

Manuel MRI4-3.6-FR-MAN

MRI4

Protection de ligne

Version: 3.6

Traduction de l'original · Français

Revision: - (Compi 42226)

© 2019

Manuel (traduction de l'original)

Woodward Kempen GmbH

Krefelder Weg 47 • D-47906 Kempen (Germany)

Postfach 10 07 55 (P.O.Box) • D-47884 Kempen (Germany)

Téléphone: +49 (0) 21 52 145 1

© 2019 Woodward Kempen GmbH

Table des matières

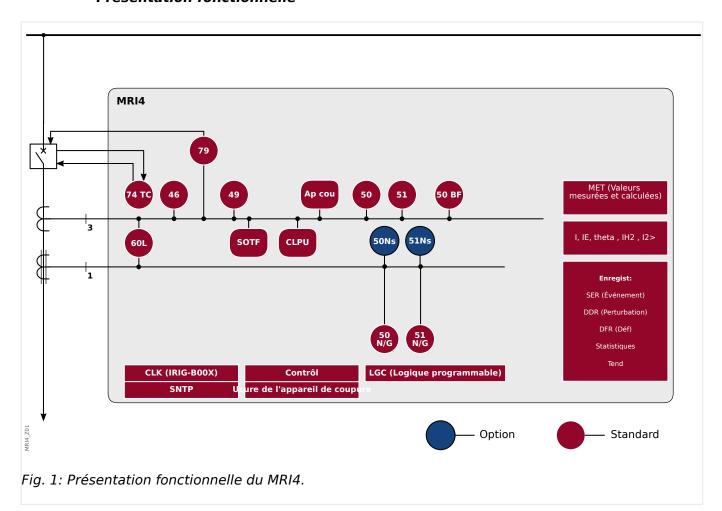
1	MRI4 - Protection de ligne directionnelle	8
1.1	Commentaires sur le manuel	9
1.1.1	Définitions importantes	13
1.1.2	Symboles et définitions	18
1.1.2.1	Symboles des schémas fonctionnels	19
1.2	Informations sur le dispositif	22
1.2.1	Formulaire de commande du dispositif	24
1.2.2	Navigation - Fonctionnement	26
1.2.2.1	Éléments du panneau avant	27
1.2.2.2	Symboles des touches de fonction	29
1.3	Modules, paramètres, signaux et valeurs	30
1.3.1	Réglage des paramètres	34
1.3.2	Groupes de paramètres adaptatifs	40
1.3.3	Affichage de l'état	43
1.3.4	Structure de menus	44
1.3.5	Organisation du module	46
1.3.6	Paramètres de champ	47
1.3.7	Paramètres du dispositif	48
1.3.8	Réinitialisation des compteurs, valeurs et enregistrements	49
1.4	Sécurité	50
1.4.1	Sécurité réseau	51
1.4.2	Mots de passe	52
1.4.3	Mots de passe de connexion, accès Smart view	53
1.4.4	Mots de passe de niveau d'accès	55
1.4.5	Niveaux d'accès	57
1.4.6	Restauration des paramètres d'usine, réinitialisation de tous les mots de passe	61
1.5	Acquittements	63
1.6	Valeurs de mesure	68
1.7	Statistiques	69
1.7.1	Configuration des valeurs minimum et maximum	69
1.7.2	Configuration du calcul de la valeur moyenne	69
1.7.2.1	Configuration du calcul de la valeur moyenne basée sur le courant*	69
1.8	Smart view	71
1.9	DataVisualizer	71
2	Matériel	73
2.1	Schémas cotés	73
2.2	MRI4 - Installation et câblage	
2.2.1	Mise à la terre	78
2.2.2	Présentation des emplacements – Groupes complets	79
2.2.3	Codes des protocoles de communication	
2.2.4	Légende des schémas de câblage	83

2.3	Emplacement X1	85
2.3.1	DI8-X - Alimentation et entrées numériques	86
2.4	Emplacement X2	90
2.4.1	BO-5 X - Groupe complet avec 5 relais de sortie binaire + 1 contact système	91
2.5	Emplacement X3	93
2.5.1	TI - Carte d'entrée de mesure de courant de phase standard et à la terre	94
2.5.2	Tls - Carte de mesure du courant de phase et du courant à la terre sensible	97
2.5.3	Transformateurs de courant (CT)	100
2.5.3.1	Mesure du courant sensible à la terre	100
2.5.3.2	Exemples de connexion de transformateur de courant	101
2.5.3.3	Connexion des entrées de courant	106
2.5.3.4	Exigences relatives au transformateur de courant	108
2.6	Emplacement X100 : Interface Ethernet	111
2.6.1	Ethernet - RJ45	112
2.7	Emplacement X101:	113
2.7.1	IRIG-B00X	114
2.8	Emplacement X103 : Communication des données	115
2.8.1	Modbus® RTU / CEI 60870-5-103 via un connecteur RS485	116
2.8.2	Profibus DP/ Modbus® RTU / CEI 60870-5-103 via fibre optique	120
2.8.3	Profibus DP via un connecteur D-SUB	121
2.8.4	Modbus® RTU / CEI 60870-5-103 via un connecteur D-SUB	122
2.8.5	Ethernet / TCP/IP via fibre optique	123
2.9	Interface PC - X120	124
2.10	Paramètres d'entrée, de sortie et DEL	125
2.10.1	DEL	125
2.10.2	Configuration des entrées numériques	128
2.10.3	Paramètres de relais de sortie	131
3	Protocoles de communication	
3.1	Paramétrage SCADA (Communication) général	
3.2	Paramètres TCP/IP	
3.3	Profibus	
3.4	CEI 61850	
3.5	DNP3	
3.5.1	Exemple d'application : Configuration d'un relais	
3.5.2	Paramètres de bande neutre dans DNP3	
3.6	CEI 60870-5-103	
3.7	Protocoles de communication configurables	
3.7.1	CEI 60870-5-104	
3.7.2	Modbus®	
3.7.3	High Tech Line 3 - Mappage des points de données compatible Modbus	
3.7.4	Mappage des points de données à l'aide de SCADAPTER	
3.8	Synchronisation de temps	
3.8.1	SNTP	166

3.8.2	Module IRIG-B00X	168
4	Éléments de protection	170
4.1	Module Prot: Protection générale	170
4.1.1	Alarmes générales et déclenchements généraux	172
4.1.2	Blocages	177
4.1.2.1	Blocage de la commande de déclenchement	179
4.1.2.2	Activation et désactivation ou blocage temporaire d'une fonction de protection	180
4.1.2.3	Activation, désactivation ou blocage des modules de courant de phase	181
4.1.2.4	Activation, désactivation ou blocage des modules de courant à la terre	182
4.2	I – Protection contre les surintensités	184
4.2.1	Caractéristiques	185
4.2.2	Fonctionnalité	199
4.2.3	I2> - Surintensité de séquence négative [51Q]	200
4.2.4	Mise en service : Protection contre les surintensités, non directionnelle [50, 51]	201
4.2.5	Mise en service : Surintensité de séquence négative	202
4.3	IH2 - Appel de courant	204
4.3.1	Mise en service : Appel de courant	205
4.4	IG - Protection contre les surintensités de terre [50N/G, 51N/G, 67N/G]	206
4.4.1	Caractéristiques	207
4.4.2	Surintensité à la terre – Fonctionnalité	222
4.4.3	Mise en service : Protection des défauts de mise à la terre – non-directionnelle [50N/G, 51N/G]	223
4.5	I2> et %I2/I1> - Charge déséquilibrée [46]	224
4.5.1	Mise en service : module de déséquilibre du courant	226
4.6	Module de protection ThR : Image thermique [49]	229
4.6.1	Mise en service : Image thermique	230
4.7	AR - Réenclenchement automatique [79]	232
4.7.1	Caractéristiques	232
4.7.1.1	États du réenclenchement automatique	234
4.7.2	Cycle de réenclenchement automatique (impulsion)	238
4.7.3	Diagramme de temporisation	241
4.7.4	Coordination de zones	244
4.8	SOTF - Commutation sur défaut	247
4.8.1	Mise en service : Commutation sur défaut	249
4.9	CLPU - Excitation de charge à froid	251
4.9.1	Mise en service du module d'excitation de charge à froid	253
4.10	ExP - Protection externe	255
4.10.1	Mise en service : Protection externe	
4.11	Surveillance	257
4.11.1	CBF- Défaut de disjoncteur [50BF*/62BF]	257
4.11.1.1	Principe - Utilisation générale	257
4.11.1.2	Fonctionnalité	260
4.11.1.3	Exemple de mise en service : Schéma de surveillance 50BF	260
4.11.2	TCS - Surveillance du circuit de déclenchement [74TC]	262

4.11.2.1	Mise en service : Surveillance du circuit de déclenchement [74TC]	263
4.11.3	CTS - Surveillance de transformateur de courant [60L]	265
4.11.3.1	Mise en service : surveillance des défaillances de transformateur de courant	266
4.11.4	Supervision de la séquence de phase	268
5	Gestionnaire de contrôle / des appareillages de connexion	. 269
5.1	Contrôle de l'appareillage de connexion	270
5.1.1	Réglages du dispositif de protection	273
5.1.2	Commutateur	275
5.1.3	Commutateur invisible	276
5.1.4	Disjoncteur	277
5.1.5	Disjoncteur 1	278
5.1.6	Sectionneur (Isolateur)	279
5.1.7	Combinaison sectionneur/mise à la terre	280
5.1.8	Commutateur de mise à la terre	281
5.1.9	Commutateur de charge à fusible	282
5.1.10	Commutateur de charge à fusible - Sectionneur	283
5.1.11	Sectionneur à fusible (Isolateur)	284
5.1.12	Commutateur de charge	285
5.1.13	Commutateur de charge - Sectionneur	286
5.1.14	Commutateur à trois positions	287
5.1.15	Disjoncteur débrochable	289
5.1.16	Commutateur de charge à fusible débrochable	291
5.2	Configuration de l'appareillage de connexion	
5.3	Usure de l'appareillage de connexion	302
5.4	Contrôle - Exemple : commutation d'un disjoncteur	304
6	Alarmes réseau	. 307
7	Enregistreurs	. 310
7.1	Enregistreur de perturbations	311
7.2	Enregistreur de défauts	316
7.3	Enregistreur d'événements	321
7.4	Enregistreur de tendances	322
8	Logique programmable	. 323
9	Auto-surveillance	. 328
9.1	Démarrage du module (Redémarrage)	331
9.2	Messages d'auto-surveillance	333
9.3	Syslog	334
9.4	Dispositif mis hors service « Module arrêté »	336
10	Mise en service	. 337
10.1	Test de mise en service/protection	338
10.2	Mise hors service - Déconnexion du relais	339

10.3	Aide à l'entretien et à la mise en service	.340
10.3.1	Généralités	.340
10.3.2	Ordre phases	.340
10.3.3	Forcer les contacts de sortie de relais	.340
10.3.4	Désarmer les contacts de sortie de relais	.341
10.3.5	Simulateur de panne (séquenceur)*	.343
11	Entretien et maintenance	346
12	Données techniques	
12.1	Spécifications / Tolérances	.357
12.1.1	Spécifications de l'horloge en temps réel	
12.1.2	Spécifications de l'acquisition de valeurs mesurées	
12.1.3	Précision des éléments de protection	.359
12.1.3.1	Protection contre les surintensités	.359
12.1.3.2	Protection de surintensité à la terre	.361
12.1.3.3	Protection thermique	.362
12.1.3.4	Protection associée au courant	.363
12.1.3.5	Protection et surveillance diverses	.364
13	Annexe	366
13.1	Normes	.366
13.1.1	Homologations	.366
13.1.2	Normes de conception	.367
13.1.3	Tests électriques	.368
13.1.4	Essais d'environnement	.371
13.1.5	Essais mécaniques	.373
13.2	Interopérabilité CEI 60870-104	.375
13.2.1	Système ou dispositif	.375
13.2.2	Configuration réseau	.375
13.2.3	Couche physique	.376
13.2.4	Couche de liaison	.376
13.2.5	Couche d'application	.377
13.2.6	Fonctions d'application de base	.384
13.3	Abréviations et acronymes	.389
13.4	Liste des codes ANSI	.396
13.5	Historique de révision	.399
13.5.1	Version: 3.6	.400
13.5.2	Version: 3.4	.404
13.5.3	Version : 3.1	.407
13.5.4	Version : 3.0.b	.408
13.5.5	Version : 3.0	.409
14	Index	413


1 MRI4 - Protection de ligne directionnelle

Le MRI4 est un relais de protection qui utilise la dernière technologie de processeurs double cœur pour vous offrir une protection efficace et précise. Il est très simple d'utilisation. Le MRI4 comprend trois éléments de protection de phase contre les surintensités, le courts-circuits et les défauts à la terre. Chaque élément possède des caractéristiques de déclenchement par temps inverse (INV) et par temps constant (DEFT).

Le MRI4 est également idéal pour la protection des systèmes neutres isolés, résonants, résistifs et solidement mis à la terre. Il est conçu pour une utilisation aussi bien dans les réseaux radiaux que dans les systèmes principaux en boucle ouverte à alimentation unique. Il peut également servir de protection de secours pour les systèmes de protection différentielle sur les générateurs, les transformateurs, les jeux de barres et les lignes électriques. Le MRI4 est également disponible avec une fonction optionnelle de réenclenchement automatique pour la protection des lignes aériennes.

Le concept de fonctionnement intuitif (avec contrôles de vraisemblances et fonctions de mise en service étendues telles que le simulateur de défaut intégré) permet une maintenance et une mise en service fiables et rapides. La solution logicielle de paramétrage et d'évaluation *Smart view* peut être utilisée sur toute la gamme d'appareils.

Présentation fonctionnelle

1.1 Commentaires sur le manuel

Le présent manuel aborde de manière générale les tâches d'organisation de module, de configuration des paramètres, d'installation, de mise en service, de fonctionnement et de maintenance des appareils HighPROTEC.

Il est destiné à servir de base de travail aux :

- Ingénieurs du secteur de la protection,
- Techniciens de mise en service,
- Personnel chargé de la configuration, des tests et de la maintenance des dispositifs de protection et de commande,
- Personnel qualifié pour les installations et les centrales électriques.

Toutes les fonctions concernant le code type seront définies. S'il s'avérait qu'une description de fonction, de paramètre ou d'entrée-sortie ne s'applique pas à l'appareil utilisé, ignorez ces informations.

Tous les détails et références sont expliqués au mieux de nos connaissances et sont fondés sur notre expérience et nos observations.

Ce manuel décrit les versions complètes (le cas échéant) des appareils.

Toutes les informations et données techniques contenues dans le présent manuel reflètent leur état au moment de la publication du document. Nous nous réservons le droit d'apporter des changements techniques en rapport avec les développements futurs sans modifier ce manuel et sans préavis. Ainsi, aucune réclamation ne peut être apportée sur la base des informations et des descriptions contenues dans ce manuel.

Le texte, les graphiques et les formules ne s'appliquent pas toujours à l'équipement effectivement livré. Les dessins et les graphiques ne sont pas à l'échelle réelle. Nous ne saurons être tenus responsable des dommages et défaillances de fonctionnement causés par des erreurs de manipulation ou le non respect des directives du présent manuel.

La reproduction ou la transmission à des tiers sous toute forme que ce soit de tout ou partie de ce manuel est formellement interdite, sauf autorisation écrite de *Woodward*.

Le présent manuel d'utilisation est livré avec l'appareil lors de son achat. Dans le cas où celui-ci est transmis (vendu) à un tiers, le manuel doit être remis également.

Toute réparation nécessite un personnel qualifié et compétent qui doit connaître en particulier les règles de sécurité locales et disposer de l'expérience nécessaire pour intervenir sur des dispositifs de protection électronique et des installations électriques (preuves à l'appui).

Informations relatives à la responsabilité et à la garantie

Woodward réfute toute responsabilité en cas de dommages résultants de conversions ou de modifications apportées au dispositif ou au travail de planification (projection), à la configuration des paramètres ou aux modifications de réglage effectuées par le client.

La garantie expire lorsqu'un dispositif est ouvert par des personnes autres que des spécialistes *Woodward*.

Les explications mentionnées ci-dessus ne complètent pas les conditions de garantie et de responsabilité stipulées dans les Conditions générales de *Woodward*.

Structure de ce manuel

- Une présentation générale des fonctions de protection disponibles avec le MRI4 est fournie sous la forme d'un schéma fonctionnel : « 1 Présentation fonctionnelle ».
 Notez que la disponibilité de certaines fonctions dépend du type de dispositif commandé. Pour connaître les variantes disponibles, reportez-vous à
 « Formulaire de commande du dispositif ».
- Le MRI4 utilise un concept modulaire spécial pour ses réglages, valeurs mesurées et signaux. Même si ce concept de modules et de paramètres est simple, il est vivement recommandé, notamment pour les débutants, afin de se familiariser avec son utilisation :
- Smart view est le programme d'exploitation qui peut être installé sur un ordinateur Windows. Il peut être connecté au MRI4 et utilisé pour effectuer les tâches de configuration ou d'extraction de données (valeurs mesurées et statistiques, enregistrements de défaut, etc.) à partir du MRI4. Une brève introduction est fournie ici : Smart view »; cependant, pour une description détaillée, vous pouvez consulter le Manuel Smart view complet, disponible sous forme de document distinct.
- Différents réglages de sécurité peuvent s'avérer nécessaires, car le MRI4 est livré sans restriction d'accès et avec un mot de passe standard qui n'offre aucune protection. À moins d'être sûr que votre application n'exige aucune restriction d'accès, il est vivement recommandé de consulter le chapitre « Sécurité » :
 Sécurité »
- Le MRI4 fournit un grand nombre de valeurs mesurées et gère les statistiques de valeurs supplémentaires : « Valeurs de mesure » et « Statistiques » décrivent les concepts et réglages associés.
- Les différents protocoles de communication fournis par le MRI4 pour communiquer avec la sous-station sont décrits à la section > « Protocoles de communication ».
- Le MRI4 peut contrôler un appareillage de connexion. En général, il est utilisé pour contrôler un disjoncteur, qui est déclenché par les fonctions de protection en cas de défaut.

 « Gestionnaire de contrôle / des appareillages de connexion » décrit les différents aspects de la fonctionnalité de contrôle.
- Les nombreuses fonctions de protection sont décrites dans les sous-chapitres du chapitre « Fonctions de protection » : « Éléments de protection ». Gardez à l'esprit qu'un seul module « de protection maître » commande toutes les fonctions de protection : « Module Prot: Protection générale ». De plus, s'il est important de savoir comment activer un module de protection, il est également essentiel d'être informé sur le blocage d'un module : » « Blocages »
- Différents types d'événements (perturbations, défauts détectés, etc.) sont enregistrés par le MRI4, c'est pourquoi il est nécessaire que vous sachiez comment accéder à ces enregistrements : « Enregistreurs »

- Le MRI4 comprend des équations logiques programmables pour la programmation des entrées, des sorties, du blocage des fonctions de protection et des fonctions logiques personnalisées du relais : \(\subseteq \times \) Logique programmable >>
- Outre les nombreuses fonctions de protection, le MRI4 intègre également différentes fonctions de surveillance. La principale différence réside dans le fait que (contrairement à une fonction de protection), une fonction de surveillance n'émet pas de signal de déclenchement, mais génère un signal d'alarme dans des conditions particulières. Ce signal d'alarme peut être utilisé pour bloquer les fonctions de protection ou il peut être affecté à l'une des DEL ou à une sortie : Surveillance »
- Aspects de la mise en service pour le MRI4 : « Mise en service ». Notez cependant, que les descriptions de mise en service spécifiques à la protection se présentent sous forme de sous-chapitres des chapitres dédiés aux fonctions de protection.
- Le dernier chapitre de ce document correspond à l'index. Celui-ci présente une spécificité : Sous le symbole « ۞ », il liste les signaux numérotés « générés » sur les schémas logiques (voir 峰 » « Symboles et définitions »).

Documents associés

- Manuel de référence MRI4 (MRI4-3.6-FR-REF) : Tous les réglages, signaux et valeurs disponibles avec le MRI4 sont répertoriés ici avec leur chemin de menu respectif, valeur par défaut et plages de valeurs.
- Manuel Smart view (SMARTV-x.xx-FR-MAN): Manuel technique du logiciel d'exploitation *Smart view*.
- Guide de dépannage HighPROTEC (HPT-3.6-FR-TSG) : description de tous les messages internes du dispositif (erreur ou avertissement) que le MRI4 peut émettre. (Voir aussi > « Messages d'auto-surveillance ».)

Ce document doit également être consulté chaque fois que la DEL »Système OK« (« Opérationnelle ») ne s'allume pas en vert fixe après la phase d'amorçage (> « 12 Phase d'amorçage »).

- Schémas de câblage (HPT-3.6-EN-WDG) [En anglais uniquement] : Pour chaque variante de dispositif disponible (commandée par code de type), ce document fournit un schéma associé présentant (schématiquement)la vue arrière du MRI4, avec tous les modules matériels fixés et les connexions des bornes.
- Documents de référence SCADA :
 - CEI 60870-5-103 Liste de points de données
 - Listes des points de données Modbus
 - Listes des points de données Profibus
 - IEC 61850 Model Implementation Conformance Statement (MICS) [En anglais uniquement]
 - IEC 61850 Protocol Implementation Conformance Statement (PICS) [En anglais uniquement]
 - IEC 61850 Protocol Implementation Extra Information for Testing (PIXIT) [En anglais uniquement]

1 MRI4 - Protection de ligne directionnelle

1.1 Commentaires sur le manuel

 $^{\circ}\,$ IEC 61850 Tissue Implementation Conformance Statement (TICS) – [En anglais uniquement]

1.1.1 Définitions importantes

Les types de messages présentés ci-dessous sont destinés à avertir d'un danger physique pour les personnes, ainsi que pour le cycle de fonctionnement correct du dispositif.

DANGER!

DANGER signale une situation dangereuse immédiate susceptible d'entraîner la mort ou des blessures graves si elle n'est pas évitée.

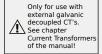
AVERTISSEMENT!

AVERTISSEMENT indique une situation dangereuse qui, si elle n'est pas évitée, risque d'entraîner des blessures graves ou mortelles.

PRUDENCE!

ATTENTION indique une situation dangereuse qui, si elle n'est pas évitée, peut entraîner des blessures corporelles à gravité modérée ou légères.

REMARQUE!


AVIS est utilisé pour traiter de questions ne relevant pas de blessures corporelles.

Ce symbole indique des conseils et des recommandations, ainsi que des informations pour un fonctionnement efficace et sans problème.

Messages de sécurité imprimés sur le boîtier du MRI4

Ces messages de sécurité sont imprimés sur le boîtier du MRI4, au niveau du schéma de connexion :

DANGER!

Les entrées de mesure de courant ne peuvent être reliées qu'à des transformateurs de mesure de courant (avec séparation galvanique).

Consultez le > « TI - Carte d'entrée de mesure de courant de phase standard et à la terre » pour des informations détaillées et pour des instructions importantes de sécurité.

AVERTISSEMENT!

1.1 Commentaires sur le manuel

Cette variante du MRI4 comporte des entrées sensibles pour la mesure du courant de terre. (Celles-ci sont identifiées par un astérisque « * ».)

Les données techniques de l'entrée de mesure à la terre sensible sont différentes des données techniques des entrées de mesure de courant de phase. Si l'étalonnage des transformateurs n'est pas correct (surévalué), les conditions de fonctionnement normal peuvent ne pas être satisfaites.

Reportez-vous au chapitre Données techniques (> « Données techniques ») et au > « TI - Carte d'entrée de mesure de courant de phase standard et à la terre » pour des informations détaillées et des instructions de sécurité plus importantes.

Utilisation appropriée du dispositif et de ce manuel

PRUDENCE!

Ne commencez pas à utiliser MRI4 avant de l'avoir configuré et mis en service.

Lisez le manuel d'utilisation.

Pour configurer les fonctions de protection requises, lisez le document > « Module Prot: Protection générale » et les chapitres associés dans < Éléments de protection ».

Pour la mise en service, lisez les sections \Longrightarrow « Mise en service » et « Mise en service » des chapitres associés aux fonctions de protection requises.

AVERTISSEMENT!

SUIVEZ LES INSTRUCTIONS

Lisez attentivement ce manuel et toutes les autres publications relatives aux tâches à effectuer avant l'installation, l'utilisation ou l'entretien de cet équipement. Observez toutes les instructions et consignes de sécurité et de l'usine. Tout manquement au respect de ces instructions peut entraîner des blessures corporelles et/ou des dommages matériels.

AVERTISSEMENT!

BON USAGE

Toute modification non autorisée ou toute utilisation de l'équipement en dehors de ses spécifications mécaniques, électriques ou autres limites de fonctionnement spécifiées peut entraîner des blessures corporelles et/ou des dommages matériels, y compris la détérioration de l'équipement. De telles modifications non autorisées : (1) constituent un « mauvais usage » et/ou une « négligence » au sens de la garantie du produit, excluant de la sorte toute couverture de la garantie pour tout dommage résultant, et (2) invalident les certifications ou référencements du produit.

Les dispositifs programmables abordés dans le présent manuel sont conçus pour protéger et également pour contrôler les installations électriques et les dispositifs opérationnels alimentés par des sources de tension à fréquence fixe (fixée à 50 ou 60 Hz). Ils ne sont pas destinés à être utilisés avec des entraînements à fréquence variable. Les modules sont en outre conçus pour une installation dans des compartiments basse tension de tableaux de distribution moyenne tension ou dans des panneaux de protection décentralisés. La programmation et le paramétrage doivent répondre à toutes les exigences du concept de protection (de l'équipement à protéger). Vous devez vous assurer que le module sera capable d'identifier et de gérer toutes les conditions (pannes) selon votre programmation et vos paramètres (en coupant le disjoncteur, par exemple). L'utilisation appropriée exige une protection de secours via l'installation d'un appareil de protection supplémentaire. Avant de commencer toute opération et après toute modification du test de programmation (paramétrage), établissez par écrit une preuve que la programmation et le paramétrage sont conformes aux exigences de votre concept de protection.

Le contact d'auto-surveillance (contact d'état) doit être relié au système d'automatisation de la sous-station pour que la surveillance de l'état de santé de l'appareil de protection programmable soit possible. Il est très important que le signalement d'une alarme nécessitant une intervention immédiate en cas de déclenchement soit acheminé depuis le contact d'auto-surveillance du dispositif de protection programmable (contact d'état). L'alarme indique que le dispositif de protection ne protège plus le circuit et qu'il est nécessaire d'effectuer une maintenance sur le système.

Exemples d'applications types pour cette famille de produits/gamme de modules :

- · Protection de ligne
- · Protection de réseau
- · Protection de machine
- Protection différentielle de transformateur
- Protection de génératrice

Les modules ne sont pas adaptés à une utilisation au-delà de ces applications. Cela s'applique également à une utilisation comme quasi-machine. Le fabricant ne peut être tenu responsable des dommages qui pourraient en résulter, en conséquence l'utilisateur en assume seul le risque. Utilisation appropriée du module : Les données techniques et tolérances spécifiées par *Woodward* doivent être respectées.

