

The required settings for the calculation of the "average value" of the "sliding average value supervision" have to be taken within menu [Device Para\Statistics\Vavg].

### Measuring Mode

If the measuring inputs of the voltage measuring card is fed with "Phase to Ground" voltages, the Field Parameter *»VT con«* has to be set to "Phase to Ground". In this case, the user has the option to set the *»Measuring Mode«* of each phase voltage protection element to "Phase to Ground" or "Phase to Phase". That means, he can determine for each phase voltage protection element how Vn shall be defined:

*»Measuring Mode«* = "Phase to Ground" – 
$$Vn = \frac{VT \ sec}{\sqrt{3}}$$

• »Measuring Mode« = "Phase to Phase" – Vn = VT sec

If, however, the measuring inputs of the voltage measuring card are fed with "Phase to Phase" voltages (*»VT con«* = "Phase to Phase"), then the setting of *»Measuring Mode«* is ignored and internally set to "Phase to Phase" instead, so that Vn = VT sec.

### Minimum Current Threshold for Undervoltage Protection

For the voltage protection running in "undervoltage" mode –*»Mode«* = "V<" – there is the option to activate an undercurrent criterion. This is a "minimum current check", which blocks the undervoltage protection as soon as **all** phase currents drop below a certain threshold value. And vice versa, if the phase currents get available again after such a dropout, the undervoltage protection is re-enabled only after a settable delay time.

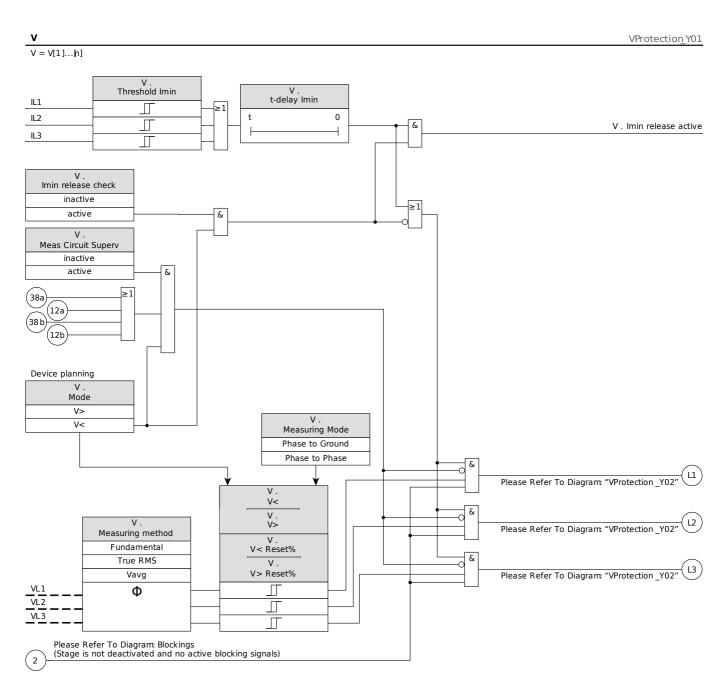
The motivation for using this feature is that a situation where all phase currents are "dead" probably indicates an open circuit breaker, and it is probably not desirable that the undervoltage protection reacts to this event. The purpose of the delay time is to avoid an immediate trip during re-closing of the circuit breaker: Without this delay, there would be the risk that the undervoltage protection trips instantly because the voltages have not yet risen above the tripping threshold *V*<*«* (although the phase currents might already be above the minimum current threshold).

The minimum current check is optional, in the sense that it has to enabled via setting *»Imin release check«* = active).

After the minimum current check has been anabled, the threshold value is settable via *»Threshold Imin«*, i. e. the undervoltage protection is blocked as soon as **all** phase currents drop below this value.

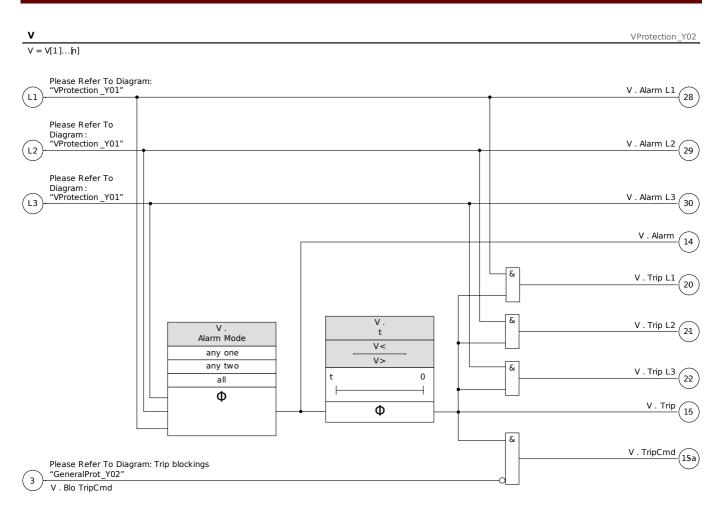
The delay time for re-enabling the undervoltage protection (after any of the phase currents has become "live" again) can be set via *»t-delay Imin«*.

# CAUTION


If this minimum current check is active then you should be aware that without current flow, the undervoltage protection does not trip. So, depending on your application, there might be good reasons to not use this feature.

*For the HighPROTEC MCDGV4:* As the **MCDGV4** is fitted with two CT measuring inputs, the minimum current check is fixed to always use the current values of the CT Ntrl input (Current transformers on the neutral side, slot X3).

*For the HighPROTEC MCDTV4:* As the **MCDTV4** is fitted with two CT measuring inputs, the minimum current check always uses the current values according to the Field Parameter setting *»VX Winding Side«*.


### Functionality and Tripping Logic

For each of the voltage protection elements it can be defined if it picks up when over- or undervoltage is detected in one of three, two of three or in all three phases. The dropout ratio is settable.



Functionality and tripping logic, part 1.

### **Protective Elements**



Functionality and tripping logic, part 2.

| Device Planning Parameters of the | Voltage Protection Module |
|-----------------------------------|---------------------------|
|-----------------------------------|---------------------------|

| Parameter | Description | Options     | Default             | Menu path         |
|-----------|-------------|-------------|---------------------|-------------------|
| Mode      | Mode        | do not use, | V[1]: V>            | [Device planning] |
|           |             | V>,         | V[2]: V<            |                   |
|           |             | V<          | V[3]: do not<br>use |                   |
|           |             |             | V[4]: do not<br>use |                   |
|           |             |             | V[5]: do not<br>use |                   |
|           |             |             | V[6]: do not<br>use |                   |

# Global Protection Parameters of the Voltage Protection Module

| Parameter              | Description                                                                                                                                | Setting range                                                                                   | Default                              | Menu path                                              |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------|
| ExBlo1                 |                                                                                                                                            |                                                                                                 |                                      | [Protection<br>Para                                    |
|                        | and if the state of the assigned signal is true.                                                                                           |                                                                                                 |                                      | /Global Prot<br>Para                                   |
|                        |                                                                                                                                            |                                                                                                 |                                      | /V-Prot                                                |
|                        |                                                                                                                                            |                                                                                                 |                                      | /V[1]]                                                 |
| ExBlo2                 | External blocking of the module, if blocking is activated (allowed) within a parameter set                                                 | 1n,<br>Assignment List                                                                          |                                      | [Protection<br>Para                                    |
|                        | and if the state of the assigned signal is true.                                                                                           |                                                                                                 |                                      | /Global Prot<br>Para                                   |
|                        |                                                                                                                                            |                                                                                                 |                                      | /V-Prot                                                |
|                        |                                                                                                                                            |                                                                                                 |                                      | /V[1]]                                                 |
| ExBlo dur.<br>Mot.Strt | External blocking of the module, if the state<br>of the assigned signal is true. This way it is<br>possible to block the module during the | Assigned signal is true. This way it is<br>to block the module during the<br>start phase. V[2]: | V[1]:<br>MStart.Block-<br>OverVStart | [Protection<br>Para<br>/Global Prot<br>Para<br>/V-Prot |
| $\bigotimes$           | motor start phase.                                                                                                                         |                                                                                                 | MStart.Blo-                          |                                                        |
|                        |                                                                                                                                            |                                                                                                 |                                      | /V[1]]                                                 |
|                        |                                                                                                                                            |                                                                                                 | V[4]:                                |                                                        |
|                        |                                                                                                                                            |                                                                                                 | V[5]:                                |                                                        |
|                        |                                                                                                                                            |                                                                                                 | V[6]:                                |                                                        |
| ExBlo TripCmd          | External blocking of the Trip Command of the module/the stage, if blocking is                                                              | 1n,<br>Assignment List                                                                          |                                      | [Protection<br>Para                                    |
| $\bigotimes$           | activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true.                                          |                                                                                                 |                                      | /Global Prot<br>Para                                   |
|                        |                                                                                                                                            |                                                                                                 |                                      | /V-Prot                                                |
|                        |                                                                                                                                            |                                                                                                 |                                      | /V[1]]                                                 |

# Setting Group Parameters of the Voltage Protection Module

| Parameter           | Description                                                                                                                                                                                                                                                                                                            | Setting range                         | Default                                                                                                            | Menu path                                                        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Function            | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                                  | inactive,<br>active<br>inactive,      | V[1]: active<br>V[2]: inactive<br>V[3]: inactive<br>V[4]: inactive<br>V[5]: inactive<br>V[6]: inactive<br>inactive | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V[1]]<br>[Protection |
|                     | blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active".                                                         | active                                |                                                                                                                    | Para<br>/<14><br>/V-Prot<br>/V[1]]                               |
| Blo TripCmd         | Permanent blocking of the Trip Command of the module/stage.                                                                                                                                                                                                                                                            | inactive,<br>active                   | inactive                                                                                                           | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V[1]]                |
| ExBlo TripCmd<br>Fc | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active". | inactive,<br>active                   | inactive                                                                                                           | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V[1]]                |
| Measuring<br>Mode   | Measuring/Supervision Mode: Determines if<br>the phase-to-phase or phase-to-earth<br>voltages are to be supervised                                                                                                                                                                                                     | Phase to<br>Ground,<br>Phase to Phase | Phase to<br>Ground                                                                                                 | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V[1]]                |
| Measuring<br>method | Measuring method: fundamental or rms or<br>"sliding average supervision"                                                                                                                                                                                                                                               | Fundamental,<br>True RMS              | Fundamental                                                                                                        | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V[1]]                |

| Parameter  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Setting range               | Default                                                                                     | Menu path                                         |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|
| Alarm Mode | Alarm criterion for the voltage protection stage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | any one,<br>any two,<br>all | any one                                                                                     | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V[1]] |
| V>         | If the pickup value is exceeded, the<br>module/element will be started. The<br>definition of Vn is dependent on both the<br>Field Parameter »VT con« and the Setting<br>Group Parameter »Measuring Mode«: If the<br>measuring inputs of the voltage measuring<br>card are fed with phase-to-ground voltages<br>(»VT con« = "Phase-to-Ground") then the<br>setting »Measuring Mode« = "Phase-to-<br>Ground" means that Vn=VTsec/SQRT(3),<br>and »Measuring Mode« = "Phase-to-Phase"<br>means that Vn=VTsec. However, if the<br>measuring inputs of the voltage measuring<br>card are fed with phase-to-phase voltages<br>(»VT con« = "Phase-to-Phase") then the<br>setting of "Measuring Mode" is ignored and<br>internally set to "Phase-to-Phase" instead,<br>so that Vn=VTsec. | 0.01 - 2.000Vn              | V[1]: 1.1Vn<br>V[2]: 1.20Vn<br>V[3]: 1.20Vn<br>V[4]: 1.20Vn<br>V[5]: 1.20Vn<br>V[6]: 1.20Vn | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V[1]] |
| V> Reset%  | Drop Out (is in percent of setting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80 - 99%                    | 97%                                                                                         | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V[1]] |
| V<         | If the pickup value is exceeded, the<br>module/element will be started. The<br>definition of Vn is dependent on both the<br>Field Parameter »VT con« and the Setting<br>Group Parameter »Measuring Mode«: If the<br>measuring inputs of the voltage measuring<br>card are fed with phase-to-ground voltages<br>(»VT con« = "Phase-to-Ground") then the<br>setting »Measuring Mode« = "Phase-to-<br>Ground" means that Vn=VTsec/SQRT(3),<br>and »Measuring Mode« = "Phase-to-Phase"<br>means that Vn=VTsec. However, if the<br>measuring inputs of the voltage measuring<br>card are fed with phase-to-phase voltages<br>(»VT con« = "Phase-to-Phase") then the<br>setting of "Measuring Mode" is ignored and<br>internally set to "Phase-to-Phase" instead,<br>so that Vn=VTsec. | 0.01 - 2.000Vn              | V[1]: 0.80Vn<br>V[2]: 0.9Vn<br>V[3]: 0.80Vn<br>V[4]: 0.80Vn<br>V[5]: 0.80Vn<br>V[6]: 0.80Vn | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V[1]] |

| Parameter              | Description                                                                                                                                                    | Setting range       | Default              | Menu path           |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|---------------------|
| V< Reset%              | Drop Out (is in percent of setting)                                                                                                                            | 101 - 110%          | 103%                 | [Protection<br>Para |
| $\bigcirc$             |                                                                                                                                                                |                     |                      | /<14>               |
|                        |                                                                                                                                                                |                     |                      | /V-Prot             |
|                        |                                                                                                                                                                |                     |                      | /V[1]]              |
| t                      | Tripping delay                                                                                                                                                 | 0.00 - 3000.00s     | V[1]: 1s<br>V[2]: 1s | [Protection<br>Para |
| $\bigotimes$           |                                                                                                                                                                |                     | V[3]: 0.00s          | /<14>               |
|                        |                                                                                                                                                                |                     | V[4]: 0.00s          | /V-Prot             |
|                        |                                                                                                                                                                |                     | V[5]: 0.00s          | /V[1]]              |
|                        |                                                                                                                                                                |                     | V[6]: 0.00s          |                     |
| Meas Circuit<br>Superv | Activates the use of the measuring circuit supervision. In this case the module will be                                                                        | inactive,<br>active | inactive             | [Protection<br>Para |
|                        | blocked if a measuring circuit supervision<br>module (e.g. LOP, VTS) signals a disturbed                                                                       |                     |                      | /<14>               |
| $\bigotimes$           | measuring circuit (e.g. caused by a fuse                                                                                                                       |                     |                      | /V-Prot             |
|                        | failure).                                                                                                                                                      |                     |                      | /V[1]]              |
| lmin release<br>check  | Enable a minimum current check. This monitors the current flow (in the CT on the                                                                               | inactive,           | inactive             | [Protection<br>Para |
|                        | VT side), to detect whether the circuit                                                                                                                        | active              |                      | /<14>               |
| $\bigwedge$            | breaker is permanently in open state; in this case the undervoltage detection is blocked.                                                                      |                     |                      | /V-Prot             |
|                        |                                                                                                                                                                |                     |                      | /V[1]]              |
| Threshold Imin         | Threshold value that is used for the Imin release (minimum current) check. If the                                                                              | 0.02 - 10.00In      | 0.05In               | [Protection<br>Para |
| $\mathbf{A}$           | current flow is below this value, it is assumed that the circuit breaker is                                                                                    |                     |                      | /<14>               |
|                        | permanently in open state.                                                                                                                                     |                     |                      | /V-Prot             |
|                        | Only available if: Imin release check = active                                                                                                                 |                     |                      | /V[1]]              |
| t-delay Imin           | Release delay for the undervoltage detection. This delay is effective only after                                                                               | 0.00 - 3000.00s     | 0.03s                | [Protection<br>Para |
|                        | the minimum current check had blocked the<br>undervoltage detection. When the circuit                                                                          |                     |                      | /<14>               |
|                        | breaker has been closed and the current                                                                                                                        |                     |                      | /V-Prot             |
|                        | flow is re-establishing, this delay continues<br>to block the undervoltage detection; during<br>this time the voltage can rise above the<br>pickup value »V<«. |                     |                      | /V[1]]              |
|                        | Only available if: Imin release check = active                                                                                                                 |                     |                      |                     |

### Voltage Protection Module Input States

| Name            | Description                                       | Assignment via    |
|-----------------|---------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /V-Prot           |
|                 |                                                   | /V[1]]            |
| ExBlo2-I        | Module input state: External blocking2            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /V-Prot           |
|                 |                                                   | /V[1]]            |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip | [Protection Para  |
|                 | Command                                           | /Global Prot Para |
|                 |                                                   | /V-Prot           |
|                 |                                                   | /V[1]]            |

### Voltage Protection Module Signals (Output States)

| Signal              | Description                                                                                                                  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------|
| active              | Signal: active                                                                                                               |
| ExBlo               | Signal: External Blocking                                                                                                    |
| Blo TripCmd         | Signal: Trip Command blocked                                                                                                 |
| ExBlo TripCmd       | Signal: External Blocking of the Trip Command                                                                                |
| Alarm L1            | Signal: Alarm L1                                                                                                             |
| Alarm L2            | Signal: Alarm L2                                                                                                             |
| Alarm L3            | Signal: Alarm L3                                                                                                             |
| Alarm               | Signal: Alarm voltage stage                                                                                                  |
| Trip L1             | Signal: General Trip Phase L1                                                                                                |
| Trip L2             | Signal: General Trip Phase L2                                                                                                |
| Trip L3             | Signal: General Trip Phase L3                                                                                                |
| Trip                | Signal: Trip                                                                                                                 |
| TripCmd             | Signal: Trip Command                                                                                                         |
| Imin release active | Signal that the Imin release (minimum current) check is enabled and does not block the undervoltage detection at the moment. |

### Counters of the Voltage Protection Module

| Value          | Description                        | Default | Size        | Menu path  |
|----------------|------------------------------------|---------|-------------|------------|
| NumberOfAlarms | Number of alarms since last reset. | 0       | 0 -         | [Operation |
|                |                                    |         | 99999999999 | /History   |
|                |                                    |         |             | /AlarmCr]  |

### **Protective Elements**

| Value                | Description                              | Default | Size                 | Menu path                             |
|----------------------|------------------------------------------|---------|----------------------|---------------------------------------|
| NumberOfTripCm<br>ds | Number of trip commands since last reset | 0       | 0 -<br>9999999999999 | [Operation<br>/History<br>/TripCmdCr] |

### Commissioning: Overvoltage Protection [59]

#### Object to be tested

Test of the overvoltage protection elements, 3 x single-phase and 1 x three-phase (for each element)



the wiring from the switchboard input terminals is correct. Wiring errors at the voltage measuring inputs might result in:

- False tripping of the directional current protection Example: Device suddenly trips in reverse direction but it does not trip in forward direction.
- Wrong or no power factor indication
- Errors with regard to power directions etc.

#### Necessary means

- 3-phase AC voltage source
- Timer for measuring of the tripping time
- Voltmeter

#### Procedure (3 x single-phase, 1 x three-phase, for each element)

#### Testing the threshold values

For testing the threshold values and fallback values, the test voltage has to be increased until the relay is activated. When comparing the displayed values with those of the voltmeter, the deviation must be within the permissible tolerances.

#### Testing the trip delay

For testing the trip delay, a timer is to be connected to the contact of the associated trip relay. The timer is started when the limiting value of the tripping voltage is exceeded and it is stopped when the relay trips.

#### Testing the fallback ratio

Reduce the measuring quantity to less than (e.g.) 97% of the trip value. The relay must only fall back at 97% of the trip value at the earliest.

#### Successful test result

The measured threshold values, trip delays and fallback ratios comply with those specified in the adjustment list. Permissible deviations/tolerances can be taken from the Technical Data.

### Commissioning: Undervoltage Protection [27]

This test can be carried out similar to the test for overvoltage protection (by using the related undervoltage values).

Please consider the following deviations:

- For testing the threshold values the test voltage has to be decreased until the relay is activated.
- For detection of the fallback value, the measuring quantity has to be increased so to achieve more than (e.g.) 103% of the trip value. At 103% of the trip value the relay is to fall back at the earliest.

### VG, VX - Voltage Supervision [27A, 27TN/59N, 59A]

Available elements: VG[1],VG[2]

# NOTICE

# All elements of the voltage supervision of the fourth measuring input are identically structured.

This protective element can be used to (depending on device planning and setting)

- Supervison of the calculated or measured residual voltage. The residual voltage can be calculated only if the phase voltages (star connection) are connected to the measuring inputs of the device.
- Supervision of another (auxiliary) voltage against overvoltage or undervoltage.

The following table shows the application options of the voltage protection element

| Applications of the VG/VX-Protection<br>Module                                                                                      | Setting in                                 | Option                            |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|
| ANSI 59N/G Residual voltage protection (measured or calculated)                                                                     | Device Planning menu<br>Setting: V>        | Criterion:<br>Fundamental/TrueRMS |
|                                                                                                                                     |                                            | VG Source:<br>measured/calculated |
| ANSI 59A Supervision of an Auxiliary<br>(additional) Voltage in relation to<br>Overvoltage.                                         | Device Planning menu<br>Setting: V>        | Criterion:<br>Fundamental/TrueRMS |
|                                                                                                                                     | Within the corresponding<br>Parameter-Set: |                                   |
|                                                                                                                                     | VG Source:measured                         |                                   |
| ANSI 27A Supervision of an Auxiliary<br>(additional) Voltage in relation to<br>Undervoltage.                                        | Device Planning menu<br>Setting: V<        | Criterion:<br>Fundamental/TrueRMS |
|                                                                                                                                     | Within the corresponding<br>Parameter-Set: |                                   |
|                                                                                                                                     | VG Source:measured                         |                                   |
| ANSI 27TN/59N "Vx meas H3"<br>Stator Ground Fault Protection                                                                        | Device Planning menu<br>Setting: V<        | Criterion:<br>VX meas H3          |
| Note: This option is available in some<br>Generator Protection Relays only. In order to<br>detect 100% Stator Ground faults, a 27TN | Within the corresponding<br>Parameter-Set: | VX Source:<br>measured            |
| element has to be or-connected with a 59N element within the programmable logic.                                                    | VX Source:measured                         |                                   |

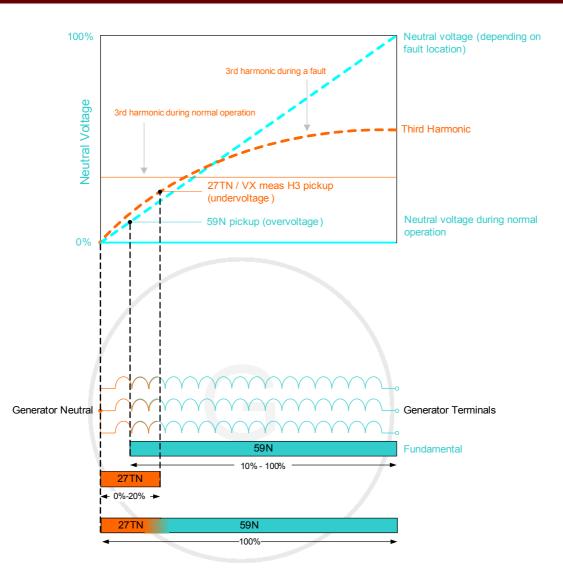
#### Measuring Mode

For all protection elements it can be determined, whether the measurement is done on basis of the *»Fundamental«* or if *»TrueRMS«* measurement is used.

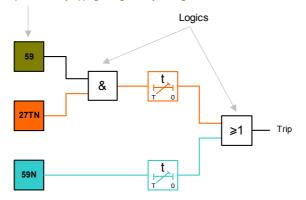
### 27TN/59N - 100% Stator Ground Fault Protecton »VX meas H3«\*

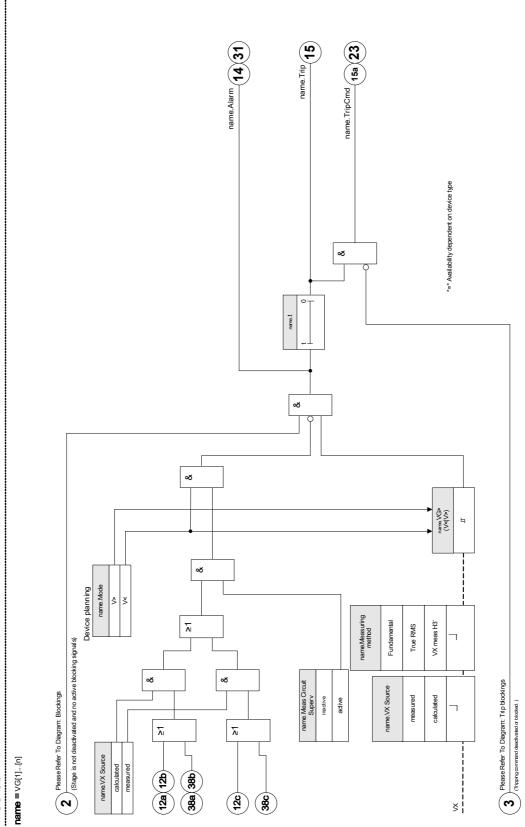
\*=only available in Generator Protection Relays

With this setting the relay can detect stator ground faults at high impedance grounded generators near the machines stator neutral.


In order to detect 100% Stator Ground faults, a <u>277N</u> element has to be or-connected with a <u>59N</u> element within the programmable logic.

With the <u>2777N</u> element the 3<sup>rd</sup> harmonic of the connected voltage is monitored at the generator neutral side. It is able to detect ground faults, which occur between the stator neutral and up to approx. 20% of the winding towards the stator terminals. In combination with the <u>59N</u> element, that detects ground faults from the stator terminals down to approximately 10% of the stator winding towards the neutral, a 100% stator ground fault protection can be realized.


The following figure shows the combination of a <u>27TN</u> with measuring criterion » VX meas H3« (third harmonic) and a <u>59N</u> element.


Both elements have to be or connected via Programmable logic.

In addition to that it is recommended to provide the 27TN element with a voltage release via a AND-Logic with an <u>59</u> element in order to prevent faulty tripping e.g. during generator standstill (see logic diagram next page).



prevents faulty tripping during dead system / generator standstill





VG[1]...[n]

638

| Device Planning Parameters of the Residua | I Voltage Supervision Module |
|-------------------------------------------|------------------------------|
|-------------------------------------------|------------------------------|

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | V>,         |            |                   |
| $\bigotimes$ |             | V<          |            |                   |

# Global Protection Parameters of the Residual Voltage Supervision Module

| Parameter              | Description                                                                                                                                                      | Setting range          | Default | Menu path            |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|----------------------|
| ExBlo1                 | External blocking of the module, if blocking is activated (allowed) within a parameter set                                                                       |                        |         | [Protection<br>Para  |
|                        | and if the state of the assigned signal is true.                                                                                                                 |                        |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                        |         | /V-Prot              |
|                        |                                                                                                                                                                  |                        |         | /VG[1]]              |
| ExBlo2                 | External blocking of the module, if blocking is activated (allowed) within a parameter set                                                                       | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$           | and if the state of the assigned signal is true.                                                                                                                 |                        |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                        |         | /V-Prot              |
|                        |                                                                                                                                                                  |                        |         | /VG[1]]              |
| ExBlo dur.<br>Mot.Strt | External blocking of the module, if the state<br>of the assigned signal is true. This way it is<br>possible to block the module during the<br>motor start phase. | 1n, Trip Cmds          |         | [Protection<br>Para  |
|                        |                                                                                                                                                                  |                        |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                        |         | /V-Prot              |
|                        |                                                                                                                                                                  |                        |         | /VG[1]]              |
| ExBlo TripCmd          | External blocking of the Trip Command of the module/the stage, if blocking is                                                                                    | 1n,<br>Assignment List |         | [Protection<br>Para  |
|                        | activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true.                                                                |                        |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                        |         | /V-Prot              |
|                        |                                                                                                                                                                  |                        |         | /VG[1]]              |

# Setting Group Parameters of the Residual Voltage Supervision Module.

| Parameter     | Description                                                                                    | Setting range       | Default     | Menu path           |
|---------------|------------------------------------------------------------------------------------------------|---------------------|-------------|---------------------|
| Function      | Permanent activation or deactivation of module/stage.                                          | inactive,<br>active | inactive    | [Protection<br>Para |
|               |                                                                                                | delive              |             | /<14>               |
|               |                                                                                                |                     |             | /V-Prot             |
|               |                                                                                                |                     |             | /VG[1]]             |
| ExBlo Fc      | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This                | inactive,<br>active | inactive    | [Protection<br>Para |
| $\mathbf{A}$  | parameter is only effective if a signal is<br>assigned to the corresponding global             |                     |             | /<14>               |
|               | protection parameter. If the signal becomes                                                    |                     |             | /V-Prot             |
|               | true, those modules/stages are blocked that are parameterized "ExBlo Fc=active".               |                     |             | /VG[1]]             |
| Blo TripCmd   | Permanent blocking of the Trip Command of the module/stage.                                    | -                   | inactive    | [Protection<br>Para |
|               |                                                                                                | active              |             | /<14>               |
| $\bigotimes$  |                                                                                                |                     |             | /V-Prot             |
|               |                                                                                                |                     |             | /VG[1]]             |
| ExBlo TripCmd | Activate (allow) or inactivate (disallow)                                                      | inactive,           | inactive    | [Protection         |
| Fc            | blocking of the module/stage. This                                                             | active              | mactive     | Para                |
|               | parameter is only effective if a signal is<br>assigned to the corresponding global             |                     |             | /<14>               |
| $\bigcirc$    | protection parameter. If the signal becomes                                                    |                     |             | /V-Prot             |
|               | true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active". |                     |             | /VG[1]]             |
| VX Source     | Selection if VG is measured or calculated (neutral voltage or residual voltage)                | measured,           | measured    | [Protection<br>Para |
|               | (neutral voltage of residual voltage)                                                          | calculated          |             | /<14>               |
| $\bigotimes$  |                                                                                                |                     |             | /V-Prot             |
|               |                                                                                                |                     |             | /VG[1]]             |
| Measuring     | Measuring method: fundamental or rms or                                                        | Fundamental,        | Fundamental | [Protection         |
| method        | 3rd harmonic (only generator protection                                                        | True RMS            | Tunuamentai | Para                |
|               | relays)                                                                                        |                     |             | /<14>               |
| $\bigcirc$    |                                                                                                |                     |             | /V-Prot             |
|               |                                                                                                |                     |             | /VG[1]]             |
| VG>           | If the pickup value is exceeded, the module/stage will be started.                             | 0.01 - 2.00Vn       | 1Vn         | [Protection<br>Para |
| $\bigcirc$    | Only available if: Device planning: VG.Mode                                                    |                     |             | /<14>               |
|               | = V>                                                                                           |                     |             | /V-Prot             |
|               |                                                                                                |                     |             | /VG[1]]             |

### **Protective Elements**

| Parameter              | Description                                                                                                                                                                                                                                     | Setting range  | Default  | Menu path           |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|---------------------|
| VG<                    | Undervoltage Threshold                                                                                                                                                                                                                          | 0.01 - 2.00Vn  | 0.8Vn    | [Protection<br>Para |
|                        | Only available if: Device planning: VG.Mode<br>= V<                                                                                                                                                                                             |                |          | /<14>               |
|                        |                                                                                                                                                                                                                                                 |                |          | /V-Prot             |
|                        |                                                                                                                                                                                                                                                 |                |          | /VG[1]]             |
| t                      | Tripping delay                                                                                                                                                                                                                                  | 0.00 - 300.00s | 0.00s    | [Protection<br>Para |
|                        |                                                                                                                                                                                                                                                 |                |          | /<14>               |
|                        |                                                                                                                                                                                                                                                 |                |          | /V-Prot             |
|                        |                                                                                                                                                                                                                                                 |                |          | /VG[1]]             |
| Meas Circuit<br>Superv | Activates the use of the measuring circuit<br>supervision. In this case the module will be<br>blocked if a measuring circuit supervision<br>module (e.g. LOP, VTS) signals a disturbed<br>measuring circuit (e.g. caused by a fuse<br>failure). | inactive,      | inactive | [Protection<br>Para |
|                        |                                                                                                                                                                                                                                                 | active         |          | /<14>               |
|                        |                                                                                                                                                                                                                                                 |                |          | /V-Prot             |
|                        |                                                                                                                                                                                                                                                 |                |          | /VG[1]]             |
|                        |                                                                                                                                                                                                                                                 |                |          |                     |

# Residual Voltage Supervision Module Input States

| Name            | Description                                                  | Assignment via    |
|-----------------|--------------------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1                       | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /V-Prot           |
|                 |                                                              | /VG[1]]           |
| ExBlo2-I        | Module input state: External blocking2                       | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /V-Prot           |
|                 |                                                              | /VG[1]]           |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip<br>Command | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /V-Prot           |
|                 |                                                              | /VG[1]]           |

# Residual Voltage Supervision Module Signals (Output States)

| Signal        | Description                                      |
|---------------|--------------------------------------------------|
| active        | Signal: active                                   |
| ExBlo         | Signal: External Blocking                        |
| Blo TripCmd   | Signal: Trip Command blocked                     |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command    |
| Alarm         | Signal: Alarm Residual Voltage Supervision-stage |
| Trip          | Signal: Trip                                     |
| TripCmd       | Signal: Trip Command                             |

### Counters of the Residual Voltage Supervision Module

| Value                | Description                                 | Default | Size                | Menu path                             |
|----------------------|---------------------------------------------|---------|---------------------|---------------------------------------|
| NumberOfAlarms       | Number of alarms since last reset.          | 0       | 0 -<br>999999999999 | [Operation<br>/History<br>/AlarmCr]   |
| NumberOfTripCm<br>ds | Number of trip commands since last<br>reset | 0       | 0 -<br>999999999999 | [Operation<br>/History<br>/TripCmdCr] |

### Commissioning: Residual Voltage Protection - Measured [59N]

*Object to be tested* Residual voltage protection stages.

#### Necessary components

- 1-phase AC voltage source
- Timer for measuring of the tripping time
- Voltmeter

#### Procedure (for each element)

#### Testing the threshold values

For testing the threshold and fallback values, the test voltage at the measuring input for the residual voltage has to be increased until the relay is activated. When comparing the displayed values with those of the voltmeter, the deviation must be within the permissible tolerances.

#### Testing the trip delay

For testing the trip delay a timer is to be connected to the contact of the associated trip relay. The timer is started when the limiting value of the tripping voltage is exceeded and it is stopped when the relay trips.

#### Testing the fallback ratio

Reduce the measuring quantity to less than 97% of the trip value. The relay must only fall back at 97% of the trip value at the latestly.

#### Successful test result

The measured threshold values, trip delays and fallback ratios comply with those specified in the adjustment list. Permissible deviations/tolerances can be taken from the Technical Data.

### Commissioning: Residual Voltage Protection - Calculated [59N]

Object to be tested

Test of the residual voltage protection elements

#### Necessary means

■ 3-phase voltage source

# NOTICE

Calculation of the residual voltage is only possible if phase voltages (star) were applied to the voltage measuring inputs and if *»VX Source=calculated«* is set within the corresponding parameter set.

### Procedure

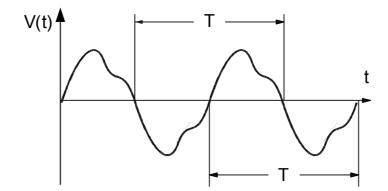
- Feed a three-phase, symmetrical voltage system (Vn) into the voltage measuring inputs of the relay.
- Set the limiting value of VX[x] to 90% Vn.
- Disconnect the phase voltage at two measuring inputs (symmetrical feeding at the secondary side has to be maintained).
- Now the »VX calc « measuring value has to be about 100% of the value Vn.
- Ascertain that the signal »VX.ALARM« or »VX.TRIP« is generated now.

Successful test result The signal »VX.ALARM« or »VX.TRIP« is generated.

### f - Frequency [810/U, 78, 81R]

Available elements: f[1],f[2],f[3],f[4],f[5],f[6]




All frequency protective elements are identically structured.

### **Frequency - Measuring Principle**



The frequency is calculated as the average of the measured values of the three phase frequencies. Only valid measured frequency values are taken into account. If a phase voltage is no longer measurable, this phase will be excluded from the calculation of the average value.

The measuring principle of the frequency supervision is based in general on the time measurement of complete cycles, whereby a new measurement is started at each zero passage. The influence of harmonics on the measuring result is thus minimized.



Frequency tripping is sometimes not desired by low measured voltages which for instance occur during alternator acceleration. All frequency supervision functions are blocked if the voltage is lower 0.15 times Vn.

### **Frequency Functions**

Due to its various frequency functions, the device is very flexible. That makes it suitable for a wide range of applications, where frequency supervision is an important criterion.

In the *Device Planning* menu, the User can decide how to use each of the six frequency elements.

*f*[1] to *f*[6] can be assigned as:

- f< Underfrequency;</p>
- f> Overfrequency;
- df/dt Rate of Change of Frequency;
- f< + df/dt Underfrequency and Rate of Change of Frequency;
- f> + df/dt Overfrequency and Rate of Change of Frequency;

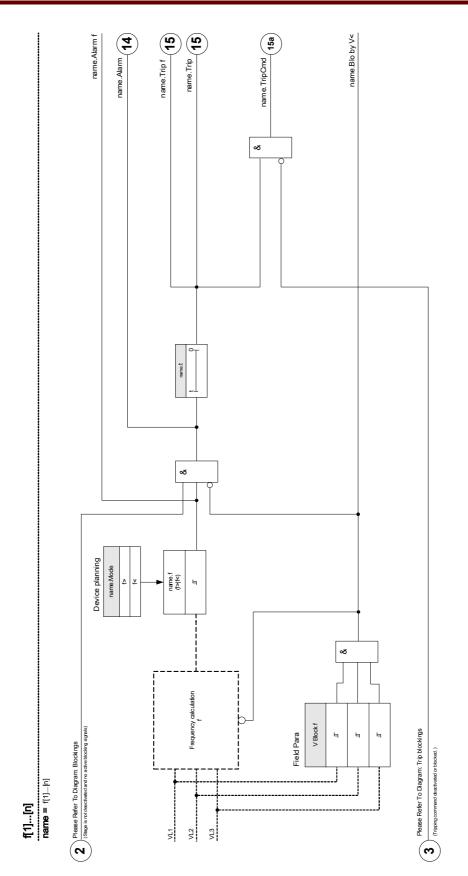
- f< + DF/DT Underfrequency and absolute frequency change per definite time interval;
- f> + DF/DT Overfrequency and absolute frequency change per definite time interval and
- delta phi Vector Surge

### f< – Underfrequency

This protection element provides a pickup threshold and a tripping delay. If the frequency falls below the set pickup threshold, an alarm will be issued instantaneously. If the frequency remains under the set pickup threshold until the tripping delay has elapsed, a tripping command will be issued.

With this setting, the frequency element protects electrical generators, consumers, or electrical operating equipment in general against underfrequency.

#### f> – Overfrequency


This protection element provides a pickup threshold and a tripping delay. If the frequency exceeds the set pickup threshold, an alarm will be issued instantaneously. If the frequency remains above the set tripping pickup until the tripping delay has elapsed, a tripping command will be issued.

With this setting the frequency element protects electrical generators, consumers, or electrical operating equipment in general against overfrequency.

### Working Principle f< and f>

(Please refer to the block diagram on next page.)

The frequency element supervises the three voltages (depending on if the voltage transformers are wired in Star or Delta connection » *VL12«*, » *VL23«* und » *VL31« oder » VL1«, » VL2« und » VL3«*). If all of the three phase voltages are e.g. below 15% Vn, the frequency calculation is blocked (settable via parameter » *V Block f«*). According to the frequency supervision mode set in the Device Planning (f< or f>), the evaluated phase voltages are compared to the set pickup threshold for over- or under-frequency. If in any of the phases, the frequency exceeds or falls below the set pickup threshold and if there are no blocking commands for the frequency still exceeds or is below the set pickup threshold after the tripping delay timer is started. When the frequency still exceeds or is below the set pickup threshold after the tripping delay timer has elapsed, a tripping command will be issued.



# df/dt - Rate of Change of Frequency

Electrical generators running in parallel with the mains, (e. g. industrial internal power supply plants), should be separated from the mains when failure in the intra-system occurs for the following reasons:

- Damage to electrical generators must be prevented when mains voltage is recovering asynchronously, (e. g. after a short interruption).
- The industrial internal power supply must be maintained.

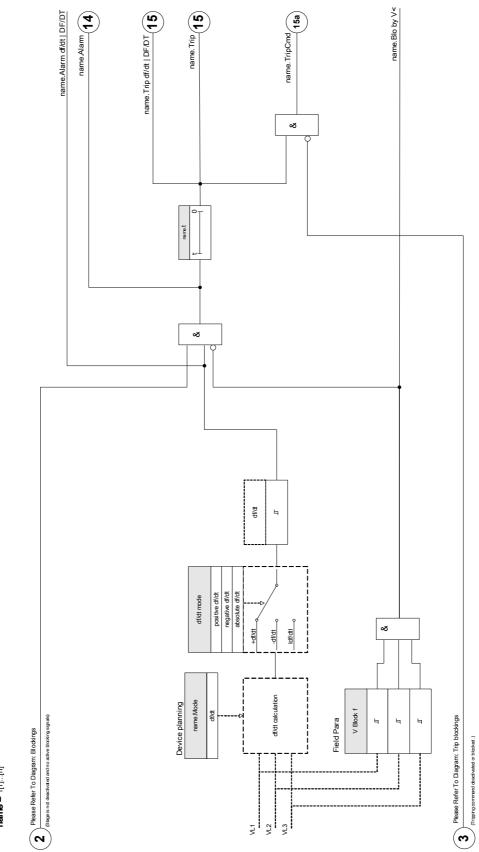
A reliable criterion of detecting mains failure is the measurement of the rate of change of frequency (df/dt). The precondition for this is a load flow via the mains coupling point. At mains failure the load flow change spontaneously leads to an increasing or decreasing frequency. At active power deficit of the internal power station, a linear drop of the frequency occurs and a linear increase occurs at power excess. Typical frequency gradients during application of "mains decoupling" are in the range of 0.5 Hz/s up to over 2 Hz/s.

The protective device detects the instantaneous frequency gradient (df/dt) of each mains voltage period. Through multiple evaluations of the frequency gradient in sequence the continuity of the directional change (sign of the frequency gradient) is determined. Because of this special measuring procedure a high safety in tripping and thus a high stability against transient processes, (e. g. switching procedure) are achieved.

The frequency gradient (rate of change of frequency [df/dt]) may have a negative or positive sign, depending on frequency increase (positive sign) or decrease (negative sign).

In the frequency parameter sets, the User can define the kind of df/dt mode:

- Positive df/dt = the frequency element detects an increase in frequency
- Negative df/dt = the frequency element detects a decrease in frequency and
- Absolute df/dt (positive and negative) = the frequency element detects both, increase and decrease in frequency


This protection element provides a tripping threshold and a tripping delay. If the frequency gradient df/dt exceeds or falls below the set tripping threshold, an alarm will be issued instantaneously. If the frequency gradient remains still above/below the set tripping threshold until the tripping delay has elapsed, a tripping command will be issued.

# Working Principle df/dt

(Please refer to the block diagram on next page)

The frequency element supervises the three voltages (depending on if the voltage transformers are wired in Star or Delta connection »*VL12«*, »*VL23«* und »*VL31«* oder »*VL1«, »VL2«* und »*VL3«*).

If any of the three phase voltages is e.g. below 15% Vn, the frequency calculation is blocked (settable via parameter » *V Block f«*). According to the frequency supervision mode set in the Device Planning (df/dt), the evaluated phase voltages are compared to the set frequency gradient (df/dt) threshold. If in any of the phases, the frequency gradient exceeds or falls below the set pickup threshold (acc. to the set df/dt mode) and if there are no blocking commands for the frequency gradient still exceeds or is below the set pickup threshold after the tripping delay timer is started. When the frequency gradient still exceeds or is below the set pickup threshold after the tripping delay timer has elapsed, a tripping command will be issued.



**f[1]...[n]: df/dt** name = f[1]...[n]

DOK-HB-MRMV4-2E

# f< and df/dt – Underfrequency and Rate of Change of Frequency

With this setting the frequency element supervises if the frequency falls below a set pickup threshold and if the frequency gradient exceeds a set threshold at the same time.

In the selected frequency parameter set f[X], an underfrequency pickup threshold f<, a frequency gradient df/dt and a tripping delay can be set.

Whereby:

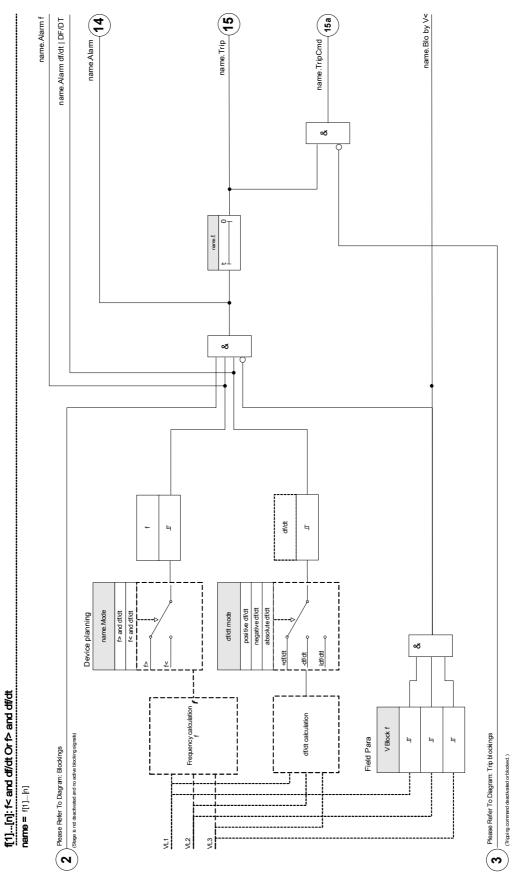
- Positive df/dt = the frequency element detects an increase in frequency
- Negative df/dt = the frequency element detects a decrease in frequency and
- Absolute df/dt (positive and negative) = the frequency element detects both, increase and decrease in frequency

## f> and df/dt – Overfrequency and Rate of Change of Frequency

With this setting the frequency element supervises if the frequency exceeds a set pickup threshold and if the frequency gradient exceeds a set threshold at the same time.

In the selected frequency parameter set f[X], an overfrequency pickup threshold f>, a frequency gradient df/dt and a tripping delay can be set.

Whereby:


- Positive df/dt = the frequency element detects an increase in frequency
- Negative df/dt = the frequency element detects a decrease in frequency and
- Absolute df/dt (positive and negative) = the frequency element detects both, increase and decrease in frequency

# Working Principle f< and df/dt | f> and df/dt

(Please refer to the block diagram on next page)

The frequency element supervises the three voltages (depending on if the voltage transformers are wired in Star or Delta connection »*VL12«*, »*VL23«* und »*VL31«* oder »*VL1«, »VL2«* und »*VL3«*).

If any of the three phase voltages is e.g. below 15% Vn, the frequency calculation is blocked (settable via parameter » *V Block f*«). According to the frequency supervision mode set in the Device Planning (f< and df/dt or f> and dt/dt), the evaluated phase voltages are compared to the set frequency pickup threshold and the set frequency gradient (df/dt) threshold. If in any of the phases, both - the frequency and the frequency gradient exceed or fall below the set thresholds and if there are no blocking commands for the frequency element, an alarm is issued instantaneously and the tripping delay timer is started. When the frequency and the frequency gradient still exceed or are below the set threshold after the tripping delay timer has elapsed, a tripping command will be issued.



## f< and DF/DT – Underfrequency and DF/DT

With this setting the frequency element supervises the frequency and the absolute frequency difference during a definite time interval.

In the selected frequency parameter set f[X], an underfrequency pickup threshold f<, a threshold for the absolute frequency difference (frequency decrease) DF and supervision interval DT can be set.

# f> and DF/DT – Overfrequency and DF/DT

With this setting the frequency element supervises the frequency and the absolute frequency difference during a definite time interval.

In the selected frequency parameter set f[X], an overfrequency pickup threshold f>, a threshold for the absolute frequency difference (frequency increase) DF and supervision interval DT can be set.

# Working principle f< and DF/DT | f> and DF/DT

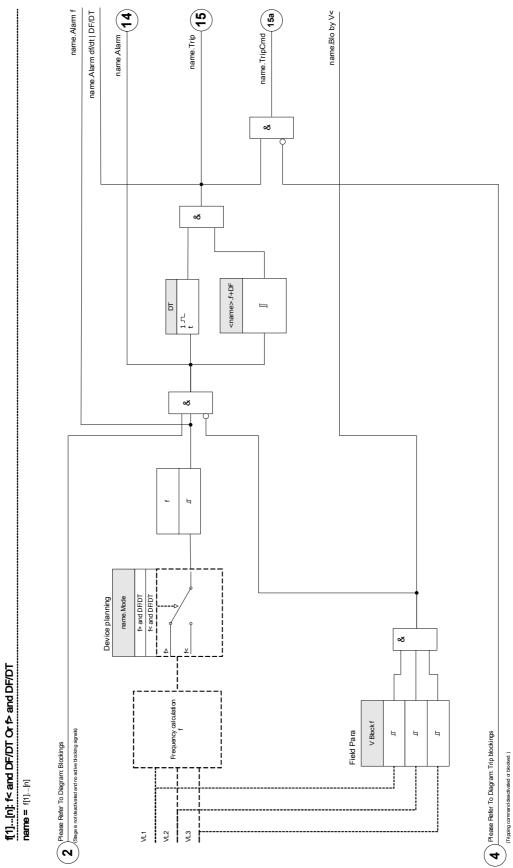
(please refer to block diagram on next page)

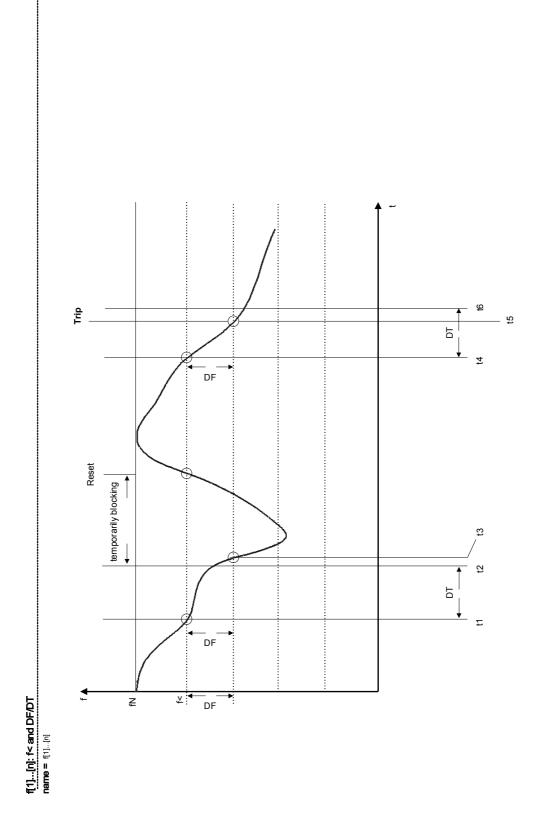
The frequency element supervises the three voltages (depending on if the voltage transformers are wired in Star or Delta connection »*VL12«*, »*VL23«* und »*VL31«* oder »*VL1«, »VL2«* und »*VL3«*).

If any of the three phase voltages is e.g. below 15% Vn, the frequency calculation is blocked (settable via parameter » *V Block f«*). According to the frequency supervision mode set in the Device Planning (f< and DF/DT or f> and DF/DT), the evaluated phase voltages are compared to the set frequency pickup threshold and the set frequency decrease or increase threshold DF.

If in any of the phases, the frequency exceeds or falls below the set pickup threshold and if there are no blocking commands for the frequency element, an alarm is issued instantaneously. At the same time the timer for the supervision interval DT is started. When, during the supervision interval DT, the frequency still exceeds or is below the set pickup threshold and the frequency decrease/increase reaches the set threshold DF, a tripping command will be issued.

## Working Principle of DF/DT Function


(Please refer to f(t) diagram after the block diagram)


#### Case 1:

When the frequency falls below a set f< threshold at t1, the DF/DT element energizes. If the frequency difference (decrease) does not reach the set value DF before the time interval DT has expired, no trip will occur. The frequency element remains blocked until the frequency falls below the underfrequency threshold f< again.

#### Case 2:

When the frequency falls below a set f< threshold at t4, the DF/DT element energizes. If the frequency difference (decrease) reaches the set value DF before the time interval DT has expired (t5), a trip command is issued.





# Delta phi - Vector Surge

The vector surge supervision protects synchronous generators in mains parallel operation due to very fast decoupling in case of mains failure. Very dangerous are mains auto reclosings for synchronous generators. The mains voltage returning typically after 300 ms can hit the generator in asynchronous position. A very fast decoupling is also necessary in case of long time mains failures.

Generally there are two different applications:

Only mains parallel operation - no single operation:

In this application the vector surge supervision protects the generator by tripping the generator circuit breaker in case of mains failure.

Mains parallel operation and single operation:

For this application the vector surge supervision trips the mains circuit breaker. Here it is insured that the gen.-set is not blocked when it is required as an emergency set.

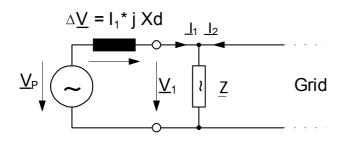
A very fast decoupling in case of mains failures for synchronous generators is very difficult. Voltage supervision units cannot be used because the synchronous alternator as well as the consumer impedance support the decreasing voltage.

In this situation the mains voltage drops only after some 100 ms below the pickup threshold of the voltage supervision and therefore a safe detection of mains auto reclosings is not possible with voltage supervision only.

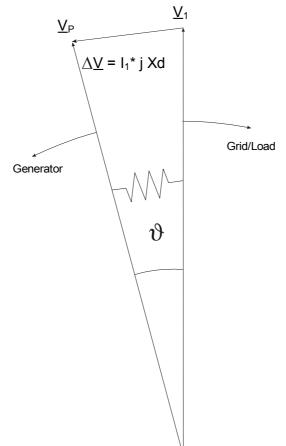
Frequency supervision is partially unsuitable because only a highly loaded generator decreases its speed within 100 ms. Current relays detect a fault only when short-circuit type currents exist, but cannot avoid their development. Power relays are able to pickup within 200 ms, but they also cannot prevent the power rising to short-circuit values. Since power changes are also caused by sudden loaded alternators, the use of power relays can be problematic.

Whereas the vector surge supervision of the device detects mains failures within 60 ms without the restrictions described above because it is specially designed for applications where very fast decoupling from the mains is required. Adding the typical operating time of a circuit breaker or contactor, the total disconnection time remains below 150 ms.

Basic requirement for tripping of the generator/mains monitor is a change in load of more than 15 - 20% of the rated load. Slow changes of the system frequency, for instance at regulating processes (adjustment of speed regulator) do not cause the relay to trip.

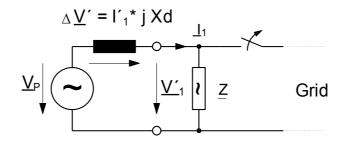

Trippings can also be caused by short-circuits within the grid, because a voltage vector surge higher than the preset value can occur. The magnitude of the voltage vector surge depends on the distance between the short-circuit and the generator. This function is also of advantage to the Power Utility Company because the mains short-circuit capacity and, consequently, the energy feeding the short-circuit is limited.

To prevent a possible false tripping, the vector surge measuring is blocked at a low input voltage e.g. <15% Vn (settable via parameter » *V Block f«*). The undervoltage lockout acts faster then the vector surge measurement.


Vector surge tripping is blocked by a phase loss so that a VT fault (e. g.: faulty VTs fuse) does not cause false tripping.

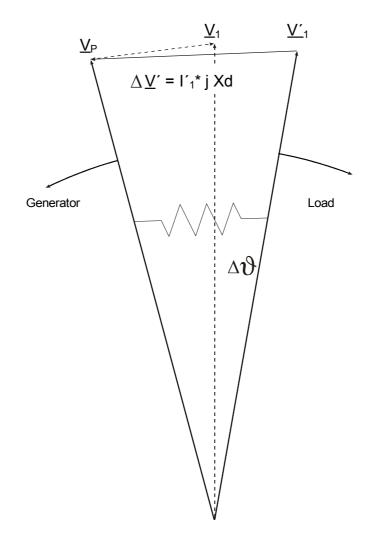
Measuring Principle of Vector Surge Supervision

Equivalent circuit at synchronous generator in parallel with the mains.

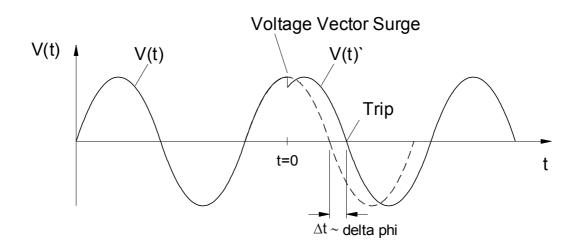



Voltage vectors at mains parallel operation.




The rotor displacement angle between stator and rotor is dependent on the mechanical moving torque of the generator. The mechanical shaft power is balanced with the electrical fed mains power and, therefore the synchronous speed keeps constant.

Equivalent circuit at mains failure.




In case of mains failure or auto reclosing the generator suddenly feeds a very high consumer load. The rotor displacement angle is decreased repeatedly and the voltage vector V1 changes its direction (V1').

Voltage vectors at mains failure.



Voltage vector surge.



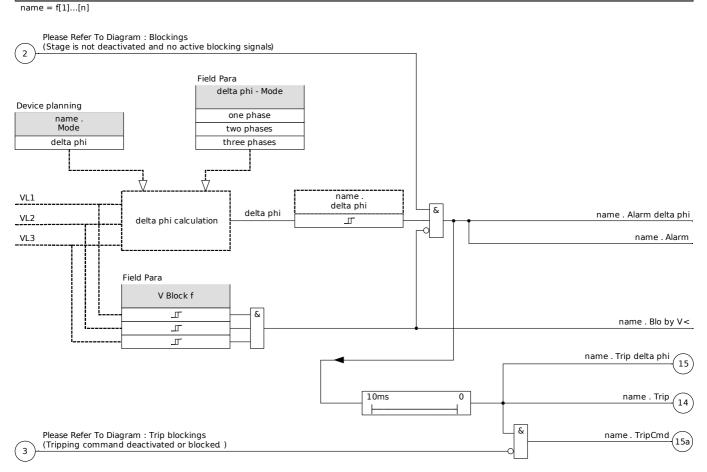
As shown in the voltage/time diagram the instantaneous value of the voltage jumps to another value and the phase position changes. This is called phase or vector surge.

The relay measures the cycle duration. A new measuring is started at each zero passage. The measured cycle duration is internally compared with a reference time and from this the deviation of the cycle duration of the voltage signal is ascertained. In case of a vector surge as shown in the above graphic, the zero passage occurs either earlier or later. The established deviation of the cycle duration is in compliance with the vector surge angle. If the vector surge angle exceeds the set value, the relay trips immediately.

Tripping of the vector surge is blocked in case of loss of one or more phases of the measuring voltage.

# Working Principle delta phi

(Please refer to the block diagram on next page)


The frequency element supervises the three voltages (depending on if the voltage transformers are wired in Star or Delta connection »*VL12*«, »*VL2*« und »*VL3*(, »*VL2*« und »*VL3*«).

If any of the three phase voltages is e.g. below 15% Vn, the vector surge calculation is blocked (settable via parameter » *V Block f*«). According to the frequency supervision mode set in the Device Planning (delta phi), the phase voltages are compared to the set vector surge threshold. If, depending on the parameter setting, in all three, in two or in one of the phases, the vector surge exceeds the set threshold and if there are no blocking commands for the frequency element, an alarm and a trip command is issued instantaneously.

# **Protective Elements**

# f[1]...[n]: delta phi

FreqProtection\_Y01



| Parameter | Description | Options       | Default             | Menu path         |
|-----------|-------------|---------------|---------------------|-------------------|
| Mode      | Mode        | do not use,   | f[1]: f<            | [Device planning] |
|           |             | f<,           | f[2]: f>            |                   |
|           |             | f>,           | f[3]: do not        |                   |
|           |             | f< and df/dt, | use                 |                   |
|           |             | f> and df/dt, | f[4]: do not<br>use |                   |
|           |             | f< and DF/DT, | f[5]: do not        |                   |
|           |             | f> and DF/DT, | use                 |                   |
|           |             | df/dt,        | f[6]: do not        |                   |
|           |             | delta phi     | use                 |                   |

# Device Planning Parameters of the Frequency Protection Module

# **Global Protection Parameters of the Frequency Protection Module**

| Parameter                                        | Description                                                                                                                                 | Setting range          | Default                          | Menu path                           |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|-------------------------------------|
| ExBlo1                                           | External blocking of the module, if blocking<br>is activated (allowed) within a parameter set<br>and if the state of the assigned signal is | 1n,<br>Assignment List |                                  | [Protection<br>Para                 |
|                                                  | true.                                                                                                                                       |                        |                                  | /Global Prot<br>Para                |
|                                                  |                                                                                                                                             |                        |                                  | /f-Prot                             |
|                                                  |                                                                                                                                             |                        |                                  | /f[1]]                              |
| ExBlo2                                           | External blocking of the module, if blocking is activated (allowed) within a parameter set                                                  | 1n,<br>Assignment List |                                  | [Protection<br>Para                 |
| and if the state of the assigned signal is true. |                                                                                                                                             |                        | /Global Prot<br>Para             |                                     |
|                                                  |                                                                                                                                             |                        |                                  | /f-Prot                             |
|                                                  |                                                                                                                                             |                        |                                  | /f[1]]                              |
| ExBlo dur.<br>Mot.Strt                           | External blocking of the module, if the state<br>of the assigned signal is true. This way it is<br>possible to block the module during the  | 1n, Trip Cmds          | f[1]:<br>MStart.Blo-<br>FrqStart | [Protection<br>Para<br>/Global Prot |
|                                                  | motor start phase.                                                                                                                          |                        | f[2]:<br>MStart.Blo-<br>FrqStart | Para<br>/f-Prot                     |
|                                                  |                                                                                                                                             |                        | f[3]:                            | /f[1]]                              |
|                                                  |                                                                                                                                             |                        | f[4]:                            |                                     |
|                                                  |                                                                                                                                             |                        | f[5]:                            |                                     |
|                                                  |                                                                                                                                             |                        | f[6]:                            |                                     |
| ExBlo TripCmd                                    | 5                                                                                                                                           | 1n,<br>Assignment List |                                  | [Protection<br>Para                 |
|                                                  |                                                                                                                                             |                        |                                  | /Global Prot<br>Para                |
|                                                  |                                                                                                                                             |                        |                                  | /f-Prot                             |
|                                                  |                                                                                                                                             |                        |                                  | /f[1]]                              |

# Setting Group Parameters of the Frequency Protection Module

| Parameter           | Description                                                                                                                                                                                                                                                                                                            | Setting range       | Default                                                                                          | Menu path                                         |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Function            | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                                  | inactive,<br>active | <pre>f[1]: active f[2]: active f[3]: inactive f[4]: inactive f[5]: inactive f[6]: inactive</pre> | [Protection<br>Para<br>/<14><br>/f-Prot<br>/f[1]] |
| ExBlo Fc            | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active".            | inactive,<br>active | inactive                                                                                         | [Protection<br>Para<br>/<14><br>/f-Prot<br>/f[1]] |
| Blo TripCmd         | Permanent blocking of the Trip Command of the module/stage.                                                                                                                                                                                                                                                            | inactive,<br>active | inactive                                                                                         | [Protection<br>Para<br>/<14><br>/f-Prot<br>/f[1]] |
| ExBlo TripCmd<br>Fc | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active". | inactive,<br>active | inactive                                                                                         | [Protection<br>Para<br>/<14><br>/f-Prot<br>/f[1]] |
| f>                  | Pickup value for overfrequency.<br>Only available if: Device planning: f.Mode =<br>f> Or f> and df/dt Or f> and DF/DT                                                                                                                                                                                                  | 40.00 - 69.95Hz     | 51.00Hz                                                                                          | [Protection<br>Para<br>/<14><br>/f-Prot<br>/f[1]] |
| f<                  | Pickup value for underfrequency.<br>Only available if: Device planning: f.Mode = $f < Or f < and df/dt Or f < and DF/DT$                                                                                                                                                                                               | 40.00 - 69.95Hz     | 49.00Hz                                                                                          | [Protection<br>Para<br>/<14><br>/f-Prot<br>/f[1]] |

| Parameter    | Description                                                                             | Setting range                      | Default        | Menu path           |
|--------------|-----------------------------------------------------------------------------------------|------------------------------------|----------------|---------------------|
| t            | Tripping delay                                                                          | 0.00 - 3600.00s                    | 1.00s          | [Protection<br>Para |
|              | Only available if: Device planning: f.Mode =<br>f< Or f>Or f> and df/dt Or f< and df/dt |                                    |                | /<14>               |
| $\checkmark$ |                                                                                         |                                    |                | /f-Prot             |
|              |                                                                                         |                                    |                | /f[1]]              |
| df/dt        | Measured value (calculated): Rate-of-<br>frequency-change.                              | 0.100 -<br>10.000Hz/s              | 1.000Hz/s      | [Protection<br>Para |
| $\land$      | Only available if: Device planning: f.Mode =                                            |                                    |                | /<14>               |
|              | df/dt Or f< and df/dt Or f> and df/dt                                                   |                                    |                | /f-Prot             |
|              |                                                                                         |                                    |                | /f[1]]              |
| t-df/dt      | Trip delay df/dt                                                                        | 0.00 - 300.00s                     | 1.00s          | [Protection<br>Para |
| $\land$      |                                                                                         |                                    |                | /<14>               |
|              |                                                                                         |                                    |                | /f-Prot             |
|              |                                                                                         |                                    |                | /f[1]]              |
| DF           | Frequency difference for the maximum admissible variation of the mean of the rate       | 0.0 - 10.0Hz                       | 1.00Hz         | [Protection<br>Para |
| $\land$      | of frequency-change. This function is inactive if DF=0.                                 |                                    |                | /<14>               |
|              |                                                                                         |                                    |                | /f-Prot             |
|              | Only available if: Device planning: f.Mode =<br>f< and DF/DT Or f> and DF/DT            |                                    |                | /f[1]]              |
| DT           | Time interval of the maximum admissible rate-of-frequency-change.                       | 0.1 - 10.0s                        | 1.00s          | [Protection<br>Para |
| $\frown$     | Only available if: Device planning: f.Mode =                                            |                                    |                | /<14>               |
|              | f< and DF/DT Or f> and DF/DT                                                            |                                    |                | /f-Prot             |
|              |                                                                                         |                                    |                | /f[1]]              |
| df/dt mode   | df/dt mode                                                                              | absolute df/dt,<br>positive df/dt, | absolute df/dt | [Protection<br>Para |
| $\frown$     | Only available if: Device planning: f.Mode = df/dt Or f< and df/dt Or f> and df/dt Only | negative df/dt                     |                | /<14>               |
| $\checkmark$ | available if: Device planning: f.Mode = $df/dt$                                         |                                    |                | /f-Prot             |
|              | Or f< and df/dt Or f> and df/dt Only<br>available if: Device planning: f.Mode = df/dt   |                                    |                | /f[1]]              |
| delta phi    | Measured value (calculated): Vector surge                                               | 1 - 30°                            | 10°            | [Protection<br>Para |
|              | Only available if: Device planning: f.Mode = delta phi                                  |                                    |                | /<14>               |
| $\checkmark$ |                                                                                         |                                    |                | /f-Prot             |
|              |                                                                                         |                                    |                | /f[1]]              |

# Frequency Protection Module Input States

| Name            | Description                                       | Assignment via    |
|-----------------|---------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /f-Prot           |
|                 |                                                   | /f[1]]            |
| ExBlo2-I        | Module input state: External blocking2            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /f-Prot           |
|                 |                                                   | /f[1]]            |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip | [Protection Para  |
|                 | Command                                           | /Global Prot Para |
|                 |                                                   | /f-Prot           |
|                 |                                                   | /f[1]]            |

# Frequency Protection Module Signals (Output States)

| Signal              | Description                                                          |
|---------------------|----------------------------------------------------------------------|
| active              | Signal: active                                                       |
| ExBlo               | Signal: External Blocking                                            |
| Blo by V<           | Signal: Module is blocked by undervoltage.                           |
| Blo TripCmd         | Signal: Trip Command blocked                                         |
| ExBlo TripCmd       | Signal: External Blocking of the Trip Command                        |
| Alarm f             | Signal: Alarm Frequency Protection                                   |
| Alarm df/dt   DF/DT | Alarm instantaneous or average value of the rate-of-frequency-change |
| Alarm delta phi     | Signal: Alarm Vector Surge                                           |
| Alarm               | Signal: Alarm Frequency Protection (collective signal)               |
| Trip f              | Signal: Frequency has exceeded the limit.                            |
| Trip df/dt   DF/DT  | Signal: Trip df/dt or DF/DT                                          |
| Trip delta phi      | Signal: Trip Vector Surge                                            |
| Trip                | Signal: Trip Frequency Protection (collective signal)                |
| TripCmd             | Signal: Trip Command                                                 |

# **Counters of the Frequency Protection Module**

| Value          | Description                        | Default | Size        | Menu path  |
|----------------|------------------------------------|---------|-------------|------------|
| NumberOfAlarms | Number of alarms since last reset. | 0       |             | [Operation |
|                |                                    |         | 99999999999 | /History   |
|                |                                    |         |             | /AlarmCr]  |

# **Protective Elements**

| Value                | Description                                 | Default | Size                 | Menu path                             |
|----------------------|---------------------------------------------|---------|----------------------|---------------------------------------|
| NumberOfTripCm<br>ds | Number of trip commands since last<br>reset | 0       | 0 -<br>9999999999999 | [Operation<br>/History<br>/TripCmdCr] |

# Commissioning: Overfrequency [f>]

## Object to be tested

All configured overfrequency protection stages.

Necessary means

- Three-phase voltage source with variable frequency and
- Timer

# Procedure

# Testing the threshold values

- Keep on increasing the frequency until the respective frequency element is activated;
- Note the frequency value and
- Disconnect the test voltage.

# Testing the trip delay

- Set the test voltage to nominal frequency and
- Now connect a frequency jump (activation value) and then start a timer. Measure the tripping time at the relay output.

# Testing the fallback ratio

Reduce the measuring quantity to less than 99.95% of the trip value (or 0.05% fn). The relay must only fall back at 99.95% of the trip value at the earliest (or 0.05% fn).

Successful test result

Permissible deviations/tolerances can be taken from the Technical Data.

# Commissioning: Underfrequency [f<]

For all configured underfrequency elements, this test can be carried out similar to the test for overfrequency protection (by using the related underfrequency values).

Please consider the following deviations:

- For testing the threshold values, the frequency has to be decreased until the protection element is activated.
- For detection of the fallback ratio, the measuring quantity has to be increased to more than 100.05% of the trip value (or 0.05% fn). At 100.05% of the trip value the relay is to fall back at the earliest (or 0.05% fn).

# Commissioning: df/dt - ROCOF

### Object to be tested

All frequency protection stages that are projected as df/dt.

Necessary means

- Three-phase voltage source and
- Frequency generator that can generate and measure a linear, defined rate of change of frequency.

## Procedure

## Testing the threshold values

- Keep on increasing the rate of change of frequency until the respective element is activated.
- Note the value.

## Testing the trip delay

- Set the test voltage to nominal frequency.
- Now apply a step change (sudden change) that is 1.5 times the setting value (example: apply 3 Hz per second if the setting value is 2 Hz per second) and
- Measure the tripping time at the relay output. Compare the measured tripping time to the configured tripping time.

# Successful test result:

Permissible deviations/tolerances and dropout ratios can be taken from the Technical Data.

# Commissioning: f< and -df/dt – Underfrequency and ROCOF

Object to be tested:

All frequency protection stages that are projected as f< and -df/dt.

Necessary means:

- Three-phase voltage source and
- Frequency generator that can generate and measure a linear, defined rate of change of frequency.

## Procedure:

Testing the threshold values

- Feed nominal voltage and nominal frequency to the device
- Decrease the frequency below the f< threshold and</p>
- Apply a rate of change of frequency (step change) that is below the setting value (example apply -1 Hz per second if the setting value is -0.8 Hz per second). After the tripping delay is expired the relay has to trip.

## Successful test result

Permissible deviations/tolerances and dropout ratios can be taken from the Technical Data.

# Commissioning: f> and df/dt - Overfrequency and ROCOF

#### Object to be tested

All frequency protection stages that are projected as f> and df/dt.

#### Necessary means

- Three-phase voltage source and.
- Frequency generator that can generate and measure a linear, defined rate of change of frequency.

## Procedure

Testing the threshold values

- Feed nominal voltage and nominal frequency to the device.
- Increase the frequency above the f> threshold and.
- Apply a rate of change of frequency (step change) that is above the setting value (example apply 1 Hz per second if the setting value is 0.8 Hz per second). After the tripping delay is expired the relay has to trip.

#### Successful test result:

Permissible deviations/tolerances and dropout ratios can be taken from the Technical Data.

# Commissioning: f< and DF/DT – Underfrequency and DF/DT

Object to be tested:

All frequency protection stages that are projected as f< and Df/Dt.

Necessary means:

- Three-phase voltage source and
- Frequency generator that can generate and measure a defined frequency change.

# Procedure:

Testing the threshold values

- Feed nominal voltage and nominal frequency to the device:
- Decrease the frequency below the f< threshold and</p>
- Apply a defined frequency change (step change) that is above the setting value (example: apply a frequency change of 1 Hz during the set time interval DT if the setting value DF is 0.8 Hz). The relay has to trip immediately.

## Successful test result

Permissible deviations/tolerances and dropout ratios can be taken from the Technical Data.

# Commissioning: f> and DF/DT – Overfrequency and DF/DT

## Object to be tested:

All frequency protection stages that are projected as f> and Df/Dt.

## Necessary means:

- Three-phase voltage source and.
- Frequency generator that can generate and measure a defined frequency change.

## Procedure:

Testing the threshold values

- Feed nominal voltage and nominal frequency to the device:
- Increase the frequency above the f> threshold and
- Apply a defined frequency change (step change) that is above the setting value (example: apply a frequency change of 1 Hz during the set time interval DT if the setting value DF is 0.8 Hz). The relay has to trip immediately.

## Successful test result:

Permissible deviations/tolerances and dropout ratios can be taken from the Technical Data.

# Commissioning: delta phi - Vector Surge

## Object to be tested:

All frequency protection stages that are projected as delta phi (vector surge).

Necessary means:

Three-phase voltage source that can generate a definite step (sudden change) of the voltage pointers (phase shift).

## Procedure:

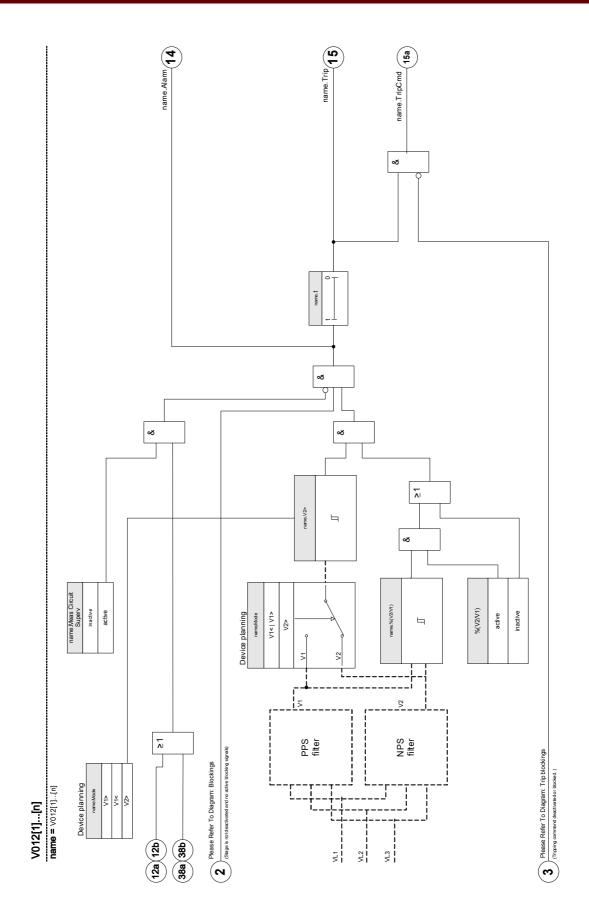
Testing the threshold values

Apply a vector surge (sudden change) that is 1.5 times the setting value (example: if the setting value is 10° apply 15°).

Successful test result:

Permissible deviations/tolerances and dropout ratio can be taken from the Technical Data.

# V 012 – Voltage Asymmetry [47]


#### Available elements: V012[1],V012[2],V012[3],V012[4],V012[5],V012[6]

Within the Device planning menu this module can be projected in order to supervise the positive phase sequence voltage for over- or undervoltage or the negative phase sequence system for overvoltage. This module is based on the 3-phase voltages.

The module is alarmed, if the threshold is exceeded. The module will trip, if the measured values remain for the duration of the delay timer above the threshold continuously.

In case that the negative phase sequence voltage is monitored, the threshold » V2>« can be combined with an additional percentage criterion » % V2/V1« (AND-connected) in order to prevent faulty tripping in case of a lack of voltage within the positive phase sequence system.

| Application Options of the V 012 Module                                       | Setting in           | Option                                                                                   |
|-------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|
| ANSI 47 – Negative Sequence Overvoltage<br>(Supervision of the Negative Phase | Device Planning Menu | %V2/V1:<br>The Module trips, if the threshold<br>U2> <b>and</b> the ratio of negative to |
| Sequence System)                                                              |                      | positive phase sequence voltage is<br>exceeded (after the delay timer has<br>expired).   |
| Setting within the Device Planning (V2>)                                      |                      |                                                                                          |
|                                                                               |                      | This criterion is to be activated and parametrized within the parameter set.             |
| ANSI 59U1 Overvoltage within the Positive<br>Phase Sequence System            | Device Planning Menu | -                                                                                        |
| Setting within the Device Planning (V1>)                                      |                      |                                                                                          |
| ANSI 27U1 Undervoltage within the Positive<br>Phase Sequence System           | Device Planning Menu | -                                                                                        |
| Setting within the Device Planning (V1<)                                      |                      |                                                                                          |



# Device planning parameters of the asymmetry module

| Parameter | Description                          | Options     | Default    | Menu path         |
|-----------|--------------------------------------|-------------|------------|-------------------|
| Mode      | Unbalance Protection: Supervision of | do not use, | do not use | [Device planning] |
|           | the Voltage System                   | V1>,        |            |                   |
|           |                                      | V1<,        |            |                   |
|           |                                      | V2>         |            |                   |

# Global protection parameter of the asymmetry-module

| Parameter              | Description                                                                                                                                                      | Setting range            | Default | Menu path            |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|----------------------|
| ExBlo1                 | External blocking of the module, if blocking is activated (allowed) within a parameter set                                                                       |                          |         | [Protection<br>Para  |
|                        | and if the state of the assigned signal is true.1                                                                                                                |                          |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                          |         | /V-Prot              |
|                        |                                                                                                                                                                  |                          |         | /V012[1]]            |
| ExBlo2                 | External blocking of the module, if blocking is activated (allowed) within a parameter set                                                                       | 1n,<br>t Assignment List |         | [Protection<br>Para  |
|                        | and if the state of the assigned signal is true.2                                                                                                                |                          |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                          |         | /V-Prot              |
|                        |                                                                                                                                                                  |                          |         | /V012[1]]            |
| ExBlo dur.<br>Mot.Strt | External blocking of the module, if the state<br>of the assigned signal is true. This way it is<br>possible to block the module during the<br>motor start phase. | 1n, Trip Cmds            |         | [Protection<br>Para  |
|                        |                                                                                                                                                                  |                          |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                          |         | /V-Prot              |
|                        |                                                                                                                                                                  |                          |         | /V012[1]]            |
| ExBlo TripCmd          | 5 1                                                                                                                                                              | 1n,<br>Assignment List   |         | [Protection<br>Para  |
| $\bigotimes$           |                                                                                                                                                                  |                          |         | /Global Prot<br>Para |
|                        |                                                                                                                                                                  |                          |         | /V-Prot              |
|                        |                                                                                                                                                                  |                          |         | /V012[1]]            |

# Parameter set parameters of the asymmetry module

| Parameter           | Description                                                                                                                       | Setting range       | Default  | Menu path           |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|---------------------|
| Function            | Permanent activation or deactivation of module/stage.                                                                             | inactive,           | inactive | [Protection<br>Para |
| <b>A</b>            | moude/stage.                                                                                                                      | active              |          | /<14>               |
| $\checkmark$        |                                                                                                                                   |                     |          | /V-Prot             |
|                     |                                                                                                                                   |                     |          | /V012[1]]           |
| ExBlo Fc            | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This                                                   | inactive,<br>active | inactive | [Protection<br>Para |
| $\bigcirc$          | parameter is only effective if a signal is<br>assigned to the corresponding global                                                | delive              |          | /<14>               |
|                     | protection parameter. If the signal becomes                                                                                       |                     |          | /V-Prot             |
|                     | true, those modules/stages are blocked that are parameterized "ExBlo Fc=active".                                                  |                     |          | /V012[1]]           |
| Blo TripCmd         | Permanent blocking of the Trip Command of                                                                                         | inactive,           | inactive | [Protection         |
| ,                   | the module/stage.                                                                                                                 | active              |          | Para                |
| $\bigcirc$          |                                                                                                                                   |                     |          | /<14>               |
|                     |                                                                                                                                   |                     |          | /V-Prot             |
|                     |                                                                                                                                   |                     |          | /V012[1]]           |
| ExBlo TripCmd<br>Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This                                                      | inactive,           | inactive | [Protection<br>Para |
|                     | parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes | active              |          | /<14>               |
|                     |                                                                                                                                   |                     |          | /V-Prot             |
|                     | true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active".                                    |                     |          | /V012[1]]           |
| V1>                 | Positive Phase Sequence Overvoltage                                                                                               | 0.01 - 2.00Vn       | 1.00Vn   | [Protection<br>Para |
| (                   | Only available if: Device planning:                                                                                               |                     |          | /<14>               |
| $(\mathbf{k})$      | V012.Mode = V1>                                                                                                                   |                     |          | /V-Prot             |
|                     |                                                                                                                                   |                     |          | /V012[1]]           |
| V1<                 | Positive Phase Sequence Undervoltage                                                                                              | 0.01 - 2.00Vn       | 1.00Vn   | [Protection<br>Para |
|                     | Only available if: Device planning:<br>V012.Mode = V1<                                                                            |                     |          | /<14>               |
|                     |                                                                                                                                   |                     |          | /V-Prot             |
|                     |                                                                                                                                   |                     |          | /V012[1]]           |
| V2>                 | Negative Phase Sequence Overvoltage                                                                                               | 0.01 - 2.00Vn       | 1.00Vn   | [Protection<br>Para |
| $\frown$            | Only available if: Device planning:<br>V012.Mode = V2>                                                                            |                     |          | /<14>               |
|                     |                                                                                                                                   |                     |          | /V-Prot             |
|                     |                                                                                                                                   |                     |          | /V012[1]]           |

| Parameter              | Description                                                                                                                                                                                                                                                                       | Setting range       | Default  | Menu path                                            |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|------------------------------------------------------|
| %(V2/V1)               | The %(V2/V1) setting is the unbalance trip<br>pickup setting. It is defined by the ratio of<br>negative sequence voltage to positive<br>sequence voltage (% Unbalance=V2/V1).<br>Phase sequence will be taken into account<br>automatically.                                      | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V012[1]] |
| %(V2/V1)               | The %(V2/V1) setting is the unbalance trip<br>pickup setting. It is defined by the ratio of<br>negative sequence voltage to positive<br>sequence voltage (% Unbalance=V2/V1).<br>Phase sequence will be taken into account<br>automatically.<br>Only available if: %(V2/V1) = use | 2 - 40%             | 20%      | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V012[1]] |
| t                      | Tripping delay                                                                                                                                                                                                                                                                    | 0.00 - 300.00s      | 0.00s    | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V012[1]] |
| Meas Circuit<br>Superv | Activates the use of the measuring circuit<br>supervision. In this case the module will be<br>blocked if a measuring circuit supervision<br>module (e.g. LOP, VTS) signals a disturbed<br>measuring circuit (e.g. caused by a fuse<br>failure).                                   | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/V-Prot<br>/V012[1]] |

# States of the inputs of the asymmetry module

| Name            | Description                                                  | Assignment via    |
|-----------------|--------------------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1                       | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /V-Prot           |
|                 |                                                              | /V012[1]]         |
| ExBlo2-I        | Module input state: External blocking2                       | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /V-Prot           |
|                 |                                                              | /V012[1]]         |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip<br>Command | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /V-Prot           |
|                 |                                                              | /V012[1]]         |

# Signals of the asymmetry module (states of the outputs)

| Signal                                                              | Description                     |
|---------------------------------------------------------------------|---------------------------------|
| active                                                              | Signal: active                  |
| ExBlo                                                               | Signal: External Blocking       |
| Blo TripCmd                                                         | Signal: Trip Command blocked    |
| ExBlo TripCmd         Signal: External Blocking of the Trip Command |                                 |
| Alarm                                                               | Signal: Alarm voltage asymmetry |
| Trip                                                                | Signal: Trip                    |
| TripCmd                                                             | Signal: Trip Command            |

# Counters of the asymmetry module

| Value                | Description                              | Default | Size                | Menu path                             |
|----------------------|------------------------------------------|---------|---------------------|---------------------------------------|
| NumberOfAlarms       | Number of alarms since last reset.       | 0       | 0 -<br>999999999999 | [Operation<br>/History<br>/AlarmCr]   |
| NumberOfTripCm<br>ds | Number of trip commands since last reset | 0       | 0 -<br>999999999999 | [Operation<br>/History<br>/TripCmdCr] |

# **Commissioning: Asymmetry Protection**

Object to be tested

Test of the asymmetry protection elements.

### Necessary means

- 3-phase AC voltage source
- Timer for measuring of the tripping time
- Voltmeter

#### Testing the tripping values (Example)

Set the pickup value for the voltage in the negative phase sequence to 0.5 Vn. Set the tripping delay to 1 s.

In order to generate a negative phase sequence voltage interchange the wiring of two phases (VL2 and VL3).

#### Testing the trip delay

Start the timer and abrupt change (switch) to 1.5 times of the set tripping value. Measure the trip delay.

#### Successful test result

The measured threshold values and trip delays comply with those specified in the adjustment list. Permissible deviations/tolerances can be taken from the Technical Data.

# PQS - Power [32, 37]

#### Available stages: PQS[1] ,PQS[2] ,PQS[3] ,PQS[4] ,PQS[5] ,PQS[6]

Each of the elements can be used as P<, P>, Pr>, Q<, Q>, Qr>, S< or S> within the device planning.

P< and P> are settable and effective in positive active power range, Q< and Q> in positive reactive power range. These modes are used for protecting against underload or overload in positive power direction.

The apparent power makes S< or S> effective like a circle in all power quadrants. Protection is against underload and overload.

In reverse mode, Pr> is effective in negative active power range and Qr> in negative reactive power range. Both modes protect against power direction reversing from positive into negative direction.

The following graphics show the areas that are protected by the corresponding modes.

# Setting the Thresholds

All settings/thresholds within the power module are to be set as per unit thresholds. Per definition  $S_n$  is to be used as scale basis.

 $S_{n} = \sqrt{3^{*} VoltageTransformer_{\text{Line-to-Line}_{Rated}_{Voltage}}^{*} CurrentTransformer_{\text{Rated}_{Current}}}$ 

If thresholds should base on primary side values:

 $S_n = \sqrt{3^* \ VoltageTransformer_{Pri\_Line-to-Line\_Rated\_Voltage}}^* \ CurrentTransformer_{Pri\_Rated\_Current}$ 

If thresholds should base on secondary side values

 $S_n = \sqrt{3^* \ VoltageTransformer_{Sec\_Line-to-Line\_Rated\_Voltage}} * CurrentTransformer_{Sec\_Rated\_Current}$ 

# Example – Field Data

- CurrentTransformer CT pri =200 A; CT sec = 5 A
- VoltageTransformer VT pri = 10 kV; VT sec =100 V
- Generator rated power 2 MVA
- Reverse power should trip at 3%.

## Setting Example 1 for Pr> based on primary side values

Reverse power should trip at 3%. That means 60 kW (on primary side).

First  $S_n$  is to be calculated:

 $S_{n} = \sqrt{3} * VoltageTransformer_{Pri\_Line-to-Line\_Rated\_Voltage} * CurrentTransformer_{Pri\_Rated\_Current} * Current *$ 

S<sub>n</sub>= 1.73 \* 10000 V \* 200 A = 3.464 MVA

The following threshold is to be set for Pr> within the device  $= 60 \text{ kW} / S_n$ 

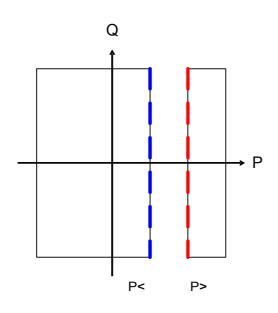
Pr> = 60 kW/ 3464 kVA = <u>0,0173 S<sub>n</sub></u>

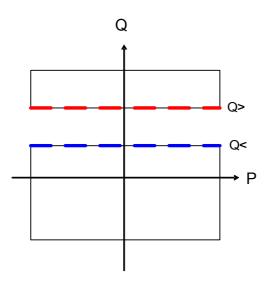
## Setting Example 1 for Pr> based on secondary side values

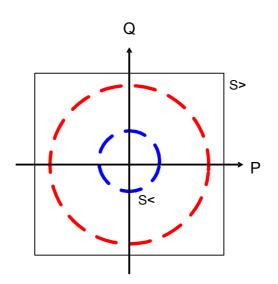
Reverse power should trip at 3%. That means 60 kW (on primary side).

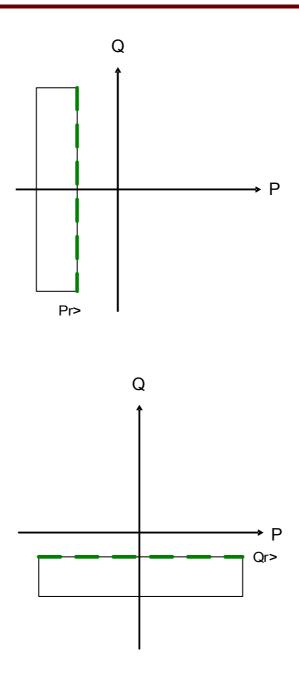
First  $S_n$  is to be calculated:

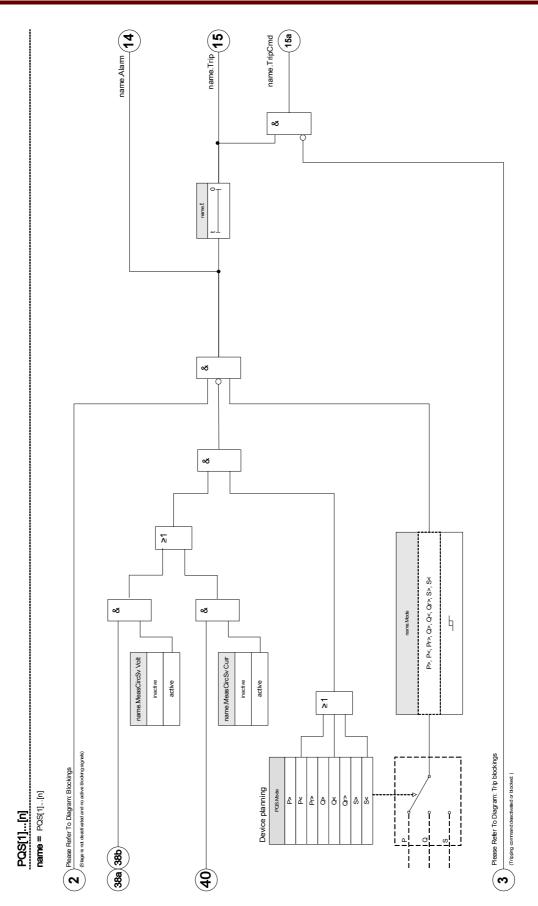
 $S_{n} = \sqrt{3^{*} \ VoltageTransformer_{Sec\_Line-to-Line\_Rated\_Voltage}} \ ^{*} \ CurrentTransformer_{Sec\_Rated\_Current}}$ 


S<sub>n</sub>= 1,73 \* 100 V \* 5 A = 866,05 VA


Convert the reverse power onto the secondary side:


 $Pr_{sec} > = Pr_{Pri} > / (VT_{Pri_VLL Rated} / VTS_{Sec_VLL Rated} * CT_{Pri Rated Current} / CT_{Sec Rated Current}) = 60 \text{ kW} / 4000 = 15 \text{ W}$ 


The following threshold is to be set for Pr> within the device = 15W /Sn


Pr> = 15 W / 866 VA= <u>0,0173 S<sub>n</sub></u>











DOK-HB-MRMV4-2E

684

| Device planning parameters of | the Power Protection module |
|-------------------------------|-----------------------------|
|-------------------------------|-----------------------------|

| Parameter | Description | Options               | Default               | Menu path         |
|-----------|-------------|-----------------------|-----------------------|-------------------|
| Mode      | Mode        | do not use,           | PQS[1]: P>            | [Device planning] |
|           |             | P>,                   | PQS[2]: do not        |                   |
|           |             | P<,                   | use                   |                   |
|           | Pr<,        | PQS[3]: do not<br>use |                       |                   |
|           |             | Pr>,                  | PQS[4]: do not        |                   |
|           |             | Q>,                   | use                   |                   |
|           |             | Q<,                   | PQS[5]: do not        |                   |
|           |             | Qr<,                  | use                   |                   |
|           |             | Qr>,                  | PQS[6]: do not<br>use |                   |
|           |             | S>,                   |                       |                   |
|           |             | S<                    |                       |                   |

# Global protection parameter of the Power Protection-module

| Parameter              | Description                                                                                   | Setting range          | Default                | Menu path            |
|------------------------|-----------------------------------------------------------------------------------------------|------------------------|------------------------|----------------------|
| ExBlo1                 | External blocking of the module, if blocking<br>is activated (allowed) within a parameter set | 1n,<br>Assignment List |                        | [Protection<br>Para  |
|                        | and if the state of the assigned signal is true.                                              |                        |                        | /Global Prot<br>Para |
|                        |                                                                                               |                        |                        | /P-Prot              |
|                        |                                                                                               |                        |                        | /PQS[1]]             |
| ExBlo2                 | External blocking of the module, if blocking is activated (allowed) within a parameter set    | 1n,<br>Assignment List |                        | [Protection<br>Para  |
|                        | and if the state of the assigned signal is true.                                              |                        |                        | /Global Prot<br>Para |
|                        |                                                                                               |                        |                        | /P-Prot              |
|                        |                                                                                               |                        |                        | /PQS[1]]             |
| ExBlo dur.<br>Mot.Strt | External blocking of the module, if the state of the assigned signal is true. This way it is  | 1n, Trip Cmds          | PQS[1]:<br>MStart.Blo- | [Protection<br>Para  |
|                        | possible to block the module during the motor start phase.                                    |                        | PowerStart             | /Global Prot         |
|                        |                                                                                               |                        | PQS[2]:                | Para                 |
|                        |                                                                                               |                        | PQS[3]:                | /P-Prot              |
|                        |                                                                                               |                        | PQS[4]:                | /PQS[1]]             |
|                        |                                                                                               |                        | PQS[5]:                |                      |
|                        |                                                                                               |                        | PQS[6]:                |                      |

#### **Protective Elements**

| Parameter     | Description                                                                                                                                                                           | Setting range          | Default | Menu path                                                          |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|--------------------------------------------------------------------|
| ExBlo TripCmd | External blocking of the Trip Command of<br>the module/the stage, if blocking is<br>activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true. | 1n,<br>Assignment List |         | [Protection<br>Para<br>/Global Prot<br>Para<br>/P-Prot<br>/PQS[1]] |

# Parameter set parameters of the Power Protection module

| Parameter           | Description                                                                                                                                                                                                                                                                                                            | Setting range       | Default                                                                                                                           | Menu path                                           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Function            | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                                  | inactive,<br>active | PQS[1]: active<br>PQS[2]:<br>inactive<br>PQS[3]:<br>inactive<br>PQS[4]:<br>inactive<br>PQS[5]:<br>inactive<br>PQS[5]:<br>inactive | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| ExBlo Fc            | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active".            | inactive,<br>active | inactive                                                                                                                          | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| Blo TripCmd         | Permanent blocking of the Trip Command of the module/stage.                                                                                                                                                                                                                                                            | inactive,<br>active | inactive                                                                                                                          | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| ExBlo TripCmd<br>Fc | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active". | inactive,<br>active | inactive                                                                                                                          | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| MeasCircSv Volt     | Measuring Circuit Supervision Voltage<br>Only available if: Device planning:<br>PQS.Mode = P< Only available if: Device<br>planning: PQS.Mode = Q< Only available if:<br>Device planning: PQS.Mode = S<                                                                                                                | inactive,<br>active | inactive                                                                                                                          | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| MeasCircSv<br>Curr  | Measuring Circuit Supervision Curent<br>Only available if: Device planning:<br>PQS.Mode = P< Only available if: Device<br>planning: PQS.Mode = Q< Only available if:<br>Device planning: PQS.Mode = S<                                                                                                                 | inactive,<br>active | inactive                                                                                                                          | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |

| Parameter | Description                                                                                                                                                                                                                                                                                                                                                                                                                                  | Setting range       | Default                                                                                                                | Menu path                                           |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| P>        | Over(load) Active Power Pickup Value. Can<br>be used for monitoring the maximum<br>allowed forward power limits of<br>transformers or overhead lines. Definition<br>for Sn is as follows: Sn = 1.7321 * VT rating<br>* CT rating. The voltage is the line-to-line<br>voltage.<br>Only available if: Device planning:<br>PQS.Mode = P>                                                                                                        | 0.003 -<br>10.000Sn | PQS[1]: 1.0Sn<br>PQS[2]:<br>1.20Sn<br>PQS[3]:<br>1.20Sn<br>PQS[4]:<br>1.20Sn<br>PQS[5]:<br>1.20Sn<br>PQS[6]:<br>1.20Sn | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| P<        | Under(load) Active Power Pickup Value (e.g.<br>caused by idling motors). Definition for Sn is<br>as follows: Sn = 1.7321 * VT rating * CT<br>rating. The voltage is the line-to-line<br>voltage.<br>Only available if: Device planning:<br>PQS.Mode = P<                                                                                                                                                                                     | 0.003 -<br>10.000Sn | 0.80Sn                                                                                                                 | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| Pr>       | Overload Reverse Active Power Pickup<br>Value. Protection against reverse feeding<br>into the power supply network. Definition for<br>Sn is as follows: Sn = 1.7321 * VT rating *<br>CT rating. The voltage is the line-to-line<br>voltage.<br>Only available if: Device planning:<br>PQS.Mode = Pr>                                                                                                                                         | 0.003 -<br>10.000Sn | 0.020Sn                                                                                                                | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| Pr<       | Under Reverse Definition for Sn is as<br>follows: Sn = 1.7321 * VT rating * CT rating.<br>The voltage is the line-to-line voltage.<br>Only available if: Device planning:<br>PQS.Mode = P                                                                                                                                                                                                                                                    | 0.003 -<br>10.000Sn | 0.80Sn                                                                                                                 | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| Q>        | <ul> <li>Over(load) Reactive Power Pickup Value.</li> <li>Monitoring the maximum allowed reactive power of the electrical equipment like transformers or overhead lines). If the maximum value is exceeded a condensator bank could be switched off. Definition for Sn is as follows: Sn = 1.7321 * VT rating * CT rating. The voltage is the line-to-line voltage.</li> <li>Only available if: Device planning: PQS.Mode = Q&gt;</li> </ul> | 0.003 -<br>10.000Sn | 1.20Sn                                                                                                                 | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |

| Parameter         | Description                                                                                                                                                                                                                                                                                                                                                     | Setting range            | Default                                                                                            | Menu path                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Q<                | Under(load) Reactive Power Pickup Value.<br>Monitoring the minimum value of the<br>reactive power. If it falls below the set value<br>a condensator bank could be switched on.<br>Definition for Sn is as follows: Sn = 1.7321 *<br>VT rating * CT rating. The voltage is the line-<br>to-line voltage.<br>Only available if: Device planning:<br>POS.Mode = Q< | 0.003 -<br>10.000Sn      | 0.80Sn                                                                                             | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| Qr>               | Overload Reverse Reactive Power Pickup<br>Value Definition for Sn is as follows: Sn =<br>1.7321 * VT rating * CT rating. The voltage<br>is the line-to-line voltage.<br>Only available if: Device planning:<br>PQS.Mode = Qr>                                                                                                                                   | 0.003 -<br>10.000Sn      | 0.020Sn                                                                                            | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| Qr<               | Under Reverse Definition for Sn is as<br>follows: Sn = 1.7321 * VT rating * CT rating.<br>The voltage is the line-to-line voltage.<br>Only available if: Device planning:<br>PQS.Mode = Q                                                                                                                                                                       | 0.003 -<br>10.000Sn      | 0.80Sn                                                                                             | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| S>                | Over(load) Apparent Power Pickup Value<br>Definition for Sn is as follows: Sn = 1.7321 *<br>VT rating * CT rating. The voltage is the line-<br>to-line voltage.<br>Only available if: Device planning:<br>PQS.Mode = S>                                                                                                                                         | 0.02 - 10.00Sn           | 1.20Sn                                                                                             | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| S<                | Under(load) Apparent Power Pickup Value<br>Definition for Sn is as follows: Sn = 1.7321 *<br>VT rating * CT rating. The voltage is the line-<br>to-line voltage.<br>Only available if: Device planning:<br>PQS.Mode = S<                                                                                                                                        | 0.02 - 10.00Sn           | 0.80Sn                                                                                             | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| t                 | Tripping delay                                                                                                                                                                                                                                                                                                                                                  | 0.00 - 1100.00s          | PQS[1]: 1.00s<br>PQS[2]: 0.01s<br>PQS[3]: 0.01s<br>PQS[4]: 0.01s<br>PQS[5]: 0.01s<br>PQS[6]: 0.01s | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |
| PowMeasMetho<br>d | Determines if the active power, reactive<br>power and apparent power are calculated<br>on the basis of RMS or DFT.                                                                                                                                                                                                                                              | Fundamental,<br>True RMS | Fundamental                                                                                        | [Protection<br>Para<br>/<14><br>/P-Prot<br>/PQS[1]] |

### States of the inputs of the Power Protection module

| Name            | Description                                       | Assignment via    |
|-----------------|---------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking             | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /P-Prot           |
|                 |                                                   | /PQS[1]]          |
| ExBlo2-I        | Module input state: External blocking             | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /P-Prot           |
|                 |                                                   | /PQS[1]]          |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip | [Protection Para  |
|                 | Command                                           | /Global Prot Para |
|                 |                                                   | /P-Prot           |
|                 |                                                   | /PQS[1]]          |

## Signals of the Power Protection module (states of the outputs)

| Signal        | Description                                   |
|---------------|-----------------------------------------------|
| active        | Signal: active                                |
| ExBlo         | Signal: External Blocking                     |
| Blo TripCmd   | Signal: Trip Command blocked                  |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm         | Signal: Alarm Power Protection                |
| Trip          | Signal: Trip Power Protection                 |
| TripCmd       | Signal: Trip Command                          |

### **Counters of the Power Protection Module**

| Value                | Description                                 | Default | Size                 | Menu path                             |
|----------------------|---------------------------------------------|---------|----------------------|---------------------------------------|
| NumberOfAlarms       | Number of alarms since last reset.          | 0       | 0 -<br>9999999999999 | [Operation<br>/History<br>/AlarmCr]   |
| NumberOfTripCm<br>ds | Number of trip commands since last<br>reset | 0       | 0 -<br>999999999999  | [Operation<br>/History<br>/TripCmdCr] |

### Commissioning Examples for the Power Protection Module

#### Object to be tested

- Testing the projected Power Protection Modules.
- P>
- P<
- Pr
- Q>
- Q<
- Qr
- S>
- S<

#### Necessary means

- 3-phase AC voltage source
- 3-phase AC current source
- Timer

#### Procedure – Testing the wiring

- Feed rated voltage and rated current to the measuring inputs of the relay.
- Adjust the current pointers 30° lagging to the voltage pointers.
- The following measuring values have to be shown: P=0.86 Pn Q=0.5 Qn S=1 Sn

# NOTICE

If the measured values are shown with a negative (algebraic) sign check the wiring.

# NOTICE

The examples shown within this chapter have to be carried out with the tripping values and tripping delays that apply to your switchboard.

If you are testing "greater than thresholds" (e.g. P>) start by 80% of the tripping value and increase the object to be tested until the relay picks up.

In case that you are testing "less than thresholds" (e.g. P<) start by 120% of the tripping value and reduce the object to be tested until the relay picks up.

If you are testing tripping delays of "greater than" modules (e.g. P>) start a timer simultaneously with an abrupt change of the object to be tested from 80% of the tripping value to 120% of the tripping value.

If you are testing tripping delays of "less than" modules (e.g. P<) start a timer simultaneously with an abrupt change of the object to be tested from 120% of the tripping value to 80% of the tripping value.

#### **NOTICE** P> Testing the threshold values (Example, Threshold 1.1 Pn)

- Feed rated voltage and 0.9 times rated current in phase to the measuring inputs of the relay (PF=1).
- The measured values for the active power "P" must show a positive algebraic sign.
- Set the tripping threshold (e.g. 1.1 Pn).
- In order to test the tripping thresholds feed 0.9 times rated current to the measuring inputs of the relay. Increase the current slowly until the relay picks up. Ensure that the angle between current and voltage remains constant. Compare the tripping value to the parameterized.

#### Testing the tripping delay (Example, Threshold 1.1 Pn)

- Feed rated voltage and rated current in phase to the measuring inputs of the relay (PF=1).
- The measured values for the active power "P" must show a positive algebraic sign.
- Set the tripping threshold (e.g. 1.1 Pn).
- In order to test the tripping delay feed 0.9 times rated current to the measuring inputs of the relay. Increase the current with an abrupt change to 1.2 In. Ensure that the angle between current and voltage remains constant. Measure the tripping delay at the output of the relay.

#### Successful test result

#### **NOTICE** Q> Testing the threshold values (Example, Threshold 1,1 Qn)

- Feed rated voltage and 0.9 times rated current (90° phase shift) to the measuring inputs of the relay (PF=0).
- The measured values for the active power "Q" must show a positive algebraic sign.
- Set the tripping threshold (e.g. 1.1 Qn).
- In order to test the tripping thresholds feed 0.9 times rated current to the measuring inputs of the relay. Increase the current slowly until the relay picks up. Ensure that the angle between current and voltage remains constant. Compare the tripping value to the parameterized.

#### Testing the tripping delay (Example, Threshold 1.1 Qn)

- Feed rated voltage and rated current (90° phase shift) to the measuring inputs of the relay (PF=0).
- The measured values for the active power "Q" must show a positive algebraic sign.
- Set the tripping threshold (e.g. 1.1 Qn).
- In order to test the tripping delay feed 0.9 times rated current to the measuring inputs of the relay. Increase the current with an abrupt change to 1.2 In. Ensure that the angle between current and voltage remains constant. Measure the tripping delay at the output of the relay.

#### Successful test result

#### **NOTICE** P< Testing the threshold values (Example, Threshold 0.3 Pn)

- Feed rated voltage and rated current in phase to the measuring inputs of the relay (PF=1).
- The measured values for the active power "P" must show a positive algebraic sign.
- Set the tripping threshold (e.g. 0.3 Pn).
- In order to test the tripping thresholds feed 0.5 times rated current to the measuring inputs of the relay. Reduce the current slowly until the relay picks up. Ensure that the angle between current and voltage remains constant. Compare the tripping value to the parameterized.

#### Testing the tripping delay (Example, Threshold 0.3 Pn)

- Feed rated voltage and rated current in phase to the measuring inputs of the relay (PF=1).
- The measured values for the active power "P" must show a positive algebraic sign.
- Set the tripping threshold (e.g. 0.3 Pn).
- In order to test the tripping delay feed 0.5 times rated current to the measuring inputs of the relay. Increase the current with an abrupt change to 0.2 In. Ensure that the angle between current and voltage remains constant. Measure the tripping delay at the output of the relay.

#### Successful test result

### **NOTICE** Q< Testing the threshold values (Example, Threshold 0.3 Qn)

- Feed rated voltage and 0.9 times rated current (90° phase shift) to the measuring inputs of the relay (PF=0).
- The measured values for the active power "Q" must show a positive algebraic sign.
- Set the tripping threshold (e.g. 0.3 Qn).
- In order to test the tripping thresholds feed 0.5 times rated current to the measuring inputs of the relay. Reduce the current slowly until the relay picks up. Ensure that the angle between current and voltage remains constant. Compare the tripping value to the parameterized.

#### Testing the tripping delay (Example, Threshold 0.3 Qn)

- Feed rated voltage and 0.9 times rated current (90° phase shift) to the measuring inputs of the relay (PF=0).
- The measured values for the active power "Q" must show a positive algebraic sign.
- Set the tripping threshold (e.g. 0.3 Qn).
- In order to test the tripping delay feed 0.5 times rated current to the measuring inputs of the relay. Increase the current with an abrupt change to 0.2 In. Ensure that the angle between current and voltage remains constant. Measure the tripping delay at the output of the relay.

#### Successful test result

# NOTICE

Pr

#### Testing the threshold values (Example, Threshold 0.2 Pn)

- Feed rated voltage and rated current with 180 degree phase shift between voltage and current pointers to the measuring inputs of the relay.
- The measured values for the active power "P" must show a negative algebraic sign.
- Set the tripping threshold (e. g. 0.2 Pn).
- In order to test the tripping thresholds feed 0.1 times rated current to the measuring inputs of the relay. Increase the current slowly until the relay picks up. Ensure that the angle between current and voltage remains constant. Compare the tripping value to the parameterized.

#### Testing the tripping delay (Example, Threshold 0.2 Pn)

- Feed rated voltage and rated current with 180 degree phase shift between voltage and current pointers to the measuring inputs of the relay.
- The measured values for the active power "P" must show a negative algebraic sign.
- Set the tripping threshold (e.g. 0.2 Pn).
- In order to test the tripping delay feed 0.1 times rated current to the measuring inputs of the relay. Increase the current with an abrupt change to 0.3 In. Ensure that the angle between current and voltage remains constant. Measure the tripping delay at the output of the relay.

#### Successful test result

# NOTICE Qr

#### Testing the threshold values (Example, Threshold 0.2 Qn)

- Feed rated voltage and rated current with -90 degree phase shift between voltage and current pointers to the measuring inputs of the relay.
- The measured values for the active power "Q" must show a negative algebraic sign.
- Set the tripping threshold (e. g. 0.2 Qn).
- In order to test the tripping delay feed 0.1 times rated current to the measuring inputs of the relay. Increase the current slowly until the relay picks up. Ensure that the angle between current and voltage remains constant. Measure the tripping delay at the output of the relay.

#### Testing the tripping delay (Example, Threshold 0.2 Qn)

- Feed rated voltage and rated current with -90 degree phase shift between voltage and current pointers to the measuring inputs of the relay.
- The measured values for the active power "Q" must show a negative algebraic sign.
- Set the tripping threshold (e. g. 0.2 Qn).
- In order to test the tripping thresholds feed 0.1 times rated current to the measuring inputs of the relay. Increase the current with an abrupt change to 0.3 In. Ensure that the angle between current and voltage remains constant. Compare the tripping value to the parameterized.

#### Successful test result

# NOTICE S>

#### Testing the threshold values

- Feed 80% of the S> threshold to the measuring inputs of the relay.
- Increase the fed power slowly until the relay picks up. Compare the measured value at the time of tripping to the parameterized setting.

#### Testing the tripping delay

- Feed 80% of the S> threshold to the measuring inputs of the relay.
- Increase the fed power with an abrupt change to 120% of the S> threshold. Measure the tripping delay at the output of the relay.

#### Successful test result

# NOTICE S<

#### Testing the threshold values

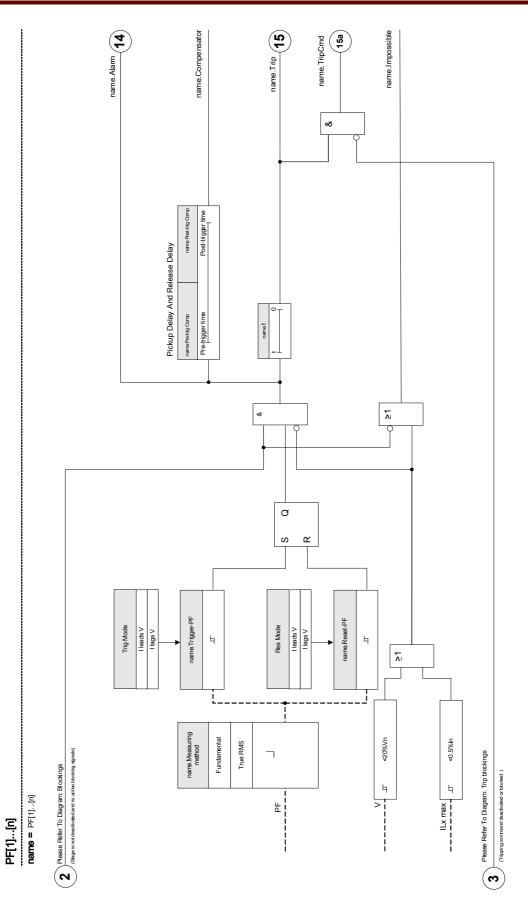
- Feed 120% of the S< threshold to the measuring inputs of the relay.
- Reduce the fed power slowly until the relay picks up. Compare the measured value at the time of tripping to the parameterized setting.

#### Testing the tripping delay

- Feed 120% of the S< threshold to the measuring inputs of the relay.
- Reduce the fed power with an abrupt change to 80% of the S< threshold. Measure the tripping delay at the output of the relay.</p>

#### Successful test result

# PF - Power Factor [55]


Available stages: PF[1] ,PF[2]

These Element supervises the Power Factor within a defined area (limits).

The area is defined by four parameters.

- The Trigger quadrant (lead or lag).
- The Threshold (Power Factor value)
- The Reset quadrant (lead or lag).
- The Reset Value (Power Factor value)

| "Reverse" current lags voltage                                      |                                              | current leads voltage                                              |
|---------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|
| Quadrant2                                                           |                                              | Quadrant1                                                          |
| -P (Watts)<br>-Q (Vars)<br>-PF<br>Active Power flows into the sourc | a<br>Reactive Power flows into the<br>source | +P (Watts)<br>-Q (Vars)<br>+PF<br>Active Power flows into the load |
| -P (Watts)<br>+Q (Vars)<br>-PF                                      | Reactive Power flows into the load           | +P (Watts)<br>+Q (Vars)<br>+PF                                     |
| Quadrant3<br>"Reverse" current leads voltage                        |                                              | Quadrant4<br>current lags voltage                                  |



## Device planning parameters of the Power Factor module

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | use         |            |                   |
| $\bigotimes$ |             |             |            |                   |

# Global protection parameter of the Power Factor-module

| Parameter              | Description                                                                                       | Setting range          | Default | Menu path            |
|------------------------|---------------------------------------------------------------------------------------------------|------------------------|---------|----------------------|
| ExBlo1                 | External blocking of the module, if blocking is activated (allowed) within a parameter set        | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$           | and if the state of the assigned signal is true.                                                  |                        |         | /Global Prot<br>Para |
|                        |                                                                                                   |                        |         | /PF-Prot             |
|                        |                                                                                                   |                        |         | /PF[1]]              |
| ExBlo2                 | External blocking of the module, if blocking is activated (allowed) within a parameter set        | 1n,<br>Assignment List |         | [Protection<br>Para  |
|                        | and if the state of the assigned signal is true.                                                  |                        |         | /Global Prot<br>Para |
|                        |                                                                                                   |                        |         | /PF-Prot             |
|                        |                                                                                                   |                        |         | /PF[1]]              |
| ExBlo dur.<br>Mot.Strt | External blocking of the module, if the state of the assigned signal is true. This way it is      | 1n, Trip Cmds          |         | [Protection<br>Para  |
|                        | possible to block the module during the motor start phase.                                        |                        |         | /Global Prot<br>Para |
|                        |                                                                                                   |                        |         | /PF-Prot             |
|                        |                                                                                                   |                        |         | /PF[1]]              |
| ExBlo TripCmd          | External blocking of the Trip Command of the module/the stage, if blocking is                     | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$           | activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true. |                        |         | /Global Prot<br>Para |
|                        |                                                                                                   |                        |         | /PF-Prot             |
|                        |                                                                                                   |                        |         | /PF[1]]              |

# Parameter set parameters of the Power Factor module

| Parameter           | Description                                                                                    | Setting range            | Default     | Menu path           |
|---------------------|------------------------------------------------------------------------------------------------|--------------------------|-------------|---------------------|
| Function            | Permanent activation or deactivation of module/stage.                                          | inactive,<br>active      | inactive    | [Protection<br>Para |
| $\bigcirc$          |                                                                                                |                          |             | /<14>               |
|                     |                                                                                                |                          |             | /PF-Prot            |
|                     |                                                                                                |                          |             | /PF[1]]             |
| ExBlo Fc            | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This                | inactive,<br>active      | inactive    | [Protection<br>Para |
| $\frown$            | parameter is only effective if a signal is<br>assigned to the corresponding global             |                          |             | /<14>               |
|                     | protection parameter. If the signal becomes                                                    |                          |             | /PF-Prot            |
|                     | true, those modules/stages are blocked that are parameterized "ExBlo Fc=active".               |                          |             | /PF[1]]             |
| Blo TripCmd         | Permanent blocking of the Trip Command of                                                      | inactive,                | inactive    | [Protection         |
|                     | the module/stage.                                                                              | active                   |             | Para                |
| $\bigcirc$          |                                                                                                |                          |             | /<14>               |
|                     |                                                                                                |                          |             | /PF-Prot            |
|                     |                                                                                                |                          |             | /PF[1]]             |
| ExBlo TripCmd<br>Fc | blocking of the module/stage This                                                              | inactive,                |             | [Protection<br>Para |
| TC                  |                                                                                                | active                   |             | /<14>               |
| $\frown$            |                                                                                                |                          |             | /PF-Prot            |
|                     | true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active". |                          |             | /PF[1]]             |
| Measuring<br>method | Measuring method: fundamental or rms or<br>3rd harmonic (only generator protection             | Fundamental,<br>True RMS | Fundamental | [Protection<br>Para |
|                     | relays)                                                                                        |                          |             | /<14>               |
| $\bigotimes$        |                                                                                                |                          |             | /PF-Prot            |
|                     |                                                                                                |                          |             | /PF[1]]             |
| Trig Mode           | Trigger Mode. Should the Module be<br>triggered if the Current Phasor is leading to            | l leads V,<br>l lags V   | l lags V    | [Protection<br>Para |
| $\frown$            | the Voltage Phasor = Lead? Or should the<br>Module be triggered if the Current Phasor is       |                          |             | /<14>               |
| $\checkmark$        | lagging to the Voltage Phasor = Lag?                                                           |                          |             | /PF-Prot            |
|                     |                                                                                                |                          |             | /PF[1]]             |
| Trigger-PF          | This is the power factor where the relay will pick-up.                                         | 0.5 - 0.99               | 0.8         | [Protection<br>Para |
| $\bigwedge$         |                                                                                                |                          |             | /<14>               |
| $\checkmark$        |                                                                                                |                          |             | /PF-Prot            |
|                     |                                                                                                |                          |             | /PF[1]]             |

| Parameter      | Description                                                                                                                                                                                                             | Setting range          | Default   | Menu path                                           |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|-----------------------------------------------------|
| Res Mode       | Trigger Mode. Should the Module be<br>triggered if the Current Phasor is leading to<br>the Voltage Phasor = Lead? Or should the<br>Module be triggered if the Current Phasor is<br>lagging to the Voltage Phasor = Lag? | I leads V,<br>I lags V | l leads V | [Protection<br>Para<br>/<14><br>/PF-Prot<br>/PF[1]] |
| Reset-PF       | This setting is the power factor, at which the<br>relay will reset the power factor trip. It is<br>like setting a hysteresis for the Trigger<br>setting.                                                                | 0.5 - 0.99             | 0.99      | [Protection<br>Para<br>/<14><br>/PF-Prot<br>/PF[1]] |
| t              | Tripping delay                                                                                                                                                                                                          | 0.00 - 300.00s         | 0.00s     | [Protection<br>Para<br>/<14><br>/PF-Prot<br>/PF[1]] |
| Pre-trig Comp  | Pickup (Pre-trigger) time for the<br>Compensation Signal. When this timer is<br>elapsed the compensation signal will be<br>activated.                                                                                   | 0.00 - 300.00s         | 5.00s     | [Protection<br>Para<br>/<14><br>/PF-Prot<br>/PF[1]] |
| Post-trig Comp | Post-trigger time of the Compensation<br>Signal. When this timer is elapsed the<br>compensation signal will be deactivated.                                                                                             | 0.00 - 300.00s         | 5.00s     | [Protection<br>Para<br>/<14><br>/PF-Prot<br>/PF[1]] |

# States of the inputs of the Power Factor module

| Name     | Description                           | Assignment via    |
|----------|---------------------------------------|-------------------|
| ExBlo1-I | Module input state: External blocking | [Protection Para  |
|          |                                       | /Global Prot Para |
|          |                                       | /PF-Prot          |
|          |                                       | /PF[1]]           |
| ExBlo2-I | Module input state: External blocking | [Protection Para  |
|          |                                       | /Global Prot Para |
|          |                                       | /PF-Prot          |
|          |                                       | /PF[1]]           |

| Name            | Description                                       | Assignment via    |
|-----------------|---------------------------------------------------|-------------------|
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip | [Protection Para  |
|                 | Command                                           | /Global Prot Para |
|                 |                                                   | /PF-Prot          |
|                 |                                                   | /PF[1]]           |

# Signals of the Power Factor module (states of the outputs)

| Signal        | Description                                   |
|---------------|-----------------------------------------------|
| active        | Signal: active                                |
| ExBlo         | Signal: External Blocking                     |
| Blo TripCmd   | Signal: Trip Command blocked                  |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm         | Signal: Alarm Power Factor                    |
| Trip          | Signal: Trip Power Factor                     |
| TripCmd       | Signal: Trip Command                          |
| Compensator   | Signal: Compensation Signal                   |
| Impossible    | Signal: Alarm Power Factor Impossible         |

## Counters of the Power Factor Module

| Value                | Description                              | Default | Size                 | Menu path                             |
|----------------------|------------------------------------------|---------|----------------------|---------------------------------------|
| NumberOfAlarms       | Number of alarms since last reset.       | 0       | 0 -<br>9999999999999 | [Operation<br>/History<br>/AlarmCr]   |
| NumberOfTripCm<br>ds | Number of trip commands since last reset | 0       | 0 -<br>9999999999999 | [Operation<br>/History<br>/TripCmdCr] |

### Commissioning: Power Factor [55]

#### Object to be tested

Testing the projected Power Factor Modules

Necessary means

- 3-phase AC voltage source
- 3-phase AC current source
- Timer

#### Procedure – Testing the wiring

- Feed rated voltage and rated current to the measuring inputs of the relay.
- Adjust the current pointers 30° lagging to the voltage pointers.
- The following measuring values have to be shown: P=0.86 Pn Q=0.5 Qn S=1 Sn

NOTICE

If the measured values are shown with a negative (algebraic) sign check the wiring.

# NOTICE

In this example PF-Trigger is set to  $0.86 = 30^{\circ}$  (lagging) and PF-Reset is set to  $0.86 = 30^{\circ}$  leading.

Carry out the test with the settings (trigger and reset) that fit to your switchboard.

Testing the threshold values (Trigger) (PF Trigger: Example = 0.86 lagging)

- Feed rated voltage and rated current in phase to the measuring inputs of the relay (PF=1).
- Adjust the angle between voltage and current (current pointer lagging) until the relay picks up.
- Write down the pickup value.

#### Testing the Reset (PF Reset: Example = 0.86 leading)

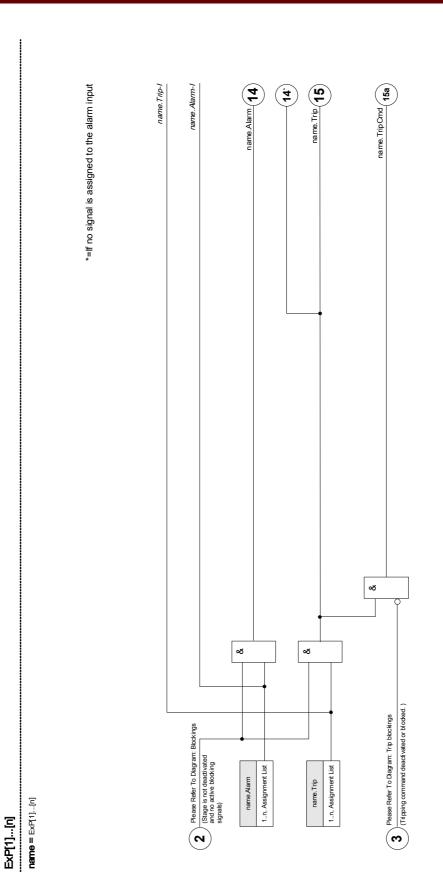
- Reduce the angle between voltage and current beyond PF = 1 (current pointer leading) until the alarm drops off.
- Write down the reset value.

#### Testing the trip delay (PF Trigger: Example = 0.86 lagging)

- Feed rated voltage and rated current in phase to the measuring inputs of the relay (PF=1).
- Adjust the angle between voltage and current (current pointer lagging) with an abrupt change to PF = 0.707 (45°) lagging.
- Measure the tripping delay at the output of the relay. Compare the measured tripping time to the parameterized.

#### Successful test result

The measured total tripping delays, threshold and reset values correspond with those values, specified in the adjustment list. Permissible deviations/tolerances can be found under Technical Data.


## **ExP** - External Protection

Available stages: <u>ExP[1]</u>,<u>ExP[2]</u>,<u>ExP[3]</u>,<u>ExP[4]</u>



All 4 stages of the external protection <u>*ExP[1]...[4]*</u> are identically structured.

By using the module <u>External Protection</u> the following can be incorporated into the device function: trip commands, alarms and blockades of external protection facilities. Devices which are not provided with a communication interface can be connected to the control system as well.



### Device Planning Parameters of the Module External Protection

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | use         |            |                   |
| $\bigotimes$ |             |             |            |                   |

## Global Protection Parameters of the Module External Protection

| Parameter     | Description                                                                                       | Setting range          | Default | Menu path            |
|---------------|---------------------------------------------------------------------------------------------------|------------------------|---------|----------------------|
| ExBlo1        | External blocking of the module, if blocking is activated (allowed) within a parameter set        | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$  | and if the state of the assigned signal is true.                                                  |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /ExP                 |
|               |                                                                                                   |                        |         | /ExP[1]]             |
| ExBlo2        | External blocking of the module, if blocking is activated (allowed) within a parameter set        | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$  | and if the state of the assigned signal is true.                                                  |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /ExP                 |
|               |                                                                                                   |                        |         | /ExP[1]]             |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is                     | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$  | activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true. |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /ExP                 |
|               |                                                                                                   |                        |         | /ExP[1]]             |
| Alarm         | Assignment for External Alarm                                                                     | 1n,<br>Assignment List |         | [Protection<br>Para  |
| $\bigotimes$  |                                                                                                   |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /ExP                 |
|               |                                                                                                   |                        |         | /ExP[1]]             |
| Trip          | External trip of the CB if the state of the assigned signal is true.                              | 1n,<br>Assignment List |         | [Protection<br>Para  |
|               |                                                                                                   |                        |         | /Global Prot<br>Para |
|               |                                                                                                   |                        |         | /ExP                 |
|               |                                                                                                   |                        |         | /ExP[1]]             |

# Setting Group Parameters of the Module External Protection

| Parameter           | Description                                                                                                                                                                                                                                                                                                            | Setting range       | Default  | Menu path                                        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|--------------------------------------------------|
| Function            | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                                  | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/ExP<br>/ExP[1]] |
| ExBlo Fc            | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active".            | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/ExP<br>/ExP[1]] |
| Blo TripCmd         | Permanent blocking of the Trip Command of the module/stage.                                                                                                                                                                                                                                                            | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/ExP<br>/ExP[1]] |
| ExBlo TripCmd<br>Fc | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo TripCmd<br>Fc=active". | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/ExP<br>/ExP[1]] |

## Module External Protection Input States

| Name            | Description                                                  | Assignment via    |
|-----------------|--------------------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1                       | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /ExP              |
|                 |                                                              | /ExP[1]]          |
| ExBlo2-I        | Module input state: External blocking2                       | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /ExP              |
|                 |                                                              | /ExP[1]]          |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip<br>Command | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /ExP              |
|                 |                                                              | /ExP[1]]          |
| Alarm-I         | Module input state: Alarm                                    | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /ExP              |
|                 |                                                              | /ExP[1]]          |
| Trip-I          | Module input state: Trip                                     | [Protection Para  |
|                 |                                                              | /Global Prot Para |
|                 |                                                              | /ExP              |
|                 |                                                              | /ExP[1]]          |

# Module External Protection Signals (Output States)

| Signal        | Description                                   |
|---------------|-----------------------------------------------|
| active        | Signal: active                                |
| ExBlo         | Signal: External Blocking                     |
| Blo TripCmd   | Signal: Trip Command blocked                  |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm         | Signal: Alarm                                 |
| Trip          | Signal: Trip                                  |
| TripCmd       | Signal: Trip Command                          |

### **Commissioning: External Protection**

*Object to be tested* Test of the module External Protection

Necessary means

Depending on the application

Procedure

Simulate the functionality of the External Protection (Alarm, Trip, Blockings...) by (de-)energizing of the digital inputs.

Successful test result

All external alarms, external trips and external blockings are correctly recognized and processed by the device.

## **RTD Protection Module [26]**

Elements: <u>RTD</u>

### **General – Principle Use**

# NOTICE

The Resistance-based Temperature Detector (RTD) Protection Module uses temperature data that are provided by a Universal Resistance-based Temperature Detector (URTD) module (please refer to the URTD Module section).

# NOTICE

If voting trip is required, please map the output used for tripping purposes: "RTD. Voting Trip Grp 1" or "RTD. Voting Trip Grp 2".

The protective device provides tripping and alarming functions based on the direct temperature measurements read from the URTD device that has 11 temperature sensor channels. Each channel will have one trip function without an intended delay and one alarm function with a delay.

•The "trip" function has only a threshold setting.

•Each individual »A*larm Function«* will have a threshold setting range, and can be individually enabled or disabled. Since the temperature cannot change instantaneously (which is a way that temperature differs from current), the "delay" is essentially built in to the function due to the fact that the temperature will take some time to increase from room temperature to the "trip threshold" level.

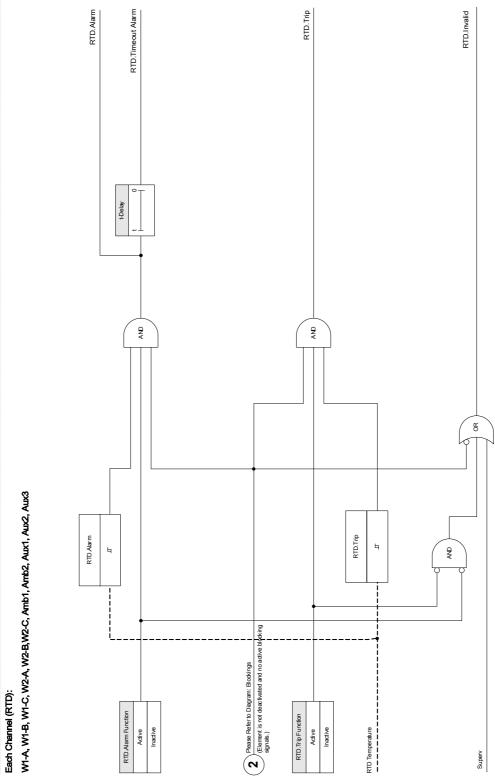
•The dropout ratio for both trip and alarm is 0.99.

•The temperature rise is limited by the RTD driver.

The entire function can be turned off or on, or individual channels can be turned off or on.

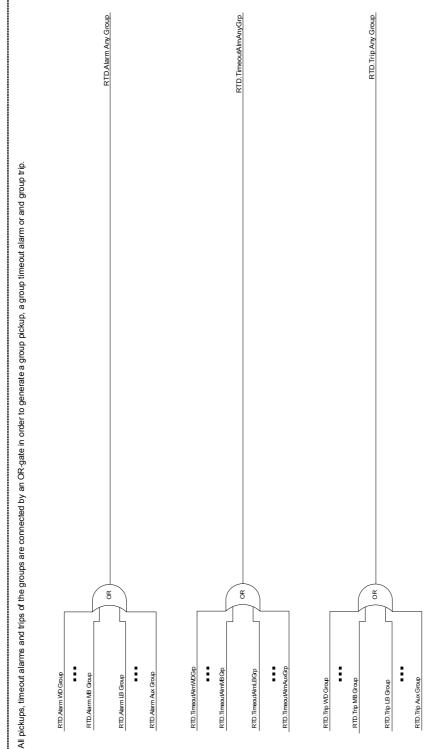
#### Voting

Additionally, RTD voting schemes are available and User programmable. The Voting feature must be activated and configured within the following menu, [Protection Para\Set[x]\Temp-Prot/ RTD\Vote[x]]. Here, the setting *»Function«* has to be set to *»Active«*.


Once activated, the number of channels that will be used by the voting feature is selected. This is set by way of the parameter » *Voting[x]*«. This parameter defines how many of the selected channels must be over its threshold level in order to get a voting trip. Each individual channel must be selected or deselected by setting to either » *Yes*« or »*No*«. When selecting » *Yes*«, the channel will be used in the voting process. Note that in order to be selected, each channel must also be active and the RTD module itself has to be active.

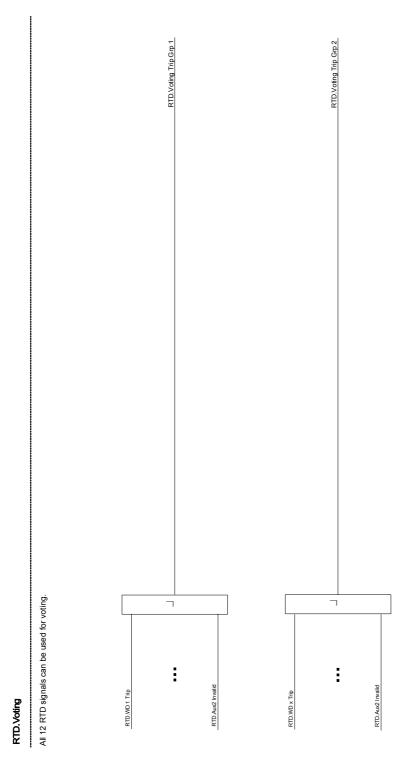
If for example, Vote[x] is set to »*3«*, and all channels are set to »*Yes«*, and if any three of the selected channels exceed their individual threshold settings, a Vote trip will occur.

Please note that the voting trip will be issued as a RTD trip only, if the parameter » *TripCmd Selection«* is set to » *Voting trip«* within the Global Protection Parameters of the RTD module. The Trip has to be assigned then within the trip manager to the Breaker.


## Alarm, Timeout Alarm and Trip Principle for each RTD Sensor

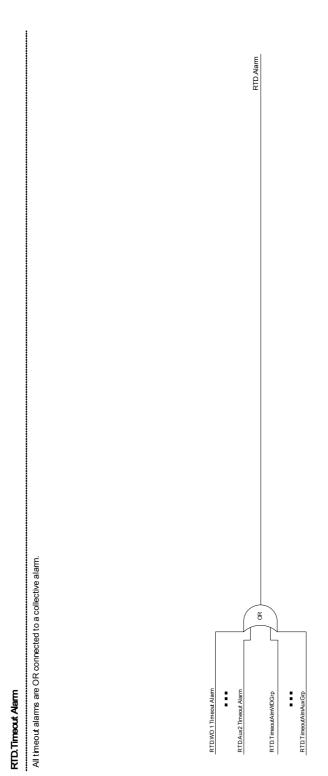
The following diagram shows the general working principle (delayed alarm, undelayed trip) of each of the RTD sensors.




## Collective Alarm, Timeout Alarm and Trip Signals

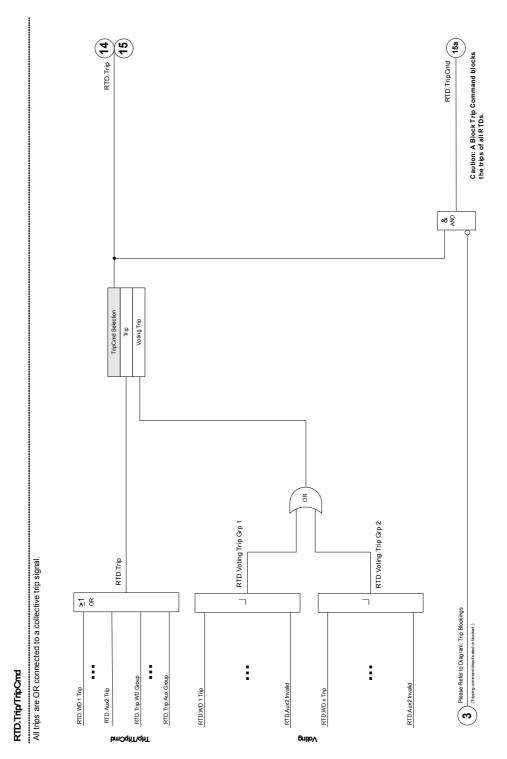
The RTD sensors are assigned to four groups (depending on the ordered device). These four groups are ORconnected to the "AnyGroup". The AnyGroup generates an alarm, an timeout alarm and a trip signal if any of the sensors mounted into this issues the corresponding signal.




## Trips of the Voting Groups

In order to use voting groups the user has to determine the sensors that should belong to a voting group and how many of them have to trip in order to generate a voting trip of the corresponding group.




# Collective Timeout Alarm Signal

All RTD sensor timeout alarms and all group timeouts are OR-connected.



### **Collective Trip Signal**

By means of the trip command selection » *TripCmdSelection* « the user determines if the RTD element should use for the final trip signal the OR-connected default RTD trips or if the RTD element should use the OR-connected voting trips.