Publication obsolète?

Cette publication peut avoir été révisée ou mise à jour depuis l'édition de cette copie. Assurez-vous que vous disposez bien de la dernière révision en consultant notre site Web.

Consultez le site Web de Woodward pour obtenir la dernière révision du présent Manuel technique et la feuille d'errata contenant les dernières informations, si elle est disponible.

- Consultez le site de la société (>> www.woodward.com) et recherchez les documents qui vous intéressent. (L'ID de chaque document est imprimé sur sa page de couverture.)
- Sinon, un code QR est inscrit sur chaque appareil HighPROTEC. Scannez ce code pour accéder à un répertoire en ligne contenant la version la plus récente de tous les documents pertinents.

Informations importantes

AVERTISSEMENT!

Conformément aux exigences du client, les modules sont utilisés de manière modulaire (en conformité avec la référence commerciale). L'affectation des bornes du module se trouve sur le dessus du module (schéma de câblage).

PRUDENCE!

Prise de conscience des décharges électrostatiques

Tout équipement électronique est sensible à l'électricité statique, et certains composants plus que d'autres. Pour protéger ces composants de tout dommage lié à l'électricité statique, vous devez prendre des précautions afin de minimiser ou d'éliminer les décharges électrostatiques. Observez les précautions suivantes lorsque vous travaillez avec ou à proximité du tableau de commande.

- 1 Avant de procéder à la maintenance d'une commande électronique, déchargez l'électricité statique de votre corps en touchant et conservant le contact avec un objet métallique relié à la masse (tuyaux, armoires, équipement, etc.).
- 2 Évitez d'accumuler de l'électricité statique sur votre corps en ne portant pas de vêtements en matières synthétiques. Portez autant que possible des tissus en coton ou en mélange de coton, car ces matières n'emmagasinent pas les charges électrostatiques autant que les synthétiques.
- 3 Gardez autant que possible les matériaux en plastique, vinyle et mousse de polystyrène (comme les gobelets en plastique ou en polystyrène, les porte-gobelets, les paquets de cigarettes, les emballages en cellophane, les livres ou brochures en vinyle, les bouteilles en plastique et les cendriers en plastique) éloignés des commandes, des modules et de la zone de travail.
- 4 N'enlevez pas les cartes de circuit imprimé du boîtier de commande, si cela ne s'avère pas absolument indispensable. Si vous devez enlever les circuits imprimés du boîtier de commande, observez les précautions suivantes :
 - Vérifiez que l'équipement est correctement isolé de l'alimentation. Tous les connecteurs doivent être débranchés.
 - Ne touchez aucune partie des cartes de circuit imprimé à l'exception des bords.
 - Ne touchez pas les conducteurs électriques, les connecteurs ou les composants avec des dispositifs conducteurs ou avec les mains.
 - Lorsque vous remplacez une carte de circuit imprimé, conservez la nouvelle carte dans son enveloppe de protection antistatique en plastique jusqu'à ce que vous soyez prêt à l'installer. Immédiatement après avoir enlevé la carte à remplacer du boîtier de commande, placez-la dans l'enveloppe de protection antistatique.

Pour éviter d'endommager les composants électroniques à cause d'une mauvaise manipulation, lisez et observez les prescriptions du manuel *Woodward* 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules (Guide pour la manipulation et la protection des commandes électroniques, des cartes de circuits imprimés et des modules).

Woodward se réserve le droit de mettre à jour une partie de cette publication à tout moment. Les informations fournies par Woodward sont considérées comme correctes et fiables. Toutefois, Woodward décline toute responsabilité sauf indication contraire explicite.

© 2019 Woodward. Tous droits réservés.

1.1.2 Symboles et définitions

Schéma de connexion imprimé sur le boîtier

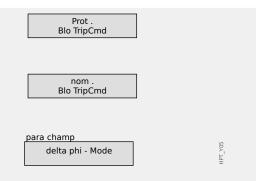
Un schéma de connexion (câblage) est fixé sur le boîtier du MRI4. Ce schéma montre toutes les bornes de cette variante d'appareil.

Un tableau des symboles susceptibles d'apparaître dans ce schéma est fourni ici : $\sqsubseteq \gt$ « Légende des schémas de câblage »

Système fléché de référence de charge

- Il est courant d'utiliser le « système fléché de référence de charge » pour les charges (énergie consommée) ou le « système de référence de générateur » pour les générateurs (énergie produite).
- Tous les dispositifs de protection HighPROTEC (à l'exception des dispositifs de protection du générateur) utilisent exclusivement le « système fléché de référence de charge ». Les dispositifs de protection du générateur fonctionnent conformément au « système de référence du générateur ».
- Cela s'applique aux directions et aux angles de phase. L'angle de phase est défini comme l'angle existant entre le phaseur de courant et le phaseur de tension.
- Les flèches de courant et de tension doivent être comptabilisés comme positifs dans la direction de la flèche.

Conventions typographiques


- »Les params sont indiqués par des doubles flèches et inscrits en italique.«
- »SIGNAUX indiqués par doubles flèches et inscrits en majuscules.«
- [Chemins indiqués entre crochets.]
- Noms logiciels et périph inscrits en italique.
- Noms modules et instances (fonctions) soulignés et inscrits en italique.
- »Les boutons poussoirs, les modes et les menus sont indiqués par des doubles flèches.«
- 123 Réfimages

Signaux numérotés des schémas fonctionnels

Les signaux associés à des cercles numérotés indiquent des connexions entre des schémas différents. Si vous trouvez un cercle numéroté dans la partie gauche d'un schéma, vous pouvez vouloir retrouver dans quel autre schéma ce signal particulier a été utilisé.

C'est pourquoi, tous les cercles numérotés présents dans la partie droite (autrement dit, sous forme de signal de sortie) d'un schéma sont répertoriés dans le chapitre d'index.

1.1.2.1 Symboles des schémas fonctionnels

Valeurs de réglage

L'encadré supérieur du schéma qui se trouve à gauche correspond au symbole habituel utilisé pour une valeur de réglage sur un schéma fonctionnel. Le nom du réglage est spécifié par son module et le nom du paramètre, séparés par un point « . ».

Deuxième exemple : Grâce au niveau élevé de modularisation des dispositifs de protection HighPROTEC, la logique décrite sur certains schémas fonctionnels est souvent valide pour plusieurs modules. Dans ces cas, un simple nom de module symbolique, par exemple : « nom », est donné. Dans la partie de l'en-tête du schéma, la signification de « nom » est spécifiée sous forme de liste des modules auxquels le schéma s'applique.

Dans de rares cas, il peut être nécessaire de spécifier également le chemin du menu (ou au moins l'élément de menu supérieur), car cela ne serait vraiment pas pratique de spécifier ce réglage particulier uniquement basé sur le nom du module et le nom du paramètre. Dans le troisième exemple, le réglage »delta phi - Mode« est marqué comme étant un paramètre de champ (autrement dit, accessible via la branche de menu [para champ]).

Autre remarque : Tous les schémas de ce document présentent un libellé court, dans ce cas : « HPT_Y05 ». Il s'agit du nom du schéma, c'est-à-dire, un identificateur unique pour e schéma. Bien entendu, il ne s'agit pas d'un nom de réglage ni d'aucune autre partie de la logique décrite. Tous les schémas fonctionnels sont associés à un identificateur avec les caractères « Y ».)

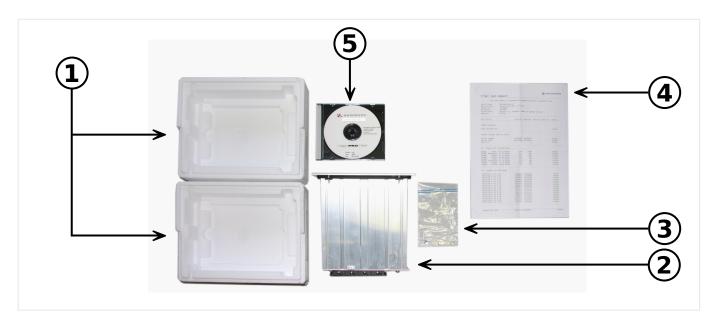
	nom . Alarm delta phi
VL1	
Prot. actif	nom . actif
1 roce decin	

Signaux d'entrée et de sortie

Un signal binaire (sortie) est présent en haut du schéma.

En dessous, la ligne en pointillé indique une valeur mesurée (c'est-à-dire, un signal analogique).

Ligne inférieure, gauche : Signal d'entrée numéroté ; droite : signal de sortie numéroté : D'un point de vue technique, il n'existe pas de différence par rapport aux signaux « normaux » (non numérotés). Mais ces signaux apparaissent sur différents schémas et la numérotation


1.1 Commentaires sur le manuel

	permet de les identifier et de les localiser dans le Manuel technique. C'est pourquoi, tous les cercles numérotés présents « dans la partie droite » (autrement dit, sous forme de signal de sortie) d'un schéma sont répertoriés dans le chapitre d'index pour vous permettre de rechercher où un signal particulier a été « généré ».
nom . Source VX mesuré calculé 1 p p p p p p p p p p p p p p p p p p	Si la valeur de réglage du paramètre »nom . Source VX« est réglée sur « mesuré », la sortie 1 est active et la sortie 2 est inactive. Si la valeur de réglage du paramètre »nom . Source VX« est réglée sur « calculé », la sortie 1 est inactive et la sortie 2 est active.
nom . ExBlo1 pas d'affect 1n, Liste affect	La valeur de réglage du paramètre »nom . ExBlo1« n'est pas un choix effectué à partir d'une simple liste de sélection fixe, mais correspond à un autre paramètre (généralement un signal de sortie binaire) qui est affecté à partir d'une liste de paramètres. Cela signifie que le paramètre de réglage considère la valeur du paramètre affecté. Dans le cas d'un signal de sortie binaire, par exemple, cela signifie que le paramètre »nom . ExBlo1« est actif chaque fois que le signal de sortie affecté est actif. Si aucun signal n'a été affecté, la sortie est toujours inactive (et seule l'option « pas d'affect », qui n'est pas connectée dans cet exemple, doit être cochée).
%(V2/V1)	Deux types de comparateur (« Déclencheurs Schmitt ») : Ligne supérieure : Si la valeur de l'entrée analogique (ici : le rapport de tension %(V2/V1)) est supérieur au seuil spécifié (ici : 0,4), puis la sortie devient active (=logique « 1 »). Ligne inférieure : Ce type présente la fonction opposée : Si la valeur analogique IL1 est inférieure au seuil (ici : la valeur de réglage du paramètre I<«), puis la sortie devient active.
Retar t-On Retar t-Off ton toff H	Étage de temporisation : Si l'entrée devient active, la sortie devient active une fois le temps »t« écoulé (retard d'activation). Dans ce cas, la durée du délai est réglable à l'aide de la valeur du paramètre »PdP . t-Alarm«. Si l'entrée redevient inactive, le signal de sortie devient inactif une fois l'autre durée de délai écoulée (retard de désactivation). Dans ce cas,

		le délai est simplement égal à »0«, ce qui signifie que la sortie est immédiatement réglée comme étant inactive.
OST . Durée du déclenchement t	HPT_YX0	Temps d'appui : Il s'agit d'une impulsion déclenchée par l'entrée (et, dans ce cas, la durée de l'impulsion est réglable via le paramètre).
&	HPT_YX1	Groupe habituel d'opérateurs logiques : ET, OU, OU eXclusif (de gauche à droite). La seconde entrée de l'opérateur XOR est négligée.
a — S 1 — c — a b c d — 0 0 Inchangé 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1	HPT_YX2	Élément RS Flip-Flop.
	нрт_үхз	Compteur déclenché par un front
\times \times \t	HPT_YX4	Filtre passe-bande (gauche : IH1, droite : IH2).

1.2 Informations sur le dispositif

Contenu de la livraison

La livraison inclut les éléments suivants :

(1)	Le coffret de transport
(2)	Le dispositif de protection
(3)	Les écrous de montage
(4)	Le rapport de test
(5)	Le support DVD fourni inclut les manuels du produit, les documentations associées, ainsi que les paramétrages standard et le logiciel d'évaluation Smart view.

Vérifiez que tous les éléments ont bien été livrés (bon de livraison).

Vérifiez également que la plaque signalétique, le schéma de connexion, le code type et la description du module sont conformes.

Si vous avez des doutes, contactez le service après-vente (l'adresse figure au verso de ce manuel).

Stockage

Les modules ne doivent pas être stockés en extérieur. Les installations de stockage doivent être suffisamment aérées et sèches (voir les données techniques, —> « Données techniques »).

Batterie

La batterie sert de tampon pour l'horloge temps réel en cas de panne de l'alimentation électrique du dispositif de protection.

Étant donné qu'elle n'est pas utilisée dans des conditions de fonctionnement normal du MRI4, il n'est normalement pas prévu de remplacement nécessaire au cours de la durée de vie du MRI4. Néanmoins, dans l'éventualité où le remplacement de la batterie serait

nécessaire, le MRI4 doit être envoyé au fabricant dans le cadre d'une demande de service.

Retrait de la batterie à la fin de la durée de vie du MRI4

Il peut être nécessaire de dessouder la batterie ou de désolidariser les contacts.

Reportez-vous à la fiche technique de sécurité fournie par le fabricant de la batterie pour plus d'informations (Panasonic, type de batterie BR2032 – => http://panasonic.net/ec/). Consultez également => « 1.2 Mise au rebut des pièces usagées » ci-dessous.

Mise au rebut des pièces usagées

Ce dispositif de protection intègre une batterie. Par conséquent, le symbole suivant y est apposé conformément à la Directive européenne 2006/66/CE.

Les batteries peuvent être nocives pour l'environnement. Les batteries endommagées ou inutilisables doivent être mises au rebut dans un conteneur spécifiquement prévu à cet effet.

De façon générale, les consignes et réglementations locales en matière de mise au rebut des appareils électriques et batteries doivent être respectées.

1.2.1 Formulaire de commande du dispositif

Protection	de ligne										
MRI4						-2	#	#	#	#	#
Entrées	Relais de sortie		Boîtier	Affichage							
numéri- ques	binaires										
8	6		B1	LCD, 128 x 64 pixels			A				
Variante m	natérielle 2										
Courant pha	ase 5 A/1 A,	courant terre	5 A/1 A					0			
Courant pha	ase 5 A/1 A,	courant sens	à la terre 5 A	4/1 A				1			
Boîtier et i	montage										
Montage de	la porte								Α		
Montage de	la porte 19	pouces (mon	tage encastr	·é)					В		
Protocole (de commun	ication									
Sans protoc	ole									A	
Modbus RTU, CEI 60870-5-103, DNP3.0 RTU RS485 / bornes*					В						
Modbus TCP, DNP3.0 TCP/UDP Ethernet 100 MB / RJ45*					С						
Profibus-DP	Profibus-DP fibre optique / connecteur ST*					D					
Profibus-DP	Profibus-DP RS485 / D-SUB*					E					
Modbus RTU	J, CEI 60870	-5-103, DNP3	3.0 RTU fibre	e optique / co	onnecteur ST	*				F	
Modbus RTU	J, CEI 60870	-5-103, DNP3	3.0 RTU <i>RS4</i>	85 / D-SUB*						G	
CEI 61850,	Modbus TCP,	DNP3.0 TCP	/UDP Etherr	net 100MB / F	RJ45*					Н	
CEI 60870-5	5-103, Modbu	us RTU, DNP3	3.0 RTU <i>RS4</i>	85 / bornes						I	
Modbus TCF	P, DNP3.0 TC	P/UDP Ether	rnet 100 MB/	'RJ45*							
CEI 61850, Modbus TCP, DNP3.0 TCP/UDP Ethernet optique 100MB / connecteur duplex LC^*					K						
Modbus TCP, DNP3.0 TCP/UDP Ethernet optique 100MB / connecteur duplex LC*					L						
CEI 60870-5-103, Modbus RTU, DNP3.0 RTU <i>RS485 / bornes</i>					Т						
CEI 61850, Modbus TCP, DNP3.0 TCP/UDP Ethernet 100 MB / RJ45*											
Option d'e	nvironnem	ent sévère									

-2	#	#	#	#	#
					A
					В
	-2	-2 #	-2 # #	-2 # # #	-2 # # # #

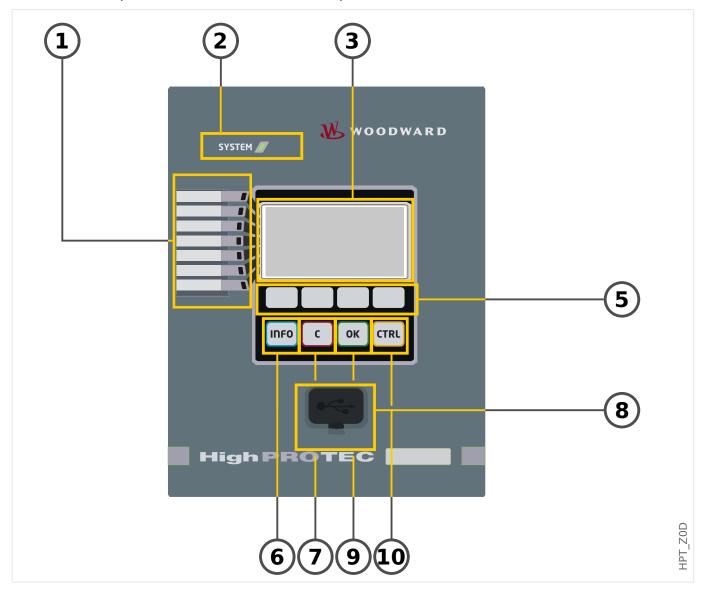
Menu langues disponibles

Anglais (États-Unis) / Allemand / Espagnol / Russe / Polonais / Portugais (BR) / Français / Roumain

REMARQUE!

(*) Dans chaque option de communication, un seul protocole de communication est utilisable.

Smart view peut être utilisé en parallèle via l'interface Ethernet (RJ45).


Le logiciel de paramétrage et d'analyse des perturbations *Smart view* est inclus avec les appareils HighPROTEC.

Tous les appareils sont équipés d'une interface IRIG-B pour la synchronisation de l'heure.

Avec fonctions de contrôle pour un maximum de six appareillages de connexion et jusqu'à 80 équations logiques.

1.2.2 Navigation - Fonctionnement

L'illustration suivante s'applique aux dispositifs de protection dotés d'un boîtier « B1 » et d'un petit afficheur, notamment le dispositif MRI4 :

1.2.2.1 Éléments du panneau avant

(1) DEL programmables

Des messages vous informent sur les conditions de fonctionnement, les données système ou d'autres caractéristiques de module. Ils vous fournissent en outre des informations relatives aux défaillances et au fonctionnement du module, ainsi que d'autres états du module et de l'équipement.

Différents signaux d'alarme peuvent être librement affectés aux DEL en dehors de la « liste d'affectations ». (Les signaux disponibles sont indiqués dans le Manuel de référence.)

(2) DEL »Système OK« (« Opérationnel »)

La DEL »Système OK« (« Opérationnel ») s'allume en vert fixe quand, après la phase d'amorçage, \longrightarrow « 12 Phase d'amorçage » : les fonctions de protection du dispositif MRI4 fonctionnent. Dans tous les autres cas, consultez le *Guide de dépannage*.

(3) Afficheur

L'afficheur permet de lire les données de fonctionnement et de modifier les paramètres.

(5) Touches programmables

La fonction des »TOUCHES PROGRAMMABLES« est contextuelle. La fonction actuelle s'affiche ou est représentée au bas de l'écran à l'aide de symboles. Voir > « Symboles des touches de fonction »

(6) Touche »INFO« (Signaux/Messages)

L'affectation de la DEL actuelle s'affiche. La touche de sélection directe peut être activée à tout moment.

Pour quitter le menu (ou le sous-menu) DEL, appuyez une fois ou deux sur la touche de fonction $\ll 4$ » (Gauche).

Informations supplémentaires : 🛶 « DEL »

(7) Touche »C«

Cette touche est utilisée pour annuler des modifications de paramètre et accuser réception de signaux (y compris, le test des DEL). Lors d'un redémarrage à froid : Réinitialisez le mot de passe et / ou les paramètres.

Pour obtenir des informations supplémentaires sur la procédure d'accusé réception des signaux : \(\square\) « Acquittements »

En particulier, l'accusé réception manuel, y compris le test des DEL : \Longrightarrow « 1.5 Acquittement manuel (en appuyant sur la touche C du tableau) »

Boîte de dialogue de réinitialisation lors d'un redémarrage à froid : 🕒 « Restauration des paramètres d'usine, réinitialisation de tous les mots de passe »

(8) Interface USB (Connexion Smart view)

La connexion au logiciel PC Smart view peut être établie via cette interface USB.

(9) Touche »OK«

Lors de l'utilisation de la touche »OK«, les changements de paramètre sont stockés temporairement. Si vous appuyez de nouveau sur la touche »OK«, les changements sont enregistrés définitivement.

(10) Touche »CTRL«

Accès direct au menu de commande.

1.2.2.2 Symboles des touches de fonction

Les symboles suivants sont utilisés pour désigner une touche programmable :

Touche de fonction	Signification
	La touche de fonction programmable »haut« vous permet de faire défiler le contenu de l'écran vers le haut. Vous accédez à l'option de menu/au paramètre précédent en faisant défiler le contenu vers le haut.
	La touche de fonction programmable »bas« vous permet de faire défiler le contenu de l'écran vers le bas. Vous accédez à l'option de menu/au paramètre suivant en faisant défiler le contenu vers le bas.
•	La touche de fonction »gauche« permet de revenir une étape en arrière. Vous pouvez quitter le sous-menu. Vous revenez à la page précédente de l'arborescence de menus.
	La touche de fonction »droite« vous permet d'accéder au sous-menu sélectionné.
1	La touche de fonction »Début de la liste« permet d'accéder directement au début d'une liste.
₹	La touche de fonction »Bas de la liste« permet d'accéder directement à la fin d'une liste.
+	La touche de fonction »+« permet d'augmenter d'un incrément le chiffre actuellement sélectionné. (Pression continue : augmentation rapide).
_	La touche de fonction »-« permet de diminuer d'un incrément le chiffre actuellement sélectionné. (Pression continue : diminution rapide).
\leftarrow	La touche de fonction »gauche« vous permet de sélectionner le chiffre à gauche du chiffre précédemment sélectionné.
\rightarrow	La touche de fonction »droite« vous permet de sélectionner le chiffre à droite du chiffre précédemment sélectionné.
P	Le symbole de »Clé anglaise« vous permet de modifier le paramètre sélectionné (c'est-à-dire, en activant le mode de configuration des paramètres).
0	Après avoir activé le symbole de »Clé«, vous êtes invité à entrer un mot de passe d'autorisation, puis vous pouvez modifier le paramètre sélectionné.
X	La touche de fonction »supprimer« permet de supprimer les données sélectionnées.
T	Un défilement rapide est possible à l'aide de la touche de fonction »avance rapide«.
A	Un défilement arrière rapide est possible à l'aide de la touche de fonction »retour arrière rapide«.

1.3 Modules, paramètres, signaux et valeurs

Le MRI4 est un dispositif de protection numérique qui conserve des données différentes dans sa mémoire interne. Certaines données sont destinées à être modifiées par l'utilisateur pour adapter les fonctionnalités à l'application correspondante, d'autres types de données sont définis par le dispositif pendant le temps de fonctionnement et sont donc en lecture seule du point de vue de l'utilisateur.

Tous les réglages, la planification du dispositif et la vérification de l'état des signaux pendant le fonctionnement peuvent être effectués :

- · Directement au niveau du dispositif ou
- Au moyen de l'application logicielle Smart view.

Modules

Le micrologiciel du MRI4 peut être considéré comme étant divisé en plusieurs blocs de fonction indépendants. Dans notre Documentation technique, ces blocs sont appelés « modules » (ou parfois « fonctions »). Chaque fonction de protection, par exemple, est un module à elle seule. Pour les dispositifs HighPROTEC, ce concept est fondamental : Par exemple, la fonction de calcul des données statistiques est un module (appelé »Statistiq«), chaque protocole de communication est un module, le contrôle des dispositifs d'appareillage de connexion est un module (appelé »Ctrl«). Il existe même un module de protection générale (appelé »Prot«) qui interagit avec tous les modules de protection spécifiques.

Il est important de savoir que chaque paramètre et chaque signal et valeur fait partie d'un modèle précis (même si le nom du module ne s'affiche pas sur le tableau par souci de simplicité).

Les modules peuvent interagir entre eux, soit parce qu'il s'agit d'une partie fixe implémentée du micrologiciel ou parce que l'utilisateur a affecté un signal d'un module à un paramètre (qui devient ainsi une entrée du module). Un exemple d'interaction fixe implémentée est le signal de déclenchement d'un module de protection qui déclenchent toujours le signal de déclenchement du module général »Prot« et inversement, si le déclenchement »Prot« est bloqué, le déclenchement de toutes les fonctions de protection est bloqué.

Certains modules existent dans plusieurs instances (identiques), qui peuvent être activées et configurées séparément. Ces instances peuvent être utilisées pour disposer de plusieurs étages de protection. Cependant, une différence fondamentale existe avec le MRI4: La fonctionnalité de toutes les instances (d'un module particulier) est toujours identique (excepté pour les différences liées à des valeurs de réglage différentes).

La convention de dénomination suivante s'applique : Si plusieurs instances d'un module »Module« existent, ils sont nommés »Module[1]«, »Module[2]«, ... (ou en utilisant une forme abrégée pour les descriptions : »Module[x]«).

Types de réglages, signaux et valeurs

Réglages (également appelés paramètres)

• Les paramètres sont des données qui peuvent être modifiées par l'utilisateur afin d'adapter les fonctionnalités à l'application concernée.

Les utilisateurs de *Smart view* peuvent enregistrer tous les réglages dans un fichier. Le nom de ce fichier utilise le format *.ErPara. Il peut être (re-)chargé à tout moment ultérieur et les valeurs de réglage contenues dans ce fichier peuvent être transférées à un (autre) dispositif de protection MRI4. (Pour plus de détails, consultez le manuel *Smart view*.)

(Remarque : il existe quelques exceptions, quand un réglage particulier est toujours stocké au niveau du dispositif et jamais dans un fichier *.ErPara. C'est le cas s'il n'est pas souhaitable de transférer directement la valeur de réglage d'un dispositif vers un autre ; les paramètres TCP/IP constituent un exemple de cette situation.)

Il existe plusieurs types de paramètres, selon le type des données qu'ils peuvent contenir. Pour l'utilisateur, il n'est pas nécessaire de connaître les détails, mais il peut être utile de savoir qu'il y a des paramètres numériques (par ex., les seuils de surintensité) et des paramètres qui contiennent une option issue d'une liste de sélection. Ces options de sélection peuvent être des valeurs fixes (par ex., le choix du protocole de communication) ou un signal (de sorte que, pendant le temps de fonctionnement, la valeur actuelle du paramètre correspond à l'état du signal affecté). Ce cas d'affectation de signal correspond à ce qui a été décrit précédemment comme une « entrée de module ».