## Device Planning Parameters of the RTD Temperature Protection Module

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | use         |            |                   |
| $\bigotimes$ |             |             |            |                   |

| Parameter            | Description                                                                                       | Setting range          | Default              | Menu path            |
|----------------------|---------------------------------------------------------------------------------------------------|------------------------|----------------------|----------------------|
| ExBlo1               | External blocking of the module, if blocking is activated (allowed) within a parameter set        | 1n,<br>Assignment List |                      | [Protection<br>Para  |
|                      | and if the state of the assigned signal is true.                                                  |                        |                      | /Global Prot<br>Para |
|                      |                                                                                                   |                        |                      | /Temp-Prot           |
|                      |                                                                                                   |                        |                      | /RTD]                |
| ExBlo2               | External blocking of the module, if blocking is activated (allowed) within a parameter set        | 1n,<br>Assignment List |                      | [Protection<br>Para  |
|                      | and if the state of the assigned signal is true.                                                  |                        | /Global Prot<br>Para |                      |
|                      |                                                                                                   |                        |                      | /Temp-Prot           |
|                      |                                                                                                   |                        |                      | /RTD]                |
| ExBlo TripCmd        | External blocking of the Trip Command of the module/the stage, if blocking is                     | 1n,<br>Assignment List |                      | [Protection<br>Para  |
|                      | activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true. |                        |                      | /Global Prot<br>Para |
|                      | liue.                                                                                             |                        |                      | /Temp-Prot           |
|                      |                                                                                                   |                        |                      | /RTD]                |
| TripCmd<br>Selection | This parameter determines if the final trip of the RTD module is issued by the default way        | Trip,<br>Voting Trip   | Trip                 | [Protection<br>Para  |
| or b                 | or by the voting groups.                                                                          |                        |                      | /Global Prot<br>Para |
|                      |                                                                                                   |                        |                      | /Temp-Prot           |
|                      |                                                                                                   |                        |                      | /RTD]                |

## Setting Group Parameters of the RTD Temperature Protection Module

| Parameter | Description                                                                                                                                                                                                                                                                                                 | Setting range       | Default  | Menu path                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-----------------------------------------------------------------------------|
| Function  | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                       | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/Temp-Prot<br>/RTD<br>/General<br>Settings] |
| ExBlo Fc  | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active". | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/Temp-Prot<br>/RTD<br>/General<br>Settings] |

| Parameter                 | Description                                                                  | Setting range       | Default  | Menu path             |
|---------------------------|------------------------------------------------------------------------------|---------------------|----------|-----------------------|
| Blo TripCmd               | Permanent blocking of the Trip Command of the module/stage.                  | inactive,<br>active | inactive | [Protection<br>Para   |
| $\bigcirc$                |                                                                              |                     |          | /<14>                 |
|                           |                                                                              |                     |          | /Temp-Prot            |
|                           |                                                                              |                     |          | /RTD                  |
|                           |                                                                              |                     |          | /General<br>Settings] |
| ExBlo TripCmd<br>Fc       | hlocking of the module/stage. This                                           | inactive,<br>active | inactive | [Protection<br>Para   |
|                           |                                                                              |                     |          | /<14>                 |
| $\mathbf{k}$              | protection parameter. If the signal becomes                                  |                     |          | /Temp-Prot            |
|                           | true, those modules/stages are blocked that are parameterized "ExBlo TripCmd |                     |          | /RTD                  |
|                           | Fc=active".                                                                  |                     |          | /General<br>Settings] |
| Windg 1 Alarm<br>Function | Winding 1 Alarm Function                                                     | inactive,           | active   | [Protection<br>Para   |
|                           |                                                                              | active              |          | /<14>                 |
| $\bigcirc$                |                                                                              |                     |          | /Temp-Prot            |
|                           |                                                                              |                     |          | /RTD                  |
|                           |                                                                              |                     |          | /Windg 1]             |
| Windg 1 Trip<br>Function  | Winding 1 Trip Function                                                      | inactive,<br>active | active   | [Protection<br>Para   |
|                           |                                                                              |                     |          | /<14>                 |
| $\bigcirc$                |                                                                              |                     |          | /Temp-Prot            |
|                           |                                                                              |                     |          | /RTD                  |
|                           |                                                                              |                     |          | /Windg 1]             |
| Windg 1 Alarm             | Winding 1 Threshold for Temperature Alarm                                    | 0 - 200°C           | 80°C     | [Protection<br>Para   |
| $\mathbf{A}$              | Only available if: Device planning: Alarm<br>Function = use                  |                     |          | /<14>                 |
|                           |                                                                              |                     |          | /Temp-Prot            |
|                           |                                                                              |                     |          | /RTD                  |
|                           |                                                                              |                     |          | /Windg 1]             |
| Windg 1 t-Delay           | Winding 1 If this time is expired a Temperature Alarm will be generated.     | 0 - 360min          | 1min     | [Protection<br>Para   |
| $\frown$                  | Only available if: Device planning: Alarm                                    |                     |          | /<14>                 |
|                           | Function = use                                                               |                     |          | /Temp-Prot            |
|                           |                                                                              |                     |          | /RTD                  |
|                           |                                                                              |                     |          | /Windg 1]             |

| Parameter                 | Description                                                              | Setting range       | Default | Menu path           |
|---------------------------|--------------------------------------------------------------------------|---------------------|---------|---------------------|
| Windg 1 Trip              | Winding 1 Threshold for Temperature Trip                                 | 0 - 200°C           | 100°C   | [Protection<br>Para |
|                           | Only available if: Device planning: Trip<br>Function = use               |                     |         | /<14>               |
|                           |                                                                          |                     |         | /Temp-Prot          |
|                           |                                                                          |                     |         | /RTD                |
|                           |                                                                          |                     |         | /Windg 1]           |
| Windg 2 Alarm<br>Function | Winding 2 Alarm Function                                                 | inactive,<br>active | active  | [Protection<br>Para |
|                           |                                                                          | active              |         | /<14>               |
| $\bigotimes$              |                                                                          |                     |         | /Temp-Prot          |
| <b>U</b>                  |                                                                          |                     |         | /RTD                |
|                           |                                                                          |                     |         | /Windg 2]           |
| Windg 2 Trip<br>Function  | Winding 2 Trip Function                                                  | inactive,<br>active | active  | [Protection<br>Para |
|                           |                                                                          |                     |         | /<14>               |
| $\bigotimes$              |                                                                          |                     |         | /Temp-Prot          |
|                           |                                                                          |                     |         | /RTD                |
|                           |                                                                          |                     |         | /Windg 2]           |
| Windg 2 Alarm             | Winding 2 Threshold for Temperature Alarm                                | 0 - 200°C           | 80°C    | [Protection<br>Para |
| $\bigoplus$               | Only available if: Device planning: Alarm<br>Function = use              |                     |         | /<14>               |
|                           |                                                                          |                     |         | /Temp-Prot          |
|                           |                                                                          |                     |         | /RTD                |
|                           |                                                                          |                     |         | /Windg 2]           |
| Windg 2 t-Delay           | Winding 2 If this time is expired a Temperature Alarm will be generated. | 0 - 360min          | 1min    | [Protection<br>Para |
|                           | Only available if: Device planning: Alarm                                |                     |         | /<14>               |
|                           | Function = use                                                           |                     |         | /Temp-Prot          |
|                           |                                                                          |                     |         | /RTD                |
|                           |                                                                          |                     |         | /Windg 2]           |
| Windg 2 Trip              | Winding 2 Threshold for Temperature Trip                                 | 0 - 200°C           | 100°C   | [Protection<br>Para |
|                           | Only available if: Device planning: Trip<br>Function = use               |                     |         | /<14>               |
|                           |                                                                          |                     |         | /Temp-Prot          |
|                           |                                                                          |                     |         | /RTD                |
|                           |                                                                          |                     |         | /Windg 2]           |

| Parameter                 | Description                                                                 | Setting range       | Default | Menu path           |
|---------------------------|-----------------------------------------------------------------------------|---------------------|---------|---------------------|
| Windg 3 Alarm<br>Function | Winding 3 Alarm Function                                                    | inactive,<br>active | active  | [Protection<br>Para |
|                           |                                                                             |                     |         | /<14>               |
| $(\mathbf{k})$            |                                                                             |                     |         | /Temp-Prot          |
|                           |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 3]           |
| Windg 3 Trip<br>Function  | Winding 3 Trip Function                                                     | inactive,<br>active | active  | [Protection<br>Para |
|                           |                                                                             |                     |         | /<14>               |
| $\bigcirc$                |                                                                             |                     |         | /Temp-Prot          |
| <b>V</b>                  |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 3]           |
| Windg 3 Alarm             | Winding 3 Threshold for Temperature Alarm                                   | 0 - 200°C           | 80°C    | [Protection<br>Para |
| $\bigcirc$                | Only available if: Device planning: Alarm<br>Function = use                 |                     |         | /<14>               |
|                           |                                                                             |                     |         | /Temp-Prot          |
|                           |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 3]           |
| Windg 3 t-Delay           | Winding 3 If this time is expired a<br>Temperature Alarm will be generated. | 0 - 360min          | 1min    | [Protection<br>Para |
| $\bigwedge$               | Only available if: Device planning: Alarm                                   |                     |         | /<14>               |
|                           | Function = use                                                              |                     |         | /Temp-Prot          |
|                           |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 3]           |
| Windg 3 Trip              | Winding 3 Threshold for Temperature Trip                                    | 0 - 200°C           | 100°C   | [Protection<br>Para |
| $\mathbf{A}$              | Only available if: Device planning: Trip<br>Function = use                  |                     |         | /<14>               |
|                           |                                                                             |                     |         | /Temp-Prot          |
|                           |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 3]           |
| Windg 4 Alarm<br>Function | Winding 4 Alarm Function                                                    | inactive,<br>active | active  | [Protection<br>Para |
|                           |                                                                             |                     |         | /<14>               |
| $\bigcirc$                |                                                                             |                     |         | /Temp-Prot          |
| ~                         |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 4]           |

| Parameter                 | Description                                                                 | Setting range       | Default | Menu path           |
|---------------------------|-----------------------------------------------------------------------------|---------------------|---------|---------------------|
| Windg 4 Trip<br>Function  | Winding 4 Trip Function                                                     | inactive,<br>active | active  | [Protection<br>Para |
|                           |                                                                             |                     |         | /<14>               |
| $\bigcirc$                |                                                                             |                     |         | /Temp-Prot          |
|                           |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 4]           |
| Windg 4 Alarm             | Winding 4 Threshold for Temperature Alarm                                   | 0 - 200°C           | 80°C    | [Protection<br>Para |
| $\mathbf{A}$              | Only available if: Device planning: Alarm<br>Function = use                 |                     |         | /<14>               |
|                           |                                                                             |                     |         | /Temp-Prot          |
|                           |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 4]           |
| Windg 4 t-Delay           | Winding 4 If this time is expired a<br>Temperature Alarm will be generated. | 0 - 360min          | 1min    | [Protection<br>Para |
|                           | Only available if: Device planning: Alarm<br>Function = use                 |                     |         | /<14>               |
|                           |                                                                             |                     |         | /Temp-Prot          |
|                           |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 4]           |
| Windg 4 Trip              | Winding 4 Threshold for Temperature Trip                                    | 0 - 200°C           | 100°C   | [Protection<br>Para |
| $\mathbf{A}$              | Only available if: Device planning: Trip<br>Function = use                  |                     |         | /<14>               |
|                           |                                                                             |                     |         | /Temp-Prot          |
|                           |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 4]           |
| Windg 5 Alarm<br>Function | Winding 5 Alarm Function                                                    | inactive,<br>active | active  | [Protection<br>Para |
|                           |                                                                             |                     |         | /<14>               |
| $\bigcirc$                |                                                                             |                     |         | /Temp-Prot          |
| ~                         |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 5]           |
| Windg 5 Trip<br>Function  | Winding 5 Trip Function                                                     | inactive,<br>active | active  | [Protection<br>Para |
|                           |                                                                             |                     |         | /<14>               |
| $\bigotimes$              |                                                                             |                     |         | /Temp-Prot          |
| ~                         |                                                                             |                     |         | /RTD                |
|                           |                                                                             |                     |         | /Windg 5]           |

| Parameter                 | Description                                                                            | Setting range       | Default | Menu path           |
|---------------------------|----------------------------------------------------------------------------------------|---------------------|---------|---------------------|
| Windg 5 Alarm             | Winding 5 Threshold for Temperature Alarm<br>Only available if: Device planning: Alarm | 0 - 200°C           | 80°C    | [Protection<br>Para |
| $\bigcirc$                | Function = use                                                                         |                     |         | /<14>               |
|                           |                                                                                        |                     |         | /Temp-Prot          |
|                           |                                                                                        |                     |         | /RTD                |
|                           |                                                                                        |                     |         | /Windg 5]           |
| Windg 5 t-Delay           | Winding 5 If this time is expired a Temperature Alarm will be generated.               | 0 - 360min          | 1min    | [Protection<br>Para |
| $\bigcirc$                | Only available if: Device planning: Alarm                                              |                     |         | /<14>               |
|                           | Function = use                                                                         |                     |         | /Temp-Prot          |
|                           |                                                                                        |                     |         | /RTD                |
|                           |                                                                                        |                     |         | /Windg 5]           |
| Windg 5 Trip              | Winding 5 Threshold for Temperature Trip                                               | 0 - 200°C           | 100°C   | [Protection<br>Para |
| $\frown$                  | Only available if: Device planning: Trip<br>Function = use                             |                     |         | /<14>               |
|                           |                                                                                        |                     |         | /Temp-Prot          |
|                           |                                                                                        |                     |         | /RTD                |
|                           |                                                                                        |                     |         | /Windg 5]           |
| Windg 6 Alarm<br>Function | Winding 6 Alarm Function                                                               | inactive,<br>active | active  | [Protection<br>Para |
|                           |                                                                                        |                     |         | /<14>               |
| $\bigcirc$                |                                                                                        |                     |         | /Temp-Prot          |
|                           |                                                                                        |                     |         | /RTD                |
|                           |                                                                                        |                     |         | /Windg 6]           |
| Windg 6 Trip<br>Function  | Winding 6 Trip Function                                                                | inactive,<br>active | active  | [Protection<br>Para |
|                           |                                                                                        |                     |         | /<14>               |
| $\mathbf{k}$              |                                                                                        |                     |         | /Temp-Prot          |
|                           |                                                                                        |                     |         | /RTD                |
|                           |                                                                                        |                     |         | /Windg 6]           |
| Windg 6 Alarm             | Winding 6 Threshold for Temperature Alarm                                              | 0 - 200°C           | 80°C    | [Protection<br>Para |
|                           | Only available if: Device planning: Alarm<br>Function = use                            |                     |         | /<14>               |
| $\checkmark$              |                                                                                        |                     |         | /Temp-Prot          |
|                           |                                                                                        |                     |         | /RTD                |
|                           |                                                                                        |                     |         | /Windg 6]           |

| Parameter                   | Description                                                                    | Setting range       | Default | Menu path           |
|-----------------------------|--------------------------------------------------------------------------------|---------------------|---------|---------------------|
| Windg 6 t-Delay             | Winding 6 If this time is expired a<br>Temperature Alarm will be generated.    | 0 - 360min          | 1min    | [Protection<br>Para |
| $\bigoplus$                 | Only available if: Device planning: Alarm                                      |                     |         | /<14>               |
|                             | Function = use                                                                 |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /Windg 6]           |
| Windg 6 Trip                | Winding 6 Threshold for Temperature Trip                                       | 0 - 200°C           | 100°C   | [Protection<br>Para |
| $\mathbf{A}$                | Only available if: Device planning: Trip<br>Function = use                     |                     |         | /<14>               |
|                             |                                                                                |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /Windg 6]           |
| MotBear 1<br>Alarm Function | Motor Bearing 1 Alarm Function                                                 | inactive,<br>active | active  | [Protection<br>Para |
|                             |                                                                                |                     |         | /<14>               |
| $\bigcirc$                  |                                                                                |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /MotBear 1]         |
| MotBear 1 Trip<br>Function  | Motor Bearing 1 Trip Function                                                  | inactive,<br>active | active  | [Protection<br>Para |
|                             |                                                                                | uctive              |         | /<14>               |
| $\bigcirc$                  |                                                                                |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /MotBear 1]         |
| MotBear 1<br>Alarm          | Motor Bearing 1 Threshold for Temperature Alarm                                | 0 - 200°C           | 80°C    | [Protection<br>Para |
|                             | Only available if: Device planning: Alarm                                      |                     |         | /<14>               |
| $\bigcirc$                  | Function = use                                                                 |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /MotBear 1]         |
| MotBear 1 t-<br>Delay       | Motor Bearing 1 If this time is expired a Temperature Alarm will be generated. | 0 - 360min          | 1min    | [Protection<br>Para |
|                             | Only available if: Device planning: Alarm                                      |                     |         | /<14>               |
| $\bigcirc$                  | Function = use                                                                 |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /MotBear 1]         |

| Parameter                   | Description                                                                    | Setting range       | Default | Menu path           |
|-----------------------------|--------------------------------------------------------------------------------|---------------------|---------|---------------------|
| MotBear 1 Trip              | Motor Bearing 1 Threshold for Temperature Trip                                 | 0 - 200°C           | 100°C   | [Protection<br>Para |
| $\bigoplus$                 | Only available if: Device planning: Trip                                       |                     |         | /<14>               |
|                             | Function = use                                                                 |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /MotBear 1]         |
| MotBear 2<br>Alarm Function | Motor Bearing 2 Alarm Function                                                 | inactive,<br>active | active  | [Protection<br>Para |
|                             |                                                                                |                     |         | /<14>               |
| $\bigcirc$                  |                                                                                |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /MotBear 2]         |
| MotBear 2 Trip<br>Function  | Motor Bearing 2 Trip Function                                                  | inactive,<br>active | active  | [Protection<br>Para |
|                             |                                                                                |                     |         | /<14>               |
| $\bigcirc$                  |                                                                                |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /MotBear 2]         |
| MotBear 2<br>Alarm          | Motor Bearing 2 Threshold for Temperature Alarm                                | 0 - 200°C           | 80°C    | [Protection<br>Para |
|                             | Only available if: Device planning: Alarm                                      |                     |         | /<14>               |
| $\bigcirc$                  | Function = use                                                                 |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /MotBear 2]         |
| MotBear 2 t-<br>Delay       | Motor Bearing 2 If this time is expired a Temperature Alarm will be generated. | 0 - 360min          | 1min    | [Protection<br>Para |
|                             | Only available if: Device planning: Alarm                                      |                     |         | /<14>               |
| $\bigotimes$                | Function = use                                                                 |                     |         | /Temp-Prot          |
| -                           |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /MotBear 2]         |
| MotBear 2 Trip              | Motor Bearing 2 Threshold for Temperature<br>Trip                              | 0 - 200°C           | 100°C   | [Protection<br>Para |
| $\frown$                    | Only available if: Device planning: Trip                                       |                     |         | /<14>               |
|                             | Function = use                                                                 |                     |         | /Temp-Prot          |
|                             |                                                                                |                     |         | /RTD                |
|                             |                                                                                |                     |         | /MotBear 2]         |

| Parameter                    | Description                                                                   | Setting range       | Default | Menu path           |
|------------------------------|-------------------------------------------------------------------------------|---------------------|---------|---------------------|
| LoadBear 1<br>Alarm Function | Load Bearing 1 Alarm Function                                                 | inactive,<br>active | active  | [Protection<br>Para |
|                              |                                                                               |                     |         | /<14>               |
| $(\mathbf{k})$               |                                                                               |                     |         | /Temp-Prot          |
|                              |                                                                               |                     |         | /RTD                |
|                              |                                                                               |                     |         | /LoadBear 1]        |
| LoadBear 1 Trip<br>Function  | Load Bearing 1 Trip Function                                                  | inactive,<br>active | active  | [Protection<br>Para |
|                              |                                                                               | active              |         | /<14>               |
| $\bigcirc$                   |                                                                               |                     |         | /Temp-Prot          |
|                              |                                                                               |                     |         | /RTD                |
|                              |                                                                               |                     |         | /LoadBear 1]        |
| LoadBear 1<br>Alarm          | Load Bearing 1 Threshold for Temperature Alarm                                | 0 - 200°C           | 80°C    | [Protection<br>Para |
|                              | Only available if: Device planning: Alarm                                     |                     |         | /<14>               |
| $\bigcirc$                   | Function = use                                                                |                     |         | /Temp-Prot          |
|                              |                                                                               |                     |         | /RTD                |
|                              |                                                                               |                     |         | /LoadBear 1]        |
| LoadBear 1 t-<br>Delay       | Load Bearing 1 If this time is expired a Temperature Alarm will be generated. | 0 - 360min          | 1min    | [Protection<br>Para |
|                              | Only available if: Device planning: Alarm                                     |                     |         | /<14>               |
| $\bigcirc$                   | Function = use                                                                |                     |         | /Temp-Prot          |
|                              |                                                                               |                     |         | /RTD                |
|                              |                                                                               |                     |         | /LoadBear 1]        |
| LoadBear 1 Trip              | Load Bearing 1 Threshold for Temperature Trip                                 | 0 - 200°C           | 80°C    | [Protection<br>Para |
| $\frown$                     | Only available if: Device planning: Trip                                      |                     |         | /<14>               |
|                              | Function = use                                                                |                     |         | /Temp-Prot          |
|                              |                                                                               |                     |         | /RTD                |
|                              |                                                                               |                     |         | /LoadBear 1]        |
| LoadBear 2<br>Alarm Function | Load Bearing 2 Alarm Function                                                 | inactive,<br>active | active  | [Protection<br>Para |
|                              |                                                                               |                     |         | /<14>               |
|                              |                                                                               |                     |         | /Temp-Prot          |
| -                            |                                                                               |                     |         | /RTD                |
|                              |                                                                               |                     |         | /LoadBear 2]        |

| Parameter                   | Description                                                                   | Setting range       | Default | Menu path           |
|-----------------------------|-------------------------------------------------------------------------------|---------------------|---------|---------------------|
| LoadBear 2 Trip<br>Function | Load Bearing 2 Trip Function                                                  | inactive,<br>active | active  | [Protection<br>Para |
|                             |                                                                               | uctive              |         | /<14>               |
| $\bigotimes$                |                                                                               |                     |         | /Temp-Prot          |
|                             |                                                                               |                     |         | /RTD                |
|                             |                                                                               |                     |         | /LoadBear 2]        |
| LoadBear 2<br>Alarm         | Load Bearing 2 Threshold for Temperature<br>Alarm                             | 0 - 200°C           | 80°C    | [Protection<br>Para |
|                             | Only available if: Device planning: Alarm                                     |                     |         | /<14>               |
| $\bigotimes$                | Function = use                                                                |                     |         | /Temp-Prot          |
|                             |                                                                               |                     |         | /RTD                |
|                             |                                                                               |                     |         | /LoadBear 2]        |
| LoadBear 2 t-<br>Delay      | Load Bearing 2 If this time is expired a Temperature Alarm will be generated. | 0 - 360min          | 1min    | [Protection<br>Para |
|                             | Only available if: Device planning: Alarm                                     |                     |         | /<14>               |
| $\bigotimes$                | Function = use                                                                |                     |         | /Temp-Prot          |
| <b>U</b>                    |                                                                               |                     |         | /RTD                |
|                             |                                                                               |                     |         | /LoadBear 2]        |
| LoadBear 2 Trip             | Load Bearing 2 Threshold for Temperature<br>Trip                              | 0 - 200°C           | 80°C    | [Protection<br>Para |
| $\bigwedge$                 | Only available if: Device planning: Trip                                      |                     |         | /<14>               |
|                             | Function = use                                                                |                     |         | /Temp-Prot          |
|                             |                                                                               |                     |         | /RTD                |
|                             |                                                                               |                     |         | /LoadBear 2]        |
| Aux1 Alarm<br>Function      | Auxiliary 1 Alarm Function                                                    | inactive,<br>active | active  | [Protection<br>Para |
|                             |                                                                               |                     |         | /<14>               |
| $\bigotimes$                |                                                                               |                     |         | /Temp-Prot          |
| V                           |                                                                               |                     |         | /RTD                |
|                             |                                                                               |                     |         | /Aux 1]             |
| Aux1 Trip<br>Function       | Auxiliary 1 Trip Function                                                     | inactive,<br>active | active  | [Protection<br>Para |
|                             |                                                                               |                     |         | /<14>               |
| $\bigotimes$                |                                                                               |                     |         | /Temp-Prot          |
| *                           |                                                                               |                     |         | /RTD                |
|                             |                                                                               |                     |         | /Aux 1]             |

| Parameter              | Description                                                                | Setting range       | Default | Menu path           |
|------------------------|----------------------------------------------------------------------------|---------------------|---------|---------------------|
| Aux1 Alarm             | Auxiliary 1 Threshold for Temperature Alarm                                | 0 - 200°C           | 80°C    | [Protection<br>Para |
|                        | Only available if: Device planning: Alarm<br>Function1 = use               |                     |         | /<14>               |
| $\mathbf{X}$           |                                                                            |                     |         | /Temp-Prot          |
|                        |                                                                            |                     |         | /RTD                |
|                        |                                                                            |                     |         | /Aux 1]             |
| Aux1 t-Delay           | Auxiliary 1 If this time is expired a Temperature Alarm will be generated. | 0 - 360min          | 1min    | [Protection<br>Para |
| $\land$                | Only available if: Device planning: Alarm                                  |                     |         | /<14>               |
|                        | Function1 = use                                                            |                     |         | /Temp-Prot          |
|                        |                                                                            |                     |         | /RTD                |
|                        |                                                                            |                     |         | /Aux 1]             |
| Aux1 Trip              | Auxiliary 1 Threshold for Temperature Trip                                 | 0 - 200°C           | 100°C   | [Protection<br>Para |
|                        | Only available if: Device planning: Trip<br>Function2 = use                |                     |         | /<14>               |
|                        |                                                                            |                     |         | /Temp-Prot          |
|                        |                                                                            |                     |         | /RTD                |
|                        |                                                                            |                     |         | /Aux 1]             |
| Aux2 Alarm<br>Function | Auxiliary 2 Alarm Function                                                 | inactive,<br>active | active  | [Protection<br>Para |
|                        |                                                                            |                     |         | /<14>               |
| $\bigcirc$             |                                                                            |                     |         | /Temp-Prot          |
|                        |                                                                            |                     |         | /RTD                |
|                        |                                                                            |                     |         | /Aux 2]             |
| Aux2 Trip<br>Function  | Auxiliary 2 Trip Function                                                  | inactive,<br>active | active  | [Protection<br>Para |
|                        |                                                                            |                     |         | /<14>               |
| $\mathbf{R}$           |                                                                            |                     |         | /Temp-Prot          |
|                        |                                                                            |                     |         | /RTD                |
|                        |                                                                            |                     |         | /Aux 2]             |
| Aux2 Alarm             | Auxiliary 2 Threshold for Temperature Alarm                                | 0 - 200°C           | 80°C    | [Protection<br>Para |
| $\frown$               | Only available if: Device planning: Alarm<br>Function2 = use               |                     |         | /<14>               |
|                        |                                                                            |                     |         | /Temp-Prot          |
|                        |                                                                            |                     |         | /RTD                |
|                        |                                                                            |                     |         | /Aux 2]             |

| Parameter               | Description                                                                | Setting range       | Default  | Menu path           |
|-------------------------|----------------------------------------------------------------------------|---------------------|----------|---------------------|
| Aux2 t-Delay            | Auxiliary 2 If this time is expired a Temperature Alarm will be generated. | 0 - 360min          | 1min     | [Protection<br>Para |
|                         | Only available if: Device planning: Alarm                                  |                     |          | /<14>               |
|                         | Function2 = use                                                            |                     |          | /Temp-Prot          |
|                         |                                                                            |                     |          | /RTD                |
|                         |                                                                            |                     |          | /Aux 2]             |
| Aux2 Trip               | Auxiliary 2 Threshold for Temperature Trip                                 | 0 - 200°C           | 100°C    | [Protection<br>Para |
|                         | Only available if: Device planning: Trip<br>Function2 = use                |                     |          | /<14>               |
|                         |                                                                            |                     |          | /Temp-Prot          |
|                         |                                                                            |                     |          | /RTD                |
|                         |                                                                            |                     |          | /Aux 2]             |
| Windg Alarm<br>Function | Winding Alarm Function                                                     | inactive,<br>active | inactive | [Protection<br>Para |
|                         |                                                                            |                     |          | /<14>               |
| $\bigotimes$            |                                                                            |                     |          | /Temp-Prot          |
|                         |                                                                            |                     |          | /RTD                |
|                         |                                                                            |                     |          | /Windg Group]       |
| Windg Trip<br>Function  | Winding Trip Function                                                      | inactive,<br>active | inactive | [Protection<br>Para |
|                         |                                                                            |                     |          | /<14>               |
| $\bigotimes$            |                                                                            |                     |          | /Temp-Prot          |
|                         |                                                                            |                     |          | /RTD                |
|                         |                                                                            |                     |          | /Windg Group]       |
| Windg Alarm             | Winding Threshold for Temperature Alarm                                    | 0 - 200°C           | 80°C     | [Protection<br>Para |
| $\bigwedge$             | Only available if: Device planning: Alarm<br>Function = use                |                     |          | /<14>               |
|                         |                                                                            |                     |          | /Temp-Prot          |
|                         |                                                                            |                     |          | /RTD                |
|                         |                                                                            |                     |          | /Windg Group]       |
| Windg t-Delay           | Winding If this time is expired a Temperature Alarm will be generated.     | 0 - 360min          | 1min     | [Protection<br>Para |
| $\bigcirc$              | Only available if: Device planning: Alarm                                  |                     |          | /<14>               |
|                         | Function = use                                                             |                     |          | /Temp-Prot          |
|                         |                                                                            |                     |          | /RTD                |
|                         |                                                                            |                     |          | /Windg Group]       |

| Parameter                 | Description                                                                     | Setting range       | Default  | Menu path           |
|---------------------------|---------------------------------------------------------------------------------|---------------------|----------|---------------------|
| Windg Trip                | Winding Threshold for Temperature Trip                                          | 0 - 200°C           | 100°C    | [Protection<br>Para |
|                           | Only available if: Device planning: Trip<br>Function = use                      |                     |          | /<14>               |
| $\checkmark$              |                                                                                 |                     |          | /Temp-Prot          |
|                           |                                                                                 |                     |          | /RTD                |
|                           |                                                                                 |                     |          | /Windg Group]       |
| MotBear Alarm<br>Function | Motor Bearing Alarm Function                                                    | inactive,<br>active | inactive | [Protection<br>Para |
|                           |                                                                                 | delive              |          | /<14>               |
| $\bigotimes$              |                                                                                 |                     |          | /Temp-Prot          |
|                           |                                                                                 |                     |          | /RTD                |
|                           |                                                                                 |                     |          | /MotBear<br>Group]  |
| MotBear Trip<br>Function  | Motor Bearing Trip Function                                                     | inactive,<br>active | inactive | [Protection<br>Para |
|                           |                                                                                 |                     |          | /<14>               |
| $\bigotimes$              |                                                                                 |                     |          | /Temp-Prot          |
| ÷                         |                                                                                 |                     |          | /RTD                |
|                           |                                                                                 |                     |          | /MotBear<br>Group]  |
| MotBear Alarm             | Motor Bearing Threshold for Temperature<br>Alarm                                | 0 - 200°C           | 80°C     | [Protection<br>Para |
| $\bigwedge$               | Only available if: Device planning: Alarm                                       |                     |          | /<14>               |
|                           | Function = use                                                                  |                     |          | /Temp-Prot          |
|                           |                                                                                 |                     |          | /RTD                |
|                           |                                                                                 |                     |          | /MotBear<br>Group]  |
| MotBear t-<br>Delay       | Motor Bearing If this time is expired a<br>Temperature Alarm will be generated. | 0 - 360min          | 1min     | [Protection<br>Para |
|                           | Only available if: Device planning: Alarm                                       |                     |          | /<14>               |
| $\bigotimes$              | Function = use                                                                  |                     |          | /Temp-Prot          |
| ÷                         |                                                                                 |                     |          | /RTD                |
|                           |                                                                                 |                     |          | /MotBear<br>Group]  |
| MotBear Trip              | Motor Bearing Threshold for Temperature<br>Trip                                 | 0 - 200°C           | 100°C    | [Protection<br>Para |
| $\frown$                  | Only available if: Device planning: Trip                                        |                     |          | /<14>               |
|                           | Function = use                                                                  |                     |          | /Temp-Prot          |
|                           |                                                                                 |                     |          | /RTD                |
|                           |                                                                                 |                     |          | /MotBear<br>Group]  |

| Parameter                  | Description                                                                    | Setting range       | Default  | Menu path           |
|----------------------------|--------------------------------------------------------------------------------|---------------------|----------|---------------------|
| LoadBear Alarm<br>Function | Load Bearing Alarm Function                                                    | inactive,<br>active | inactive | [Protection<br>Para |
|                            |                                                                                | active              |          | /<14>               |
| $\bigcirc$                 |                                                                                |                     |          | /Temp-Prot          |
|                            |                                                                                |                     |          | /RTD                |
|                            |                                                                                |                     |          | /LoadBear<br>Group] |
| LoadBear Trip<br>Function  | Load Bearing Trip Function                                                     | inactive,<br>active | inactive | [Protection<br>Para |
|                            |                                                                                |                     |          | /<14>               |
| $\bigcirc$                 |                                                                                |                     |          | /Temp-Prot          |
|                            |                                                                                |                     |          | /RTD                |
|                            |                                                                                |                     |          | /LoadBear<br>Group] |
| LoadBear Alarm             | Load Bearing Threshold for Temperature<br>Alarm                                | 0 - 200°C           | 80°C     | [Protection<br>Para |
| $\bigcirc$                 | Only available if: Device planning: Alarm                                      |                     |          | /<14>               |
|                            | Function = use                                                                 |                     |          | /Temp-Prot          |
|                            |                                                                                |                     |          | /RTD                |
|                            |                                                                                |                     |          | /LoadBear<br>Group] |
| LoadBear t-<br>Delay       | Load Bearing If this time is expired a<br>Temperature Alarm will be generated. | 0 - 360min          | 1min     | [Protection<br>Para |
|                            | Only available if: Device planning: Alarm                                      |                     |          | /<14>               |
| $\checkmark$               | Function = use                                                                 |                     |          | /Temp-Prot          |
| ¥                          |                                                                                |                     |          | /RTD                |
|                            |                                                                                |                     |          | /LoadBear<br>Group] |
| LoadBear Trip              | Load Bearing Threshold for Temperature<br>Trip                                 | 0 - 200°C           | 100°C    | [Protection<br>Para |
| $\mathbf{A}$               | Only available if: Device planning: Trip                                       |                     |          | /<14>               |
|                            | Function = use                                                                 |                     |          | /Temp-Prot          |
|                            |                                                                                |                     |          | /RTD                |
|                            |                                                                                |                     |          | /LoadBear<br>Group] |
| Aux Alarm<br>Function      | Auxiliary Alarm Function                                                       | inactive,<br>active | inactive | [Protection<br>Para |
|                            |                                                                                |                     |          | /<14>               |
| $\mathbf{R}$               |                                                                                |                     |          | /Temp-Prot          |
| <b>~</b>                   |                                                                                |                     |          | /RTD                |
|                            |                                                                                |                     |          | /Aux Group]         |

| Parameter            | Description                                                                       | Setting range       | Default  | Menu path           |
|----------------------|-----------------------------------------------------------------------------------|---------------------|----------|---------------------|
| Aux Trip<br>Function | Auxiliary Trip Function                                                           | inactive,<br>active | inactive | [Protection<br>Para |
|                      |                                                                                   | active              |          | /<14>               |
| $\bigcirc$           |                                                                                   |                     |          | /Temp-Prot          |
|                      |                                                                                   |                     |          | /RTD                |
|                      |                                                                                   |                     |          | /Aux Group]         |
| Aux Alarm            | Auxiliary Threshold for Temperature Alarm                                         | 0 - 200°C           | 80°C     | [Protection<br>Para |
|                      | Only available if: Device planning: Alarm<br>Function = use                       |                     |          | /<14>               |
|                      |                                                                                   |                     |          | /Temp-Prot          |
|                      |                                                                                   |                     |          | /RTD                |
|                      |                                                                                   |                     |          | /Aux Group]         |
| Aux t-Delay          | Auxiliary If this time is expired a<br>Temperature Alarm will be generated.       | 0 - 360min          | 1min     | [Protection<br>Para |
|                      | Only available if: Device planning: Alarm                                         |                     |          | /<14>               |
|                      | Function = use                                                                    |                     |          | /Temp-Prot          |
|                      |                                                                                   |                     |          | /RTD                |
|                      |                                                                                   |                     |          | /Aux Group]         |
| Aux Trip             | Auxiliary Threshold for Temperature Trip                                          | 0 - 200°C           | 100°C    | [Protection<br>Para |
|                      | Only available if: Device planning: Aux = use                                     |                     |          | /<14>               |
|                      |                                                                                   |                     |          | /Temp-Prot          |
|                      |                                                                                   |                     |          | /RTD                |
|                      |                                                                                   |                     |          | /Aux Group]         |
| Function             | Permanent activation or deactivation of module/stage.                             | inactive,<br>active | inactive | [Protection<br>Para |
| $\frown$             |                                                                                   |                     |          | /<14>               |
| $\checkmark$         |                                                                                   |                     |          | /Temp-Prot          |
|                      |                                                                                   |                     |          | /RTD                |
|                      |                                                                                   |                     |          | /Voting1]           |
| Voting 1             | Voting: This parameter defines how many of the selected channels must be over its | 1 - 12              | 1        | [Protection<br>Para |
| $\frown$             | threshold level for getting a voting trip                                         |                     |          | /<14>               |
|                      |                                                                                   |                     |          | /Temp-Prot          |
|                      |                                                                                   |                     |          | /RTD                |
|                      |                                                                                   |                     |          | /Voting1]           |

| Parameter    | Description | Setting range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default | Menu path           |
|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|
| Windg 1      | Winding 1   | no,<br>yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no      | [Protection<br>Para |
|              |             | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | /<14>               |
| $\checkmark$ |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Temp-Prot          |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /RTD                |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Voting1]           |
| Windg 2      | Winding 2   | no,<br>yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no      | [Protection<br>Para |
|              |             | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | /<14>               |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Temp-Prot          |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /RTD                |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Voting1]           |
| Windg 3      | Winding 3   | no,<br>yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no      | [Protection<br>Para |
| $\frown$     |             | <i>ycs</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | /<14>               |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Temp-Prot          |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /RTD                |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Voting1]           |
| Windg 4      | Winding 4   | no,<br>yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no      | [Protection<br>Para |
| $\frown$     |             | <i>y</i> = |         | /<14>               |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Temp-Prot          |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /RTD                |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Voting1]           |
| Windg 5      | Winding 5   | no,<br>yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no      | [Protection<br>Para |
| $\frown$     |             | <b>y</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | /<14>               |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Temp-Prot          |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /RTD                |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Voting1]           |
| Windg 6      | Winding 6   | no,<br>yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no      | [Protection<br>Para |
| $\frown$     |             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | /<14>               |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Temp-Prot          |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /RTD                |
|              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | /Voting1]           |

| Parameter      | Description     | Setting range | Default | Menu path           |
|----------------|-----------------|---------------|---------|---------------------|
| MotBear 1      | Motor Bearing 1 | no,           | no      | [Protection<br>Para |
|                |                 | yes           |         | /<14>               |
| $(\mathbf{X})$ |                 |               |         | /Temp-Prot          |
|                |                 |               |         | /RTD                |
|                |                 |               |         | /Voting1]           |
| MotBear 2      | Motor Bearing 2 | no,           | no      | [Protection<br>Para |
| $\frown$       |                 | yes           |         | /<14>               |
| $\mathbf{X}$   |                 |               |         | /Temp-Prot          |
|                |                 |               |         | /RTD                |
|                |                 |               |         | /Voting1]           |
| LoadBear 1     | Load Bearing 1  | no,<br>yes    | no      | [Protection<br>Para |
|                |                 | yes           |         | /<14>               |
|                |                 |               |         | /Temp-Prot          |
|                |                 |               |         | /RTD                |
|                |                 |               |         | /Voting1]           |
| LoadBear 2     | Load Bearing 2  | no,<br>yes    | no      | [Protection<br>Para |
|                |                 | yes           |         | /<14>               |
|                |                 |               |         | /Temp-Prot          |
|                |                 |               |         | /RTD                |
|                |                 |               |         | /Voting1]           |
| Aux1           | Auxiliary1      | no,<br>yes    | no      | [Protection<br>Para |
| $\checkmark$   |                 | yes           |         | /<14>               |
|                |                 |               |         | /Temp-Prot          |
|                |                 |               |         | /RTD                |
|                |                 |               |         | /Voting1]           |
| Aux2           | Auxiliary2      | no,<br>yes    | no      | [Protection<br>Para |
| $\frown$       |                 | yes           |         | /<14>               |
|                |                 |               |         | /Temp-Prot          |
|                |                 |               |         | /RTD                |
|                |                 |               |         | /Voting1]           |

| Parameter    | Description                                                                          | Setting range | Default  | Menu path           |
|--------------|--------------------------------------------------------------------------------------|---------------|----------|---------------------|
| Function     | Permanent activation or deactivation of                                              | inactive,     | inactive | [Protection         |
|              | module/stage.                                                                        | active        |          | Para                |
| $\mathbf{R}$ |                                                                                      |               |          | /<14>               |
| <b>U</b>     |                                                                                      |               |          | /Temp-Prot          |
|              |                                                                                      |               |          | /RTD                |
|              |                                                                                      | 1 10          |          | /Voting2]           |
| Voting 2     | Voting: This parameter defines how many of<br>the selected channels must be over its | 1 - 12        | 1        | [Protection<br>Para |
| $\bigcirc$   | threshold level for getting a voting trip                                            |               |          | /<14>               |
|              |                                                                                      |               |          | /Temp-Prot          |
|              |                                                                                      |               |          | /RTD                |
|              |                                                                                      |               |          | /Voting2]           |
| Windg 1      | Winding 1                                                                            | no,           | no       | [Protection<br>Para |
|              |                                                                                      | yes           |          | /<14>               |
| $\mathbf{X}$ |                                                                                      |               |          | /Temp-Prot          |
|              |                                                                                      |               |          | /RTD                |
|              |                                                                                      |               |          | /Voting2]           |
| Windg 2      | Winding 2                                                                            | no,           | no       | [Protection         |
|              |                                                                                      | yes           |          | Para                |
| $\mathbf{x}$ |                                                                                      |               |          | /<14>               |
|              |                                                                                      |               |          | /Temp-Prot          |
|              |                                                                                      |               |          | /RTD                |
|              |                                                                                      |               |          | /Voting2]           |
| Windg 3      | Winding 3                                                                            | no,<br>yes    | no       | [Protection<br>Para |
| $\checkmark$ |                                                                                      | ,             |          | /<14>               |
| $\checkmark$ |                                                                                      |               |          | /Temp-Prot          |
|              |                                                                                      |               |          | /RTD                |
|              |                                                                                      |               |          | /Voting2]           |
| Windg 4      | Winding 4                                                                            | no,           | no       | [Protection<br>Para |
|              |                                                                                      | yes           |          | /<14>               |
| $\mathbf{X}$ |                                                                                      |               |          | /Temp-Prot          |
|              |                                                                                      |               |          | /RTD                |
|              |                                                                                      |               |          | /Voting2]           |

| Parameter    | Description     | Setting range | Default | Menu path           |
|--------------|-----------------|---------------|---------|---------------------|
| Windg 5      | Winding 5       | no,<br>yes    | no      | [Protection<br>Para |
|              |                 | yes           |         | /<14>               |
|              |                 |               |         | /Temp-Prot          |
|              |                 |               |         | /RTD                |
|              |                 |               |         | /Voting2]           |
| Windg 6      | Winding 6       | no,<br>yes    | no      | [Protection<br>Para |
|              |                 | yes           |         | /<14>               |
|              |                 |               |         | /Temp-Prot          |
|              |                 |               |         | /RTD                |
|              |                 |               |         | /Voting2]           |
| MotBear 1    | Motor Bearing 1 | no,<br>yes    | no      | [Protection<br>Para |
| $\bigwedge$  |                 | yes           |         | /<14>               |
|              |                 |               |         | /Temp-Prot          |
|              |                 |               |         | /RTD                |
|              |                 |               |         | /Voting2]           |
| MotBear 2    | Motor Bearing 2 | no,<br>yes    | no      | [Protection<br>Para |
|              |                 | yes           |         | /<14>               |
|              |                 |               |         | /Temp-Prot          |
|              |                 |               |         | /RTD                |
|              |                 |               |         | /Voting2]           |
| LoadBear 1   | Load Bearing 1  | no,<br>yes    | no      | [Protection<br>Para |
| $\frown$     |                 | <i>y</i> = 0  |         | /<14>               |
|              |                 |               |         | /Temp-Prot          |
|              |                 |               |         | /RTD                |
|              |                 |               |         | /Voting2]           |
| LoadBear 2   | Load Bearing 2  | no,<br>yes    | no      | [Protection<br>Para |
| $\land$      |                 | yes           |         | /<14>               |
| $\checkmark$ |                 |               |         | /Temp-Prot          |
|              |                 |               |         | /RTD                |
|              |                 |               |         | /Voting2]           |

| Parameter    | Description | Setting range | Default | Menu path           |
|--------------|-------------|---------------|---------|---------------------|
| Aux1         | Auxiliary1  | no,           | no      | [Protection<br>Para |
| $\mathbf{A}$ |             | yes           |         | /<14>               |
|              |             |               |         | /Temp-Prot          |
|              |             |               |         | /RTD                |
|              |             |               |         | /Voting2]           |
| Aux2         | Auxiliary2  | no,           | no      | [Protection         |
|              |             | yes           |         | Para                |
| $\bigcirc$   |             |               |         | /<14>               |
|              |             |               |         | /Temp-Prot          |
|              |             |               |         | /RTD                |
|              |             |               |         | /Voting2]           |

## **RTD Temperature Protection Module Input States**

| Name            | Description                                       | Assignment via    |
|-----------------|---------------------------------------------------|-------------------|
| ExBlo1-I        | Module input state: External blocking1            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /Temp-Prot        |
|                 |                                                   | /RTD]             |
| ExBlo2-I        | Module input state: External blocking2            | [Protection Para  |
|                 |                                                   | /Global Prot Para |
|                 |                                                   | /Temp-Prot        |
|                 |                                                   | /RTD]             |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip | [Protection Para  |
|                 | Command                                           | /Global Prot Para |
|                 |                                                   | /Temp-Prot        |
|                 |                                                   | /RTD]             |

### **RTD Temperature Protection Module Signals (Output States)**

| Signal        | Description                                   |  |
|---------------|-----------------------------------------------|--|
| active        | Signal: active                                |  |
| ExBlo         | Signal: External Blocking                     |  |
| Blo TripCmd   | ignal: Trip Command blocked                   |  |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |  |
| Alarm         | Alarm RTD Temperature Protection              |  |
| Trip          | Signal: Trip                                  |  |
| TripCmd       | Signal: Trip Command                          |  |
| Windg 1 Trip  | Winding 1 Signal: Trip                        |  |

| Signal                   | Description                                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Windg 1 Alarm            | Winding 1 Alarm RTD Temperature Protection                                                                                |
| Windg 1 Timeout Alarm    | Winding 1 Timeout Alarm                                                                                                   |
| Windg 1 Invalid          | Winding 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| Windg 2 Trip             | Winding 2 Signal: Trip                                                                                                    |
| Windg 2 Alarm            | Winding 2 Alarm RTD Temperature Protection                                                                                |
| Windg 2 Timeout Alarm    | Winding 2 Timeout Alarm                                                                                                   |
| Windg 2 Invalid          | Winding 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| Windg 3 Trip             | Winding 3 Signal: Trip                                                                                                    |
| Windg 3 Alarm            | Winding 3 Alarm RTD Temperature Protection                                                                                |
| Windg 3 Timeout Alarm    | Winding 3 Timeout Alarm                                                                                                   |
| Windg 3 Invalid          | Winding 3 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| Windg 4 Trip             | Winding 4 Signal: Trip                                                                                                    |
| Windg 4 Alarm            | Winding 4 Alarm RTD Temperature Protection                                                                                |
| Windg 4 Timeout Alarm    | Winding 4 Timeout Alarm                                                                                                   |
| Windg 4 Invalid          | Winding 4 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| Windg 5 Trip             | Winding 5 Signal: Trip                                                                                                    |
| Windg 5 Alarm            | Winding 5 Alarm RTD Temperature Protection                                                                                |
| Windg 5 Timeout Alarm    | Winding 5 Timeout Alarm                                                                                                   |
| Windg 5 Invalid          | Winding 5 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| Windg 6 Trip             | Winding 6 Signal: Trip                                                                                                    |
| Windg 6 Alarm            | Winding 6 Alarm RTD Temperature Protection                                                                                |
| Windg 6 Timeout Alarm    | Winding 6 Timeout Alarm                                                                                                   |
| Windg 6 Invalid          | Winding 6 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| MotBear 1 Trip           | Motor Bearing 1 Signal: Trip                                                                                              |
| MotBear 1 Alarm          | Motor Bearing 1 Alarm RTD Temperature Protection                                                                          |
| MotBear 1 Timeout Alarm  | Motor Bearing 1 Timeout Alarm                                                                                             |
| MotBear 1 Invalid        | Motor Bearing 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| MotBear 2 Trip           | Motor Bearing 2 Signal: Trip                                                                                              |
| MotBear 2 Alarm          | Motor Bearing 2 Alarm RTD Temperature Protection                                                                          |
| MotBear 2 Timeout Alarm  | Motor Bearing 2 Timeout Alarm                                                                                             |
| MotBear 2 Invalid        | Motor Bearing 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| LoadBear 1 Trip          | Load Bearing 1 Signal: Trip                                                                                               |
| LoadBear 1 Alarm         | Load Bearing 1 Alarm RTD Temperature Protection                                                                           |
| LoadBear 1 Timeout Alarm | Load Bearing 1 Timeout Alarm                                                                                              |

| Signal                   | Description                                                                                                                   |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| LoadBear 1 Invalid       | Load Bearing 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)      |
| LoadBear 2 Trip          | Load Bearing 2 Signal: Trip                                                                                                   |
| LoadBear 2 Alarm         | Load Bearing 2 Alarm RTD Temperature Protection                                                                               |
| LoadBear 2 Timeout Alarm | Load Bearing 2 Timeout Alarm                                                                                                  |
| LoadBear 2 Invalid       | Load Bearing 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)      |
| Aux1 Trip                | Auxiliary 1 Signal: Trip                                                                                                      |
| Aux1 Alarm               | Auxiliary 1 Alarm RTD Temperature Protection                                                                                  |
| Aux1 Timeout Alarm       | Auxiliary 1 Timeout Alarm                                                                                                     |
| Aux1 Invalid             | Auxiliary 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)         |
| Aux2 Trip                | Auxiliary 2 Signal: Trip                                                                                                      |
| Aux2 Alarm               | Auxiliary 2 Alarm RTD Temperature Protection                                                                                  |
| Aux2 Timeout Alarm       | Auxiliary 2 Timeout Alarm                                                                                                     |
| Aux2 Invalid             | Auxiliary 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)         |
| Trip WD Group            | Trip all Windings                                                                                                             |
| Alarm WD Group           | Alarm all Windings                                                                                                            |
| TimeoutAlmWDGrp          | Timeout Alarm all Windings                                                                                                    |
| Windg Group Invalid      | Winding Group Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| Trip MB Group            | Trip all Motor Bearings                                                                                                       |
| Alarm MB Group           | Alarm all Motor Bearings                                                                                                      |
| TimeoutAlmMBGrp          | Timeout Alarm all Motor Bearings                                                                                              |
| MotBear Group Invalid    | Motor Bearing Group Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| Trip LB Group            | Trip all Load Bearings                                                                                                        |
| Alarm LB Group           | Alarm all Load Bearings                                                                                                       |
| TimeoutAlmLBGrp          | Timeout Alarm all Load Bearings                                                                                               |
| LoadBear Group Invalid   | Load Bearing Group Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)  |
| Trip Any Group           | Trip Any Group                                                                                                                |
| Alarm Any Group          | Alarm Any Group                                                                                                               |
| TimeoutAlmAnyGrp         | Timeout Alarm Any Group                                                                                                       |
| Trip Group 1             | Trip Group 1                                                                                                                  |
| Trip Group 2             | Trip Group 2                                                                                                                  |
| Timeout Alarm            | Alarm timeout expired                                                                                                         |
| Trip Aux Group           | Trip Auxiliary Group                                                                                                          |
| Alarm Aux Group          | Alarm Auxiliary Group                                                                                                         |
| TimeoutAlmAuxGrp         | Timeout Alarm Auxiliary Group                                                                                                 |
| AuxGrpInvalid            | Invalid Auxiliary Group                                                                                                       |

## **RTD Temperature Protection Module Counter Values**

| Value                   | Description                                                  | Default | Size      | Menu path                                |
|-------------------------|--------------------------------------------------------------|---------|-----------|------------------------------------------|
| HottestWindingT<br>emp  | Hottest motor winding temperature in degrees C.              | 0°C     | 0 - 200°C | [Operation<br>/Measured Values<br>/URTD] |
| Hottest<br>MotBearTemp  | Hottest motor bearing temperature in degrees C.              | 0°C     | 0 - 200°C | [Operation<br>/Measured Values<br>/URTD] |
| Hottest<br>LoadBearTemp | Hottest load bearing temperature in degrees C.               | 0°C     | 0 - 200°C | [Operation<br>/Measured Values<br>/URTD] |
| Hottest Aux<br>Temp     | Hottest Auxiliary temperature in degrees C.                  | 0°C     | 0 - 200°C | [Operation<br>/Measured Values<br>/URTD] |
| HighestWdTemp           | Highest motor winding temperature in degrees.                | 0°C     | 0 - 250°C | [Operation<br>/History<br>/OperationsCr] |
| HighestMbTemp           | Highest motor bearing temperature in degrees.                | 0°C     | 0 - 250°C | [Operation<br>/History<br>/OperationsCr] |
| HighestLbTemp           | Highest load bearing temperature in degrees.                 | 0°C     | 0 - 250°C | [Operation<br>/History<br>/OperationsCr] |
| HighestAuxTemp          | Highest Auxiliary temperature in degrees.                    | 0°C     | 0 - 250°C | [Operation<br>/History<br>/OperationsCr] |
| nWdAlarms               | Number of winding temperature alarms since last reset.       | 0       | 0 - 65535 | [Operation<br>/History<br>/AlarmCr]      |
| nMbAlarms               | Number of motor bearing temperature alarms since last reset. | 0       | 0 - 65535 | [Operation<br>/History<br>/AlarmCr]      |
| nLbAlarms               | Number of load bearing temperature alarms since last reset.  | 0       | 0 - 65535 | [Operation<br>/History<br>/AlarmCr]      |

| Value         | Description                                                 | Default | Size      | Menu path                             |
|---------------|-------------------------------------------------------------|---------|-----------|---------------------------------------|
| nAuxAlarms    | Number of auxilary temperature alarms since last reset.     | 0       | 0 - 65535 | [Operation<br>/History<br>/AlarmCr]   |
| nWdTrips      | Number of winding temperature trips since last reset.       | 0       | 0 - 65535 | [Operation<br>/History<br>/TripCmdCr] |
| nMbTrips      | Number of motor bearing temperature trips since last reset. | 0       | 0 - 65535 | [Operation<br>/History<br>/TripCmdCr] |
| nLbTrips      | Number of load bearing temperature trips since last reset.  | 0       | 0 - 65535 | [Operation<br>/History<br>/TripCmdCr] |
| nAuxTrips     | Number of auxilary temperature trips since last reset.      | 0       | 0 - 65535 | [Operation<br>/History<br>/TripCmdCr] |
| nChannelFails | Number of RTD channel failures.                             | 0       | 0 - 65535 | [Operation<br>/History<br>/AlarmCr]   |

### **URTDII Module Interface**

<u>URTD</u>

### Principle – General Use

The optional Universal Resistance-based Temperature Detector II (URTDII) Module provides temperature data to the protective device from up to 12 RTDs embedded in the motor, generator, transformer, or cable connector and driven equipment. The temperature data will be shown as measured values and statistics in the Operating Data menu. In addition, each channel will be monitored. The measured data provided by the URTDII Module can also be used for temperature protection (please refer to the Temperature Protection section).

The URTDII conveys multiplexed temperature data back to the relay via a single optical fiber. The URTDII may be mounted remotely from the protective device. The fiber optic connector is located on the **X102** terminal of the protective device.

Consider the benefit of mounting the URTDII module away from the protective device and as close to the protected equipment as possible. The big bundle of RTD wires to the protected equipment becomes much shorter. The URTDII may be placed up to 400 ft (121.9 m) from the protective device with the optical fiber connection. Note that the URTDII will require a power supply connection at its remote location.

Connect a suitable source to the power terminals J10A-1 and J10A-2 on the URTDII module.

| <u>Style</u> | Power Supply               |
|--------------|----------------------------|
| URTDII-01    | 48-240 V AC<br>48-250 V DC |
| URTDII-02    | 24-48 V DC                 |

### URTDII Module Fiber Optic Connection to the Protective Device



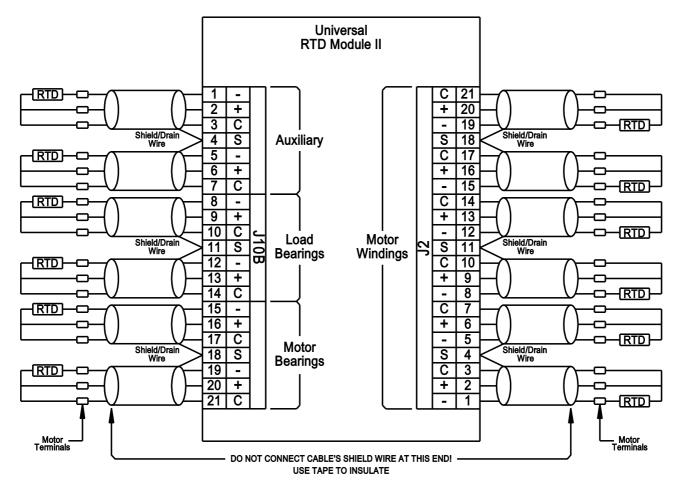
The figure above shows the fiber optic connections between the URTDII Module and the protective device. The protective device supports the optical fiber connection.

Preassembled plastic optical fibers with connectors can be ordered from any distributor of optical fiber products. In addition, these same distributors offer long rolls of cable with connectors that can be installed in the field. Some distributors will make custom lengths to order.

# **NOTICE** Surplus length of a pre-cut fiber does not cause a problems. Simply coil and tie the excess fiber at a convenient point. Avoid high tie pressure. Bending radius of the fiber should be greater than 2 in. (50.8 mm).

The fiber termination at the URTDII simply snaps into or out of the connector. To connect the fiber termination at the protective device, push the plug of the fiber optic onto the device interface then turn it until it "snaps".




The protective device as well as the URTDII have various power supply options. Make certain that the power supply is acceptable for both units before connecting the same power supply to both devices.

# NOTICE

#### Consult the URTDII Module Instruction Leaflet for complete instructions.

Three URTD terminals are provided for each RTD input.

The three terminals for any unused RTD input channel should be wired together. For example, if MW5 and MW6 are unused, MW5 terminals J2-15, J2-16, and J2-17 should be wired together and MW6 terminals J2-19, J2-20, J2-21 should be separately wired together.



See the figure above for wiring of RTDs to the URTD inputs. Use three-conductor shielded cable. Note the connection rules in the figure. When making connections to a two-lead RTD, connect two of the cable conductors to one of the RTD leads as shown. Make this connection as close to the protected object as possible. Connect the third cable conductor to the remaining RTD lead.

Connect the shield / drain wire to the Shield terminal as shown in the figure. The RTD cable shield should be connected only at the URTD end, and insulated at the RTD end. The RTD's themselves must not be grounded at the object to be protected.

Remember to set the URTDII module DIP switches according to the types of RTDs in each of the channels.

| Parameter                                                          | Description                             | Setting range | Default  | Menu path               |
|--------------------------------------------------------------------|-----------------------------------------|---------------|----------|-------------------------|
| Function                                                           | Permanent activation or deactivation of | inactive,     | inactive | [Service                |
|                                                                    | module/stage.                           | active        |          | /Test (Prot<br>inhibit) |
| $\checkmark$                                                       |                                         |               |          | /URTD]                  |
| Force Windg1                                                       | Force Winding 1                         | 0 - 392       | 0        | [Service                |
| $\langle \Phi \rangle$                                             |                                         |               |          | /Test (Prot<br>inhibit) |
| $\checkmark$                                                       |                                         |               |          | /URTD]                  |
| Force Windg2                                                       | Force Winding 2                         | 0 - 392       | 0        | [Service                |
| $\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$ |                                         |               |          | /Test (Prot<br>inhibit) |
| $\checkmark$                                                       |                                         |               |          | /URTD]                  |
| Force Windg3                                                       | Force Winding 3                         | 0 - 392       | 0        | [Service                |
|                                                                    |                                         |               |          | /Test (Prot<br>inhibit) |
| $\checkmark$                                                       |                                         |               |          | /URTD]                  |
| Force Windg4                                                       | Force Winding 4                         | 0 - 392       | 0        | [Service                |
|                                                                    |                                         |               |          | /Test (Prot<br>inhibit) |
|                                                                    |                                         |               |          | /URTD]                  |
| Force Windg5                                                       | Force Winding 5                         | 0 - 392       | 0        | [Service                |
|                                                                    |                                         |               |          | /Test (Prot<br>inhibit) |
|                                                                    |                                         |               |          | /URTD]                  |
| Force Windg6                                                       | Force Winding 6                         | 0 - 392       | 0        | [Service                |
| $\langle \nabla \rangle$                                           |                                         |               |          | /Test (Prot<br>inhibit) |
|                                                                    |                                         |               |          | /URTD]                  |
| Force MotBear1                                                     | Force Motor Bearing 1                   | 0 - 392       | 0        | [Service                |
| $\langle \nabla \rangle$                                           |                                         |               |          | /Test (Prot<br>inhibit) |
|                                                                    |                                         |               |          | /URTD]                  |
| Force MotBear2                                                     | Force Motor Bearing 2                   | 0 - 392       | 0        | [Service                |
| $\square$                                                          |                                         |               |          | /Test (Prot<br>inhibit) |
| $\checkmark$                                                       |                                         |               |          | /URTD]                  |

### Direct Commands of the URTD Module

| Parameter          | Description          | Setting range | Default | Menu path               |
|--------------------|----------------------|---------------|---------|-------------------------|
| Force<br>LoadBear1 | Force Load Bearing 1 | 0 - 392       | 0       | [Service<br>/Test (Prot |
|                    |                      |               |         | inhibit)                |
| $\bigotimes$       |                      |               |         | /URTD]                  |
| Force              | Force Load Bearing 2 | 0 - 392       | 0       | [Service                |
| LoadBear2          |                      |               |         | /Test (Prot<br>inhibit) |
| $\bigotimes$       |                      |               |         | /URTD]                  |
| Force Aux1         | Force Auxiliary1     | 0 - 392       | 0       | [Service                |
|                    |                      |               |         | /Test (Prot<br>inhibit) |
|                    |                      |               |         | /URTD]                  |
| Force Aux2         | Force Auxiliary2     | 0 - 392       | 0       | [Service                |
| $\square$          |                      |               |         | /Test (Prot<br>inhibit) |
|                    |                      |               |         | /URTD]                  |

## Global Protection Parameters of the URTD Module

| Parameter           | Description                                                                                                                                                                                                                                                                                               | Setting range          | Default   | Menu path                                                     |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|---------------------------------------------------------------|
| Force Mode          | By means of this function the normal Output<br>Relay States can be overwritten (forced) in<br>case that the Relay is not in a disarmed<br>state. The relays can be set from normal<br>operation (relay works according to the<br>assigned signals) to "force energized" or<br>"force de-energized" state. | permanent,<br>timeout  | permanent | [Service<br>/Test (Prot<br>inhibit)<br>/URTD]                 |
| t-Timeout Force     | The Output State will be set by force for the duration of this time. That means for the duration of this time the Output Relay does not show the state of the signals that are assigned on it.<br>Only available if: Mode = Timeout DISARM                                                                | 0.00 - 300.00s         | 0.03s     | [Service<br>/Test (Prot<br>inhibit)<br>/URTD]                 |
| Temperature<br>Unit | Temperature Unit                                                                                                                                                                                                                                                                                          | Celsius,<br>Fahrenheit | Celsius   | [Device Para<br>/Measurem<br>Display<br>/General<br>Settings] |

# URTD Signals (Output States)

| Signal           | Description                                                                                                                                                                                |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Windg1 Superv    | Signal: Supervision Channel Windg1                                                                                                                                                         |  |
| Windg2 Superv    | Signal: Supervision Channel Windg2                                                                                                                                                         |  |
| Windg3 Superv    | Signal: Supervision Channel Windg3                                                                                                                                                         |  |
| Windg4 Superv    | Signal: Supervision Channel Windg4                                                                                                                                                         |  |
| Windg5 Superv    | Signal: Supervision Channel Windg5                                                                                                                                                         |  |
| Windg6 Superv    | Signal: Supervision Channel Windg6                                                                                                                                                         |  |
| MotBear1 Superv  | Signal: Supervision Channel MotBear1                                                                                                                                                       |  |
| MotBear2 Superv  | Signal: Supervision Channel MotBear2                                                                                                                                                       |  |
| LoadBear1 Superv | Signal: Supervision Channel LoadBear1                                                                                                                                                      |  |
| LoadBear2 Superv | Signal: Supervision Channel LoadBear2                                                                                                                                                      |  |
| Aux1 Superv      | Signal: Supervision Channel Aux1                                                                                                                                                           |  |
| Aux2 Superv      | Signal: Supervision Channel Aux2                                                                                                                                                           |  |
| Superv           | Signal: URTD Supervision Channel                                                                                                                                                           |  |
| active           | Signal: URTD active                                                                                                                                                                        |  |
| Outs forced      | Signal: The State of at least one Relay Output has been set by force. That means that the state of at least one Relay is forced and hence does not show the state of the assigned signals. |  |

### **URTD Module Statistics**

| Value         | Description                  | Menu path   |
|---------------|------------------------------|-------------|
| Windg1 max    | Winding1 Maximum Value       | [Operation  |
|               |                              | /Statistics |
|               |                              | /Max        |
|               |                              | /URTD]      |
| Windg2 max    | Winding2 Maximum Value       | [Operation  |
|               |                              | /Statistics |
|               |                              | /Max        |
|               |                              | /URTD]      |
| Windg3 max    | Winding3 Maximum Value       | [Operation  |
|               |                              | /Statistics |
|               |                              | /Max        |
|               |                              | /URTD]      |
| Windg4 max    | Winding4 Maximum Value       | [Operation  |
|               |                              | /Statistics |
|               |                              | /Max        |
|               |                              | /URTD]      |
| Windg5 max    | Winding5 Maximum Value       | [Operation  |
|               |                              | /Statistics |
|               |                              | /Max        |
|               |                              | /URTD]      |
| Windg6 max    | Winding6 Maximum Value       | [Operation  |
|               |                              | /Statistics |
|               |                              | /Max        |
|               |                              | /URTD]      |
| MotBear1 max  | Motor Bearing1 Maximum Value | [Operation  |
|               |                              | /Statistics |
|               |                              | /Max        |
|               |                              | /URTD]      |
| MotBear2 max  | Motor Bearing2 Maximum Value | [Operation  |
|               |                              | /Statistics |
|               |                              | /Max        |
|               |                              | /URTD]      |
| LoadBear1 max | Load Bearing1 Maximum Value  | [Operation  |
|               |                              | /Statistics |
|               |                              | /Max        |
|               |                              | /URTD]      |

| Value         | Description                 | Menu path   |
|---------------|-----------------------------|-------------|
| LoadBear2 max | Load Bearing2 Maximum Value | [Operation  |
|               |                             | /Statistics |
|               |                             | /Max        |
|               |                             | /URTD]      |
| Aux1 max      | Auxiliary1 Maximum Value    | [Operation  |
|               |                             | /Statistics |
|               |                             | /Max        |
|               |                             | /URTD]      |
| Aux2 max      | Auxiliary2 Maximum Value    | [Operation  |
|               |                             | /Statistics |
|               |                             | /Max        |
|               |                             | /URTD]      |

### **URTD Measured Values**

| Value     | Description     | Menu path        |
|-----------|-----------------|------------------|
| Windg1    | Winding 1       | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| Windg2    | Winding 2       | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| Windg3    | Winding 3       | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| Windg4    | Winding 4       | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| Windg5    | Winding 5       | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| Windg6    | Winding 6       | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| MotBear1  | Motor Bearing 1 | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| MotBear2  | Motor Bearing 2 | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| LoadBear1 | Load Bearing 1  | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| LoadBear2 | Load Bearing 2  | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| Aux1      | Auxiliary1      | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |
| Aux2      | Auxiliary2      | [Operation       |
|           |                 | /Measured Values |
|           |                 | /URTD]           |

| Value   | Description                          | Menu path        |
|---------|--------------------------------------|------------------|
| RTD Max | Maximum temperature of all channels. | [Operation       |
|         |                                      | /Measured Values |
|         |                                      | /URTD]           |

## Supervision

## CBF- Circuit Breaker Failure [50BF\*/62BF]

\*=only available in protective relays that offer current measurement.

Available elements: <u>CBF</u>

## Principle - General Use

The breaker failure (BF) protection is used to provide backup protection in the event that a breaker fails to operate properly during fault clearing. This signal is to be used to trip the upstream breaker (e.g. infeed of a busbar) either via an output relay or via Communication (SCADA). Depending on the ordered device and type there are different/multiple schemes available to detect a breaker failure.

#### Start/Trigger of the CBF Timer

A supervision timer *»t-CBF«* will be started, once the <u>CBF</u> module is triggered. Even if the Trigger signal drops again, this timer will continue to run. If the timer runs down/elapses (is not stopped), the module will issue a trip afterwards. This trip signal is to be used to trip the upstream breaker (backup).

#### Stopping the CBF

The timer will be stopped if the opening of the breaker is detected. Depending on the supervision scheme the timer will be stopped if the current falls below the current threshold or if the position signals indicate the open position of the breaker or a combination of both. The <u>CBF</u> module will remain within the state rejected until the trigger signal drops (falls back).

#### Detecting a Breaker Failure

Depending on the supervision scheme, the Circuit Breaker Failure signal (Trip) will be set if either:

- the current doesn't fall below the threshold or
- the position signals indicate that the breaker is in the closed position or
- both.

#### Reject state of the CBF module

The <u>CBF</u> module will switch into the rejected state if the circuit breaker failure triggers are still active while the open position of the breaker has been detected successfully.

#### Readiness for Operation

The <u>CBF</u> module will switch back into the Stand-by if the trigger signals drop (fall back).

#### Locking

A locking signal will be issued simultaneously with the <u>CBF</u>-Signal (Trip). The locking signal is permanent. This signal has to be acknowledged at the HMI.



Note on devices that offer Wide Frequency Range measurement:

The supervision scheme 50BF will be blocked as soon as the frequency differs more than 5% from the nominal frequency. As long as the frequency differs more than 5% from the nominal frequency the supervision scheme "50BF and CB Pos" will work according to the "CB Pos" scheme.

## **Supervision Schemes**

Up to three supvervision schemes are available depending on the ordered device type and variant in order to detect a circuit breaker failure.

#### 50BF\*

A supervision timer will be started as soon as the <u>*CBF*</u> module is triggered by a trip signal. A breaker failure will be detected and a signal will be issued if the measured current does not fall below a set threshold while this timer runs down.

This supervision scheme is available within protective relays that offer current measurement.

#### CB Pos

A supervision timer will be started as soon as the <u>CBF</u> module is triggered by a trip signal. A breaker failure will be detected and a signal will be issued if the evaluation of the position indicators of the circuit breaker does not indicate that the breaker has been switched off sucessfully while this timer runs down.

This supervision scheme is available within all protective relays. This scheme is recommended if breaker failures have to be detected while there is no or not much load flow (small currents). This might e.g. be the case if overvoltage or overfrequency is supervisioned for a Gen-Set that is running in Stand-by.

#### 50 BF and CB Pos\*

A supervision timer will be started as soon as the <u>CBF</u> module is triggered by a trip signal. A breaker failure will be detected and a signal will be issued if the measured current does not fall below a set threshold and if simultaneously the evaluation of the position indicators of the circuit breaker does not indicate that the breaker has been switched off sucessfully while this timer runs down.

This scheme is recommended if breaker failures have to be double checked. This scheme will issue a trip command to the upstream breaker even if position indicators indicate misleadingly (faulty) that the breaker has been opened or if the current measurement indicates misleadingly (faulty) that the breaker is now in the open position.

\*=only available in protective relays that offer current measurement.

## **Trigger Modes**

There are three trigger modes for the <u>CBF</u> module available. In addition to that, there are three assignable trigger inputs available that might trigger the <u>CBF</u> module even if they are not assigned within the breaker manager onto the breaker that is to be monitored.

•*All Trips*: All trip signals that are assigned to this breaker (within the trip manager) will start the <u>*CBF*</u> module (please refer also to section "Trigger signals of the Circuit Breaker Failure").

•*Current Trips*: All current trips that are assigned to this breaker (within the trip manager) will start the <u>*CBF*</u> module (please refer also to section "Trigger signals of the Circuit Breaker Failure").

• *External Trips*: All external trips that are assigned to this breaker (within the trip manager) will start the <u>CBF</u> module (please refer also to section "Trigger signals of the Circuit Breaker Failure").

•In addition, the User can also select *none* (e.g.: if the User intends to use one of the three additional assignable trigger inputs).

# **NOTICE** Those trips can exclusively start the breaker failures that are assigned within the trip manager to the breaker that is to be supervised. In contrast to that the additional three triggers 1-3 will trigger the <u>CBF</u> module even if they are not assigned onto the breaker within the corresponding breaker manager.



Select the winding side (Breaker, Winding) from which the measured currents should be taken in case this protective device provides more than one current measurement card.



This Notice applies to protective devices that offer control functionality only! This protective element requires, that a switchgear (circuit breaker) is assigned to it. It is allowed only to assign switchgears (circuit breaker) to this protective element, whose measuring transformers provide measuring data to the protective device.

## Breaker Failure Lockout

The signal of the Circuit Breaker Failure is latched. This signal can be used to block the breaker against a switching on attempt.

## **Tabular Summary**

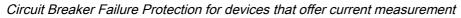
|                                                                                                                                                                                                                         | Supervision Schemes                                                                                                                                                  |                                                                                                            |                                                                                                                                                                                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                         | Where? Within [                                                                                                                                                      | Protection Para\Global Prot Para\S                                                                         | Supervision\CBF]                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                         | CB Pos <sup>2)</sup>                                                                                                                                                 | 50BF <sup>3)</sup>                                                                                         | CBPos und 50BF <sup>4)</sup>                                                                                                                                                                                                |  |
| Which breaker is to be monitored?                                                                                                                                                                                       | Selection of the breaker that is to be monitored.                                                                                                                    | Selection of the breaker that is to be monitored.                                                          | Selection ot the breaker that is to be monitored.                                                                                                                                                                           |  |
| Where to select?<br>Within [Protection Para\Global Prot<br>Para\Supervision\CBF]                                                                                                                                        | (In case that more than one breaker is available)                                                                                                                    | (In case that more than one breaker is available)                                                          | (In case that more than one breaker is available)                                                                                                                                                                           |  |
| Trigger Modi                                                                                                                                                                                                            | All Trips⁵)                                                                                                                                                          | All Trips⁵)                                                                                                | All Trips⁵                                                                                                                                                                                                                  |  |
| (Who starts the CBF-timer?)                                                                                                                                                                                             | or                                                                                                                                                                   | or                                                                                                         | or                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                         | All Current Trips <sup>5)</sup>                                                                                                                                      | All Current Trips <sup>5)</sup>                                                                            | All Current Trips⁵)                                                                                                                                                                                                         |  |
| Where to set?<br>Within [Protection Para\Global Prot                                                                                                                                                                    | or                                                                                                                                                                   | or                                                                                                         | or                                                                                                                                                                                                                          |  |
| Para\Supervision\CBF]                                                                                                                                                                                                   | External Trips <sup>5)</sup>                                                                                                                                         | External Trips <sup>5)</sup>                                                                               | External Trips <sup>5)</sup>                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                         | and the breaker is in the<br>closed position and the CBF<br>module is within the stand-by<br>state.                                                                  | and the CBF module is within the stand-by state.                                                           | and the breaker is in the<br>closed position and the CBF<br>module is within the stand-by<br>state.                                                                                                                         |  |
| Who stops the CBF-Timer?<br>Once the timer has been stopped the<br>CBF module will switch into the state<br>"Rejected". The module will switch<br>back into the state "Stand-by" if the<br>trigger signals are dropped. | Position indicators<br>indicate that the<br>switchgear (breaker) is in<br>the open position.                                                                         | Current is fallen below the I<-threshold <sup>1)</sup> .                                                   | Position indicators<br>indicate that the<br>switchgear (breaker) is in<br>the open position <b>and</b><br>current is fallen below the<br>I<-threshold <sup>1)</sup> .                                                       |  |
| A Breaker Failure will be<br>detected<br>and a trip signal to the upstream<br>breaker will be issued?                                                                                                                   | When the CBF-Timer has run down (elapsed).                                                                                                                           | When the CBF-Timer has run down (elapsed).                                                                 | When the CBF-Timer has run down (elapsed).                                                                                                                                                                                  |  |
| When does the trip signal to<br>the upstream breaker drops<br>(falls back)?                                                                                                                                             | If the position indicators<br>indicate that the<br>switchgear (breaker) is in<br>the open position <b>and</b> if<br>the trigger signals are<br>dropped (fallen back) | If the current is fallen<br>below the I< <b>and</b> if the<br>trigger signals are<br>dropped (fallen back) | If the position indicators<br>indicate that the<br>switchgear (breaker) is in<br>the open position <b>and</b> if<br>the current is fallen below<br>the I< <b>and</b> if the trigger<br>signals are dropped<br>(fallen back) |  |

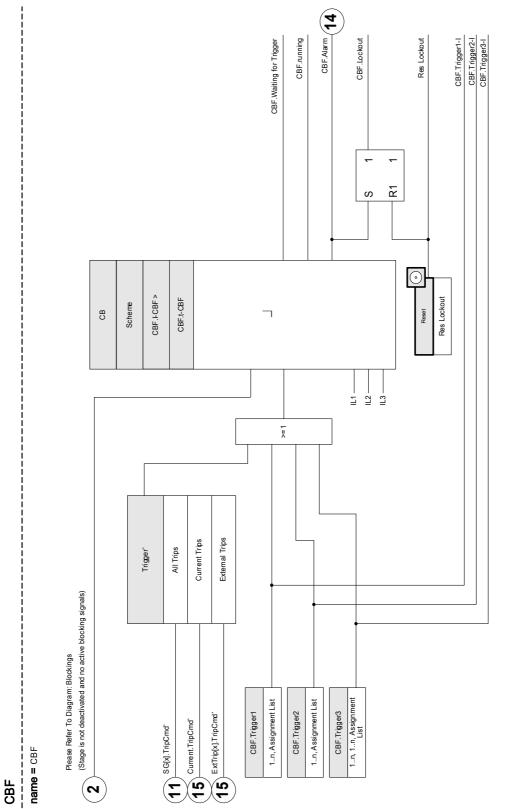
<sup>1)</sup> It is recommended to set the I< threshold to a value that is slightly below the fault current that is expectable. By means of that it is possible to shorten the CBF supervision timer and hence reduce thermal and mechanical damage of the electrical equipment in case of a breaker failure. The lower the threshold, the longer the time that is needed to detect, that the breaker is in the open position, especially if there are transients/harmonics.

Note: Tripping delay of the <u>CBF</u> module = Minimum delay time (tripping time) of the backup protection!

#### Supervision

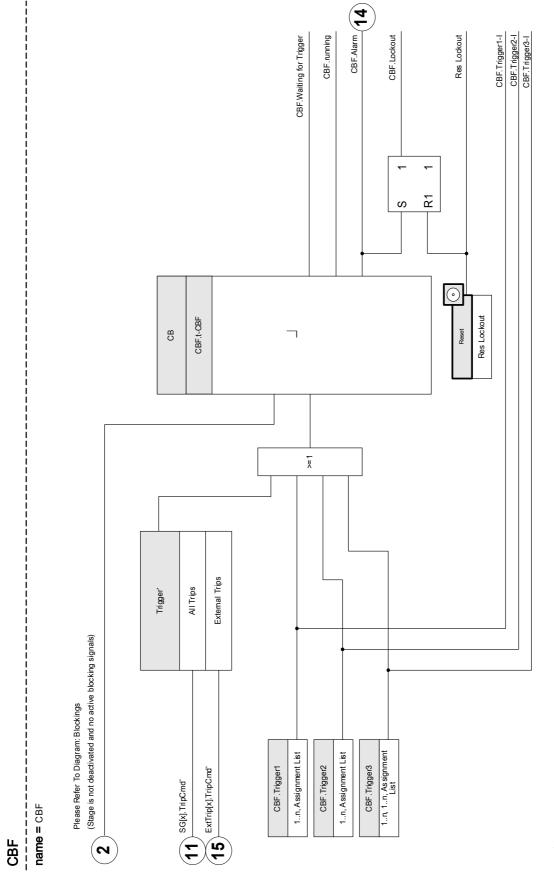
2), 3), 4)


5)


Available in all devices with the corresponding software

Available in all devices that offer current measurement

Available in all devices that offer current measurement


Only if the signals are assigned onto the breaker within the breaker manager.





The Breaker Failure will be triggered only by those trip signals that are assigned onto the the breaker within the Trip Manager.





The Breaker Failure will be triggered only by those trip signals that are assigned onto the the breaker within the Trip Manager.