 Certaines propriétés de paramètre dépendent de la valeur d'autres paramètres particuliers. Par exemple, les paramètres de « planification de dispositif » (dans le menu [Organis module]) permettent d'activer et de désactiver les fonctions de protection, mais aussi de contrôler la visibilité d'autres paramètres qui leur sont associés.

Certains paramètres dépendent d'autres paramètres pas seulement en termes de visibilité, mais également de valeurs par défaut et/ou des plages de valeurs. (Par exemple, la plage de certains paramètres de protection dépend du rapport CT.)

 Certains paramètres existent une fois seulement et ils s'agit des « paramètres généraux ».

Ils sont généralement accessibles via le menu [Para glob prot].

- Les paramètres de groupe de réglage sont accessibles via les branches de menu [Set 1] ... [Set 4]: Il s'agit des paramètres de protection qui ont une existence quadruple : L'utilisateur peut définir quatre valeurs et chacune d'entre elles est membre d'un groupe de paramètres particulier (Set 1 à Set 4). À tout moment, il n'y a qu'un seul de ces groupes de paramètres qui est actif, ce qui a pour effet d'activer la valeur correspondante définie. (Cela est toujours indépendant de la fonction de protection : toutes les fonctions de protection sont affectée simultanément en cas de passage à un autre groupe de paramètres.)
- Les groupes de paramètres adaptatifs permettent de modifier des paramètres uniques de façon dynamique pendant le fonctionnement. Les valeurs de réglage sont définies pour être dépendante de la valeur « VRAI/Faux » d'un signal booléen particulier. Il est possible de définir jusqu'à quatre signaux booléens pour la commutation de valeur, ce qui signifie que (avec la valeur de base), un paramètre adaptatif peut avoir jusqu'à cinq valeurs alternatives (par groupe de paramètres, soit au total 20 valeurs). Celle qui sera activement utilisée à un moment particulier dépendra de la valeur de temps de fonctionnement (jusqu'à quatre) associée aux paramètres booléens.

Contrairement aux groupes de paramètres de réglage, les groupes de paramètres adaptatifs sont « locaux », ce qui signifie qu'ils ne sont effectifs qu'au sein de la fonction de protection à partir de laquelle ils ont été activés.

Cependant, notez que toutes les fonctions de protection ne prennent pas en charge les groupes de paramètres adaptatifs.

Comme certains utilisateurs ne sont peut-être pas très familiarisés avec le concept des groupes de paramètres adaptatifs, un chapitre est consacré à ce sujet et fournit une description plus détaillée. Voir \Longrightarrow « Groupes de paramètres adaptatifs ».

Commandes directes

 Les commandes directes font partie de l'arborescence des menus, comme un paramètre de réglage, mais elles sont destinées à être exécutées immédiatement.
 Par conséquent, les commandes directes ne sont PAS intégrées dans un fichier de paramètres * . HtpPara.

Les commandes directes de réinitialisation des compteurs constituent un exemple typiques.

Sur le tableau (et dans une fenêtre de liste de Smart view), les commandes directes sont identifiées par un symbole de commutateur à bouton (« ⊙ »), pour permettre à l'utilisateur de les reconnaître immédiatement.

Signaux

- Les *signaux* sont des états de fonctionnement, autrement dit, ils dépendent du résultat d'une fonction de protection ou de l'état d'une entrée numérique.
 - Les signaux font partie de l'arborescence des menus. Ils sont accessibles via le chemin de menu [Utilisat / Affichage de l'état].
- Certains *signaux* représentent l'état de l'installation/équipement (par ex., indicateurs de position du disjoncteur).
- Certains *signaux* sont des estimations de l'état du réseau et de l'équipement (Par ex., Système OK, Défaillance du transformateur détectée).
- Certains *signaux* représentent des décisions qui sont prises par le dispositif (par ex., la commande de déclenchement) en fonction des réglages de paramètres.
- De nombreux signaux peuvent être affectés à des paramètres particuliers. Cela signifie que la fonction de ce paramètre dépend de l'état de fonctionnement du signal. Par exemple, chaque fonction de protection fournit plusieurs paramètres de blocage. (Voir aussi > « Blocages ».) Si un signal a été affecté à un paramètre de blocage, la fonction de protection correspondante est bloquée dès que l'état de fonctionnement du signal affecté devient « VRAI ».

États d'entrée (pour une entrée de module)

 Les états d'entrée sont des signaux spéciaux qui font partie de l'arborescence de menus. Pour chaque paramètre auquel un signal peut être affecté, il existe un état d'entrée associé. Lors du fonctionnement, l'état de l'entrée reflète l'état actuel du signal affecté. Ainsi, les dépendances dans le comportement d'une fonction de protection peuvent être tracées.

La convention de dénomination suivante s'applique : Si un paramètre auquel un signal peut être affecté est nommé »Nom«, l'état d'entrée associé a le nom »Nom-l«.

Compteurs, valeurs

- Les *valeurs* sont des données plus ou moins volatiles qui sont constamment actualisées pendant le fonctionnement.
- Le type de valeurs le plus courant (et le plus important) est le groupe de *valeurs mesurées* (par ex., les valeurs de courant et/ou de tension mesurées au niveau du transformateur de courant/tension, les valeurs de fréquence). Nous utiliserons également le terme *valeurs mesurées* pour les valeurs dérivées des valeurs mesurées par calcul (par ex., la valeur de puissance calculée à partir du courant/de la tension). Bien entendu, le groupe de *valeurs mesurées* disponible dépend des capacités du dispositif de protection particulier.

Pour des informations sur les valeurs mesurées, consultez \Longrightarrow « Valeurs de mesure ».

• Une valeur statistique est un type spécial de « valeurs mesurées calculées » et peut être une valeur maximum, minimum ou moyenne. Ces valeurs aident à analyser le développement d'une valeur mesurée dans le temps. Pour la plupart des valeurs statistiques, il existe une commande directe associée, qui peut être utilisée pour réinitialiser les statistiques.

Pour des informations sur les statistiques, consultez \Longrightarrow « Statistiques ».

• Un autre type d'élément important est représenté par les *compteurs*. Bien que les *valeurs mesurées* sont généralement des nombres en virgule flottante (la plupart avec une unité de mesure associée), les *compteurs* comportent un nombre entier, numérique. Pour la plupart des *compteurs*, il existe une commande directe associée, qui peut être utilisée pour réinitialiser la valeur des compteurs à 0.

1.3.1 Réglage des paramètres

Configuration des paramètres sur le pupitre opérateur (HMI)

Chaque paramètre appartient à une zone d'accès. L'édition et le changement d'un paramètre nécessitent une autorisation d'accès suffisante. Pour une description détaillées des zones d'accès, reportez-vous à \Longrightarrow « Mots de passe de niveau d'accès ».

L'utilisateur peut obtenir les autorisations d'accès nécessaires en déverrouillant des zones d'accès avant des modifications de paramètre ou selon le contexte. Dans les sections suivantes, les deux options sont expliquées.

Option 1 : Autorisation directe à une zone d'accès

Affichez le menu [Para module / Sécurité / Niveau d'accès].

Sélectionnez le niveau d'accès requis en accédant à l'autorisation (niveau) d'accès requise. Entre le mot de passe requis. Si le mot de passe correct a été saisi, l'autorisation d'accès requise est accordée. Afin de procéder aux changements de paramètre, procédez comme suit :

 Accédez au paramètre à modifier en vous servant des touches de fonction. Si le paramètre est sélectionné, un symbole représentant une »clef à molette« doit figurer dans le coin inférieur droit de l'écran.

Ce symbole indique que le paramètre est déverrouillé et qu'il peut être modifié, car l'autorisation d'accès requise est disponible. Confirmez la touche de fonction »Clef à molette« afin d'éditer le paramètre. Modifiez le paramètre.

À présent, vous pouvez :

- enregistrer les modifications apportées et les faire valider par le système, ou
- changer d'autres paramètres et enfin enregistrer tous les paramètres modifiés et les faire valider par le système.

Pour enregistrer immédiatement les modifications des paramètres,

• appuyez sur la touche »OK« pour enregistrer directement les paramètres modifiés et les faire valider par le module. Confirmez les modifications des paramètres en appuyant sur la touche de fonction »Oui« ou annulez-les en appuyant sur »Non«.

Pour modifier des paramètres supplémentaires et les enregistrer ensuite,

• accédez aux autres paramètres et changez-les.

REMARQUE!

Un symbole représentant une étoile figurant devant les paramètres modifiés indique que les modifications n'ont été enregistrées que temporairement et qu'elles ne sont pas encore définitivement stockées et adoptées par le module.

Afin de rendre les choses plus faciles à suivre, en particulier lorsque des changements de paramètres complexes sont impliqués, la modification de paramètre souhaitée est indiquée à chaque niveau de menu supérieur par une étoile (suivi étoile). Ceci permet de contrôler ou de suivre à partir du menu principal tous les changements de paramètres qui n'ont pas encore été enregistrés.

En plus de l'étoile indiquant les modifications de paramètres temporairement enregistrées, un symbole général de modification des paramètres apparait dans le coin gauche de l'écran et ainsi, de n'importe quel point de l'arborescence du menu, il est possible de voir qu'il existe des modifications de paramètre (pas encore activées).

Notez que lors de l'utilisation de *Smart view* pour modifier des paramètres, l'étoile rouge affichée dans l'arborescence de menus indique que des modifications de paramètres n'ont pas encore été enregistrées dans un fichier de paramètres.

Appuyez sur la touche »OK« pour lancer l'enregistrement final de tous les changements de paramètres. Confirmez les modifications des paramètres en appuyant sur la touche de fonction »Oui« ou annulez-les en appuyant sur la touche de fonction »Non«.

REMARQUE!

Si l'écran comporte un symbole représentant une clé au lieu d'une clef à molette, ceci indique que l'autorisation d'accès requise est indisponible.

Pour modifier ce paramètre, un mot de passe est nécessaire pour obtenir l'autorisation requise.

REMARQUE!

Contrôle de vraisemblance : Afin de prévenir l'occurrence de paramètres erronés, le module surveille constamment toutes les modifications de paramètres enregistrées temporairement. S'il détecte une invraisemblance, ceci est signalé par un point d'interrogation en regard du paramètre concerné.

Afin de rendre les choses plus faciles à suivre, en particulier lorsque des changements de paramètres complexes sont impliqués, à chaque niveau de menu supérieur, la non validité est signalée par le point d'interrogation (suivi de vraisemblance) placé au-dessus des paramètres enregistrés temporairement. Ceci rend possible le contrôle ou le suivi à partir du menu principal visant à détecter à n'importe quel moment les tentatives de sauvegarde d'invraisemblances.

En plus du point d'interrogation marquant le suivi de modifications de paramètres invraisemblables temporairement enregistrés, un symbole général d'invraisemblance/ point d'interrogation s'affiche dans le coin gauche de l'écran. Il est alors possible de voir que des invraisemblances ont été détectées par le module depuis n'importe quel point de l'arborescence du menu.

Le point d'interrogation/symbole d'invraisemblance remplace toujours l'étoile/indication d'un changement de paramètre.

Si un module détecte une invraisemblance, il refuse l'enregistrement et la validation des paramètres.

Option 2 : Autorisation d'accès dépendante du contexte

Accédez au paramètre à modifier. Si le paramètre est sélectionné, un symbole représentant une »clé« figure dans le coin inférieur droit de l'écran.

Ce symbole indique que le module est toujours au niveau »Lecture seule-Lv0« (>> « Mots de passe de niveau d'accès ») ou que le niveau actuel n'accorde pas des droits d'accès suffisants pour permettre l'édition du paramètre.

Appuyez sur cette touche de fonction et entrez le mot de passe qui permet d'accéder au paramètre. (Cette page fournit également des informations, notamment quel mot de passe/autorisation d'accès est nécessaire pour effectuer des changement sur ce paramètre.)

Modifiez la configuration du paramètre.

À présent, vous pouvez :

- enregistrer les modifications apportées et les faire valider par le système, ou
- changer d'autres paramètres et enfin enregistrer tous les paramètres modifiés et les faire valider par le système.

Pour enregistrer immédiatement les modifications des paramètres,

• appuyez sur la touche »OK« pour enregistrer directement les paramètres modifiés et les faire valider par le module. Confirmez les modifications des paramètres en appuyant sur la touche de fonction »Oui« ou annulez-les en appuyant sur »Non«.

Pour modifier des paramètres supplémentaires et les enregistrer ensuite,

• accédez aux autres paramètres et changez-les.

REMARQUE!

Un symbole représentant une étoile figurant devant les paramètres modifiés indique que les modifications n'ont été enregistrées que temporairement et qu'elles ne sont pas encore définitivement stockées et adoptées par le module.

Afin de rendre les choses plus faciles à suivre, en particulier lorsque des changements de paramètres complexes sont impliqués, la modification de paramètre souhaitée est indiquée à chaque niveau de menu supérieur par une étoile (suivi étoile). Ceci permet de contrôler ou de suivre à partir du menu principal tous les changements de paramètres qui n'ont pas encore été enregistrés.

En plus de l'étoile indiquant les modifications de paramètres temporairement enregistrées, un symbole général de modification des paramètres apparait dans le coin gauche de l'écran et ainsi, de n'importe quel point de l'arborescence du menu, il est possible de voir qu'il existe des modifications de paramètre (pas encore activées).

Notez que lors de l'utilisation de *Smart view* pour modifier des paramètres, l'étoile rouge affichée dans l'arborescence de menus indique que des modifications de paramètres n'ont pas encore été enregistrées dans un fichier de paramètres.

Appuyez sur la touche »OK« pour lancer l'enregistrement final de tous les changements de paramètres. Confirmez les modifications des paramètres en appuyant sur la touche de fonction »Oui« ou annulez-les en appuyant sur la touche de fonction »Non«.

REMARQUE!

Contrôle de vraisemblance : Afin de prévenir l'occurrence de paramètres erronés, le module surveille constamment toutes les modifications de paramètres enregistrées temporairement. S'il détecte une invraisemblance, ceci est signalé par un point d'interrogation en regard du paramètre concerné.

Afin de rendre les choses plus faciles à suivre, en particulier lorsque des changements de paramètres complexes sont impliqués, à chaque niveau de menu supérieur, la non validité est signalée par le point d'interrogation (suivi de vraisemblance) placé au-dessus des paramètres enregistrés temporairement. Ceci rend possible le contrôle ou le suivi à partir du menu principal visant à détecter à n'importe quel moment les tentatives de sauvegarde d'invraisemblances.

En plus du point d'interrogation marquant le suivi de modifications de paramètres invraisemblables temporairement enregistrés, un symbole général d'invraisemblance/ point d'interrogation s'affiche dans le coin gauche de l'écran. Il est alors possible de voir que des invraisemblances ont été détectées par le module depuis n'importe quel point de l'arborescence du menu.

Le point d'interrogation/symbole d'invraisemblance remplace toujours l'étoile/indication d'un changement de paramètre.

Si un module détecte une invraisemblance, il refuse l'enregistrement et la validation des paramètres.

Groupes de paramètres

Le paramètre de réglage [Param protect / Contac PSet] »Contac PSet« permet d'effectuer les opérations suivantes :

- Activer explicitement l'un des quatre groupes de paramètres (« PS1 » ... « PS4 »).
- Affecter un signal à chaque groupe de paramètres qui définit ce groupe comme actif (valeur de réglage « PSS via ent fct ») et affecter les signaux respectifs pour la commutation :

Si, par exemple, un signal particulier doit commuter vers le groupe de paramètres PS2, ce signal doit être affecté au paramètre de réglage [Param protect / Contac PSet] »PS2 : activé par«.

• Autoriser SCADA à commuter les groupes de paramètres (valeur de réglage « PSS via Scada ».

Option	Contacteur de groupe de paramètres
Sélection manuelle	Commutation, si un autre groupe de paramètres est choisi manuellement via le paramètre »Contac PSet«.
Via une fonction d'entrée (par ex. une entrée numérique)	Commutation si un des quatre signaux affectés devient actif. Notez que le groupe de paramètres n'est pas changé si plusieurs signaux d'activation sont présents simultanément. Exemple: Le signal DI3 est affecté au paramètre »PS3: activé par«. Le signal DI3 est actif « 1 ». Le signal DI4 est affecté à »PS4: activé par«. Le signal DI4 est désactivé « 0 ». S'il est nécessaire de commuter du groupe de paramètres 3 au groupe de paramètres 4, il faut veiller à ce que le signal soit d'abord désactivé. Ensuite, le signal DI4 doit devenir actif. Même si le signal DI4 devient inactif par la suite, le groupe de paramètres 4 reste actif, jusqu'à l'arrivée d'une nouvelle demande
	distincte (par ex., le signal DI3 devient actif et toutes les autres affectations deviennent inactives).
Via SCADA	Commutation si une demande SCADA existe.

REMARQUE!

Contacteur de groupe de paramètres : Chaque fois qu'un autre groupe de paramètres est activé, toutes les valeurs liées à la mémoire (par ex., les temporisations) sont réinitialisées pour toutes les fonctions de protection.

Changement de configuration : Chaque fois que des modifications sont apportées aux réglages des paramètres de protection (planification du dispositif, paramètres généraux ou paramètres de groupes de paramètres pour plusieurs groupes de paramètres), toutes les fonctions de protection sont totalement désactivées pendant une courte période. Cela signifie que tous les modules de protection sont désactivés pendant un certain temps, de sorte qu'ils peuvent être redémarrés en utilisant les nouveaux réglages. Cela permet de s'assurer de la cohérence du comportement de protection par rapport aux nouveaux réglages.

L'**exception** à ce qui précède est un changement de configuration qui est limité aux réglages d'un seul groupe de paramètres. Dans ce cas, toutes les fonctions de protection sont seulement réinitialisées (comme en cas de commutation de groupe de paramètres, voir ci-dessus).

Configuration du verrouillage

À l'aide de la Configuration de verrouillage, des paramètres peuvent être verrouillés contre tout changement tant que le signal affecté a la valeur vrai (actif). La configuration de verrouillage peut être réinitialisée via [para champ / Paramètres généraux] »Configuration du verrouillage«.

Dérivation de la configuration de verrouillage

La configuration de verrouillage peut être temporairement annulée dans l'éventualité où il ne soit pas possible (ou désirable) de changer l'état du signal qui active la configuration de verrouillage.

La configuration de verrouillage peut être dérivée à l'aide du paramètre de contrôle direct : [para champ / Paramètres généraux] »Conf dériv verr«

Le dispositif de protection repasse en Configuration du verrouillage soit :

- Directement après l'enregistrement d'un changement de paramètre, soit
- 10 minutes après que la dérivation ait été activée.

1.3.2 Groupes de paramètres adaptatifs

Les groupes de paramètres adaptatifs vous permettent de modifier de façon dynamique les valeurs de réglage au niveau d'un module de protection.

REMARQUE!

Les groupes de paramètres adaptatifs sont uniquement disponibles pour quelques modules de protection seulement (principalement les modules de protection contre les surintensités).

D'un point de vue pratique, ces groupes de paramètres présentent une différence principale par rapport aux groupes de paramètres ordinaires (voir > « 1.3 Types de réglages, signaux et valeurs ») : le changement de groupe de paramètres affecte simultanément **toutes** les fonctions de protection. Cela peut considérablement augmenter les tâches de mise en service et de test si vous ne voulez « que » modifier le comportement d'une fonction de protection particulière.

En revanche, les groupes de paramètres adaptatifs sont « locaux », ce qui signifie qu'ils ne sont effectifs qu'au sein de la fonction de protection partir de laquelle ils ont été activés. (Pour connaître la procédure, voir ci-dessous.)

Vous pouvez affecter un signal numérique à n'importe quel paramètre [Param protect / Para glob prot / I-Prot / « module »] »AdaptSet 1«, …, »AdaptSet 4«. (« module » correspond au nom du dispositif de protection qui utilise des groupes de paramètres adaptatifs, par exemple : [I[1]]).

Ces quatre paramètres d'affectation sont toujours des « paramètres globaux » (dans la branche de menu [Param protect / Para glob prot]). Par exemple, effectuez l'affectation suivante : $*AdaptSet\ 1*$ = "U[1] . Alarm », voir la fenêtre de boîte de dialogue supérieure © sur le schéma ci-dessous.

Avec cette affectation, la boîte de dialogue *Smart view* pour les « paramètres de groupe de paramètres », par exemple, la branche de menu [Param protect / Set 1 / I-Prot / I[1]], est complétée par une colonne supplémentaire ②, comme illustré dans la boîte de dialogue inférieure sur le schéma ci-dessous.

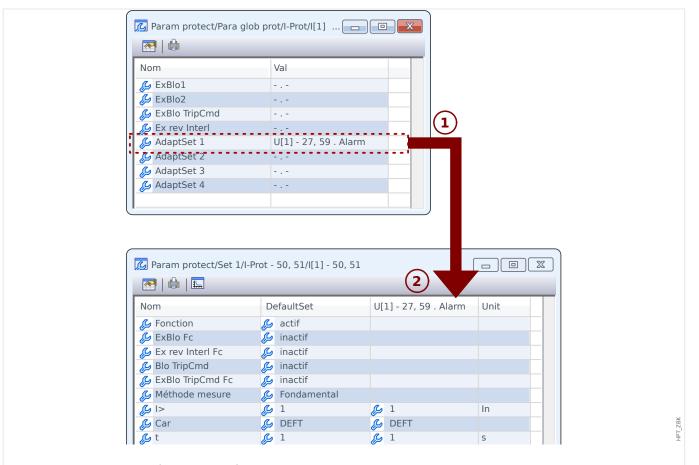


Fig. 2: Une affectation à un paramètre de groupe adaptatif ajoute des valeurs alternatives aux paramètres du groupe de paramètres.

Avec cette affectation de groupe adaptatif, la plupart des paramètres de groupe de paramètres reçoivent une valeur alternative supplémentaire. Au départ, cette nouvelle valeur est identique à la valeur DefaultSet, mais elle peut être modifiée de la même façon. (Double-cliquez dessus et modifiez-la en fonction de vos besoins.)

L'idée est simple : Les paramètres de protection utilisent la valeur alternative »AdaptSet 1 « dès que le signal affecté « U[1] . Alarm » devient vrai.

Dans la mesure où il existe quatre groupes de paramètres normaux et que chacun d'entre eux peut disposer de quatre groupes adaptatifs, plus le DefaultSet, cela signifie que les paramètres associés aux groupes adaptatifs peuvent avoir jusqu'à 20 valeurs de réglage différentes.

REMARQUE!

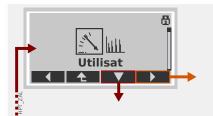
Les paramètres adaptatifs retombent automatiquement, dès lors que le signal affecté, qui les a activés, est retombé.

Si plusieurs signaux affectés sont actifs à un moment particulier, les relations suivantes s'établissent :

Le groupe adaptatif 1 est dominant par rapport au groupe adaptatif 2. Le groupe adaptatif 2 est dominant par rapport au groupe adaptatif 3. Le groupe adaptatif 3 est dominant par rapport au groupe adaptatif 4.

Exemples d'application pour les groupes de paramètres adaptatifs

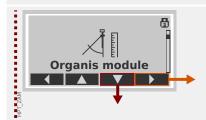
- AR : réenclenchement automatique avec 2 impulsions
 - · Caractéristique DEFT de la 1ère impulsion, étage de déclenchement normal
 - · Caractéristique INV de la 2ème impulsion, étage de déclenchement sensible
- CLPU: excitation de charge à froid
 - Démarrage du moteur, désensibilisation de la protection du courant
- SOTF : activation sur défaut
 - o Désensibilisation de la protection du courant
- ANSI 51C : surintensité dépendante de la tension
 - o Générateur, moteur, désensibilisation de la protection du courant


1.3.3 Affichage de l'état

L'option Affichage état du menu »Utilisat« permet de visualiser l'état actuel de tous les signaux. Ceci signifie que vous pouvez voir si les différents signaux sont actifs ou inactifs à ce moment précis. Vous pouvez voir tous les signaux triés par éléments/modules de protection.

L'état de l'entrée/signal du module est	L'état est affiché sur le tableau de commande sous la forme
« inactif » / Faux / »0«	
« actif » / VRAI / »1«	\square

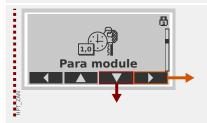
1.3.4 Structure de menus


La structure de menus fournit les entrées de menu de premier niveau suivantes. Pour accéder à la branche d'un menu, utilisez la touche programmable ▶. Les touches programmables ▲ et ▼ vous permettent d'accéder à la branche suivante ou précédente.

Utilisat

Ce menu permet d'accéder aux données d'exécution.

- · Valeurs mesurées
- Statistia
- · Affichage de l'état
- · Compteur et RevData
- Enregistr défaut, Enregistr événement, Enregistr perturbat
- · Auto-surveillance
- · Acquitter, réinitialiser



Organis module

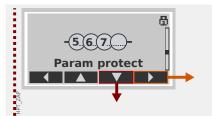
En général, ce menu correspond à la première étape lors de la mise en service :

Activez les éléments dont vous avez besoin et désactivez ceux dont vous n'avez pas l'utilité.

Sélectionnez le protocole pour les communications (SCADA) avec la sous-station.

Paramètres du module

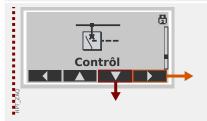
Cette branche de menu contient tous les paramètres directement liés au dispositif, par exemple :


- Entrées et sorties numériques
- DEL
- · Paramètres pour les enregistreurs
- Paramètres de communication

Paramètres d'excitation

En général, ce menu correspond à la deuxième étape de la mise en service : Configurez les propriétés du champ, par exemple :

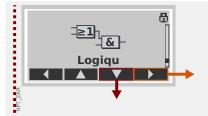
- Fréquence nominale, tension, courant
- Rapports CT et VT
- Type de connexion VT (Phase/terre, Phase / phase)



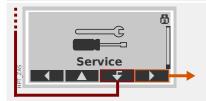
Paramètres de protection

Tous les paramètres de protection, associés à une fonction de protection spécifique, sont regroupés ici.

Pour chaque fonction de protection, les paramètres sont regroupés selon les types de paramètre suivants :


- Paramètre de protection globale
- Set 1 ... Set 4
- Contac PSet (Changement d'un groupe de paramètres)

Contrôl


Paramètres pour les dispositifs d'appareillage de connexion.

- Les appareils HighPROTEC dénommés « MR... » peuvent contrôler 1 dispositif d'appareillage de connexion.
- Les appareils HighPROTEC dénommés « MC... » peuvent contrôler jusqu'à 6 dispositifs d'appareillage de connexion.