## Device Planning Parameters of the CBF

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | use         |            |                   |
| $\bigotimes$ |             |             |            |                   |

## **Global Protection Parameters of the CBF**

| Parameter | Description                                                                                | Setting range          | Default   | Menu path            |
|-----------|--------------------------------------------------------------------------------------------|------------------------|-----------|----------------------|
| Scheme    | Scheme                                                                                     | 50BF,<br>CB Pos,       | 50BF      | [Protection<br>Para  |
|           |                                                                                            | 50BF and CB<br>Pos     |           | /Global Prot<br>Para |
|           |                                                                                            |                        |           | /Supervision         |
|           |                                                                                            |                        |           | /CBF]                |
| ExBlo1    | External blocking of the module, if blocking is activated (allowed) within a parameter set | 1n,<br>Assignment List |           | [Protection<br>Para  |
|           | and if the state of the assigned signal is true.                                           |                        |           | /Global Prot<br>Para |
|           |                                                                                            |                        |           | /Supervision         |
|           |                                                                                            |                        |           | /CBF]                |
| ExBlo2    | External blocking of the module, if blocking is activated (allowed) within a parameter set | 1n,<br>Assignment List |           | [Protection<br>Para  |
|           | and if the state of the assigned signal is true.                                           |                        |           | /Global Prot<br>Para |
|           |                                                                                            |                        |           | /Supervision         |
|           |                                                                                            |                        |           | /CBF]                |
| Trigger   | Determining the trigger mode for the Breaker Failure.                                      | ,<br>All Trips,        | All Trips | [Protection<br>Para  |
|           |                                                                                            | External Trips,        |           | /Global Prot<br>Para |
|           |                                                                                            | Current Trips          |           | /Supervision         |
|           |                                                                                            |                        |           | /CBF]                |
| Trigger1  | Trigger that will start the CBF                                                            | Trigger                |           | [Protection<br>Para  |
|           |                                                                                            |                        |           | /Global Prot<br>Para |
|           |                                                                                            |                        |           | /Supervision         |
|           |                                                                                            |                        |           | /CBF]                |

#### Supervision

| Parameter | Description                     | Setting range | Default | Menu path            |
|-----------|---------------------------------|---------------|---------|----------------------|
| Trigger2  | Trigger that will start the CBF | Trigger       |         | [Protection<br>Para  |
|           |                                 |               |         | /Global Prot<br>Para |
|           |                                 |               |         | /Supervision         |
|           |                                 |               |         | /CBF]                |
| Trigger3  | Trigger that will start the CBF | Trigger       |         | [Protection<br>Para  |
|           |                                 |               |         | /Global Prot<br>Para |
|           |                                 |               |         | /Supervision         |
|           |                                 |               |         | /CBF]                |

## Direct Commands of the CBF

| Parameter    | Description   | Setting range | Default  | Menu path                             |
|--------------|---------------|---------------|----------|---------------------------------------|
| Res Lockout  | Reset Lockout | inactive,     | inactive | [Operation                            |
| $\bigotimes$ |               | active        |          | /<br>Reset/Acknowle<br>dge<br>/Reset] |

## Setting Group Parameters of the CBF

## NOTICE

In order to prevent a faulty activation of the BF Module, the pickup (alarm) time must be greater than the sum of:

- Operating time of the protective relay
- +The close-open time of the breaker (please refer to the technical data of the manufacturer of the breaker);
- +Drop off time (current- or position indicators)
- +Security margin.

| Parameter      | Description                                                                      | Setting range       | Default  | Menu path           |
|----------------|----------------------------------------------------------------------------------|---------------------|----------|---------------------|
| Function       | Permanent activation or deactivation of module/stage.                            | inactive,<br>active | inactive | [Protection<br>Para |
|                |                                                                                  |                     |          | /<14>               |
|                |                                                                                  |                     |          | /Supervision        |
|                |                                                                                  |                     |          | /CBF]               |
| ExBlo Fc       | Activate (allow) or inactivate (disallow) blocking of the module/stage. This     | inactive,           | inactive | [Protection<br>Para |
| $\frown$       | parameter is only effective if a signal is                                       | active              |          | /<14>               |
| $(\mathbf{X})$ | assigned to the corresponding global protection parameter. If the signal becomes |                     |          | /Supervision        |
|                | true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". |                     |          | /CBF]               |
| I-CBF >        | Breaker Failure Alarm will be initiated if this                                  | 0.02 - 4.00In       | 0.02ln   | [Protection         |
|                | threshold is still exceeded after the timer                                      | 1.00111             | 0.0211   | Para                |
|                | has expired (50 BF).                                                             |                     |          | /<14>               |
|                | Only available if: Scheme50BF = Or Scheme                                        |                     |          | /Supervision        |
|                | = 50BF and CB Pos                                                                |                     |          | /CBF]               |
| t-CBF          | If the delay time is expired, an CBF alarm is given out.                         | 0.00 - 10.00s       | 0.20s    | [Protection<br>Para |
| $\square$      |                                                                                  |                     |          | /<14>               |
|                |                                                                                  |                     |          | /Supervision        |
|                |                                                                                  |                     |          | /CBF]               |

## **CBF** Input States

| Name       | Description                                   | Assignment via    |
|------------|-----------------------------------------------|-------------------|
| ExBlo1-I   | Module input state: External blocking1        | [Protection Para  |
|            |                                               | /Global Prot Para |
|            |                                               | /Supervision      |
|            |                                               | /CBF]             |
| ExBlo2-I   | Module input state: External blocking2        | [Protection Para  |
|            |                                               | /Global Prot Para |
|            |                                               | /Supervision      |
|            |                                               | /CBF]             |
| Trigger1-I | Module Input: Trigger that will start the CBF | [Protection Para  |
|            |                                               | /Global Prot Para |
|            |                                               | /Supervision      |
|            |                                               | /CBF]             |
| Trigger2-I | Module Input: Trigger that will start the CBF | [Protection Para  |
|            |                                               | /Global Prot Para |
|            |                                               | /Supervision      |
|            |                                               | /CBF]             |
| Trigger3-I | Module Input: Trigger that will start the CBF | [Protection Para  |
|            |                                               | /Global Prot Para |
|            |                                               | /Supervision      |
|            |                                               | /CBF]             |

## CBF Signals (Output States)

| Signal              | Description                     |
|---------------------|---------------------------------|
| active              | Signal: active                  |
| ExBlo               | Signal: External Blocking       |
| Waiting for Trigger | Waiting for Trigger             |
| running             | Signal: CBF-Module started      |
| Alarm               | Signal: Circuit Breaker Failure |
| Lockout             | Signal: Lockout                 |
| Res Lockout         | Signal: Reset Lockout           |

## Trigger signals of the Circuit Breaker Failure

| Name            | Description          |
|-----------------|----------------------|
|                 | No assignment        |
| MStart.TripCmd  | Signal: Trip Command |
| I[1].TripCmd    | Signal: Trip Command |
| I[2].TripCmd    | Signal: Trip Command |
| I[3].TripCmd    | Signal: Trip Command |
| I[4].TripCmd    | Signal: Trip Command |
| I[5].TripCmd    | Signal: Trip Command |
| I[6].TripCmd    | Signal: Trip Command |
| IG[1].TripCmd   | Signal: Trip Command |
| IG[2].TripCmd   | Signal: Trip Command |
| IG[3].TripCmd   | Signal: Trip Command |
| IG[4].TripCmd   | Signal: Trip Command |
| ThR.TripCmd     | Signal: Trip Command |
| Jam[1].TripCmd  | Signal: Trip Command |
| Jam[2].TripCmd  | Signal: Trip Command |
| I<[1].TripCmd   | Signal: Trip Command |
| I<[2].TripCmd   | Signal: Trip Command |
| I<[3].TripCmd   | Signal: Trip Command |
| V[1].TripCmd    | Signal: Trip Command |
| V[2].TripCmd    | Signal: Trip Command |
| V[3].TripCmd    | Signal: Trip Command |
| V[4].TripCmd    | Signal: Trip Command |
| V[5].TripCmd    | Signal: Trip Command |
| V[6].TripCmd    | Signal: Trip Command |
| VG[1].TripCmd   | Signal: Trip Command |
| VG[2].TripCmd   | Signal: Trip Command |
| I2>[1].TripCmd  | Signal: Trip Command |
| I2>[2].TripCmd  | Signal: Trip Command |
| V012[1].TripCmd | Signal: Trip Command |
| V012[2].TripCmd | Signal: Trip Command |
| V012[3].TripCmd | Signal: Trip Command |
| V012[4].TripCmd | Signal: Trip Command |
| V012[5].TripCmd | Signal: Trip Command |
| V012[6].TripCmd | Signal: Trip Command |
| f[1].TripCmd    | Signal: Trip Command |
| f[2].TripCmd    | Signal: Trip Command |

These trips will start the <u>CBF</u>module if »All trips« have been selected as the trigger event.

| Name                    | Description                            |
|-------------------------|----------------------------------------|
| f[3].TripCmd            | Signal: Trip Command                   |
| f[4].TripCmd            | Signal: Trip Command                   |
| f[5].TripCmd            | Signal: Trip Command                   |
| f[6].TripCmd            | Signal: Trip Command                   |
| PQS[1].TripCmd          | Signal: Trip Command                   |
| PQS[2].TripCmd          | Signal: Trip Command                   |
| PQS[3].TripCmd          | Signal: Trip Command                   |
| PQS[4].TripCmd          | Signal: Trip Command                   |
| PQS[5].TripCmd          | Signal: Trip Command                   |
| PQS[6].TripCmd          | Signal: Trip Command                   |
| PF[1].TripCmd           | Signal: Trip Command                   |
| PF[2].TripCmd           | Signal: Trip Command                   |
| ExP[1].TripCmd          | Signal: Trip Command                   |
| ExP[2].TripCmd          | Signal: Trip Command                   |
| ExP[3].TripCmd          | Signal: Trip Command                   |
| ExP[4].TripCmd          | Signal: Trip Command                   |
| RTD.TripCmd             | Signal: Trip Command                   |
| DI Slot X1.DI 1         | Signal: Digital Input                  |
| DI Slot X1.DI 2         | Signal: Digital Input                  |
| DI Slot X1.DI 3         | Signal: Digital Input                  |
| DI Slot X1.DI 4         | Signal: Digital Input                  |
| DI Slot X1.DI 5         | Signal: Digital Input                  |
| DI Slot X1.DI 6         | Signal: Digital Input                  |
| DI Slot X1.DI 7         | Signal: Digital Input                  |
| DI Slot X1.DI 8         | Signal: Digital Input                  |
| Logics.LE1.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE1.Timer Out    | Signal: Timer Output                   |
| Logics.LE1.Out          | Signal: Latched Output (Q)             |
| Logics.LE1.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE2.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE2.Timer Out    | Signal: Timer Output                   |
| Logics.LE2.Out          | Signal: Latched Output (Q)             |
| Logics.LE2.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE3.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE3.Timer Out    | Signal: Timer Output                   |
| Logics.LE3.Out          | Signal: Latched Output (Q)             |
| Logics.LE3.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE4.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE4.Timer Out    | Signal: Timer Output                   |
| Logics.LE4.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE4.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE5.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE5.Timer Out     | Signal: Timer Output                   |
| Logics.LE5.Out           | Signal: Latched Output (Q)             |
| Logics.LE5.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE6.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE6.Timer Out     | Signal: Timer Output                   |
| Logics.LE6.Out           | Signal: Latched Output (Q)             |
| Logics.LE6.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE7.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE7.Timer Out     | Signal: Timer Output                   |
| Logics.LE7.Out           | Signal: Latched Output (Q)             |
| Logics.LE7.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE8.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE8.Timer Out     | Signal: Timer Output                   |
| Logics.LE8.Out           | Signal: Latched Output (Q)             |
| Logics.LE8.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE9.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE9.Timer Out     | Signal: Timer Output                   |
| Logics.LE9.Out           | Signal: Latched Output (Q)             |
| Logics.LE9.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE10.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE10.Timer Out    | Signal: Timer Output                   |
| Logics.LE10.Out          | Signal: Latched Output (Q)             |
| Logics.LE10.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE11.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE11.Timer Out    | Signal: Timer Output                   |
| Logics.LE11.Out          | Signal: Latched Output (Q)             |
| Logics.LE11.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE12.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE12.Timer Out    | Signal: Timer Output                   |
| Logics.LE12.Out          | Signal: Latched Output (Q)             |
| Logics.LE12.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE13.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE13.Timer Out    | Signal: Timer Output                   |
| Logics.LE13.Out          | Signal: Latched Output (Q)             |
| Logics.LE13.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE14.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE14.Timer Out    | Signal: Timer Output                   |
| Logics.LE14.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE14.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE15.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE15.Timer Out    | Signal: Timer Output                   |
| Logics.LE15.Out          | Signal: Latched Output (Q)             |
| Logics.LE15.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE16.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE16.Timer Out    | Signal: Timer Output                   |
| Logics.LE16.Out          | Signal: Latched Output (Q)             |
| Logics.LE16.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE17.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE17.Timer Out    | Signal: Timer Output                   |
| Logics.LE17.Out          | Signal: Latched Output (Q)             |
| Logics.LE17.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE18.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE18.Timer Out    | Signal: Timer Output                   |
| Logics.LE18.Out          | Signal: Latched Output (Q)             |
| Logics.LE18.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE19.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE19.Timer Out    | Signal: Timer Output                   |
| Logics.LE19.Out          | Signal: Latched Output (Q)             |
| Logics.LE19.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE20.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE20.Timer Out    | Signal: Timer Output                   |
| Logics.LE20.Out          | Signal: Latched Output (Q)             |
| Logics.LE20.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE21.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE21.Timer Out    | Signal: Timer Output                   |
| Logics.LE21.Out          | Signal: Latched Output (Q)             |
| Logics.LE21.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE22.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE22.Timer Out    | Signal: Timer Output                   |
| Logics.LE22.Out          | Signal: Latched Output (Q)             |
| Logics.LE22.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE23.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE23.Timer Out    | Signal: Timer Output                   |
| Logics.LE23.Out          | Signal: Latched Output (Q)             |
| Logics.LE23.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE24.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE24.Timer Out    | Signal: Timer Output                   |
| Logics.LE24.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE24.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE25.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE25.Timer Out    | Signal: Timer Output                   |
| Logics.LE25.Out          | Signal: Latched Output (Q)             |
|                          | Signal: Negated Latched Output (Q NOT) |
| Logics.LE26.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE26.Timer Out    | Signal: Timer Output                   |
| Logics.LE26.Out          | Signal: Latched Output (Q)             |
| Logics.LE26.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE27.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE27.Timer Out    | Signal: Timer Output                   |
| Logics.LE27.Out          | Signal: Latched Output (Q)             |
| Logics.LE27.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE28.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE28.Timer Out    | Signal: Timer Output                   |
| Logics.LE28.Out          | Signal: Latched Output (Q)             |
| Logics.LE28.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE29.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE29.Timer Out    | Signal: Timer Output                   |
| Logics.LE29.Out          | Signal: Latched Output (Q)             |
| Logics.LE29.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE30.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE30.Timer Out    | Signal: Timer Output                   |
| Logics.LE30.Out          | Signal: Latched Output (Q)             |
| Logics.LE30.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE31.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE31.Timer Out    | Signal: Timer Output                   |
| Logics.LE31.Out          | Signal: Latched Output (Q)             |
| Logics.LE31.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE32.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE32.Timer Out    | Signal: Timer Output                   |
| Logics.LE32.Out          | Signal: Latched Output (Q)             |
| Logics.LE32.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE33.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE33.Timer Out    | Signal: Timer Output                   |
| Logics.LE33.Out          | Signal: Latched Output (Q)             |
| Logics.LE33.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE34.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE34.Timer Out    | Signal: Timer Output                   |
| Logics.LE34.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE34.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE35.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE35.Timer Out    | Signal: Timer Output                   |
| Logics.LE35.Out          | Signal: Latched Output (Q)             |
| Logics.LE35.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE36.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE36.Timer Out    | Signal: Timer Output                   |
| Logics.LE36.Out          | Signal: Latched Output (Q)             |
| Logics.LE36.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE37.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE37.Timer Out    | Signal: Timer Output                   |
| Logics.LE37.Out          | Signal: Latched Output (Q)             |
| Logics.LE37.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE38.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE38.Timer Out    | Signal: Timer Output                   |
| Logics.LE38.Out          | Signal: Latched Output (Q)             |
| Logics.LE38.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE39.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE39.Timer Out    | Signal: Timer Output                   |
| Logics.LE39.Out          | Signal: Latched Output (Q)             |
| Logics.LE39.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE40.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE40.Timer Out    | Signal: Timer Output                   |
| Logics.LE40.Out          | Signal: Latched Output (Q)             |
| Logics.LE40.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE41.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE41.Timer Out    | Signal: Timer Output                   |
| Logics.LE41.Out          | Signal: Latched Output (Q)             |
| Logics.LE41.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE42.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE42.Timer Out    | Signal: Timer Output                   |
| Logics.LE42.Out          | Signal: Latched Output (Q)             |
| Logics.LE42.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE43.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE43.Timer Out    | Signal: Timer Output                   |
| Logics.LE43.Out          | Signal: Latched Output (Q)             |
| Logics.LE43.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE44.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE44.Timer Out    | Signal: Timer Output                   |
| Logics.LE44.Out          | Signal: Latched Output (Q)             |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE44.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE45.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE45.Timer Out    | Signal: Timer Output                   |
| Logics.LE45.Out          | Signal: Latched Output (Q)             |
| Logics.LE45.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE46.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE46.Timer Out    | Signal: Timer Output                   |
| Logics.LE46.Out          | Signal: Latched Output (Q)             |
| Logics.LE46.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE47.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE47.Timer Out    | Signal: Timer Output                   |
| Logics.LE47.Out          | Signal: Latched Output (Q)             |
| Logics.LE47.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE48.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE48.Timer Out    | Signal: Timer Output                   |
| Logics.LE48.Out          | Signal: Latched Output (Q)             |
| Logics.LE48.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE49.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE49.Timer Out    | Signal: Timer Output                   |
| Logics.LE49.Out          | Signal: Latched Output (Q)             |
| Logics.LE49.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE50.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE50.Timer Out    | Signal: Timer Output                   |
| Logics.LE50.Out          | Signal: Latched Output (Q)             |
| Logics.LE50.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE51.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE51.Timer Out    | Signal: Timer Output                   |
| Logics.LE51.Out          | Signal: Latched Output (Q)             |
| Logics.LE51.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE52.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE52.Timer Out    | Signal: Timer Output                   |
| Logics.LE52.Out          | Signal: Latched Output (Q)             |
| Logics.LE52.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE53.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE53.Timer Out    | Signal: Timer Output                   |
| Logics.LE53.Out          | Signal: Latched Output (Q)             |
| Logics.LE53.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE54.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE54.Timer Out    | Signal: Timer Output                   |
| Logics.LE54.Out          | Signal: Latched Output (Q)             |

| Logics.LE55.Gate OutSignal: Output of tLogics.LE55.Timer OutSignal: Timer OutputLogics.LE55.OutSignal: Latched OutputLogics.LE55.Out invertedSignal: Negated Latched OutputLogics.LE56.Gate OutSignal: Output of tLogics.LE56.Timer OutSignal: Timer OutputLogics.LE56.OutSignal: Latched OutputLogics.LE56.OutSignal: Negated Latched OutputLogics.LE56.OutSignal: Latched OutputLogics.LE56.OutSignal: Latched OutputLogics.LE56.OutSignal: Negated Latched OutputLogics.LE57.Gate OutSignal: Output of t | put<br>utput (Q)<br>atched Output (Q NOT)<br>he logic gate<br>put<br>utput (Q)                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Logics.LE55.Gate OutSignal: Output of tLogics.LE55.Timer OutSignal: Timer OutputLogics.LE55.OutSignal: Latched OutputLogics.LE55.Out invertedSignal: Negated Latched OutputLogics.LE56.Gate OutSignal: Output of tLogics.LE56.Timer OutSignal: Timer OutputLogics.LE56.OutSignal: Timer OutputLogics.LE56.OutSignal: Latched OutputLogics.LE56.OutSignal: Latched OutputLogics.LE56.OutSignal: Latched OutputLogics.LE56.OutSignal: Output of tLogics.LE57.Gate OutSignal: Output of t                      | he logic gate<br>out<br>utput (Q)<br>atched Output (Q NOT)<br>he logic gate<br>out<br>utput (Q) |
| Logics.LE55.Timer OutSignal: Timer OutputLogics.LE55.OutSignal: Latched OutLogics.LE55.Out invertedSignal: Negated LatLogics.LE56.Gate OutSignal: Output of tLogics.LE56.Timer OutSignal: Timer OutputLogics.LE56.OutSignal: Latched OutputLogics.LE56.OutSignal: Negated LatLogics.LE56.OutSignal: Negated LatLogics.LE56.OutSignal: Latched OutputLogics.LE56.OutSignal: Negated LatLogics.LE57.Gate OutSignal: Output of t                                                                               | put<br>utput (Q)<br>atched Output (Q NOT)<br>he logic gate<br>put<br>utput (Q)                  |
| Logics.LE55.OutSignal: Latched OutLogics.LE55.Out invertedSignal: Negated LateLogics.LE56.Gate OutSignal: Output of tLogics.LE56.Timer OutSignal: Timer OutputLogics.LE56.OutSignal: Latched OutLogics.LE56.Out invertedSignal: Negated LateLogics.LE56.Out invertedSignal: Negated LateLogics.LE56.Out invertedSignal: Output of t                                                                                                                                                                         | utput (Q)<br>atched Output (Q NOT)<br>he logic gate<br>out<br>utput (Q)                         |
| Logics.LE55.Out invertedSignal: Negated LaLogics.LE56.Gate OutSignal: Output of tLogics.LE56.Timer OutSignal: Timer OutputLogics.LE56.OutSignal: Latched OutLogics.LE56.Out invertedSignal: Negated LaLogics.LE57.Gate OutSignal: Output of t                                                                                                                                                                                                                                                               | atched Output (Q NOT)<br>he logic gate<br>out<br>utput (Q)                                      |
| Logics.LE56.Gate OutSignal: Output of tLogics.LE56.Timer OutSignal: Timer OutputLogics.LE56.OutSignal: Latched OutputLogics.LE56.Out invertedSignal: Negated Latched OutputLogics.LE57.Gate OutSignal: Output of t                                                                                                                                                                                                                                                                                          | he logic gate<br>out<br>utput (Q)                                                               |
| Logics.LE56.Timer OutSignal: Timer OutputLogics.LE56.OutSignal: Latched OutLogics.LE56.Out invertedSignal: Negated Latched OutputLogics.LE57.Gate OutSignal: Output of table                                                                                                                                                                                                                                                                                                                                | utput (Q)                                                                                       |
| Logics.LE56.OutSignal: Latched OutLogics.LE56.Out invertedSignal: Negated Latched OutLogics.LE57.Gate OutSignal: Output of t                                                                                                                                                                                                                                                                                                                                                                                | utput (Q)                                                                                       |
| Logics.LE56.Out invertedSignal: Negated LaLogics.LE57.Gate OutSignal: Output of t                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                                                               |
| Logics.LE57.Gate Out Signal: Output of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 |
| Logics.LE57.Timer Out Signal: Timer Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| Logics.LE57.Out Signal: Latched Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | atched Output (Q NOT)                                                                           |
| Logics.LE58.Gate Out Signal: Output of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |
| Logics.LE58.Timer Out Signal: Timer Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| Logics.LE58.Out Signal: Latched Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
| Logics.LE58.Out inverted Signal: Negated La                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·                                                                                               |
| Logics.LE59.Gate Out Signal: Output of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                               |
| Logics.LE59.Timer Out Signal: Timer Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| Logics.LE59.Out Signal: Latched Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
| Logics.LE59.Out inverted Signal: Negated La                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |
| Logics.LE60.Gate Out Signal: Output of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |
| Logics.LE60.Timer Out Signal: Timer Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| Logics.LE60.Out Signal: Latched Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
| Logics.LE60.Out inverted Signal: Negated La                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |
| Logics.LE61.Gate Out Signal: Output of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |
| Logics.LE61.Timer Out Signal: Timer Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| Logics.LE61.Out Signal: Latched Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | atched Output (Q NOT)                                                                           |
| Logics.LE62.Gate Out Signal: Output of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |
| Logics.LE62.Timer Out Signal: Timer Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| Logics.LE62.Out Signal: Latched Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
| Logics.LE62.Out inverted Signal: Negated La                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |
| Logics.LE63.Gate Out Signal: Output of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                               |
| Logics.LE63.Timer Out Signal: Timer Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| Logics.LE63.Out Signal: Latched Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | atched Output (Q NOT)                                                                           |
| Logics.LE64.Gate Out Signal: Output of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |
| Logics.LE64.Timer Out Signal: Timer Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| Logics.LE64.Out Signal: Latched Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE64.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE65.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE65.Timer Out    | Signal: Timer Output                   |
| Logics.LE65.Out          | Signal: Latched Output (Q)             |
| Logics.LE65.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE66.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE66.Timer Out    | Signal: Timer Output                   |
| Logics.LE66.Out          | Signal: Latched Output (Q)             |
| Logics.LE66.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE67.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE67.Timer Out    | Signal: Timer Output                   |
| Logics.LE67.Out          | Signal: Latched Output (Q)             |
| Logics.LE67.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE68.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE68.Timer Out    | Signal: Timer Output                   |
| Logics.LE68.Out          | Signal: Latched Output (Q)             |
| Logics.LE68.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE69.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE69.Timer Out    | Signal: Timer Output                   |
| Logics.LE69.Out          | Signal: Latched Output (Q)             |
| Logics.LE69.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE70.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE70.Timer Out    | Signal: Timer Output                   |
| Logics.LE70.Out          | Signal: Latched Output (Q)             |
| Logics.LE70.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE71.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE71.Timer Out    | Signal: Timer Output                   |
| Logics.LE71.Out          | Signal: Latched Output (Q)             |
| Logics.LE71.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE72.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE72.Timer Out    | Signal: Timer Output                   |
| Logics.LE72.Out          | Signal: Latched Output (Q)             |
| Logics.LE72.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE73.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE73.Timer Out    | Signal: Timer Output                   |
| Logics.LE73.Out          | Signal: Latched Output (Q)             |
| Logics.LE73.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE74.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE74.Timer Out    | Signal: Timer Output                   |
| Logics.LE74.Out          | Signal: Latched Output (Q)             |

#### Supervision

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE74.Out inverted | Signal: Negated Latched Output (Q NOT) |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE75.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE75.Timer Out    | Signal: Timer Output                   |
| Logics.LE75.Out          | Signal: Latched Output (Q)             |
| Logics.LE75.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE76.Gate Out     | Signal: Output of the logic gate       |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE76.Timer Out    | Signal: Timer Output                   |
| Logics.LE76.Out          | Signal: Latched Output (Q)             |
| Logics.LE76.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE77.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE77.Timer Out    | Signal: Timer Output                   |
| Logics.LE77.Out          | Signal: Latched Output (Q)             |
| Logics.LE77.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE78.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE78.Timer Out    | Signal: Timer Output                   |
| Logics.LE78.Out          | Signal: Latched Output (Q)             |
| Logics.LE78.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE79.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE79.Timer Out    | Signal: Timer Output                   |
| Logics.LE79.Out          | Signal: Latched Output (Q)             |
| Logics.LE79.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE80.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE80.Timer Out    | Signal: Timer Output                   |
| Logics.LE80.Out          | Signal: Latched Output (Q)             |
| Logics.LE80.Out inverted | Signal: Negated Latched Output (Q NOT) |

| Name           | Description          |
|----------------|----------------------|
|                | No assignment        |
| I[1].TripCmd   | Signal: Trip Command |
| I[2].TripCmd   | Signal: Trip Command |
| I[3].TripCmd   | Signal: Trip Command |
| I[4].TripCmd   | Signal: Trip Command |
| I[5].TripCmd   | Signal: Trip Command |
| I[6].TripCmd   | Signal: Trip Command |
| IG[1].TripCmd  | Signal: Trip Command |
| IG[2].TripCmd  | Signal: Trip Command |
| IG[3].TripCmd  | Signal: Trip Command |
| IG[4].TripCmd  | Signal: Trip Command |
| ThR.TripCmd    | Signal: Trip Command |
| Jam[1].TripCmd | Signal: Trip Command |
| Jam[2].TripCmd | Signal: Trip Command |
| I<[1].TripCmd  | Signal: Trip Command |

## These trips will start the BF module if »All current« functions have been selected as the trigger event.

| Name           | Description          |
|----------------|----------------------|
| I<[2].TripCmd  | Signal: Trip Command |
| I<[3].TripCmd  | Signal: Trip Command |
| I2>[1].TripCmd | Signal: Trip Command |
| I2>[2].TripCmd | Signal: Trip Command |

| Name           | Description          |
|----------------|----------------------|
|                | No assignment        |
| ExP[1].TripCmd | Signal: Trip Command |
| ExP[2].TripCmd | Signal: Trip Command |
| ExP[3].TripCmd | Signal: Trip Command |
| ExP[4].TripCmd | Signal: Trip Command |

These trips will start the BF module if »External trips« have been selected as the trigger event.

## Commissioning Example: Supervision Scheme 50BF

#### Object to Be Tested:

Test of the breaker failure protection (Supervision Scheme 50BF).

Necessary Means:

- Current source;
- Ammeter; and
- Timer.

## **NOTICE** When testing, the applied test current must always be higher than the tripping threshold *»I-CBF«*. If the test current falls below the threshold while the breaker is in the "Off" position, no pickup will be generated.

#### Procedure (Single-Phase):

For testing the tripping time of the CBF protection, a test current has to be higher than the threshold value of one of the current protection modules that are assigned to trigger the CBF protection. The CBF trip delay can be measured from the time when one of the triggering inputs becomes active to the time when the CBF protection trip is asserted.

To avoid wiring errors, checked to make sure the breaker in the upstream system switches off.

The time, measured by the timer, should be in line with the specified tolerances.

#### Successful Test Result:

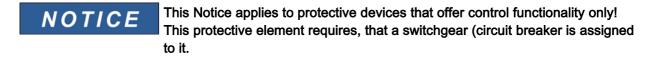
The actual times measured comply with the setpoint times. The breaker in the higher-level section switches off.



Re-connect the control cable to the breaker!

## TCS - Trip Circuit Supervision [74TC]

Available elements: <u>TCS</u>

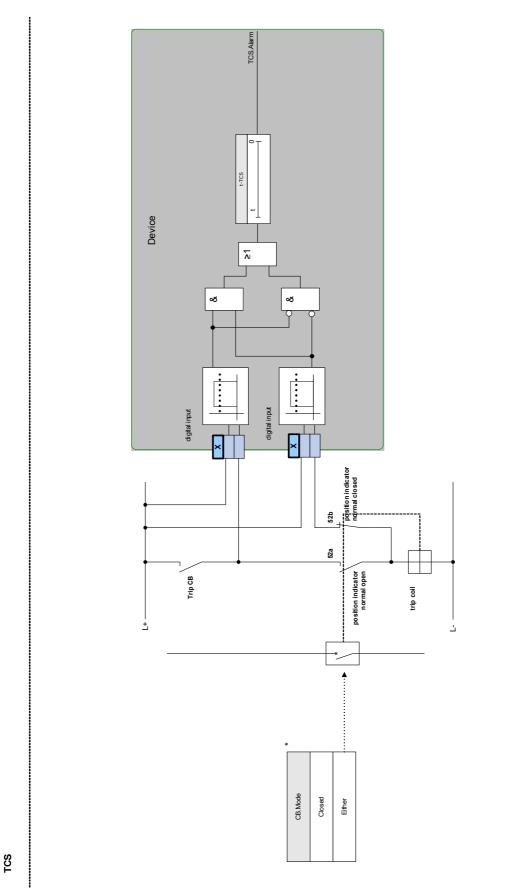

The trip circuit monitoring is used for monitoring if the trip circuit is ready for operations. The monitoring can be fulfilled in two ways. The first assumes only Aux On (52a) is used in the trip circuit. The second assumes that, in addition to Aux On (52a), Aux Off(52b) is also used for the circuit monitoring.

With »*Aux On (52a)*, only in the trip circuit, the monitoring is only effective when the breaker is closed while if both »*Aux On (52a)*, and »*Aux Off(52b)*« are used, the trip circuit will be monitored all time as long as the control power is on.

Note that the digital inputs used for this purpose must be configured properly based on the trip circuit control voltage. If the trip circuit is detected broken, an alarm will be issued with a specified delay, which must be longer than the time when a trip contact is closed to the time when the breaker status is clearly recognized by the relay.

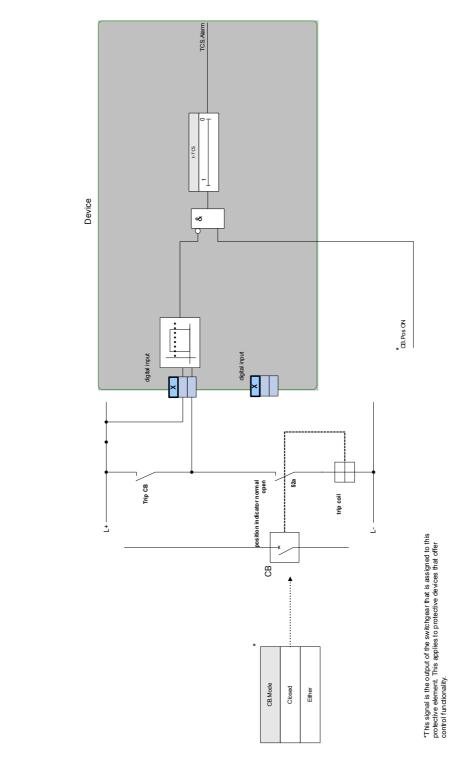


In Slot 1 has 2 digital inputs, each of which has a separate root (contact separation) for the trip circuit supervision.




In this case, the trip circuit supply voltage serves also as supply voltage for the digital inputs and so the supply voltage failure of a trip circuit can be detected directly.

In order to identify a conductor failure in the trip circuit on the supply line or in the trip coil, the off-coil has to be looped-in to the supervision circuit.


The time delay is to be set in a way that switching actions cannot cause false trips in this module.

Connection example: Trip circuit supervision with two CB auxiliary contacts.



\*This signal is the output of the switchgear that is assigned to this protective element. This applies to protective devices that offer control functionality.

Connection example: Trip circuit supervision with one CB auxiliary contact (Aux On (52a)) only.



TCS

## Device Planning Parameters of the Trip Circuit Supervision

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | use         |            |                   |
| $\bigotimes$ |             |             |            |                   |

## Global Protection Parameters of the Trip Circuit Supervision

| Parameter | Description                                                                                                                                                      | Setting range          | Default | Menu path                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|----------------------------------------------------------------------|
| Mode      | Select if trip circuit is going to be monitored<br>when the breaker is closed or when the<br>breaker is either open or close.                                    | Closed,<br>Either      | Closed  | [Protection<br>Para<br>/Global Prot<br>Para<br>/Supervision<br>/TCS] |
| Input 1   | Select the input configured to monitor the trip coil when the breaker is closed.                                                                                 | 1n, Dig Inputs         |         | [Protection<br>Para<br>/Global Prot<br>Para<br>/Supervision<br>/TCS] |
| Input 2   | Select the input configured to monitor the<br>trip coil when the breaker is open. Only<br>available if Mode set to "Either".<br>Only available if: Mode = Either | 1n, Dig Inputs         |         | [Protection<br>Para<br>/Global Prot<br>Para<br>/Supervision<br>/TCS] |
| ExBlo1    | External blocking of the module, if blocking<br>is activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true.             | 1n,<br>Assignment List |         | [Protection<br>Para<br>/Global Prot<br>Para<br>/Supervision<br>/TCS] |
| ExBlo2    | External blocking of the module, if blocking<br>is activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true.             | 1n,<br>Assignment List |         | [Protection<br>Para<br>/Global Prot<br>Para<br>/Supervision<br>/TCS] |

## Setting Group Parameters of the Trip Circuit Supervision

| Parameter | Description                                                                                                                                                                                                                                                                                                 | Setting range       | Default  | Menu path                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-------------------------------------------------------|
| Function  | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                       | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/Supervision<br>/TCS] |
| ExBlo Fc  | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active". | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/Supervision<br>/TCS] |
| t-TCS     | Tripping delay time of the Trip Circuit Supervision                                                                                                                                                                                                                                                         | 0.10 - 10.00s       | 0.2s     | [Protection<br>Para                                   |
|           |                                                                                                                                                                                                                                                                                                             |                     |          | /<14>                                                 |
|           |                                                                                                                                                                                                                                                                                                             |                     |          | /Supervision                                          |
|           |                                                                                                                                                                                                                                                                                                             |                     |          | /TCS]                                                 |

## Trip Circuit Supervision Input States

| Name      | Description                                                                 | Assignment via    |
|-----------|-----------------------------------------------------------------------------|-------------------|
| Aux ON-I  | Module Input State: Position indicator/check-back signal of the CB (52a)    | [Protection Para  |
|           |                                                                             | /Global Prot Para |
|           |                                                                             | /Supervision      |
|           |                                                                             | /TCS]             |
| Aux OFF-I | Module input state: Position indicator/check-back<br>signal of the CB (52b) | [Protection Para  |
|           |                                                                             | /Global Prot Para |
|           |                                                                             | /Supervision      |
|           |                                                                             | /TCS]             |
| ExBlo1-I  | Module input state: External blocking1                                      | [Protection Para  |
|           |                                                                             | /Global Prot Para |
|           |                                                                             | /Supervision      |
|           |                                                                             | /TCS]             |
| ExBlo2-I  | Module input state: External blocking2                                      | [Protection Para  |
|           |                                                                             | /Global Prot Para |
|           |                                                                             | /Supervision      |
|           |                                                                             | /TCS]             |

## Trip Circuit Supervision Signals (Output States)

| Signal       | Description                                                      |
|--------------|------------------------------------------------------------------|
| active       | Signal: active                                                   |
| ExBlo        | Signal: External Blocking                                        |
| Alarm        | Signal: Alarm Trip Circuit Supervision                           |
| Not Possible | Not possible because no state indicator assigned to the breaker. |

## Commissioning: Trip Circuit Supervision [74TC]



For CBs that trip by means of little energy (e.g. via an optocoupler), it has to be ensured that the current applied by the digital inputs will not cause false tripping of the CB.

*Object to be tested* Test of the trip circuit supervision.

*Procedure, part 1* Simulate failure of the control voltage in the power circuits.

Successful test result, part 1 After expiry of *»t-TCS«* the trip circuit supervision <u>*TCS*</u> of the device should signal an alarm.

*Procedure, part 2* Simulate a broken cable in the CB control circuit.

Successful test result, part 2 After expiry of *»t-TCS«* the trip circuit supervision <u>*TCS*</u> of the device should signal an alarm.

## CTS - Current Transformer Supervision [60L]

Available elements: CTS

Wire breaks and failures within measuring circuits cause current transformer failures.

The module <u>»CTS«</u> can detect a failure of the CT if the calculated earth current does not match the measured one. If an adjustable threshold value (Difference of measured and calculated earth current) is exceeded, a CT failure can be assumed. This is signaled through a message/alarm.

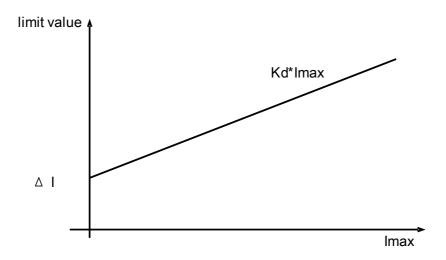
The precondition is that the conductor currents are measured by the device and the earth current, for instance, by a ring core type current transformer.

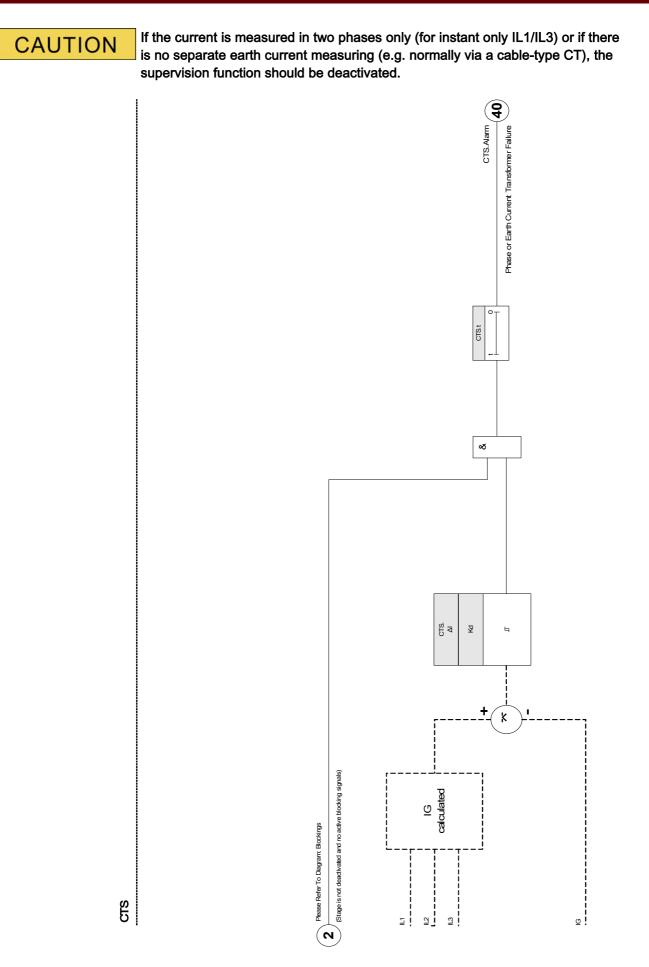
The measuring principles of the circuit supervision are based on comparing the measured and the calculated residual currents:

In an ideal case these are:

$$(I\vec{L}1 + I\vec{L}2 + I\vec{L}3) + KI * I\vec{G} = 3 * I_0 + KI * I\vec{G} = 0$$

KI represents a correction factor which takes the different transformation ratio of the phase- and earth current transformers into account. The device automatically calculates this factor from the rated field parameters, i.e. the relation between the rated primary and secondary current values of the phase- and earth current transformers.


For compensating the current proportional ratio error of the measuring circuits, the dynamic correction factor Kd can be used. As a function of the measured max. current this factor is considering the linear rising measuring error. The limiting value of the CT supervision is calculated as follows:


 $\Delta I$  = deviation I (rated value) Kd = correction factor Imax = current maximum Limiting value =  $\Delta I$  + Kd x Imax

Precondition for identifying an error

 $3 \ast \vec{I}_0 + KI \ast \vec{IG} \ge Delta I + Kd \ast Imax$ 

The evaluation method of the circuit supervision by using factor Kd can be graphically represented as follows:





# Device Planning Parameters of the Current Transformer Supervision

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | use         |            |                   |
| $\bigotimes$ |             |             |            |                   |

# Global Protection Parameter of the Current Transformer Supervision

| Parameter | Description                                                                                | Setting range          | Default | Menu path            |
|-----------|--------------------------------------------------------------------------------------------|------------------------|---------|----------------------|
| ExBlo1    | External blocking of the module, if blocking is activated (allowed) within a parameter set | 1n,<br>Assignment List |         | [Protection<br>Para  |
|           | and if the state of the assigned signal is true.                                           |                        |         | /Global Prot<br>Para |
|           |                                                                                            |                        |         | /Supervision         |
|           |                                                                                            |                        |         | /CTS]                |
| ExBlo2    | External blocking of the module, if blocking is activated (allowed) within a parameter set | 1n,<br>Assignment List |         | [Protection<br>Para  |
|           | and if the state of the assigned signal is true.                                           |                        |         | /Global Prot<br>Para |
|           |                                                                                            |                        |         | /Supervision         |
|           |                                                                                            |                        |         | /CTS]                |

# Setting Group Parameters of the Current Transformer Supervision

| Parameter   | Description                                                                                                                                                                                                                                                                                                                                                                                                      | Setting range       | Default  | Menu path                                             |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-------------------------------------------------------|
| Function    | Permanent activation or deactivation of module/stage.                                                                                                                                                                                                                                                                                                                                                            | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/Supervision<br>/CTS] |
| ExBlo Fc    | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active".                                                                                                      | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/Supervision<br>/CTS] |
|             | In order to prevent faulty tripping of phase selective protection functions that use the current as tripping criterion. If the difference of the measured earth current and the calculated value I0 is higher than the pick up value $\Delta I$ , an alarm event is generated after expiring of the excitation time. In such a case, a fuse failure, a broken wire or a faulty measuring circuit can be assumed. | 0.10 - 1.00In       | 0.50In   | [Protection<br>Para<br>/<14><br>/Supervision<br>/CTS] |
| Alarm delay | Alarm delay                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0 - 9999.0s       | 1.0s     | [Protection<br>Para<br>/<14><br>/Supervision<br>/CTS] |
| Kd          | Dynamic correction factor for the evaluation<br>of the difference between calculated and<br>measured earth current. This correction<br>factor allows transformer faults, caused by<br>higher currents, to be compensated.                                                                                                                                                                                        | 0.00 - 0.99         | 0.00     | [Protection<br>Para<br>/<14><br>/Supervision<br>/CTS] |

# **Current Transformer Supervision Input States**

| Name     | Description                            | Assignment via    |
|----------|----------------------------------------|-------------------|
| ExBlo1-I | Module input state: External blocking1 | [Protection Para  |
|          |                                        | /Global Prot Para |
|          |                                        | /Supervision      |
|          |                                        | /CTS]             |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para  |
|          |                                        | /Global Prot Para |
|          |                                        | /Supervision      |
|          |                                        | /CTS]             |

## Current Transformer Supervision Signals (Outputs States)

| Signal | Description                                                     |
|--------|-----------------------------------------------------------------|
| active | Signal: active                                                  |
| ExBlo  | Signal: External Blocking                                       |
| Alarm  | Signal: Alarm Current Transformer Measuring Circuit Supervision |

## Commissioning: Current Transformer Failure Supervision



Precondition:

1. Measurement of all three phase currents (are applied to the measuring inputs of the device).

2. The earth current is detected via a cable-type transformer (not in Holmgreen connection).

#### Object to be tested

Check of the CT supervision (by comparing the calculated with the measured earth current).

#### Necessary means

Three-phase current source

#### Procedure, part 1

- Set the limiting value of the CTS to *»delta I=0.1\*In«*.
- Feed a three-phase, symmetrical current system (approx. nominal current) to the secondary side.
- Disconnect the current of one phase from one of the measuring inputs (the symmetrical feeding at secondary side has to be maintained).
- Make sure that the signal »CTS.ALARM« is generated now.

#### Successful test result, part 1

■ The signal »CTS.ALARM« is generated.

#### Procedure, part 2

- Feed a three-phase, symmetrical current system (approx. nominal current) to the secondary side.
- Feed a current that is higher than the threshold value for the measuring circuit supervision to the earth current measuring input.
- Ascertain that the signal »CTS.ALARM« is generated now.

Successful test result, part 2 The signal »CTS.ALARM« is generated.

## LOP - Loss of Potential

Available elements: <u>LOP</u>

## Loss of Potential - Evaluating Measured Quantities

# NOTICE

Ensure that the LOP has enough time to block faulty tripping of modules that use LOP. That means, the delay time of the LOP should to be shorter than the tripping delay of modules that use LOP.

# NOTICE

In case of transformer protection relays the LOP element uses current and voltage measured at the winding side determined by paramter: [Field Para / VT / VT Winding Side ].

The LOP function detects the loss of voltage in any of the voltage input measuring circuits. Faulty tripping of protective elements that take voltage into account can be prevented by means of this supervision element. The following measured values and information to detect an Phase VT Failure condition:

- Three-phase voltages;
- Ratio of negative-to-positive sequence voltages;
- Zero sequence voltage;
- Three-phase currents;
- Residual current (I0);
- · Pickup flags from all overcurrent elements; and
- Breaker status (option)

After a set time delay time an Alarm »LOP.LOP BLO« will be issued.

How to set up the Loss of Potential (Evaluating Measured Quantities)

- Set the Alarm Time Delay »t-Alarm«.
- To prevent a malfunction of the VT supervision for a system fault assign Alarms of overcurrent elements that should block the Loss of Potential element.
- It is necessary to set the parameter »LOP.LOP Blo Enable« to »active«. Otherwise the Measuring circuit supervision cannot block elements in case of a loss of potential.

#### How to make the Loss of Potential (Evaluating Measured Quantities) effective

The Loss of Potential respectively measuring circuit supervision can be used to block protective elements like undervoltage protection in order to prevent faulty tripping.

Set the parameter *»Measuring Circuit Supervision=active«* within those protective elements that should be blocked by the Loss of Potential supervision.

#### Loss of Potential - Fuse Failure

#### VT Supervision via digital inputs (Fuse Failure)

The module <u>»LOP«</u> is capable of detecting a fuse failure at the secondary side of the VTs as long as the automatic circuit breakers of the VTs are connected with the device via a digital input and if this input is assigned to the module <u>»LOP«</u>.

Setting the Parameters for detecting a fuse failure (FF) of a phase voltage transformer

In order to detect a fuse failure of a phase voltage transformer via digital input, please proceed as follows:

- Assign a digital input onto the parameter »LOP.Ex FF VT« that represents the state of the automatic circuit breaker of the phase voltage transformer.
- Set the parameter »*Measuring Crcuit Supervison=active«* within all those protective elements, that should be blocked by a fuse failure.

Setting the Parameters for detecting a fuse failure (FF) of a earth phase voltage transformer

In order to detect a fuse failure of a phase voltage transformer via digital input, please proceed as follows:

- Assign a digital input onto the parameter »LOP.Ex FF EVT« that represents the state of the automatic circuit breaker of the phase voltage transformer.
- Set the parameter *»Measuring Crcuit Supervison=active«* within all those protective elements, that should be blocked by a fuse failure.

| LOP                                   |                                                                            | LOP_Y01                |
|---------------------------------------|----------------------------------------------------------------------------|------------------------|
| LOP .                                 |                                                                            | LOP . Ex FF VT-I (38b) |
| Ex FF VT<br>1n, Assignment List       |                                                                            | $\bigcirc$             |
|                                       |                                                                            | LOP . Ex FF VT         |
| LOP .<br>Ex FF EVT                    |                                                                            | LOP . Ex FF EVT-I      |
| 1n, Assignment List                   |                                                                            | LOP . Ex FF VT         |
| Please Refer To Diagram               | am : Blockings<br>ted and no active blocking signals )                     |                        |
| 2)                                    | ×                                                                          |                        |
| Field Para<br>VT con                  |                                                                            |                        |
| Phase to Phase                        | &                                                                          |                        |
|                                       | VL12∠Φ =VL23∠Φ =0.5·VL31∠Φ+180° ≥1 ≥1                                      |                        |
|                                       | VL12∠Φ =VL31∠Φ =0.5·VL23∠Φ+180°                                            |                        |
|                                       | $VL23\angle\Phi = VL31\angle\Phi = 0.5 \cdot VL12\angle\Phi + 180^{\circ}$ |                        |
|                                       | V < 0.03·Vn                                                                |                        |
| VL1/VL12                              |                                                                            |                        |
| VL2/VL23                              |                                                                            |                        |
| VL3/VL31                              |                                                                            |                        |
|                                       | %(V2/V1) > 40%                                                             |                        |
| %(V2/V1)                              |                                                                            |                        |
|                                       |                                                                            |                        |
| V0                                    | V0 < 0.01·Vn                                                               |                        |
|                                       |                                                                            |                        |
| CT<br>[ ** ]                          |                                                                            |                        |
| IL1                                   |                                                                            |                        |
| IL2                                   |                                                                            |                        |
| IL3                                   |                                                                            |                        |
|                                       | 3·10 < 0.1·In                                                              |                        |
| 3.10                                  |                                                                            |                        |
| CBP                                   | Pos Detect = closed                                                        |                        |
|                                       | [*]                                                                        |                        |
| V1<0.01·Vn                            |                                                                            |                        |
| l1<0.01·ln                            |                                                                            |                        |
|                                       |                                                                            |                        |
| Dead Bus Detection<br>active          |                                                                            |                        |
| inactive                              |                                                                            |                        |
|                                       |                                                                            |                        |
| Blo Trigger                           |                                                                            |                        |
| 1 n, I [x]                            | <u>}</u> ≥1                                                                |                        |
|                                       |                                                                            |                        |
| Blo Trigger                           |                                                                            |                        |
| 1 n, I [x]                            |                                                                            |                        |
|                                       | . ∟                                                                        |                        |
|                                       |                                                                            | LOP . Alarm            |
|                                       |                                                                            |                        |
|                                       | LOP .<br>t-Alarm 50 ms 100 ms                                              |                        |
|                                       | t 0 t-ResetDelay &                                                         |                        |
| LODD Freekle                          |                                                                            | LOP . LOP Blo          |
| LOPB Enable<br>inactive               |                                                                            | (38a)                  |
| active                                | ╡┤│                                                                        |                        |
| · · · · · · · · · · · · · · · · · · · |                                                                            |                        |

[\*] The breaker position is not taken into account if no breaker is selected/assigned.

[\*\*] For devices with more than one CT, "CT" denotes the one at the side to which the VT is connected.

# Device Planning Parameters of the LOP Module

| Parameter    | Description | Options     | Default    | Menu path         |
|--------------|-------------|-------------|------------|-------------------|
| Mode         | Mode        | do not use, | do not use | [Device planning] |
|              |             | use         |            |                   |
| $\bigotimes$ |             |             |            |                   |

## Global Protection Parameters of the LOP Module

| Parameter     | Description                                                                                                           | Setting range          | Default | Menu path            |
|---------------|-----------------------------------------------------------------------------------------------------------------------|------------------------|---------|----------------------|
| CB Pos Detect | If there is a circuit breaker assigned, LOP<br>will be inhibited if the circuit breaker is                            | ,<br>SG[1].Pos         |         | [Protection<br>Para  |
| $\bigotimes$  | open. The position of the breaker will not be taken into account by LOP if no breaker is assigned.                    |                        |         | /Global Prot<br>Para |
|               |                                                                                                                       |                        |         | /Supervision         |
|               |                                                                                                                       |                        |         | /LOP]                |
| ExBlo1        | Blo1 External blocking of the module, if blocking 1n,<br>is activated (allowed) within a parameter set Assignment Lis |                        |         | [Protection<br>Para  |
| $\bigotimes$  | and if the state of the assigned signal is true.                                                                      |                        |         | /Global Prot<br>Para |
|               |                                                                                                                       |                        |         | /Supervision         |
|               |                                                                                                                       |                        |         | /LOP]                |
| ExBlo2        | External blocking of the module, if blocking is activated (allowed) within a parameter set                            | 1n,<br>Assignment List |         | [Protection<br>Para  |
|               | and if the state of the assigned signal is true.                                                                      |                        |         | /Global Prot<br>Para |
|               |                                                                                                                       |                        |         | /Supervision         |
|               |                                                                                                                       |                        |         | /LOP]                |
| Blo Trigger1  | An Alarm of this protective element will block the Loss of Potential Detection.                                       | Blo Trigger            |         | [Protection<br>Para  |
| $\bigotimes$  |                                                                                                                       |                        |         | /Global Prot<br>Para |
|               |                                                                                                                       |                        |         | /Supervision         |
|               |                                                                                                                       |                        |         | /LOP]                |
| Blo Trigger2  | An Alarm of this protective element will block the Loss of Potential Detection.                                       | Blo Trigger            |         | [Protection<br>Para  |
|               |                                                                                                                       |                        |         | /Global Prot<br>Para |
|               |                                                                                                                       |                        |         | /Supervision         |
|               |                                                                                                                       |                        |         | /LOP]                |

| Parameter    | Description                                                                     | Setting range          | Default | Menu path            |
|--------------|---------------------------------------------------------------------------------|------------------------|---------|----------------------|
| Blo Trigger3 | An Alarm of this protective element will block the Loss of Potential Detection. | Blo Trigger            |         | [Protection<br>Para  |
|              |                                                                                 |                        |         | /Global Prot<br>Para |
|              |                                                                                 |                        |         | /Supervision         |
|              |                                                                                 |                        |         | /LOP]                |
| Blo Trigger4 | An Alarm of this protective element will block the Loss of Potential Detection. | Blo Trigger            |         | [Protection<br>Para  |
|              |                                                                                 |                        |         | /Global Prot<br>Para |
|              |                                                                                 |                        |         | /Supervision         |
|              |                                                                                 |                        |         | /LOP]                |
| Blo Trigger5 | An Alarm of this protective element will block the Loss of Potential Detection. | Blo Trigger            |         | [Protection<br>Para  |
|              |                                                                                 |                        |         | /Global Prot<br>Para |
|              |                                                                                 |                        |         | /Supervision         |
|              |                                                                                 |                        |         | /LOP]                |
| Ex FF VT     | Alarm Fuse Failure Voltage Transformers                                         | 1n,<br>Assignment List |         | [Protection<br>Para  |
|              |                                                                                 |                        |         | /Global Prot<br>Para |
|              |                                                                                 |                        |         | /Supervision         |
|              |                                                                                 |                        |         | /LOP]                |
| Ex FF EVT    | Alarm Fuse Failure Earth Voltage<br>Transformers                                | 1n,<br>Assignment List |         | [Protection<br>Para  |
|              |                                                                                 |                        |         | /Global Prot<br>Para |
|              |                                                                                 |                        |         | /Supervision         |
|              |                                                                                 |                        |         | /LOP]                |

# Setting Group Parameters of the LOP Module

| Parameter | Description                                           | Setting range       | Default  | Menu path                                             |
|-----------|-------------------------------------------------------|---------------------|----------|-------------------------------------------------------|
| Function  | Permanent activation or deactivation of module/stage. | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/Supervision<br>/LOP] |

| Parameter             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Setting range       | Default  | Menu path                                             |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-------------------------------------------------------|
| ExBlo Fc              | Activate (allow) or inactivate (disallow)<br>blocking of the module/stage. This<br>parameter is only effective if a signal is<br>assigned to the corresponding global<br>protection parameter. If the signal becomes<br>true, those modules/stages are blocked that<br>are parameterized "ExBlo Fc=active".                                                                                                                                                                                                    | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/Supervision<br>/LOP] |
| LOPB Enable           | Activate (allow) or inactivate (disallow)<br>blocking by the module LOP.                                                                                                                                                                                                                                                                                                                                                                                                                                       | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/Supervision<br>/LOP] |
| I<                    | To prevent unintended operation during<br>faults, this threshold should be used to<br>distinguish between load current and<br>overcurrent. A current above this threshold<br>will be seen as overcurrent and LOP will be<br>inhibited. If the current detector identifies<br>load current as overcurrent (threshold to<br>low), a LOP situation will not be detected<br>and if the threshold is too high, a fault<br>situation will be identified as LOP which<br>results in blocking of protection functions. | 0.5 - 4.0In         | 2.0In    | [Protection<br>Para<br>/<14><br>/Supervision<br>/LOP] |
| t-Alarm               | Pickup Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 - 9999.0s         | 0.15     | [Protection<br>Para<br>/<14><br>/Supervision<br>/LOP] |
| Dead Bus<br>Detection | If this detection is active, LOP will be<br>inhibited if there is no current and voltage<br>applied.                                                                                                                                                                                                                                                                                                                                                                                                           | inactive,<br>active | inactive | [Protection<br>Para<br>/<14><br>/Supervision<br>/LOP] |

# LOP Module Input States

| Name     | Description                            | Assignment via    |  |
|----------|----------------------------------------|-------------------|--|
| ExBlo1-I | Module input state: External blocking1 | [Protection Para  |  |
|          |                                        | /Global Prot Para |  |
|          |                                        | /Supervision      |  |
|          |                                        | /LOP]             |  |

| Name           | Description                                                                                                | Assignment via    |
|----------------|------------------------------------------------------------------------------------------------------------|-------------------|
| ExBlo2-I       | Module input state: External blocking2                                                                     | [Protection Para  |
|                |                                                                                                            | /Global Prot Para |
|                |                                                                                                            | /Supervision      |
|                |                                                                                                            | /LOP]             |
| Ex FF VT-I     | State of the module input: Alarm Fuse Failure                                                              | [Protection Para  |
|                | Voltage Transformers                                                                                       | /Global Prot Para |
|                |                                                                                                            | /Supervision      |
|                |                                                                                                            | /LOP]             |
| Ex FF EVT-I    | State of the module input: Alarm Fuse Failure Earth                                                        | [Protection Para  |
|                | Voltage Transformers                                                                                       | /Global Prot Para |
|                |                                                                                                            | /Supervision      |
|                |                                                                                                            | /LOP]             |
| Blo Trigger1-I | State of the module input: An Alarm of this                                                                | [Protection Para  |
|                | protective element will block the Loss of Potential Detection.                                             | /Global Prot Para |
|                |                                                                                                            | /Supervision      |
|                |                                                                                                            | /LOP]             |
| Blo Trigger2-I | State of the module input: An Alarm of this protective element will block the Loss of Potential Detection. | [Protection Para  |
|                |                                                                                                            | /Global Prot Para |
|                |                                                                                                            | /Supervision      |
|                |                                                                                                            | /LOP]             |
| Blo Trigger3-I | State of the module input: An Alarm of this protective element will block the Loss of Potential Detection. | [Protection Para  |
|                |                                                                                                            | /Global Prot Para |
|                |                                                                                                            | /Supervision      |
|                |                                                                                                            | /LOP]             |
| Blo Trigger4-I | State of the module input: An Alarm of this                                                                | [Protection Para  |
|                | protective element will block the Loss of Potential<br>Detection.                                          | /Global Prot Para |
|                |                                                                                                            | /Supervision      |
|                |                                                                                                            | /LOP]             |
| Blo Trigger5-I | State of the module input: An Alarm of this                                                                | [Protection Para  |
|                | protective element will block the Loss of Potential Detection.                                             | /Global Prot Para |
|                |                                                                                                            | /Supervision      |
|                |                                                                                                            | /LOP]             |

# LOP Module Signals (Output States)

| Signal | Description                     |
|--------|---------------------------------|
| active | Signal: active                  |
| ExBlo  | Signal: External Blocking       |
| Alarm  | Signal: Alarm Loss of Potential |

| Signal    | Description                                           |
|-----------|-------------------------------------------------------|
| LOP Blo   | Signal: Loss of Potential blocks other elements.      |
| Ex FF VT  | Signal: Ex FF VT                                      |
| Ex FF EVT | Signal: Alarm Fuse Failure Earth Voltage Transformers |

# **Blocking Trigger**

| Name        | Description      |
|-------------|------------------|
|             | No assignment    |
| I[1].Alarm  | Signal: Alarm    |
| I[2].Alarm  | Signal: Alarm    |
| I[3].Alarm  | Signal: Alarm    |
| I[4].Alarm  | Signal: Alarm    |
| I[5].Alarm  | Signal: Alarm    |
| I[6].Alarm  | Signal: Alarm    |
| IG[1].Alarm | Signal: Alarm IG |
| IG[2].Alarm | Signal: Alarm IG |
| IG[3].Alarm | Signal: Alarm IG |
| IG[4].Alarm | Signal: Alarm IG |

## Commissioning: Loss of Potential

Object to be tested:

Test of the module LOP.

#### Necessary means:

- Three-phase current source
- Three-phase voltage source.

#### Procedure

#### Test part 1:

Examine if the output signal »LOP BLO « becomes true if:

•Any of the three-phase voltages becomes less 0.01\*Vn Volt

•The residual voltage is less than 0.01\*Vn Volt or the %V2/V1 ratio is greater 40%

•All three-phase currents are less than the load current / overcurrent detection (I<) threshold.

•The residual current is less than 0.1 Ipu (rated current)

•No pickup of an OC element which should blocks VT Supervision

•The breaker is closed (option, if a breaker is assigned).

•The offline detection has not detected a dead busbar (No current, no voltage measured).

#### Successful test result part 1:

The output signals only become true if all the above mentioned conditions are fulfilled.

#### Test part 2:

Set the parameter »*Measuring Circuit Supervision=active«* within those protective elements that should be blocked by the Loss of Potential supervision (like undervoltage protection.,voltage controlled overcurrent protection...).

Check those protective elements if they are blocked if the Loss of Potential supervision has generated a block command.

#### Successful test result part 2:

All protective elements that should be blocked in case of Loss of Potential supervision are blocked if the conditions (Procedure part 1) are fulfilled.

## Commissioning: Loss of Potential (FF via DI)

#### Object to be tested:

Check if the auto fuse failure is correctly identified by the device.

#### Procedure

• Turn off the automatic circuit breaker of the VTs (all poles to be dead)

#### Successful test result

- The state of the respective digital input changes.
- All protective elements are blocked which should not have an unwanted operation caused by a fuse failure *»Measuring Circuit Supervision=active«.*

## Phase Sequence Supervision

The device calculates the phase sequence at each CT and VT (based on positive-sequence and negativesequence components). The calculated phase sequence (i. e. "ACB" or "ABC") is permanently compared with the setting that has been made at [Field Para/General Settings] *»Phase Sequence«*.

The menu [Operation/Status Display/Supervision/Phase Sequence] contains a specific (warning) signal for each CT and VT. If the check of a CT / VT finds that the actual phase sequence is different from the setting under [Field Para] then the respective signal becomes true (active).

The phase sequence supervision is especially useful during commissioning of the device because it helps making sure that the *»Phase Sequence«* setting under [Field Para] is correct

# **WARNING** The supervision requires minimum values for the current (in case of a CT), or for the voltage (in case of a VT, respectively), otherwise the phase sequence cannot be reliably determined.

- For a VT: The minimum voltage is  $0.1 \cdot V_n$ .
- For a CT: The minimum current is 0.1.1<sub>n</sub>.

# Self Supervision

#### <u>SSV</u>

The protection devices are supervised by various check routines during normal operation and during the start-up phase on faulty operation.

The protection devices are carrying out various self supervision tests.

| Self Supervision within the devices                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Supervision of                                                                                                                                            | Supervised by                                                                               | Action on detected issue                                                                                                                                                                                                                     |  |  |
| Start phase                                                                                                                                               | The duration (permitted time) of the boot phase is monitored.                               | The device will be rebooted.<br>=> The device will be taken out of<br>service after three unsuccessful start<br>attempts.                                                                                                                    |  |  |
| Supervision of the duration of a protection cycle (Software cycle)                                                                                        | The maximum permitted time for a protection cycle is monitored by a timing analysis.        | The self-supervision contact will be<br>deenergized if the permitted time for<br>a protection cycle is exceeded (first<br>threshold).<br>The protection device will be<br>rebooted, if the protection cycle<br>exceeds the second threshold. |  |  |
| Monitoring of the communication<br>between Main and Digital Signal<br>Processor (DSP)                                                                     | The cyclic measured value processing of the DSP is monitored by the main processor.         | The device will be rebooted, if a failure is detected.<br>The self-supervision contact will be deenergized.                                                                                                                                  |  |  |
| Analog-Digital-Converter                                                                                                                                  | The DSP does a plausibility check on the digitalized data.                                  | Protection will be blocked, if a failure<br>is detected, in order to prevent faulty<br>tripping.                                                                                                                                             |  |  |
| Supervision of data consistency after<br>an outage of the power supply.<br>(e.g. outage of the power supply<br>while changing the parameter<br>settings). | An internal logic detects fragmentary<br>saved data after an outage of the<br>power supply. | If the new data is incomplete or<br>corrupt, it will be deleted during the<br>reboot phase of the device. The<br>device will continue to work with the<br>last valid data set.                                                               |  |  |
| Data consistency in general                                                                                                                               | Generation of check-sums.                                                                   | The device will be taken out of<br>service in case that inconsistent data<br>is detected that is not caused by an<br>outage of the power supply.<br>(fatal internal error).                                                                  |  |  |

| Self Supervision within the devices                               |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Parameter Setting (Device)                                        | Protecting the parameter setting by plausibility checks.                                                                                                                                                                                                                                                | Implausibilities within the parameter<br>configuration can be detected by<br>means of plausibility checks.<br>Detected implausibilities are<br>highlighted by a question mark<br>symbol. Please refer to chapter<br>parameter setting for detailed<br>information.                                                                                                    |  |  |
| Quality of the power supply                                       | A hardware circuit ensures that the<br>device can only be used, if the power<br>supply is in the range specified by<br>the technical data.                                                                                                                                                              | If the supply voltage is too low, the<br>device will not start up or it will be set<br>out of service respectively.                                                                                                                                                                                                                                                   |  |  |
| Sags of the supply voltage                                        | Short-term sags of the supply<br>voltage are detected and can be<br>bridged in most of the cases by<br>means of the integrated buffer within<br>the power supply hardware.<br>This buffer also allows the<br>termination of ongoing data writing<br>procedures.                                         | The module for the supervision of the<br>system utilization will detect<br>repetitive short-term sags of the<br>supply voltage.                                                                                                                                                                                                                                       |  |  |
| Internal data of the device<br>(memory load, internal resources,) | An internal module monitors the system utilization.                                                                                                                                                                                                                                                     | The module for the supervision of the system utilization initiates in case of a fatal error a reboot of the device. In case of minor faults the System LED will flash alternating red and green (please refer to the <i>Troubleshooting Guide</i> ). The issue will be recorded as a system message.                                                                  |  |  |
| Battery                                                           | The battery is monitored<br>continuously.<br>Notice: The battery serves as buffering of the<br>clock (real time clock). There's no impact on<br>the functionality of the device if the battery<br>breaks down, except for the buffering of the<br>clock while the unit is in de-energized<br>condition. | If the battery is low the System LED<br>will flash alternating red and green<br>(please refer to the <i>Troubleshooting</i><br><i>Guide</i> ).                                                                                                                                                                                                                        |  |  |
| Status of the device communication<br>(SCADA)                     | The projected and activated SCADA<br>module supervises its connection to<br>the master communication system.                                                                                                                                                                                            | You can check if there is active<br>communication with the master<br>system within menu <operation <br="">Status display/ Communication&gt;.<br/>In order to monitor this state you can<br/>assign this status onto an LED<br/>and/or an output relay.<br/>For details on the status of the<br/>GOOSE communication please refer<br/>to chapter IEC61850.</operation> |  |  |

## **Device Start (Reboot)**

The device starts up if:

- it is connected to the supply voltage,
- the User initiates (intentionally) a restart of the device,
- the device is set back to factory defaults,
- the internal self-supervision of the device detects a fatal error.

The reason for a device start/reboot is shown numerically within menu <Operation/ Status display/ Sys/ Restart> (please refer to the table below). The reason will also be logged within the event recorder (Event: Sys.Restart).

The table below explains the numbers indicating the reason of the restart.

|     | Device Start-up Codes                                                                                                                   |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.  | Normal Start-up<br>Start-up after clean disconnection of the supply voltage.                                                            |  |  |
| 2.  | <b>Reboot by the Operator</b><br>Device reboot triggered by the operator via HMI or Smart view.                                         |  |  |
| 3.  | Reboot by means of Super Reset<br>Automatic reboot when setting the device back to factory defaults.                                    |  |  |
| 4.  | (outdated)                                                                                                                              |  |  |
| 5.  | (outdated)                                                                                                                              |  |  |
| 6.  | Unknown Error Source<br>Reboot due to unknown error source.                                                                             |  |  |
| 7.  | Forced Reboot (initiated by the main processor)<br>The main processor identified invalid conditions or data.                            |  |  |
| 8.  | Exceeded Time Limit of the Protection Cycle<br>Unexpected interruption of the Protection Cycle.                                         |  |  |
| 9.  | <b>Forced Reboot (initiated by the digital signal processor)</b><br>The digital signal processor identified invalid conditions or data. |  |  |
| 10. | Exceeded Time Limit of the Measured Value Processing<br>Unexpected interruption of the cyclic measured value processing.                |  |  |
| 11. | Sags of the Supply Voltage<br>Reboot after short-term sag or outage of the supply voltage.                                              |  |  |
| 12. | Illegal Memory Access<br>Reboot after illegal memory access.                                                                            |  |  |

## Internal Messages

The menu [Operation / Self Supervision / Messages] gives access to the list of internal messages. In particular, it is recommended to check these in case of some problem directly related to the device.

All messages that can potentially appear here are described in detail in a separate document, the "HighPROTEC Troubleshooting Guide" (DOK-HB-TS).

## Device taken out of Service "Device Stopped"

The protection device will be taken out of service, if there is an undefined state that cannot be escaped after three reboots.

In this state the system LED will be illuminated red or red flashing. The display will show the message "Device Stopped" followed by a 6-digit error code, e.g. E01487.

In addition to the recorders, messages and display information that can be accessed by the user, there may exist additional error information accessible by the Service Staff. These offer further failure analysis and diagnosis opportunities to the Service Staff.

# NOTICE

In such a case please contact the Woodward Service Staff and provide them the error code.

For further information on trouble shooting please refer to the separately provided "HighPROTEC Trouble Shooting Guide".

# Direct Commands of the Self Supvervision

| Setting range  | Default | Menu path                                                 |
|----------------|---------|-----------------------------------------------------------|
| False,<br>True | False   | [Operation<br>/<br>Reset/Acknowle<br>dge<br>/Acknowledge] |
| ŀ              | False,  | False, False                                              |

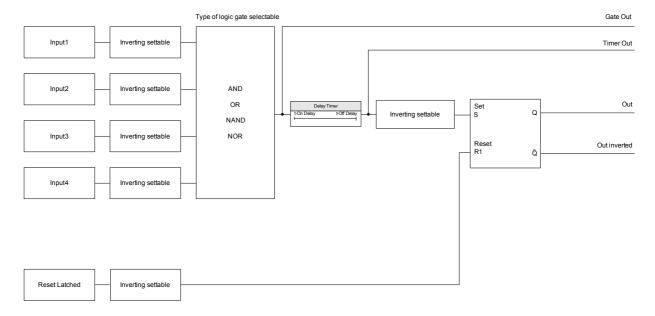
# Signals (Output States) of the Self Supvervision

| Signal                  | Description                     |
|-------------------------|---------------------------------|
| System Error            | Signal: Device Failure          |
| SelfSuperVision Contact | Signal: SelfSuperVision Contact |

# Counter Values of the Self Supvervision

| Value                    | Description | Menu path                                         |
|--------------------------|-------------|---------------------------------------------------|
| Cr No of free<br>sockets | sockets     | [Operation<br>/Self Supervision<br>/System State] |
|                          |             |                                                   |

# **Programmable Logic**

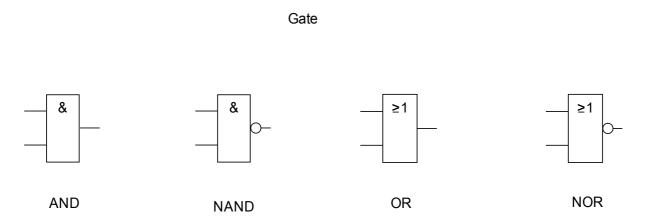

Available Elements (Equations): Logics

## **General Description**


The Protective Relay includes programmable Logic Equations for programming output relays, blocking of protective functions and custom logic functions in the relay.

The logic provides control of the output relays based on the state of the inputs that can be choosen from the assignment list (protective function pickups, protective function states, breaker states, system alarms, and module inputs). The user can use the outputs signals of a Logic Equation as inputs in higher equations (e.g. the output signal of Logic Equation 10 might be used as an input of Logic Equation 11).

Principle Overview




Detailed Overview – Overall Logic diagram



## Available Gates (Operators)

Within the Logic Equation, the following Gates can be used:



## **Input Signals**

The user can assign up to 4 Input signals (from the assignment list) to the inputs of the gate.

As an option, each of the 4 input signals can be inverted (negated)

## Timer Gate (On Delay and Off Delay)

The output of the gate can be delayed. The user has the option to set an On and an Off delay.

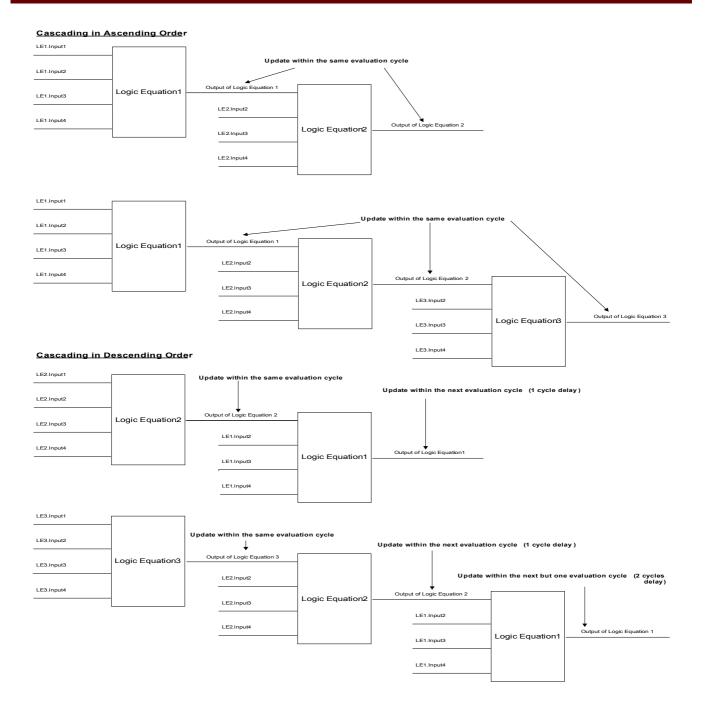
## Latching

The logic equations issues two signals. An unlatched and a latched signal. The latched output is also available as an inverted output.

In order to reset the latched signal the user has to assign a reset signal from the assignment list. The reset signal can also optionally be inverted. The latching works based on reset priority. That means, the reset input is dominant.

## **Cascading Logical Outputs**

The device will evaluate output states of the Logic Equations starting from Logic Equation 1 up to the Logic Equation with the highest number. This evaluation (device) cycle will be continuously repeated.


#### Cascading Logic Equations in an ascending sequence

Cascading in an ascending sequence means that the user uses the output signal of "Logic Equation n" as input of "Logic Equation n+1". If the state of "Logic Equation n" changes, the state of the output of "Logic Equation n+1" will be updated within the same cycle.

#### Cascading Logic Equations in a descending sequence

Cascading in a descending sequence means that the user uses the output signal of "Logic Equation n+1" as input of "Logic Equation n". If the output of "Logic Equation n+1" changes, this change of the feed back signal at the input of "Logic Equation n" will be delayed for one cycle.

## Programmable Logic



## Programmable Logic at the Panel



WARNING improper use of Logic Equations might result in personal injury or damage the electrical equipment.

Don't use Logic Equations unless that you can ensure the safe functionality.

How to configure a Logic Equation? ■ Call up menu [Logics/LE [x]]:

- Set the Input Signals (where necessary, invert them).
- If required, configure the timer (» On delay« and » Off delay«).
- If the latched output signal is used assign a reset signal to the reset input.
- Within the »status display«, the user can check the status of the logical inputs and outputs of the Logic Equation.

In case that Logic Equations should be cascaded the user has to be aware of timing delays (cycles) in case of descending sequences (Please refer to section: Cascading Logical Outputs).

By means the Status Display [Operation/Status Display] the logical states can be verified.]

# Device Planning Parameters of the Programmable Logic

| Parameter  | Description | Options | Default | Menu path         |
|------------|-------------|---------|---------|-------------------|
| No of      |             | 0,      | 20      | [Device planning] |
| Equations: |             | 5,      |         |                   |
|            |             | 10,     |         |                   |
|            |             | 20,     |         |                   |
|            |             | 40,     |         |                   |
|            |             | 80      |         |                   |

# Global Protection Parameter of the Programmable Logic

| Parameter      | Description                                          | Setting range   | Default  | Menu path |
|----------------|------------------------------------------------------|-----------------|----------|-----------|
| LE1.Gate       | Logic gate                                           | AND,            | AND      | [Logics   |
|                |                                                      | OR,             |          | /LE 1]    |
|                |                                                      | NAND,           |          |           |
|                |                                                      | NOR             |          |           |
| LE1.Input1     | Assignment of the Input Signal                       | 1n,             |          | [Logics   |
|                |                                                      | Assignment List |          | /LE 1]    |
| $\bigotimes$   |                                                      |                 |          |           |
| LE1.Inverting1 | Inverting the input signals.                         | inactive,       | inactive | [Logics   |
| $\bigotimes$   | Only available if an input signal has been assigned. | active          |          | /LE 1]    |
| LE1.Input2     | Assignment of the Input Signal                       | 1n,             |          | [Logics   |
|                |                                                      | Assignment List |          | /LE 1]    |
|                |                                                      |                 |          |           |
| LE1.Inverting2 | Inverting the input signals.                         | inactive,       | inactive | [Logics   |
|                | Only available if an input signal has been           | active          |          | /LE 1]    |
| $\bigotimes$   | assigned.                                            |                 |          |           |
| LE1.Input3     | Assignment of the Input Signal                       | 1n,             |          | [Logics   |
|                |                                                      | Assignment List |          | /LE 1]    |
| $\bigotimes$   |                                                      |                 |          |           |
| LE1.Inverting3 | Inverting the input signals.                         | inactive,       | inactive | [Logics   |
|                | Only available if an input signal has been           | active          |          | /LE 1]    |
| $\bigotimes$   | assigned.                                            |                 |          |           |
| LE1.Input4     | Assignment of the Input Signal                       | 1n,             |          | [Logics   |
|                |                                                      | Assignment List |          | /LE 1]    |
|                |                                                      |                 |          |           |
| LE1.Inverting4 | Inverting the input signals.                         | inactive,       | inactive | [Logics   |
|                | Only available if an input signal has been           | active          |          | /LE 1]    |
|                | assigned.                                            |                 |          |           |
| LE1.t-On Delay | Switch On Delay                                      | 0.00 -          | 0.00s    | [Logics   |
| ,              |                                                      | 36000.00s       |          | /LE 1]    |
|                |                                                      |                 |          | -         |
|                |                                                      |                 |          |           |

| Parameter              | Description                                   | Setting range          | Default  | Menu path         |
|------------------------|-----------------------------------------------|------------------------|----------|-------------------|
| LE1.t-Off Delay        | Switch Off Delay                              | 0.00 -<br>36000.00s    | 0.00s    | [Logics<br>/LE 1] |
| LE1.Reset<br>Latched   | Reset Signal for the Latching                 | 1n,<br>Assignment List |          | [Logics<br>/LE 1] |
| LE1.Inverting<br>Reset | Inverting Reset Signal for the Latching       | inactive,<br>active    | inactive | [Logics<br>/LE 1] |
| LE1.Inverting<br>Set   | Inverting the Setting Signal for the Latching | inactive,<br>active    | inactive | [Logics<br>/LE 1] |

# Programmable Logic Inputs

| Name              | Description                                                  | Assignment via |
|-------------------|--------------------------------------------------------------|----------------|
| LE1.Gate In1-I    | State of the module input: Assignment of the Input<br>Signal | [Logics        |
|                   |                                                              | /LE 1]         |
| LE1.Gate In2-I    | State of the module input: Assignment of the Input<br>Signal | [Logics        |
|                   |                                                              | /LE 1]         |
| LE1.Gate In3-I    | State of the module input: Assignment of the Input<br>Signal | [Logics        |
|                   |                                                              | /LE 1]         |
| LE1.Gate In4-I    | State of the module input: Assignment of the Input<br>Signal | [Logics        |
|                   |                                                              | /LE 1]         |
| LE1.Reset Latch-I | 1 5                                                          | [Logics        |
|                   | Latching                                                     | /LE 1]         |

# Programmable Logic Outputs

| Signal           | Description                            |
|------------------|----------------------------------------|
| LE1.Gate Out     | Signal: Output of the logic gate       |
| LE1.Timer Out    | Signal: Timer Output                   |
| LE1.Out          | Signal: Latched Output (Q)             |
| LE1.Out inverted | Signal: Negated Latched Output (Q NOT) |

# Commissioning

Before starting work on an opened switchboard it is imperative that the complete switchboard is dead and the following 5 safety regulations are always met: ,



#### Safety precautions:

- Disconnect from the power supply
- Secure against reconnection
- Verify if the equipment is dead
- Connect to ground and short-circuit all phases
- Cover or safeguard all live adjacent parts



The secondary circuit of a current transformer must never be opened during operation. The prevailing high voltages are dangerous to life.



Even when the auxiliary voltage is switched off, it is likely that there are still hazardous voltages at the component connections. All locally applicable national and international installation and safety regulations for working at electrical power installations must always to be followed (e.g. VDE, EN, DIN, IEC).

**WARNING** 

Prior to the initial voltage connection, the following must be guaranteed:

- Correct grounding of the device
- That all signal circuits are tested
- That all control circuits are tested
- Transformer wiring is checked
- Correct rating of the CTs
- Correct burden of the CTs
- That the operational conditions are in line with the Technical Data
- Correct rating of the transformer protection
- Function of the transformer fuses
- Correct wiring of all digital inputs
- Polarity and capacity of the supply voltage
- Correct wiring of the analogue inputs and outputs
- For line differential protection: Correct fiber optics connection for a reliable Protection Communication

# NOTICE

The permissible deviations of measuring values and device adjustment are dependent on the technical data/tolerances.

# **Commissioning/Protection Test**

# **WARNING**

Putting into operation/Protection test must be carried out by authorized and qualified personnel. Before the device is put into operation the related documentation has to be read and understood.

# **WARNING**

With any test of the protection functions the following has to be checked:

- Is activation/tripping saved in the event recorder?
- Is tripping saved in the fault recorder?
- Is tripping saved in the disturbance recorder?
- Are all signals/messages correctly generated?
- Do all general parameterized blocking functions work properly?
- Do all temporary parameterized (via DI) blocking functions work properly?
- To enable checks on all LEDs and relay functions, these have to be provided with the relevant alarm and tripping functions of the respective protection functions/elements. This has to be tested in practical operation.

**WARNING** 

Check of all temporary blockings (via digital inputs):

In order to avoid malfunctions, all blockings related to tripping/nontripping of protection function have to be tested. The test can be very complex and should therefore be performed by the same people who set up the protection concept.



Check of all general trip blockings:

All general trip blockings have to be tested.

# NOTICE

Prior to the initial operation of the protection device all tripping times and values shown in the adjustment list have to be confirmed by a secondary test


# NOTICE

Any description of functions, parameters, inputs or outputs that does not match the device in hand, can be ignored.

#### Putting out of Operation - Plug out the Relay

# **WARNING**

Warning! Dismounting the relay will lead to a loss of the protection functionality. Ensure that there is a back-up protection. If you are not aware of the consequences of dismounting the device – stop! Don't start.



Inform SCADA before you start.

Switch-off the power supply.

Ensure, that the cabinet is dead and that there are no voltages that could lead to personal injury.

Plug-out the terminals at the rear-side of the device. Do not pull any cable – pull on the plugs! If it is stuck use for example a screw driver.

Fasten the cables and terminals in the cabinet by means of cable clips to ensure that no accidental electrical connections are caused.

Hold the device at the front-side while opening the mounting nuts.

Remove the device carefully out of the cabinet.

In case no other device is to be mounted or replaced cover/close the cut-out in the front-door.

Close the cabinet.

# Service and Commissioning Support

Within the service menu various functions support maintenance and commissioning of the device.

#### General

Within the menu [Service/General], the user can initiate a reboot of the device.

### Phase Sequence

Within the menu [Operation/Status Display/Supervision/Phase Sequence], there are signals showing whether the phase sequence calculated by the device is different from the setting under [Field Para/General Settings] *»Phase Sequence«.* See Chapter "Phase Sequence Supervision" for details.

#### Forcing the Relay Output Contacts



The parameters, their defaults and setting ranges have to be taken from Relay Output Contacts section.

#### Principle – General Use



The User MUST ENSURE that the relay output contacts operate normally after the maintenance is completed. If the relay output contacts do not operate normally, the protective device WILL NOT provide protection.

For commissioning purposes or for maintenance, relay output contacts can be set by force.

Within this mode [Service/Test Mode/Force OR/BO Slot X(2/5)], relay output contacts can be set by force:

- Permanent; or
- Via timeout.

If they are set with a timeout, they will only keep their "Force Position" as long as this timer runs. If the timer expires, the relay will operate normally. If they are set as Permanent, they will keep the "Force Position" continuously.

There are two options available:

- Forcing a single relay »Force ORx«; and
- Forcing an entire group of relay output contacts » Force all Outs«.

Forcing an entire group takes precedence over forcing a single relay output contact!



A relay output contact <u>will NOT follow a force command</u> as long as it is disarmed at the same time.

# NOTICE

A relay output contact will follow a force command:

- If it is not disarmed; and
- If the Direct Command is applied to the relay(s).

Keep in mind, that the forcing of all relay output contacts (of the same assembly group) takes precedence over the force command of a single relay output contact.

#### **Disarming the Relay Output Contacts**



The parameters, their defaults, and setting ranges have to be taken from the Relay Output Contacts section.

#### Principle – General Use

Within this mode [Service/Test Mode/DISARMED], entire groups of relay output contacts can be disabled. By means of this test mode, contact outputs switching actions of the relay output contacts are prevented. If the relay output contacts are disarmed, maintenance actions can be carried out without the risk of taking entire processes off-line.



The User MUST ENSURE that the relay output contacts are ARMED AGAIN after the maintenance is complete. If they are not armed, the protective device WILL NOT provide protection.

# NOTICE

Zone Interlocking Output and the Supervision Contact cannot be disarmed.

Within this mode [Service/Test Mode/DISARMED] entire groups of relay output contacts can be disarmed:

- Permanent; or
- Via timeout.

If they are set with a timeout, they will only keep their "Disarm Position" as long as this timer runs. If the timer expires, the relay output contacts will operate normally. If they are set Permanent, they will keep the "Disarm State" continuously.

## NOTICE

A relay output contact will NOT be disarmed as long as:

- It's latched (and not yet reset).
- As long as a running t-OFF-delay timer is not yet expired (hold time of a relay output contact).
- The Disarm Control is not set to active.
- The Direct Command is not applied.

# NOTICE

A relay output contact will be disarmed if it's not latched and

- There is no running t-OFF-delay timer (hold time of a relay output contact) and
- The DISARM Control is set to active and
- The Direct Command Disarm is applied.

#### Forcing RTDs\*

\* = Availability depends on ordered device.



The parameters, their defaults, and setting ranges have to be taken from RTD/UTRD section.

#### Principle – General Use



The User MUST ENSURE that the RTDs operate normally after the maintenance is completed. If the RTDs do not operate normally, the protective device WILL NOT provide protection.

For commissioning purposes or for maintenance, RTD temperatures can be set by force.

Within this mode [Service/Test Mode/URTD], RTD temperatures can be set by force:

- Permanent; or
- Via timeout.

If they are set with a timeout, they will keep their "Forced Temperature" only as long as this timer runs. If the timer expires, the RTD will operate normally. If they are set as *»Permanent«*, they will keep the "Forced Temperature" continuously. This menu will show the measured values of the RTDs until the User activates the force mode by calling up the *»Function«*. As soon as the force mode is activated, the shown values will be frozen as long as this mode is active. Now the User can force RTD values. As soon as the force mode is deactivated, measured values will be shown again.

#### Forcing Analog Outputs\*

\* = Availability depends on ordered device.



The parameters, their defaults, and setting ranges have to be taken from Analog Output section.

#### Principle – General Use



The User MUST ENSURE that the Analog Outputs operate normally after maintenance is completed. Do not use this mode if forced Analog Outputs cause issues in external processes.

For commissioning purposes or for maintenance, Analog Outputs can be set by force.

Within this mode [Service/Test Mode/Analog Output(x)], Analog Outputs can be set by force:

- Permanent; or
- Via timeout.

If they are set with a timeout, they will only keep their "Forced Value" as long as this timer runs. If the timer expires, the Analog Output will operate normally. If they are set as *»Permanent«*, they will keep the "Forced Value" continuously. This menu will show the current value that is assigned onto the Analog Output until the User activates the force mode by calling up the *»Function«*. As soon as the force mode is activated, the shown values will be frozen as long as this mode is active. Now the User can force Analog Output values. As soon as the force mode is deactivated, measured values will be shown again.

#### Forcing Analog Inputs\*

\* = Availability depends on ordered device.



The parameters, their defaults, and setting ranges have to be taken from Analog Inputs section.

#### Principle – General Use



The User MUST ENSURE that the Analog Inputs operate normally after maintenance is completed.

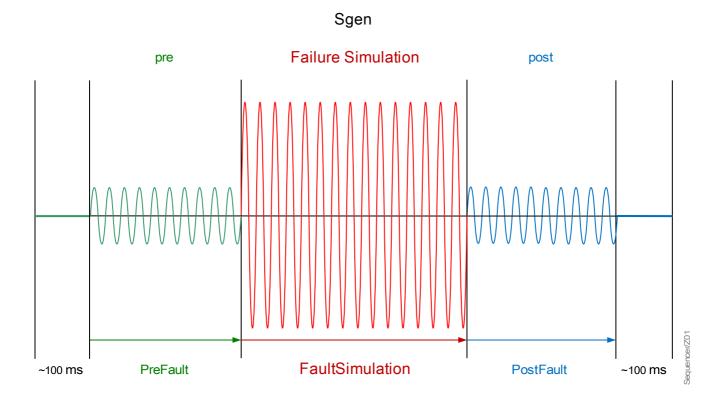
For commissioning purposes or for maintenance, Analog Inputs can be set by force.

Within this mode [Service/Test Mode (Prot inhibit)/WARNING! Cont?/Analog Inputs], Analog Inputs can be set by force:

- Permanent; or
- Via timeout.

If they are set with a timeout, they will only keep their "Forced Value" as long as this timer runs. If the timer expires, the Analog Input will operate normally. If they are set as *»Permanent«*, they will keep the "Forced Value" continuously. This menu will show the current value that is fed to the Analog Input until the User activates the force mode by calling up the *»Function«*. As soon as the force mode is activated, the shown value will be frozen as long as this mode is active. Now the User can force the Analog Input value. As soon as the force mode is deactivated, measured value will be shown again.

## Fault Simulator (Sequencer)\*


Available Elements: <u>Sgen</u>

\* = Availability depends on ordered device.

For commissioning support and in order to analyze failures, the protective device offers the option to simulate measuring quantities. The simulation menu can be found within the [Service/Test Mode/Sgen] menu. The simulation cycle consists of three states:

- 1. Pre-fault;
- 2. Failure;
- 3. Post-fault State (Phase).

In addition to these three states, there is a short "reset stage" of about 100 ms immediately before the Pre-failure state, and another one after the Post-failure state, where all protection functions are deactivated. This is necessary to re-initialize all protection modules and related filters and set them to a healthy new state.



The states are recorded by the Event and Disturbance Recorders as follows:

- 0 Normal operation (i. e. without fault simulation)
- 1 Pre-fault
- 2 Fault
- 3 Post-fault
- 4 Reset / initialization phase

Within the [Service/Test Mode (Prot inhibit) / Sgen / Configuration / Times] sub-menu, the duration of each phase can be set. In addition; the measuring quantities to be simulated can be determined (e. g.: voltages, currents, and the corresponding angles) for each phase (and ground). The simulation will be terminated, if a phase current

exceeds 0.1 · In. A simulation can be restarted, five seconds after the current has fallen below 0.1 · In.

Moreover, within the [Service / Test Mode (Prot inhibit) / Sgen / Process] sub-menu there are two blocking parameters *ExBlo1*, *ExBlo2*. Signals that are assigned to any of these block the Fault Simulator. For example, it can be recommended for security considerations to have the Fault Simulator blocked if the circuit breaker is in closed position.

Furthermore, there is the possibility to assign a signal to the parameter *Ex ForcePost*. Then this signal interrupts the actual state of the Fault Simulator (Pre-fault or Failure) and leads to an immediate transition into the Post-fault state. The typical application for this is a test whether the protective device correctly generates a trip decision, so that it is not necessary to always wait until the regular end of the Failure state. It is possible to assign the trip signal to *Ex ForcePost*. so that the Failure state is ended immediately after the trip signal has been correctly generated.

**ADANGER** Setting the device into the simulation mode means taking the protective device out of operation for the duration of the simulation. Do not use this feature during operation of the device if the User cannot guarantee that there is a running and properly working backup protection.

# NOTICE

The energy counters are stopped while the failure simulator is running.

# NOTICE

The simulation voltages are always phase to neutral voltages, irrespectively of the mains voltage transformers' connection method (Phase-to-phase / Wye / Open Delta).

# NOTICE

Due to internal dependencies, the frequency of the simulation module is 0.16% greater than the rated one.

|             | <b>~</b> <i>''</i> | e        | - "   | <u>.</u>  |
|-------------|--------------------|----------|-------|-----------|
| Application | Options            | of the l | Fault | Simulator |

| Stop Options                                                                                                                                                                                       | Cold Simulation (Option 1)                                         | Hot Simulation (Option 2)                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|
| Manual start, no stop                                                                                                                                                                              | Simulation without tripping the circuit breaker:                   | Simulation is authorized to trip the breaker: |
| Run complete:                                                                                                                                                                                      |                                                                    |                                               |
| Pre Failure, Failure, Post Failure.                                                                                                                                                                | The TripCmd of all protection                                      | 1. Call up [Service / Test                    |
|                                                                                                                                                                                                    | functions will be blocked. The                                     | Mode / Sgen / Process]                        |
| 1. Call up [Service / Test Mode / Sgen /<br>Process]                                                                                                                                               | protection function will possibly trip but not generate a TripCmd. | 2. <i>TripCmd Mode</i> = With<br>TripCmd      |
| 2. <i>Ex Force Post</i> = no assignment                                                                                                                                                            | 1. Call up [Service / Test<br>Mode / Sgen / Process]               |                                               |
| 3. Press/Call up Start Simulation.                                                                                                                                                                 |                                                                    |                                               |
| Manual start, stop by external signal                                                                                                                                                              | 2. <i>TripCmd Mode</i> = No<br>TripCmd                             |                                               |
| Force Post: As soon as this signal                                                                                                                                                                 |                                                                    |                                               |
| becomes true, the Fault Simulation will be                                                                                                                                                         |                                                                    |                                               |
| forced to switch into the Post Failure mode.                                                                                                                                                       |                                                                    |                                               |
| 1. Call up [Service / Test Mode / Sgen /<br>Process]                                                                                                                                               |                                                                    |                                               |
| 2. <i>Ex Force Post</i> = Assigned Signal                                                                                                                                                          |                                                                    |                                               |
| Manual start, manual stop                                                                                                                                                                          |                                                                    |                                               |
| As soon as this signal becomes true, the<br>Fault Simulation will be terminated and the<br>device changes back to normal operation.                                                                |                                                                    |                                               |
| 1. Call up [Service / Test Mode / Sgen /<br>Process]                                                                                                                                               |                                                                    |                                               |
| 2. Press/Call up <i>Stop Simulation</i> .                                                                                                                                                          |                                                                    |                                               |
| Start by external signal                                                                                                                                                                           |                                                                    |                                               |
| The start of the Fault Simulator is triggered<br>by the assigned external signal (unless a<br>phase current exceeds 0.1 · In or the Fault<br>Simulator is blocked, see also description<br>above). |                                                                    |                                               |
| 1. Call up [Service / Test Mode / Sgen /<br>Process]                                                                                                                                               |                                                                    |                                               |
| 2. Ex Start Simulation = Assigned Signal                                                                                                                                                           |                                                                    |                                               |

## Device Planning Parameters of the Failure Simulator

| Parameter    | Description | Options     | Default | Menu path         |
|--------------|-------------|-------------|---------|-------------------|
| Mode         | Mode        | do not use, | use     | [Device planning] |
|              |             | use         |         |                   |
| $\bigotimes$ |             |             |         |                   |

#### **Global Protection Parameter of the Failure Simulator**

| Parameter       | Description                                   | Setting range   | Default    | Menu path               |
|-----------------|-----------------------------------------------|-----------------|------------|-------------------------|
| PreFault        | Pre Fault Duration                            | 0.00 - 300.00s  | 0.0s       | [Service                |
|                 |                                               |                 |            | /Test (Prot<br>inhibit) |
|                 |                                               |                 |            | /Sgen                   |
|                 |                                               |                 |            | /Configuration          |
|                 |                                               |                 |            | /Times]                 |
| FaultSimulation | Duration of Fault Simulation                  | 0.00 -          | 0.0s       | [Service                |
|                 |                                               | 10800.00s       |            | /Test (Prot<br>inhibit) |
|                 |                                               |                 |            | /Sgen                   |
|                 |                                               |                 |            | /Configuration          |
|                 |                                               |                 |            | /Times]                 |
| PostFault       | PostFault                                     | 0.00 - 300.00s  | 0.0s       | [Service                |
|                 |                                               |                 |            | /Test (Prot<br>inhibit) |
|                 |                                               |                 |            | /Sgen                   |
|                 |                                               |                 |            | /Configuration          |
|                 |                                               |                 |            | /Times]                 |
| TripCmd Mode    | Trip Command Mode                             | No TripCmd,     | No TripCmd | [Service                |
|                 |                                               | With TripCmd    |            | /Test (Prot<br>inhibit) |
|                 |                                               |                 |            | /Sgen                   |
|                 |                                               |                 |            | /Process]               |
| Ex Start        | External Start of Fault Simulation (Using the | 1n,             |            | [Service                |
| Simulation      | test parameters)                              | Assignment List |            | /Test (Prot<br>inhibit) |
|                 |                                               |                 |            | /Sgen                   |
|                 |                                               |                 |            | /Process]               |

| Parameter    | Description                                                                                           | Setting range   | Default      | Menu path               |
|--------------|-------------------------------------------------------------------------------------------------------|-----------------|--------------|-------------------------|
| ExBlo1       | External blocking of the module, if blocking                                                          | 1n,             | SG[1].Pos ON | [Service                |
|              | is activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true.1 | Assignment List |              | /Test (Prot<br>inhibit) |
|              |                                                                                                       |                 |              | /Sgen                   |
|              |                                                                                                       |                 |              | /Process]               |
| ExBlo2       | External blocking of the module, if blocking                                                          | 1n,             |              | [Service                |
|              | is activated (allowed) within a parameter set<br>and if the state of the assigned signal is<br>true.2 | Assignment List |              | /Test (Prot<br>inhibit) |
|              |                                                                                                       |                 |              | /Sgen                   |
|              |                                                                                                       |                 |              | /Process]               |
| Ex ForcePost | Force Post state. Abort simulation.                                                                   | 1n,             |              | [Service                |
|              |                                                                                                       | Assignment List |              | /Test (Prot<br>inhibit) |
|              |                                                                                                       |                 |              | /Sgen                   |
|              |                                                                                                       |                 |              | /Process]               |

# Voltage Parameter of the Failure Simulator

| Parameter | Description                          | Setting range | Default | Menu path               |
|-----------|--------------------------------------|---------------|---------|-------------------------|
| VL1       | Voltage Fundamental Magnitude in Pre | 0.00 - 2.00Vn | 0.57Vn  | [Service                |
|           | State: phase L1                      |               |         | /Test (Prot<br>inhibit) |
|           |                                      |               |         | /Sgen                   |
|           |                                      |               |         | /Configuration          |
|           |                                      |               |         | /PreFault               |
|           |                                      |               |         | /VT]                    |
| VL2       | Voltage Fundamental Magnitude in Pre | 0.00 - 2.00Vn | 0.57Vn  | [Service                |
|           | State: phase L2                      |               |         | /Test (Prot<br>inhibit) |
|           |                                      |               |         | /Sgen                   |
|           |                                      |               |         | /Configuration          |
|           |                                      |               |         | /PreFault               |
|           |                                      |               |         | /VT]                    |
| VL3       | Voltage Fundamental Magnitude in Pre | 0.00 - 2.00Vn | 0.57Vn  | [Service                |
|           | State: phase L3                      |               |         | /Test (Prot<br>inhibit) |
|           |                                      |               |         | /Sgen                   |
|           |                                      |               |         | /Configuration          |
|           |                                      |               |         | /PreFault               |
|           |                                      |               |         | /VT]                    |

| Parameter    | Description                                    | Setting range | Default | Menu path               |
|--------------|------------------------------------------------|---------------|---------|-------------------------|
| VX           | Voltage Fundamental Magnitude in Pre           | 0.00 - 2.00Vn | 0.0Vn   | [Service                |
|              | State: VX                                      |               |         | /Test (Prot<br>inhibit) |
|              |                                                |               |         | /Sgen                   |
|              |                                                |               |         | /Configuration          |
|              |                                                |               |         | /PreFault               |
|              |                                                |               |         | /VT]                    |
| phi VL1      | Start Position respectively Start Angle of the | -360 - 360°   | 0°      | [Service                |
|              | Voltage Phasor during Pre-Phase:phase L1       |               |         | /Test (Prot<br>inhibit) |
|              |                                                |               |         | /Sgen                   |
|              |                                                |               |         | /Configuration          |
|              |                                                |               |         | /PreFault               |
|              |                                                |               |         | /VT]                    |
| phi VL2      | Start Position respectively Start Angle of the | -360 - 360°   | 240°    | [Service                |
|              | Voltage Phasor during Pre-Phase:phase L2       |               |         | /Test (Prot<br>inhibit) |
| $\checkmark$ |                                                |               |         | /Sgen                   |
|              |                                                |               |         | /Configuration          |
|              |                                                |               |         | /PreFault               |
|              |                                                |               |         | /VT]                    |
| phi VL3      | Start Position respectively Start Angle of the | -360 - 360°   | 120°    | [Service                |
|              | Voltage Phasor during Pre-Phase:phase L3       |               |         | /Test (Prot<br>inhibit) |
|              |                                                |               |         | /Sgen                   |
|              |                                                |               |         | /Configuration          |
|              |                                                |               |         | /PreFault               |
|              |                                                |               |         | /VT]                    |
| phi VX meas  | Start Position respectively Start Angle of the | -360 - 360°   | 0°      | [Service                |
|              | Voltage Phasor during Pre-Phase: VX            |               |         | /Test (Prot<br>inhibit) |
| $\checkmark$ |                                                |               |         | /Sgen                   |
|              |                                                |               |         | /Configuration          |
|              |                                                |               |         | /PreFault               |
|              |                                                |               |         | /VT]                    |

| Parameter | Description                                                                                  | Setting range | Default | Menu path               |
|-----------|----------------------------------------------------------------------------------------------|---------------|---------|-------------------------|
| VL1       | Voltage Fundamental Magnitude in Fault                                                       | 0.00 - 2.00Vn | 0.29Vn  | [Service                |
|           | State: phase L1                                                                              |               |         | /Test (Prot<br>inhibit) |
|           |                                                                                              |               |         | /Sgen                   |
|           |                                                                                              |               |         | /Configuration          |
|           |                                                                                              |               |         | /<br>FaultSimulation    |
|           |                                                                                              |               |         | /VT]                    |
| VL2       | Voltage Fundamental Magnitude in Fault                                                       | 0.00 - 2.00Vn | 0.29Vn  | [Service                |
|           | State: phase L2                                                                              |               |         | /Test (Prot<br>inhibit) |
|           |                                                                                              |               |         | /Sgen                   |
|           |                                                                                              |               |         | /Configuration          |
|           |                                                                                              |               |         | /<br>FaultSimulation    |
|           |                                                                                              |               |         | /VT]                    |
| VL3       | Voltage Fundamental Magnitude in Fault                                                       | 0.00 - 2.00Vn | 0.29Vn  | [Service                |
|           | State: phase L3                                                                              |               |         | /Test (Prot<br>inhibit) |
|           |                                                                                              |               |         | /Sgen                   |
|           |                                                                                              |               |         | /Configuration          |
|           |                                                                                              |               |         | /<br>FaultSimulation    |
|           |                                                                                              |               |         | /VT]                    |
| VX        | Voltage Fundamental Magnitude in Fault                                                       | 0.00 - 2.00Vn | 0.29Vn  | [Service                |
|           | State: phase VX                                                                              |               |         | /Test (Prot<br>inhibit) |
|           |                                                                                              |               |         | /Sgen                   |
|           |                                                                                              |               |         | /Configuration          |
|           |                                                                                              |               |         | /                       |
|           |                                                                                              |               |         | FaultSimulation         |
|           |                                                                                              |               |         | /VT]                    |
| phi VL1   | Start Position respectively Start Angle of the<br>Voltage Phasor during Fault-Phase:phase L1 |               | 0°      | [Service                |
|           |                                                                                              |               |         | /Test (Prot<br>inhibit) |
|           |                                                                                              |               |         | /Sgen                   |
|           |                                                                                              |               |         | /Configuration          |
|           |                                                                                              |               |         | /                       |
|           |                                                                                              |               |         | FaultSimulation         |
|           |                                                                                              |               |         | /VT]                    |

| Parameter   | Description                                    | Setting range | Default | Menu path               |
|-------------|------------------------------------------------|---------------|---------|-------------------------|
| phi VL2     | Start Position respectively Start Angle of the | -360 - 360°   | 240°    | [Service                |
|             | Voltage Phasor during Fault-Phase:phase L2     |               |         | /Test (Prot<br>inhibit) |
|             |                                                |               |         | /Sgen                   |
|             |                                                |               |         | /Configuration          |
|             |                                                |               |         | 1                       |
|             |                                                |               |         | FaultSimulation         |
|             |                                                |               |         | /VT]                    |
| phi VL3     | Start Position respectively Start Angle of the | -360 - 360°   | 120°    | [Service                |
|             | Voltage Phasor during Fault-Phase:phase L3     |               |         | /Test (Prot<br>inhibit) |
|             |                                                |               |         | /Sgen                   |
|             |                                                |               |         | /Configuration          |
|             |                                                |               |         | 1                       |
|             |                                                |               |         | FaultSimulation         |
|             |                                                |               |         | /VT]                    |
| phi VX meas | Start Position respectively Start Angle of the | -360 - 360°   | 0°      | [Service                |
|             | Voltage Phasor during Fault-Phase: VX          |               |         | /Test (Prot<br>inhibit) |
|             |                                                |               |         | /Sgen                   |
|             |                                                |               |         | /Configuration          |
|             |                                                |               |         | /                       |
|             |                                                |               |         | FaultSimulation         |
|             |                                                |               |         | /VT]                    |
| VL1         | Voltage Fundamental Magnitude during Post      | 0.00 - 2.00Vn | 0.57Vn  | [Service                |
|             | phase: phase L1                                |               |         | /Test (Prot<br>inhibit) |
|             |                                                |               |         | /Sgen                   |
|             |                                                |               |         | /Configuration          |
|             |                                                |               |         | /PostFault              |
|             |                                                |               |         | /VT]                    |
| VL2         | Voltage Fundamental Magnitude during Post      | 0.00 - 2.00Vn | 0.57Vn  | [Service                |
|             | phase: phase L2                                |               |         | /Test (Prot<br>inhibit) |
|             |                                                |               |         | /Sgen                   |
|             |                                                |               |         | /Configuration          |
|             |                                                |               |         | /PostFault              |
|             |                                                |               |         | /VT]                    |
|             |                                                |               |         | / • • ]                 |

| Parameter    | Description                                    | Setting range | Default | Menu path               |
|--------------|------------------------------------------------|---------------|---------|-------------------------|
| VL3          | Voltage Fundamental Magnitude during Post      | 0.00 - 2.00Vn | 0.57Vn  | [Service                |
|              | phase: phase L3                                |               |         | /Test (Prot<br>inhibit) |
| $\checkmark$ |                                                |               |         | /Sgen                   |
|              |                                                |               |         | /Configuration          |
|              |                                                |               |         | /PostFault              |
|              |                                                |               |         | /VT]                    |
| VX           | Voltage Fundamental Magnitude during Post      | 0.00 - 2.00Vn | 0.0Vn   | [Service                |
|              | phase: phase VX                                |               |         | /Test (Prot<br>inhibit) |
|              |                                                |               |         | /Sgen                   |
|              |                                                |               |         | /Configuration          |
|              |                                                |               |         | /PostFault              |
|              |                                                |               |         | /VT]                    |
| phi VL1      | Start Position respectively Start Angle of the | -360 - 360°   | 0°      | [Service                |
|              | Voltage Phasor during Post phase: phase L1     |               |         | /Test (Prot<br>inhibit) |
|              |                                                |               |         | /Sgen                   |
|              |                                                |               |         | /Configuration          |
|              |                                                |               |         | /PostFault              |
|              |                                                |               |         | /VT]                    |
| phi VL2      | Start Position respectively Start Angle of the | -360 - 360°   | 240°    | [Service                |
|              | Voltage Phasor during Post phase: phase L2     |               |         | /Test (Prot<br>inhibit) |
|              |                                                |               |         | /Sgen                   |
|              |                                                |               |         | /Configuration          |
|              |                                                |               |         | /PostFault              |
|              |                                                |               |         | /VT]                    |
| phi VL3      | Start Position respectively Start Angle of the | -360 - 360°   | 120°    | [Service                |
|              | Voltage Phasor during Post phase: phase L3     |               |         | /Test (Prot<br>inhibit) |
|              |                                                |               |         | /Sgen                   |
|              |                                                |               |         | /Configuration          |
|              |                                                |               |         | /PostFault              |
|              |                                                |               |         | /VT]                    |

| Parameter   | Description                                                                                  | Setting range | Default | Menu path                                                                            |
|-------------|----------------------------------------------------------------------------------------------|---------------|---------|--------------------------------------------------------------------------------------|
| phi VX meas | Start Position respectively Start Angle of the<br>Voltage Phasor during Post phase: phase VX | -360 - 360°   | 0°      | [Service<br>/Test (Prot<br>inhibit)<br>/Sgen<br>/Configuration<br>/PostFault<br>/VT] |

## Current Parameter of the Failure Simulator

| Parameter | Description                          | Setting range  | Default | Menu path               |
|-----------|--------------------------------------|----------------|---------|-------------------------|
| IL1       | Current Fundamental Magnitude in Pre | 0.00 - 40.00In | 0.0ln   | [Service                |
|           | State: phase L1                      |                |         | /Test (Prot<br>inhibit) |
|           |                                      |                |         | /Sgen                   |
|           |                                      |                |         | /Configuration          |
|           |                                      |                |         | /PreFault               |
|           |                                      |                |         | /CT]                    |
| IL2       | Current Fundamental Magnitude in Pre | 0.00 - 40.00In | 0.0ln   | [Service                |
|           | State: phase L2                      |                |         | /Test (Prot<br>inhibit) |
|           |                                      |                |         | /Sgen                   |
|           |                                      |                |         | /Configuration          |
|           |                                      |                |         | /PreFault               |
|           |                                      |                |         | /CT]                    |
| IL3       | Current Fundamental Magnitude in Pre | 0.00 - 40.00In | 0.0ln   | [Service                |
|           | State: phase L3                      |                |         | /Test (Prot<br>inhibit) |
|           |                                      |                |         | /Sgen                   |
|           |                                      |                |         | /Configuration          |
|           |                                      |                |         | /PreFault               |
|           |                                      |                |         | /CT]                    |
| IG meas   | Current Fundamental Magnitude in Pre | 0.00 - 25.00In | 0.0ln   | [Service                |
|           | State: IG                            |                |         | /Test (Prot<br>inhibit) |
|           |                                      |                |         | /Sgen                   |
|           |                                      |                |         | /Configuration          |
|           |                                      |                |         | /PreFault               |
|           |                                      |                |         | /CT]                    |

| Parameter    | Description                                                                                | Setting range  | Default | Menu path               |
|--------------|--------------------------------------------------------------------------------------------|----------------|---------|-------------------------|
| phi IL1      | Start Position respectively Start Angle of the                                             | -360 - 360°    | 0°      | [Service                |
|              | Current Phasor during Pre-Phase:phase L1                                                   |                |         | /Test (Prot<br>inhibit) |
| $\checkmark$ |                                                                                            |                |         | /Sgen                   |
|              |                                                                                            |                |         | /Configuration          |
|              |                                                                                            |                |         | /PreFault               |
|              |                                                                                            |                |         | /CT]                    |
| phi IL2      | Start Position respectively Start Angle of the                                             | -360 - 360°    | 240°    | [Service                |
|              | Current Phasor during Pre-Phase:phase L2                                                   |                |         | /Test (Prot<br>inhibit) |
|              |                                                                                            |                |         | /Sgen                   |
|              |                                                                                            |                |         | /Configuration          |
|              |                                                                                            |                |         | /PreFault               |
|              |                                                                                            |                |         | /CT]                    |
| phi IL3      | Start Position respectively Start Angle of the<br>Current Phasor during Pre-Phase:phase L3 | -360 - 360°    | 120°    | [Service                |
|              |                                                                                            |                |         | /Test (Prot<br>inhibit) |
|              |                                                                                            |                |         | /Sgen                   |
|              |                                                                                            |                |         | /Configuration          |
|              |                                                                                            |                |         | /PreFault               |
|              |                                                                                            |                |         | /CT]                    |
| phi IG meas  | Start Position respectively Start Angle of the                                             | -360 - 360°    | 0°      | [Service                |
|              | Current Phasor during Pre-Phase: IG                                                        |                |         | /Test (Prot<br>inhibit) |
|              |                                                                                            |                |         | /Sgen                   |
|              |                                                                                            |                |         | /Configuration          |
|              |                                                                                            |                |         | /PreFault               |
|              |                                                                                            |                |         | /CT]                    |
| IL1          | Current Fundamental Magnitude in Fault                                                     | 0.00 - 40.00ln | 0.0In   | [Service                |
| *            | State: phase L1                                                                            |                |         | /Test (Prot<br>inhibit) |
|              |                                                                                            |                |         | /Sgen                   |
|              |                                                                                            |                |         | /Configuration          |
|              |                                                                                            |                |         | 1                       |
|              |                                                                                            |                |         | FaultSimulation         |
|              |                                                                                            |                |         | /CT]                    |

| Parameter | Description                                                                                  | Setting range  | Default   | Menu path                           |
|-----------|----------------------------------------------------------------------------------------------|----------------|-----------|-------------------------------------|
| IL2       | Current Fundamental Magnitude in Fault                                                       | 0.00 - 40.00ln | 0.0In     | [Service                            |
|           | State: phase L2                                                                              |                |           | /Test (Prot<br>inhibit)             |
|           |                                                                                              |                |           | /Sgen                               |
|           |                                                                                              |                |           | /Configuration                      |
|           |                                                                                              |                |           | /<br>FaultSimulation<br>/CT]        |
| IL3       | Current Fundamental Magnitude in Fault                                                       | 0.00 - 40.00In | 0.0ln     | [Service                            |
|           | State: phase L3                                                                              |                |           | /Test (Prot<br>inhibit)             |
| $\otimes$ |                                                                                              |                |           | /Sgen                               |
|           |                                                                                              |                |           | /Configuration                      |
|           |                                                                                              |                |           | /<br>FaultSimulation                |
| IG meas   | Current Eurodomental Magnitude in Fault                                                      | 0.00 25.001p   | 0.0In     | /CT]                                |
| IG meas   | Current Fundamental Magnitude in Fault<br>State: IG                                          | 0.00 - 25.00ln | 0.0In     | [Service<br>/Test (Prot<br>inhibit) |
| $\otimes$ |                                                                                              |                |           | /Sgen                               |
|           |                                                                                              |                |           | /Configuration                      |
|           |                                                                                              |                |           | /                                   |
|           |                                                                                              |                |           | FaultSimulation                     |
|           |                                                                                              |                |           | /CT]                                |
| phi IL1   | Start Position respectively Start Angle of the<br>Current Phasor during Fault-Phase:phase L1 | -360 - 360°    | 0°        | [Service                            |
|           |                                                                                              |                |           | /Test (Prot<br>inhibit)             |
|           |                                                                                              |                |           | /Sgen                               |
|           |                                                                                              |                |           | /Configuration                      |
|           |                                                                                              |                |           | /<br>FaultSimulation                |
|           |                                                                                              |                |           | /CT]                                |
| phi IL2   | Start Position respectively Start Angle of the                                               | -360 - 360°    | 360° 240° | [Service                            |
| *         | Current Phasor during Fault-Phase:phase L2                                                   |                |           | /Test (Prot<br>inhibit)             |
|           |                                                                                              |                |           | /Sgen                               |
|           |                                                                                              |                |           | /Configuration                      |
|           |                                                                                              |                |           | /                                   |
|           |                                                                                              |                |           | FaultSimulation                     |
|           |                                                                                              |                |           | /CT]                                |

| Parameter   | Description                                                  | Setting range  | Default | Menu path               |
|-------------|--------------------------------------------------------------|----------------|---------|-------------------------|
| phi IL3     | Start Position respectively Start Angle of the               | -360 - 360°    | 120°    | [Service                |
|             | Current Phasor during Fault-Phase:phase L3                   |                |         | /Test (Prot<br>inhibit) |
|             |                                                              |                |         | /Sgen                   |
|             |                                                              |                |         | /Configuration          |
|             |                                                              |                |         | /<br>FaultSimulation    |
|             |                                                              |                |         | /CT]                    |
| phi IG meas | Start Position respectively Start Angle of the               | -360 - 360°    | 0°      | [Service                |
|             | Current Phasor during Fault-Phase: IG                        |                |         | /Test (Prot<br>inhibit) |
|             |                                                              |                |         | /Sgen                   |
|             |                                                              |                |         | /Configuration          |
|             |                                                              |                |         | /<br>FaultSimulation    |
|             |                                                              |                |         | /CT]                    |
| IL1         | Current Fundamental Magnitude during Post<br>phase: phase L1 | 0.00 - 40.00ln | 0.0In   | [Service                |
|             |                                                              |                |         | /Test (Prot<br>inhibit) |
|             |                                                              |                |         | /Sgen                   |
|             |                                                              |                |         | /Configuration          |
|             |                                                              |                |         | /PostFault              |
|             |                                                              |                |         | /CT]                    |
| IL2         | Current Fundamental Magnitude during Post                    | 0.00 - 40.00ln | 0.0In   | [Service                |
|             | phase: phase L2                                              |                |         | /Test (Prot<br>inhibit) |
|             |                                                              |                |         | /Sgen                   |
|             |                                                              |                |         | /Configuration          |
|             |                                                              |                |         | /PostFault              |
|             |                                                              |                |         | /CT]                    |
| IL3         | Current Fundamental Magnitude during Post                    | 0.00 - 40.00In | 0.0ln   | [Service                |
| *           | phase: phase L3                                              |                |         | /Test (Prot<br>inhibit) |
|             |                                                              |                |         | /Sgen                   |
|             |                                                              |                |         | /Configuration          |
|             |                                                              |                |         | /PostFault              |
|             |                                                              |                |         | /CT]                    |

| Parameter   | Description                                    | Setting range  | Default        | Menu path               |
|-------------|------------------------------------------------|----------------|----------------|-------------------------|
| IG meas     | Current Fundamental Magnitude during Post      | 0.00 - 25.00ln | 0.0In          | [Service                |
|             | phase: IG                                      |                |                | /Test (Prot<br>inhibit) |
| $\bigcirc$  |                                                |                |                | /Sgen                   |
|             |                                                |                |                | /Configuration          |
|             |                                                |                |                | /PostFault              |
|             |                                                |                |                | /CT]                    |
| phi IL1     | Start Position respectively Start Angle of the | -360 - 360°    | 0°             | [Service                |
|             | Current Phasor during Post phase: phase L1     |                |                | /Test (Prot<br>inhibit) |
|             |                                                |                |                | /Sgen                   |
|             |                                                |                |                | /Configuration          |
|             |                                                |                |                | /PostFault              |
|             |                                                |                |                | /CT]                    |
| phi IL2     | Start Position respectively Start Angle of the | -360 - 360°    | 240°           | [Service                |
|             | Current Phasor during Post phase: phase L2     |                |                | /Test (Prot<br>inhibit) |
|             |                                                |                |                | /Sgen                   |
|             |                                                |                |                | /Configuration          |
|             |                                                |                |                | /PostFault              |
|             |                                                |                |                | /CT]                    |
| phi IL3     | Start Position respectively Start Angle of the | -360 - 360°    | 120°           | [Service                |
|             | Current Phasor during Post phase: phase L3     |                |                | /Test (Prot<br>inhibit) |
|             |                                                |                |                | /Sgen                   |
|             |                                                |                |                | /Configuration          |
|             |                                                |                |                | /PostFault              |
|             |                                                |                |                | /CT]                    |
| phi IG meas | Start Position respectively Start Angle of the | -360 - 360°    | -360 - 360° 0° | [Service                |
| *           | Current Phasor during Post phase: IG           |                |                | /Test (Prot<br>inhibit) |
|             |                                                |                |                | /Sgen                   |
|             |                                                |                |                | /Configuration          |
|             |                                                |                |                | /PostFault              |
|             |                                                |                |                | /CT]                    |

## States of the Inputs of the Failure Simulator

| Name           | Description                                                   | Assignment via       |
|----------------|---------------------------------------------------------------|----------------------|
| Ex Start       | State of the module input:External Start of Fault             | [Service             |
| Simulation-I   | Simulation (Using the test parameters)                        | /Test (Prot inhibit) |
|                |                                                               | /Sgen                |
|                |                                                               | /Process]            |
| ExBlo1-I       | Module input state: External blocking1                        | [Service             |
|                |                                                               | /Test (Prot inhibit) |
|                |                                                               | /Sgen                |
|                |                                                               | /Process]            |
| ExBlo2-I       | Module input state: External blocking2                        | [Service             |
|                |                                                               | /Test (Prot inhibit) |
|                |                                                               | /Sgen                |
|                |                                                               | /Process]            |
| Ex ForcePost-I | State of the module input:Force Post state. Abort simulation. | [Service             |
|                |                                                               | /Test (Prot inhibit) |
|                |                                                               | /Sgen                |
|                |                                                               | /Process]            |

## Signals of the Failure Simulator (States of the Outputs)

| Signal       | Description                                                                          |
|--------------|--------------------------------------------------------------------------------------|
| Manual Start | Fault Simulation has been started manually.                                          |
| Manual Stop  | Fault Simulation has been stopped manually.                                          |
| Running      | Signal; Measuring value simulation is running                                        |
| Started      | Fault Simulation has been started                                                    |
| Stopped      | Fault Simulation has been stopped                                                    |
| State        | Signal: Wave generation states: 0=Off, 1=PreFault, 2=Fault, 3=PostFault, 4=InitReset |

#### Direct Commands of the Failure Simulator

| Parameter        | Description                            | Setting range | Default  | Menu path               |
|------------------|----------------------------------------|---------------|----------|-------------------------|
| Start Simulation | Start Fault Simulation (Using the test | inactive,     | inactive | [Service                |
|                  | parameters)                            | active        |          | /Test (Prot<br>inhibit) |
|                  |                                        |               |          | /Sgen                   |
|                  |                                        |               |          | /Process]               |

| Parameter       | Description                                        | Setting range       | Default  | Menu path                                    |
|-----------------|----------------------------------------------------|---------------------|----------|----------------------------------------------|
| Stop Simulation | Stopp Fault Simulation (Using the test parameters) | inactive,<br>active | inactive | [Service<br>/Test (Prot<br>inhibit)<br>/Sgen |
|                 |                                                    |                     |          | /Process]                                    |

# Failure Simulator Values

| Value | Description                                                                        | Default | Size                                           | Menu path                        |
|-------|------------------------------------------------------------------------------------|---------|------------------------------------------------|----------------------------------|
| State | Wave generation states: 0=Off,<br>1=PreFault, 2=Fault, 3=PostFault,<br>4=InitReset | Off     | Off,<br>PreFault,                              | [Service<br>/Test (Prot inhibit) |
|       |                                                                                    |         | FaultSimulati<br>on,<br>PostFault,<br>Init Res | /Sgen<br>/State]                 |

# **Technical Data**



Use Copper conductors only, 75°C. Conductor size AWG 14 [2.5 mm<sup>2</sup>].

### **Climatic Environmental Conditions**

| Storage Temperature:               | Operating Temperature:            |
|------------------------------------|-----------------------------------|
| -30°C up to +70°C (-22°F to 158°F) | -20°C up to +60°C (-4°F to 140°F) |

Permissible Humidity at Ann. Average: Permissible Installation Altitude: <75% rel. (on 56d up to 95% rel.) <2000 m (6561.67 ft) above sea level If 4000 m (13123.35 ft) altitude apply a changed classification of the operating and test voltages may be necessary.

## **Degree of Protection EN 60529**

| HMI front panel with seal    | IP54 |
|------------------------------|------|
| HMI front panel without seal | IP50 |
| Rear side terminals          | IP20 |

## **Routine Test**

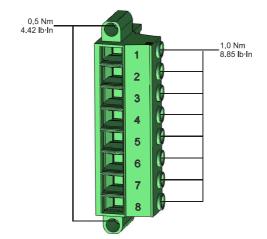
| Insulation test acc. to IEC60255-5:                                            | All tests to be carried out against earth and other input- and output circuits |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Aux. voltage supply, digital inputs,<br>current measuring inputs, signal relay | 2.5 kV (eff) / 50 Hz                                                           |
| outputs:                                                                       |                                                                                |
| Voltage measuring inputs:<br>All wire-bound communication interfaces           | 3.0 kV (eff) / 50 Hz<br>: 1.5 kV DC                                            |

# Housing

| Housing B2: height/-width<br>(7 Pushbottons/Door Mounting)                                             | 173 mm (6.811")/ 212.7 mm (8.374")                                                                                     |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Housing B2: height/-width<br>(8 Pushbottons/Door Mounting)                                             | 183 mm (7.205")/ 212.7 mm (8.374")                                                                                     |
| Housing B2: height/-width<br>(7 and 8 Pushbottons/19")                                                 | 173 mm (6.811" / 4U)/ 212.7 mm (8.374" / 42 HP)                                                                        |
| Housing depth (incl. terminals):<br>Material, housing:<br>Material, front panel:<br>Mounting position: | 208 mm (8.189")<br>Aluminum extruded section<br>Aluminum/Foil front<br>Horizontal (±45° around the X-axis are allowed) |
| Weight:                                                                                                | approx. 4.7 kg (10.36 lb)                                                                                              |

## **Current and Earth Current Measurement**

## Plug-in Connectors with Integrated Short-Circuiter


(Conventional Current Inputs)

| Nominal currents:            | 1 A / 5 A                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Max. measuring range:        | up to 40 x In (phase currents)<br>up to 25 x In (earth current<br>standard)                                                                                                                                                                                                                                                                                                                           | up to 2.5 x In (earth current sensitive) <sup>1)</sup>                                                                  |
| Continuous loading capacity: | Phase current/Earth current<br>4 x In/continuously                                                                                                                                                                                                                                                                                                                                                    | Earth current sensitive <sup>1)</sup><br>2 x In/continuously                                                            |
| Overcurrent proof:           | Phase current/Earth current<br>30 x In/10 s<br>100 x In/1 s<br>250 x In/10 ms (1 half-wave)                                                                                                                                                                                                                                                                                                           | Earth current sensitive <sup>1)</sup><br>10 x In/10 s<br>25 x In/1 s<br>100 x In/10 ms (1 half-wave)                    |
| Power consumption:           | Phase current inputs:<br>at In = 1 A S = 25 mVA<br>at In = 5 A S = 90 mVA                                                                                                                                                                                                                                                                                                                             |                                                                                                                         |
|                              | Earth current input:<br>at In = 1 A S = 25 mVA<br>at In = 5 A S = 90 mVA                                                                                                                                                                                                                                                                                                                              | Sensitive earth <sup>1)</sup> current input:<br>at 0,1 A (1A) S = 7 mVA (550 mVA)<br>at 0,5 A (5A) S = 10 mVA (870 mVA) |
| Frequency range:             | 50 Hz / 60 Hz ±10%                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |
| Terminals:                   | Screw-type terminals with integrated short-circuiters (contacts)                                                                                                                                                                                                                                                                                                                                      |                                                                                                                         |
| Screws:                      | M4, captive type acc. to VDEW                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         |
| Connection Cross Sections:   | 1 x or 2 x 2.5 mm <sup>2</sup> (2 x AWG 14) with wire end ferrule<br>1 x or 2 x 4.0 mm <sup>2</sup> (2 x AWG 12) with ring cable sleeve or cable sleeve<br>1 x or 2 x 6 mm <sup>2</sup> (2 x AWG 10) with ring cable sleeve or cable sleeve<br>Only<br>The current measuring board's terminal blocks may be used as with 2 (double)<br>conductors AWG 10,12,14 otherwise with single conductors only. |                                                                                                                         |

<sup>1)</sup> only in completion with sensitive earth measuring (see ordering information)

### Voltage and Residual Voltage Measurement

The following Technical Data are valid for 8-pole (large) voltage measurement terminals.



| Nominal voltages:            | 60 - 520 V (can be configured)                                                                                 |
|------------------------------|----------------------------------------------------------------------------------------------------------------|
| Max. measuring range:        | 800 V AC                                                                                                       |
| Continuous loading capacity: | 800 V AC                                                                                                       |
| Power consumption:           | at Vn = 100 V S = 22 mVA<br>at Vn = 110 V S = 25 mVA<br>at Vn = 230 V S = 110 mVA<br>at Vn = 400 V S = 330 mVA |
| Frequency range:             | 50 Hz or 60 Hz ±10%                                                                                            |
| Terminals:                   | Screw-type terminals                                                                                           |

#### **Frequency Measurement**

Nominal frequencies: 50 Hz / 60 Hz

## Voltage Supply

| Aux. Voltage:                          | 24V - 270 V DC/48 - 230 V AC (-20/+10%) 🖚                                                                                                 |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Buffer time in case of supply failure: | >= 50 ms at minimal aux. voltage. The device will shut down if<br>the buffer time is expired.<br>Note: communication could be interrupted |
| Max. permissible making current:       | 18 A peak value for 10.25 ms<br>12 A peak value for 11 ms                                                                                 |

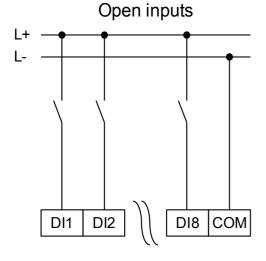
The voltage supply must be protected by a fuse of:

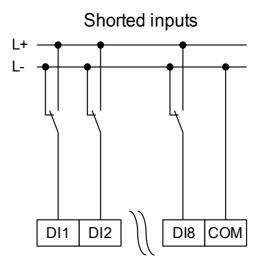
- 2,5 A time-lag miniature fuse 5x20 mm (approx. 1/5" x 0.8") according to IEC 60127
- 3,5 A time-lag miniature fuse 6,3x32 mm (approx. 1/4" x 1 1/4") according to UL 248-14

## **Power Consumption**

| Power supply range:            | Power consumption<br>in idle mode | Max. power consumption |
|--------------------------------|-----------------------------------|------------------------|
| 24-270 V DC:                   | 8 W                               | 13 W                   |
| 48-230 V AC                    | 8W / 16 VA                        | 13 W / 21 VA           |
| (for frequencies of 50-60 Hz): |                                   |                        |

# Display


| Display type:<br>Resolution graphics display: | LCD with LED background illumination 128 x 64 pixel |
|-----------------------------------------------|-----------------------------------------------------|
| LED-Type:<br>Number of LEDs, Housing B2:      | Two colored: red/green<br>15                        |
| Front Interface USB                           |                                                     |
| Туре:                                         | Mini B                                              |


**Real Time Clock** 

Running reserve of the real time clock: 1 year min.

## **Digital Inputs**

| 300 V DC/259 V AC<br>DC <4 mA<br>AC <16 mA |
|--------------------------------------------|
| <20 ms                                     |
| <30 ms<br><90 ms                           |
|                                            |





(Safe state of the digital inputs)

4 Switching thresholds:

Un = 24 V DC: Switching threshold 1 ON: min. 19.2 V DC Switching threshold 1 OFF: max. 9.6 V DC Un = 48 V/60V DC: Min. 42.6 V DC Switching threshold 2 ON: Switching threshold 2 OFF: max. 21.3 V DC Un = 110 V AC/DC: Switching threshold 3 ON: Switching threshold 3 OFF: Un = 230 V AC/DC: Switching threshold 4 ON: min. 184 V DC/184 V AC max. 92 V DC/92 V AC Switching threshold 4 OFF Terminals:

Un = 24 V DC, 48 V DC, 60 V DC, 110 V AC/DC, 230 V AC/DC min. 88.0 V DC/88.0 V AC

max. 44.0 V DC/44.0 V AC

Screw-type terminals

## **Binary Output Relays**

| Continuous current:     | 5 A AC/DC                                                |
|-------------------------|----------------------------------------------------------|
| Max. Switch-on current: | 25 A AC/DC for 4 s                                       |
|                         | 48W (VA) at L/R = 40ms                                   |
|                         | 30 A / 230 Vac according to ANSI IEEE Std C37.90-2005    |
|                         | 30 A / 250 Vdc according to ANSI IEEE Std C37.90-2005    |
| Max. breaking current:  | 5 A AC up to 240 V AC                                    |
|                         | 4 A AC at 230V and $\cos \varphi = 0,4$                  |
|                         | 5 A DC up to 30 V (resistive)                            |
|                         | 0.3 A DC at 250 V (resistive)                            |
|                         | 0,1 A DC at 220 V and L/R = 40ms                         |
| Max. switching voltage: | 250 V AC/250 V DC                                        |
| Switching capacity:     | 3000 VA                                                  |
| Operating time: (*)     | typ. 7 ms                                                |
| Reset time: (*)         | typ. 3 ms                                                |
| Contact type:           | 1 changeover contact or normally open or normally closed |
| Terminals:              | Screw-type terminals                                     |

(\*) The operating and reset times are the pure hardware-related switching times (coil – making/breaking contact), i. e. without the time that it takes the software to calculate the decisions.

## Supervision Contact (SC)

| Continuous current::    | 5 A AC/DC                      |
|-------------------------|--------------------------------|
| Max. Switch-on current: | 15 A AC/DC for 4 s             |
| Max. breaking current:  | 5 A AC up to 250 V AC          |
|                         | 5 A DC up to 30 V (resistive)  |
|                         | 0.25 A DC at 250 V (resistive) |
| Max. switching voltage: | 250 V AC/250 V DC              |
| Switching capacity:     | 1250 VA                        |
| Contact type:           | 1 changeover contact           |
| Terminals:              | Screw-type terminals           |
|                         |                                |

### Time Synchronization IRIG

Nominal input voltage:5 VConnection:Screw-type terminals (twisted pair)

#### RS485\*

Connection:

9-pole D-Sub socket (external terminating resistors/in D-Sub) or 6 screw-clamping terminals RM 3.5 mm (138 MIL) (terminating resistors internal)

\*availability depends on device

CAUTION

In case that the RS485 interface is realised via terminals, the communication cable has to be shielded.

#### Fiber Optic Module with ST connector\*

| Connector:                    | ST Port                                                             |
|-------------------------------|---------------------------------------------------------------------|
| Compatible Fiber:             | 50/125 $\mu m,62,5/125$ $\mu m,100/140$ $\mu m$ and 200 $\mu m$ HCS |
| Wavelength                    | 820 nm                                                              |
| Minimum Optical Input Power:  | −24,0 dBm                                                           |
| Minimum Optical Output Power: | −19.8 dBm with 50/125 µm fiber                                      |
|                               | −16,0 dBm with 62,5/125 µm fiber                                    |
|                               | −12,5 dBm with 100/145 μm fiber                                     |
|                               | −8,5 dBm with 200 µm HCS fiber                                      |
| Maximum Link Length:          | approx. 2.7 km (depending on link attenuation)                      |

\*availability depends on device

Please note: The transmission speed of the optical interfaces is limited to 3 MBaud for Profibus.

#### Fiber Optic Module with LC Connector for Long-distance Protection Communication\*\*

| Connector:                    | LC Port                                       |
|-------------------------------|-----------------------------------------------|
| Compatible Fiber:             | 9 µm single mode                              |
| Wavelength:                   | 1310 nm                                       |
| Minimum Optical Input Power:  | −31.0 dBm                                     |
| Minimum Optical Output Power: | −15.0 dBm                                     |
| Maximum Link Length:          | approx. 20 km (depending on link attenuation) |

\*\* only for Line Differential Protection (MCDLV4)

## **Optical Ethernet Module with LC connector\***

LC-Port

Connector: Compatible Fiber: Wavelength: Minimum Optical Input Power: Minimum Optical Output Power:

1300 nm -30,0 dBm -22.5 dBm with 50/125 μm fiber -19,0 dBm with 62,5/125 μm fiber approx. 2 km (depending on link attenuation)

50/125  $\mu m$  and 62,5/125  $\mu m$ 

Maximum Link Length:

\*availability depends on device

#### **URTD-Interface\***

| Connector:                      | Versatile Link |
|---------------------------------|----------------|
| Compatible Fiber:               | 1 mm           |
| Wavelength:                     | 660 nm         |
| Minimum Optical Input Power:    | −39,0 dBm      |
| *availability depends on device |                |

# Boot phase

After switching on the power supply the protection will be available in approximately 8 seconds. After approximately 58 s the boot phase is completed (HMI and Communication initialized).

# Servicing and Maintenance

Within the scope of servicing and maintenance following checks of the unit hardware have to be conducted:

| Component                                           | Step                                                                                                                                                                                                                                                                  | Interval/How often?                                                                                                                                                                                                                                     |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output Relays                                       | Please check the Output Relays via<br>Test menu Force/Disarm<br>(please see chapter Service)                                                                                                                                                                          | Every 1–4 years, depending on ambient conditions.                                                                                                                                                                                                       |
| Digital Inputs                                      | Please supply a voltage to the Digital<br>Inputs and control if the appropriate<br>status signal appears.                                                                                                                                                             | Every 1–4 years, depending on ambient conditions.                                                                                                                                                                                                       |
| Current plugs and Current measurements              | Please supply testing current to the<br>Current measurement inputs and<br>control the displayed measure values<br>from the unit.                                                                                                                                      | Every 1–4 years, depending on ambient conditions.                                                                                                                                                                                                       |
| Voltage plugs and Voltage measurements              | Please supply testing current to the<br>Voltage measurement inputs and<br>control the displayed measure values<br>from the unit.                                                                                                                                      | Every 1–4 years, depending on ambient conditions.                                                                                                                                                                                                       |
| Analog Inputs                                       | Please feed analog signals into the measurement inputs and check if the displayed measure values match.                                                                                                                                                               | Every 1–4 years, depending on ambient conditions.                                                                                                                                                                                                       |
| Analog Outputs                                      | Please check the Analog Outputs via<br>Test menu Force/Disarm<br>(please see chapter Service)                                                                                                                                                                         | Every 1–4 years, depending on ambient conditions.                                                                                                                                                                                                       |
| Battery                                             | The device checks the battery as part<br>of its Self-Supervision, therefore no<br>dedicated testing activities are<br>required. If the battery is low, the<br>System LED flashes red/green, and an<br>error code is generated (see<br><i>Troubleshooting Guide</i> ). | In general the battery lasts more than 10 years.                                                                                                                                                                                                        |
|                                                     |                                                                                                                                                                                                                                                                       | Exchange by manufacturer.                                                                                                                                                                                                                               |
|                                                     |                                                                                                                                                                                                                                                                       | Notice: The battery serves as buffering of the clock<br>(real time clock). There's no impact on the<br>functionality of the device if the battery breaks down,<br>except for the buffering of the clock while the unit is<br>in de-energized condition. |
| Self-monitoring contact                             | Switch of the auxiliary supply of the<br>unit. The Self-monitoring contact has<br>to dropout now. Please switch on the<br>auxiliary supply again.                                                                                                                     | Every 1–4 years, depending on ambient conditions.                                                                                                                                                                                                       |
| Mechanical mounting of the unit of the cabinet door | Check the torque related to the specification of the Installation chapter.                                                                                                                                                                                            | With each maintenance or yearly.                                                                                                                                                                                                                        |
| Torque of all cable connections                     | Check the torque related to the specification of the Installation chapter which describes the hardware modules.                                                                                                                                                       | With each maintenance or yearly.                                                                                                                                                                                                                        |

We recommend to execute an protection test after each 4 years period. This period can be extended to 6 years if a function test is executed at least every 3 years.