Logique programmable

- Jusqu'à 80 équations logiques
- 4 portes au choix
- 4 entrées, 4 sorties par équation
- Fonctions de minuterie et de mémorisation

Service

Cette branche de menu est principalement utilisée à des fins de test. Par exemple :

- Forcer / désarmer les sorties
- Forcer / désarmer l'entrée et les sorties analogiques
- Utiliser le générateur de signal/défaut
- Redémarrer le dispositif de protection

1.3.5 Organisation du module

L'organisation d'un module permet de réduire la gamme de ses fonctionnalités à un niveau adapté à la tâche de protection, le module affiche ainsi uniquement les fonctions dont vous avez réellement besoin.

Si, par exemple, vous désactivez la fonction de protection de la tension, toutes les branches de paramètres liées à cette fonction n'apparaîtront plus dans l'arborescence des paramètres.

Tous les événements, signaux et autres éléments correspondants seront également désactivés. Avec ce paramètre, les arborescences deviennent très transparentes. L'organisation implique également l'ajustement de toutes les données de base du système (fréquence, etc.)

AVERTISSEMENT!

Mais vous devez également tenir compte du fait qu'en désactivant, par exemple, les fonctions de protection, vous modifiez également la fonctionnalité du module. Si vous annulez la fonction directionnelle des protections contre la surintensité, le module n'est plus déclenché de manière directionnelle, mais simplement de manière non directionnelle.

Le fabricant décline toute responsabilité en cas de dommage corporel ou matériel résultant d'une mauvaise organisation.

Un service d'organisation est également offert par Woodward.

AVERTISSEMENT!

Veillez à ne pas désactiver inopinément des fonctions/modules de protection Si vous désactivez des modules lors de l'organisation du module, tous les paramètres de ces modules seront rétablis à leurs valeurs par défaut.

Si vous réactivez un de ces modules, tous les paramètres de ces modules réactivés seront définis par défaut.

1.3.6 Paramètres de champ

Les paramètres de champs vous permettent de définir tous les paramètres pertinents pour le côté primaire et pour le mode de fonctionnement du réseau tels que la fréquence, les valeurs primaires et secondaires.

Tous les paramètres de champs sont accessibles via la branche de menu [para champ].

Consultez le *Manuel de référence* pour disposer des tableaux détaillés de tous les paramètres disponibles pour le dispositif MRI4.

1.3.7 Paramètres du dispositif

Date et heure

Dans le menu [Para module / Heur] »Date et heure«, vous pouvez définir la date et l'heure (y compris un sous-menu pour les paramètres de fuseau horaire et d'heure d'été).

Version

Le menu [Para module / Version] vous permet d'obtenir des informations sur la version logicielle et matérielle.

Affichage des codes ANSI

L'affichage des codes ANSI sur le tableau de commande de l'appareil (IHM) peut être activé via [Para module / HMI] »Affichage du numéro ANSI«.

Néanmoins, *Smart view* possède son propre élément de menu pour contrôler l'affichage des codes ANSI, qui est indépendant du tableau de commande du dispositif. (Consultez le Manuel d'utilisation *Smart view*.)

1.3.8 Réinitialisation des compteurs, valeurs et enregistrements

Réinitialisations manuelles

Dans le menu [Utilisat / Réini], vous pouvez :

- · réinitialiser les compteurs,
- supprimer des enregistrements (enregistrements de perturbations, par exemple) et
- réinitialiser des éléments spéciaux (statistiques, réplique thermique...).

REMARQUE!

La description des commandes de réinitialisation est fournie dans un document distinct, appelé « Manuel de référence de MRI4 ».

1.4 Sécurité

Généralités

PRUDENCE!

Tous les réglages de sécurité doivent être effectués par l'utilisateur du MRI4! Il est vivement recommandé d'adapter les réglages de sécurité aux réglementations et exigences locales une fois la procédure de mise en service terminée.

Le MRI4 est livré avec le plus possible de réglages « ouverts », ce qui signifie que toutes les restrictions d'accès sont désactivées. La mise en service n'est donc pas inutilement compliquée. Cependant, par la suite, lorsque le MRI4 fonctionne, il est probablement nécessaire de limiter dans une certaine mesure les accès. Il faut notamment prendre en considération les aspects suivants :

Par défaut, l'accès de *Smart view* au MRI4 via l'interface USB est autorisé (sans protection par mot de passe), mais l'accès TCP/IP via le réseau est désactivé (voir $\stackrel{}{\sqsubseteq}$ « Mots de passe de connexion, accès Smart view »). Toutefois, pour des raisons de sécurité, il est recommandé de réajuster ces réglages au moins après la mise en service.

PRUDENCE!

Pour des raisons de sécurité encore, il est vivement recommandé de modifier les mots de passe par défaut (> « 1.4.2 Mots de passe par défaut ») conformément au niveau de sécurité requis par votre application (voir > « 1.4.4 Modification des mots de passe »), par exemple, en définissant des mots de passe différents par niveau d'accès / zones. En procédant ainsi, il est possible de s'assurer que les différents groupes d'utilisateurs disposent de leurs droits spécifiques.

Aperçu des paramètres liés à la sécurité

La branche de menu [Utilisat / Sécurité] collecte des informations concernant différents réglages de sécurité, notamment :

- Pour les mots de passe de connexion (voir > « 1.4.3 Mots de passe de connexion pour l'accès Smart view »), vous pouvez voir si les mots de passe de connexion ont été définis sur une valeur définie par l'utilisateur ou si ils ont encore leur valeur par défaut..
- Vous pouvez voir si l'accès Smart view est autorisé (voir ⊨> « 1.4.3 Accès via Smart view »).
- Vous pouvez voir dans quelle mesure la restauration des valeurs par défaut a été activée (voir > « Restauration des paramètres d'usine, réinitialisation de tous les mots de passe »).

(Pour obtenir la liste complète des entrées affichées sur cette page, consultez la section « Sécurité » du « Manuel de référence MRI4 ».)

Si la sécurité informatique est une préoccupation pour votre application, il est recommandé de vérifier toutes ces entrées lors de la mise en service, en faisant évidemment preuve de discernement : Si, par exemple, un utilisateur a défini le mot de passe de connexion USB sur la simple valeur «1 », cette page de sécurité affiche

l'entrée »Mot de passe pour conn. USB« = « Déf. par util. ». Néanmoins, le niveau de sécurité de ce mot de passe est discutable.

Messages liés à la sécurité

Un enregistreur d'auto-surveillance est disponible : Messages d'auto-surveillance. Il collecte les messages internes du dispositif de différents types, y compris les événements liés à la sécurité (par ex., la saisie incorrect d'un mot de passe). Il est recommandé de vérifier ces entrées de temps à autres.

Un sous-groupe de ces messages, réservé uniquement aux messages de sécurité, est (également) accessible au niveau de la branche de menu [Utilisat / Sécurité / Journal de sécurité].

1.4.1 Sécurité réseau

Communication SCADA

Il convient de noter qu'il existe toujours certains risques de sécurité liés à l'utilisation des protocoles SCADA. Des informations détaillées sont fournies dans la documentation technique.

Sécurité Intranet

Si l'interface Ethernet du MRI4 est connectée à un réseau, il incombe à l'utilisateur de mettre en œuvres tous les moyens nécessaires pour assurer la sécurité du réseau de l'entreprise. Il convient notamment de garantir que l'accès externe (autrement dit, hors de l'intranet) au MRI4 est impossible. Tenez-vous informé de tous les développements technologiques (pare-feu, VPN etc.)!

1.4.2 Mots de passe

Types de mot de passe

Deux types de mot de passe différents sont disponibles :

- Mots de passe de connexion permettent à l'utilisateur d'établir une connexion avec le logiciel d'exploitation Smart view. (Voir > « Mots de passe de connexion, accès Smart view ».)
- Mots de passe de niveau d'accès sont requis pour toutes les modifications des réglages du dispositif. (Voir > « Mots de passe de niveau d'accès ».)

Remarque : les **mots de passe de connexion** ont été introduits avec la HighPROTEC version **3.6**. la raison principale est que, à partir de la version 3.6, toutes les connexions entre le MRI4 et *Smart view* sont totalement chiffrées, à l'aide d'algorithmes de cryptographie sophistiqués. (Voir aussi \longrightarrow « 1.4.3 Connexions Smart view ».)

REMARQUE!

Les mots de passe définis sont stockés dans une zone permanente de la mémoire MRI4 de sorte qu'ils sont conservés après une mise à niveau du micrologiciel. (Cela s'applique aux deux types de mot de passe.)

Mots de passe par défaut

Les valeurs par défaut signifie pour **tous** les mots de passe (communication et niveau d'accès) une valeur standard qui n'offre pas une protection contre les accès non autorisés :

- Les mots de passe de connexion comporte du texte vide par défaut (autrement dit, ils ne sont pas demandés).
- Tous les mots de passe de niveau d'accès sont associés à la valeur par défaut »1234«.

Pénalité de temps pour la saisie de mot de passe incorrect

La saisie de mots de passe *incorrects* (qu'il s'agisse d'un mot de passe de connexion ou d'un mot de passe de niveau d'accès et que la saisie soit effectuée via l'IHM ou *Smart view*) déclenche une phase de « pénalité de temps » : MRI4 bloque toute nouvelle saisie de mot de passe pour une durée croissante, jusqu'à la saisie du mot de passe correct. Un message dédié informe l'utilisateur de ce blocage. Cette minuterie affecte uniquement la

saisie de mot de passe (c'est-à-dire, la touche de fonction de l'IHM), ce qui signifie qu'elle n'empêche pas l'utilisateur d'effectuer d'autres tâches ne nécessitant pas la saisie de mot de passe pendant cette période de blocage.

Mot de passe oublié

Si vous appuyez sur la touche « C » lors d'un redémarrage à froid, une boîte de dialogue de réinitialisation s'affiche (sauf si elle a été explicitement désactivée). Cette boîte de dialogue permet de restaurer les paramètres d'usine pour tous les mots de passe (voir **\text{\$\subset\$} \times 1.4.2 Mots de passe par défaut »).

Pour plus de détails concernant cette boîte de dialogue de réinitialisation générale, voir « Restauration des paramètres d'usine, réinitialisation de tous les mots de passe ».

1.4.3 Mots de passe de connexion, accès Smart view

Connexions Smart view

Une des exigences fondamentales en »sécurité informatique« est de s'assurer qu'aucune personne non autorisée puisse espionner les informations échangées entre un opérateur et le MRI4.

Par conséquent, toutes les connexions entre le MRI4 et *Smart view* sont totalement chiffrées, à l'aide d'algorithmes de cryptographie sophistiqués.

Woodward livre chaque installation de *Smart view* (version 4.70 ou ultérieure) et chaque dispositif HighPROTEC (version 3.6 ou ultérieure) avec des certificats cryptographiques, qui sont échangés automatiquement lors de l'établissement d'une connexion. Les certificats sont vérifiés à la fois par les partenaires de communication (MRI4 et *Smart view*) pour s'assurer qu'aucune autre partie non autorisée n'a piraté la connexion.

La sécurité supplémentaire qui accompagne ces techniques cryptographiques est disponible par défaut, sans aucune configuration ou intervention de l'utilisateur.

Accès via Smart view

Une autre exigence fondamentale de la »sécurité informatique« est d'empêcher les personnes non autorisées d'accéder aux systèmes, y compris le dispositif de protection MRI4. Le MRI4 fournit un accès via son panneau avant via le logiciel d'exploitation Smart view.

Étant donné que l'accès via le panneau avant est uniquement possible pour un utilisateur directement en face du dispositif, le risque est normalement assez réduit par rapport au risque d'accès non autorisé via *Smart view*, surtout si le MRI4 est intégré à un réseau Ethernet / TCP/IP.

- Pour des raisons de sécurité, une option de désactivation de l'accès *Smart view* est disponible via l'interface USB. Cette opération est possible via le paramètre [Para module / Sécurité / Communication] »*Smart view via USB*«. Cependant, par défaut, ce type d'accès est autorisé.
- De même, une option de désactivation de l'accès *Smart view* est disponible via Ethernet. Cette opération est possible via le paramètre [Para module / Sécurité / Communication] »*Smart view via Eth«*. Cependant, par défaut, ce type d'accès est autorisé.

REMARQUE!

Si *Smart view* est utilisé pour désactiver l'accès *Smart view*, la session actuelle est automatiquement fermée.

Mots de passe de connexion pour l'accès Smart view

Deux mots de passe de connexion sont disponibles. Au début d'une nouvelle session, Smart view invite l'utilisateur à saisir un mot de passe et les connexion est établie uniquement une fois le mot de passe correct saisi. (Cette invite à saisir un mot de passe est omise uniquement si une valeur vide a été définie pour le mot de passe en question.)

 Connexion USB: le « mot de passe de connexion local » doit être saisi pour établir un accès Smart view via l'interface USB. (La valeur par défaut, cependant, est vide.) Connexion réseau distante : le « mot de passe de connexion réseau à distance » doit être saisi pour établir un accès Smart view via Ethernet. (La valeur par défaut, cependant, est vide, mais notez que ce type d'accès est désactivé par défaut, voir — « 1.4.3 Accès via Smart view ».)

Les mots de passe de connexion peuvent être modifiés en utilisant *Smart view* accessible via la branche de menu [Para module / Sécurité / Mot pass], puis en double-cliquant sur le mot de passe à modifier.

Notez que les deux mots de passe de connexion sont différents des mots de passe de niveau d'accès (décrits dans \Longrightarrow « 1.4.4 Saisie du mot de passe sur le tableau de commande ») notamment concernant ce qui suit :

- Les mots de passe de connexion peuvent être saisis et modifiés uniquement dans Smart view (et non via l'IHM du MRI4).
 - (Toutefois, les mots de passe sont stockés de façon permanente par le MRI4 et non par *Smart view*. Ainsi, chaque relais HighPROTEC peut avoir un mot de passe de connexion individuel, si cela est nécessaire.)
- Contrairement aux mots de passe de niveau d'accès (> « 1.4.4 Modification des mots de passe »), les mots de passe de connexion ne sont pas limités aux chiffres 1, 2, 3, 4 et ne sont pas limités non plus à 8 caractères. (Ils peuvent contenir 64 caractères et plus.) En effet, un mot de passe de connexion peut être constitué de n'importe quelle séquence de caractères Unicode imprimables, y compris les espaces.

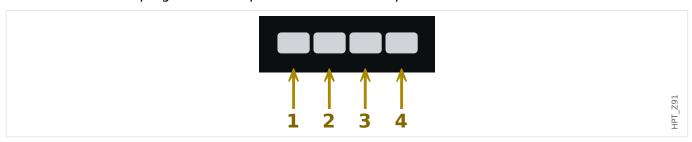
AVERTISSEMENT!

Les paramètres d'usine pour tous les mots de passe (voir \Longrightarrow « 1.4.2 Mots de passe par défaut ») n'offrent aucune protection.

Pour des raisons de sécurité, il est vivement recommandé d'adapter les mots de passe par défaut et d'utiliser des mots de passe personnalisés qui répondent aux directives de sécurité locales.

En fonction de la politique de sécurité en vigueur sur votre site, il est également possible de définir une valeur vide pour chaque mot de passe. Cela a pour effet de supprimer l'invite de saisie de mot de passe, ce qui signifie que la restriction d'accès est levée. Toutefois, nous devons indiquer que, de notre point de vue, cette pratique est vivement déconseillée, au moins pour le « mot de passe réseau ».

1.4.4 Mots de passe de niveau d'accès


Les mots de passe de niveau d'accès sont requis pour toute modification des réglages du dispositif, indépendamment du fait qu'ils soient effectués via *Smart view* ou directement au niveau de l'IHM (tableau).

Un niveau de sécurité (également appelé niveau d'accès ou zone d'accès)est associé à chaque paramètre de réglage. Voir > « Niveaux d'accès » pour une description des niveaux d'accès existants.

Si vous souhaitez modifier un réglage, vous devez saisir le mot de passe associé au niveau d'accès correspondant. (Par la suite, ce niveau d'accès reste déverrouillé pendant un certain temps, de sorte que les autres changements effectués pour ce niveau peuvent l'être sans avoir à saisir le mot de passe.)

Saisie du mot de passe sur le tableau de commande

En cas d'utilisation du MRI4 directement via l'IHM, il est possible d'utiliser les touches de fonction programmables pour saisir un *mot de passe de niveau d'accès*.

Exemple: Pour le mot de passe (3244), appuyez successivement sur :

- Touche de fonction 3
- Touche de fonction 2
- Touche de fonction 4
- Touche de fonction 4

Avec une connexion *Smart view* active, les mots de passe sont demandés par *Smart view*, de sorte qu'ils sont saisis via le clavier de l'ordinateur à la demande.

Modification des mots de passe

Les mots de passe de niveau d'accès peuvent être modifiés dans le menu [Para module / Sécurité / Mot pass].

REMARQUE!

Un *mot de passe de niveau d'accès* doit contenir au plus 8 caractères doit correspondre à une combinaison définie par l'utilisateur des chiffres 1, 2, 3 et 4. Tous les autres caractères et touches ne sont pas acceptés.

Acquittement sans saisie de mot de passe

Pour des informations générales concernant les acquittements, voir « Acquittements ». Des informations sur les zones/niveaux d'accès sont fournies dans » « Niveaux d'accès ». À partir de la version 3.6, les appareils HighPROTEC permettent d'acquitter les DEL en appuyant sur la touche »C« pendant environ 1 seconde. Pour plus de détails, consultez \longrightarrow « 1.5 Acquittement manuel (en appuyant sur la touche C du tableau) ».

Désactivation des mots de passe durant la mise en service

Il est éventuellement possible de désactiver temporairement les mots de passe pendant la mise en service. Il n'est pas permis d'utiliser cette fonction à d'autres fins que la mise en service. Afin de désactiver la protection des mots de passe, remplacez le mot de passe existant par un mot de passe vide pour les zones d'accès souhaitées. Toutes les autorisations d'accès (zones d'accès) protégées par un mot de passe vide seront déverrouillées en permanence. Ceci signifie que tous les paramètres et réglages au sein de ces zones peuvent être modifiés à tout moment.

PRUDENCE!

Vous devez vous assurer que tous les mots de passe sont de nouveau activés après la mise en service. Cela signifie que toutes les zones d'accès doivent être protégées par des mots de passe suffisamment sécurisés.

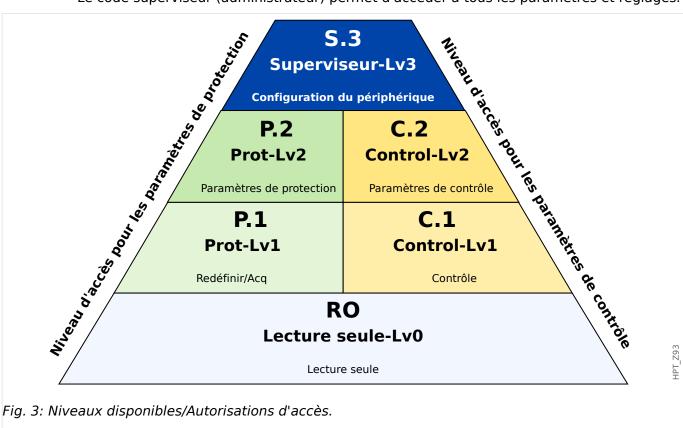
Woodward ne pourra être tenue responsable des blessures corporelles ou dommages matériels causés par la désactivation de la protection par mot de passe.

Considérations générales

Vous devez vous assurer que les autorisations d'accès sont protégées par des mots de passe sécurisés. Ces mots de passe doivent être maintenus secrets et ne doivent être connus que par les personnes autorisées. Les mots de passe par défaut ne fournissent pas de protection contre les accès non autorisés.

Un symbole représentant un cadenas dans le coin supérieur droit de l'écran indique si des autorisations d'accès sont actives actuellement. Ceci signifie, qu'en mode « Lecture seule-Lv0 », un cadenas fermé (verrouillé) s'affiche dans le coin supérieur droit de l'écran. Dès que des autorisations d'accès sont actives (au dessus du niveau « Lecture seule-Lv0 »), un symbole représentant un cadenas déverrouillé (ouvert) apparaît dans le coin supérieur droit de l'écran.

Pendant la définition des paramètres, la touche « C » permet d'annuler les changements de paramètre. Ainsi, il n'est pas possible de procéder à un acquittement (DEL, relais de sortie...) tant que des paramètres ne sont pas enregistrés (mis en mémoire cache uniquement).


Le menu d'acquittement n'est pas accessible tant que les modifications des paramètres ne sont pas reprises par le dispositif (indiqué par un symbole « étoile » dans le coin supérieur gauche).

Les mots de passe existants sont persistants (affectés à un module). Si un fichier de paramètres créé hors ligne est transmis à un module, ou si un fichier de paramètres est transmis d'un module à un autre, ceci sera sans effet sur les mots de passe existants dans le module.

1.4.5 Niveaux d'accès

Les niveaux d'accès sont conçus sous la forme de deux volets hiérarchiques.

Le code superviseur (administrateur) permet d'accéder à tous les paramètres et réglages.

Le tableau suivant indique les zones d'accès. Notez que chaque zone d'accès nécessite son propre mot de passe d'autorisation pour pour permettre son accès. (Cependant, pour un MRI4 dont les paramètres d'usine sont restaurés, tous ces mots de passe utilisent la même valeur par défaut, voir \Longrightarrow « 1.4.6 Réinitialiser tous les mots de passe ».)

Symbole de zone	Zones d'accès	Accès à :
đ	Nom du niveau d'accès (tableau / Smart view): Lecture seule-Lv0	Le niveau 0 permet un accès en lecture seule à tous les paramètres du module. Celui-ci retombera à ce niveau automatiquement au bout d'une période configurable ou d'inactivité.
	Nom du niveau d'accès dans le Manuel de référence : « RO »	
₫	Demande du mot de passe sur le tableau / Smart view: Prot-Lv1	Ce code permet d'accéder aux options de réinitialisation et d'acquittement. Il permet également l'exécution de signaux de déclenchement manuel.

Symbole de zone	Zones d'accès	Accès à :
	Nom du niveau d'accès dans le Manuel de référence : « P.1 »	
đ	Demande du mot de passe sur le tableau / Smart view: Prot-Lv2 Nom du niveau d'accès dans le Manuel de référence : « P.2 »	Ce code permet d'accéder aux options de réinitialisation et d'acquittement. Il permet également de changer les paramètres de protection et la configuration du gestionnaire de déclenchements.
đ	Demande du mot de passe sur le tableau / Smart view: Control-Lv1 Nom du niveau d'accès dans le Manuel de référence : « C.1 »	Ce code accorde le droit de commuter les opérations (commutation des appareillages de connexion).
đ	Demande du mot de passe sur le tableau / Smart view: Control-Lv2 Nom du niveau d'accès dans le Manuel de référence : « C.2 »	Ce code accorde le droit de commuter les opérations (commutation des appareillages de connexion). Il permet également d'accéder aux paramètres de l'appareillage de connexion (autorisation de commutation, verrouillages, paramètres généraux des appareillages de connexion, usure du disjoncteur).
<u>a</u>	Demande du mot de passe sur le tableau / Smart view: Superviseur-Lv3 Nom du niveau d'accès dans le Manuel de référence : « S.3 »	Ce code accorde un accès illimité à tous les paramètres et réglages du module (configuration du module). Ceci inclut également l'organisation des dispositifs, les paramètres de module (par ex. Date et Heure), les paramètres de champ, de service et logiques.

REMARQUE!

Si le dispositif n'était pas actif en mode de configuration des paramètres pendant une certaine période (peut être définie entre 20 et 3 600 secondes), il passe automatiquement en mode »Lecture seule-Lv0«. Tous les changements de paramètre non enregistrés sont annulés.

Vérification des zones d'accès déverrouillées :

Le menu [Para module / Niveau d'accès] fournit les informations relatives aux zones d'accès (autorisations) actuellement déverrouillées. Ce menu permet également d'accéder (déverrouiller) à une zone particulière.

Cependant, le moyen courant dans l'utilisation quotidienne du MRI4 ne consiste pas à utiliser ce menu [Niveau d'accès], mais de suivre simplement le chemin de menu d'un paramètre à changer, puis de commencer à modifier le paramètre. Juste d'accepter le changement, l'utilisateur est invité à saisir le mot de passe approprié, lequel déverrouille ensuite la zone d'accès correspondante.

Dès qu'une zone d'accès ayant un code supérieur à »Lecture seule-Lv0«, est déverrouillée, ceci est signalé par la présence d'un symbole représentant un cadenas ouvert dans le coin supérieur droit de l'écran du dispositif.

Si vous souhaitez explicitement verrouiller la zone d'accès à la fin (au lieu d'attendre la temporisation »t-max modi/accès«), vous devez activer le mode »Lecture seule-Lv0«.

Déverrouillage d'une zone d'accès au niveau du tableau :

Via le menu [Para module / Niveau d'accès], il est possible de verrouiller ou déverrouiller les zones d'accès (autorisations). Après le déverrouillage d'une zone d'accès, tous les changements de paramètre ou les activités associés à ce niveau (ou à un niveau inférieur) peuvent être exécutés sans avoir à saisir de nouveau le mot de passe. Néanmoins, le droit d'accès est valide uniquement pour le tableau. Les accès via *Smart view* doivent être déverrouillées séparément.

En l'absence de pression de touche pendant un certain temps qui peut être définir via le réglage [Para module / HMI / Sécurité] »t-max modi/accès«, la zone d'accès est automatiquement réinitialisée sur »Lecture seule-Lv0« et tous les changements de paramètre non enregistrés sont annulés.

PRUDENCE!

Ne laissez pas le MRI4 sans surveillance tant qu'il reste des zones d'accès (des niveaux) déverrouillées (symbole de verrou ouvert affiché). Si l'accès n'est plus nécessaire, il est conseillé de réinitialiser les droits sur »Lecture seule-Lv0«.

Déblocage d'une zone d'accès via Smart view :

Après le déverrouillage d'une zone d'accès (autorisations) en saisissant le mot de passe, tous les changements de paramètre ou les activités associés à ce niveau (ou à un niveau inférieur) peuvent être exécutés sans avoir à saisir de nouveau le mot de passe. Néanmoins, le droit d'accès est valide uniquement pour cette instance de *Smart view*. Les accès via le tableau ou d'autres instances de *Smart view* doivent être déverrouillées séparément.

En l'absence de pression de touche pendant un certain temps (dans *Smart view*), la zone d'accès est automatiquement réinitialisée.

PRUDENCE!

Ne laissez pas le MRI4 sans surveillance tant que *Smart view* maintient des zones d'accès déverrouillées. Verrouillez l'accès à votre ordinateur pendant votre absence ou réinitialisez au moins les droits d'accès. Cette opération peut être effectuée en double-cliquant sur le symbole de verrou affiché sur la ligne d'état dans la marge inférieure de la fenêtre *Smart view* (ou via le le menu [Appareil / Réinitialiser l'état « Lecture seule » des paramètres] .