## Standards

#### Approvals

- UL- File No.: E217753
- CSA File No.: 251990\*\*
- CEI 0-16\* (Tested by EuroTest Laboratori S.r.I, Italy)\*
- BDEW Certified (FGW TR3/FGW TR8/Q-U-Schutz)\*\*
- KEMA\*\*\*
- EAC

\* = applies to MRU4

\*\* = applies to MCA4

```
*** = applies to (MRDT4, MCA4, MRA4, MRI4, MRU4)
```

## **Design Standards**

| Generic standard | EN 61000-6-2 , 2005<br>EN 61000-6-3 , 2006                                                                                                                                               |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product standard | IEC 60255-1; 2009<br>IEC 60255-27, 2013<br>EN 50178, 1998<br>UL 508 (Industrial Control Equipment), 2005<br>CSA C22.2 No. 14-95 (Industrial Control Equipment),1995<br>ANSI C37.90, 2005 |

## High Voltage Tests

| High frequency interference test |                    |              |
|----------------------------------|--------------------|--------------|
| IEC 60255-22-1                   | Within one circuit | 1 kV , 2 s   |
| IEEE C37.90.1                    |                    |              |
| IEC 61000-4-18                   | Circuit to earth   | 2.5 kV , 2 s |
| class 3                          | Circuit to circuit | 2.5 kV , 2 s |

| <i>Insulation voltage test</i><br>IEC 60255-27 (10.5.3.2)<br>IEC 60255-5<br>EN 50178 | All circuits to other circuits and exposed<br>conductive parts<br>Except interfaces | 2.5 kV (eff.)/50Hz , 1 min.<br>1,5 kV DC , 1 min. |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                                                      | and Voltage measuring input                                                         | 3 kV (eff.)/50 Hz , 1 min.                        |
| <i>Impulse voltage test</i><br>IEC 60255-27 (10.5.3.1)<br>IEC 60255-5                |                                                                                     | 5 kV/0.5J, 1.2/50 μs                              |
| <i>Insulation resistance test</i><br>IEC 60255-27 (10.5.3.3)<br>EN 50178             | Within one circuit                                                                  | 500V DC , 5s                                      |
|                                                                                      | Circuit to circuit                                                                  | 500V DC , 5s                                      |

# **EMC Immunity Tests**

| <i>Fast transient disturbance im</i><br>IEC 60255-22-4<br>IEC 61000-4-4 | <i>munity test (Burst)</i><br>Power supply, mains inputs | ±4 kV, 2.5 kHz |
|-------------------------------------------------------------------------|----------------------------------------------------------|----------------|
| class 4                                                                 | Other in- and outputs                                    | ±2 kV, 5 kHz   |
| <i>Surge immunity test (Surge)</i><br>IEC 60255-22-5<br>IEC 61000-4-5   | Within one circuit                                       | 2 kV           |
| class 4                                                                 | Circuit to earth                                         | 4 kV           |
| class 3                                                                 | Communication cables to earth                            | 2 kV           |
|                                                                         |                                                          |                |
| Electrical discharge immunity                                           | . ,                                                      | 0.137          |
| IEC 60255-22-2<br>IEC 61000-4-2<br>class 3                              | Air discharge                                            | 8 kV           |
| 0035 0                                                                  | Contact discharge                                        | 6 kV           |
| Radiated radio-frequency ele                                            | ctromagnetic field immunity test                         |                |
| IEC 60255-22-3                                                          | 26 MHz – 80 MHz                                          | 10 V/m         |
| IEC 61000-4-3                                                           | 80 MHz – 1 GHz                                           | 35 V/m         |
|                                                                         | 1 GHz – 3 GHz                                            | 10 V/m         |
| Immunity to conducted distur                                            | bances induced by radio frequency fields                 |                |
| IEC 61000-4-6<br>class 3                                                | 150kHz - 80MHz                                           | 10 V           |
| Power frequency magnetic fi                                             | eld immunity test                                        |                |
| IEC 61000-4-8                                                           | continues                                                | 30 A/m         |
| class 4                                                                 | 3 sec                                                    | 300 A/m        |
|                                                                         |                                                          |                |

#### **EMC Emission Tests**

Radio interference suppression testIEC/CISPR22150kHz - 30MHzIEC60255-26DIN EN 55022

Limit value class B

Radio interference radiation testIEC/CISPR2230MHz - 1GHzIEC60255-25DIN EN 55022

Limit value class B

## **Environmental Tests**

| <i>Classification:</i><br>IEC 60068-1                | Climatic                                                                                   | 20/060/56                                    |
|------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|
|                                                      | classification                                                                             |                                              |
| IEC 60721-3-1                                        | Classification of ambient conditions (Storage)                                             | 1K5/1B1/1C1L/1S1/1M2<br>but min30°C          |
| IEC 60721-3-2                                        | Classification of ambient conditions (Transportation)                                      | 2K2/2B1/2C1/2S1/2M2<br>but min30°C           |
| IEC 60721-3-3                                        | Classification of ambient conditions<br>(Stationary use at weather protected<br>locations) | 3K6/3B1/3C1/3S1/3M2<br>but min20°C/max +60°C |
| Test Ad: Cold                                        |                                                                                            |                                              |
| IEC 60068-2-1                                        | Temperature<br>test duration                                                               | -20°C<br>16 h                                |
| Test Bd: Dry Heat                                    |                                                                                            |                                              |
| IEC 60068-2-2                                        | Temperature<br>Relative humidity<br>test duration                                          | 60°C<br><50%<br>72 h                         |
| <i>Test Db: Damp Heat (cyclic)</i><br>IEC 60068-2-30 | Tomporatura                                                                                | 60°C                                         |
|                                                      | Temperature<br>Relative humidity<br>Cycles (12 + 12-hour)                                  | 95%<br>2                                     |

#### **Environmental Tests**

| <i>Test Cab: Damp Heat (perm</i><br>IEC 60255 (6.12.3.6)<br>IEC 60068-2-78  | ,             | 60°C<br>95%<br>56 days |
|-----------------------------------------------------------------------------|---------------|------------------------|
| Test Nb:Temperature Chang                                                   | ge            |                        |
| IEC 60255 (6.12.3.5)                                                        | Temperature   | 60°C/-20°C             |
| IEC 60068-2-14                                                              | cycle         | 5                      |
|                                                                             | test duration | 1°C/5min               |
| <i>Test BD: Dry Heat Transport</i><br>IEC 60255 (6.12.3.3)<br>IEC 60068-2-2 | -             | 70°C<br>16 h           |
| Test AB: Cold Transport and                                                 | storage test  |                        |
| IEC 60255-1 (6.12.3.4)                                                      | Temperature   | -30°C                  |
| IEC 60068-2-1                                                               | test duration | 16 h                   |
|                                                                             |               |                        |

## **Mechanical Tests**

| <i>Test Fc: Vibration response</i><br>IEC 60068-2-6<br>IEC 60255-21-1 | <i>test</i><br>(10 Hz – 59 Hz)<br>Displacement | 0.035 mm                                                  |
|-----------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|
| class 1                                                               | (59Hz – 150Hz)<br>Acceleration                 | 0,5 gn                                                    |
|                                                                       | Number of cycles in each axis                  | 1                                                         |
| Test Fc: Vibration endurance                                          |                                                | 1.0 cp                                                    |
| IEC 60068-2-6<br>IEC 60255-21-1                                       | (10 Hz – 150 Hz)<br>Acceleration               | 1.0 gn                                                    |
| class 1                                                               | Number of cycles in each axis                  | 20                                                        |
| <i>Test Ea: Shock tests</i><br>IEC 60068-2-27                         | Shock regresses test                           | E an 11 ma 2 impulses in each                             |
| IEC 60006-2-27<br>IEC 60255-21-2<br>class 1                           | Shock response test                            | 5 gn, 11 ms, 3 impulses in each direction                 |
|                                                                       | Shock resistance test                          | 15 gn, 11 ms, 3 impulses in each direction                |
| Test Eb: Shockendurance te                                            |                                                | 40 mm 40 mm 4000 immulates in a sh                        |
| IEC 60068-2-29<br>IEC 60255-21-2<br>class 1                           | Shock endurance test                           | 10 gn, 16 ms, 1000 impulses in each<br>direction          |
|                                                                       |                                                |                                                           |
| <i>Test Fe: Earthquake test</i><br>IEC 60068-3-3                      | Single axis earthquake vibration test          | 1 – 9 Hz horizontal: 7.5 mm,                              |
| IEC 60255-21-3                                                        |                                                | 1 – 9 Hz vertical :3.5 mm,<br>1 sweep per axis            |
| class 2                                                               |                                                | 9 – 35 Hz horizontal: 2 gn,<br>9 – 35 Hz vertical : 1 gn, |
|                                                                       |                                                | 1 sweep per axis                                          |

# **General Lists**

## Assignment List

The »ASSIGNMENT LIST« below summarizes all module outputs (signals) and inputs (e.g. states of the assignments).

| Name                              | Description                                                                                                                                                                          |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | No assignment                                                                                                                                                                        |
| Prot.available                    | Signal: Protection is available                                                                                                                                                      |
| Prot.active                       | Signal: active                                                                                                                                                                       |
| Prot.ExBlo                        | Signal: External Blocking                                                                                                                                                            |
| Prot.Blo TripCmd                  | Signal: Trip Command blocked                                                                                                                                                         |
| Prot.ExBlo TripCmd                | Signal: External Blocking of the Trip Command                                                                                                                                        |
| Prot.Alarm L1                     | Signal: General-Alarm L1                                                                                                                                                             |
| Prot.Alarm L2                     | Signal: General-Alarm L2                                                                                                                                                             |
| Prot.Alarm L3                     | Signal: General-Alarm L3                                                                                                                                                             |
| Prot.Alarm G                      | Signal: General-Alarm - Earth fault                                                                                                                                                  |
| Prot.Alarm                        | Signal: General Alarm                                                                                                                                                                |
| Prot.Trip L1                      | Signal: General Trip L1                                                                                                                                                              |
| Prot.Trip L2                      | Signal: General Trip L2                                                                                                                                                              |
| Prot.Trip L3                      | Signal: General Trip L3                                                                                                                                                              |
| Prot.Trip G                       | Signal: General Trip Ground fault                                                                                                                                                    |
| Prot.Trip                         | Signal: General Trip                                                                                                                                                                 |
| Prot.Res FaultNo a<br>GridFaultNo | Signal: Resetting of fault number and grid fault number.                                                                                                                             |
| Prot.ExBlo1-I                     | Module input state: External blocking1                                                                                                                                               |
| Prot.ExBlo2-I                     | Module input state: External blocking2                                                                                                                                               |
| Prot.ExBlo TripCmd-I              | Module input state: External Blocking of the Trip Command                                                                                                                            |
| VT.Phase seq. wrong               | Signal that the device has detected a phase sequence (L1-L2-L3 / L1-L3-L2) that is different from the one that had been set at [Field settings / General Settings] »Phase Sequence«. |
| CT.Phase seq. wrong               | Signal that the device has detected a phase sequence (L1-L2-L3 / L1-L3-L2) that is different from the one that had been set at [Field settings / General Settings] »Phase Sequence«. |
| Ctrl.Local                        | Switching Authority: Local                                                                                                                                                           |
| Ctrl.Remote                       | Switching Authority: Remote                                                                                                                                                          |
| Ctrl.NonInterl                    | Non-Interlocking is active                                                                                                                                                           |
| Ctrl.SG Indeterm                  | Minimum one Switchgear is moving (Position cannot be determined).                                                                                                                    |
| Ctrl.SG Disturb                   | Minimum one Switchgear is disturbed.                                                                                                                                                 |
| Ctrl.NonInterl-I                  | Non-Interlocking                                                                                                                                                                     |
| SG[1].SI<br>SingleContactInd      | Signal: The Position of the Switchgear is detected by one auxiliary contact (pole) only. Thus indeterminate and disturbed Positions cannot be detected.                              |
| SG[1].Pos not ON                  | Signal: Pos not ON                                                                                                                                                                   |

| Name                       | Description                                                                                                                                                                                                                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SG[1].Pos ON               | Signal: Circuit Breaker is in ON-Position                                                                                                                                                                                                                                                                                              |
| SG[1].Pos OFF              | Signal: Circuit Breaker is in OFF-Position                                                                                                                                                                                                                                                                                             |
| SG[1].Pos Indeterm         | Signal: Circuit Breaker is in Indeterminate Position                                                                                                                                                                                                                                                                                   |
| SG[1].Pos Disturb          | Signal: Circuit Breaker Disturbed - Undefined Breaker Position. The Position Indicators contradict themselves. After expiring of a supervision timer this signal becomes true.                                                                                                                                                         |
| SG[1].Ready                | Signal: Circuit breaker is ready for operation.                                                                                                                                                                                                                                                                                        |
| SG[1].t-Dwell              | Signal: Dwell time                                                                                                                                                                                                                                                                                                                     |
| SG[1].Removed              | Signal: The withdrawable circuit breaker is Removed                                                                                                                                                                                                                                                                                    |
| SG[1].Interl ON            | Signal: One or more IL_On inputs are active.                                                                                                                                                                                                                                                                                           |
| SG[1].Interl OFF           | Signal: One or more IL_Off inputs are active.                                                                                                                                                                                                                                                                                          |
| SG[1].CES succesf          | Signal: Command Execution Supervision: Switching command executed successfully.                                                                                                                                                                                                                                                        |
| SG[1].CES Disturbed        | Signal: Command Execution Supervision: Switching Command unsuccessful.<br>Switchgear in disturbed position.                                                                                                                                                                                                                            |
| SG[1].CES Fail TripCmd     | Signal: Command Execution Supervision: Command execution failed because trip command is pending.                                                                                                                                                                                                                                       |
| SG[1].CES SwitchDir        | Signal: Command Execution Supervision respectively Switching Direction Control:<br>This signal becomes true, if a switch command is issued even though the switchgear<br>is already in the requested position. Example: A switchgear that is already OFF<br>should be switched OFF again (doubly). The same applies to CLOSE commands. |
| SG[1].CES ON d OFF         | Signal: Command Execution Supervision: On Command during a pending OFF Command.                                                                                                                                                                                                                                                        |
| SG[1].CES SG not ready     | Signal: Command Execution Supervision: Switchgear not ready                                                                                                                                                                                                                                                                            |
| SG[1].CES Fiel Interl      | Signal: Command Execution Supervision: Switching Command not executed because of field interlocking.                                                                                                                                                                                                                                   |
| SG[1].CES SG removed       | Signal: Command Execution Supervision: Switching Command unsuccessful,<br>Switchgear removed.                                                                                                                                                                                                                                          |
| SG[1].TripCmd              | Signal: Trip Command                                                                                                                                                                                                                                                                                                                   |
| SG[1].Ack TripCmd          | Signal: Acknowledge Trip Command                                                                                                                                                                                                                                                                                                       |
| SG[1].OFF incl TripCmd     | Signal: The OFF Command includes the OFF Command issued by the Protection module.                                                                                                                                                                                                                                                      |
| SG[1].Position Ind manipul | Signal: Position Indicators faked                                                                                                                                                                                                                                                                                                      |
| SG[1].SGwear Slow SG       | Signal: Alarm, the circuit breaker (load-break switch) becomes slower                                                                                                                                                                                                                                                                  |
| SG[1].Res SGwear SI SG     | Signal: Resetting the slow Switchgear Alarm                                                                                                                                                                                                                                                                                            |
| SG[1].ON Cmd               | Signal: ON Command issued to the switchgear. Depending on the setting the signal may include the ON command of the Prot module.                                                                                                                                                                                                        |
| SG[1].OFF Cmd              | Signal: OFF Command issued to the switchgear. Depending on the setting the signal may include the OFF command of the Prot module.                                                                                                                                                                                                      |
| SG[1].ON Cmd manual        | Signal: ON Cmd manual                                                                                                                                                                                                                                                                                                                  |
| SG[1].OFF Cmd manual       | Signal: OFF Cmd manual                                                                                                                                                                                                                                                                                                                 |
| SG[1].Aux ON-I             | Module Input State: Position indicator/check-back signal of the CB (52a)                                                                                                                                                                                                                                                               |
| SG[1].Aux OFF-I            | Module input state: Position indicator/check-back signal of the CB (52b)                                                                                                                                                                                                                                                               |
| SG[1].Ready-I              | Module input state: CB ready                                                                                                                                                                                                                                                                                                           |
| SG[1].Removed-I            | State of the module input: The withdrawable circuit breaker is Removed                                                                                                                                                                                                                                                                 |

| Name                          | Description                                                                                                      |
|-------------------------------|------------------------------------------------------------------------------------------------------------------|
| SG[1].Ack TripCmd-I           | State of the module input: Acknowledgement Signal (only for automatic acknowledgement) Module input signal       |
| SG[1].Interl ON1-I            | State of the module input: Interlocking of the ON command                                                        |
| SG[1].Interl ON2-I            | State of the module input: Interlocking of the ON command                                                        |
| SG[1].Interl ON3-I            | State of the module input: Interlocking of the ON command                                                        |
| SG[1].Interl OFF1-I           | State of the module input: Interlocking of the OFF command                                                       |
| SG[1].Interl OFF2-I           | State of the module input: Interlocking of the OFF command                                                       |
| SG[1].Interl OFF3-I           | State of the module input: Interlocking of the OFF command                                                       |
| SG[1].SCmd ON-I               | State of the module input: Switching ON Command, e.g. the state of the Logics or the state of the digital input  |
| SG[1].SCmd OFF-I              | State of the module input: Switching OFF Command, e.g. the state of the Logics or the state of the digital input |
| SG[1].Operations Alarm        | Signal: Service Alarm, too many Operations                                                                       |
| SG[1].Isum Intr trip: IL1     | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL1                      |
| SG[1].Isum Intr trip: IL2     | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL2                      |
| SG[1].Isum Intr trip: IL3     | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL3                      |
| SG[1].lsum Intr trip          | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded in at least one phase.    |
| SG[1].Res TripCmd Cr          | Signal: Resetting of the Counter: total number of trip commands                                                  |
| SG[1].Res Sum trip            | Signal: Reset summation of the tripping currents                                                                 |
| SG[1].WearLevel Alarm         | Signal: Threshold for the Alarm                                                                                  |
| SG[1].WearLevel<br>Lockout    | Signal: Threshold for the Lockout Level                                                                          |
| SG[1].Res CB OPEN<br>capacity | Signal: Reset of the wear maintenance curve (i. e. of the counter for the Circuit Breaker OPEN capacity.         |
| SG[1].lsum Intr ph Alm        | Signal: Alarm, the per hour Sum (Limit) of interrupting currents has been exceeded.                              |
| SG[1].Res Isum Intr ph<br>Alm | Signal: Reset of the Alarm, "the per hour Sum (Limit) of interrupting currents has been exceeded".               |
| MStart.active                 | Signal: active                                                                                                   |
| MStart.Blo TripCmd            | Signal: Trip Command blocked                                                                                     |
| MStart.Trip                   | Signal: Trip                                                                                                     |
| MStart.TripCmd                | Signal: Trip Command                                                                                             |
| MStart.Start                  | Signal: Motor is in start mode                                                                                   |
| MStart.Run                    | Signal: Motor is in run mode                                                                                     |
| MStart.Stop                   | Signal: Motor is in stop mode                                                                                    |
| MStart.Blo                    | Signal: Motor is blocked for starting or transition to Run mode                                                  |
| MStart.NOCSBlocked            | Signal: Motor is prohibited to start due to number of cold start limits                                          |
| MStart.SPHBlocked             | Signal: Motor is prohibited to start due to starts per hour limits                                               |
| MStart.SPHBlockAlarm          | Signal: Motor is prohibited to start due to starts per hour limits, would come active in the next stop           |

| Name                                                                                                                                                                               | Description                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MStart.TBSBlocked                                                                                                                                                                  | Signal: Motor is prohibited to start due to time between starts limits                                                                                                                                                                                                 |
| MStart.ThermalBlo                                                                                                                                                                  | Signal: Thermal block                                                                                                                                                                                                                                                  |
| MStart.RemBlockStart                                                                                                                                                               | Signal: Motor is prohibited to start due to external blocking through digital input DI                                                                                                                                                                                 |
| MStart.TransitionTrip                                                                                                                                                              | Signal: Start transition fail trip                                                                                                                                                                                                                                     |
| MStart.ZSSTrip                                                                                                                                                                     | Signal: Zero speed trip (possible locked rotor)                                                                                                                                                                                                                        |
| MStart.INSQSP2STFaill                                                                                                                                                              | Signal: Fail to transit from stop to start based on reported back time                                                                                                                                                                                                 |
| MStart.INSQSt2RunFail                                                                                                                                                              | Signal: Fail to transit from start to run based on reported back time                                                                                                                                                                                                  |
| MStart.LATBlock                                                                                                                                                                    | Signal: Long acceleration timer enforced                                                                                                                                                                                                                               |
| MStart.ColdStartSeq                                                                                                                                                                | Signal: Motor cold start sequence flag                                                                                                                                                                                                                                 |
| MStart.ForcedStart                                                                                                                                                                 | Signal: Motor being forced to start                                                                                                                                                                                                                                    |
| MStart.TripPhaseRevers<br>e                                                                                                                                                        | Signal: Relay tripped because of phase reverse detection                                                                                                                                                                                                               |
| MStart.EmergOverrideDI                                                                                                                                                             | Signal: Emergency override start blocking through digital input DI                                                                                                                                                                                                     |
| MStart.EmergOverrideUI                                                                                                                                                             | Signal: Emergency override start blocking through front panel                                                                                                                                                                                                          |
| MStart.ABSActive                                                                                                                                                                   | Signal: Anti-backspin is active. For certain applications, such as pumping a fluid up a pipe, the motor may be driven backward for a period of time after it stops. The anti-backspin timer prevents starting the motor while it is spinning in the reverse direction. |
| MStart.Blo-GOCStart                                                                                                                                                                | Signal: Ground Instantaneous Overcurrent Start Delay. GOC (Instantaneous<br>Overcurrent) elements are blocked for the time programmed under this parameter                                                                                                             |
| MStart.Blo-IOCStart                                                                                                                                                                | Signal: Phase Instantaneous Overcurrent Start Delay. IOC (Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter                                                                                                                 |
| MStart.Blo-I <start< td=""><td>Signal: Underload Start Delay. Underload(Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter</td></start<> | Signal: Underload Start Delay. Underload(Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter                                                                                                                                  |
| MStart.Blo-JamStart                                                                                                                                                                | Signal: JAM Start Delay. JAM(Instantaneous Overcurrent) elements are blocked for the time programmed under this parameter                                                                                                                                              |
| MStart.Blo-I2>Start                                                                                                                                                                | Signal: Motor start block current unbalance signal                                                                                                                                                                                                                     |
| MStart.Blo-Generic1                                                                                                                                                                | Generic Start Delay. This value can be used to block any protective element.1                                                                                                                                                                                          |
| MStart.Blo-Generic2                                                                                                                                                                | Generic Start Delay. This value can be used to block any protective element.2                                                                                                                                                                                          |
| MStart.Blo-Generic3                                                                                                                                                                | Generic Start Delay. This value can be used to block any protective element.3                                                                                                                                                                                          |
| MStart.Blo-Generic4                                                                                                                                                                | Generic Start Delay. This value can be used to block any protective element.4                                                                                                                                                                                          |
| MStart.Blo-Generic5                                                                                                                                                                | Generic Start Delay. This value can be used to block any protective element.5                                                                                                                                                                                          |
| MStart.I_Transit                                                                                                                                                                   | Signal: Current transition signal                                                                                                                                                                                                                                      |
| MStart.T_Transit                                                                                                                                                                   | Signal: Time transition signal                                                                                                                                                                                                                                         |
| MStart.MotorStopBlo                                                                                                                                                                | Signal: Motor stop block other protection functions                                                                                                                                                                                                                    |
| MStart.Rotating forward                                                                                                                                                            | Signal: Rotation Direction forward                                                                                                                                                                                                                                     |
| MStart.Rotating<br>backward                                                                                                                                                        | Signal: Rotation Direction reverse                                                                                                                                                                                                                                     |
| MStart.Blo-U2>                                                                                                                                                                     | Signal: Motor start block voltage unbalance signal.                                                                                                                                                                                                                    |
| MStart.Blo-UnderV Start                                                                                                                                                            | Signal: Undervoltage Start Delay. Undervoltage elements are blocked for the time programmed under this parameter                                                                                                                                                       |
| MStart.Block-OverVStart                                                                                                                                                            | Signal: Overvoltage Start Delay. Overvoltage elements are blocked for the time programmed under this parameter                                                                                                                                                         |

| Name                   | Description                                                                                                                                                                                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MStart.Blo-PowerStart  | Signal: Power Start Delay. Power elements are blocked for the time programmed under this parameter                                                                                                                                                                                |
| MStart.Blo-PFacStart   | Signal: Power Factor Start Delay. Power Factor elements are blocked for the time programmed under this parameter                                                                                                                                                                  |
| MStart.Blo-FrqStart    | Signal: Frequency Start Delay. Frequency elements are blocked for the time programmed under this parameter                                                                                                                                                                        |
| MStart.ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command                                                                                                                                                                                                                         |
| MStart.RemStartBlock-I | State of the module input: Remote Motor Start Blocking                                                                                                                                                                                                                            |
| MStart.EmgOvr-I        | State of the module input: Emergency Override. Signal has to be active in order to release the thermal capacity of the motor. Please notice that by doing this you run the risk of damaging the motor. "EMGOVR" has to be set to "DI" or "DI or UI" for this input to take effect |
| MStart.INSQ-I          | State of the module input: INcomplete SeQuence                                                                                                                                                                                                                                    |
| MStart.ZSS-I           | State of the module input: Zero Speed Switch                                                                                                                                                                                                                                      |
| MStart.STPC Blo-I      | State of the module input: With this setting a Digital Input keeps the Motor in the RUN mode, even when the motor current drops below STPC (motor stop current).                                                                                                                  |
| I[1].active            | Signal: active                                                                                                                                                                                                                                                                    |
| I[1].ExBlo             | Signal: External Blocking                                                                                                                                                                                                                                                         |
| I[1].Ex rev Interl     | Signal: External reverse Interlocking                                                                                                                                                                                                                                             |
| I[1].Blo TripCmd       | Signal: Trip Command blocked                                                                                                                                                                                                                                                      |
| I[1].ExBlo TripCmd     | Signal: External Blocking of the Trip Command                                                                                                                                                                                                                                     |
| I[1].Alarm L1          | Signal: Alarm L1                                                                                                                                                                                                                                                                  |
| I[1].Alarm L2          | Signal: Alarm L2                                                                                                                                                                                                                                                                  |
| I[1].Alarm L3          | Signal: Alarm L3                                                                                                                                                                                                                                                                  |
| I[1].Alarm             | Signal: Alarm                                                                                                                                                                                                                                                                     |
| I[1].Trip L1           | Signal: General Trip Phase L1                                                                                                                                                                                                                                                     |
| I[1].Trip L2           | Signal: General Trip Phase L2                                                                                                                                                                                                                                                     |
| I[1].Trip L3           | Signal: General Trip Phase L3                                                                                                                                                                                                                                                     |
| I[1].Trip              | Signal: Trip                                                                                                                                                                                                                                                                      |
| I[1].TripCmd           | Signal: Trip Command                                                                                                                                                                                                                                                              |
| I[1].DefaultSet        | Signal: Default Parameter Set                                                                                                                                                                                                                                                     |
| I[1].AdaptSet 1        | Signal: Adaptive Parameter 1                                                                                                                                                                                                                                                      |
| I[1].AdaptSet 2        | Signal: Adaptive Parameter 2                                                                                                                                                                                                                                                      |
| I[1].AdaptSet 3        | Signal: Adaptive Parameter 3                                                                                                                                                                                                                                                      |
| I[1].AdaptSet 4        | Signal: Adaptive Parameter 4                                                                                                                                                                                                                                                      |
| I[1].ExBlo1-I          | Module input state: External blocking1                                                                                                                                                                                                                                            |
| I[1].ExBlo2-I          | Module input state: External blocking2                                                                                                                                                                                                                                            |
| I[1].ExBlo TripCmd-I   | Module input state: External Blocking of the Trip Command                                                                                                                                                                                                                         |
| I[1].Ex rev Interl-I   | Module input state: External reverse interlocking                                                                                                                                                                                                                                 |
| I[1].AdaptSet1-I       | Module input state: Adaptive Parameter1                                                                                                                                                                                                                                           |
| I[1].AdaptSet2-I       | Module input state: Adaptive Parameter2                                                                                                                                                                                                                                           |
| I[1].AdaptSet3-I       | Module input state: Adaptive Parameter3                                                                                                                                                                                                                                           |

| Name                 | Description                                               |
|----------------------|-----------------------------------------------------------|
| I[1].AdaptSet4-I     | Module input state: Adaptive Parameter4                   |
| I[2].active          | Signal: active                                            |
| I[2].ExBlo           | Signal: External Blocking                                 |
| l[2].Ex rev Interl   | Signal: External reverse Interlocking                     |
| I[2].Blo TripCmd     | Signal: Trip Command blocked                              |
| I[2].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| I[2].Alarm L1        | Signal: Alarm L1                                          |
| I[2].Alarm L2        | Signal: Alarm L2                                          |
| I[2].Alarm L3        | Signal: Alarm L3                                          |
| I[2].Alarm           | Signal: Alarm                                             |
| I[2].Trip L1         | Signal: General Trip Phase L1                             |
| I[2].Trip L2         | Signal: General Trip Phase L2                             |
| I[2].Trip L3         | Signal: General Trip Phase L3                             |
| I[2].Trip            | Signal: Trip                                              |
| I[2].TripCmd         | Signal: Trip Command                                      |
| I[2].DefaultSet      | Signal: Default Parameter Set                             |
| I[2].AdaptSet 1      | Signal: Adaptive Parameter 1                              |
| I[2].AdaptSet 2      | Signal: Adaptive Parameter 2                              |
| I[2].AdaptSet 3      | Signal: Adaptive Parameter 3                              |
| I[2].AdaptSet 4      | Signal: Adaptive Parameter 4                              |
| I[2].ExBlo1-I        | Module input state: External blocking1                    |
| I[2].ExBlo2-I        | Module input state: External blocking2                    |
| I[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I[2].Ex rev Interl-I | Module input state: External reverse interlocking         |
| I[2].AdaptSet1-I     | Module input state: Adaptive Parameter1                   |
| I[2].AdaptSet2-I     | Module input state: Adaptive Parameter2                   |
| I[2].AdaptSet3-I     | Module input state: Adaptive Parameter3                   |
| I[2].AdaptSet4-I     | Module input state: Adaptive Parameter4                   |
| I[3].active          | Signal: active                                            |
| I[3].ExBlo           | Signal: External Blocking                                 |
| I[3].Ex rev Interl   | Signal: External reverse Interlocking                     |
| I[3].Blo TripCmd     | Signal: Trip Command blocked                              |
| I[3].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| I[3].Alarm L1        | Signal: Alarm L1                                          |
| I[3].Alarm L2        | Signal: Alarm L2                                          |
| I[3].Alarm L3        | Signal: Alarm L3                                          |
| I[3].Alarm           | Signal: Alarm                                             |
| I[3].Trip L1         | Signal: General Trip Phase L1                             |
| I[3].Trip L2         | Signal: General Trip Phase L2                             |
| I[3].Trip L3         | Signal: General Trip Phase L3                             |

| Name                 | Description                                               |
|----------------------|-----------------------------------------------------------|
| I[3].Trip            | Signal: Trip                                              |
| I[3].TripCmd         | Signal: Trip Command                                      |
| I[3].DefaultSet      | Signal: Default Parameter Set                             |
| I[3].AdaptSet 1      | Signal: Adaptive Parameter 1                              |
| I[3].AdaptSet 2      | Signal: Adaptive Parameter 2                              |
| I[3].AdaptSet 3      | Signal: Adaptive Parameter 3                              |
| I[3].AdaptSet 4      | Signal: Adaptive Parameter 4                              |
| I[3].ExBlo1-I        | Module input state: External blocking1                    |
| I[3].ExBlo2-I        | Module input state: External blocking2                    |
| I[3].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I[3].Ex rev Interl-I | Module input state: External reverse interlocking         |
| I[3].AdaptSet1-I     | Module input state: Adaptive Parameter1                   |
| I[3].AdaptSet2-I     | Module input state: Adaptive Parameter2                   |
| I[3].AdaptSet3-I     | Module input state: Adaptive Parameter3                   |
| I[3].AdaptSet4-I     | Module input state: Adaptive Parameter4                   |
| I[4].active          | Signal: active                                            |
| I[4].ExBlo           | Signal: External Blocking                                 |
| I[4].Ex rev Interl   | Signal: External reverse Interlocking                     |
| I[4].Blo TripCmd     | Signal: Trip Command blocked                              |
| I[4].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| I[4].Alarm L1        | Signal: Alarm L1                                          |
| I[4].Alarm L2        | Signal: Alarm L2                                          |
| I[4].Alarm L3        | Signal: Alarm L3                                          |
| I[4].Alarm           | Signal: Alarm                                             |
| I[4].Trip L1         | Signal: General Trip Phase L1                             |
| I[4].Trip L2         | Signal: General Trip Phase L2                             |
| I[4].Trip L3         | Signal: General Trip Phase L3                             |
| I[4].Trip            | Signal: Trip                                              |
| I[4].TripCmd         | Signal: Trip Command                                      |
| I[4].DefaultSet      | Signal: Default Parameter Set                             |
| I[4].AdaptSet 1      | Signal: Adaptive Parameter 1                              |
| I[4].AdaptSet 2      | Signal: Adaptive Parameter 2                              |
| I[4].AdaptSet 3      | Signal: Adaptive Parameter 3                              |
| I[4].AdaptSet 4      | Signal: Adaptive Parameter 4                              |
| I[4].ExBlo1-I        | Module input state: External blocking1                    |
| I[4].ExBlo2-I        | Module input state: External blocking2                    |
| I[4].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I[4].Ex rev Interl-I | Module input state: External reverse interlocking         |
| I[4].AdaptSet1-I     | Module input state: Adaptive Parameter1                   |
| I[4].AdaptSet2-I     | Module input state: Adaptive Parameter2                   |

| Name                 | Description                                               |
|----------------------|-----------------------------------------------------------|
| I[4].AdaptSet3-I     | Module input state: Adaptive Parameter3                   |
| I[4].AdaptSet4-I     | Module input state: Adaptive Parameter4                   |
| I[5].active          | Signal: active                                            |
| I[5].ExBlo           | Signal: External Blocking                                 |
| l[5].Ex rev Interl   | Signal: External reverse Interlocking                     |
| I[5].Blo TripCmd     | Signal: Trip Command blocked                              |
| I[5].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| I[5].Alarm L1        | Signal: Alarm L1                                          |
| I[5].Alarm L2        | Signal: Alarm L2                                          |
| I[5].Alarm L3        | Signal: Alarm L3                                          |
| I[5].Alarm           | Signal: Alarm                                             |
| I[5].Trip L1         | Signal: General Trip Phase L1                             |
| I[5].Trip L2         | Signal: General Trip Phase L2                             |
| I[5].Trip L3         | Signal: General Trip Phase L3                             |
| I[5].Trip            | Signal: Trip                                              |
| I[5].TripCmd         | Signal: Trip Command                                      |
| I[5].DefaultSet      | Signal: Default Parameter Set                             |
| I[5].AdaptSet 1      | Signal: Adaptive Parameter 1                              |
| I[5].AdaptSet 2      | Signal: Adaptive Parameter 2                              |
| I[5].AdaptSet 3      | Signal: Adaptive Parameter 3                              |
| I[5].AdaptSet 4      | Signal: Adaptive Parameter 4                              |
| I[5].ExBlo1-I        | Module input state: External blocking1                    |
| I[5].ExBlo2-I        | Module input state: External blocking2                    |
| I[5].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I[5].Ex rev Interl-I | Module input state: External reverse interlocking         |
| I[5].AdaptSet1-I     | Module input state: Adaptive Parameter1                   |
| I[5].AdaptSet2-I     | Module input state: Adaptive Parameter2                   |
| I[5].AdaptSet3-I     | Module input state: Adaptive Parameter3                   |
| I[5].AdaptSet4-I     | Module input state: Adaptive Parameter4                   |
| I[6].active          | Signal: active                                            |
| I[6].ExBlo           | Signal: External Blocking                                 |
| l[6].Ex rev Interl   | Signal: External reverse Interlocking                     |
| I[6].Blo TripCmd     | Signal: Trip Command blocked                              |
| I[6].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| I[6].Alarm L1        | Signal: Alarm L1                                          |
| I[6].Alarm L2        | Signal: Alarm L2                                          |
| I[6].Alarm L3        | Signal: Alarm L3                                          |
| I[6].Alarm           | Signal: Alarm                                             |
| I[6].Trip L1         | Signal: General Trip Phase L1                             |
| I[6].Trip L2         | Signal: General Trip Phase L2                             |

| Name                  | Description                                               |
|-----------------------|-----------------------------------------------------------|
| I[6].Trip L3          | Signal: General Trip Phase L3                             |
| I[6].Trip             | Signal: Trip                                              |
| I[6].TripCmd          | Signal: Trip Command                                      |
| I[6].DefaultSet       | Signal: Default Parameter Set                             |
| I[6].AdaptSet 1       | Signal: Adaptive Parameter 1                              |
| I[6].AdaptSet 2       | Signal: Adaptive Parameter 2                              |
| I[6].AdaptSet 3       | Signal: Adaptive Parameter 3                              |
| I[6].AdaptSet 4       | Signal: Adaptive Parameter 4                              |
| I[6].ExBlo1-I         | Module input state: External blocking1                    |
| I[6].ExBlo2-I         | Module input state: External blocking2                    |
| I[6].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command |
| l[6].Ex rev Interl-l  | Module input state: External reverse interlocking         |
| I[6].AdaptSet1-I      | Module input state: Adaptive Parameter1                   |
| I[6].AdaptSet2-I      | Module input state: Adaptive Parameter2                   |
| I[6].AdaptSet3-I      | Module input state: Adaptive Parameter3                   |
| I[6].AdaptSet4-I      | Module input state: Adaptive Parameter4                   |
| IG[1].active          | Signal: active                                            |
| IG[1].ExBlo           | Signal: External Blocking                                 |
| IG[1].Ex rev Interl   | Signal: External reverse Interlocking                     |
| IG[1].Blo TripCmd     | Signal: Trip Command blocked                              |
| IG[1].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| IG[1].Alarm           | Signal: Alarm IG                                          |
| IG[1].Trip            | Signal: Trip                                              |
| IG[1].TripCmd         | Signal: Trip Command                                      |
| IG[1].DefaultSet      | Signal: Default Parameter Set                             |
| IG[1].AdaptSet 1      | Signal: Adaptive Parameter 1                              |
| IG[1].AdaptSet 2      | Signal: Adaptive Parameter 2                              |
| IG[1].AdaptSet 3      | Signal: Adaptive Parameter 3                              |
| IG[1].AdaptSet 4      | Signal: Adaptive Parameter 4                              |
| IG[1].ExBlo1-I        | Module input state: External blocking1                    |
| IG[1].ExBlo2-I        | Module input state: External blocking2                    |
| IG[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IG[1].Ex rev Interl-I | Module input state: External reverse interlocking         |
| IG[1].AdaptSet1-I     | Module input state: Adaptive Parameter1                   |
| IG[1].AdaptSet2-I     | Module input state: Adaptive Parameter2                   |
| IG[1].AdaptSet3-I     | Module input state: Adaptive Parameter3                   |
| IG[1].AdaptSet4-I     | Module input state: Adaptive Parameter4                   |
| IG[2].active          | Signal: active                                            |
| IG[2].ExBlo           | Signal: External Blocking                                 |
| IG[2].Ex rev Interl   | Signal: External reverse Interlocking                     |

| Name                  | Description                                               |
|-----------------------|-----------------------------------------------------------|
| IG[2].Blo TripCmd     | Signal: Trip Command blocked                              |
| IG[2].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| IG[2].Alarm           | Signal: Alarm IG                                          |
| IG[2].Trip            | Signal: Trip                                              |
| IG[2].TripCmd         | Signal: Trip Command                                      |
| IG[2].DefaultSet      | Signal: Default Parameter Set                             |
| IG[2].AdaptSet 1      | Signal: Adaptive Parameter 1                              |
| IG[2].AdaptSet 2      | Signal: Adaptive Parameter 2                              |
| IG[2].AdaptSet 3      | Signal: Adaptive Parameter 3                              |
| IG[2].AdaptSet 4      | Signal: Adaptive Parameter 4                              |
| IG[2].ExBlo1-I        | Module input state: External blocking1                    |
| IG[2].ExBlo2-I        | Module input state: External blocking2                    |
| IG[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IG[2].Ex rev Interl-I | Module input state: External reverse interlocking         |
| IG[2].AdaptSet1-I     | Module input state: Adaptive Parameter1                   |
| IG[2].AdaptSet2-I     | Module input state: Adaptive Parameter2                   |
| IG[2].AdaptSet3-I     | Module input state: Adaptive Parameter3                   |
| IG[2].AdaptSet4-I     | Module input state: Adaptive Parameter4                   |
| IG[3].active          | Signal: active                                            |
| IG[3].ExBlo           | Signal: External Blocking                                 |
| IG[3].Ex rev Interl   | Signal: External reverse Interlocking                     |
| IG[3].Blo TripCmd     | Signal: Trip Command blocked                              |
| IG[3].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| IG[3].Alarm           | Signal: Alarm IG                                          |
| IG[3].Trip            | Signal: Trip                                              |
| IG[3].TripCmd         | Signal: Trip Command                                      |
| IG[3].DefaultSet      | Signal: Default Parameter Set                             |
| IG[3].AdaptSet 1      | Signal: Adaptive Parameter 1                              |
| IG[3].AdaptSet 2      | Signal: Adaptive Parameter 2                              |
| IG[3].AdaptSet 3      | Signal: Adaptive Parameter 3                              |
| IG[3].AdaptSet 4      | Signal: Adaptive Parameter 4                              |
| IG[3].ExBlo1-I        | Module input state: External blocking1                    |
| IG[3].ExBlo2-I        | Module input state: External blocking2                    |
| IG[3].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IG[3].Ex rev Interl-I | Module input state: External reverse interlocking         |
| IG[3].AdaptSet1-I     | Module input state: Adaptive Parameter1                   |
| IG[3].AdaptSet2-I     | Module input state: Adaptive Parameter2                   |
| IG[3].AdaptSet3-I     | Module input state: Adaptive Parameter3                   |
| IG[3].AdaptSet4-I     | Module input state: Adaptive Parameter4                   |
| IG[4].active          | Signal: active                                            |

| Name                  | Description                                                                                                                                                                                                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IG[4].ExBlo           | Signal: External Blocking                                                                                                                                                                                                                                             |
| IG[4].Ex rev Interl   | Signal: External reverse Interlocking                                                                                                                                                                                                                                 |
| IG[4].Blo TripCmd     | Signal: Trip Command blocked                                                                                                                                                                                                                                          |
| IG[4].ExBlo TripCmd   | Signal: External Blocking of the Trip Command                                                                                                                                                                                                                         |
| IG[4].Alarm           | Signal: Alarm IG                                                                                                                                                                                                                                                      |
| IG[4].Trip            | Signal: Trip                                                                                                                                                                                                                                                          |
| IG[4].TripCmd         | Signal: Trip Command                                                                                                                                                                                                                                                  |
| IG[4].DefaultSet      | Signal: Default Parameter Set                                                                                                                                                                                                                                         |
| IG[4].AdaptSet 1      | Signal: Adaptive Parameter 1                                                                                                                                                                                                                                          |
| IG[4].AdaptSet 2      | Signal: Adaptive Parameter 2                                                                                                                                                                                                                                          |
| IG[4].AdaptSet 3      | Signal: Adaptive Parameter 3                                                                                                                                                                                                                                          |
| IG[4].AdaptSet 4      | Signal: Adaptive Parameter 4                                                                                                                                                                                                                                          |
| IG[4].ExBlo1-I        | Module input state: External blocking1                                                                                                                                                                                                                                |
| IG[4].ExBlo2-I        | Module input state: External blocking2                                                                                                                                                                                                                                |
| IG[4].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command                                                                                                                                                                                                             |
| IG[4].Ex rev Interl-I | Module input state: External reverse interlocking                                                                                                                                                                                                                     |
| IG[4].AdaptSet1-I     | Module input state: Adaptive Parameter1                                                                                                                                                                                                                               |
| IG[4].AdaptSet2-I     | Module input state: Adaptive Parameter2                                                                                                                                                                                                                               |
| IG[4].AdaptSet3-I     | Module input state: Adaptive Parameter3                                                                                                                                                                                                                               |
| IG[4].AdaptSet4-I     | Module input state: Adaptive Parameter4                                                                                                                                                                                                                               |
| ThR.Alarm Pickup      | Signal: Alarm Pickup                                                                                                                                                                                                                                                  |
| ThR.Alarm Timeout     | Signal: Alarm Timeout                                                                                                                                                                                                                                                 |
| ThR.RTD effective     | This state becomes true if the following conditions are all fulfilled:                                                                                                                                                                                                |
|                       | - the state "Load above SF" is true,                                                                                                                                                                                                                                  |
|                       | - RTD functionality is active,                                                                                                                                                                                                                                        |
|                       | - for at least one temperature a valid value above 0°C is being displayed.                                                                                                                                                                                            |
| ThR.Load above SF     | "Load above Service Factor": If the current exceeds the set value of "UTC"<br>("Ultimate trip threshold") then the used thermal capacity counts up and the state<br>"Load above SF" is becoming true. If the current is below the "UTC" value this state<br>is false. |
| ThR.active            | Signal: active                                                                                                                                                                                                                                                        |
| ThR.ExBlo             | Signal: External Blocking                                                                                                                                                                                                                                             |
| ThR.Blo TripCmd       | Signal: Trip Command blocked                                                                                                                                                                                                                                          |
| ThR.ExBlo TripCmd     | Signal: External Blocking of the Trip Command                                                                                                                                                                                                                         |
| ThR.Alarm             | Signal: Alarm                                                                                                                                                                                                                                                         |
| ThR.Trip              | Signal: Trip                                                                                                                                                                                                                                                          |
| ThR.TripCmd           | Signal: Trip Command                                                                                                                                                                                                                                                  |
| ThR.ExBlo1            | Module input state: External blocking                                                                                                                                                                                                                                 |
| ThR.ExBlo2            | Module input state: External blocking                                                                                                                                                                                                                                 |
| ThR.ExBlo TripCmd     | Module input state: External Blocking of the Trip Command                                                                                                                                                                                                             |
| Jam[1].active         | Signal: active                                                                                                                                                                                                                                                        |

| Name                   | Description                                               |
|------------------------|-----------------------------------------------------------|
| Jam[1].ExBlo           | Signal: External Blocking                                 |
| Jam[1].Blo TripCmd     | Signal: Trip Command blocked                              |
| Jam[1].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| Jam[1].Alarm           | Signal: Alarm                                             |
| Jam[1].Trip            | Signal: Trip                                              |
| Jam[1].TripCmd         | Signal: Trip Command                                      |
| Jam[1].ExBlo1-I        | Module input state: External blocking1                    |
| Jam[1].ExBlo2-I        | Module input state: External blocking2                    |
| Jam[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| Jam[2].active          | Signal: active                                            |
| Jam[2].ExBlo           | Signal: External Blocking                                 |
| Jam[2].Blo TripCmd     | Signal: Trip Command blocked                              |
| Jam[2].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| Jam[2].Alarm           | Signal: Alarm                                             |
| Jam[2].Trip            | Signal: Trip                                              |
| Jam[2].TripCmd         | Signal: Trip Command                                      |
| Jam[2].ExBlo1-I        | Module input state: External blocking1                    |
| Jam[2].ExBlo2-I        | Module input state: External blocking2                    |
| Jam[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I<[1].active           | Signal: active                                            |
| I<[1].ExBlo            | Signal: External Blocking                                 |
| I<[1].Blo TripCmd      | Signal: Trip Command blocked                              |
| I<[1].ExBlo TripCmd    | Signal: External Blocking of the Trip Command             |
| I<[1].Alarm            | Signal: Alarm                                             |
| I<[1].Trip             | Signal: Trip                                              |
| I<[1].TripCmd          | Signal: Trip Command                                      |
| I<[1].ExBlo1-I         | Module input state: External blocking1                    |
| I<[1].ExBlo2-I         | Module input state: External blocking2                    |
| I<[1].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command |
| I<[2].active           | Signal: active                                            |
| I<[2].ExBlo            | Signal: External Blocking                                 |
| I<[2].Blo TripCmd      | Signal: Trip Command blocked                              |
| I<[2].ExBlo TripCmd    | Signal: External Blocking of the Trip Command             |
| I<[2].Alarm            | Signal: Alarm                                             |
| I<[2].Trip             | Signal: Trip                                              |
| I<[2].TripCmd          | Signal: Trip Command                                      |
| I<[2].ExBlo1-I         | Module input state: External blocking1                    |
| I<[2].ExBlo2-I         | Module input state: External blocking2                    |
| I<[2].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command |
| I<[3].active           | Signal: active                                            |

| Name                     | Description                                                                                                                  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|
| I<[3].ExBlo              | Signal: External Blocking                                                                                                    |
| I<[3].Blo TripCmd        | Signal: Trip Command blocked                                                                                                 |
| I<[3].ExBlo TripCmd      | Signal: External Blocking of the Trip Command                                                                                |
| I<[3].Alarm              | Signal: Alarm                                                                                                                |
| I<[3].Trip               | Signal: Trip                                                                                                                 |
| I<[3].TripCmd            | Signal: Trip Command                                                                                                         |
| I<[3].ExBlo1-I           | Module input state: External blocking1                                                                                       |
| I<[3].ExBlo2-I           | Module input state: External blocking2                                                                                       |
| I<[3].ExBlo TripCmd-I    | Module input state: External Blocking of the Trip Command                                                                    |
| MLS.active               | Signal: active                                                                                                               |
| MLS.ExBlo                | Signal: External Blocking                                                                                                    |
| MLS.Alarm                | Signal: Alarm                                                                                                                |
| MLS.Trip                 | Signal: Trip                                                                                                                 |
| MLS.ExBlo1-I             | Module input state: External blocking1                                                                                       |
| MLS.ExBlo2-I             | Module input state: External blocking2                                                                                       |
| V[1].active              | Signal: active                                                                                                               |
| V[1].ExBlo               | Signal: External Blocking                                                                                                    |
| V[1].Blo TripCmd         | Signal: Trip Command blocked                                                                                                 |
| V[1].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                                                                                |
| V[1].Alarm L1            | Signal: Alarm L1                                                                                                             |
| V[1].Alarm L2            | Signal: Alarm L2                                                                                                             |
| V[1].Alarm L3            | Signal: Alarm L3                                                                                                             |
| V[1].Alarm               | Signal: Alarm voltage stage                                                                                                  |
| V[1].Trip L1             | Signal: General Trip Phase L1                                                                                                |
| V[1].Trip L2             | Signal: General Trip Phase L2                                                                                                |
| V[1].Trip L3             | Signal: General Trip Phase L3                                                                                                |
| V[1].Trip                | Signal: Trip                                                                                                                 |
| V[1].TripCmd             | Signal: Trip Command                                                                                                         |
| V[1].Imin release active | Signal that the Imin release (minimum current) check is enabled and does not block the undervoltage detection at the moment. |
| V[1].ExBlo1-I            | Module input state: External blocking1                                                                                       |
| V[1].ExBlo2-I            | Module input state: External blocking2                                                                                       |
| V[1].ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command                                                                    |
| V[2].active              | Signal: active                                                                                                               |
| V[2].ExBlo               | Signal: External Blocking                                                                                                    |
| V[2].Blo TripCmd         | Signal: Trip Command blocked                                                                                                 |
| V[2].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                                                                                |
| V[2].Alarm L1            | Signal: Alarm L1                                                                                                             |
| V[2].Alarm L2            | Signal: Alarm L2                                                                                                             |
| V[2].Alarm L3            | Signal: Alarm L3                                                                                                             |

| Name                     | Description                                                                                                                  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|
| V[2].Alarm               | Signal: Alarm voltage stage                                                                                                  |
| V[2].Trip L1             | Signal: General Trip Phase L1                                                                                                |
| V[2].Trip L2             | Signal: General Trip Phase L2                                                                                                |
| V[2].Trip L3             | Signal: General Trip Phase L3                                                                                                |
| V[2].Trip                | Signal: Trip                                                                                                                 |
| V[2].TripCmd             | Signal: Trip Command                                                                                                         |
| V[2].Imin release active | Signal that the Imin release (minimum current) check is enabled and does not block the undervoltage detection at the moment. |
| V[2].ExBlo1-I            | Module input state: External blocking1                                                                                       |
| V[2].ExBlo2-I            | Module input state: External blocking2                                                                                       |
| V[2].ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command                                                                    |
| V[3].active              | Signal: active                                                                                                               |
| V[3].ExBlo               | Signal: External Blocking                                                                                                    |
| V[3].Blo TripCmd         | Signal: Trip Command blocked                                                                                                 |
| V[3].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                                                                                |
| V[3].Alarm L1            | Signal: Alarm L1                                                                                                             |
| V[3].Alarm L2            | Signal: Alarm L2                                                                                                             |
| V[3].Alarm L3            | Signal: Alarm L3                                                                                                             |
| V[3].Alarm               | Signal: Alarm voltage stage                                                                                                  |
| V[3].Trip L1             | Signal: General Trip Phase L1                                                                                                |
| V[3].Trip L2             | Signal: General Trip Phase L2                                                                                                |
| V[3].Trip L3             | Signal: General Trip Phase L3                                                                                                |
| V[3].Trip                | Signal: Trip                                                                                                                 |
| V[3].TripCmd             | Signal: Trip Command                                                                                                         |
| V[3].Imin release active | Signal that the Imin release (minimum current) check is enabled and does not block the undervoltage detection at the moment. |
| V[3].ExBlo1-I            | Module input state: External blocking1                                                                                       |
| V[3].ExBlo2-I            | Module input state: External blocking2                                                                                       |
| V[3].ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command                                                                    |
| V[4].active              | Signal: active                                                                                                               |
| V[4].ExBlo               | Signal: External Blocking                                                                                                    |
| V[4].Blo TripCmd         | Signal: Trip Command blocked                                                                                                 |
| V[4].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                                                                                |
| V[4].Alarm L1            | Signal: Alarm L1                                                                                                             |
| V[4].Alarm L2            | Signal: Alarm L2                                                                                                             |
| V[4].Alarm L3            | Signal: Alarm L3                                                                                                             |
| V[4].Alarm               | Signal: Alarm voltage stage                                                                                                  |
| V[4].Trip L1             | Signal: General Trip Phase L1                                                                                                |
| V[4].Trip L2             | Signal: General Trip Phase L2                                                                                                |
| V[4].Trip L3             | Signal: General Trip Phase L3                                                                                                |

| Name                     | Description                                                                                                                  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|
| V[4].Trip                | Signal: Trip                                                                                                                 |
| V[4].TripCmd             | Signal: Trip Command                                                                                                         |
| V[4].Imin release active | Signal that the Imin release (minimum current) check is enabled and does not block the undervoltage detection at the moment. |
| V[4].ExBlo1-I            | Module input state: External blocking1                                                                                       |
| V[4].ExBlo2-I            | Module input state: External blocking2                                                                                       |
| V[4].ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command                                                                    |
| V[5].active              | Signal: active                                                                                                               |
| V[5].ExBlo               | Signal: External Blocking                                                                                                    |
| V[5].Blo TripCmd         | Signal: Trip Command blocked                                                                                                 |
| V[5].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                                                                                |
| V[5].Alarm L1            | Signal: Alarm L1                                                                                                             |
| V[5].Alarm L2            | Signal: Alarm L2                                                                                                             |
| V[5].Alarm L3            | Signal: Alarm L3                                                                                                             |
| V[5].Alarm               | Signal: Alarm voltage stage                                                                                                  |
| V[5].Trip L1             | Signal: General Trip Phase L1                                                                                                |
| V[5].Trip L2             | Signal: General Trip Phase L2                                                                                                |
| V[5].Trip L3             | Signal: General Trip Phase L3                                                                                                |
| V[5].Trip                | Signal: Trip                                                                                                                 |
| V[5].TripCmd             | Signal: Trip Command                                                                                                         |
| V[5].Imin release active | Signal that the Imin release (minimum current) check is enabled and does not block the undervoltage detection at the moment. |
| V[5].ExBlo1-I            | Module input state: External blocking1                                                                                       |
| V[5].ExBlo2-I            | Module input state: External blocking2                                                                                       |
| V[5].ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command                                                                    |
| V[6].active              | Signal: active                                                                                                               |
| V[6].ExBlo               | Signal: External Blocking                                                                                                    |
| V[6].Blo TripCmd         | Signal: Trip Command blocked                                                                                                 |
| V[6].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                                                                                |
| V[6].Alarm L1            | Signal: Alarm L1                                                                                                             |
| V[6].Alarm L2            | Signal: Alarm L2                                                                                                             |
| V[6].Alarm L3            | Signal: Alarm L3                                                                                                             |
| V[6].Alarm               | Signal: Alarm voltage stage                                                                                                  |
| V[6].Trip L1             | Signal: General Trip Phase L1                                                                                                |
| V[6].Trip L2             | Signal: General Trip Phase L2                                                                                                |
| V[6].Trip L3             | Signal: General Trip Phase L3                                                                                                |
| V[6].Trip                | Signal: Trip                                                                                                                 |
| V[6].TripCmd             | Signal: Trip Command                                                                                                         |
| V[6].Imin release active | Signal that the Imin release (minimum current) check is enabled and does not block the undervoltage detection at the moment. |
| V[6].ExBlo1-I            | Module input state: External blocking1                                                                                       |

| Name                   | Description                                               |
|------------------------|-----------------------------------------------------------|
| V[6].ExBlo2-l          | Module input state: External blocking2                    |
| V[6].ExBlo TripCmd-I   | Module input state: External Blocking of the Trip Command |
| VG[1].active           | Signal: active                                            |
| VG[1].ExBlo            | Signal: External Blocking                                 |
| VG[1].Blo TripCmd      | Signal: Trip Command blocked                              |
| VG[1].ExBlo TripCmd    | Signal: External Blocking of the Trip Command             |
| VG[1].Alarm            | Signal: Alarm Residual Voltage Supervision-stage          |
| VG[1].Trip             | Signal: Trip                                              |
| VG[1].TripCmd          | Signal: Trip Command                                      |
| VG[1].ExBlo1-I         | Module input state: External blocking1                    |
| VG[1].ExBlo2-I         | Module input state: External blocking2                    |
| VG[1].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command |
| VG[2].active           | Signal: active                                            |
| VG[2].ExBlo            | Signal: External Blocking                                 |
| VG[2].Blo TripCmd      | Signal: Trip Command blocked                              |
| VG[2].ExBlo TripCmd    | Signal: External Blocking of the Trip Command             |
| VG[2].Alarm            | Signal: Alarm Residual Voltage Supervision-stage          |
| VG[2].Trip             | Signal: Trip                                              |
| VG[2].TripCmd          | Signal: Trip Command                                      |
| VG[2].ExBlo1-I         | Module input state: External blocking1                    |
| VG[2].ExBlo2-I         | Module input state: External blocking2                    |
| VG[2].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command |
| I2>[1].active          | Signal: active                                            |
| I2>[1].ExBlo           | Signal: External Blocking                                 |
| I2>[1].Blo TripCmd     | Signal: Trip Command blocked                              |
| I2>[1].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| I2>[1].Alarm           | Signal: Alarm Negative Sequence                           |
| I2>[1].Trip            | Signal: Trip                                              |
| I2>[1].TripCmd         | Signal: Trip Command                                      |
| I2>[1].ExBlo1-I        | Module input state: External blocking1                    |
| I2>[1].ExBlo2-I        | Module input state: External blocking2                    |
| I2>[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I2>[2].active          | Signal: active                                            |
| I2>[2].ExBlo           | Signal: External Blocking                                 |
| I2>[2].Blo TripCmd     | Signal: Trip Command blocked                              |
| I2>[2].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| I2>[2].Alarm           | Signal: Alarm Negative Sequence                           |
| I2>[2].Trip            | Signal: Trip                                              |
| I2>[2].TripCmd         | Signal: Trip Command                                      |
| I2>[2].ExBlo1-I        | Module input state: External blocking1                    |

887

| Name                    | Description                                               |
|-------------------------|-----------------------------------------------------------|
| I2>[2].ExBlo2-I         | Module input state: External blocking2                    |
| I2>[2].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command |
| V012[1].active          | Signal: active                                            |
| V012[1].ExBlo           | Signal: External Blocking                                 |
| V012[1].Blo TripCmd     | Signal: Trip Command blocked                              |
| V012[1].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| V012[1].Alarm           | Signal: Alarm voltage asymmetry                           |
| V012[1].Trip            | Signal: Trip                                              |
| V012[1].TripCmd         | Signal: Trip Command                                      |
| V012[1].ExBlo1-I        | Module input state: External blocking1                    |
| V012[1].ExBlo2-l        | Module input state: External blocking2                    |
| V012[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| V012[2].active          | Signal: active                                            |
| V012[2].ExBlo           | Signal: External Blocking                                 |
| V012[2].Blo TripCmd     | Signal: Trip Command blocked                              |
| V012[2].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| V012[2].Alarm           | Signal: Alarm voltage asymmetry                           |
| V012[2].Trip            | Signal: Trip                                              |
| V012[2].TripCmd         | Signal: Trip Command                                      |
| V012[2].ExBlo1-I        | Module input state: External blocking1                    |
| V012[2].ExBlo2-I        | Module input state: External blocking2                    |
| V012[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| V012[3].active          | Signal: active                                            |
| V012[3].ExBlo           | Signal: External Blocking                                 |
| V012[3].Blo TripCmd     | Signal: Trip Command blocked                              |
| V012[3].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| V012[3].Alarm           | Signal: Alarm voltage asymmetry                           |
| V012[3].Trip            | Signal: Trip                                              |
| V012[3].TripCmd         | Signal: Trip Command                                      |
| V012[3].ExBlo1-I        | Module input state: External blocking1                    |
| V012[3].ExBlo2-I        | Module input state: External blocking2                    |
| V012[3].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| V012[4].active          | Signal: active                                            |
| V012[4].ExBlo           | Signal: External Blocking                                 |
| V012[4].Blo TripCmd     | Signal: Trip Command blocked                              |
| V012[4].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| V012[4].Alarm           | Signal: Alarm voltage asymmetry                           |
| V012[4].Trip            | Signal: Trip                                              |
| V012[4].TripCmd         | Signal: Trip Command                                      |
| V012[4].ExBlo1-I        | Module input state: External blocking1                    |

| Name                     | Description                                                          |
|--------------------------|----------------------------------------------------------------------|
| V012[4].ExBlo2-I         | Module input state: External blocking2                               |
| V012[4].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command            |
| V012[5].active           | Signal: active                                                       |
| V012[5].ExBlo            | Signal: External Blocking                                            |
| V012[5].Blo TripCmd      | Signal: Trip Command blocked                                         |
| V012[5].ExBlo TripCmd    | Signal: External Blocking of the Trip Command                        |
| V012[5].Alarm            | Signal: Alarm voltage asymmetry                                      |
| V012[5].Trip             | Signal: Trip                                                         |
| V012[5].TripCmd          | Signal: Trip Command                                                 |
| V012[5].ExBlo1-I         | Module input state: External blocking1                               |
| V012[5].ExBlo2-I         | Module input state: External blocking2                               |
| V012[5].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command            |
| V012[6].active           | Signal: active                                                       |
| V012[6].ExBlo            | Signal: External Blocking                                            |
| V012[6].Blo TripCmd      | Signal: Trip Command blocked                                         |
| V012[6].ExBlo TripCmd    | Signal: External Blocking of the Trip Command                        |
| V012[6].Alarm            | Signal: Alarm voltage asymmetry                                      |
| V012[6].Trip             | Signal: Trip                                                         |
| V012[6].TripCmd          | Signal: Trip Command                                                 |
| V012[6].ExBlo1-I         | Module input state: External blocking1                               |
| V012[6].ExBlo2-I         | Module input state: External blocking2                               |
| V012[6].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command            |
| f[1].active              | Signal: active                                                       |
| f[1].ExBlo               | Signal: External Blocking                                            |
| f[1].Blo by V<           | Signal: Module is blocked by undervoltage.                           |
| f[1].Blo TripCmd         | Signal: Trip Command blocked                                         |
| f[1].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                        |
| f[1].Alarm f             | Signal: Alarm Frequency Protection                                   |
| f[1].Alarm df/dt   DF/DT | Alarm instantaneous or average value of the rate-of-frequency-change |
| f[1].Alarm delta phi     | Signal: Alarm Vector Surge                                           |
| f[1].Alarm               | Signal: Alarm Frequency Protection (collective signal)               |
| f[1].Trip f              | Signal: Frequency has exceeded the limit.                            |
| f[1].Trip df/dt   DF/DT  | Signal: Trip df/dt or DF/DT                                          |
| f[1].Trip delta phi      | Signal: Trip Vector Surge                                            |
| f[1].Trip                | Signal: Trip Frequency Protection (collective signal)                |
| f[1].TripCmd             | Signal: Trip Command                                                 |
| f[1].ExBlo1-l            | Module input state: External blocking1                               |
| f[1].ExBlo2-l            | Module input state: External blocking2                               |
| f[1].ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command            |
| f[2].active              | Signal: active                                                       |

| Name                     | Description                                                          |
|--------------------------|----------------------------------------------------------------------|
| f[2].ExBlo               | Signal: External Blocking                                            |
| f[2].Blo by V<           | Signal: Module is blocked by undervoltage.                           |
| f[2].Blo TripCmd         | Signal: Trip Command blocked                                         |
| f[2].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                        |
| f[2].Alarm f             | Signal: Alarm Frequency Protection                                   |
| f[2].Alarm df/dt   DF/DT | Alarm instantaneous or average value of the rate-of-frequency-change |
| f[2].Alarm delta phi     | Signal: Alarm Vector Surge                                           |
| f[2].Alarm               | Signal: Alarm Frequency Protection (collective signal)               |
| f[2].Trip f              | Signal: Frequency has exceeded the limit.                            |
| f[2].Trip df/dt   DF/DT  | Signal: Trip df/dt or DF/DT                                          |
| f[2].Trip delta phi      | Signal: Trip Vector Surge                                            |
| f[2].Trip                | Signal: Trip Frequency Protection (collective signal)                |
| f[2].TripCmd             | Signal: Trip Command                                                 |
| f[2].ExBlo1-I            | Module input state: External blocking1                               |
| f[2].ExBlo2-l            | Module input state: External blocking2                               |
| f[2].ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command            |
| f[3].active              | Signal: active                                                       |
| f[3].ExBlo               | Signal: External Blocking                                            |
| f[3].Blo by V<           | Signal: Module is blocked by undervoltage.                           |
| f[3].Blo TripCmd         | Signal: Trip Command blocked                                         |
| f[3].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                        |
| f[3].Alarm f             | Signal: Alarm Frequency Protection                                   |
| f[3].Alarm df/dt   DF/DT | Alarm instantaneous or average value of the rate-of-frequency-change |
| f[3].Alarm delta phi     | Signal: Alarm Vector Surge                                           |
| f[3].Alarm               | Signal: Alarm Frequency Protection (collective signal)               |
| f[3].Trip f              | Signal: Frequency has exceeded the limit.                            |
| f[3].Trip df/dt   DF/DT  | Signal: Trip df/dt or DF/DT                                          |
| f[3].Trip delta phi      | Signal: Trip Vector Surge                                            |
| f[3].Trip                | Signal: Trip Frequency Protection (collective signal)                |
| f[3].TripCmd             | Signal: Trip Command                                                 |
| f[3].ExBlo1-l            | Module input state: External blocking1                               |
| f[3].ExBlo2-l            | Module input state: External blocking2                               |
| f[3].ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command            |
| f[4].active              | Signal: active                                                       |
| f[4].ExBlo               | Signal: External Blocking                                            |
| f[4].Blo by V<           | Signal: Module is blocked by undervoltage.                           |
| f[4].Blo TripCmd         | Signal: Trip Command blocked                                         |
| f[4].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                        |
| f[4].Alarm f             | Signal: Alarm Frequency Protection                                   |
| f[4].Alarm df/dt   DF/DT | Alarm instantaneous or average value of the rate-of-frequency-change |

| Name                     | Description                                                          |
|--------------------------|----------------------------------------------------------------------|
| f[4].Alarm delta phi     | Signal: Alarm Vector Surge                                           |
| f[4].Alarm               | Signal: Alarm Frequency Protection (collective signal)               |
| f[4].Trip f              | Signal: Frequency has exceeded the limit.                            |
| f[4].Trip df/dt   DF/DT  | Signal: Trip df/dt or DF/DT                                          |
| f[4].Trip delta phi      | Signal: Trip Vector Surge                                            |
| f[4].Trip                | Signal: Trip Frequency Protection (collective signal)                |
| f[4].TripCmd             | Signal: Trip Command                                                 |
| f[4].ExBlo1-I            | Module input state: External blocking1                               |
| f[4].ExBlo2-l            | Module input state: External blocking2                               |
| f[4].ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command            |
| f[5].active              | Signal: active                                                       |
| f[5].ExBlo               | Signal: External Blocking                                            |
| f[5].Blo by V<           | Signal: Module is blocked by undervoltage.                           |
| f[5].Blo TripCmd         | Signal: Trip Command blocked                                         |
| f[5].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                        |
| f[5].Alarm f             | Signal: Alarm Frequency Protection                                   |
| f[5].Alarm df/dt   DF/DT | Alarm instantaneous or average value of the rate-of-frequency-change |
| f[5].Alarm delta phi     | Signal: Alarm Vector Surge                                           |
| f[5].Alarm               | Signal: Alarm Frequency Protection (collective signal)               |
| f[5].Trip f              | Signal: Frequency has exceeded the limit.                            |
| f[5].Trip df/dt   DF/DT  | Signal: Trip df/dt or DF/DT                                          |
| f[5].Trip delta phi      | Signal: Trip Vector Surge                                            |
| f[5].Trip                | Signal: Trip Frequency Protection (collective signal)                |
| f[5].TripCmd             | Signal: Trip Command                                                 |
| f[5].ExBlo1-l            | Module input state: External blocking1                               |
| f[5].ExBlo2-l            | Module input state: External blocking2                               |
| f[5].ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command            |
| f[6].active              | Signal: active                                                       |
| f[6].ExBlo               | Signal: External Blocking                                            |
| f[6].Blo by V<           | Signal: Module is blocked by undervoltage.                           |
| f[6].Blo TripCmd         | Signal: Trip Command blocked                                         |
| f[6].ExBlo TripCmd       | Signal: External Blocking of the Trip Command                        |
| f[6].Alarm f             | Signal: Alarm Frequency Protection                                   |
| f[6].Alarm df/dt   DF/DT | Alarm instantaneous or average value of the rate-of-frequency-change |
| f[6].Alarm delta phi     | Signal: Alarm Vector Surge                                           |
| f[6].Alarm               | Signal: Alarm Frequency Protection (collective signal)               |
| f[6].Trip f              | Signal: Frequency has exceeded the limit.                            |
| f[6].Trip df/dt   DF/DT  | Signal: Trip df/dt or DF/DT                                          |
| f[6].Trip delta phi      | Signal: Trip Vector Surge                                            |
| f[6].Trip                | Signal: Trip Frequency Protection (collective signal)                |

| Name                   | Description                                               |
|------------------------|-----------------------------------------------------------|
| f[6].TripCmd           | Signal: Trip Command                                      |
| f[6].ExBlo1-l          | Module input state: External blocking1                    |
| f[6].ExBlo2-l          | Module input state: External blocking2                    |
| f[6].ExBlo TripCmd-I   | Module input state: External Blocking of the Trip Command |
| PQS[1].active          | Signal: active                                            |
| PQS[1].ExBlo           | Signal: External Blocking                                 |
| PQS[1].Blo TripCmd     | Signal: Trip Command blocked                              |
| PQS[1].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| PQS[1].Alarm           | Signal: Alarm Power Protection                            |
| PQS[1].Trip            | Signal: Trip Power Protection                             |
| PQS[1].TripCmd         | Signal: Trip Command                                      |
| PQS[1].ExBlo1-I        | Module input state: External blocking                     |
| PQS[1].ExBlo2-l        | Module input state: External blocking                     |
| PQS[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| PQS[2].active          | Signal: active                                            |
| PQS[2].ExBlo           | Signal: External Blocking                                 |
| PQS[2].Blo TripCmd     | Signal: Trip Command blocked                              |
| PQS[2].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| PQS[2].Alarm           | Signal: Alarm Power Protection                            |
| PQS[2].Trip            | Signal: Trip Power Protection                             |
| PQS[2].TripCmd         | Signal: Trip Command                                      |
| PQS[2].ExBlo1-I        | Module input state: External blocking                     |
| PQS[2].ExBlo2-I        | Module input state: External blocking                     |
| PQS[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| PQS[3].active          | Signal: active                                            |
| PQS[3].ExBlo           | Signal: External Blocking                                 |
| PQS[3].Blo TripCmd     | Signal: Trip Command blocked                              |
| PQS[3].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| PQS[3].Alarm           | Signal: Alarm Power Protection                            |
| PQS[3].Trip            | Signal: Trip Power Protection                             |
| PQS[3].TripCmd         | Signal: Trip Command                                      |
| PQS[3].ExBlo1-I        | Module input state: External blocking                     |
| PQS[3].ExBlo2-I        | Module input state: External blocking                     |
| PQS[3].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| PQS[4].active          | Signal: active                                            |
| PQS[4].ExBlo           | Signal: External Blocking                                 |
| PQS[4].Blo TripCmd     | Signal: Trip Command blocked                              |
| PQS[4].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| PQS[4].Alarm           | Signal: Alarm Power Protection                            |
| PQS[4].Trip            | Signal: Trip Power Protection                             |

MRMV4

| Name                   | Description                                               |
|------------------------|-----------------------------------------------------------|
| PQS[4].TripCmd         | Signal: Trip Command                                      |
| PQS[4].ExBlo1-I        | Module input state: External blocking                     |
| PQS[4].ExBlo2-I        | Module input state: External blocking                     |
| PQS[4].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| PQS[5].active          | Signal: active                                            |
| PQS[5].ExBlo           | Signal: External Blocking                                 |
| PQS[5].Blo TripCmd     | Signal: Trip Command blocked                              |
| PQS[5].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| PQS[5].Alarm           | Signal: Alarm Power Protection                            |
| PQS[5].Trip            | Signal: Trip Power Protection                             |
| PQS[5].TripCmd         | Signal: Trip Command                                      |
| PQS[5].ExBlo1-I        | Module input state: External blocking                     |
| PQS[5].ExBlo2-I        | Module input state: External blocking                     |
| PQS[5].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| PQS[6].active          | Signal: active                                            |
| PQS[6].ExBlo           | Signal: External Blocking                                 |
| PQS[6].Blo TripCmd     | Signal: Trip Command blocked                              |
| PQS[6].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| PQS[6].Alarm           | Signal: Alarm Power Protection                            |
| PQS[6].Trip            | Signal: Trip Power Protection                             |
| PQS[6].TripCmd         | Signal: Trip Command                                      |
| PQS[6].ExBlo1-I        | Module input state: External blocking                     |
| PQS[6].ExBlo2-I        | Module input state: External blocking                     |
| PQS[6].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| PF[1].active           | Signal: active                                            |
| PF[1].ExBlo            | Signal: External Blocking                                 |
| PF[1].Blo TripCmd      | Signal: Trip Command blocked                              |
| PF[1].ExBlo TripCmd    | Signal: External Blocking of the Trip Command             |
| PF[1].Alarm            | Signal: Alarm Power Factor                                |
| PF[1].Trip             | Signal: Trip Power Factor                                 |
| PF[1].TripCmd          | Signal: Trip Command                                      |
| PF[1].Compensator      | Signal: Compensation Signal                               |
| PF[1].Impossible       | Signal: Alarm Power Factor Impossible                     |
| PF[1].ExBlo1-I         | Module input state: External blocking                     |
| PF[1].ExBlo2-I         | Module input state: External blocking                     |
| PF[1].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command |
| PF[2].active           | Signal: active                                            |
| PF[2].ExBlo            | Signal: External Blocking                                 |
| PF[2].Blo TripCmd      | Signal: Trip Command blocked                              |
| PF[2].ExBlo TripCmd    | Signal: External Blocking of the Trip Command             |

| Name                   | Description                                               |
|------------------------|-----------------------------------------------------------|
| PF[2].Alarm            | Signal: Alarm Power Factor                                |
| PF[2].Trip             | Signal: Trip Power Factor                                 |
| PF[2].TripCmd          | Signal: Trip Command                                      |
| PF[2].Compensator      | Signal: Compensation Signal                               |
| PF[2].Impossible       | Signal: Alarm Power Factor Impossible                     |
| PF[2].ExBlo1-I         | Module input state: External blocking                     |
| PF[2].ExBlo2-I         | Module input state: External blocking                     |
| PF[2].ExBlo TripCmd-I  | Module input state: External Blocking of the Trip Command |
| ExP[1].active          | Signal: active                                            |
| ExP[1].ExBlo           | Signal: External Blocking                                 |
| ExP[1].Blo TripCmd     | Signal: Trip Command blocked                              |
| ExP[1].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| ExP[1].Alarm           | Signal: Alarm                                             |
| ExP[1].Trip            | Signal: Trip                                              |
| ExP[1].TripCmd         | Signal: Trip Command                                      |
| ExP[1].ExBlo1-I        | Module input state: External blocking1                    |
| ExP[1].ExBlo2-I        | Module input state: External blocking2                    |
| ExP[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| ExP[1].Alarm-I         | Module input state: Alarm                                 |
| ExP[1].Trip-I          | Module input state: Trip                                  |
| ExP[2].active          | Signal: active                                            |
| ExP[2].ExBlo           | Signal: External Blocking                                 |
| ExP[2].Blo TripCmd     | Signal: Trip Command blocked                              |
| ExP[2].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| ExP[2].Alarm           | Signal: Alarm                                             |
| ExP[2].Trip            | Signal: Trip                                              |
| ExP[2].TripCmd         | Signal: Trip Command                                      |
| ExP[2].ExBlo1-I        | Module input state: External blocking1                    |
| ExP[2].ExBlo2-I        | Module input state: External blocking2                    |
| ExP[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| ExP[2].Alarm-I         | Module input state: Alarm                                 |
| ExP[2].Trip-I          | Module input state: Trip                                  |
| ExP[3].active          | Signal: active                                            |
| ExP[3].ExBlo           | Signal: External Blocking                                 |
| ExP[3].Blo TripCmd     | Signal: Trip Command blocked                              |
| ExP[3].ExBlo TripCmd   | Signal: External Blocking of the Trip Command             |
| ExP[3].Alarm           | Signal: Alarm                                             |
| ExP[3].Trip            | Signal: Trip                                              |
| ExP[3].TripCmd         | Signal: Trip Command                                      |
| ExP[3].ExBlo1-I        | Module input state: External blocking1                    |

| Name                   | Description                                                                                                                                                                                |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ExP[3].ExBlo2-I        | Module input state: External blocking2                                                                                                                                                     |
| ExP[3].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command                                                                                                                                  |
| ExP[3].Alarm-I         | Module input state: Alarm                                                                                                                                                                  |
| ExP[3].Trip-I          | Module input state: Trip                                                                                                                                                                   |
| ExP[4].active          | Signal: active                                                                                                                                                                             |
| ExP[4].ExBlo           | Signal: External Blocking                                                                                                                                                                  |
| ExP[4].Blo TripCmd     | Signal: Trip Command blocked                                                                                                                                                               |
| ExP[4].ExBlo TripCmd   | Signal: External Blocking of the Trip Command                                                                                                                                              |
| ExP[4].Alarm           | Signal: Alarm                                                                                                                                                                              |
| ExP[4].Trip            | Signal: Trip                                                                                                                                                                               |
| ExP[4].TripCmd         | Signal: Trip Command                                                                                                                                                                       |
| ExP[4].ExBlo1-I        | Module input state: External blocking1                                                                                                                                                     |
| ExP[4].ExBlo2-I        | Module input state: External blocking2                                                                                                                                                     |
| ExP[4].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command                                                                                                                                  |
| ExP[4].Alarm-I         | Module input state: Alarm                                                                                                                                                                  |
| ExP[4].Trip-I          | Module input state: Trip                                                                                                                                                                   |
| URTD.Windg1 Superv     | Signal: Supervision Channel Windg1                                                                                                                                                         |
| URTD.Windg2 Superv     | Signal: Supervision Channel Windg2                                                                                                                                                         |
| URTD.Windg3 Superv     | Signal: Supervision Channel Windg3                                                                                                                                                         |
| URTD.Windg4 Superv     | Signal: Supervision Channel Windg4                                                                                                                                                         |
| URTD.Windg5 Superv     | Signal: Supervision Channel Windg5                                                                                                                                                         |
| URTD.Windg6 Superv     | Signal: Supervision Channel Windg6                                                                                                                                                         |
| URTD.MotBear1 Superv   | Signal: Supervision Channel MotBear1                                                                                                                                                       |
| URTD.MotBear2 Superv   | Signal: Supervision Channel MotBear2                                                                                                                                                       |
| URTD.LoadBear1 Superv  | Signal: Supervision Channel LoadBear1                                                                                                                                                      |
| URTD.LoadBear2 Superv  | Signal: Supervision Channel LoadBear2                                                                                                                                                      |
| URTD.Aux1 Superv       | Signal: Supervision Channel Aux1                                                                                                                                                           |
| URTD.Aux2 Superv       | Signal: Supervision Channel Aux2                                                                                                                                                           |
| URTD.Superv            | Signal: URTD Supervision Channel                                                                                                                                                           |
| URTD.active            | Signal: URTD active                                                                                                                                                                        |
| URTD.Outs forced       | Signal: The State of at least one Relay Output has been set by force. That means that the state of at least one Relay is forced and hence does not show the state of the assigned signals. |
| RTD.active             | Signal: active                                                                                                                                                                             |
| RTD.ExBlo              | Signal: External Blocking                                                                                                                                                                  |
| RTD.Blo TripCmd        | Signal: Trip Command blocked                                                                                                                                                               |
| RTD.ExBlo TripCmd      | Signal: External Blocking of the Trip Command                                                                                                                                              |
| RTD.Alarm              | Alarm RTD Temperature Protection                                                                                                                                                           |
| RTD.Trip               | Signal: Trip                                                                                                                                                                               |
| RTD.TripCmd            | Signal: Trip Command                                                                                                                                                                       |

| Name                           | Description                                                                                                               |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| RTD.Windg 1 Trip               | Winding 1 Signal: Trip                                                                                                    |
| RTD.Windg 1 Alarm              | Winding 1 Alarm RTD Temperature Protection                                                                                |
| RTD.Windg 1 Timeout<br>Alarm   | Winding 1 Timeout Alarm                                                                                                   |
| RTD.Windg 1 Invalid            | Winding 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| RTD.Windg 2 Trip               | Winding 2 Signal: Trip                                                                                                    |
| RTD.Windg 2 Alarm              | Winding 2 Alarm RTD Temperature Protection                                                                                |
| RTD.Windg 2 Timeout<br>Alarm   | Winding 2 Timeout Alarm                                                                                                   |
| RTD.Windg 2 Invalid            | Winding 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| RTD.Windg 3 Trip               | Winding 3 Signal: Trip                                                                                                    |
| RTD.Windg 3 Alarm              | Winding 3 Alarm RTD Temperature Protection                                                                                |
| RTD.Windg 3 Timeout<br>Alarm   | Winding 3 Timeout Alarm                                                                                                   |
| RTD.Windg 3 Invalid            | Winding 3 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| RTD.Windg 4 Trip               | Winding 4 Signal: Trip                                                                                                    |
| RTD.Windg 4 Alarm              | Winding 4 Alarm RTD Temperature Protection                                                                                |
| RTD.Windg 4 Timeout<br>Alarm   | Winding 4 Timeout Alarm                                                                                                   |
| RTD.Windg 4 Invalid            | Winding 4 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| RTD.Windg 5 Trip               | Winding 5 Signal: Trip                                                                                                    |
| RTD.Windg 5 Alarm              | Winding 5 Alarm RTD Temperature Protection                                                                                |
| RTD.Windg 5 Timeout<br>Alarm   | Winding 5 Timeout Alarm                                                                                                   |
| RTD.Windg 5 Invalid            | Winding 5 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| RTD.Windg 6 Trip               | Winding 6 Signal: Trip                                                                                                    |
| RTD.Windg 6 Alarm              | Winding 6 Alarm RTD Temperature Protection                                                                                |
| RTD.Windg 6 Timeout<br>Alarm   | Winding 6 Timeout Alarm                                                                                                   |
| RTD.Windg 6 Invalid            | Winding 6 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| RTD.MotBear 1 Trip             | Motor Bearing 1 Signal: Trip                                                                                              |
| RTD.MotBear 1 Alarm            | Motor Bearing 1 Alarm RTD Temperature Protection                                                                          |
| RTD.MotBear 1 Timeout<br>Alarm | Motor Bearing 1 Timeout Alarm                                                                                             |
| RTD.MotBear 1 Invalid          | Motor Bearing 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| RTD.MotBear 2 Trip             | Motor Bearing 2 Signal: Trip                                                                                              |
| RTD.MotBear 2 Alarm            | Motor Bearing 2 Alarm RTD Temperature Protection                                                                          |

| Name                            | Description                                                                                                                   |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| RTD.MotBear 2 Timeout<br>Alarm  | Motor Bearing 2 Timeout Alarm                                                                                                 |
| RTD.MotBear 2 Invalid           | Motor Bearing 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)     |
| RTD.LoadBear 1 Trip             | Load Bearing 1 Signal: Trip                                                                                                   |
| RTD.LoadBear 1 Alarm            | Load Bearing 1 Alarm RTD Temperature Protection                                                                               |
| RTD.LoadBear 1 Timeout<br>Alarm | Load Bearing 1 Timeout Alarm                                                                                                  |
| RTD.LoadBear 1 Invalid          | Load Bearing 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)      |
| RTD.LoadBear 2 Trip             | Load Bearing 2 Signal: Trip                                                                                                   |
| RTD.LoadBear 2 Alarm            | Load Bearing 2 Alarm RTD Temperature Protection                                                                               |
| RTD.LoadBear 2 Timeout<br>Alarm | Load Bearing 2 Timeout Alarm                                                                                                  |
| RTD.LoadBear 2 Invalid          | Load Bearing 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)      |
| RTD.Aux1 Trip                   | Auxiliary 1 Signal: Trip                                                                                                      |
| RTD.Aux1 Alarm                  | Auxiliary 1 Alarm RTD Temperature Protection                                                                                  |
| RTD.Aux1 Timeout<br>Alarm       | Auxiliary 1 Timeout Alarm                                                                                                     |
| RTD.Aux1 Invalid                | Auxiliary 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)         |
| RTD.Aux2 Trip                   | Auxiliary 2 Signal: Trip                                                                                                      |
| RTD.Aux2 Alarm                  | Auxiliary 2 Alarm RTD Temperature Protection                                                                                  |
| RTD.Aux2 Timeout<br>Alarm       | Auxiliary 2 Timeout Alarm                                                                                                     |
| RTD.Aux2 Invalid                | Auxiliary 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)         |
| RTD.Trip WD Group               | Trip all Windings                                                                                                             |
| RTD.Alarm WD Group              | Alarm all Windings                                                                                                            |
| RTD.TimeoutAlmWDGrp             | Timeout Alarm all Windings                                                                                                    |
| RTD.Windg Group Invalid         | Winding Group Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)       |
| RTD.Trip MB Group               | Trip all Motor Bearings                                                                                                       |
| RTD.Alarm MB Group              | Alarm all Motor Bearings                                                                                                      |
| RTD.TimeoutAlmMBGrp             | Timeout Alarm all Motor Bearings                                                                                              |
| RTD.MotBear Group<br>Invalid    | Motor Bearing Group Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| RTD.Trip LB Group               | Trip all Load Bearings                                                                                                        |
| RTD.Alarm LB Group              | Alarm all Load Bearings                                                                                                       |
| RTD.TimeoutAlmLBGrp             | Timeout Alarm all Load Bearings                                                                                               |
| RTD.LoadBear Group<br>Invalid   | Load Bearing Group Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement)  |
| RTD.Trip Any Group              | Trip Any Group                                                                                                                |

| Name                    | Description                                                              |
|-------------------------|--------------------------------------------------------------------------|
| RTD.Alarm Any Group     | Alarm Any Group                                                          |
| RTD.TimeoutAlmAnyGrp    | Timeout Alarm Any Group                                                  |
| RTD.Trip Group 1        | Trip Group 1                                                             |
| RTD.Trip Group 2        | Trip Group 2                                                             |
| RTD.Timeout Alarm       | Alarm timeout expired                                                    |
| RTD.Trip Aux Group      | Trip Auxiliary Group                                                     |
| RTD.Alarm Aux Group     | Alarm Auxiliary Group                                                    |
| RTD.TimeoutAlmAuxGrp    | Timeout Alarm Auxiliary Group                                            |
| RTD.AuxGrpInvalid       | Invalid Auxiliary Group                                                  |
| RTD.ExBlo1-I            | Module input state: External blocking1                                   |
| RTD.ExBlo2-I            | Module input state: External blocking2                                   |
| RTD.ExBlo TripCmd-I     | Module input state: External Blocking of the Trip Command                |
| CBF.active              | Signal: active                                                           |
| CBF.ExBlo               | Signal: External Blocking                                                |
| CBF.Waiting for Trigger | Waiting for Trigger                                                      |
| CBF.running             | Signal: CBF-Module started                                               |
| CBF.Alarm               | Signal: Circuit Breaker Failure                                          |
| CBF.Lockout             | Signal: Lockout                                                          |
| CBF.Res Lockout         | Signal: Reset Lockout                                                    |
| CBF.ExBlo1-I            | Module input state: External blocking1                                   |
| CBF.ExBlo2-I            | Module input state: External blocking2                                   |
| CBF.Trigger1-I          | Module Input: Trigger that will start the CBF                            |
| CBF.Trigger2-I          | Module Input: Trigger that will start the CBF                            |
| CBF.Trigger3-I          | Module Input: Trigger that will start the CBF                            |
| TCS.active              | Signal: active                                                           |
| TCS.ExBlo               | Signal: External Blocking                                                |
| TCS.Alarm               | Signal: Alarm Trip Circuit Supervision                                   |
| TCS.Not Possible        | Not possible because no state indicator assigned to the breaker.         |
| TCS.Aux ON-I            | Module Input State: Position indicator/check-back signal of the CB (52a) |
| TCS.Aux OFF-I           | Module input state: Position indicator/check-back signal of the CB (52b) |
| TCS.ExBlo1-I            | Module input state: External blocking1                                   |
| TCS.ExBlo2-I            | Module input state: External blocking2                                   |
| CTS.active              | Signal: active                                                           |
| CTS.ExBlo               | Signal: External Blocking                                                |
| CTS.Alarm               | Signal: Alarm Current Transformer Measuring Circuit Supervision          |
| CTS.ExBlo1-I            | Module input state: External blocking1                                   |
| CTS.ExBlo2-I            | Module input state: External blocking2                                   |
| LOP.active              | Signal: active                                                           |
| LOP.ExBlo               | Signal: External Blocking                                                |
| LOP.Alarm               | Signal: Alarm Loss of Potential                                          |

| Name                    | Description                                                                                                |
|-------------------------|------------------------------------------------------------------------------------------------------------|
| LOP.LOP Blo             | Signal: Loss of Potential blocks other elements.                                                           |
| LOP.Ex FF VT            | Signal: Ex FF VT                                                                                           |
| LOP.Ex FF EVT           | Signal: Alarm Fuse Failure Earth Voltage Transformers                                                      |
| LOP.ExBlo1-I            | Module input state: External blocking1                                                                     |
| LOP.ExBlo2-I            | Module input state: External blocking2                                                                     |
| LOP.Ex FF VT-I          | State of the module input: Alarm Fuse Failure Voltage Transformers                                         |
| LOP.Ex FF EVT-I         | State of the module input: Alarm Fuse Failure Earth Voltage Transformers                                   |
| LOP.Blo Trigger1-I      | State of the module input: An Alarm of this protective element will block the Loss of Potential Detection. |
| LOP.Blo Trigger2-I      | State of the module input: An Alarm of this protective element will block the Loss of Potential Detection. |
| LOP.Blo Trigger3-I      | State of the module input: An Alarm of this protective element will block the Loss of Potential Detection. |
| LOP.Blo Trigger4-I      | State of the module input: An Alarm of this protective element will block the Loss of Potential Detection. |
| LOP.Blo Trigger5-I      | State of the module input: An Alarm of this protective element will block the Loss of Potential Detection. |
| PQSCr.Cr Oflw Ws Net    | Signal: Counter Overflow Ws Net                                                                            |
| PQSCr.Cr Oflw Wp Net    | Signal: Counter Overflow Wp Net                                                                            |
| PQSCr.Cr Oflw Wp+       | Signal: Counter Overflow Wp+                                                                               |
| PQSCr.Cr Oflw Wp-       | Signal: Counter Overflow Wp-                                                                               |
| PQSCr.Cr Oflw Wq Net    | Signal: Counter Overflow Wq Net                                                                            |
| PQSCr.Cr Oflw Wq+       | Signal: Counter Overflow Wq+                                                                               |
| PQSCr.Cr Oflw Wq-       | Signal: Counter Overflow Wq-                                                                               |
| PQSCr.Ws Net Res Cr     | Signal: Ws Net Reset Counter                                                                               |
| PQSCr.Wp Net Res Cr     | Signal: Wp Net Reset Counter                                                                               |
| PQSCr.Wp+ Res Cr        | Signal: Wp+ Reset Counter                                                                                  |
| PQSCr.Wp- Res Cr        | Signal: Wp- Reset Counter                                                                                  |
| PQSCr.Wq Net Res Cr     | Signal: Wq Net Reset Counter                                                                               |
| PQSCr.Wq+ Res Cr        | Signal: Wq+ Reset Counter                                                                                  |
| PQSCr.Wq- Res Cr        | Signal: Wq- Reset Counter                                                                                  |
| PQSCr.Res all Energy Cr | Signal: Reset of all Energy Counters                                                                       |
| PQSCr.Cr OflwW Ws Net   | Signal: Counter Ws Net will overflow soon                                                                  |
| PQSCr.Cr OflwW Wp Net   | Signal: Counter Wp Net will overflow soon                                                                  |
| PQSCr.Cr OflwW Wp+      | Signal: Counter Wp+ will overflow soon                                                                     |
| PQSCr.Cr OflwW Wp-      | Signal: Counter Wp- will overflow soon                                                                     |
| PQSCr.Cr OflwW Wq Net   | Signal: Counter Wq Net will overflow soon                                                                  |
| PQSCr.Cr OflwW Wq+      | Signal: Counter Wq+ will overflow soon                                                                     |
| PQSCr.Cr OflwW Wq-      | Signal: Counter Wq- will overflow soon                                                                     |
| SysA.active             | Signal: active                                                                                             |
| SysA.ExBlo              | Signal: External Blocking                                                                                  |

| Name                        | Description                                                                                                                                                                                                                                                                  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SysA.Alarm Watt Power       | Signal: Alarm permitted Active Power exceeded                                                                                                                                                                                                                                |
| SysA.Alarm VAr Power        | Signal: Alarm permitted Reactive Power exceeded                                                                                                                                                                                                                              |
| SysA.Alarm VA Power         | Signal: Alarm permitted Apparent Power exceeded                                                                                                                                                                                                                              |
| SysA.Alarm Watt<br>Demand   | Signal: Alarm averaged Active Power exceeded                                                                                                                                                                                                                                 |
| SysA.Alarm VAr Demand       | Signal: Alarm averaged Reactive Power exceeded                                                                                                                                                                                                                               |
| SysA.Alarm VA Demand        | Signal: Alarm averaged Apparent Power exceeded                                                                                                                                                                                                                               |
| SysA.Alm Current Demd       | Signal: Alarm averaged demand current                                                                                                                                                                                                                                        |
| SysA.Alarm I THD            | Signal: Alarm Total Harmonic Distortion Current                                                                                                                                                                                                                              |
| SysA.Alarm V THD            | Signal: Alarm Total Harmonic Distortion Voltage                                                                                                                                                                                                                              |
| SysA.Trip Watt Power        | Signal: Trip permitted Active Power exceeded                                                                                                                                                                                                                                 |
| SysA.Trip VAr Power         | Signal: Trip permitted Reactive Power exceeded                                                                                                                                                                                                                               |
| SysA.Trip VA Power          | Signal: Trip permitted Apparent Power exceeded                                                                                                                                                                                                                               |
| SysA.Trip Watt Demand       | Signal: Trip averaged Active Power exceeded                                                                                                                                                                                                                                  |
| SysA.Trip VAr Demand        | Signal: Trip averaged Reactive Power exceeded                                                                                                                                                                                                                                |
| SysA.Trip VA Demand         | Signal: Trip averaged Apparent Power exceeded                                                                                                                                                                                                                                |
| SysA.Trip Current<br>Demand | Signal: Trip averaged demand current                                                                                                                                                                                                                                         |
| SysA.Trip I THD             | Signal: Trip Total Harmonic Distortion Current                                                                                                                                                                                                                               |
| SysA.Trip V THD             | Signal: Trip Total Harmonic Distortion Voltage                                                                                                                                                                                                                               |
| SysA.ExBlo-I                | Module input state: External blocking                                                                                                                                                                                                                                        |
| DI Slot X1.DI 1             | Signal: Digital Input                                                                                                                                                                                                                                                        |
| DI Slot X1.DI 2             | Signal: Digital Input                                                                                                                                                                                                                                                        |
| DI Slot X1.DI 3             | Signal: Digital Input                                                                                                                                                                                                                                                        |
| DI Slot X1.DI 4             | Signal: Digital Input                                                                                                                                                                                                                                                        |
| DI Slot X1.DI 5             | Signal: Digital Input                                                                                                                                                                                                                                                        |
| DI Slot X1.DI 6             | Signal: Digital Input                                                                                                                                                                                                                                                        |
| DI Slot X1.DI 7             | Signal: Digital Input                                                                                                                                                                                                                                                        |
| DI Slot X1.DI 8             | Signal: Digital Input                                                                                                                                                                                                                                                        |
| BO Slot X2.BO 1             | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X2.BO 2             | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X2.BO 3             | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X2.BO 4             | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X2.BO 5             | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X2.BO 6             | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X2.DISARMED!        | Signal: CAUTION! RELAYS DISARMED in order to safely perform maintenance while<br>eliminating the risk of taking an entire process off-line. (Note: The Self Supervision<br>Contact cannot be disarmed). YOU MUST ENSURE that the relays are ARMED AGAIN<br>after maintenance |
| BO Slot X2.Outs forced      | Signal: The State of at least one Relay Output has been set by force. That means that<br>the state of at least one Relay is forced and hence does not show the state of the<br>assigned signals.                                                                             |

| Name                           | Description                                                                                                                                                                                                                                                                  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BO Slot X6.BO 1                | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X6.BO 2                | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X6.BO 3                | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X6.BO 4                | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X6.BO 5                | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X6.BO 6                | Signal: Binary Output Relay                                                                                                                                                                                                                                                  |
| BO Slot X6.DISARMED!           | Signal: CAUTION! RELAYS DISARMED in order to safely perform maintenance while<br>eliminating the risk of taking an entire process off-line. (Note: The Self Supervision<br>Contact cannot be disarmed). YOU MUST ENSURE that the relays are ARMED AGAIN<br>after maintenance |
| BO Slot X6.Outs forced         | Signal: The State of at least one Relay Output has been set by force. That means that the state of at least one Relay is forced and hence does not show the state of the assigned signals.                                                                                   |
| AnOut[1].Force Mode            | For commissioning purposes or for maintenance, Analog Outputs can be set by force.<br>By means of this function the normal Analog Outputs can be overwritten (forced).                                                                                                       |
| AnOut[2].Force Mode            | For commissioning purposes or for maintenance, Analog Outputs can be set by force.<br>By means of this function the normal Analog Outputs can be overwritten (forced).                                                                                                       |
| AnOut[3].Force Mode            | For commissioning purposes or for maintenance, Analog Outputs can be set by force.<br>By means of this function the normal Analog Outputs can be overwritten (forced).                                                                                                       |
| AnOut[4].Force Mode            | For commissioning purposes or for maintenance, Analog Outputs can be set by force.<br>By means of this function the normal Analog Outputs can be overwritten (forced).                                                                                                       |
| Event rec.Res all records      | Signal: All records deleted                                                                                                                                                                                                                                                  |
| Disturb rec.recording          | Signal: Recording                                                                                                                                                                                                                                                            |
| Disturb rec.memory full        | Signal: Memory full                                                                                                                                                                                                                                                          |
| Disturb rec.Clear fail         | Signal: Clear failure in memory                                                                                                                                                                                                                                              |
| Disturb rec.Res all<br>records | Signal: All records deleted                                                                                                                                                                                                                                                  |
| Disturb rec.Res rec            | Signal: Delete record                                                                                                                                                                                                                                                        |
| Disturb rec.Man Trigger        | Signal: Manual Trigger                                                                                                                                                                                                                                                       |
| Disturb rec.Start1-I           | State of the module input:: Trigger event / start recording if:                                                                                                                                                                                                              |
| Disturb rec.Start2-I           | State of the module input:: Trigger event / start recording if:                                                                                                                                                                                                              |
| Disturb rec.Start3-I           | State of the module input:: Trigger event / start recording if:                                                                                                                                                                                                              |
| Disturb rec.Start4-I           | State of the module input:: Trigger event / start recording if:                                                                                                                                                                                                              |
| Disturb rec.Start5-I           | State of the module input:: Trigger event / start recording if:                                                                                                                                                                                                              |
| Disturb rec.Start6-I           | State of the module input:: Trigger event / start recording if:                                                                                                                                                                                                              |
| Disturb rec.Start7-I           | State of the module input:: Trigger event / start recording if:                                                                                                                                                                                                              |
| Disturb rec.Start8-I           | State of the module input:: Trigger event / start recording if:                                                                                                                                                                                                              |
| Fault rec.Res rec              | Signal: Delete record                                                                                                                                                                                                                                                        |
| Trend rec.Hand Reset           | Hand Reset                                                                                                                                                                                                                                                                   |
| Start rec.Storing              | Signal: Data are saved                                                                                                                                                                                                                                                       |
| SSV.System Error               | Signal: Device Failure                                                                                                                                                                                                                                                       |
| SSV.SelfSuperVision<br>Contact | Signal: SelfSuperVision Contact                                                                                                                                                                                                                                              |

| Name                         | Description                                                                                          |
|------------------------------|------------------------------------------------------------------------------------------------------|
| Scada.SCADA connected        | At least one SCADA System is connected to the device.                                                |
| Scada.SCADA not<br>connected | No SCADA System is connected to the device                                                           |
| DNP3.busy                    | This message is set if the protocol is started. It will be reset if the protocol is shut down.       |
| DNP3.ready                   | The message will be set if the protocol is successfully started and ready for data exchange.         |
| DNP3.active                  | The communication with the Master (SCADA) is active.                                                 |
|                              | Note that for TCP/UDP, this state is permanently "Low" unless »DataLink confirm« is set to "Always". |
| DNP3.BinaryOutput0           | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput1           | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput2           | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput3           | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput4           | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput5           | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput6           | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput7           | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput8           | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput9           | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput10          | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput11          | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput12          | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput13          | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput14          | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput15          | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput16          | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |
| DNP3.BinaryOutput17          | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device.   |

| Name                | Description                                                                                        |
|---------------------|----------------------------------------------------------------------------------------------------|
| DNP3.BinaryOutput18 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput19 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput20 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput21 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput22 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput23 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput24 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput25 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput26 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput27 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput28 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput29 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput30 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput31 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryInput0-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput1-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput2-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput3-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput4-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput5-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput6-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput7-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput8-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |

| Name                 | Description                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------|
| DNP3.BinaryInput9-I  | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput10-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput11-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput12-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput13-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput14-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput15-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput16-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput17-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput18-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput19-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput20-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput21-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput22-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput23-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput24-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput25-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput26-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput27-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput28-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput29-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput30-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput31-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |

| Name                 | Description                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------|
| DNP3.BinaryInput32-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput33-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput34-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput35-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput36-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput37-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput38-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput39-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput40-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput41-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput42-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput43-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput44-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput45-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput46-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput47-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput48-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput49-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput50-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput51-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput52-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput53-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput54-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |

| Name                       | Description                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------------|
| DNP3.BinaryInput55-I       | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput56-I       | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput57-I       | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput58-I       | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput59-I       | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput60-I       | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput61-I       | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput62-I       | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput63-I       | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| Modbus.Transmission<br>RTU | Signal: SCADA active                                                                               |
| Modbus.Transmission<br>TCP | Signal: SCADA active                                                                               |
| Modbus.Scada Cmd 1         | Scada Command                                                                                      |
| Modbus.Scada Cmd 2         | Scada Command                                                                                      |
| Modbus.Scada Cmd 3         | Scada Command                                                                                      |
| Modbus.Scada Cmd 4         | Scada Command                                                                                      |
| Modbus.Scada Cmd 5         | Scada Command                                                                                      |
| Modbus.Scada Cmd 6         | Scada Command                                                                                      |
| Modbus.Scada Cmd 7         | Scada Command                                                                                      |
| Modbus.Scada Cmd 8         | Scada Command                                                                                      |
| Modbus.Scada Cmd 9         | Scada Command                                                                                      |
| Modbus.Scada Cmd 10        | Scada Command                                                                                      |
| Modbus.Scada Cmd 11        | Scada Command                                                                                      |
| Modbus.Scada Cmd 12        | Scada Command                                                                                      |
| Modbus.Scada Cmd 13        | Scada Command                                                                                      |
| Modbus.Scada Cmd 14        | Scada Command                                                                                      |
| Modbus.Scada Cmd 15        | Scada Command                                                                                      |
| Modbus.Scada Cmd 16        | Scada Command                                                                                      |
| Modbus.Config Bin Inp1-I   | State of the module input: Config Bin Inp                                                          |
| Modbus.Config Bin Inp2-I   | State of the module input: Config Bin Inp                                                          |
| Modbus.Config Bin Inp3-I   | State of the module input: Config Bin Inp                                                          |
| Modbus.Config Bin Inp4-I   | State of the module input: Config Bin Inp                                                          |
| Modbus.Config Bin Inp5-I   | State of the module input: Config Bin Inp                                                          |

| Name                         | Description                               |
|------------------------------|-------------------------------------------|
| Modbus.Config Bin Inp6-I     | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp7-I     | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp8-I     | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp9-I     | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp10-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp11-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp12-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp13-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp14-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp15-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp16-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp17-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp18-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp19-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp20-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp21-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp22-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp23-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp24-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp25-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp26-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp27-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp28-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp29-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin<br>Inp30-I | State of the module input: Config Bin Inp |

| Name                                    | Description                                        |
|-----------------------------------------|----------------------------------------------------|
| Modbus.Config Bin<br>Inp31-I            | State of the module input: Config Bin Inp          |
| Modbus.Config Bin<br>Inp32-I            | State of the module input: Config Bin Inp          |
| IEC61850.MMS Client connected           | At least one MMS client is connected to the device |
| IEC61850.All Goose<br>Subscriber active | All Goose subscriber in the device are working     |
| IEC61850.VirtInp1                       | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp2                       | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp3                       | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp4                       | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp5                       | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp6                       | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp7                       | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp8                       | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp9                       | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp10                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp11                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp12                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp13                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp14                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp15                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp16                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp17                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp18                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp19                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp20                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp21                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp22                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp23                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp24                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp25                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp26                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp27                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp28                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp29                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp30                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp31                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |
| IEC61850.VirtInp32                      | Signal: Virtual Input (IEC61850 GGIO Ind)          |

| Name                             | Description                        |
|----------------------------------|------------------------------------|
| IEC61850.Quality of<br>GGIO In1  | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In2  | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In3     | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In4  | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In5  | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In6  | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In7  | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In8  | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In9  | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In10 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In11 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In12 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In13 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In14 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In15 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In16 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In17 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In18 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In19 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In20 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In21 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of<br>GGIO In22 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In23    | Self-Supervision of the GGIO Input |

| Name                             | Description                                                                                      |
|----------------------------------|--------------------------------------------------------------------------------------------------|
| IEC61850.Quality of<br>GGIO In24 | Self-Supervision of the GGIO Input                                                               |
| IEC61850.Quality of<br>GGIO In25 | Self-Supervision of the GGIO Input                                                               |
| IEC61850.Quality of<br>GGIO In26 | Self-Supervision of the GGIO Input                                                               |
| IEC61850.Quality of<br>GGIO In27 | Self-Supervision of the GGIO Input                                                               |
| IEC61850.Quality of<br>GGIO In28 | Self-Supervision of the GGIO Input                                                               |
| IEC61850.Quality of<br>GGIO In29 | Self-Supervision of the GGIO Input                                                               |
| IEC61850.Quality of<br>GGIO In30 | Self-Supervision of the GGIO Input                                                               |
| IEC61850.Quality of<br>GGIO In31 | Self-Supervision of the GGIO Input                                                               |
| IEC61850.Quality of<br>GGIO In32 | Self-Supervision of the GGIO Input                                                               |
| IEC61850.SPCSO1                  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO2                  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO3                  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO4                  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO5                  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO6                  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO7                  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO8                  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO9                  | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO10                 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO11                 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO12                 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO13                 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO14                 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |

| Name                | Description                                                                                      |
|---------------------|--------------------------------------------------------------------------------------------------|
| IEC61850.SPCSO15    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO16    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO17    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO18    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO19    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO20    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO21    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO22    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO23    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO24    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO25    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO26    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO27    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO28    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO29    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO30    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO31    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO32    | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.VirtOut1-I | Module input state: Binary state of the Virtual Output (GGIO)                                    |
| IEC61850.VirtOut2-I | Module input state: Binary state of the Virtual Output (GGIO)                                    |
| IEC61850.VirtOut3-I | Module input state: Binary state of the Virtual Output (GGIO)                                    |
| IEC61850.VirtOut4-I | Module input state: Binary state of the Virtual Output (GGIO)                                    |
| IEC61850.VirtOut5-I | Module input state: Binary state of the Virtual Output (GGIO)                                    |
| IEC61850.VirtOut6-I | Module input state: Binary state of the Virtual Output (GGIO)                                    |
| IEC61850.VirtOut7-I | Module input state: Binary state of the Virtual Output (GGIO)                                    |
| IEC61850.VirtOut8-I | Module input state: Binary state of the Virtual Output (GGIO)                                    |
| IEC61850.VirtOut9-I | Module input state: Binary state of the Virtual Output (GGIO)                                    |

| Name                               | Description                                                                          |
|------------------------------------|--------------------------------------------------------------------------------------|
| IEC61850.VirtOut10-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut11-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut12-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut13-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut14-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut15-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut16-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut17-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut18-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut19-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut20-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut21-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut22-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut22-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut24-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut25-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut26-I               |                                                                                      |
|                                    | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut27-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut28-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut29-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut30-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut31-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC61850.VirtOut32-I               | Module input state: Binary state of the Virtual Output (GGIO)                        |
| IEC 103.Scada Cmd 1                | Scada Command                                                                        |
| IEC 103.Scada Cmd 2                | Scada Command                                                                        |
| IEC 103.Scada Cmd 3                | Scada Command                                                                        |
| IEC 103.Scada Cmd 4                | Scada Command                                                                        |
| IEC 103.Scada Cmd 5                | Scada Command                                                                        |
| IEC 103.Scada Cmd 6                | Scada Command                                                                        |
| IEC 103.Scada Cmd 7                | Scada Command                                                                        |
| IEC 103.Scada Cmd 8                | Scada Command                                                                        |
| IEC 103.Scada Cmd 9                | Scada Command                                                                        |
| IEC 103.Scada Cmd 10               | Scada Command                                                                        |
| IEC 103.Transmission               | Signal: SCADA active                                                                 |
| IEC 103.Failure Event<br>lost      | Failure event lost                                                                   |
| IEC 103.Test mode active           | Signal: IEC103 communication has been switched over into Test Mode.                  |
| IEC 103.Block MD active            | Signal: The blocking of IEC103 transmission in monitor direction has been activated. |
| IEC 103.Ex activate test<br>mode-l | Module input state: Test Mode of the IEC103 communication.                           |

| Name                              | Description                                                                                                                                                                        |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEC 103.Ex activate<br>Block MD-I | Module input state: Activation of the blocking of IEC103 transmission in monitor direction.                                                                                        |
| Profibus.Data OK                  | Data within the Input field are OK (Yes=1)                                                                                                                                         |
| Profibus.SubModul Err             | Assignable Signal, Failure in Sub-Module, Communication Failure.                                                                                                                   |
| Profibus.Connection active        | Connection active                                                                                                                                                                  |
| Profibus.Scada Cmd 1              | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 2              | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 3              | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 4              | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 5              | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 6              | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 7              | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 8              | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 9              | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 10             | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 11             | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 12             | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 13             | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 14             | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 15             | Scada Command                                                                                                                                                                      |
| Profibus.Scada Cmd 16             | Scada Command                                                                                                                                                                      |
| IRIG-B.IRIG-B active              | Signal: If there is no valid IRIG-B signal for 60 sec, IRIG-B is regarded as inactive.                                                                                             |
| IRIG-B.High-Low Invert            | Signal: The High and Low signals of the IRIG-B are inverted. This does NOT mean that the wiring is faulty. If the wiring is faulty no IRIG-B signal will be detected.              |
| IRIG-B.Control Signal1            | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal2            | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal3            | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal4            | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal5            | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal6            | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |

| Name                             | Description                                                                                                                                                                        |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IRIG-B.Control Signal7           | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal8           | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal9           | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal10          | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal11          | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal12          | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal13          | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal14          | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal15          | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal16          | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal17          | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| IRIG-B.Control Signal18          | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals.<br>They can be used for further control procedures inside the device (e.g. logic<br>funtions). |
| SNTP.SNTP active                 | Signal: If there is no valid SNTP signal for 120 sec, SNTP is regarded as inactive.                                                                                                |
| TimeSync.synchronized            | Clock is synchronized.                                                                                                                                                             |
| Statistics.ResFc all             | Signal: Resetting of all Statistic values (Current Demand, Power Demand, Min, Max)                                                                                                 |
| Statistics.ResFc I<br>Demand     | Signal: Resetting of Statistics - Current Demand (avg, peak avg)                                                                                                                   |
| Statistics.ResFc P<br>Demand     | Signal: Resetting of Statistics - Power Demand (avg, peak avg)                                                                                                                     |
| Statistics.ResFc Max             | Signal: Resetting of all Maximum values                                                                                                                                            |
| Statistics.ResFc Min             | Signal: Resetting of all Minimum values                                                                                                                                            |
| Statistics.StartFc I<br>Demand-I | State of the module input: Start of the Statistics of the Current Demand                                                                                                           |
| Statistics.StartFc P<br>Demand-I | State of the module input: Start of the Statistics of the Active Power Demand                                                                                                      |

| NameDescriptionLogics.LE.Gate DutSignal: Output of the logic gateLogics.LE.Timer OutSignal: Timer OutputLogics.LE.OutSignal: Related Author Output (Q) NOTLogics.LE.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Cate Latch-1State of the module input: Assignment of the Input SignalLogics.LE.Cate Lott-1State of the module input: Assignment of the Input SignalLogics.LE.Cate Lott-1State of the module input: Assignment of the Input SignalLogics.LE.CoutSignal: Couptu of the logic gateLogics.LE.Cate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Cate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Cate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Cate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Cate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Cate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Cate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Cate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Cate In1-1State of the module input: Assignment of the Input SignalLogics.LE.Cate In1-1 <t< th=""><th>Name</th><th>Description</th></t<> | Name                     | Description                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|
| Logics.LE1.Timer OutSignal: Timer OutputLogics.LE1.OutSignal: Latched Output (Q)Logics.LE1.Out invertedSignal: Latched Output (Q NOT)Logics.LE1.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE1.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE1.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE1.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE2.OutSignal: Cutput of the logic gateLogics.LE2.Out invertedSignal: Latched Output (Q NOT)Logics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Out invertedSignal: Cutput of the logic gateLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.                                           |                          |                                                           |
| Logics.LE1.OutSignal: Latched Output (Q)Logics.LE1.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE1.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE1.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE1.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE1.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE2.Timer OutSignal: Timer OutputLogics.LE2.OutSignal: Timer OutputLogics.LE2.Out invertedSignal: Timer OutputLogics.LE2.Out invertedSignal: Timer Output: Assignment of the Input SignalLogics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input Signal                                           |                          |                                                           |
| Logics.LE1.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE1.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE1.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE1.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE1.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE1.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate OutSignal: Output of the logic gateLogics.LE2.Out InvertedSignal: Latched Output (Q)Logics.LE2.Out InvertedSignal: Latched Output (Q)Logics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Cate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1St                         |                          |                                                           |
| Logics.LE1.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE1.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE1.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE1.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate OutSignal: Output of the logic gateLogics.LE2.Gate OutSignal: Timer OutputLogics.LE2.OutSignal: Latched Output (Q)Logics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Cate In2-4State of the module input: Assignment of the Input SignalLogics.LE3.Gate OutSignal: Toutput of the logic gateLogics.LE3.OutSignal: Toutput of the logic gateLogics.LE3.OutSignal: Tached Output (Q)Logics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-1 <td></td> <td></td>                           |                          |                                                           |
| Logics.LE1.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE1.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE2.Gate OutSignal: Output of the logic gateLogics.LE2.Gate OutSignal: Timer OutputLogics.LE2.OutSignal: Negated Latched Output (Q NOT)Logics.LE2.OutSignal: Negated Latched Output (Q NOT)Logics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-ISignal: Output of the logic gateLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.OutSignal: Negated Latched Output (Q)Logics.LE3.OutSignal: Negated Latched Output (Q)Logics.LE3.OutSignal: Negated Latched Output (Q)Logics.LE3.OutSignal: Negated Latched Output (Q) NOT)Logics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In                                                                      |                          |                                                           |
| Logics.LE1.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE1.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate OutSignal: Output of the logic gateLogics.LE2.OutSignal: Timer OutputLogics.LE2.OutSignal: Negated Latched Output (Q)Logics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.Gate OutSignal: Coutput of the logic gateLogics.LE3.OutSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the m                                                    |                          |                                                           |
| Logics.LE1.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE1.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE2.Timer OutSignal: Output of the logic gateLogics.LE2.Timer OutSignal: Latched Output (Q)Logics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the LatchingLo                                           |                          |                                                           |
| Logics.LE1.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE2.Gate OutSignal: Output of the logic gateLogics.LE2.Timer OutSignal: Timer OutputLogics.LE2.OutSignal: Negated Latched Output (Q)Logics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.Gate OutSignal: Cutput of the logic gateLogics.LE3.Out invertedSignal: Latched Output (Q)Logics.LE3.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Reset Signal for the LatchingLogics.LE3.Gate In3-IState of the module input: Reset Signal for the LatchingLog                                           |                          |                                                           |
| Logics.LE2.Gate OutSignal: Output of the logic gateLogics.LE2.Timer OutSignal: Timer OutputLogics.LE2.OutSignal: Negated Latched Output (Q)Logics.LE2.OutSignal: Negated Latched Output (Q NOT)Logics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE2.Reset Latch-IState of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.OutSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-IState of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-I </td <td></td> <td></td>                    |                          |                                                           |
| Logics.LE2.Timer OutSignal: Timer OutputLogics.LE2.OutSignal: Latched Output (Q)Logics.LE2.OutSignal: Negated Latched Output (Q NOT)Logics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.Gate In1-1State of the module input: Reset Signal for the LatchingLogics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-1State of the module input: Reset Signal for the LatchingLogics.LE3.Reset Latch-1State of the module input: Reset Signal for the LatchingLogics.LE3.Reset Latch-1State of the module input: Reset Signal for the LatchingLogics.LE4.Gate In1-1State of the module input: Reset Signal for the LatchingLo                                           |                          |                                                           |
| Logics.LE2.OutSignal: Latched Output (Q)Logics.LE2.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-1State of the module input: Reset Signal for the LatchingLogics.LE4.Gate In3-1State of the module input: Reset Signal for the LatchingLogics.LE4.Gate In3-1State of the module input: Reset Signal for the LatchingLogics.LE4.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-1State of the module input: Assignment of                          |                          |                                                           |
| Logics.LE2.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE2.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-1State of the module input: Reset Signal for the LatchingLogics.LE4.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Timer OutputLogics.LE4.Gate OutSignal: Timer OutputLogics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics                                           |                          |                                                           |
| Logics.LE2.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.OutSignal: Latched Output (Q)Logics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.Gate OutSignal: Timer OutputLogics.LE4.Gate OutSignal: Timer OutputLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState                                                     |                          |                                                           |
| Logics.LE2.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.Gate OutSignal: Timer OutputLogics.LE3.OutSignal: Latched Output (Q)Logics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.Gate OutSignal: Coutput of the logic gateLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input Signal </td <td></td> <td></td>  |                          |                                                           |
| Logics.LE2.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE2.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE2.Reset Latch-1State of the module input: Reset Signal for the LatchingLogics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.OutSignal: Timer OutputLogics.LE3.OutSignal: Latched Output (Q)Logics.LE3.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.Gate OutSignal: Timer OutputLogics.LE4.Gate OutSignal: Timer Output (Q)Logics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-1State of the module input: Assignment of the Input Signal <t< td=""><td></td><td></td></t<>                                  |                          |                                                           |
| Logics.LE2.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE2.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.Timer OutSignal: Timer OutputLogics.LE3.OutSignal: Latched Output (Q)Logics.LE3.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.Gate OutSignal: Timer OutputLogics.LE4.OutSignal: Timer OutputLogics.LE4.OutSignal: Timer OutputLogics.LE4.OutSignal: Latched Output (Q)Logics.LE4.OutSignal: Signal: Negated Latched Output (Q NOT)Logics.LE4.OutSignal: Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input Si                                                                               | Logics.LE2.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE2.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.Timer OutSignal: Timer OutputLogics.LE3.OutSignal: Latched Output (Q)Logics.LE3.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.Gate OutSignal: Timer OutputLogics.LE4.Gate OutSignal: Timer OutputLogics.LE4.OutSignal: Timer OutputLogics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gat                                                                      | Logics.LE2.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE3.Gate OutSignal: Output of the logic gateLogics.LE3.Timer OutSignal: Timer OutputLogics.LE3.OutSignal: Latched Output (Q)Logics.LE3.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.Gate OutSignal: Timer OutputLogics.LE4.OutSignal: Latched Output (Q)Logics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-1State of the module input: Assignment of the Input Signal<                                                                  | Logics.LE2.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE3.Timer OutSignal: Timer OutputLogics.LE3.OutSignal: Latched Output (Q)Logics.LE3.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Timer OutputLogics.LE4.OutSignal: Timer OutputLogics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the In                                                    | Logics.LE2.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE3.OutSignal: Latched Output (Q)Logics.LE3.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.OutSignal: Timer OutputLogics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Reset Signal for the La                         | Logics.LE3.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE3.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE3.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-1State of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.OutSignal: Timer OutputLogics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output                          | Logics.LE3.Timer Out     | Signal: Timer Output                                      |
| Logics.LE3.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.OutSignal: Timer OutputLogics.LE4.OutSignal: Cutput of the logic gateLogics.LE4.OutSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE5.Gate OutSignal: Output of the logic g                         | Logics.LE3.Out           | Signal: Latched Output (Q)                                |
| Logics.LE3.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.OutSignal: Timer OutputLogics.LE4.OutSignal: Latched Output (Q)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                        | Logics.LE3.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE3.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE3.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.OutSignal: Timer OutputLogics.LE4.OutSignal: Latched Output (Q)Logics.LE4.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Gate OutSignal: Timer OutputLogics.LE5.Timer OutSignal: Timer Output (Q)                                                                                                                                                                                                                                                         | Logics.LE3.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE3.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE3.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.Timer OutSignal: Timer OutputLogics.LE4.OutSignal: Latched Output (Q)Logics.LE4.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Logics.LE3.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE3.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.Timer OutSignal: Timer OutputLogics.LE4.OutSignal: Latched Output (Q)Logics.LE4.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Output of the logic gateLogics.LE5.OutSignal: Timer Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Logics.LE3.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE4.Gate OutSignal: Output of the logic gateLogics.LE4.Timer OutSignal: Timer OutputLogics.LE4.OutSignal: Latched Output (Q)Logics.LE4.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Logics.LE3.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE4.Timer OutSignal: Timer OutputLogics.LE4.OutSignal: Latched Output (Q)Logics.LE4.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Logics.LE3.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE4.OutSignal: Latched Output (Q)Logics.LE4.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Reset Latch-IState of the module input: Assignment of the Input SignalLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Logics.LE4.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE4.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Logics.LE4.Timer Out     | Signal: Timer Output                                      |
| Logics.LE4.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Logics.LE4.Out           | Signal: Latched Output (Q)                                |
| Logics.LE4.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Logics.LE4.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE4.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logics.LE4.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE4.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE4.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Logics.LE4.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE4.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Logics.LE4.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE5.Gate OutSignal: Output of the logic gateLogics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Logics.LE4.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Logics.LE4.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE5.Timer OutSignal: Timer OutputLogics.LE5.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Logics.LE5.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE5.Out Signal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Logics.LE5.Timer Out     | Signal: Timer Output                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logics.LE5.Out           | Signal: Latched Output (Q)                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logics.LE5.Out inverted  |                                                           |

| Name                     | Description                                               |
|--------------------------|-----------------------------------------------------------|
| Logics.LE5.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE5.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE5.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE5.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE5.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE6.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE6.Timer Out     | Signal: Timer Output                                      |
| Logics.LE6.Out           | Signal: Latched Output (Q)                                |
| Logics.LE6.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE6.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE6.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE6.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE6.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE6.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE7.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE7.Timer Out     | Signal: Timer Output                                      |
| Logics.LE7.Out           | Signal: Latched Output (Q)                                |
| Logics.LE7.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE7.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE7.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE7.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE7.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE7.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE8.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE8.Timer Out     | Signal: Timer Output                                      |
| Logics.LE8.Out           | Signal: Latched Output (Q)                                |
| Logics.LE8.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE8.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE8.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE8.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE8.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE8.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE9.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE9.Timer Out     | Signal: Timer Output                                      |
| Logics.LE9.Out           | Signal: Latched Output (Q)                                |
| Logics.LE9.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE9.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE9.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE9.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE9.Gate In4-I    | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE9.Reset Latch-I      | State of the module input: Reset Signal for the Latching  |
| Logics.LE10.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE10.Timer Out         | Signal: Timer Output                                      |
| Logics.LE10.Out               | Signal: Latched Output (Q)                                |
| Logics.LE10.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE10.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE10.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE10.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE10.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE10.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE11.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE11.Timer Out         | Signal: Timer Output                                      |
| Logics.LE11.Out               | Signal: Latched Output (Q)                                |
| Logics.LE11.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE11.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE11.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE11.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE11.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE11.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE12.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE12.Timer Out         | Signal: Timer Output                                      |
| Logics.LE12.Out               | Signal: Latched Output (Q)                                |
| Logics.LE12.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE12.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE12.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE12.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE12.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE12.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE13.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE13.Timer Out         | Signal: Timer Output                                      |
| Logics.LE13.Out               | Signal: Latched Output (Q)                                |
| Logics.LE13.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE13.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE13.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE13.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE13.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE13.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE14.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE14.Timer Out         | Signal: Timer Output                                      |
| Logics.LE14.Out               | Signal: Latched Output (Q)                                |
| Logics.LE14.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE14.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE14.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE14.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE14.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE14.Reset Latch-      | State of the module input: Reset Signal for the Latching  |
| Logics.LE15.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE15.Timer Out         | Signal: Timer Output                                      |
| Logics.LE15.Out               | Signal: Latched Output (Q)                                |
| Logics.LE15.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE15.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE15.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE15.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE15.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE15.Reset Latch-<br>l | State of the module input: Reset Signal for the Latching  |
| Logics.LE16.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE16.Timer Out         | Signal: Timer Output                                      |
| Logics.LE16.Out               | Signal: Latched Output (Q)                                |
| Logics.LE16.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE16.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE16.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE16.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE16.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE16.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE17.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE17.Timer Out         | Signal: Timer Output                                      |
| Logics.LE17.Out               | Signal: Latched Output (Q)                                |
| Logics.LE17.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE17.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE17.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE17.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE17.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE17.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE18.Gate Out          | Signal: Output of the logic gate                          |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE18.Timer Out         | Signal: Timer Output                                      |
| Logics.LE18.Out               | Signal: Latched Output (Q)                                |
| Logics.LE18.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE18.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE18.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE18.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE18.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE18.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE19.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE19.Timer Out         | Signal: Timer Output                                      |
| Logics.LE19.Out               | Signal: Latched Output (Q)                                |
| Logics.LE19.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE19.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE19.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE19.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE19.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE19.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE20.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE20.Timer Out         | Signal: Timer Output                                      |
| Logics.LE20.Out               | Signal: Latched Output (Q)                                |
| Logics.LE20.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE20.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE20.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE20.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE20.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE20.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE21.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE21.Timer Out         | Signal: Timer Output                                      |
| Logics.LE21.Out               | Signal: Latched Output (Q)                                |
| Logics.LE21.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE21.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE21.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE21.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE21.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE21.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE22.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE22.Timer Out         | Signal: Timer Output                                      |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE22.Out               | Signal: Latched Output (Q)                                |
| Logics.LE22.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE22.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE22.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE22.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE22.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE22.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE23.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE23.Timer Out         | Signal: Timer Output                                      |
| Logics.LE23.Out               | Signal: Latched Output (Q)                                |
| Logics.LE23.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE23.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE23.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE23.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE23.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE23.Reset Latch-<br>l | State of the module input: Reset Signal for the Latching  |
| Logics.LE24.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE24.Timer Out         | Signal: Timer Output                                      |
| Logics.LE24.Out               | Signal: Latched Output (Q)                                |
| Logics.LE24.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE24.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE24.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE24.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE24.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE24.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE25.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE25.Timer Out         | Signal: Timer Output                                      |
| Logics.LE25.Out               | Signal: Latched Output (Q)                                |
| Logics.LE25.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE25.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE25.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE25.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE25.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE25.Reset Latch-<br>l | State of the module input: Reset Signal for the Latching  |
| Logics.LE26.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE26.Timer Out         | Signal: Timer Output                                      |
| Logics.LE26.Out               | Signal: Latched Output (Q)                                |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE26.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE26.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE26.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE26.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE26.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE26.Reset Latch-      | State of the module input: Reset Signal for the Latching  |
| Logics.LE27.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE27.Timer Out         | Signal: Timer Output                                      |
| Logics.LE27.Out               | Signal: Latched Output (Q)                                |
| Logics.LE27.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE27.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE27.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE27.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE27.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE27.Reset Latch-      | State of the module input: Reset Signal for the Latching  |
| Logics.LE28.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE28.Timer Out         | Signal: Timer Output                                      |
| Logics.LE28.Out               | Signal: Latched Output (Q)                                |
| Logics.LE28.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE28.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE28.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE28.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE28.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE28.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE29.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE29.Timer Out         | Signal: Timer Output                                      |
| Logics.LE29.Out               | Signal: Latched Output (Q)                                |
| Logics.LE29.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE29.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE29.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE29.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE29.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE29.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE30.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE30.Timer Out         | Signal: Timer Output                                      |
| Logics.LE30.Out               | Signal: Latched Output (Q)                                |
| Logics.LE30.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |

| Logics.LE30.Gate In1-1       State of the module input: Assignment of the Input Signal         Logics.LE30.Gate In3-1       State of the module input: Assignment of the Input Signal         Logics.LE30.Gate In4-1       State of the module input: Assignment of the Input Signal         Logics.LE30.Reset Latch       State of the module input: Assignment of the Input Signal         Logics.LE31.Gate Out       Signal: Output of the logic gate         Logics.LE31.Out       Signal: Timer Output         Logics.LE31.Out inverted       Signal: Timer Output         Logics.LE31.Gate In1-1       State of the module input: Assignment of the Input Signal         Logics.LE31.Gate In3-1       State of the module input: Assignment of the Input Signal         Logics.LE31.Gate In3-1       State of the module input: Assignment of the Input Signal         Logics.LE31.Gate In3-1       State of the module input: Assignment of the Input Signal         Logics.LE32.Gate In3-1       State of the module input: Assignment of the Input Signal         Logics.LE32.Gate In3-1       State of the module input: Assignment of the Input Signal         Logics.LE32.Gate In3-1       State of the module input: Assignment of the Input Signal         Logics.LE32.Gate In3-1       State of the module input: Assignment of the Input Signal         Logics.LE32.Gate In3-1       State of the module input: Assignment of the Input Signal         Logics.LE32.Gate In3-1       St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Name                      | Description                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|
| Logics.LE30.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE30.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE30.Reset Latch-1State of the module input: Reset Signal for the LatchingLogics.LE31.Gate OutSignal: Output of the logic gateLogics.LE31.Gate OutSignal: Timer OutputLogics.LE31.Gate OutSignal: Timer OutputLogics.LE31.Gate In3-ISignal: Negated Latched Output (Q) NOT)Logics.LE31.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE31.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE31.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate OutSignal: Output of the logic gateLogics.LE32.Cate In4-IState of the module input: Assignment of the Input SignalLogics.LE32.OutSignal: Timer OutputLogics.LE32.Cate In1-IState of the module input: Assignment of the Input SignalLogics.LE32.Cate In1-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In1-IState of the module input: Assignment of the Input Signal <tr<< td=""><td>Logics.LE30.Gate In1-I</td><td></td></tr<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Logics.LE30.Gate In1-I    |                                                           |
| Logics.LE30.Gate In3-1         State of the module input: Assignment of the Input Signal           Logics.LE30.Reset Latch-         State of the module input: Assignment of the Input Signal           Logics.LE30.Reset Latch-         State of the module input: Reset Signal for the Latching           Logics.LE31.Gate Out         Signal: Output of the logic gate           Logics.LE31.Timer Out         Signal: Timer Output           Logics.LE31.Gate In1-1         State of the module input: Assignment of the Input Signal           Logics.LE31.Gate In1-4         State of the module input: Assignment of the Input Signal           Logics.LE31.Gate In2-1         State of the module input: Assignment of the Input Signal           Logics.LE31.Gate In3-1         State of the module input: Assignment of the Input Signal           Logics.LE31.Gate In4-1         State of the module input: Assignment of the Input Signal           Logics.LE32.Gate In2-1         State of the module input: Reset Signal for the Latching           Logics.LE32.Gate Out         Signal: Output of the logic gate           Logics.LE32.Gate In3-1         State of the module input: Assignment of the Input Signal           Logics.LE32.Gate In3-1         State of the module input: Assignment of the Input Signal           Logics.LE32.Gate In3-1         State of the module input: Assignment of the Input Signal           Logics.LE32.Gate In3-1         State of the module input: Assignment of the Input Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                         |                                                           |
| Logics.LE30.Reset Latch-<br>State of the module input: Reset Signal for the Latching<br>Logics.LE31.Gate Out<br>Signal: Compared to the logic gate<br>Logics.LE31.Gate In1-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE31.Gate In1-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE31.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE31.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE31.Gate In4-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE31.Gate In4-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In4-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In4-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate Out<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assig | Logics.LE30.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE30.Reset Latch-<br>State of the module input: Reset Signal for the Latching<br>Logics.LE31.Gate Out<br>Signal: Compared to the logic gate<br>Logics.LE31.Gate In1-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE31.Gate In1-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE31.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE31.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE31.Gate In4-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE31.Gate In4-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In4-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In4-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate Out<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-1<br>State of the module input: Assig | Logics.LE30.Gate In4-I    |                                                           |
| IILogics.LE31.Gate OutSignal: Output of the logic gateLogics.LE31.Timer OutSignal: Timer OutputLogics.LE31.OutSignal: Negated Latched Output (Q)Logics.LE31.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE31.Reset Latch-State of the module input: Reset Signal for the LatchingILogics.LE32.Gate OutSignal: Cutput of the logic gateLogics.LE32.OutSignal: Cutput of the logic gateLogics.LE32.OutSignal: Negated Latched Output (Q)Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Reset Signal for the LatchingIISignal: Cutput of the logic gateLogics.LE33.Gate In3-1State of the module input: Reset Signal for the LatchingIISignal: Cutput of the logic gateLogics.LE33.Gate In3-1State of the module input: Reset Signal for the LatchingISignal: Negat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                         |                                                           |
| Logics.LE31.Timer OutSignal: Timer OutputLogics.LE31.OutSignal: Latched Output (Q)Logics.LE31.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE31.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-1State of the module input: Reset Signal for the Latching1Logics.LE32.Gate OutSignal: Timer OutputLogics.LE32.Gate OutSignal: Timer OutputLogics.LE32.OutSignal: Timer OutputLogics.LE32.OutSignal: Negated Latched Output (Q)Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                         |                                                           |
| Logics.LE31.OutSignal: Latched Output (Q)Logics.LE31.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE31.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE31.Reset Latch-State of the module input: Reset Signal for the LatchingLogics.LE32.Gate OutSignal: Output of the logic gateLogics.LE32.OutSignal: Timer OutputLogics.LE32.OutSignal: Negated Latched Output (Q NOT)Logics.LE32.OutSignal: Negated Latched Output (Q NOT)Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE33.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE33.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Assignment of the Input Signal<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Logics.LE31.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE31.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE31.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE31.Reset Latch-1State of the module input: Reset Signal for the LatchingLogics.LE32.Gate OutSignal: Output of the logic gateLogics.LE32.Gate OutSignal: Timer OutputLogics.LE32.OutSignal: Negated Latched Output (Q)Logics.LE32.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Reset Signal for the Latching1Logics.LE33.Gate OutSignal: Timer OutputLogics.LE33.Gate OutSignal: Timer OutputLogics.LE33.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Assignment of the Input SignalL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Logics.LE31.Timer Out     | Signal: Timer Output                                      |
| Logics.LE31.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE31.Reset Latch-1State of the module input: Reset Signal for the LatchingLogics.LE32.Gate OutSignal: Output of the logic gateLogics.LE32.Gate OutSignal: Timer OutputLogics.LE32.OutSignal: Reget Latched Output (Q)Logics.LE32.OutSignal: Negated Latched Output (Q NOT)Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Reset Signal for the Latching1Logics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.Gate OutSignal: Timer OutputLogics.LE33.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Assignment of the Input Signal<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logics.LE31.Out           | Signal: Latched Output (Q)                                |
| Logics.LE31.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE32.Gate OutSignal: Output of the logic gateLogics.LE32.Timer OutSignal: Timer OutputLogics.LE32.OutSignal: Latched Output (Q)Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.Gate OutSignal: Latched Output (Q)Logics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input Signal <tr< td=""><td>Logics.LE31.Out inverted</td><td>Signal: Negated Latched Output (Q NOT)</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Logics.LE31.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE31.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE31.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE31.Reset Latch-<br>IState of the module input: Reset Signal for the LatchingLogics.LE32.Gate OutSignal: Timer OutputLogics.LE32.OutSignal: Signal: Negated Latched Output (Q)Logics.LE32.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.Gate OutSignal: Timer OutputLogics.LE33.OutSignal: Latched Output (Q)Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Logics.LE31.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE31.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE31.Reset Latch-<br>ISignal: Output of the logic gateLogics.LE32.Gate OutSignal: Output of the logic gateLogics.LE32.OutSignal: Timer OutputLogics.LE32.OutSignal: Latched Output (Q)Logics.LE32.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Reset Signal for the LatchingLogics.LE32.Reset Latch-<br>1Signal: Output of the logic gateLogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.OutSignal: Timer OutputLogics.LE33.OutSignal: Negated Latched Output (Q NOT)Logics.LE33.OutSignal: Negated Latched Output (Q NOT)Logics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Logics.LE31.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE31.Reset Latch-<br>I Cogics.LE32.Gate Out<br>Signal: Output of the logic gate<br>Logics.LE32.Timer Out<br>Signal: Timer Output<br>Logics.LE32.Out<br>Signal: Latched Output (Q)<br>Logics.LE32.Out<br>Signal: Latched Output (Q)<br>Logics.LE32.Out<br>Signal: Latched Output (Q NOT)<br>Logics.LE32.Gate In1-I<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-I<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-I<br>State of the module input: Assignment of the Input Signal<br>Logics.LE32.Gate In3-I<br>State of the module input: Reset Signal for the Latching<br>Logics.LE32.Reset Latch-<br>State of the module input: Reset Signal for the Latching<br>Logics.LE33.Gate Out<br>Signal: Output of the logic gate<br>Logics.LE33.Out<br>Signal: Latched Output (Q)<br>Logics.LE33.Out<br>Signal: Latched Output (Q)<br>Logics.LE33.Out<br>Signal: Latched Output (Q)<br>Logics.LE33.Gate In1-I<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In1-I<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In1-I<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In1-I<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-I<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-I<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-I<br>State of the module input: Assignment of the Input Signal<br>Logics.LE33.Gate In3-I<br>State of the module input: Reset Signal for the Latching<br>Logics.LE33.Reset Latch-<br>State of the module input: Reset Signal for the Latching<br>Logics.LE34.Gate Out<br>Signal: Output of the logic gate<br>Logics.LE34.Gate Out<br>Signal: Cutput of the logic gate<br>Logics.LE34.Gate Out<br>Signal: Cutput of the logic gate<br>Logics.LE34.Out<br>Signal: Latched Output (Q)<br>Logics.LE34.Out<br>Signal: Latched Output (Q)<br>Logics.LE34.Out inverted<br>Signal: Negated Latched Output (Q NOT)                                                                                        | Logics.LE31.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| IILogics.LE32.Gate OutSignal: Output of the logic gateLogics.LE32.Timer OutSignal: Timer OutputLogics.LE32.OutSignal: Latched Output (Q)Logics.LE32.OutSignal: Negated Latched Output (Q NOT)Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Reset Signal for the Latching1Signal: Output of the logic gateLogics.LE33.Gate OutSignal: Timer OutputLogics.LE33.OutSignal: Input: Assignment of the Input SignalLogics.LE33.OutSignal: Negated Latched Output (Q)Logics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Logics.LE31.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE32.Timer OutSignal: Timer OutputLogics.LE32.OutSignal: Latched Output (Q)Logics.LE32.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Reset Latch-1State of the module input: Reset Signal for the Latching1Signal: Output of the logic gateLogics.LE33.OutSignal: Timer OutputLogics.LE33.OutSignal: Latched Output (Q)Logics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Logics.LE31.Reset Latch-  | State of the module input: Reset Signal for the Latching  |
| Logics.LE32.OutSignal: Latched Output (Q)Logics.LE32.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Reset Latch-State of the module input: Reset Signal for the Latching1Logics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.Gate OutSignal: Timer OutputLogics.LE33.OutSignal: Negated Latched Output (Q NOT)Logics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Reset Signal for the LatchingLogics.LE33.Reset Latch-1State of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logics.LE32.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE32.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE32.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE32.Reset Latch-State of the module input: Reset Signal for the LatchingISignal: Output of the logic gateLogics.LE33.Gate OutSignal: Timer OutputLogics.LE33.OutSignal: Timer OutputLogics.LE33.OutSignal: Negated Latched Output (Q NOT)Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In1-IState of the module input: Reset Signal for the La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Logics.LE32.Timer Out     | Signal: Timer Output                                      |
| Logics.LE32.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-1State of the module input: Assignment of the Input SignalLogics.LE32.Reset Latch-1State of the module input: Reset Signal for the LatchingLogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.OutSignal: Timer OutputLogics.LE33.OutSignal: Latched Output (Q)Logics.LE33.Gate In1-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-1State of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE33.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE33.Gate In4-1State of the module input: Reset Signal for the LatchingLogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE34.Gate OutSignal: Output of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Logics.LE32.Out           | Signal: Latched Output (Q)                                |
| Logics.LE32.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE32.Reset Latch-State of the module input: Reset Signal for the LatchingLogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.Gate In4-ISignal: Timer OutputLogics.LE33.OutSignal: Timer Output (Q)Logics.LE33.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Reset Latch-IState of the module input: Reset Signal for the LatchingISignal: Output of the logic gateLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Gate OutSignal: Timer OutputLogics.LE34.OutSignal: Timer Output (Q)Logics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Logics.LE32.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE32.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE32.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE32.Reset Latch-<br>IState of the module input: Reset Signal for the LatchingLogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.Timer OutSignal: Timer OutputLogics.LE33.OutSignal: Latched Output (Q)Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Gate OutSignal: Cutput of the logic gateLogics.LE34.OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Logics.LE32.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE32.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE32.Reset Latch-State of the module input: Reset Signal for the LatchingLogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.Timer OutSignal: Timer OutputLogics.LE33.OutSignal: Latched Output (Q)Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE33.Reset Latch-State of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Gate OutSignal: Timer OutputLogics.LE34.OutSignal: Timer Output (Q)Logics.LE34.OutSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Logics.LE32.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE32.Reset Latch-<br>IState of the module input: Reset Signal for the LatchingLogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.Timer OutSignal: Timer OutputLogics.LE33.OutSignal: Latched Output (Q)Logics.LE33.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.OutSignal: Latched Output (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logics.LE32.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| ILogics.LE33.Gate OutSignal: Output of the logic gateLogics.LE33.Timer OutSignal: Timer OutputLogics.LE33.OutSignal: Latched Output (Q)Logics.LE33.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Reset Latch-State of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Timer OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.OutSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Logics.LE32.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE33.Timer OutSignal: Timer OutputLogics.LE33.OutSignal: Latched Output (Q)Logics.LE33.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Reset Latch-State of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Logics.LE32.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE33.OutSignal: Latched Output (Q)Logics.LE33.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Timer OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Logics.LE33.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE33.Out invertedSignal: Negated Latched Output (Q NOT)Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Logics.LE33.Timer Out     | Signal: Timer Output                                      |
| Logics.LE33.Gate In1-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Logics.LE33.Out           | Signal: Latched Output (Q)                                |
| Logics.LE33.Gate In2-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Timer OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Logics.LE33.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE33.Gate In3-IState of the module input: Assignment of the Input SignalLogics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Timer OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Logics.LE33.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE33.Gate In4-IState of the module input: Assignment of the Input SignalLogics.LE33.Reset Latch-IState of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Timer OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Logics.LE33.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE33.Reset Latch-State of the module input: Reset Signal for the LatchingLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Timer OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Logics.LE33.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| ISignal: Output of the logic gateLogics.LE34.Gate OutSignal: Output of the logic gateLogics.LE34.Timer OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Logics.LE33.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE34.Timer OutSignal: Timer OutputLogics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logics.LE33.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE34.OutSignal: Latched Output (Q)Logics.LE34.Out invertedSignal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Logics.LE34.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE34.Out inverted Signal: Negated Latched Output (Q NOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logics.LE34.Timer Out     | Signal: Timer Output                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logics.LE34.Out           | Signal: Latched Output (Q)                                |
| Logics.LE34.Gate In1-I State of the module input: Assignment of the Input Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logics.LE34.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logics.LE34.Gate In1-I    | State of the module input: Assignment of the Input Signal |

| Name                      | Description                                               |
|---------------------------|-----------------------------------------------------------|
| Logics.LE34.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE34.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE34.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE34.Reset Latch-  | State of the module input: Reset Signal for the Latching  |
| Logics.LE35.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE35.Timer Out     | Signal: Timer Output                                      |
| Logics.LE35.Out           | Signal: Latched Output (Q)                                |
| Logics.LE35.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE35.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE35.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE35.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE35.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE35.Reset Latch-  | State of the module input: Reset Signal for the Latching  |
| Logics.LE36.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE36.Timer Out     | Signal: Timer Output                                      |
| Logics.LE36.Out           | Signal: Latched Output (Q)                                |
| Logics.LE36.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE36.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE36.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE36.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE36.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE36.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE37.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE37.Timer Out     | Signal: Timer Output                                      |
| Logics.LE37.Out           | Signal: Latched Output (Q)                                |
| Logics.LE37.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE37.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE37.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE37.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE37.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE37.Reset Latch-  | State of the module input: Reset Signal for the Latching  |
| Logics.LE38.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE38.Timer Out     | Signal: Timer Output                                      |
| Logics.LE38.Out           | Signal: Latched Output (Q)                                |
| Logics.LE38.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE38.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE38.Gate In2-I    | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE38.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE38.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE38.Reset Latch-      | State of the module input: Reset Signal for the Latching  |
| Logics.LE39.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE39.Timer Out         | Signal: Timer Output                                      |
| Logics.LE39.Out               | Signal: Latched Output (Q)                                |
| Logics.LE39.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE39.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE39.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE39.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE39.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE39.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE40.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE40.Timer Out         | Signal: Timer Output                                      |
| Logics.LE40.Out               | Signal: Latched Output (Q)                                |
| Logics.LE40.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE40.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE40.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE40.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE40.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE40.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE41.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE41.Timer Out         | Signal: Timer Output                                      |
| Logics.LE41.Out               | Signal: Latched Output (Q)                                |
| Logics.LE41.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE41.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE41.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE41.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE41.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE41.Reset Latch-      | State of the module input: Reset Signal for the Latching  |
| Logics.LE42.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE42.Timer Out         | Signal: Timer Output                                      |
| Logics.LE42.Out               | Signal: Latched Output (Q)                                |
| Logics.LE42.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE42.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE42.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE42.Gate In3-I        | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE42.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE42.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE43.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE43.Timer Out         | Signal: Timer Output                                      |
| Logics.LE43.Out               | Signal: Latched Output (Q)                                |
| Logics.LE43.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE43.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE43.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE43.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE43.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE43.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE44.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE44.Timer Out         | Signal: Timer Output                                      |
| Logics.LE44.Out               | Signal: Latched Output (Q)                                |
| Logics.LE44.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE44.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE44.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE44.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE44.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE44.Reset Latch-<br>l | State of the module input: Reset Signal for the Latching  |
| Logics.LE45.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE45.Timer Out         | Signal: Timer Output                                      |
| Logics.LE45.Out               | Signal: Latched Output (Q)                                |
| Logics.LE45.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE45.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE45.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE45.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE45.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE45.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE46.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE46.Timer Out         | Signal: Timer Output                                      |
| Logics.LE46.Out               | Signal: Latched Output (Q)                                |
| Logics.LE46.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE46.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE46.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE46.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE46.Gate In4-I        | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE46.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE47.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE47.Timer Out         | Signal: Timer Output                                      |
| Logics.LE47.Out               | Signal: Latched Output (Q)                                |
| Logics.LE47.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE47.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE47.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE47.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE47.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE47.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE48.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE48.Timer Out         | Signal: Timer Output                                      |
| Logics.LE48.Out               | Signal: Latched Output (Q)                                |
| Logics.LE48.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE48.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE48.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE48.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE48.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE48.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE49.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE49.Timer Out         | Signal: Timer Output                                      |
| Logics.LE49.Out               | Signal: Latched Output (Q)                                |
| Logics.LE49.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE49.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE49.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE49.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE49.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE49.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE50.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE50.Timer Out         | Signal: Timer Output                                      |
| Logics.LE50.Out               | Signal: Latched Output (Q)                                |
| Logics.LE50.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE50.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE50.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE50.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE50.Gate In4-I        | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE50.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE51.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE51.Timer Out         | Signal: Timer Output                                      |
| Logics.LE51.Out               | Signal: Latched Output (Q)                                |
| Logics.LE51.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE51.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE51.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE51.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE51.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE51.Reset Latch-      | State of the module input: Reset Signal for the Latching  |
| Logics.LE52.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE52.Timer Out         | Signal: Timer Output                                      |
| Logics.LE52.Out               | Signal: Latched Output (Q)                                |
| Logics.LE52.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE52.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE52.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE52.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE52.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE52.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE53.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE53.Timer Out         | Signal: Timer Output                                      |
| Logics.LE53.Out               | Signal: Latched Output (Q)                                |
| Logics.LE53.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE53.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE53.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE53.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE53.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE53.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE54.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE54.Timer Out         | Signal: Timer Output                                      |
| Logics.LE54.Out               | Signal: Latched Output (Q)                                |
| Logics.LE54.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE54.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE54.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE54.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE54.Gate In4-I        | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE54.Reset Latch-      | State of the module input: Reset Signal for the Latching  |
| Logics.LE55.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE55.Timer Out         | Signal: Timer Output                                      |
| Logics.LE55.Out               | Signal: Latched Output (Q)                                |
| Logics.LE55.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE55.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE55.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE55.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE55.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE55.Reset Latch-      | State of the module input: Reset Signal for the Latching  |
| Logics.LE56.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE56.Timer Out         | Signal: Timer Output                                      |
| Logics.LE56.Out               | Signal: Latched Output (Q)                                |
| Logics.LE56.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE56.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE56.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE56.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE56.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE56.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE57.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE57.Timer Out         | Signal: Timer Output                                      |
| Logics.LE57.Out               | Signal: Latched Output (Q)                                |
| Logics.LE57.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE57.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE57.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE57.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE57.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE57.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE58.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE58.Timer Out         | Signal: Timer Output                                      |
| Logics.LE58.Out               | Signal: Latched Output (Q)                                |
| Logics.LE58.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE58.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE58.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE58.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE58.Gate In4-I        | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE58.Reset Latch-      | State of the module input: Reset Signal for the Latching  |
| Logics.LE59.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE59.Timer Out         | Signal: Timer Output                                      |
| Logics.LE59.Out               | Signal: Latched Output (Q)                                |
| Logics.LE59.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE59.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE59.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE59.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE59.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE59.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE60.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE60.Timer Out         | Signal: Timer Output                                      |
| Logics.LE60.Out               | Signal: Latched Output (Q)                                |
| Logics.LE60.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE60.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE60.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE60.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE60.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE60.Reset Latch-I     | State of the module input: Reset Signal for the Latching  |
| Logics.LE61.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE61.Timer Out         | Signal: Timer Output                                      |
| Logics.LE61.Out               | Signal: Latched Output (Q)                                |
| Logics.LE61.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE61.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE61.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE61.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE61.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE61.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE62.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE62.Timer Out         | Signal: Timer Output                                      |
| Logics.LE62.Out               | Signal: Latched Output (Q)                                |
| Logics.LE62.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE62.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE62.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE62.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE62.Gate In4-I        | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE62.Reset Latch-      | State of the module input: Reset Signal for the Latching  |
| Logics.LE63.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE63.Timer Out         | Signal: Timer Output                                      |
| Logics.LE63.Out               | Signal: Latched Output (Q)                                |
| Logics.LE63.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE63.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE63.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE63.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE63.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE63.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE64.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE64.Timer Out         | Signal: Timer Output                                      |
| Logics.LE64.Out               | Signal: Latched Output (Q)                                |
| Logics.LE64.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE64.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE64.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE64.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE64.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE64.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE65.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE65.Timer Out         | Signal: Timer Output                                      |
| Logics.LE65.Out               | Signal: Latched Output (Q)                                |
| Logics.LE65.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE65.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE65.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE65.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE65.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE65.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE66.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE66.Timer Out         | Signal: Timer Output                                      |
| Logics.LE66.Out               | Signal: Latched Output (Q)                                |
| Logics.LE66.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE66.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE66.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE66.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE66.Gate In4-I        | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE66.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE67.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE67.Timer Out         | Signal: Timer Output                                      |
| Logics.LE67.Out               | Signal: Latched Output (Q)                                |
| Logics.LE67.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE67.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE67.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE67.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE67.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE67.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE68.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE68.Timer Out         | Signal: Timer Output                                      |
| Logics.LE68.Out               | Signal: Latched Output (Q)                                |
| Logics.LE68.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE68.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE68.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE68.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE68.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE68.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE69.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE69.Timer Out         | Signal: Timer Output                                      |
| Logics.LE69.Out               | Signal: Latched Output (Q)                                |
| Logics.LE69.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE69.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE69.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE69.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE69.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE69.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE70.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE70.Timer Out         | Signal: Timer Output                                      |
| Logics.LE70.Out               | Signal: Latched Output (Q)                                |
| Logics.LE70.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE70.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE70.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE70.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE70.Gate In4-I        | State of the module input: Assignment of the Input Signal |