1.4.6 Restauration des paramètres d'usine, réinitialisation de tous les mots de passe

Une boîte de dialogue Réinitialiser dédiée permet de sélectionner des options parmi les suivantes :

- Restaurer les paramètres d'usine ou
- Réinitialiser tous les mots de passe.

La boîte de dialogue Réinitialiser est accessible via l'IHM uniquement (autrement dit, elle n'est **pas** accessible via *Smart view*).

Appuyez sur la touche »C« lors d'un redémarrage à froid jusqu'à ce que la boîte de dialogue Réinitialiser s'affiche.

REMARQUE!

Pour des raisons techniques, cette boîte de dialogue Réinitialiser n'est disponible **qu'en anglais** (indépendamment de la langue régionale utilisée par la suite, après le démarrage du dispositif).

De plus, notez que cette boîte de dialogue peut ne pas s'afficher si elle a été intentionnellement désactivée (voir ci-dessous) ou si l'option de réinitialisation de tous les mots de passe a été désactivée.

Restaurer les paramètres d'usine

AVERTISSEMENT!

Tous les réglages de paramètre seront réinitialisés. Tous les enregistrements seront supprimés et les valeurs et les compteurs statiques seront réinitialisés.

Exception : le compteur des heures de fonctionnement est conservé.

- 1. Dans la boîte de dialogue Réinitialiser, sélectionnez »Restaurer les paramètres d'usine«.
 - ⇒ Une boîte de dialogue de confirmation affiche le message »Restaurer les paramètres d'usine et redémarrer ?«.
- 2. Confirmez l'opération en choisissant »Oui«.
 - ⇒ La restauration des paramètres d'usine est effectuée et le dispositif redémarre.

Réinitialiser tous les mots de passe

Il est possible de supprimer cette option de la boîte de dialogue Réinitialiser pour des raisons de sécurité (voir ci-dessous).

- 1. Dans la boîte de dialogue Réinitialiser, sélectionnez »Réinitialiser tous les mots de passe«.
 - ⇒ Une boîte de dialogue de confirmation affiche le message »Réinitialiser tous les mots de passe ?«.
- 2. Confirmez l'opération en choisissant »Oui«.

 \Rightarrow Le dispositif démarre en utilisant les mots de passe standard (voir \Longrightarrow « 1.4.2 Mots de passe par défaut »).

AVERTISSEMENT!

Les mots de passe standard (voir ⊨> « 1.4.2 Mots de passe par défaut ») n'offre aucune sécurité.

Pour des raisons de sécurité, il est vivement recommandé d'adapter les mots de passe par défaut et d'utiliser des mots de passe personnalisés qui répondent aux directives de sécurité locales.

Réglages de sécurité

Pour des raisons de sécurité, il est possible de restreindre l'accès à la boîte de dialogue Réinitialiser ou de la supprimer entièrement. Le paramètre de réglage [Para module / Sécurité / Divers] »Config. réinit. dispositif« permet de spécifier les options de réinitialisation qui doivent être disponibles :

- « Défaut usine », « Réinit. MdP » : les deux options (»Restaurer les paramètres d'usine« et »Réinitialiser tous les mots de passe«) doivent être disponibles.
- « Défaut usine » uniquement : seule l'option »Restaurer les paramètres d'usine« doit être disponible.
- Réinit. désactivée : La boîte de dialogue Réinitialiser est désactivée.

PRUDENCE!

Si le mot de passe est perdu et que l'option »Réinitialiser tous les mots de passe« n'est pas disponible, la seule possibilité pour récupérer le contrôle consiste à rétablir les paramètres d'usine du MRI4. Si cette option a également été désactivée, le MRI4 doit être envoyé à Woodward dans le cadre d'une demande de service.

1.5 Acquittements

Le terme « acquittement » fait référence à la réinitialisation de la mémorisation d'un état.

La mémorisation peut être configurée pour les types suivants d'objets ou d'états :

- DEL
- · Relais de sortie binaire
- Signaux SCADA
- Une commande de déclenchement en attente

Il est possible d'acquitter un objet ou un signal individuel (via un signal externe prédéfini). Il est aussi possible d'acquitter collectivement les états mémorisés, c'est-à-dire, toutes les DEL simultanément.

Les types d'acquittement suivants sont disponibles :

• L'acquittement individuel est l'opération qui consiste à affecter un signal externe à un paramètre qui est spécifique à un état mémorisé individuel (par ex., la DEL numéro 3 qui reste affichée).

Si le signal affecté devient actif, la mémorisation est acquittée. (Voir ci-dessous, 4.5 Acquittement individuel d'un état mémorisé »).

• L'acquittement externe est l'opération qui consiste à affecter un signal externe à un paramètre lié à plusieurs états (par ex., toutes les DEL).

Si le signal affecté devient actif, le groupe d'états associé est acquitté. (Voir cidessous, \Longrightarrow « 1.5 Acquittement externe »).

• L'acquittement automatique est l'opération qui consiste à acquitter automatiquement toutes les DEL mémorisées avec une nouvelle alarme émise par n'importe quelle fonction de protection ou une alarme générale, »Prot . Alarm«. (Cette fonction est réservée aux DEL ; il n'y a pas d'acquittement automatique pour les sorties binaires, les signaux SCADA ou les commandes de déclenchement.)

(Voir ci-dessous, ⊨> « 1.5 Acquittement automatique »).

• L'acquittement collectif est l'opération qui consiste à acquitter manuellement la mémorisation de plusieurs états simultanément.

Plusieurs commandes directes différentes sont disponibles, chacune d'entre elles étant associée à un groupe d'états spécifiques à acquitter (voir ci-dessous, \Longrightarrow « 1.5 Acquittement collectif (via Smart view ou le tableau) »).

• L'acquittement manuel est une méthode spéciale qui permet d'exécuter un acquittement collectif en appuyant simplement sur la touche « C » du tableau.

La mémorisation de plusieurs états est donc acquittée en une seule opération en procédant ainsi. (Voir ci-dessous, \Longrightarrow « 1.5 Acquittement manuel (en appuyant sur la touche C du tableau) »).

REMARQUE!

✓ Le signal affecté acquitte toutes les DEL.

Notez qu'un état mémorisé quelconque ne peut être acquitté que si le signal qui a initié le réglage n'est plus actif. Il s'agit d'une règle générale qui s'applique à tous les types d'acquittement.

Une autre règle générale implique qu'avec le réglage [Para module / Acquitter] »Réin à dist« = « inactif », seuls les acquittements manuels (> « 1.5 Acquittement manuel (en appuyant sur la touche C du tableau) ») effectués directement sur le tableau sont opérationnels. Tous les autres types d'acquittement, y compris les acquittements collectifs utilisant Smart view (> « 1.5 Acquittement collectif (via Smart view ou le tableau) ») sont ignorés silencieusement.

Dans tous les cas, la mémorisation des sorties binaires est toujours réinitialisée, mais seulement après l'expiration de la temporisation »Retar t-Off«.

Acquittement individuel d'un état mémorisé

Acquittemen	t marviduel a un etat i	Hemorise	
[Para module / DEL / DE	L groupe A / DEL 17] »\$	Signal acq«	
✓ Le signal affecté acquitte une DEL individuelle.			
tp	'		
[Para module / Sort bina	ires / Empl SB X x / SB y]	»Acquittement«	
	✓ Le signal affecté acquitte la sortie binaire « y » à l'emplacement « x ».		
[Contrôl / SG / SG [x] / G	estr décl] »Acq TripCm o	l«	
			✓ Le signal affecté acquitte la commande de déclenchement de l'appareillage de connexion « SG [x] ».
Remarque: La branche de menu n'affiche pas le nom du module abstrait »SG [x]«. En revanche, la dénomination de l'appareillage de connexion qui a été affecté via la page de contrôle (schéma de ligne simple), soit quelque chose comme « QA1 ». (Voir ${\sqsubseteq}$ « 5 Schéma de ligne simple ».)			
Acquittemen	t externe		
<i>dist«</i> est réglé		i le paramètre [Para modu e bloque également l'acq s).	
[Para module / Acquitter] »DEL acq«		

[Para module / Acquitter] »Acq SB«			
	✓ Le signal affecté acquitte tous les relais de sortie binaire.		

[Para module / Acquitter] »Acq Scada«	
	✓ Le signal affecté acquitte les signaux SCADA mémorisés.

Acquittement automatique

Avec un acquittement automatique, toutes les DEL pour lesquelles il est activé sont acquittées avec une alarme de protection ou une *alarme générale*, »Prot . Alarm«.

Cela signifie que l'acquittement automatique doit être défini séparément pour chaque DEL qui doit être acquittée automatiquement de cette façon.

[Para module / DEL / DEL groupe A / DEL 17] »Mémor.« = « actif, acq. par alarme »			
✓ Une alarme de protection acquitte chaque DEL avec cette valeur de réglage.			

Acquittement collectif (via Smart view ou le tableau)

Remarque : comme indiqué précédemment, l'acquittement via *Smart view* nécessite le réglage [Para module / Acquitter] » *Réin à dist«* = « actif ».

Les commandes directes sont disponibles pour l'acquittement :

[Utilisat / Acquitter] »SSV . Acq System LED«			
✓ Acquitte un état d'avertissement signalé par la DEL Système.			

Remarque : le *Guide de dépannage* répertorie tous les signaux de la DEL Système susceptibles de survenir.

[Utilisat / Acquitter] »Sys . DEL acq«			
✓ Toutes les DEL			
[Utilisat / Acquitter] »Sys . Acq SB«			
	✓ Tous les relais de sortie binaire		

[Utilisat / Acquitter] »Sys . Acq Scada«			
	✓ Tous les signaux SCADA		
[Utilisat / Acquitter] »SG [x] . Acq TripCmd«			
		✓ Acquittement de la commande de déclenchement de	

Remarque: La branche de menu n'affiche pas le nom du module abstrait »SG [x]«. En revanche, la dénomination de l'appareillage de connexion qui a été affecté via la page de contrôle (schéma de ligne simple), soit quelque chose comme « QA1 ». (Voir \Longrightarrow « 5 Schéma de ligne simple ».)

l'appareillage de connexion « SG [x] ».

[Utilisat / Acquitter] »Sys . Ack BO LED Scd TCmd«				
✓ Acquittement de toutes les DEL,	✓ et de tous les relais de sortie binaire,	✓ et de tous les signaux SCADA,	✓ et de toutes les commandes de déclenchement.	

Sur le tableau, le menu [Utilisat / Acquitter] est accessible directement via la touche « C », voir ci-dessous (> « 1.5 Acquittement manuel (en appuyant sur la touche C du tableau) »).

Acquittement manuel (en appuyant sur la touche « C » du tableau)

REMARQUE!

Tant que vous êtes en mode de réglage des paramètres, vous ne pouvez pas effectuer des acquittements manuels via la touche « C » (car en mode de réglage des paramètres, la fonction de cette touche est différente).

En revanche, il est toujours possible d'accéder au menu [Utilisat / Acquitter].

Il est possible d'acquitter la DEL Système, les DEL susceptibles d'être affectées, les signaux SCADA, les relais de sortie binaire et / ou une commande de déclenchement en attente en appuyant sur la touche « C » sur le tableau.

Deux méthodes d'acquittement sont disponibles en cas de pression de la touche « C » :

- Brève pression de la touche : Avec une étape de sélection intermédiaire : En appuyant sur la touche « C » (brièvement), vous accédez au menu [Utilisat / Acquitter]. À partir de ce menu, vous pouvez sélectionner les éléments à acquitter via les touches de fonction programmables (LED, signaux SCADA, relais de sortie binaire, commande de déclenchement ou tous ces éléments, voir ⇒ « 1.5 Acquittement collectif (via Smart view ou le tableau) »). Ensuite, appuyez sur la touche de fonction programmable avec le »symbole représentant une clé«.
- **Pression longue de la touche :** Acquittement immédiat : Les éléments sont acquittés par simple pression (d'une seconde environ) sur la touche « C ».

De plus, vous pouvez configurer les éléments à acquitter en utilisant cette fonction de « longue pression de touche » (voir ci-dessous).

Le paramètre de réglage [Para module / Acquitter] »Acquitter via la touche « C » « détermine les catégories qui doivent être acquittées en utilisant une « longue pression de la touche » « C » :

- « Ne rien acquitter » : seule la « pression courte » est opérationnelle, autrement dit, vous sélectionnez toujours explicitement les éléments à acquitter.
- « Acquitter DEL sans mot de passe » : la « pression longue » acquitte toutes les DEL, sans qu'il soit nécessaire de saisir un mot de passe. (Cette option est l'option par défaut.)
- « Acquitter les DEL » : la « pression longue » acquitte toutes les DEL (seul le mot de passe sera demandé, voir ci-dessous).
- « Acquitter DEL et relais » : la « pression longue » acquitte toutes les DEL et tous les relais de sortie binaire (seul le mot de passe sera demandé, voir ci-dessous).
- « Acquitter tout » : la « pression longue » acquitte tous les éléments mémorisés (seul le mot de passe sera demandé, voir ci-dessous) :
 - Toutes les DEL et
 - toutes les sorties de relais et
 - tous les signaux SCADA mémorisés et
 - la commande déclenchement.

Chaque fois que des DEL sont acquittées, un test des DEL est également exécuté : Toutes les DEL s'allument en rouge pendant une seconde, puis en vert pendant une seconde.

REMARQUE!

Pour tous les types d'acquittement (manuel et collectif) (excepté « Ne rien acquitter » et « Acquitter DEL sans mot de passe »), notez que vous pouvez être invité à entrer le mot de passe du niveau d'accès approprié.

S'il est nécessaire de pouvoir acquitter les relais de sortie binaire, les signaux SCADA et la commande de déclenchement sans avoir à saisir de mot de passe, cela est possible avec un mot de passe vide pour le niveau »Prot-Lv1«. Bien entendu, cela peut présenter un risque éventuel de sécurité, c'est pourquoi cette option doit être utilisée avec prudence! Pour obtenir des informations générales sur les mots de passe et des considérations liées à la sécurité, reportez-vous à « Sécurité ».

1.6 Valeurs de mesure

Lecture des valeurs mesurées

Dans le menu [Utilisat / Valeurs mesurées], les valeurs mesurées et calculées peuvent être affichées. Les valeurs mesurées sont triées par Valeurs standard et Valeurs spéciales (selon le type d'appareil).

Options d'affichage

Le menu [Para module / Affich mesures] propose des options permettant de modifier l'affichage des valeurs mesurées.

Étalonnage des valeurs mesurées

À l'aide du paramètre [Para module / Affich mesures / Paramètres généraux] »Échelle«, vous pouvez déterminer comment les valeurs mesurées doivent s'afficher au niveau de l'IHM et dans Smart view :

- Vals par unité
- · Vals prims
- Vals secs

Niveau de coupure

Pour supprimer le bruit des valeurs mesurées proches de zéro, vous pouvez définir des niveaux de coupure. Grâce aux niveaux de coupure, les quantités de mesure proches de zéro affichent la valeur zéro. Ces paramètres sont sans effet sur les valeurs enregistrées.

Angles de phase

Les angles de phase du courant et les phaseurs de tension sont déterminés à partir du composant fondamental et sont toujours relatifs à un phaseur de référence particulier.

Le phaseur de référence est généralement le premier canal de tension, autrement dit VL1 ou VL12 (suivant lequel est mesuré directement, voir également le paramètre de réglage [para champ / TT] »TT con«.)

Si, néanmoins, l'amplitude du phaseur de référence est trop basse, le canal de mesure suivant possible est utilisé comme phaseur de référence, autrement dit, VL2 ou VL23), etc.

Si les trois tensions de phase sont trop basses ou si le dispositif de protection n'est pas doté d'une fonction de mesure de tension, la première entrée de mesure du courant IL1 (de la première carte de mesure du courant, soit empl X3) est utilisée comme phaseur de référence. Si celle-ci n'est pas non plus opérationnelle, le MRI4 poursuit avec IL2, IL3, puis avec la première entrée de mesure de la deuxième carte de mesure du courant, si elle existe, etc.

Par définition, le phaseur de référence a un angle de phase de 0°.

1.7 Statistiques

Le menu [Utilisat / Statistiq] affiche les valeurs minimum, maximum et moyennes des grandeurs mesurées et calculées.

1.7.1 Configuration des valeurs minimum et maximum

Le calcul des valeurs minimum et maximum est (re)démarré lorsque les événements suivants surviennent :

- quand un signal de réinitialisation est activé (Min/Max)
- quand le dispositif est redémarré
- après un changement de configuration

Valeurs minimum et maximum de réinitialisation (valeurs crêtes/pointeurs)

Menu [Para module / Statistiq / Min / Max]

»ResFc Min« : réinitialisation de toutes les valeurs minimum.

»ResFc Max« : réinitialisation de toutes les valeurs maximum.

Un signal de réinitialisation (par ex., entrée numérique) peut être affecté à chacun de ces deux paramètres.

Les valeurs minimum et maximum sont réinitialisées à l'aide du front montant du signal de réinitialisation correspondant.

Affichage des valeurs minimum

Dans le menu [Utilisat / Statistiq / Min]

Affichage des valeurs maximum

Dans le menu [Utilisat / Statistiq / Max]

1.7.2 Configuration du calcul de la valeur moyenne

1.7.2.1 Configuration du calcul de la valeur moyenne basée sur le courant*

*= la disponibilité dépend du code de module commandé.

Configuration de l'intervalle de calcul des valeurs moyennes et crêtes

[Para module / Statistiq / Demand / Dem courant] »Fenêt demand I« =

- « glisst » : calcul de la moyenne selon la période de glissement.
- « const »: le calcul de la moyenne est réinitialisé à la fin de la période, c'est-à-dire au début de la période suivante.

Options de démarrage pour les valeurs moyennes et les valeurs crêtes basées sur le courant

[Para module / Statistiq / Demand / Dem courant] »Dém demand I:« =

- « Durée » : constante ou période de glissement. La durée de la période est configurable via »Durée demand I«.
- « StartFct »: Les valeurs moyennes sont calculées en fonction de la période de temps entre deux fronts montants d'un signal qui a été affecté au paramètre »Dém demand I Fc: «.

Réinitialisation des valeurs moyennes et des valeurs crêtes basées sur le courant

Réinitialisation immédiate via le contrôle direct :

[Utilisat / Réini] »ResFc I Demand« : réinitialisation de toutes les valeurs.

Il est également possible d'affecter un signal de réinitialisation (par ex., une entrée numérique) au paramètre [Para module / Statistiq / Demand / Dem courant] »ResFc I Demand«

Dans ce cas, les valeurs sont réinitialisées à l'aide du front montant du signal de réinitialisation.

Affichage des valeurs moyennes et des valeurs crêtes basées sur le courant

Dans le menu [Utilisat / Statistiq / Demand]

Option de déclenchement (commande) pour limiter la demande de courant moyenne

Reportez-vous à ⊨> « Alarmes réseau ».

1.8 Smart view

Smart view est une suite logicielle de paramétrage et d'évaluation. Un Manuel technique propre lui est consacré.

- Paramétrage à l'aide de menus et contrôles de validité
- Configuration hors ligne de tous les types de relais
- Lecture et évaluation de données statistiques et de valeurs de mesure
- · Aide à la mise en service
- Affichage de l'état de l'appareil
- Analyse des défauts via un enregistreur d'événements, de défauts et de formes d'onde

Pour une configuration complète du MRI4, il est recommandé d'utiliser la suite logicielle de paramétrage et d'évaluation *Smart view*, car l'exécution d'un nombre important de réglages via le tableau de commande de l'appareil peut s'avérer trop fastidieux.

Pour utiliser *Smart view*, un PC équipé du système d'exploitation Windows (7, 8.x ou 10) est nécessaire.

De plus, un câble de connexion est requis pour établir une connexion direct entre le MRI4 et le PC. Ce câble doit se connecter à un connecteur USB de type « Mini B » à l'extrémité du MRI4 (consultez également \longrightarrow « Interface PC – X120 »). Il est également possible d'établir une connexion via Ethernet (TCP/IP), si les autorisations réseau le permettent, si le MRI4 a été commandé avec une interface Ethernet (\longrightarrow « Codes des protocoles de communication », \longrightarrow « Formulaire de commande du dispositif ») et si les réglages TCP/IP requis (adresse IP, masque de sous-réseau, passerelle) ont déjà été effectués via le tableau de commande.

Communication sécurisée

Pour des raisons de sécurité, il est possible de restreindre ou désactiver la connexion entre *Smart view* et l'appareil MRI4. De plus, une connexion est établie uniquement après la saisie du mot de passe de connexion. Pour plus de détails, consultez le chapitre Sécurité, $\sqsubseteq >$ « Mots de passe de connexion, accès Smart view ».

1.9 DataVisualizer

DataVisualizer est un logiciel de visualisation des événements et des formes d'onde. Il est installé automatiquement avec *Smart view*. Il peut être également utilisé comme un lecteur de fichier COMTRADE autonome.

- Ouvrez et consultez les formes d'onde téléchargées.
- Personnalisez l'apparence des canaux de formes d'onde et des vues (vous pouvez notamment superposer des canaux ou encore effectuer des zooms).
- Analysez les points de données échantillon par échantillon et alignez les formes d'onde affichées (canaux) avec la logique de relais interne enregistrée.
- Enregistrez les données affichées à l'écran (instantanés) et imprimez-les pour vos rapports.

1 MRI4 - Protection de ligne directionnelle

1.9 DataVisualizer

- Ouvrez des fichiers normalisés COMTRADE provenant d'autres dispositifs électroniques intelligents.
- Convertissez les fichiers de formes d'onde téléchargés au format COMTRADE grâce à la fonction « Exporter ».

2 Matériel

2.1 Schémas cotés

Vue de trois côtés - 19 pouces

REMARQUE!

Selon la méthode de connexion du système SCADA utilisée, l'espace requis (profondeur) est différent. Si par exemple, un connecteur D-Sub est utilisé, il doit être ajouté à la dimension de profondeur.

REMARQUE!

La vue de trois côtés présentée dans cette section concerne exclusivement les dispositifs 19 pouces.

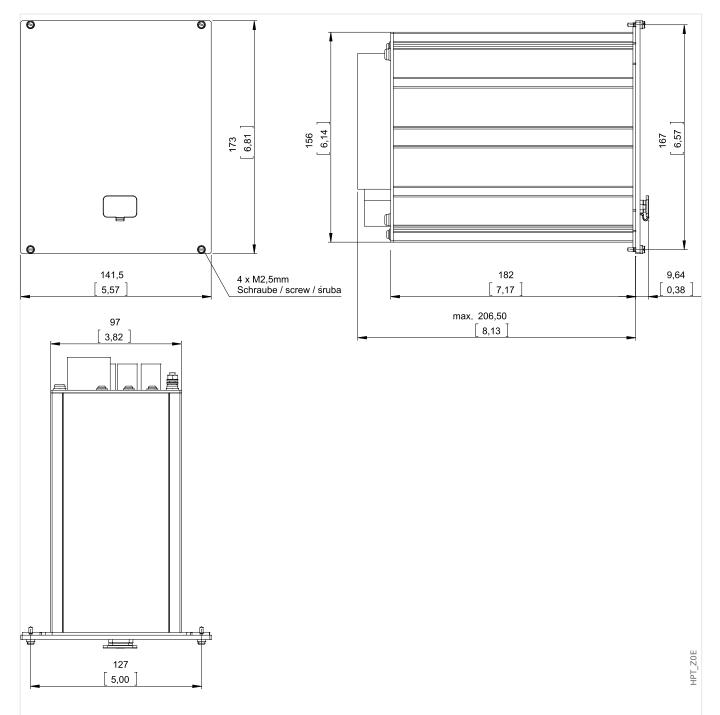


Fig. 4: Vue de trois côtés du boîtier B1 (modules 19 pouces) (Toutes les dimensions sont indiquées en millimètres (mm), à l'exception des dimensions indiquées entre crochets [pouces]).

Vue de trois côtés - Version à 8 boutons

REMARQUE!

Selon la méthode de connexion du système SCADA utilisée, l'espace requis (profondeur) est différent. Si par exemple, un connecteur D-Sub est utilisé, il doit être ajouté à la dimension de profondeur.

REMARQUE!

Le schéma d'installation présenté dans cette section est valide uniquement pour les modules dotés de 8 boutons sur le panneau avant de l'IHM. (Boutons INFO, C, OK, CTRL et 4 touches de fonction programmables (boutons poussoirs)).

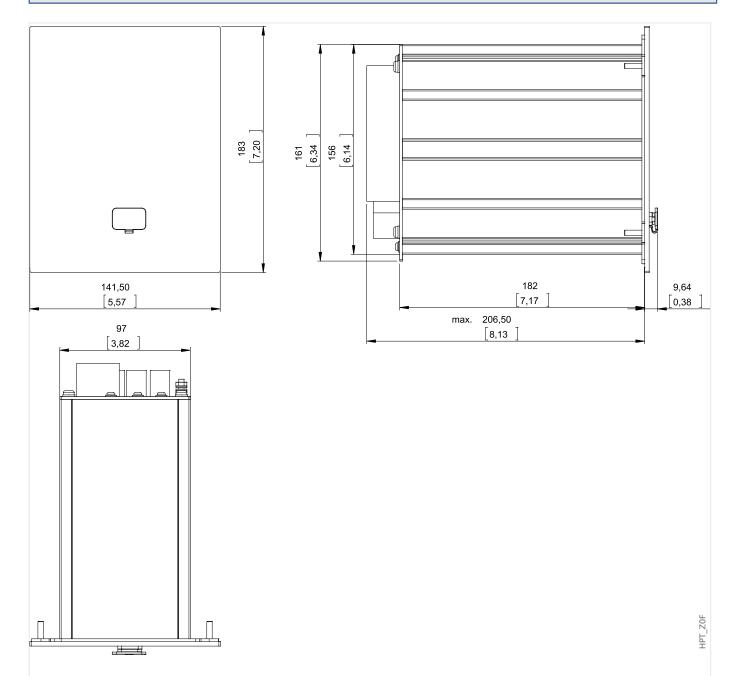


Fig. 5: Vue de trois côtés du boîtier B1 (modules à 8 boutons) (Toutes les dimensions sont indiquées en millimètres (mm), à l'exception des dimensions indiquées entre crochets [pouces]).

Schéma d'installation - Version à 8 boutons

AVERTISSEMENT!

Même lorsque la tension auxiliaire est coupée, des tensions dangereuses peuvent demeurer sur les connexions de l'appareil.

REMARQUE!

Le schéma d'installation présenté dans cette section est valide uniquement pour les modules dotés de 8 boutons sur le panneau avant de l'IHM. (Boutons INFO, C, OK, CTRL et 4 touches de fonction programmables (boutons poussoirs)).