| Name                      | Description                                               |
|---------------------------|-----------------------------------------------------------|
| Logics.LE70.Reset Latch-  | State of the module input: Reset Signal for the Latching  |
| Logics.LE71.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE71.Timer Out     | Signal: Timer Output                                      |
| Logics.LE71.Out           | Signal: Latched Output (Q)                                |
| Logics.LE71.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE71.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE71.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE71.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE71.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE71.Reset Latch-  | State of the module input: Reset Signal for the Latching  |
| Logics.LE72.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE72.Timer Out     | Signal: Timer Output                                      |
| Logics.LE72.Out           | Signal: Latched Output (Q)                                |
| Logics.LE72.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE72.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE72.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE72.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE72.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE72.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE73.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE73.Timer Out     | Signal: Timer Output                                      |
| Logics.LE73.Out           | Signal: Latched Output (Q)                                |
| Logics.LE73.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE73.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE73.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE73.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE73.Gate In4-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE73.Reset Latch-I | State of the module input: Reset Signal for the Latching  |
| Logics.LE74.Gate Out      | Signal: Output of the logic gate                          |
| Logics.LE74.Timer Out     | Signal: Timer Output                                      |
| Logics.LE74.Out           | Signal: Latched Output (Q)                                |
| Logics.LE74.Out inverted  | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE74.Gate In1-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE74.Gate In2-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE74.Gate In3-I    | State of the module input: Assignment of the Input Signal |
| Logics.LE74.Gate In4-I    | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                               |
|-------------------------------|-----------------------------------------------------------|
| Logics.LE74.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE75.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE75.Timer Out         | Signal: Timer Output                                      |
| Logics.LE75.Out               | Signal: Latched Output (Q)                                |
| Logics.LE75.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE75.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE75.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE75.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE75.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE75.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE76.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE76.Timer Out         | Signal: Timer Output                                      |
| Logics.LE76.Out               | Signal: Latched Output (Q)                                |
| Logics.LE76.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE76.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE76.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE76.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE76.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE76.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE77.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE77.Timer Out         | Signal: Timer Output                                      |
| Logics.LE77.Out               | Signal: Latched Output (Q)                                |
| Logics.LE77.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE77.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE77.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE77.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE77.Gate In4-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE77.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching  |
| Logics.LE78.Gate Out          | Signal: Output of the logic gate                          |
| Logics.LE78.Timer Out         | Signal: Timer Output                                      |
| Logics.LE78.Out               | Signal: Latched Output (Q)                                |
| Logics.LE78.Out inverted      | Signal: Negated Latched Output (Q NOT)                    |
| Logics.LE78.Gate In1-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE78.Gate In2-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE78.Gate In3-I        | State of the module input: Assignment of the Input Signal |
| Logics.LE78.Gate In4-I        | State of the module input: Assignment of the Input Signal |

| Name                          | Description                                                                                                                                                               |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logics.LE78.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching                                                                                                                  |
| Logics.LE79.Gate Out          | Signal: Output of the logic gate                                                                                                                                          |
| Logics.LE79.Timer Out         | Signal: Timer Output                                                                                                                                                      |
| Logics.LE79.Out               | Signal: Latched Output (Q)                                                                                                                                                |
| Logics.LE79.Out inverted      | Signal: Negated Latched Output (Q NOT)                                                                                                                                    |
| Logics.LE79.Gate In1-I        | State of the module input: Assignment of the Input Signal                                                                                                                 |
| Logics.LE79.Gate In2-I        | State of the module input: Assignment of the Input Signal                                                                                                                 |
| Logics.LE79.Gate In3-I        | State of the module input: Assignment of the Input Signal                                                                                                                 |
| Logics.LE79.Gate In4-I        | State of the module input: Assignment of the Input Signal                                                                                                                 |
| Logics.LE79.Reset Latch-      | State of the module input: Reset Signal for the Latching                                                                                                                  |
| Logics.LE80.Gate Out          | Signal: Output of the logic gate                                                                                                                                          |
| Logics.LE80.Timer Out         | Signal: Timer Output                                                                                                                                                      |
| Logics.LE80.Out               | Signal: Latched Output (Q)                                                                                                                                                |
| Logics.LE80.Out inverted      | Signal: Negated Latched Output (Q NOT)                                                                                                                                    |
| Logics.LE80.Gate In1-I        | State of the module input: Assignment of the Input Signal                                                                                                                 |
| Logics.LE80.Gate In2-I        | State of the module input: Assignment of the Input Signal                                                                                                                 |
| Logics.LE80.Gate In3-I        | State of the module input: Assignment of the Input Signal                                                                                                                 |
| Logics.LE80.Gate In4-I        | State of the module input: Assignment of the Input Signal                                                                                                                 |
| Logics.LE80.Reset Latch-<br>I | State of the module input: Reset Signal for the Latching                                                                                                                  |
| Sgen.Manual Start             | Fault Simulation has been started manually.                                                                                                                               |
| Sgen.Manual Stop              | Fault Simulation has been stopped manually.                                                                                                                               |
| Sgen.Running                  | Signal; Measuring value simulation is running                                                                                                                             |
| Sgen.Started                  | Fault Simulation has been started                                                                                                                                         |
| Sgen.Stopped                  | Fault Simulation has been stopped                                                                                                                                         |
| Sgen.Ex Start<br>Simulation-I | State of the module input:External Start of Fault Simulation (Using the test parameters)                                                                                  |
| Sgen.ExBlo1-I                 | Module input state: External blocking1                                                                                                                                    |
| Sgen.ExBlo2-I                 | Module input state: External blocking2                                                                                                                                    |
| Sgen.Ex ForcePost-I           | State of the module input:Force Post state. Abort simulation.                                                                                                             |
| Sys.PS 1                      | Signal: Parameter Set 1                                                                                                                                                   |
| Sys.PS 2                      | Signal: Parameter Set 2                                                                                                                                                   |
| Sys.PS 3                      | Signal: Parameter Set 3                                                                                                                                                   |
| Sys.PS 4                      | Signal: Parameter Set 4                                                                                                                                                   |
| Sys.PSS manual                | Signal: Manual Switch over of a Parameter Set                                                                                                                             |
| Sys.PSS via Scada             | Signal: Parameter Set Switch via Scada. Write into this output byte the integer of the parameter set that should become active (e.g. $4 =>$ Switch onto parameter set 4). |
| Sys.PSS via Inp fct           | Signal: Parameter Set Switch via input function                                                                                                                           |
| Sys.min 1 param<br>changed    | Signal: At least one parameter has been changed                                                                                                                           |

| Sys.Setting Lock Bypass | Signal: Short-period unlock of the Setting Lock                                                                         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                         | Signal. Short-period unlock of the Setting Lock                                                                         |
| Sys.Ack LED             | Signal: LEDs acknowledgement                                                                                            |
| Sys.Ack BO              | Signal: Acknowledgement of the Binary Outputs                                                                           |
| Sys.Ack Scada           | Signal: Acknowledge Scada                                                                                               |
| Sys.Ack TripCmd         | Signal: Reset Trip Command                                                                                              |
| Sys.Ack LED-HMI         | Signal: LEDs acknowledgement :HMI                                                                                       |
| Sys.Ack BO-HMI          | Signal: Acknowledgement of the Binary Outputs :HMI                                                                      |
| Sys.Ack Scada-HMI       | Signal: Acknowledge Scada :HMI                                                                                          |
| Sys.Ack TripCmd-HMI     | Signal: Reset Trip Command :HMI                                                                                         |
| Sys.Ack LED-Sca         | Signal: LEDs acknowledgement :SCADA                                                                                     |
| Sys.Ack BO-Sca          | Signal: Acknowledgement of the Binary Outputs :SCADA                                                                    |
| Sys.Ack Counter-Sca     | Signal: Reset of all Counters :SCADA                                                                                    |
| Sys.Ack Scada-Sca       | Signal: Acknowledge Scada :SCADA                                                                                        |
| Sys.Ack TripCmd-Sca     | Signal: Reset Trip Command :SCADA                                                                                       |
| Sys.Res OperationsCr    | Signal:: Res OperationsCr                                                                                               |
| Sys.Res AlarmCr         | Signal:: Res AlarmCr                                                                                                    |
| Sys.Res TripCmdCr       | Signal:: Res TripCmdCr                                                                                                  |
| Sys.Res TotalCr         | Signal:: Res TotalCr                                                                                                    |
| Sys.Ack LED-I           | Module input state: LEDs acknowledgement by digital input                                                               |
| Sys.Ack BO-I            | Module input state: Acknowledgement of the binary Output Relays                                                         |
| Sys.Ack Scada-I         | Module input state: Acknowledge Scada via digital input. The replica that SCADA has got from the device is to be reset. |
| Sys.PS1-I               | State of the module input respectively of the signal, that should activate this Parameter Setting Group.                |
| Sys.PS2-I               | State of the module input respectively of the signal, that should activate this Parameter Setting Group.                |
| Sys.PS3-I               | State of the module input respectively of the signal, that should activate this Parameter Setting Group.                |
| Sys.PS4-I               | State of the module input respectively of the signal, that should activate this Parameter Setting Group.                |
| Sys.Internal test state | Auxiliary state for testing purposes.                                                                                   |

## List of the Digital Inputs

The following list comprises all Digital Inputs. This list is used in various Protective Elements (e.g. TCS, Q->&V<...). The availability and the number of entries depends on the type of device.

| Name            | Description           |
|-----------------|-----------------------|
|                 | No assignment         |
| DI Slot X1.DI 1 | Signal: Digital Input |
| DI Slot X1.DI 2 | Signal: Digital Input |
| DI Slot X1.DI 3 | Signal: Digital Input |
| DI Slot X1.DI 4 | Signal: Digital Input |
| DI Slot X1.DI 5 | Signal: Digital Input |
| DI Slot X1.DI 6 | Signal: Digital Input |
| DI Slot X1.DI 7 | Signal: Digital Input |
| DI Slot X1.DI 8 | Signal: Digital Input |

## Signals of the Digital Inputs and Logic

The following list comprises the signals of the Digital Inputs and the Logic. This list is used in various protective elements.

| Name                | Description                                                                                        |  |  |
|---------------------|----------------------------------------------------------------------------------------------------|--|--|
|                     | No assignment                                                                                      |  |  |
| DI Slot X1.DI 1     | Signal: Digital Input                                                                              |  |  |
| DI Slot X1.DI 2     | Signal: Digital Input                                                                              |  |  |
| DI Slot X1.DI 3     | Signal: Digital Input                                                                              |  |  |
| DI Slot X1.DI 4     | Signal: Digital Input                                                                              |  |  |
| DI Slot X1.DI 5     | Signal: Digital Input                                                                              |  |  |
| DI Slot X1.DI 6     | Signal: Digital Input                                                                              |  |  |
| DI Slot X1.DI 7     | Signal: Digital Input                                                                              |  |  |
| DI Slot X1.DI 8     | Signal: Digital Input                                                                              |  |  |
| DNP3.BinaryOutput0  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput1  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput2  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput3  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput4  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput5  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput6  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput7  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput8  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput9  | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput10 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput11 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput12 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput13 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput14 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |
| DNP3.BinaryOutput15 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |  |

| Name                    | Description                                                                                        |  |
|-------------------------|----------------------------------------------------------------------------------------------------|--|
| DNP3.BinaryOutput16     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput17     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput18     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput19     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput20     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput21     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput22     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput23     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput24     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput25     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput26     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput27     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput28     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput29     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput30     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| DNP3.BinaryOutput31     | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |  |
| Logics.LE1.Gate Out     | Signal: Output of the logic gate                                                                   |  |
| Logics.LE1.Timer Out    | Signal: Timer Output                                                                               |  |
| Logics.LE1.Out          | Signal: Latched Output (Q)                                                                         |  |
| Logics.LE1.Out inverted | Signal: Negated Latched Output (Q NOT)                                                             |  |
| Logics.LE2.Gate Out     | Signal: Output of the logic gate                                                                   |  |
| Logics.LE2.Timer Out    | Signal: Timer Output                                                                               |  |
| Logics.LE2.Out          | Signal: Latched Output (Q)                                                                         |  |
| Logics.LE2.Out inverted | Signal: Negated Latched Output (Q NOT)                                                             |  |
| Logics.LE3.Gate Out     | Signal: Output of the logic gate                                                                   |  |
| Logics.LE3.Timer Out    | Signal: Timer Output                                                                               |  |
| Logics.LE3.Out          | Signal: Latched Output (Q)                                                                         |  |
| Logics.LE3.Out inverted | Signal: Negated Latched Output (Q NOT)                                                             |  |
| Logics.LE4.Gate Out     | Signal: Output of the logic gate                                                                   |  |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE4.Timer Out     | Signal: Timer Output                   |
| Logics.LE4.Out           | Signal: Latched Output (Q)             |
| Logics.LE4.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE5.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE5.Timer Out     | Signal: Timer Output                   |
| Logics.LE5.Out           | Signal: Latched Output (Q)             |
| Logics.LE5.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE6.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE6.Timer Out     | Signal: Timer Output                   |
| Logics.LE6.Out           | Signal: Latched Output (Q)             |
| Logics.LE6.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE7.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE7.Timer Out     | Signal: Timer Output                   |
| Logics.LE7.Out           | Signal: Latched Output (Q)             |
| Logics.LE7.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE8.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE8.Timer Out     | Signal: Timer Output                   |
| Logics.LE8.Out           | Signal: Latched Output (Q)             |
| Logics.LE8.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE9.Gate Out      | Signal: Output of the logic gate       |
| Logics.LE9.Timer Out     | Signal: Timer Output                   |
| Logics.LE9.Out           | Signal: Latched Output (Q)             |
| Logics.LE9.Out inverted  | Signal: Negated Latched Output (Q NOT) |
| Logics.LE10.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE10.Timer Out    | Signal: Timer Output                   |
| Logics.LE10.Out          | Signal: Latched Output (Q)             |
| Logics.LE10.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE11.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE11.Timer Out    | Signal: Timer Output                   |
| Logics.LE11.Out          | Signal: Latched Output (Q)             |
| Logics.LE11.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE12.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE12.Timer Out    | Signal: Timer Output                   |
| Logics.LE12.Out          | Signal: Latched Output (Q)             |
| Logics.LE12.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE13.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE13.Timer Out    | Signal: Timer Output                   |
| Logics.LE13.Out          | Signal: Latched Output (Q)             |
| Logics.LE13.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE14.Gate Out     | Signal: Output of the logic gate       |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE14.Timer Out    | Signal: Timer Output                   |
| Logics.LE14.Out          | Signal: Latched Output (Q)             |
| Logics.LE14.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE15.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE15.Timer Out    | Signal: Timer Output                   |
| Logics.LE15.Out          | Signal: Latched Output (Q)             |
| Logics.LE15.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE16.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE16.Timer Out    | Signal: Timer Output                   |
| Logics.LE16.Out          | Signal: Latched Output (Q)             |
| Logics.LE16.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE17.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE17.Timer Out    | Signal: Timer Output                   |
| Logics.LE17.Out          | Signal: Latched Output (Q)             |
| Logics.LE17.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE18.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE18.Timer Out    | Signal: Timer Output                   |
| Logics.LE18.Out          | Signal: Latched Output (Q)             |
| Logics.LE18.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE19.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE19.Timer Out    | Signal: Timer Output                   |
| Logics.LE19.Out          | Signal: Latched Output (Q)             |
| Logics.LE19.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE20.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE20.Timer Out    | Signal: Timer Output                   |
| Logics.LE20.Out          | Signal: Latched Output (Q)             |
| Logics.LE20.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE21.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE21.Timer Out    | Signal: Timer Output                   |
| Logics.LE21.Out          | Signal: Latched Output (Q)             |
| Logics.LE21.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE22.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE22.Timer Out    | Signal: Timer Output                   |
| Logics.LE22.Out          | Signal: Latched Output (Q)             |
| Logics.LE22.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE23.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE23.Timer Out    | Signal: Timer Output                   |
| Logics.LE23.Out          | Signal: Latched Output (Q)             |
| Logics.LE23.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE24.Gate Out     | Signal: Output of the logic gate       |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE24.Timer Out    | Signal: Timer Output                   |
| Logics.LE24.Out          | Signal: Latched Output (Q)             |
| Logics.LE24.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE25.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE25.Timer Out    | Signal: Timer Output                   |
| Logics.LE25.Out          | Signal: Latched Output (Q)             |
| Logics.LE25.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE26.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE26.Timer Out    | Signal: Timer Output                   |
| Logics.LE26.Out          | Signal: Latched Output (Q)             |
| Logics.LE26.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE27.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE27.Timer Out    | Signal: Timer Output                   |
| Logics.LE27.Out          | Signal: Latched Output (Q)             |
| Logics.LE27.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE28.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE28.Timer Out    | Signal: Timer Output                   |
| Logics.LE28.Out          | Signal: Latched Output (Q)             |
| Logics.LE28.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE29.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE29.Timer Out    | Signal: Timer Output                   |
| Logics.LE29.Out          | Signal: Latched Output (Q)             |
| Logics.LE29.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE30.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE30.Timer Out    | Signal: Timer Output                   |
| Logics.LE30.Out          | Signal: Latched Output (Q)             |
| Logics.LE30.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE31.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE31.Timer Out    | Signal: Timer Output                   |
| Logics.LE31.Out          | Signal: Latched Output (Q)             |
| Logics.LE31.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE32.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE32.Timer Out    | Signal: Timer Output                   |
| Logics.LE32.Out          | Signal: Latched Output (Q)             |
| Logics.LE32.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE33.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE33.Timer Out    | Signal: Timer Output                   |
| Logics.LE33.Out          | Signal: Latched Output (Q)             |
| Logics.LE33.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE34.Gate Out     | Signal: Output of the logic gate       |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE34.Timer Out    | Signal: Timer Output                   |
| Logics.LE34.Out          | Signal: Latched Output (Q)             |
| Logics.LE34.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE35.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE35.Timer Out    | Signal: Timer Output                   |
| Logics.LE35.Out          | Signal: Latched Output (Q)             |
| Logics.LE35.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE36.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE36.Timer Out    | Signal: Timer Output                   |
| Logics.LE36.Out          | Signal: Latched Output (Q)             |
| Logics.LE36.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE37.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE37.Timer Out    | Signal: Timer Output                   |
| Logics.LE37.Out          | Signal: Latched Output (Q)             |
| Logics.LE37.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE38.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE38.Timer Out    | Signal: Timer Output                   |
| Logics.LE38.Out          | Signal: Latched Output (Q)             |
| Logics.LE38.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE39.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE39.Timer Out    | Signal: Timer Output                   |
| Logics.LE39.Out          | Signal: Latched Output (Q)             |
| Logics.LE39.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE40.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE40.Timer Out    | Signal: Timer Output                   |
| Logics.LE40.Out          | Signal: Latched Output (Q)             |
| Logics.LE40.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE41.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE41.Timer Out    | Signal: Timer Output                   |
| Logics.LE41.Out          | Signal: Latched Output (Q)             |
| Logics.LE41.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE42.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE42.Timer Out    | Signal: Timer Output                   |
| Logics.LE42.Out          | Signal: Latched Output (Q)             |
| Logics.LE42.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE43.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE43.Timer Out    | Signal: Timer Output                   |
| Logics.LE43.Out          | Signal: Latched Output (Q)             |
| Logics.LE43.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE44.Gate Out     | Signal: Output of the logic gate       |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE44.Timer Out    | Signal: Timer Output                   |
| Logics.LE44.Out          | Signal: Latched Output (Q)             |
| Logics.LE44.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE45.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE45.Timer Out    | Signal: Timer Output                   |
| Logics.LE45.Out          | Signal: Latched Output (Q)             |
| Logics.LE45.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE46.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE46.Timer Out    | Signal: Timer Output                   |
| Logics.LE46.Out          | Signal: Latched Output (Q)             |
| Logics.LE46.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE47.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE47.Timer Out    | Signal: Timer Output                   |
| Logics.LE47.Out          | Signal: Latched Output (Q)             |
| Logics.LE47.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE48.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE48.Timer Out    | Signal: Timer Output                   |
| Logics.LE48.Out          | Signal: Latched Output (Q)             |
| Logics.LE48.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE49.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE49.Timer Out    | Signal: Timer Output                   |
| Logics.LE49.Out          | Signal: Latched Output (Q)             |
| Logics.LE49.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE50.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE50.Timer Out    | Signal: Timer Output                   |
| Logics.LE50.Out          | Signal: Latched Output (Q)             |
| Logics.LE50.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE51.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE51.Timer Out    | Signal: Timer Output                   |
| Logics.LE51.Out          | Signal: Latched Output (Q)             |
| Logics.LE51.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE52.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE52.Timer Out    | Signal: Timer Output                   |
| Logics.LE52.Out          | Signal: Latched Output (Q)             |
| Logics.LE52.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE53.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE53.Timer Out    | Signal: Timer Output                   |
| Logics.LE53.Out          | Signal: Latched Output (Q)             |
| Logics.LE53.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE54.Gate Out     | Signal: Output of the logic gate       |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE54.Timer Out    | Signal: Timer Output                   |
| Logics.LE54.Out          | Signal: Latched Output (Q)             |
| Logics.LE54.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE55.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE55.Timer Out    | Signal: Timer Output                   |
| Logics.LE55.Out          | Signal: Latched Output (Q)             |
| Logics.LE55.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE56.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE56.Timer Out    | Signal: Timer Output                   |
| Logics.LE56.Out          | Signal: Latched Output (Q)             |
| Logics.LE56.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE57.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE57.Timer Out    | Signal: Timer Output                   |
| Logics.LE57.Out          | Signal: Latched Output (Q)             |
| Logics.LE57.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE58.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE58.Timer Out    | Signal: Timer Output                   |
| Logics.LE58.Out          | Signal: Latched Output (Q)             |
| Logics.LE58.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE59.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE59.Timer Out    | Signal: Timer Output                   |
| Logics.LE59.Out          | Signal: Latched Output (Q)             |
| Logics.LE59.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE60.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE60.Timer Out    | Signal: Timer Output                   |
| Logics.LE60.Out          | Signal: Latched Output (Q)             |
| Logics.LE60.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE61.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE61.Timer Out    | Signal: Timer Output                   |
| Logics.LE61.Out          | Signal: Latched Output (Q)             |
| Logics.LE61.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE62.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE62.Timer Out    | Signal: Timer Output                   |
| Logics.LE62.Out          | Signal: Latched Output (Q)             |
| Logics.LE62.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE63.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE63.Timer Out    | Signal: Timer Output                   |
| Logics.LE63.Out          | Signal: Latched Output (Q)             |
| Logics.LE63.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE64.Gate Out     | Signal: Output of the logic gate       |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE64.Timer Out    | Signal: Timer Output                   |
| Logics.LE64.Out          | Signal: Latched Output (Q)             |
| Logics.LE64.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE65.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE65.Timer Out    | Signal: Timer Output                   |
| Logics.LE65.Out          | Signal: Latched Output (Q)             |
| Logics.LE65.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE66.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE66.Timer Out    | Signal: Timer Output                   |
| Logics.LE66.Out          | Signal: Latched Output (Q)             |
| Logics.LE66.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE67.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE67.Timer Out    | Signal: Timer Output                   |
| Logics.LE67.Out          | Signal: Latched Output (Q)             |
| Logics.LE67.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE68.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE68.Timer Out    | Signal: Timer Output                   |
| Logics.LE68.Out          | Signal: Latched Output (Q)             |
| Logics.LE68.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE69.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE69.Timer Out    | Signal: Timer Output                   |
| Logics.LE69.Out          | Signal: Latched Output (Q)             |
| Logics.LE69.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE70.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE70.Timer Out    | Signal: Timer Output                   |
| Logics.LE70.Out          | Signal: Latched Output (Q)             |
| Logics.LE70.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE71.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE71.Timer Out    | Signal: Timer Output                   |
| Logics.LE71.Out          | Signal: Latched Output (Q)             |
| Logics.LE71.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE72.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE72.Timer Out    | Signal: Timer Output                   |
| Logics.LE72.Out          | Signal: Latched Output (Q)             |
| Logics.LE72.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE73.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE73.Timer Out    | Signal: Timer Output                   |
| Logics.LE73.Out          | Signal: Latched Output (Q)             |
| Logics.LE73.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE74.Gate Out     | Signal: Output of the logic gate       |

| Name                     | Description                            |
|--------------------------|----------------------------------------|
| Logics.LE74.Timer Out    | Signal: Timer Output                   |
| Logics.LE74.Out          | Signal: Latched Output (Q)             |
| Logics.LE74.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE75.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE75.Timer Out    | Signal: Timer Output                   |
| Logics.LE75.Out          | Signal: Latched Output (Q)             |
| Logics.LE75.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE76.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE76.Timer Out    | Signal: Timer Output                   |
| Logics.LE76.Out          | Signal: Latched Output (Q)             |
| Logics.LE76.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE77.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE77.Timer Out    | Signal: Timer Output                   |
| Logics.LE77.Out          | Signal: Latched Output (Q)             |
| Logics.LE77.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE78.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE78.Timer Out    | Signal: Timer Output                   |
| Logics.LE78.Out          | Signal: Latched Output (Q)             |
| Logics.LE78.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE79.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE79.Timer Out    | Signal: Timer Output                   |
| Logics.LE79.Out          | Signal: Latched Output (Q)             |
| Logics.LE79.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE80.Gate Out     | Signal: Output of the logic gate       |
| Logics.LE80.Timer Out    | Signal: Timer Output                   |
| Logics.LE80.Out          | Signal: Latched Output (Q)             |
| Logics.LE80.Out inverted | Signal: Negated Latched Output (Q NOT) |

## Specifications

## Specifications of the Real Time Clock

Resolution:

Tolerance:

1 ms

<1 minute / month (+20°C [68°F]) <±1ms if synchronized via IRIG-B

## **Time Synchronisation Tolerances**

The different protocols for time synchronisation vary in their accuracy:

| Used Protocol                | Time drift over one month                         | Deviation to time generator                                                            |
|------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|
| Without time synchronization | <1 min (+20°C)                                    | Time drifts                                                                            |
| IRIG-B                       | Dependent on the time drift of the time generator | <±1 ms                                                                                 |
| SNTP                         | Dependent on the time drift of the time generator | <pre>&lt;±1 ms, if network connection is GOOD (see<br/>operation status of SNTP)</pre> |
| IEC60870-5-103               | Dependent on the time drift of the time generator | <±1 ms                                                                                 |
| Modbus TCP                   | Dependent on the time drift of the time generator | Dependent on the network load                                                          |
| Modbus RTU                   | Dependent on the time drift of the time generator | <±1 ms                                                                                 |
| DNP3 TCP                     | Dependent on the time drift of the time generator | Dependent on the network load                                                          |
| DNP3 UDP                     | Dependent on the time drift of the time generator | Dependent on the network load                                                          |
| DNP3 RTU                     | Dependent on the time drift of the time generator | <±1 ms                                                                                 |

## Specifications of the Measured Value Acquisition Phase and Ground Current Measuring

| Frequency Range:             | 50 Hz / 60 Hz ± 10%                                                |
|------------------------------|--------------------------------------------------------------------|
| Accuracy:                    | Class 0.5                                                          |
| Amplitude Error if I < In:   | ±0.5% of the rated current <sup>*3)</sup>                          |
| Amplitude Error if I > In:   | $\pm 0.5\%$ of the measured current <sup>*3)</sup>                 |
| Amplitude Error if I > 2 In: | ±1.0% of the measured current <sup>*3)</sup>                       |
| Harmonics:                   | Up to 20% 3rd harmonic ±2%<br>Up to 20% 5th harmonic ±2%           |
| Frequency Influence:         | <±2% / Hz in the range of ±10% of the configured nominal frequency |
| Temperature Influence:       | <±1% within the range of 0°C to +60°C (+32°F to +140°F)            |

\*3<sup>)</sup> For earth current sensitive the precision does not depend on the nominal value but is referenced to 100 mA (with In =1 A) respectively. 500 mA (with In = 5 A)

### Phase-to-ground and Residual Voltage Measurement

| 50 Hz / 60 Hz ± 10%                                                |
|--------------------------------------------------------------------|
| Class 0.5                                                          |
| ±0.5% of rated voltage or ±0.5 V                                   |
| $\pm 0.5\%$ of measured voltage or $\pm 0.5$ V                     |
|                                                                    |
| Class 1.0                                                          |
| ±1.0% of rated voltage or ±1.0 V                                   |
| $\pm 1.0\%$ of calculated voltage or $\pm 1.0$ V                   |
|                                                                    |
| Up to 20% 3rd harmonic ±1%<br>Up to 20% 5th harmonic ±1%           |
| <±2% / Hz in the range of ±10% of the configured nominal frequency |
| <±1% within the range of 0°C up to +60°C                           |
|                                                                    |

### Frequency measurement

| Nominal frequency:        | 50 Hz / 60 Hz                                                                                            |
|---------------------------|----------------------------------------------------------------------------------------------------------|
| Precision:                | $\pm 0.05\%$ of fn within the range of 40-70 Hz at voltages >50 V                                        |
| Voltage dependency:       | frequency acquisition of 5 V – 800 V                                                                     |
| Energy measurement*       |                                                                                                          |
| Energy counter error      | 1.5% of measured energy or 1.5% Sn*1h                                                                    |
| Power Measurement*        |                                                                                                          |
| S, P, Q:                  | ±1% of the measured value or 0.1% Sn (for fundamental)<br>±2% of the measured value or 0.2% Sn (for RMS) |
| P1, Q1:                   | ±2% of the measured value or 0.2% Sn                                                                     |
| Power Factor Measurement* |                                                                                                          |
| PF:                       | ±0.01 of measured power factor or 1°<br>I > 30% In and S >2% Sn                                          |

\*)Tolerance at 0.8 ... 1.2 x Vn (with Vn=100V), |PF|>0.5, at fn, symmetrically feeded Sn=1.73 \* VT rating \* CT rating

### **Protection Elements Accuracy**

# NOTICE

The tripping delay relates to the time between alarm and trip. The accuracy of the operating time relates to the time between fault entry and the time when the protection element is picked-up.

Reference conditions for all Protection Elements: sine wave, at rated frequency, THD < 1% Measuring method: Fundamental

| Overcurrent Protection Elements:<br>I[x]   | Accuracy                             |
|--------------------------------------------|--------------------------------------|
| >                                          | ±1.5% of the setting value or ±1% In |
| Dropout Ratio                              | 97% or 0.5% In                       |
| t                                          | DEFT                                 |
|                                            | ±1% or ±10 ms                        |
| Operating Time                             | <36ms                                |
| At testing current >= 2 times pickup value |                                      |
| Disengaging Time                           | <55ms                                |
| t-char                                     | ±5% (according to selected curve)    |
| t-reset (Reset Mode = t-delay)             | ±1% or ±10 ms                        |

| Overcurrent Protection Elements:<br>I[x]<br>with selected Measuring method = I2<br>(Negative phase sequence current) | Accuracy                           |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------|
| >                                                                                                                    | ±2% of the setting value or ±1% In |
| Dropout Ratio                                                                                                        | 97% or 0.5% In                     |
| t                                                                                                                    | DEFT                               |
|                                                                                                                      | ±1% or ±10 ms                      |
| Operating Time                                                                                                       | <60ms                              |
| At testing current >= 2 times pickup value                                                                           |                                    |
| Disengaging Time                                                                                                     | <45ms                              |

| Ground Current Elements:<br>IG[x]      | Accuracy *3)                         |
|----------------------------------------|--------------------------------------|
| IG>                                    | ±1.5% of the setting value or ±1% In |
| Dropout Ratio                          | 97% or 0.5% x In                     |
| t                                      | DEFT                                 |
|                                        | ±1% or ±10 ms                        |
| Operating time                         |                                      |
| Starting from IG higher than 1.2 x IG> | <45ms                                |
| Disengaging Time                       | <55ms                                |
| t-char                                 | ±5% (according to selected curve)    |
| t-reset (Reset Mode = t-delay)         | ±1% or ±10 ms                        |

\*3) For earth current sensitive the precision does not depend on the nominal value but is referenced to 100 mA (with In =1 A) respectively 500 mA (with In = 5 A)

#### Specifications

| Motor Protection:                                     | Accuracy                            |
|-------------------------------------------------------|-------------------------------------|
| Stop Declaration                                      | <50 ms                              |
| Time period current must drop below STPC              | ±1.5% of the setting value or 1% In |
| Anti Backspin                                         | ±1sec.                              |
| Blocking time to allow for back spin.                 |                                     |
| TBS Timer                                             | ±1sec.                              |
| Time between repeated starts.                         |                                     |
| Reset Starts Per Hour                                 | ±1 min.                             |
| Reset starts per hours timer from oldest start event. |                                     |

| Thermal Model:  | Accuracy      |
|-----------------|---------------|
| ThR             |               |
| Trip Threshold  | ±2%           |
| Trip Delay      | ±1% or ±10 ms |
| Alarm Threshold | ±2%           |
| Alarm Delay     | ±1% or ±10 ms |

| Jam-Stall Protection:<br>Jam[x]      | Accuracy                            |
|--------------------------------------|-------------------------------------|
| Pickup                               | ±1.5% of the setting value or 1% In |
| Dropout Ratio                        | 97% or 0.5% In                      |
| t                                    | DEFT                                |
|                                      | ±1% or ±10 ms                       |
| Operating Time                       | <35 ms                              |
| Starting from I higher than 1.1 x I> |                                     |
| Disengaging Time                     | <45 ms                              |

| Under Load Protection:<br>I<[x]                | Accuracy                            |  |
|------------------------------------------------|-------------------------------------|--|
| Threshold                                      | ±1.5% of the setting value or 1% In |  |
| Dropout Ratio                                  | 103% or 0.5% x In                   |  |
| t                                              | DEFT                                |  |
|                                                | ±1% or ±10 ms                       |  |
| Operating Time                                 | <50ms                               |  |
| Starting from I lower than 0.9 x setting value |                                     |  |
| Disengaging Time                               | <50 ms                              |  |

| Mechanical Load Shedding:<br>MLS | Accuracy                            |
|----------------------------------|-------------------------------------|
| Pickup Threshold                 | ±1.5% of the setting value or 1% In |
| Pickup Delay                     | DEFT                                |
|                                  | ±1% or ±10 ms                       |
| Dropout Threshold                | ±1.5% of the setting value or 1% In |
| Dropout Delay                    | DEFT                                |
|                                  | ±1% or ±10 ms                       |

| Start Delay Timers          | Accuracy      |
|-----------------------------|---------------|
| Start Delay (common timers) | ±1% or ±10 ms |
| Operating Times             |               |
| for IOC, GOC,               | <35 ms        |
| Power,                      |               |
| JAM                         |               |
| for Underload,              | <60 ms        |
| Undervoltage, Overvoltage,  |               |
| Frequency,                  |               |
| Generic 1-5                 |               |

| RTD Protection:<br>RTD/URTD | Accuracy                   |
|-----------------------------|----------------------------|
| Trip Threshold              | ±1°C (1.8°F)               |
| Alarm Threshold             | ±1°C (1.8°F)               |
| t-delay Alarm               | DEFT                       |
|                             | ±1% or ±10 ms              |
| Reset Hysteresis            | -2°C (-3.6°F) of threshold |
| -                           | ±1°C (1.8°F)               |

| Current unbalance:<br>I2>[x] | Accuracy <sup>*1)</sup>           |
|------------------------------|-----------------------------------|
| 12>                          | ±2% of the setting value or 1% In |
| Dropout Ratio                | 97% or 0.5% x In                  |
| %(I2/I1)                     | ±1%                               |
| t                            | DEFT                              |
|                              | ±1% or ±10 ms                     |
| Operating Time               | <70 ms                            |
| Disengaging Time             | <50 ms                            |
| К                            | ±5% INV                           |
| т-сооІ                       | ±5% INV                           |

\*1) Negative-sequence current 12 must be  $\geq$  0.01 x ln, 11 must be  $\geq$  0.1 x ln.

| Voltage Protection:<br>V[x]                | Accuracy                            |
|--------------------------------------------|-------------------------------------|
| Pickup                                     | ±1.5% of the setting value or 1% Vn |
| Dropout Ratio                              | Adjustable, at least 0.5% Vn        |
| t                                          | DEFT                                |
|                                            | ±1% or ±10 ms                       |
| Operating Time                             | <40 ms                              |
| Starting from                              | 35 ms typically                     |
| V higher than 1.2 x pickup value for V> or |                                     |
| V lower than 0.8 x pickup value for V<     |                                     |
| Disengaging Time                           | <45 ms                              |

| Residual Voltage Protection:<br>VG[x]       | Accuracy                            |
|---------------------------------------------|-------------------------------------|
| Pickup                                      | ±1.5% of the setting value or 1% Vn |
| Dropout Ratio                               | 97% or 0.5% Vn for VG>              |
|                                             | 103% or 0.5% Vn for VG<             |
| t                                           | DEFT                                |
|                                             | ±1% or ±10 ms                       |
| Operating Time                              | <40 ms                              |
| Starting from                               | 35 ms typically                     |
| V higher than 1.2 x pickup value for VG> or |                                     |
| V lower than 0.8 x pickup value for VG<     |                                     |
| Disengaging Time                            | <45 ms                              |

| Voltage unbalance:<br>V012[x] | Accuracy *1)                      |
|-------------------------------|-----------------------------------|
| Threshold                     | ±2% of the setting value or 1% Vn |
| Dropout Ratio                 | 97% or 0.5% x Vn for V1> or V2>   |
|                               | 103% or 0.5% x Vn for V1<         |
| %(V2/V1)                      | ±1%                               |
| t                             | DEFT                              |
|                               | ±1% or ±10 ms                     |
| Operating Time                | <60 ms                            |
| Disengaging Time              | <45 ms                            |

\*1) Negative-sequence voltage V2 must be  $\geq$  0.01 x Vn, V1 must be  $\geq$  0.1 x Vn.

| Over Frequency Protection:<br>f>[x]      | Accuracy *1)    |
|------------------------------------------|-----------------|
| f>                                       | ±10 mHz at fn   |
| Dropout                                  | < 0.05% fn      |
| t                                        | ±1% or ±10 ms   |
| Operating time                           |                 |
| Starting from f higher than f> + 0.02 Hz | <100 ms         |
| + 0.1 Hz                                 | typically 70 ms |
| + 2.0 Hz                                 | typically 50 ms |
| Disengaging time                         | <120 ms         |

| Under Frequency Protection:<br>f<[x]    | Accuracy *1)                        |
|-----------------------------------------|-------------------------------------|
| f<                                      | ±10 mHz at fn                       |
| Dropout                                 | < 0.05% fn                          |
| t                                       | ±1% or ±10 ms                       |
| Operating time                          |                                     |
| Starting from f lower than f< - 0.02 Hz | <100 ms                             |
| - 0.1 Hz                                | typically 70 ms                     |
| - 2.0 Hz                                | typically 50 ms                     |
| Disengaging time                        | <120 ms                             |
| V Block f                               | ±1.5% of the setting value or 1% Vn |
| Dropout ratio                           | 103% or 0.5% Vn                     |

\*1) Accurracy is given for rated frequency fn $\pm 10\%$ .

| Rate of Change of Frequency:<br>df/dt          | Accuracy *1)            |
|------------------------------------------------|-------------------------|
| df/dt                                          | ±0.1 Hz/s <sup>2)</sup> |
| t                                              | ±1% or ±10 ms           |
| Operating time                                 |                         |
| Starting from fn and df/dt > pickup + 0.1 Hz/s | <200 ms                 |
| At df/dt > 2 times pickup                      | typically <100 ms       |
| At df/dt > 5 times pickup                      | typically < 70 ms       |
| Disengaging time                               | <120 ms                 |

\*1) Accurracy is given for rated frequency fn±10%.
\*2) 10% additional tolerance per Hz deviation from nominal frequency fn (e.g. at 45Hz, tolerance is 0.15Hz/s ).

| Rate of Change of Frequency:<br>DF/DT | Accuracy      |
|---------------------------------------|---------------|
| DF                                    | ±20 mHz at fn |
| DT                                    | ±1% or ±10 ms |

| Vector surge:<br>delta phi | Accuracy                   |
|----------------------------|----------------------------|
| delta phi                  | ±0.5° [1-30°] at Vn and fn |
| Operating time             | <40 ms                     |

| Power Factor:<br>PF[x]         | Accuracy                 |
|--------------------------------|--------------------------|
| Trigger-PF                     | ± 0.01 (absolute) or ±1° |
| Reset-PF                       | ± 0.01 (absolute) or ±1° |
| t-trip                         | ±1% or ±10 ms            |
| Operating time                 | *1)                      |
| Measuring Method = Fundamental | <130 ms                  |
| Measuring Method = True RMS    | <200 ms                  |

\*1) The calculation of the Power Factor will be available 300 ms after the required measuring values (I > 2.5% In and V > 20% Vn) have energized the measuring inputs.

| Directional Power Protection:<br>PQS[x] with Mode = S> or S< | Accuracy *1)                              |
|--------------------------------------------------------------|-------------------------------------------|
| Threshold                                                    | ±3% or ±0.1% Sn                           |
| Dropout Ratio                                                | 97% or 1 VA for S><br>103% or 1 VA for S< |
| t                                                            | ±1% or ±10 ms                             |
| Operating time                                               | 75 ms                                     |
| Disengaging time                                             | 100 ms                                    |

| Directional Power Protection:<br>PQS[x] with Mode = P> P< or Pr>/Pr< | Accuracy *1)                      |
|----------------------------------------------------------------------|-----------------------------------|
| Threshold                                                            | ±3% or ±0.1% Sn                   |
| Dropout Ratio                                                        | 97% or 1 VA for P> and Pr>        |
|                                                                      | 103% or 1 VA for P< and Pr<       |
|                                                                      | for setting values $\leq 0.1$ Sn: |
|                                                                      | 58% or 0.5 VA for P> and Pr>      |
|                                                                      | 142% or 0.5 VA for P< and Pr<     |
|                                                                      | for setting values ≤ 0.01 Sn      |
|                                                                      | 58% or 0.2 VA for P> and Pr>      |
|                                                                      | 142% or 0.2 VA for P< and Pr<     |
| t                                                                    | ±1% or ±10 ms                     |
| Operating time                                                       | 75 ms                             |
| Disengaging time                                                     | 100 ms                            |

| Directional Power Protection:<br>PQS[x] with Mode = Q>/Q< or Qr>/Qr< | Accuracy <sup>*1)</sup>                                                                            |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Threshold                                                            | ±3% or ±0.1% Sn                                                                                    |
| Dropout Ratio                                                        | 97% or 1 VA for Q> and Qr><br>103% or 1 VA for Q< and Qr<                                          |
|                                                                      | for setting values $\leq$ 0.1 Sn:<br>58% or 0.5 VA for Q> and Qr><br>142% or 0.5 VA for Q< and Qr< |
|                                                                      | for setting values $\leq$ 0.01 Sn<br>58% or 0.2 VA for Q> and Qr><br>142% or 0.2 VA for Q< and Qr< |
| t                                                                    | ±1% or ±10 ms                                                                                      |
| Operating time                                                       | 75 ms                                                                                              |
| Disengaging time                                                     | 100 ms                                                                                             |

\*1) Common reference conditions: at |PF|>0.5, symmetrically fed, at fn and 0.8 - 1.3 x Vn (Vn=100V)

| Circuit Breaker Failure Protection:<br>CBF | Accuracy                           |
|--------------------------------------------|------------------------------------|
| I-CBF>                                     | ±1.5% of the setting value or1% In |
| t-CBF                                      | ±1% or ±10 ms                      |
| Operating Time                             | <40 ms                             |
| Starting from I Higher than 1.3 x I-CBF>   |                                    |
| Disengaging Time                           | <40 ms                             |

| Trip Circuit Supervision:<br>TCS | Accuracy      |
|----------------------------------|---------------|
| t-TCS                            | ±1% or ±10 ms |

| Current Transformer Supervision:<br>CTS | Accuracy                            |
|-----------------------------------------|-------------------------------------|
| ΔΙ                                      | ±2% of the setting value or 1.5% In |
| Dropout Ratio                           | 94%                                 |
| Alarm delay                             | ±1% or ± 10 ms                      |

| Loss of Potential:<br>LOP | Accuracy      |
|---------------------------|---------------|
| t-Pickup                  | ±1% or ±10 ms |

## **Revision History**

This chapter lists all changes since version 3.0. If you need a change history for the versions 2.x please contact Woodward Kempen GmbH.



All 3.x hardware and software versions are downwards compatible with each other. For special questions and more detailed information, please contact Woodward Kempen GmbH Support.



Up to date documentation? Please check the web site of Woodward Kempen GmbH for the latest revision of this Technical Manual and if there is an Errata Sheet with updated information.

### Version: 3.4

- Date: 2017-October-01
- Revision: C

#### Hardware

- A metal protecting cap has been added to the LC connectors for the Ethernet / TCP/IP via fiber optics. Since the cap improves the EMC immunity it is recommended to always fasten it carefully after plugging in the LC connectors.
- There is a new communication type "T" available: RS485 (IEC 60870-5-103, MODBUS RTU, DNP3.0 RTU)
   + RJ45 Ethernet 100 Mbit/s (IEC 61850, Modbus TCP, DNP3.0 TCP/UDP)

#### Software

- The device firmware is also available in Romanian language now.
- If the MRMV4 is connected to *Smart view as of* version 4.50 the synchronization of date and considers automatically that the timezone settings might be different on PC and MRMV4.

#### Communication

The menu [Device Para / HMI / Security] now makes the following setting parameters available:

- »Smart view via Eth« activates or deactivates the access of Smart view via Ethernet.
- »Smart view via USB« activates or deactivates the access of Smart view via the USB interface.

#### IEC60870-5-103

This communication protocol now supports the blocking of the transmission in Monitor Direction and the test mode.

#### Modbus

The transmission of fault values via Modbus protocol has been added. For the last fault event, all fault values are accessible with addresses above 50000. For each fault value, the Modbus address corresponds to the address of the respective instantaneous value shifted by the offset 30000. (Example: The current value IE1 has the address 20100, therefore the corresponding fault value has the address 50100.) For a detailed list, please consult the SCADA documentation.

For devices with RS485 *and* Ethernet interfaces (communication types "I" or "T"), the project setting "Modbus RTU/TCP" is available now (via parameter [Device Planning] *»Scada . Protocol«*). This makes the device communicate via serial line (RTU) and Ethernet (TCP) in parallel. In particular, note that:

- All masters see the same set of states.
- All masters can reset latched states.
- All masters can control the same breaker, make resets and acknowledgments.

#### Device Para

The Reset dialog, that starts when the »C« key is pressed during a cold start, has been adapted to new securityrelated requests: Now there is a new setting parameter *»Reset Options«* that allows to remove options from the Reset dialog.

#### Overcurrent – I[n], IG[n]

All ANSI and IEC inverse time characteristics have a time limit now according to IEC 60255-151.

A new inverse time characteristic "RINV" has been added.

### Undervoltage – V[n]

For the voltage protection running in "undervoltage" mode –*»Mode«* = "V<" – an undercurrent criterion is available as a new feature.

The basic principle of this "minimum current check", is that it blocks the undervoltage protection as soon as all phase currents drop below a certain threshold value. The motivation for using this feature is that a situation where all phase currents are "dead" probably indicates an open circuit breaker, and it is probably not desirable that the undervoltage protection reacts to this event.

#### Loss of Potential – LOP

The (internally fixed) undervoltage threshold has been increased from 0.01 Vn to 0.03 Vn ("FNN 2015" – Specification published by the *Forum Netztechnik / Netzbetrieb im VDE*).

#### SelfSupervision

Device-internal messages (in particular error messages) are now accessible under the menu [Operation / Self Supervision / Messages].

All messages that can potentially appear here are described in a separate document, the "HighPROTEC Troubleshooting Guide" (DOK-HB-TS).

#### Supervision

The MRMV4 supervises the phase sequence and compares it with the setting that has been made at [Field Para / General Settings] *»Phase Sequence«* (i. e. "ACB" or "ABC").

Under the menu [Operation / Status Display / Supervision / Phase Sequence], there is a specific signal for each CT and VT, which is set active if the check of the respective CT / VT finds that the actual phase sequence is different from the setting under [Field Para].

#### LEDs

There is a new automatic acknowledgment mode for all LEDs: The latching of all LEDs is acknowledged (reset) in case of an alarm (from any protection module).

The automatic acknowledgment must be activated by setting: [Device Para / LEDs / LEDs group A / LED 1...n] *»Latched«* = "active, ack. by alarm"

#### Manual Acknowledgment

It is possible to acknowledge LEDs, SCADA, binary output relays and / or a pending trip command by pressing the »C« key at the panel. After it has been configured which items shall be be assigned to the *»Ack via »C« key«*, these are acknowledged by simply pressing the »C« key (for ca. 1 second).

Notice: If there is the need to be able to acknowledge without entering any password set an empty password for the level »Prot-Lv1«.

### Version: 3.1

## NOTICE

This version has not been released!

• Date: 2017-March-06

#### Hardware

No changes.

#### Software

#### Reconnection - ReCon[n]

The Reconnection module has been enhanced according to VDE-AR-N 4120.

- The release condition has been made selectable via ReCon . Reconnect. Release Cond (options: V Internal Release, V Ext Release PCC, Both).
- The measuring method has been made selectable via ReCon . Measuring method (options: Fundamental, True RMS, Vavg).

#### SCADA

Datapoints have been added for the second instance of the Reconnection module.

#### TCP

#### Bugfix:

• Some problem with the PPP/TCP communication has been fixed.

### Version: 3.0.b

- Date: 2016-February-20
- Revision: B

#### Hardware

No changes.

#### Software

The self-monitoring has been improved.

#### Overcurrent - I[n]

#### Bugfix:

• An initialization issue has been fixed in the Overcurrent module. In case of MeasureMode I2 and DEFT characteristic, this issue could have caused a false pickup or trip after start-up.

#### Sys

#### Bugfix:

• Under special circumstances, an unintended warm restart had been possible.

#### SCADA / Modbus

Bugfix:

• The Modbus protocol did not read the system time correctly.

#### Self Supervision

#### Bugfix:

• Warnings related to the internal temperature monitoring did not work correctly.

### Version: 3.0

- Date: 2015-October-01
- Revision: B

#### Hardware

- A new front plate in dark gray color replaces the blue housing that had been used for all **2.x** versions.
- The new front plate features a USB interface for the connection with the *Smart view* operating software. (This replaces the serial interface of the **2.x** versions.)
- There is a new communication type "I" available: RS485 (IEC 60870-5-103, MODBUS RTU, DNP3.0 RTU) + RJ45 Ethernet 100 Mbit/s (Modbus TCP, DNP3.0 TCP/UDP)
- "Conformal coating" is available now as an order option.
- The characters -2 in the typecode signify the major version upgrade from 2.x to 3.x.

#### Software

The device firmware is also available in Spanish language now.

Various small changes and restructuring have been made to the menu and the display.

#### Protection

Cause of trips are shown directly on the display.

#### Voltage-stage – V

The setting precision has been increased to 3 decimal places (0.1% Vn).

#### Low Voltage Ride Through – LVRT

A second LVRT element has been added.

#### Loss of Potential – LOP

The Dead Bus Detection has been made configurable.

The breaker assignment is optional. (If no breaker has been assigned then the position is ignored.)

The general IOC blocking has been removed.

The load current threshold LOP . I< can be set with a range 0.5 to 4 In.

#### Q->&V< / ReCon

The reconnection part has been split off and has become an independent module.

The decoupling functions of the Reconnection module has been extended to all trip commands.

#### Temperature Protection Module – RTD

The trip command has been made selectable.

#### Switch Onto Fault - Module - SOTF

The SOTF function has been removed.

#### SCADA

The DNP3 has been made available (with RTU/TCP/UDP).

New fiber-optic interfaces for SCADA.

Setting procedure (menu structure, default settings) has been modified.

New "SCADA connection status" signal.

Ethernet "TCP Keep Alive" according to RFC 793.

#### Bugfix:

• After a hardware exception, the IP address might have been lost.

#### SCADA / IEC 61850

New support of Direct-Control.

Support for LN descriptions via DAI entry in the SCD file.

Handling of InGGIO Ind improved.

Speed of GOOSE messages improved. Potential problem with time-correlated GOOSE messages fixed.

New Logical Nodes for energy counters, LVRT, ExP, TCM, 47.

New LNClass for sensors and monitoring.

Updated reports if angles become zero, and if angles of phasors exceed deadband.

Deadband algorithm improved.

It is now possible to assign IEC 61850 alarm signals to the LEDs of the device.

Counter for the number of active client-server connections added.

Missing modes of directional power fixed.

#### SCADA / Modbus

"Fast Status Register" added.

Configurable registers added.

Read Fault Recorder and some device-specific information via Modbus.

Stability of Modbus TCP improved.

#### IEC 60870-5-103

#### Bugfix:

• Problem with reading disturbances fixed.

#### SNTP

Start the network after protection is active.

#### Bugfix:

- SNTP might not have worked correctly in case of an empty battery.
- Default daylight-saving changed to "Sunday".

#### PC interface / Smart view connection

As of *Smart view* R4.30, it is possible to exchange the single-line for devices that support this.

The user interface supports the improved validation of IEC 61850 SCD files.

Characteristic curves can now be shown graphically.

There is now a Page Editor for creating single lines and device-pages.

#### Bugfix:

- After an interruption of communication, waveforms could no longer be received from the PC.
- After an interrupted download of the Device Model, file handling could be erroneous.

#### PC simulation

The LED status has been added to the simulation software.

#### Trend recorder

Bugfix:

• A memory leak has been fixed.

#### Analog Output – AnOut

Bugfix:

• After a restart of the device the output could peak to 100% for a short time.

When upgrading from a version 2.x device, the following must be noted with respect to the settings:

## HINWEIS

- All communication settings have to be re-defined. An automatic conversion is only partly possible.
- The VirtualOutput assignment of IEC 61850 communication has been restructured.
- All assignment settings need to be re-defined.
- The reconnection part of Q->&V< has been split off as a new module ReCon. An automatic conversion is not possible.
- The V-Prot mode V<(t) has been abandoned and replaced by the L VRT module.</li>

## Abbreviations, and Acronyms

The following abbreviations and acronyms are used in this manual.

| °C         | Degrees Celsius                                                                            |
|------------|--------------------------------------------------------------------------------------------|
| °F         | Degrees Fahrenheit                                                                         |
| A          | Ampere(s), Amp(s)                                                                          |
| AC         | Alternating current                                                                        |
| Ack.       | Acknowledge                                                                                |
| AND        | Logical gate (The output becomes true if all Input signals are true.)                      |
| ANSI       | American National Standards Institute                                                      |
| avg.       | Average                                                                                    |
| AWG        | American wire gauge                                                                        |
| BF         | Circuit breaker failure                                                                    |
| Bkr        | Breaker                                                                                    |
| Blo        | Blocking(s)                                                                                |
| во         | Binary output relay                                                                        |
| BO1        | 1st binary output relay                                                                    |
| BO2        | 2nd binary output relay                                                                    |
| BO3        | 3rd binary output relay                                                                    |
| calc       | Calculated                                                                                 |
| СВ         | Circuit breaker                                                                            |
| CBF        | Module Circuit Breaker Failure protection                                                  |
| CD         | Compact disk                                                                               |
| Char       | Curve shape                                                                                |
| CLPU       | Cold Load Pickup Module                                                                    |
| Cmd.       | Command                                                                                    |
| CMN        | Common input                                                                               |
| СОМ        | Common input                                                                               |
| Comm       | Communication                                                                              |
| Cr.        | Counter(s)                                                                                 |
| CSA        | Canadian Standards Association                                                             |
| СТ         | Control transformer                                                                        |
| Ctrl.      | Control                                                                                    |
| CTS        | Current Transformer Supervision                                                            |
| CTS        | Current transformer supervision                                                            |
| d          | Day                                                                                        |
| D-Sub-Plug | Communication interface                                                                    |
| DC         | Direct current                                                                             |
| DEFT       | Definite time characteristic (Tripping time does not depend on the height of the current.) |
| delta phi  | Vector surge                                                                               |
| df/dt      | Rate-of-frequency-change                                                                   |
| DI         | Digital Input                                                                              |
| Diagn Cr   | Diagnosis counter(s)                                                                       |
| Diagn.     | Diagnosis                                                                                  |
|            |                                                                                            |

| DIN             | Deutsche Industrie Norm                                                 |
|-----------------|-------------------------------------------------------------------------|
| dir             | Directional                                                             |
| EINV            | Extremely inverse tripping characteristic                               |
| EMC             | Electromagnetic compatibility                                           |
| EN              | Europäische Norm                                                        |
| err. / Err.     | Error                                                                   |
| EVTcon          | Parameter determines if the residual voltage is measured or calculated. |
| Ex              | External                                                                |
| Ex Oil Temp     | External Oil Temperature                                                |
| ExBlo           | External blocking(s)                                                    |
| ExP             | External Protection - Module                                            |
| ExP             | External protection                                                     |
| Ext Sudd Press  | Sudden Pressure                                                         |
| Ext Temp Superv | External Temperature Supervision                                        |
| f               | Frequency Protection Module                                             |
| Fc              | Function (Enable or disable functionality = allow or disallow.)         |
| FIFO            | First in first out                                                      |
| FIFO Principal  | First in first out                                                      |
| fund            | Fundamental (ground wave)                                               |
| gn              | Acceleration of the earth in vertical direction (9.81 m/s2)             |
| GND             | Ground                                                                  |
| h               | Hour                                                                    |
| HMI             | Human machine interface (Front of the protective relay)                 |
| HTL             | Manufacturer internal product designation                               |
| Hz              | Hertz                                                                   |
| I               | Phase Overcurrent Stage                                                 |
| I               | Fault current                                                           |
| I               | Current                                                                 |
| I-BF            | Tripping threshold                                                      |
| 10              | Zero current (symmetrical components)                                   |
| 11              | Positive sequence current (symmetrical components)                      |
| 12              | Negative sequence current (symmetrical components)                      |
| 12>             | Unbalanced Load-Stage                                                   |
| I2T             | Thermal Characteristic                                                  |
| I4T             | Thermal Characteristic                                                  |
| IA              | Phase A current                                                         |
| IB              | Phase B current                                                         |
| IC              | Phase C current                                                         |
| IC's            | Manufacturer internal product designation                               |
| ld              | Differential Protection Module                                          |
| ldG             | Restricted Ground Fault Differential Protection Module                  |
| ldGH            | Restricted Ground Fault Highset Protection Module                       |
| ldH             | High-Set Differential Protection Module                                 |
| IEC             | International Electrotechnical Commission                               |
| IEC61850        | IEC61850                                                                |

| IEEE          | Institute of Electrical and Electronics Engineers                                           |
|---------------|---------------------------------------------------------------------------------------------|
| IG            | Earth current protection - Stage                                                            |
| IG            | Ground current                                                                              |
| IG            | Fault current                                                                               |
| IGnom         | Nominal ground current                                                                      |
| IH1           | 1st harmonic                                                                                |
| IH2           | Module Inrush                                                                               |
| IH2           | 2nd harmonic                                                                                |
| in.           | Inch                                                                                        |
| incl.         | Include, including                                                                          |
| InEn          | Inadvertent Energization                                                                    |
| Info.         | Information                                                                                 |
| Interl.       | Interlocking                                                                                |
| Intertripping | Intertripping                                                                               |
| INV           | Inverse characteristic (The tripping time will be calculated depending on the height of the |
|               | current)                                                                                    |
| IR            | Calculated ground current                                                                   |
| IRIG          | Input for time synchronization (Clock)                                                      |
| IRIG-B        | IRIG-B-Module                                                                               |
| IT            | Thermal Characteristic                                                                      |
| IX            | 4th measuring input of the current measuring assembly group (either ground or neutral       |
|               | current)                                                                                    |
| J             | Joule                                                                                       |
| kg            | Kilogram                                                                                    |
| kHz           | Kilohertz                                                                                   |
| kV            | Kilovolt(s)                                                                                 |
| kVdc or kVDC  | Kilovolt(s) direct current                                                                  |
| l/ln          | Ratio of current to nominal current.                                                        |
| L1            | Phase A                                                                                     |
| L2            | Phase B                                                                                     |
| L3            | Phase C                                                                                     |
| lb-in         | Pound-inch                                                                                  |
| LED           | Light emitting diode                                                                        |
| LINV          | Long time inverse tripping characteristic                                                   |
| LoE-Z1        | Loss of Excitation                                                                          |
| LoE-Z2        | Loss of Excitation                                                                          |
| Logics        | Logic                                                                                       |
| LOP           | Loss of Potential                                                                           |
| LV            | Low voltage                                                                                 |
| LVRT          | Low Voltage Ride Through                                                                    |
| m             | Meter                                                                                       |
| mA            | Milliampere(s), Milliamp(s)                                                                 |
| man.          | Manual                                                                                      |
| max.          | Maximum                                                                                     |
| meas          | Measured                                                                                    |
| min.          | Minimum                                                                                     |

| min.         | Minute                                                                          |
|--------------|---------------------------------------------------------------------------------|
| MINV         | Moderately Inverse Tripping Characteristic                                      |
| МК           | Manufacturer Internal Product Designation Code                                  |
| mm           | Millimeter                                                                      |
| MMU          | Memory mapping unit                                                             |
| ms           | Milli-second(s)                                                                 |
| MV           | Medium voltage                                                                  |
| mVA          | Milli volt amperes (Power)                                                      |
| N.C.         | Not connected                                                                   |
| N.O.         | Normal open (Contact)                                                           |
| NINV         | Normal inverse tripping characteristic                                          |
| Nm           | Newton-meter                                                                    |
| No           | Number                                                                          |
| Nom.         | Nominal                                                                         |
| NT           | Manufacturer internal product designation code                                  |
| Р            | Reverse Active Power                                                            |
| Para.        | Parameter                                                                       |
| PC           | Personal computer                                                               |
| PCB          | Printed circuit board                                                           |
| PE           | Protected Earth                                                                 |
| p.u.         | per unit                                                                        |
| PF           | Power Factor - Module                                                           |
| Ph           | Phase                                                                           |
| PQS          | Power Protection - Module                                                       |
| pri          | Primary                                                                         |
| PROT or Prot | Protection Module (Master Module)                                               |
| PS1          | Parameter set 1                                                                 |
| PS2          | Parameter set 2                                                                 |
| PS3          | Parameter set 3                                                                 |
| PS4          | Parameter set 4                                                                 |
| PSet         | Parameter set                                                                   |
| PSS          | Parameter set switch (Switching from one parameter set to another)              |
| Q            | Reverse Reactive Power                                                          |
| Q->&V<       | Undervoltage and Reactive Power Direction Protection                            |
| R            | Reset                                                                           |
| rec.         | Record                                                                          |
| rel          | Relative                                                                        |
| res          | Reset                                                                           |
| ResetFct     | Reset function                                                                  |
| RevData      | Review data                                                                     |
| RMS          | Root mean square                                                                |
| Rst          | Reset                                                                           |
| RTD          | Temperature Protection Module                                                   |
| S            | Second                                                                          |
| SC           | Supervision Contact (Synonyms: Life-Contact, Watchdog, State of Health Contact) |
|              |                                                                                 |

| Sca        | SCADA                                                                                |
|------------|--------------------------------------------------------------------------------------|
| SCADA      | Communication module                                                                 |
| sec        | Second(s)                                                                            |
| sec        | Secondary                                                                            |
| Sgen       | Sine wave generator                                                                  |
| Sig.       | Signal                                                                               |
| SNTP       | SNTP-Module                                                                          |
| SOTF       | Switch Onto Fault - Module                                                           |
| StartFct   | Start function                                                                       |
| Sum        | Summation                                                                            |
| SW         | Software                                                                             |
| Sync       | Synchrocheck                                                                         |
| Sys.       | System                                                                               |
| t          | Tripping delay                                                                       |
| t or t.    | Time                                                                                 |
| Tcmd       | Trip command                                                                         |
| TCP/IP     | Communication protocol                                                               |
| TCS        | Trip circuit supervision                                                             |
| ThR        | Thermal replica module                                                               |
| ТІ         | Manufacturer internal product designation code                                       |
| TripCmd    | Trip command                                                                         |
| txt        | Text                                                                                 |
| UL         | Underwriters Laboratories                                                            |
| UMZ        | DEFT (definite time tripping characteristic)                                         |
| USB        | Universal serial bus                                                                 |
| V          | Voltage-stage                                                                        |
| V          | Volts                                                                                |
| V/f>       | Overexcitation                                                                       |
| V012       | Symmetrical Components: Supervision of the Positive Phase Sequence or Negative Phase |
|            | Sequence                                                                             |
| Vac / V ac | Volts alternating current                                                            |
| Vdc / V dc | Volts direct current                                                                 |
| VDE        | Verband Deutscher Elektrotechnik                                                     |
| VDEW       | Verband der Elektrizitätswirtschaft                                                  |
| VE         | Residual voltage                                                                     |
| VG         | Residual voltage-Stage                                                               |
| VINV       | Very inverse tripping characteristic                                                 |
| VTS        | Voltage transformer supervision                                                      |
| W          | Watt(s)                                                                              |
| WDC        | Watch dog contact (supervision contact)                                              |
| www        | World wide web                                                                       |
| XCT        | 4th current measuring input (ground or neutral current)                              |
| XInv       | Inverse characteristic                                                               |

## List of ANSI Codes

| ANSI       | Functions                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------|
| 14         | Underspeed                                                                                            |
| 21         | Distance Protection                                                                                   |
| 21P        | Phase Distance Protection                                                                             |
| 24         | Overexcitation Protection (Volts per Hertz)                                                           |
| 25         | Synchronizing or Synchronism-check via 4 <sup>th</sup> measuring channel of voltage measurement card  |
| 26         | Temperature Protection                                                                                |
| 27         | Undervoltage Protection                                                                               |
| 27(t)      | Undervoltage (time dependent) Protection                                                              |
| 27A        | Undervoltage Protection (Auxiliar) via 4 <sup>th</sup> measuring channel of voltage measurement card  |
| 27N        | Neutral Undervoltage via 4 <sup>th</sup> measuring channel of voltage measurement card                |
| 27TN       | Third Harmonic Neutral Undervoltage via 4 <sup>th</sup> measuring channel of voltage measurement card |
| 32         | Directional Power Protection                                                                          |
| 32F        | Forward Power Protection                                                                              |
| 32R        | Reverse Power Protection                                                                              |
| 37         | Undercurrent / Under Power                                                                            |
| 38         | Temperature Protection (optional via Interface/external Box)                                          |
| 40         | Loss of Excitation / Loss of Field                                                                    |
| 46<br>46C  | Unbalanced Current Protection                                                                         |
| 46G<br>47  | Unbalanced Generator Current Protection                                                               |
| 47<br>48   | Unbalanced Voltage Protection                                                                         |
| 48<br>49   | Incomplete Sequence (Start-up time Supervison) Thermal Protection                                     |
| 49<br>49M  | Thermal Motor Protection                                                                              |
| 49N<br>49R | Thermal Rotor Protection                                                                              |
| 49S        | Thermal Stator Protection                                                                             |
| 50BF       | Breaker Failure                                                                                       |
| 50D1<br>50 | Overcurrent (instantaneous)                                                                           |
| 50P        | Phase Overcurrent (instantaneous)                                                                     |
| 50N        | Neutral Overcurrent (instantaneous)                                                                   |
| 50Ns       | Sensitive Neutral Overcurrent (instantaneous)                                                         |
| 51         | Overcurrent                                                                                           |
| 51P        | Phase Overcurrent                                                                                     |
| 51N        | Neutral Overcurrent                                                                                   |
| 51Ns       | Sensitive Neutral Overcurrent                                                                         |
| 51LR       | Locked Rotor                                                                                          |
| 51LRS      | Locked Rotor Start (during start sequence)                                                            |
| 51C        | Voltage Controlled Overcurrent (via adaptive Parameters)                                              |
| 51Q        | Negative Phase Sequence Overcurrent (multiple trip characteristics)                                   |
| 51V        | Voltage Restrained Overcurrent                                                                        |
| 55         | Power Factor Protection                                                                               |
| 56         | Field Application Relay                                                                               |
| 59         | Overvoltage Protection                                                                                |
| 59TN       | Third Harmonic Neutral Overvoltage via $4^{th}$ measuring channel of voltage measurement card         |
| 59A        | Overvoltage Protection via 4th (Auxiliar) measuring channel of voltage measurement card               |
| 59N        | Neutral Overvoltage Protection                                                                        |
| 60FL       | Voltage Transformer Supervision                                                                       |
| 60L        | Current Transformer Supervision                                                                       |
| 64R        | Rotor Earth Fault Protection                                                                          |
| 64REF      | Restricted Ground Fault Protection                                                                    |
|            |                                                                                                       |

| ANSI | Functions                                                                                      |
|------|------------------------------------------------------------------------------------------------|
| 66   | Starts per h (Start Inhibit)                                                                   |
| 67   | Directional Overcurrent                                                                        |
| 67N  | Directional Neutral Overcurrent                                                                |
| 67Ns | Sensitive Directional Neutral Overcurrent                                                      |
| 68   | Power Swing Blocking                                                                           |
| 74TC | Trip Circuit Supervision                                                                       |
| 78   | Out of Step Tripping                                                                           |
| 78V  | Vector Surge Protection                                                                        |
| 79   | Auto Reclosure                                                                                 |
| 81   | Frequency Protection                                                                           |
| 81U  | Underfrequency Protection                                                                      |
| 810  | Overfrequency Protection                                                                       |
| 81R  | ROCOF (df/dt)                                                                                  |
| 86   | Lock Out                                                                                       |
| 87B  | Busbar Differential Protection                                                                 |
| 87G  | Generator Differential Protection                                                              |
| 87GP | Generator Phase Differential Protection                                                        |
| 87GN | Generator Ground Differential Protection                                                       |
| 87L  | Cable and Line Differential Protection                                                         |
| 87M  | Motor Differential Protection                                                                  |
| 87T  | Transformer Differential Protection                                                            |
| 87TP | Transformer Phase Differential Protection                                                      |
| 87TN | Transformer Ground Differential Protection                                                     |
| 87U  | Unit Differential Protection (protected zone includes generator and step-up transformer)       |
| 87UP | Unit Phase Differential Protection (protected zone includes generator and step-up transformer) |

We appreciate your comments about the content of our publications.

Please send comments to: kemp.doc@woodward.com

Please include the manual number from the front cover of this publication.

Woodward Kempen GmbH reserves the right to update any portion of this publication at any time. Information provided by Woodward Kempen GmbH is believed to be correct and reliable. However, Woodward Kempen GmbH assumes no responsibility unless otherwise expressly undertaken.

This is the original manual (source).

© Woodward Kempen GmbH , all rights reserved Woodward Kempen CambA Moodward Kempen GmbH Mrefelder Weg 47 • D – 47906 Kempen (Germany) Postfach 10 07 55 (P.O.Box) • D – 47884 Kempen (Germany) Phone: +49 (0) 21 52 145 12 Mww.woodward.com Sales Phone: +49 (0) 21 52 145 331 or +49 (0) 711 789 54 510 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 510 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 510 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 510 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 510 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 510 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 789 54 101 Pax: +49 (0) 21 52 145 354 or +49 (0) 711 780 54 100 Pax: +49 (0) 21 52 145 354 or +40 (0) 711 780 54 100 Pax: +49 (0) 21 52 145 354 or +40 (0) 711 780 54 100 

#### Service

Phone: +49 (0) 21 52 145 600 • Telefax: +49 (0) 21 52 145 455 e-mail: SupportPGD\_Europe@woodward.com