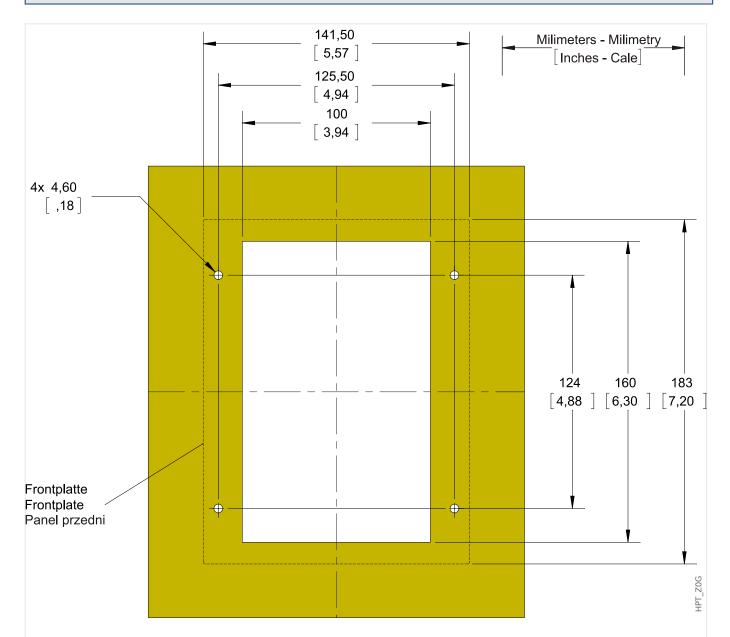


Fig. 6: Découpe de porte du boîtier B1 (Version à 8 boutons) (Toutes les dimensions sont indiquées en millimètres (mm), à l'exception des dimensions indiquées entre crochets [pouces]).

PRUDENCE!

Prenez garde. Ne serrez pas trop les écrous de fixation du relais (M4, pas métrique de 4 mm). Vérifiez le couple à l'aide d'une clé dynamométrique (1,7 Nm [15 In-lb]). Un serrage excessif des écrous de fixation risque d'entraîner des blessures corporelles ou d'endommager le relais.

2.2 MRI4 - Installation et câblage

2.2.1 Mise à la terre

AVERTISSEMENT!

Le boîtier doit être soigneusement relié à la terre. Connectez un câble de masse (mise à la terre de protection de calibre 4 à 6 mm2 [AWG 11–9], couple de serrage : 1,7 Nm [15 lb·in]) au boîtier à l'aide de la vis marquée avec le symbole de masse (à l'arrière de l'appareil).

En outre, une connexion de terre séparée est requise pour la carte d'alimentation (terre fonctionnelle de calibre 2,5 mm au minimum2 [\leq AWG 13], couple de serrage : 0,56 – 0,79 Nm [5–7 lb·in]). Voir le schéma « Marquage des bornes » à la section « EN-4 X – Alimentation et entrées numériques » pour identifier la borne concernée.

Toutes les connexions de masse (mise à la terre de protection et terre fonctionnelle) doivent être de faible inductance, c'est-à-dire aussi courtes que possible. En outre, les normes nationales, si applicables, doivent être respectées.

PRUDENCE!

Les appareils sont très sensibles aux décharges électrostatiques.

2.2.2 Présentation des emplacements - Groupes complets

AVERTISSEMENT!

Conformément aux exigences du client, les dispositifs sont utilisés de manière modulaire (en conformité avec la référence commerciale). Un groupe d'assemblage peut être intégré dans chaque emplacement. L'affection des bornes de chaque groupe est présentée ci-dessous. L'emplacement d'installation exact des différents modules est indiqué sur le schéma de connexion fixé sur le dessus de votre appareil.

Partie avant

La partie avant du MRI4 est équipée d'une interface USB, qui peut être utilisée afin d'établir la connexion avec le logiciel de paramétrage Smart view.

• empl X120

Partie arrière

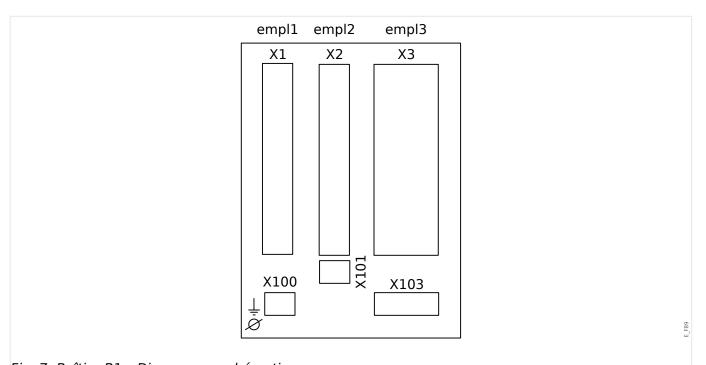


Fig. 7: Boîtier B1 - Diagramme schématique

empl X1	empl X2	empl X3
empl X100	empl X101	

2.2.3 Codes des protocoles de communication

Le tableau suivant fournit la liste des lettres « Options de communication » à partir de la référence commerciale (voir \longrightarrow « Formulaire de commande du dispositif »), ainsi que des interfaces et protocoles de communication correspondants qui sont disponibles avec cette option.

#	Interface	Protocoles de communication disponibles
A	_	Sans protocole
В	RS485 / bornes	Modbus RTU, CEI 60870-5-103, DNP3.0 RTU
		⊫⊳ « CEI 60870-5-103 »
	1 2 3 4 5 6	⊫⊳ « DNP3 »
С	Ethernet 100 MB / RJ45	Modbus TCP, DNP3.0 TCP/UDP, CEI 60870-5-104
		⇒ « DNP3 »
		└─> « CEI 60870-5-104 »
D	fibre optique / connecteur ST	Profibus-DP
	> « Profibus DP/ Modbus® RTU / CEI 60870-5-103 via fibre optique »	
	RxD TxD	
E	RS485 / D-SUB	Profibus-DP
	□> « Profibus DP via un connecteur D- SUB »	
	30B #	
	O:::::O	
F	fibre optique / connecteur ST	Modbus RTU, CEI 60870-5-103, DNP3.0 RTU
	> « Profibus DP/ Modbus® RTU / CEI 60870-5-103 via fibre optique »	
		└─> « CEI 60870-5-103 »
		⊫⊳ « DNP3 »
G	RS485 / D-SUB	Modbus RTU, CEI 60870-5-103, DNP3.0 RTU
J		⇒ « Modbus® »
	un connecteur D-SUB »	⇒ « CEI 60870-5-103 »
		□> « DNP3 »

#	Interface	Protocoles de communication disponibles
	O ::::: O	
Н	Ethernet 100MB / RJ45 Separate with the separat	CEI 61850, Modbus TCP, DNP3.0 TCP/UDP, CEI 60870-5-104 > « CEI 61850 » > « Modbus® » > « DNP3 » < CEI 60870-5-104 »
I	RS485 / bornes We Modbus® RTU / CEI 60870-5-103 via un connecteur RS485 » RS485 / CEI 60870-5-103 via un connecteur RS485 » Ethernet 100 MB / RJ45 We Ethernet - RJ45 »	CEI 60870-5-103, Modbus RTU, DNP3.0 RTU Modbus TCP, DNP3.0 TCP/UDP, CEI 60870-5-104 Nodbus CEI 60870-5-103 » Nodbus No
K	Ethernet optique 100MB / connecteur duplex LC	CEI 61850, Modbus TCP, DNP3.0 TCP/UDP, CEI 60870-5-104 > « CEI 61850 » « Modbus® » > « DNP3 » « CEI 60870-5-104 »
L	Ethernet optique 100MB / connecteur duplex LC « Ethernet / TCP/IP via fibre optique » RXD TXD	Modbus TCP, DNP3.0 TCP/UDP, CEI 60870-5-104 □> « Modbus® » □> « DNP3 » □> « CEI 60870-5-104 »
Т	RS485 / bornes	CEI 60870-5-103, Modbus RTU, DNP3.0 RTU CEI 61850, Modbus TCP, DNP3.0 TCP/UDP, CEI 60870-5-104 CEI 60870-5-103 »

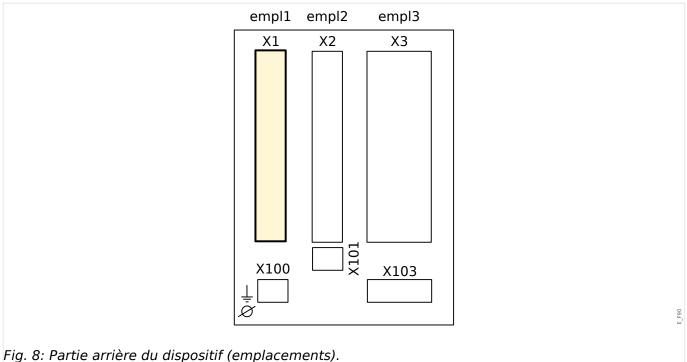
#	Interface	Protocoles de communication disponibles
		⊫> « Modbus® »
	1 2 3 4 5 6	⊫⊳ « DNP3 »
	Ethernet 100 MB / RJ45	└──> « CEI 60870-5-104 »
	⊫⊳ « Ethernet - RJ45 »	

2.2.4 Légende des schémas de câblage

Cette légende répertorie les désignations de divers types de modules, par exemple protection de transformateur, protection de moteur, protection de générateur, etc. Il se peut aussi que certaines désignations ne figurent pas sur le schéma de câblage de votre appareil.

- FE Connexion de terre fonctionnelle (voir ⊨> « Mise à la terre »)
- Alimentation Connexion de l'alimentation auxiliaire
- IL1 Entrée L1 de courant de phase (désignée dans certains pays « IA »)
- IL2 Entrée L2 de courant de phase (désignée dans certains pays « IB »)
- IL3 Entrée L3 de courant de phase (désignée dans certains pays « IC »)
- IG Entrée de courant à la terre
- IL1 W1 ... IL3 W1 Entrée L1 à L3 de courant de phase, côté d'enroulement 1
- IL1 W2 ... IL3 W2 Entrée L1 à L3 de courant de phase, côté d'enroulement 2
- IG W1 ... IG W2 Entrée de courant à la terre, côté d'enroulement 1/2
- VL1 Tension phase/neutre L1 (désignée dans certains pays « UA »)
- VL2 Tension phase/neutre L2 (désignée dans certains pays « UB »)
- VL3 Tension phase/neutre L3 (désignée dans certains pays « UC »)
- VL12 Tension phase/phase U12 (désignée dans certains pays « UAB »)
- VL23 Tension phase/phase U23 (désignée dans certains pays « UBC »)
- VL31 Tension phase/phase U31 (désignée dans certains pays « UCA »)
- VX Quatrième entrée de mesure de tension pour mesurer la tension résiduelle ou pour vérifier la synchronisation
- SB Relais de sortie binaire
- NO / NC Sortie contact, normalement ouvert / fermé
- EN Entrée numérique
- COM Connexion commune des entrées numériques
- Out+, AnOut Sortie analogique + (0/4 à 20 mA ou 0 à 10 V)
- In-, AnIn Entrée analogique (0/4 à 20 mA ou 0 à 10 V)
- n.f. Non connecté(e)
- NE PAS UTILISER Ne pas utiliser
- SC Contact d'auto-surveillance
- GND Terre
- Blind HF Blindage du câble de connexion

2 Matériel


2.2 MRI4 - Installation et câblage

• Fib optique — Connexion fibre optique

2.3 **Emplacement X1**

• Carte d'alimentation avec entrées numériques

Le type de carte d'alimentation et le nombre d'entrées numériques utilisées sur cet emplacement dépendent du type de dispositif commandé. Les diverses variantes proposent des fonctions différentes.

Groupes complets disponibles sur cet emplacement :

• EN-8 X1 : ce groupe complet comprend une unité d'alimentation longue portée, 2 entrées numériques non groupées et 6 entrées numériques (groupées).

REMARQUE!

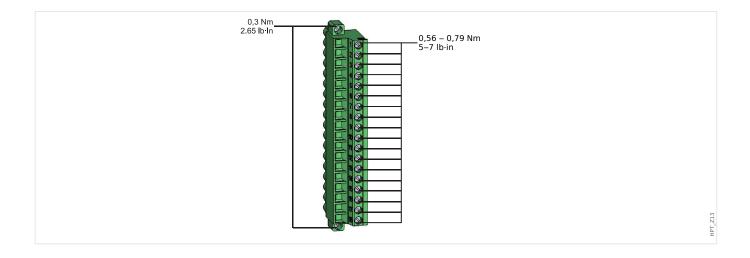
Les combinaisons disponibles peuvent être obtenues à l'aide du code de commande.

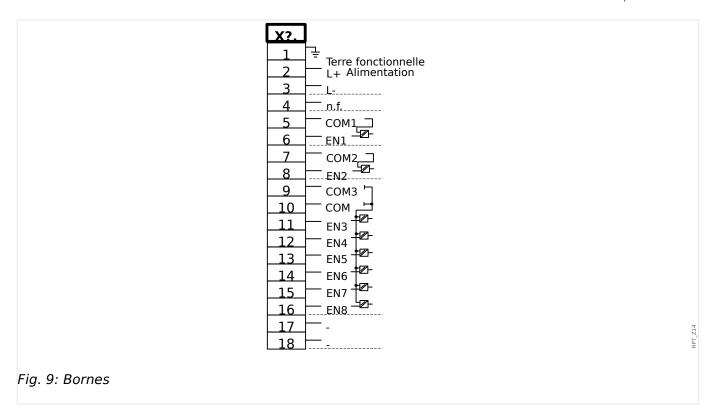
2.3.1 DI8-X - Alimentation et entrées numériques

AVERTISSEMENT!

En complément de la mise à la terre du boîtier (mise à la terre de protection, voir $\stackrel{\longleftarrow}{}$ « Mise à la terre »), un câble de masse supplémentaire est requis pour la carte d'alimentation (terre fonctionnelle de calibre 2,5 mm2 au minimum [\leq AWG 13], couple de serrage : 0,56 – 0,79 Nm [5–7 lb•in]).

Connectez ce câble de masse à la borne numéro 1, voir « Fig. 9 » ci-dessous.


Toutes les connexions de masse (mise à la terre de protection et terre fonctionnelle) doivent être de faible inductance, c'est-à-dire aussi courtes que possible. En outre, les normes nationales, si applicables, doivent être respectées.


AVERTISSEMENT!

Vérifiez que les couples de serrage sont corrects (voir le schéma).

Sections de raccordement : min. 0,25 mm² (AWG 23) ... max. 2,5 mm² (AWG 14) avec ou sans embout.

Ce groupe d'assemblage comprend :

- une unité d'alimentation à longue portée
- 6 entrées numériques groupées

- 2 entrées numériques non groupées
- Connecteur pour la terre fonctionnelle (qui doit être connecté, voir le message « Avertissement » ci-dessus)

Tension d'alimentation auxiliaire

- Les entrées de tension auxiliaire (unité d'alimentation longue portée) sont non polarisées. Le module peut être alimenté avec une tension CA ou CC.
- 24 ... 270 Ucc / 48 ... 230 Uca (-20/+10%)
- La tension d'alimentation doit être protégée par un fusible : 6.3 A temporisé.

(Ce fusible ne doit pas être remplacé par l'utilisateur, mais il est nécessaire pour une utilisation sûre.)

La tension d'alimentation doit être protégée par un fusible externe :

- fusible miniature temporisé 2,5 A, 5 x 20 mm (environ 1/5 po x 0,8 po) selon la norme CEI 60127
- fusible miniature temporisé 3,5 A, 6,3 x 32 mm (environ 1/4 po x 1 ¼ po) selon la norme UL 248-14

Entrées numériques

Le module est fourni avec 8 entrées numériques groupées.

Consultez le « Manuel de référence de MRI4 » (MRI4-3.6-FR-REF, document distinct) pour obtenir la liste des affectations de signal disponibles.

PRUDENCE!

Lorsque vous utilisez une alimentation CC, le potentiel négatif doit être connecté à la borne commune (COM1, COM2, COM3 - consultez le marquage de la borne).

PRUDENCE!

Pour chaque groupe d'entrées numériques, la plage d'entrée de tension associée doit être paramétrée. Des seuils de commutation incorrects peuvent entraîner des dysfonctionnements et des transferts de signaux erronés.

Les entrées numériques sont fournies avec différents seuils de commutation (réglables via le paramètre [Para module / Entr numér / Empl EN Xx / Group y] »Tension nom«). Pour chaque groupe, les seuils de commutation suivants peuvent être définis :

- « 24 VCC »
- « 48 VCC »
- « 60 VCC »
- « 110 VCC »

- « 230 VCC »
- « 110 VCA »
- « 230 VCA »

Si une tension supérieure à 80 % du seuil de commutation défini est appliquée sur l'entrée numérique, le changement d'état est reconnu (physiquement « 1 »). Si la tension est inférieure à 40 % du seuil de commutation défini, le module détecte physiquement la valeur « 0 ».

2.4 Emplacement X2

- · Carte de sortie relais
- Contact de surveillance (SC)

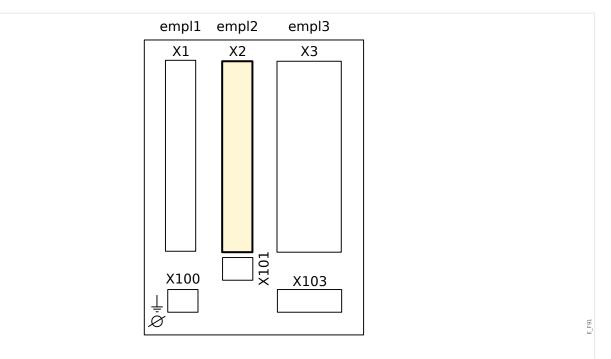


Fig. 11: Partie arrière du dispositif (emplacements).

Le type de carte de cet emplacement dépend du type de dispositif commandé. Les diverses variantes proposent des fonctions différentes.

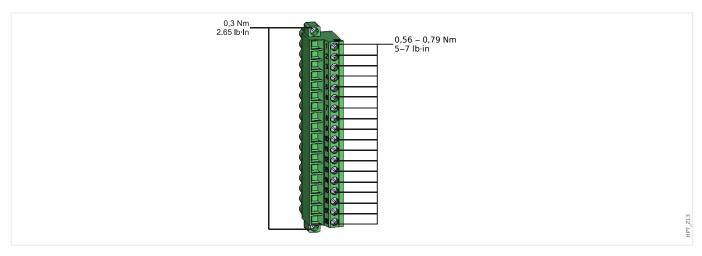
Groupes complets disponibles sur cet emplacement :

• OR5 : groupe complet avec 5 relais de sortie + 1 contact de surveillance.

Tous les relais de sortie sont des contacts à bascule (forme C).

REMARQUE!

Les combinaisons disponibles peuvent être obtenues à l'aide du code de commande.


2.4.1 BO-5 X - Groupe complet avec 5 relais de sortie binaire + 1 contact système

AVERTISSEMENT!

Vérifiez que les couples de serrage sont corrects (voir le schéma).

Sections de raccordement : min. $0,25~\text{mm}^2$ (AWG 23) ... max. $2,5~\text{mm}^2$ (AWG 14) avec ou sans embout.

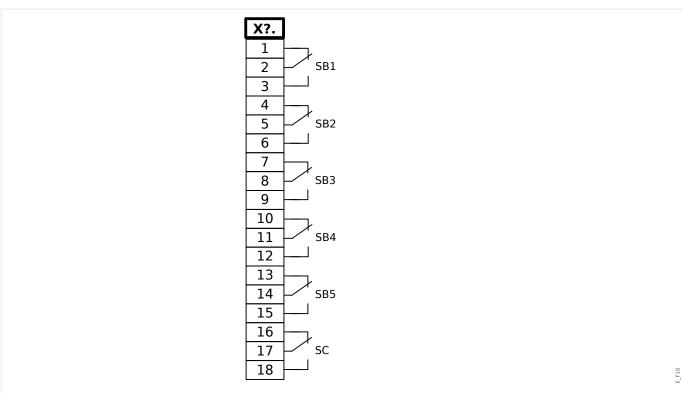
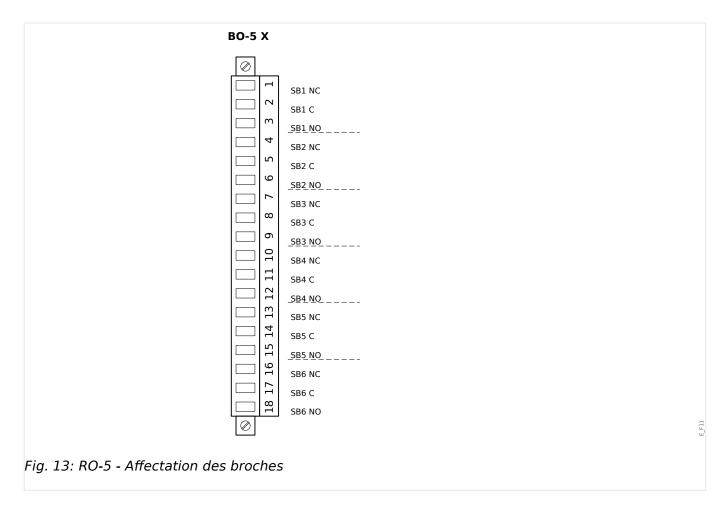
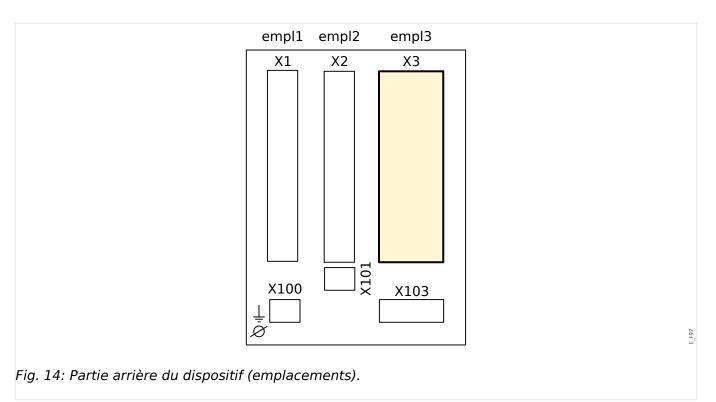



Fig. 12: RO-5 - Marquage des bornes

Relais de sortie binaire

Les relais de sortie binaire sont des contacts libres de potentiel. L'affectation des relais de sortie est décrite dans \Longrightarrow « Paramètres de relais de sortie ». Consultez le « Manuel de référence de MRI4 » (document distinct) pour obtenir la liste des signaux pouvant être affectés.

PRUDENCE!


Tenez compte de la capacité de transport de courant des sorties de relais. Reportez-vous aux données techniques (> « Données techniques »).

Contact d'auto-surveillance

Le contact d'auto-surveillance (« SC ») n'est pas configurable. Il s'agit d'un contact à bascule (forme C) qui est excité lorsqu'aucun défaut interne n'est détecté dans le dispositif. À l'amorçage du dispositif, le relais « SC » n'est pas excité (non alimenté). Dès que le système est démarré correctement (et que la protection est active), il est excité et la DEL assignée réagit en fonction (reportez-vous au chapitre « Auto-surveillance »).

2.5 Emplacement X3

• TC - Entrées de mesure du transformateur du courant

Groupes complets disponibles sur cet emplacement :

- TI : carte d'entrée de mesure de courant de phase et à la terre, sensibilité standard.
- TIs: carte d'entrée de mesure de courant de phase et à la terre avec des entrées de courant de terre sensible. Les données techniques de l'entrée de mesure à la terre sensible sont différentes des données techniques des entrées de mesure de courant de phase. Reportez-vous au chapitre des données techniques (Données techniques »).

2.5.1 TI - Carte d'entrée de mesure de courant de phase standard et à la terre

Cette carte de mesure est dotée de 4 entrées de mesure du courant : trois pour mesurer les courants de phase et une pour mesurer le courant à la terre. Chaque entrée de mesure de courant a une entrée de mesure 1 A et 5 A.

L'entrée de mesure du courant à la terre peut être connectée à un transformateur de courant de type filaire ou bien il est possible de connecter la somme des chemins de courant du transformateur de courant de phase à cette entrée (connexion Holmgreen).

DANGER!

Les transformateurs de courant doivent être mis à la terre sur leur côté secondaire.

DANGER!

L'interruption des circuits secondaires des transformateurs de courant peut générer des tensions dangereuses.

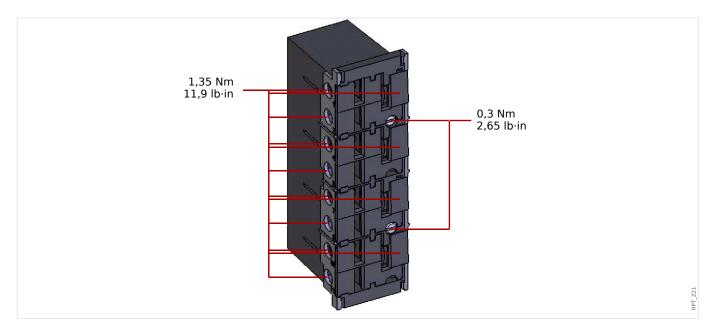
Le côté secondaire des transformateurs de courant doit être court-circuités avant que le circuit de courant du module ne soit ouvert.

DANGER!

Les entrées de mesure de courant ne peuvent être reliées qu'à des transformateurs de mesure de courant (avec séparation galvanique).

AVERTISSEMENT!

- Ne permutez pas les entrées (1 A/5 A)
- Assurez-vous que les rapports de transformation et la puissance des transformateurs sont correctement étalonnés. Si l'étalonnage des transformateurs n'est pas correct (surévalué), les conditions de fonctionnement normal peuvent ne pas être satisfaites. La valeur d'excitation de l'unité de mesure atteint approximativement 3 % du courant nominal du dispositif. Les transformateurs ont donc besoin d'un courant plus grand que 3 % du courant nominal pour assurer une précision suffisante. Exemple: Pour un transformateur 600 A (courant primaire), tous les courants inférieurs à 18 A ne peuvent plus être détectés.
- Une surcharge peut entraîner la destruction des entrées de mesure ou des signaux intempestifs. Une surcharge signifie qu'en cas de court-circuit, la capacité de transport du courant des entrées de mesure peut être dépassée.


AVERTISSEMENT!

Vérifiez que les couples de serrage sont corrects (voir le schéma).

Sections de raccordement :

- 1 x ou 2 x 2,5 mm² (2 x AWG 14) avec embout ou :
- 1 x ou 2 x 4 mm² (2 x AWG 12) avec manchon de câble ou de contournement ou :
- 1 x ou 2 x 6 mm² (2 x AWG 10) avec manchon de câble ou de contournement.

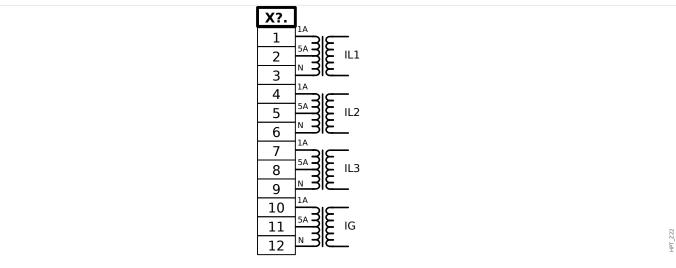
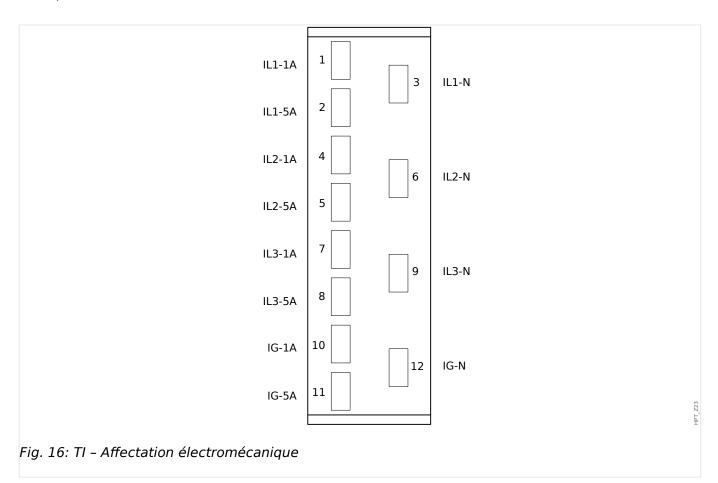



Fig. 15: TI - Marquage des bornes

2.5.2 TIs - Carte de mesure du courant de phase et du courant à la terre sensible

La carte de mesure du courant de phase et du courant de terre sensible « TIs » est dotée de 4 entrées de mesure du courant : trois pour mesurer les courants de phase et une pour mesurer le courant à la terre.

Les données techniques de l'entrée de mesure à la terre sensible sont différentes des données techniques des entrées de mesure de courant de phase. Reportez-vous au chapitre des données techniques (> « Données techniques »).

L'entrée de mesure du courant à la terre peut être connectée à un transformateur de courant de type filaire ou bien il est possible de connecter la somme des chemins de courant du transformateur de courant de phase à cette entrée (connexion Holmgreen).

DANGER!

Les transformateurs de courant doivent être mis à la terre sur leur côté secondaire.

DANGER!

L'interruption des circuits secondaires des transformateurs de courant peut générer des tensions dangereuses.

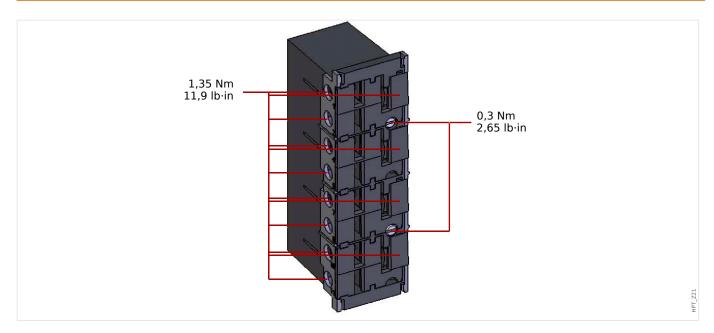
Le côté secondaire des transformateurs de courant doit être court-circuités avant que le circuit de courant du module ne soit ouvert.

DANGER!

Les entrées de mesure de courant ne peuvent être reliées qu'à des transformateurs de mesure de courant (avec séparation galvanique).

AVERTISSEMENT!

- Ne permutez pas les entrées (1 A/5 A)
- Assurez-vous que les rapports de transformation et la puissance des transformateurs sont correctement étalonnés. Si l'étalonnage des transformateurs n'est pas correct (surévalué), les conditions de fonctionnement normal peuvent ne pas être satisfaites. La valeur d'excitation de l'unité de mesure atteint approximativement 3 % du courant nominal du dispositif. Les transformateurs ont donc besoin d'un courant plus grand que 3 % du courant nominal pour assurer une précision suffisante. Exemple : Pour un transformateur 600 A (courant primaire), tous les courants inférieurs à 18 A ne peuvent plus être détectés.
- Une surcharge peut entraîner la destruction des entrées de mesure ou des signaux intempestifs. Une surcharge signifie qu'en cas de court-circuit, la capacité de transport du courant des entrées de mesure peut être dépassée.


AVERTISSEMENT!

Vérifiez que les couples de serrage sont corrects (voir le schéma).

Sections de raccordement :

- 1 x ou 2 x 2,5 mm² (2 x AWG 14) avec embout ou :
- 1 x ou 2 x 4 mm² (2 x AWG 12) avec manchon de câble ou de contournement ou :
- 1 x ou 2 x 6 mm² (2 x AWG 10) avec manchon de câble ou de contournement.

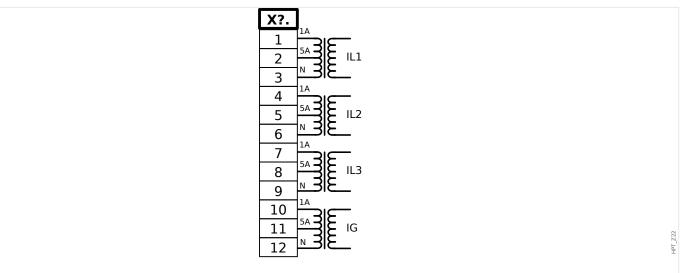
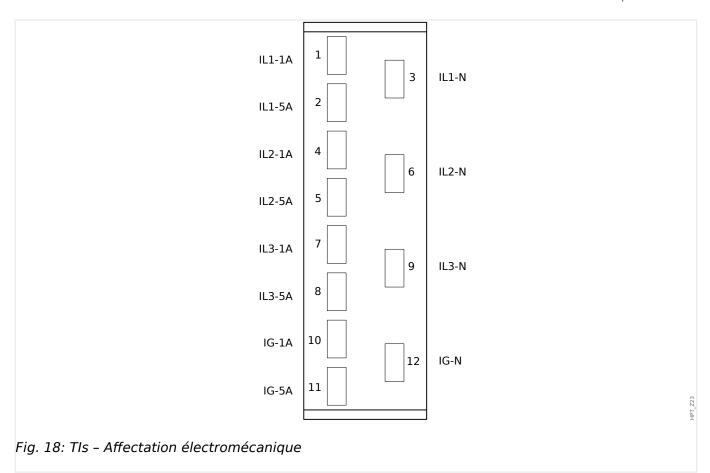



Fig. 17: TIs - Bornes

2.5.3 Transformateurs de courant (CT)

Vérifiez le sens d'installation.

DANGER!

Il est impératif que les parties secondaires des transformateurs de mesure soient mises à la terre.

DANGER!

Les entrées de mesure de courant ne peuvent être reliées qu'à des transformateurs de mesure de courant (avec séparation galvanique).

AVERTISSEMENT!

Les circuits secondaires TC doivent toujours être peu chargés ou court-circuités pendant le fonctionnement.

REMARQUE!

Pour la fonction de détection du courant et de la tension, un transformateur externe de courant et de tension câblé approprié doit être utilisé, en fonction des mesures d'entrée requises. Ces dispositifs fournissent la fonctionnalité d'isolation nécessaire.

Toutes les entrées de mesure du courant peuvent être fournies avec une tension nominale de 1 A ou 5 A. Vérifiez que le câblage est correct.

2.5.3.1 Mesure du courant sensible à la terre

Le bon usage des entrées de mesure du courant sensible correspond à la mesure de petits courants susceptibles de se produire sur les réseaux reliés à la terre isolés et à haute résistance.

En raison de la sensibilité de ces entrées de mesure, ne les utilisez pas pour mesurer des courants court-circuités reliés à la terre susceptibles de se produire sur les réseaux directement mis à la terre.

Si une entrée de mesure sensible doit être utilisée pour mesurer des courants courtcircuités reliés à la terre, il faut veiller à ce que les courants de mesure soient transformés par un transformateur adapté en fonction des données techniques du dispositif de protection.

2.5.3.2 Exemples de connexion de transformateur de courant

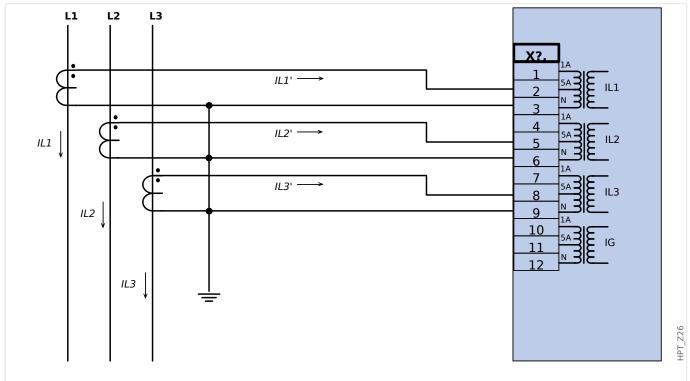


Fig. 19: Mesure de courant triphasé; In sec = 5 A

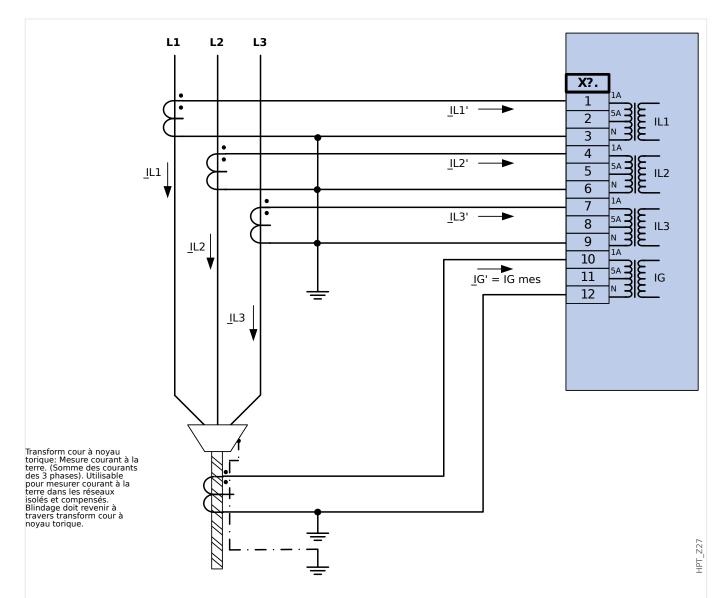


Fig. 20: Mesure de courant triphasé; In sec = 1 A Mesure courant via transform cour à câble; IGnom sec = 1 A

AVERTISSEMENT!

Le blindage à l'extrémité démontée de la ligne doit traverser le transform de courant à câble ~et raccordé à la terre du côté du câble.

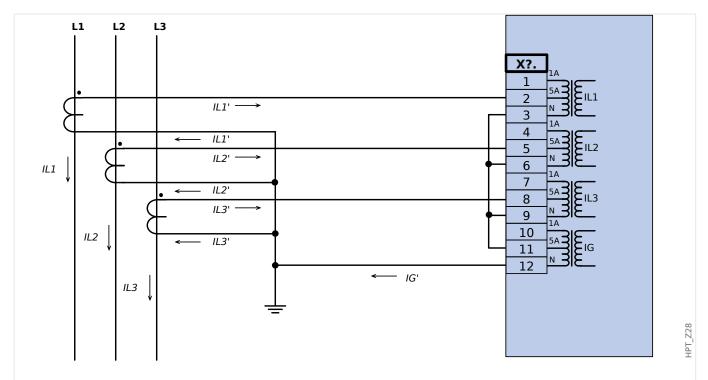


Fig. 21: Mesure de courant triphasé; In sec = 5 A Mesure courant via connexion de Holmgreen; $IGnom\ sec = 5$ A

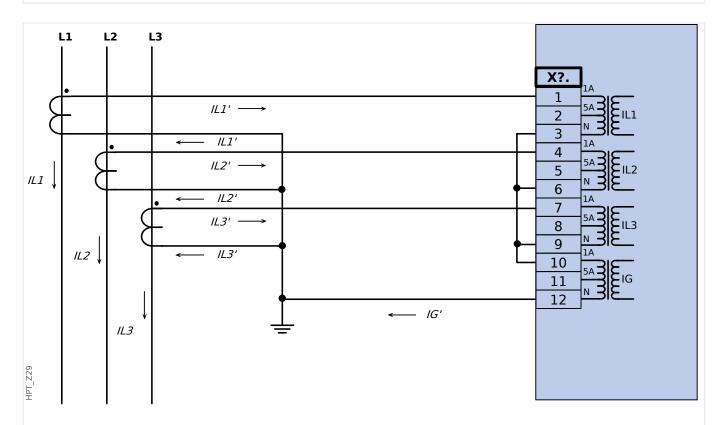


Fig. 22: Mesure de courant triphasé; In sec = 1 A Mesure courant via connexion de Holmgreen; $IGnom\ sec = 1$ A

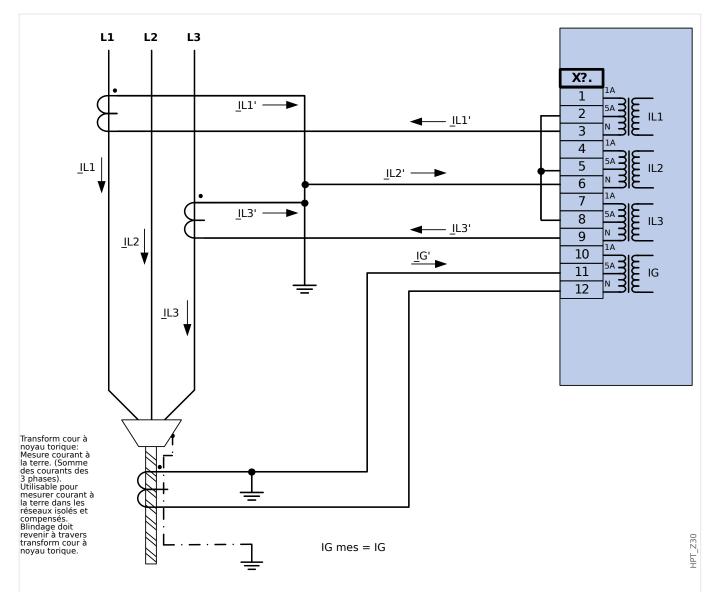


Fig. 23: Mesure de courant biphasé (triangle ouvert) ; In sec = 5 A Mesure courant via transform cour à câble; IGnom sec = 5 A

AVERTISSEMENT!

Le blindage à l'extrémité démontée de la ligne doit traverser le transform de courant à câble ~et raccordé à la terre du côté du câble.

- N'utilisez pas IG calc ! Utilisez plutôt IG mes.
- Le courant mesuré IL2 n'est pas valide pour des conditions asymétriques.

Par conséquent, les fonctions de protection qui utilisent IL2 (ou des valeurs dérivées de IL2, par ex., I1, I2) risquent de ne pas fonctionner normalement.

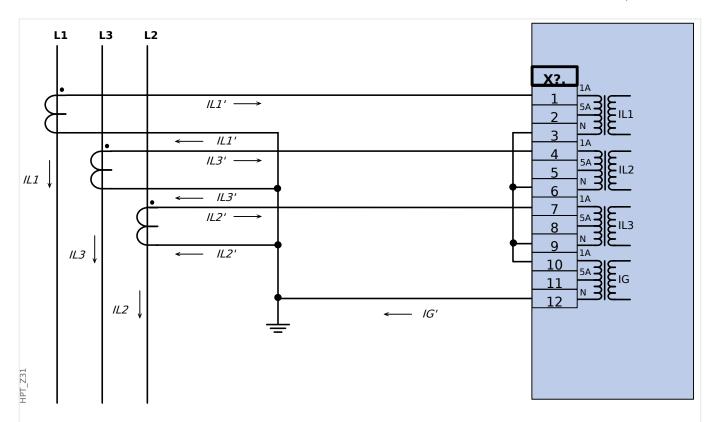
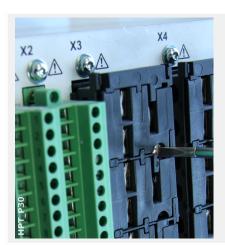


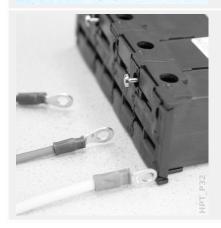
Fig. 24: Mesure de courant triphasé; In $\sec = 1$ A Mesure courant via connexion de Holmgreen; $IGnom\ sec = 1$ A


2.5.3.3 Connexion des entrées de courant

La carte d'entrée de mesure de courant de phase et à la terre prend en charge les connexions de borne à broche et de borne à anneau.

PRUDENCE!

Vous devez respecter les normes et directives nationales applicables. Il est possible que certains types de connexion ne soient pas autorisés dans votre pays.



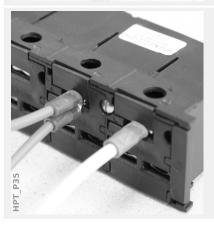
Quel que soit le type de connexion, la première étape consiste à retirer les bornes du dispositif en ouvrant les vis.

Remarque : cette pièce amovible est un bloc disjoncteur.

Pour le type de connexion borne à broche, insérez les câbles et fixez-les à l'aide des vis situées sur le côté de la carte d'entrée.

Pour le type de connexion borne à anneau, une étape intermédiaire doit être effectuée.

Déplacez le curseur sur le côté, de sorte que les vis et le contact métallique soit totalement accessibles.



Chaque borne comprend une vis avec un contact métallique imperdable. La vis (et le contact) peuvent être entièrement dévissés.

Après avoir retiré la vis et le contact, vous pouvez insérer l'anneau. Réintroduisez ensuite la vis et le contact de sorte que la vis traverse l'anneau. Serrez la vis.

Une attention particulière doit être accordée au couple de serrage, \Longrightarrow Fig. .

Ramenez ensuite le curseur dans sa position « fermé ».

Remarque: tant que les sections de câble restent dans les limites indiquées dans le chapitre des Données techniques (> « Données techniques », > Tab.), il est également possible d'introduire deux anneaux dans une borne, comme illustré. Cette possibilité s'avère utile pour l'établissement de la connexion du point neutre.

2.5.3.4 Exigences relatives au transformateur de courant

AVERTISSEMENT!

Outre les considérations de ce chapitre et les exigences indiquées, toutes les normes et réglementations nationales et internationales doivent être respectées.

Symboles

Le tableau suivant fournit un aperçu des symboles utilisés dans la section consacrée aux exigences relatives au transformateur de courant.

K _{ssc}	Facteur de courant de court-circuit symétrique nominal
K _{td}	Facteur de dimensionnement des phénomènes transitoires prenant en considération le composant CC ou le courant de défaut
K	Facteur de dimensionnement total
I _{psc,max}	Courant de court-circuit symétrique maximum primaire
I _{pr}	Courant nominal primaire du transformateur de courant
I _{sr}	Courant nominal secondaire du transformateur de courant
R _{ct}	Résistance d'enroulement interne secondaire du transformateur de courant
R _b	Charge résistive nominale
R′ _b	Charge résistive connectée du transformateur de courant
S _{nom,ct}	Puissance apparente nominale du transformateur de courant
ALF	Facteur de limite de précision
ALF′	Facteur de limite de précision effective considérant la charge connectée
E _k	Force électromotrice nominale au point d'inflexion
Us	Tension de borne secondaire
$U_{s,t,max}$	Tension maximale de borne secondaire

Lors du dimensionnement des transformateurs de courant, les effets transitoires, comme le composant CC des courants de court-circuit, doivent être pris en considération. C'est pourquoi, les exigences relatives au transformateur de courant sont divisées en courant de court-circuit symétrique et en courant CC transitoire.

Le calcul démarre avec K_{ssc} pour le courant maximum de court-circuit symétrique du côté primaire du transformateur de courant.

$$K_{\rm ssc} = \frac{I_{\rm psc,max}}{I_{\rm pr}}$$

La valeur $I_{psc,max}$, ainsi que le facteur de dimensionnement des phénomènes transitoires K_{td} , dépendent de la principale fonction de protection active. Ces éléments peuvent être déterminés en fonction des données suivantes :

Protection contre les surintensités

Classe recommandée conformément à la norme CEI 61869-100 (2017-01)	10P, 5P
K _{td}	1
K _{ssc}	Selon l'équation ci-dessus et ≥20
I _{psc,max}	Réglage du seuil maximum de I>

Pour la plupart des classes TC, il est nécessaire de s'assurer que les exigences indiquées dans le tableau suivant sont satisfaites. Pour cela, le facteur de dimensionnement total est nécessaire :

$$K = K_{ssc} \cdot K_{td}$$

Classe TC	Exigence
P, PR	$K \leq ALF'$, avec :
	$ALF' = ALF \cdot \frac{R_{ct} + R_b}{R_{ct} + R_b'}$
PX, PXR	$E_k \ge \frac{K}{1,2} \cdot I_{\rm sr} \cdot (R_{\rm ct} + R_b')$
Classe IEEE / ANSI C	$U_s \ge K \cdot I_{\rm sr} \cdot \left(R_{\rm ct} + R_b' \right)$
	Commandez des transformateurs de courant offrant la tension nominale suivante plus élevée que $\rm U_{\rm S}.$
TPX, TPY, TPZ	Commandez des transformateurs de courant présentant la valeur minimale déterminée de $K_{\rm ssc}$ et $K_{\rm td}$.

La rémanence n'est pas prise en considération à ce stade. Cependant, cela peut entraîner des problèmes, notamment pour les défauts externes en cas d'utilisation d'une protection différentielle. Pour prendre en considération la rémanence, le facteur de dimensionnement doit être déterminé en utilisant une classe supérieure et/ou anti-rémanence de transformateurs de courant, comme PR, TPY et PXR, peut être utilisée.

Les exigences de protection de distance s'appliquent aux cas de défaut 3 et 4 indiqués dans la norme CEI 60255-121 (2014). Néanmoins, seul le cas de défaut 3 doit être pris en considération par l'utilisateur pour le calcul des exigences relatives au transformateur de courant conformément aux indications formées dans ce guide.

Si le courant de défaut augmente au fil du temps, le transformateur de courant peut être sous-dimensionné pour les fonctions de protection correspondantes. Lors de la planification d'une nouvelle installation, il peut s'avérer nécessaire d'utiliser des transformateurs de courant avec un facteur de dimensionnement total supérieur à celui nécessaire pour disposer de réserves de sauvegarde futures.

Exemple : Protection contre les surintensités

Transformateur de courant :	$I_{pr} = 500 \text{ A}$
	$I_{Sr} = 1 \text{ A}$

	$R_{Ct} = 1.5 \Omega$
Réglage de surintensité :	$I_{>} = 25 In = 25.500 A = 12500 A$
Charge résistive nominale :	$R_b = S_{\text{nom,ct}} / I_{\text{sr}}^2 = 5 \text{ VA} / (1 \text{ A})^2 = 5 \Omega$
Charge connectée :	$R'_b = 2.5 \Omega$

Commencez par calculer K_{SSC} avec le seuil de réglage pour le courant maximum de court-circuit symétrique :

$$K_{\rm ssc} = \frac{I_{\rm psc,max}}{I_{\rm pr}} = \frac{25 \cdot 500 \text{ A}}{500 \text{ A}} = 25$$

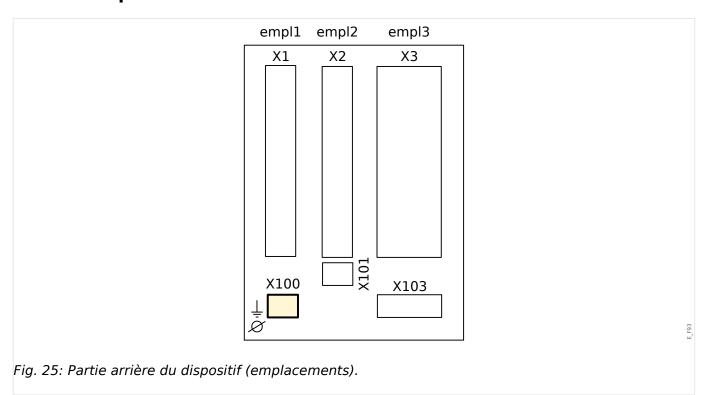
La valeur calculée remplit la condition supplémentaire pour la protection contre les surintensités $K_{SSC} \ge 20$ et $K_{td} = 1$ (voir le tableau des exigences ci-dessus, $\sqsubseteq \triangleright$ Tab.).

Le facteur de dimensionnement est calculé comme suit :

$$K = K_{SSC} \cdot K_{td} = 25 \cdot 1 = 25$$

Ces données sont déjà suffisantes pour sélectionner un transformateur de courant de classe TPX.

En revanche, pour un transformateur de courant de classe P, des calculs supplémentaires sont nécessaires. Nous allons vérifier si un 5P20 5 VA peut convenir à l'application de protection :

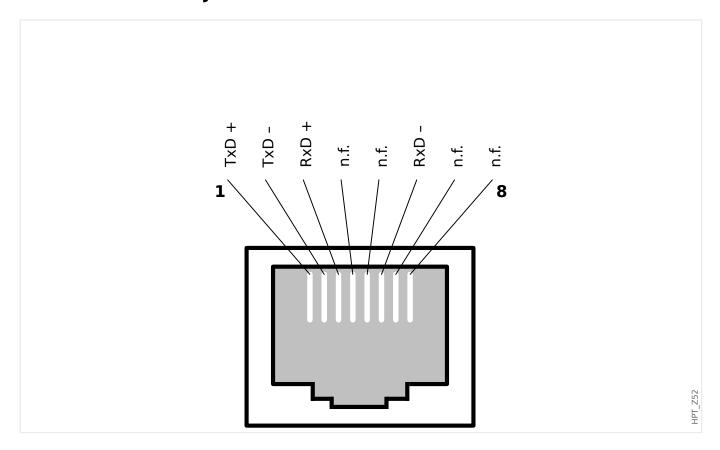

$$ALF = 20$$

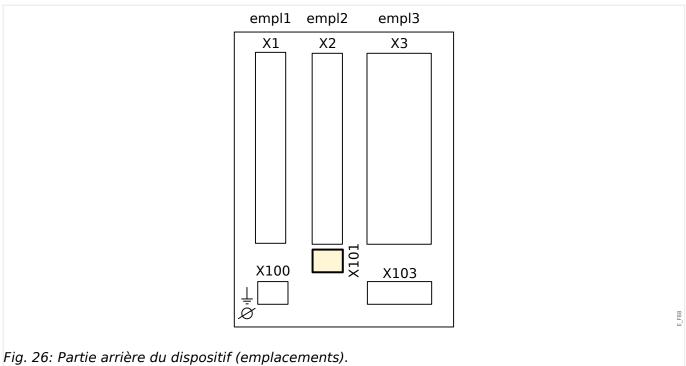
$$R_b = 5 \Omega$$

$$ALF' = ALF \cdot \frac{R_{\rm ct} + R_b}{R_{\rm ct} + R_b'} = 20 \cdot \frac{1.5 \ \Omega + 5 \ \Omega}{1.5 \ \Omega + 2.5 \ \Omega} = 32.5 \ge K = 25$$

Le transformateur de courant sélectionné est suffisant pour l'application donnée.

2.6 Emplacement X100 : Interface Ethernet


Une interface Ethernet peut être disponible selon le type de dispositif commandé.


Les combinaisons disponibles peuvent être obtenues à l'aide du code de commande.

2.6.1 Ethernet - RJ45

Emplacement X101: 2.7

• IRIG-B00X

Dépend du type de dispositif commandé, cet emplacement peut être équipé d'une interface IRIG-B.

Les combinaisons disponibles peuvent être obtenues à l'aide du code de commande.

2.7.1 IRIG-B00X

AVERTISSEMENT!

Assurez-vous que le couple de serrage est compris entre 0,56 et 0,79 Nm.

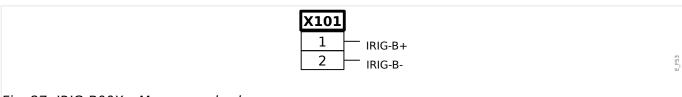


Fig. 27: IRIG-B00X - Marquage des bornes.

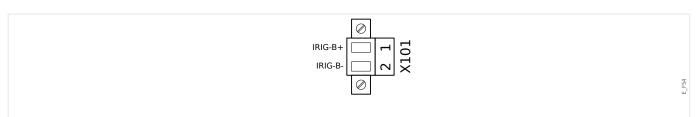


Fig. 28: IRIG-B00X - Affectation des broches.

2.8 Emplacement X103 : Communication des données

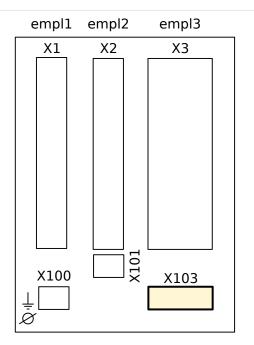


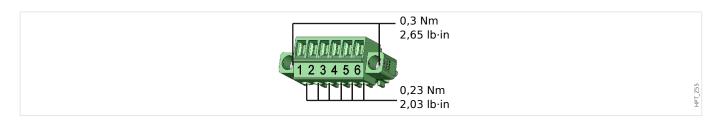
Fig. 29: Partie arrière du dispositif (emplacements).

L'interface de communication des données de l'emplacement **X103** dépend du type de dispositif commandé. Les fonctions disponibles dépendent du type d'interface de communication des données.

Groupes complets disponibles sur cet emplacement :

- Bornes RS485 pour Modbus, DNP et CEI
- Interface fibre optique pour Profibus, Modbus, DNP et CEI
- Interface D-SUB pour Modbus, DNP et CEI
- Interface D-SUB pour Profibus
- Interface fibre optique pour Ethernet

REMARQUE!


Les combinaisons disponibles peuvent être obtenues à l'aide du code de commande.

2.8.1 Modbus® RTU / CEI 60870-5-103 via un connecteur RS485

AVERTISSEMENT!

Vérifiez que les couples de serrages sont corrects.

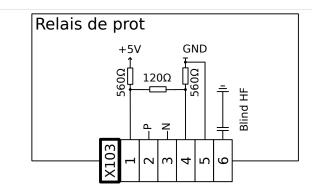


Fig. 30: Bornes

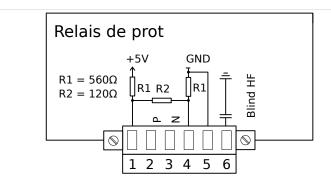


Fig. 31: Affectation électromécanique

REMARQUE!

Le câble de connexion Modbus® / CEI 60870-5-103 doit être blindé. Le blindage doit être fixé à la vis située sous l'interface, à l'arrière de l'appareil.

La communication est de type Half-duplex.

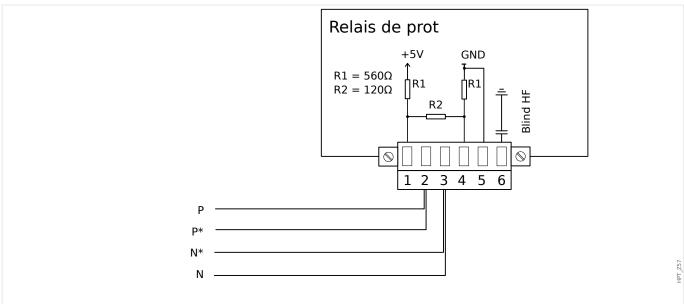


Fig. 32: Exemple de câblage : dispositif au milieu du bus

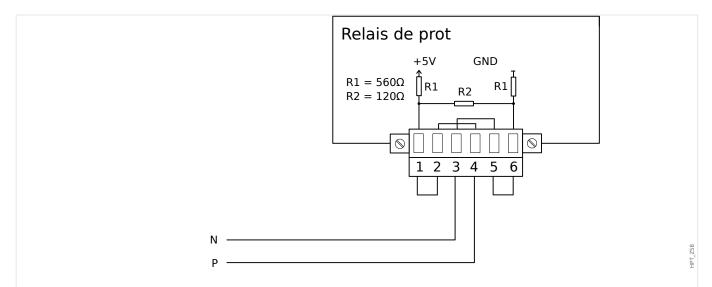
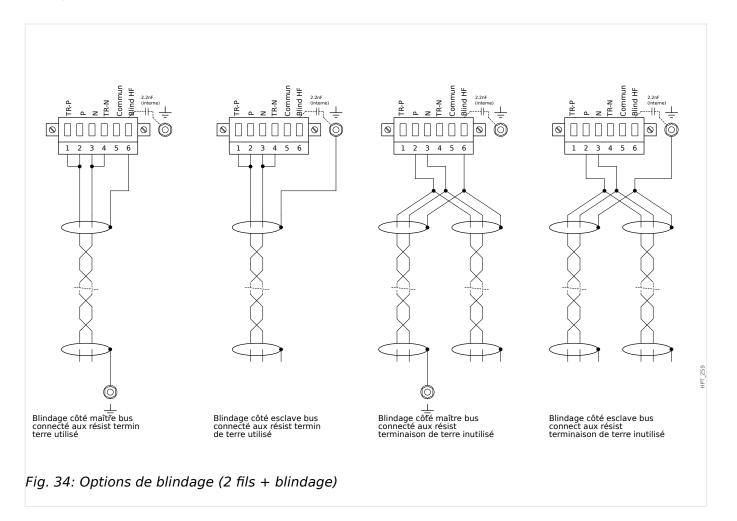
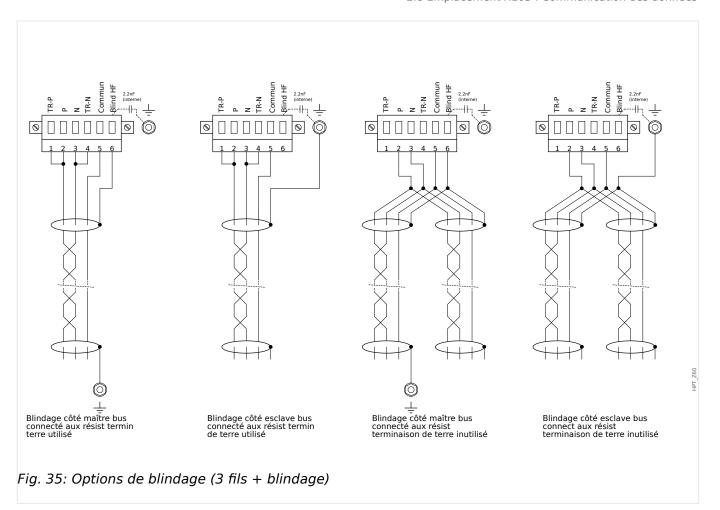
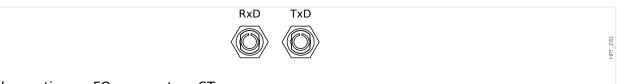





Fig. 33: Exemple de câblage : dispositif à la fin du bus (des boucles de fil sont utilisées pour activer la résistance de borne intégrée)

2.8.2 Profibus DP/ Modbus® RTU / CEI 60870-5-103 via fibre optique

Fig. 36: Fibre optique - FO, connecteur ST

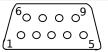
AVERTISSEMENT!

Ne regardez pas directement le faisceau lumineux émis par le connecteur de fibre optique !

Ne pas tenir compte de cet avertissement peut entraîner des blessures oculaires graves.

2.8.3 Profibus DP via un connecteur D-SUB

Affectation D-SUB - bague


- 1 : Rac masse/blindage
- 3 : RxD TxD P: Niv haut
- 4 : Signal RTS
- 5 : DGND: Masse, potentiel négatif alim aux
- 6 : VP: potentiel positif alim auxiliaire
- 8 : RxD TxD N: Niv bas

REMARQUE!

Le câble de connexion doit être blindé. Le blindage doit être fixé à la vis marquée du symbole de mise à la terre à l'arrière de l'appareil.

2.8.4 Modbus® RTU / CEI 60870-5-103 via un connecteur D-SUB

HPT_Z62

Affectation D-SUB - bague

- 1 : Rac masse/blindage
- 3 : RxD TxD P: Niv haut
- 4 : Signal RTS
- 5 : DGND: Masse, potentiel négatif alim aux
- 6 : VP: potentiel positif alim auxiliaire
- 8 : RxD TxD N: Niv bas

REMARQUE!

Le câble de connexion doit être blindé.

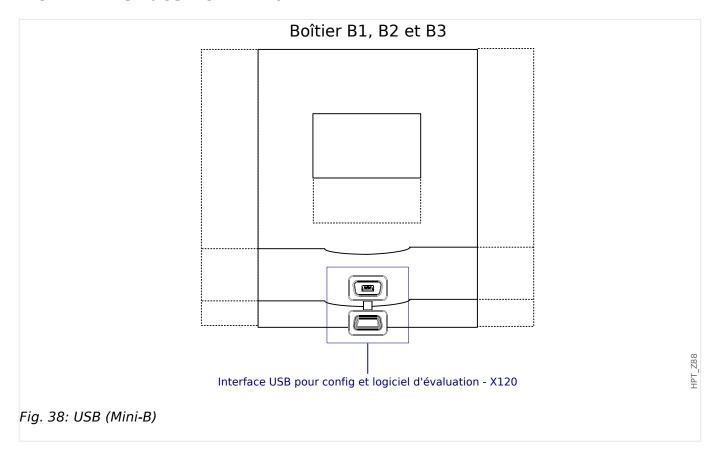
2.8.5 Ethernet / TCP/IP via fibre optique

RxD TxD

Fig. 37: Fibre optique - FO, connecteur duplex LC

PRUDENCE!

Après avoir branché le connecteur LC, installez le capuchon de protection métallique. La vis doit être serrée à un couple de 0,3 Nm [2,65 lb in]).


AVERTISSEMENT!

Ne regardez pas directement le faisceau lumineux émis par le connecteur de fibre optique !

Ne pas tenir compte de cet avertissement peut entraîner des blessures oculaires graves.

2.9 Interface PC - X120

2.10 Paramètres d'entrée, de sortie et DEL

2.10.1 DEL

Les DEL peuvent être configurées dans le menu : [Para module / DEL / DEL groupe A]

PRUDENCE!

Vous devez vous assurer que les fonctions ne se chevauchent pas en raison de l'affectation de couleurs ou de codes de clignotement à deux ou plusieurs DEL.

Outre la DEL Système OK (dont la fonction est fixe), chaque DEL peut être configurée à l'aide des paramètres suivants :

- »Signaux affectés« : Les paramètres [Para module / DEL /
 DEL x] »Affect 1« à »Affect 5« peuvent être utilisés pour affecter jusqu'à 5 signaux
 déclencheurs à « LED numéro x ».
- »Inversion« : Les paramètres »Inversion 1« à »Inversion 5«, s'ils sont réglés sur « actif », peuvent être utilisés pour inverser le signal déclencheur correspondant.

Notez que pour un signal déclencheur **non affecté** (par ex., »Inversion $n \ll = \ll - \gg$), l'inversion n'a pas d'effet, de sorte que le signal déclencheur est toujours traité comme un signal binaire $\ll 0 \gg (Faux/inactif)$.

« fonction Mémorisation/conservation » : Avec le réglage »Mémor.« = "actif", l'état défini par les signaux déclencheurs est stocké de façon permanente. (Voir la « Mémorisation » ci-dessous, \(\bigsip \infty \) « 2.10.1 Mémorisation ».)

Si »Mémor.« = « inactif », la DEL adopte toujours l'état des signaux affectés.

- »Signal acq« : Ce réglage n'est disponible que si »Mémor.« = « actif ». Il affecte un signal qui réinitialise la mémorisation de la DEL. (Cependant, cela n'est effectif que si tous les signaux déclencheurs affectés se sont arrêtés.)
- »Coul activ DEL« : La DEL est allumée de cette couleur si au moins un des signaux déclencheurs affectés est actif. Les valeurs de réglage disponibles sont les suivantes : « » (Pas d'affectation), « vert », « rou », « clig roug », « vert clign. ».
- »Coul inactive DEL«: La DEL est allumée de cette couleur si aucune des fonctions affectée n'est active. (Les réglages disponibles sont les mêmes que pour la couleur d'activation ci-dessus.)

Bouton »INFO«

Via le bouton »INFO«, il est toujours possible d'afficher l'état actuel des signaux déclencheurs affectés.

Aperçu principal des DEL:

Une pression sur la touche »INFO« permet d'afficher »l'aperçu principal des DEL de gauche«.

Une seconde pression sur la touche »INFO« permet d'afficher »l'aperçu principal des DEL de droite«.

Une pression sur la touche de fonction »gauche« (ou une troisième pression sur la touche »INFO«) permet de quitter le menu principal des DEL.

L'aperçu principal présente les premières affectations des DEL. Les touches de fonction disponibles sont affichées régulièrement.

Page d'affectation multiple de DEL :

Sur la page d'aperçu principal, utilisez es touches de fonction »haut« et »bas« pour sélectionner une DEL.

Ici, vous pouvez accéder à la »page d'affectation multiple de DEL« en appuyant sur la touche de fonction »droite«.

Cette page fournit des informations détaillées sur tous les états affectés à la DEL concernée. Un symbole représentant une flèche pointe vers la DEL dont les affectations sont actuellement affichées.

Grâce aux touches de fonctions »haut« et »bas«, vous pouvez sélectionner la DEL suivante ou précédente.

Une pression sur la touche de fonction »gauche« vous permet de revenir dans l'aperçu principal des DEL.

Mémorisation

Si une DEL est configurée en tant que »Mémor.« = « actif », elle conservera son état, indépendamment des événements, jusqu'à son acquittement (voir « Options d'acquittement » ci-dessous).

Une DEL mémorisée est réinitialisée uniquement dans les cas suivants et seulement après l'arrêt de tous les signaux déclencheurs affectés :

- Elle est acquittée (par l'utilisateur au niveau de l'IHM ou via SCADA), voir ci-dessous.
- Elle est réinitialisée (acquittée) par le signal qui a été affecté au paramètre »Signal acq«.
- Elle est reconfigurée sur »Mémor.« = « inactif ».
- Si aucun signal déclencheur n'est affecté, c'est-à-dire que **tous les** »Affect n« ont été réglés sur « ».

Notez qu'une DEL mémorisée **n'est pas** réinitialisée en cas de redémarrage du MRI4: Après un redémarrage (à chaud ou à froid), toutes les DEL mémorisées retrouvent leur état initial individuel (précédemment considéré).

Options d'acquittement

La réinitialisation d'une DEL mémorisée nécessite toujours un acquittement. (Pour une description détaillée, voir \Longrightarrow « Acquittements ».)

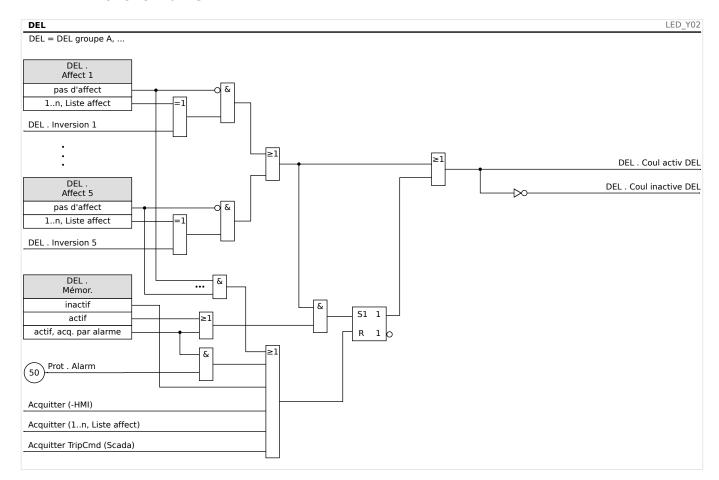
Les DEL peuvent être acquittées comme suit :

- Via le bouton »C« du tableau de commande.
- La DEL peut être acquittée par le signal qui a été affecté au paramètre »Signal acq«.
- Toutes les DEL mémorisées peuvent être acquittées simultanément par le signal qui a été affecté au paramètre [Para module / Acquitter] »DEL acg«.

- Via une communication (SCADA), toutes les DEL peuvent être acquittées simultanément.
- Toutes les DEL peuvent être acquittées simultanément de façon automatique en cas d'alarme émise par une fonction de protection.

Remarque : Les deux options, qui permettent de réinitialiser simultanément toutes les DEL via un signal ou SCADA, ne sont disponibles que si [Para module / Acquitter] »Réin à dist« = « actif ».

La dernière option, qui permet de réinitialiser simultanément toutes les DEL en cas d'alarme de protection, doit être activée en réglant : [Para module / DEL / DEL groupe A / DEL 1...n] »Mémor.« = « actif, acq. par alarme ».


Pour plus d'informations, consultez également ╚⇒ « Acquittements ».

REMARQUE!

Le CD du produit livré avec le module contient un modèle PDF permettant de créer et d'imprimer à l'aide d'une imprimante laser des films auto-adhésifs contenant le texte des affectations de DEL (feuille frontale). Recommandation : (AVERY Zweckform Art. n° 3482)

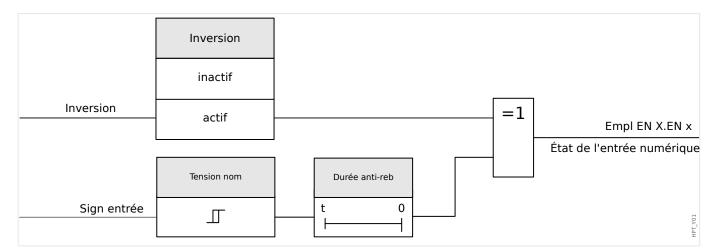
Fonctionnalité

La DEL « Système OK »

Cette DEL clignote en vert au démarrage du module. Après le démarrage, la DEL Système OK s'allume en vert pour indiquer que la protection (fonction) est »activée«. Veuillez vous

référer à \Longrightarrow « Auto-surveillance » et au document externe *Guide de dépannage* pour en savoir plus sur les codes de clignotement de la LED Système OK.

La DEL »Système OK« ne peut pas être paramétrée


2.10.2 Configuration des entrées numériques

L'état des entrées numériques peut être vérifié dans le menu : [Utilisat / Affichage de l'état / nom du groupe (par ex. « EN-8 X »)]

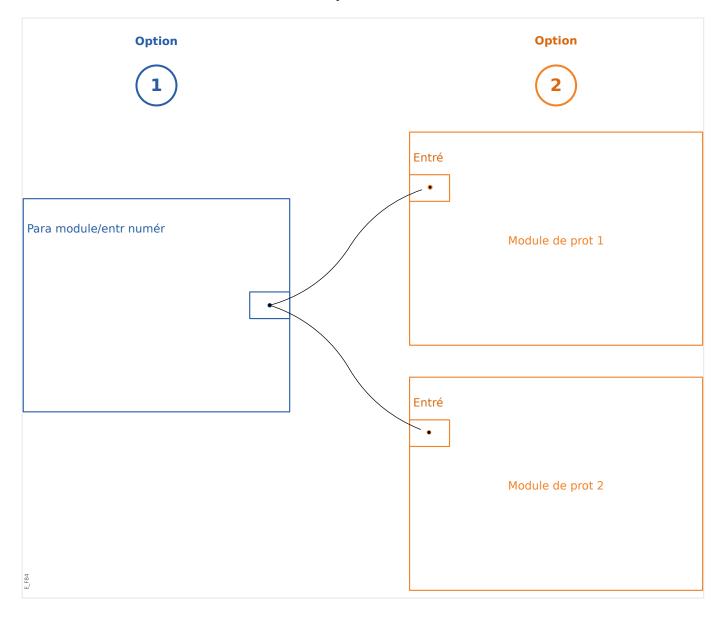
Les entrées numériques peuvent être configurées dans le menu : [Para module / Entr numér / Nom du groupe (par ex., « EN-8 X ») / Group X]

Définissez les paramètres suivants pour chacune des entrées numériques :

- »Tension nominale«
- »Durée d'anti-rebond« : Un changement d'état sera adopté uniquement par l'entrée numérique après expiration de la durée d'anti-rebond.
- »Inversion« (si nécessaire)

PRUDENCE!

La durée d'anti-rebond commencera à chaque changement de l'état du signal d'entrée.


PRUDENCE!

Outre la durée d'anti-rebond qui peut être réglée via le logiciel, il existe toujours une durée d'anti-rebond du matériel (environ 12 ms) qui ne peut pas être désactivée.

Deux options sont disponibles afin de déterminer où une entrée numérique doit être affectée.

Affectation des entrées numériques

Option 1 : Affecter une entrée numérique à un ou plusieurs dispositifs.

Ajout d'une affection :

Dans le menu [Para module / Entr numér], des entrées numériques peuvent être affectées à une ou plusieurs cibles.

Affichez l'entrée numérique (flèche droite sur l'EN). Cliquez sur la touche de fonction programmable »Paramétrage/clé. Cliquez sur »ajo« (ajouter) et affectez une cible. Affecter au besoin des cibles supplémentaires.

Suppression d'une affectation :

Sélectionnez comme décrit ci-dessus une entrée numérique qui doit être éditée au niveau de l'IHM.

Affichez les affectations de l'entrée numérique (flèche à droite sur l'EN) et sélectionnez l'affectation qui doit être retirée/supprimée (Veuillez prendre note, ceci doit être marqué avec le curseur). L'affectation peut maintenant être supprimée au niveau de l'IHM au moyen de la touche programmable »Paramétrage« et de la sélection de »suppr« (supprimer). Confirmez la mise à jour du réglage des paramètres.

Option 2 : Connecter une entrée de module avec une entrée numérique

Affichez un module. Dans ce module, affectez une entrée numérique sur une entrée de module.

Exemple : Un module de protection doit être bloqué en fonction de l'état d'une entrée numérique. Pour cela, affectez sur l'entrée de blocage dans les paramètres globaux l'entrée numérique (par ex., »ExBlo1«).

Vérifier les affectations d'une entrée numérique

Afin de vérifier les cibles auxquelles une entrée numérique est affectée, veuillez procéder comme suit :

Affichez le menu [Para module / Entr numér].

Accédez à l'entrée numérique qui doit être vérifiée.

Au niveau de l'IHM :

Une affectation multiple (si une entrée numérique est utilisée plus d'une fois (si elle est affectée à plusieurs cibles)) sera indiquée par une ellipse («... ») à côté d'une entrée numérique. Affichez cette entrée numérique par la touche programmable »flèche droite« pour afficher la liste des cibles de cette entrée numérique.

2.10.3 Paramètres de relais de sortie

L'état des sorties de relais peut être vérifié dans le menu : [Utilisat / Affichage de l'état / Nom du groupe (par ex. « BO-3 X »)]

Les sorties de relais peuvent être configurées dans le menu : [Para module / Sort binaires / Nom du groupe (par ex. « BO-3 X »)]

Les conditions des sorties du module et des fonctions de protection/signaux (verrouillage inverse par exemple) peuvent être transmises à l'aide de relais d'alarme. Les relais d'alarme sont des contacts libres de potentiel (qui peuvent être utilisés comme contact d'ouverture ou de fermeture). Jusqu'à 7 fonctions de la liste d'affectations peuvent être affectées à chaque relais d'alarme.

Définissez les paramètres suivants pour chacun des relais de sortie binaire :

- »Signaux affectés« : Les paramètres »Affect 1« à »Affect 7« peuvent être utilisés pour affecter jusqu'à 7 signaux déclencheurs (reliés par une connexion OU).
- »Inversion«: Les paramètres »Inversion 1« à »Inversion 7«, s'ils sont réglés sur « actif », peuvent être utilisés pour inverser le signal déclencheur correspondant.

Notez que pour un signal déclencheur **non affecté** (par ex., »Affect $n \ll - \ll - \gg$), l'inversion n'a pas d'effet, de sorte que le signal déclencheur est toujours traité comme un signal binaire « 0 » (Faux/inactif).

• Avec le réglage »Inversion« = « actif », l'état (collectif) du relais de sortie binaire peut être inversé (principe de courant de circuit ouvert ou fermé).

Notez que si **aucun signal** n'a été affecté (c'est-à-dire que **tous les** »Affect n« = « - »), cette inversion n'a pas d'effet, de sorte que l'effet (collectif) est toujours traité comme un signal binaire « 0 » (Faux/inactif).

- Par le biais du paramètre »Mode fonctiont«, il est possible de déterminer si la sortie du relais fonctionne selon un principe de courant de travail ou de circuit fermé.
- Avec le réglage »Mémor.« = « inactif », le contact du relais adopte en permanence l'état des signaux affectés.
- Avec le réglage »Mémor.« = « actif », l'état du contact du relais est stocké en permanence. (Voir également la section « Mémorisation » ci-dessous,

 Mémorisation ».)
- »Acquittement« : Ce réglage n'est disponible que si »Mémor.« = « actif ». Il affecte un signal qui réinitialise la mémorisation du contact du relais. (Cependant, cela n'est effectif que si tous les signaux déclencheurs affectés se sont arrêtés.)

Le contact de relais peut uniquement être acquitté après l'arrêt de tous les signaux qui ont initié le réglage du relais et après l'expiration du délai minimum de rétention »Retar t-Off«.

• »t-app« : au changement de signal, le temps de mémorisation minimal garantit que le relais est maintenu excité ou libre pendant au moins cette durée.

REMARQUE!

Le relais System OK (SC) (surveillance) ne peut pas être configuré.

Mémorisation

Si une sortie binaire est configurée en tant que »Mémor.« = « actif », elle conservera son état, indépendamment des événements, jusqu'à son acquittement (voir « Options d'acquittement » ci-dessous).

Une sortie binaire mémorisée est réinitialisée uniquement dans les cas suivants et seulement après l'arrêt de tous les signaux déclencheurs affectés :

- Il est acquitté (par l'utilisateur au niveau de l'IHM ou via SCADA), voir ci-dessous.
- Il est réinitialisé (acquitté) par le signal qui a été affecté au paramètre »Acquittement«.
- Il est reconfiguré sur »Mémor.« = « inactif ».
- Si aucun signal déclencheur n'est affecté, c'est-à-dire que **tous les** »Affect n« ont été réglés sur « ».

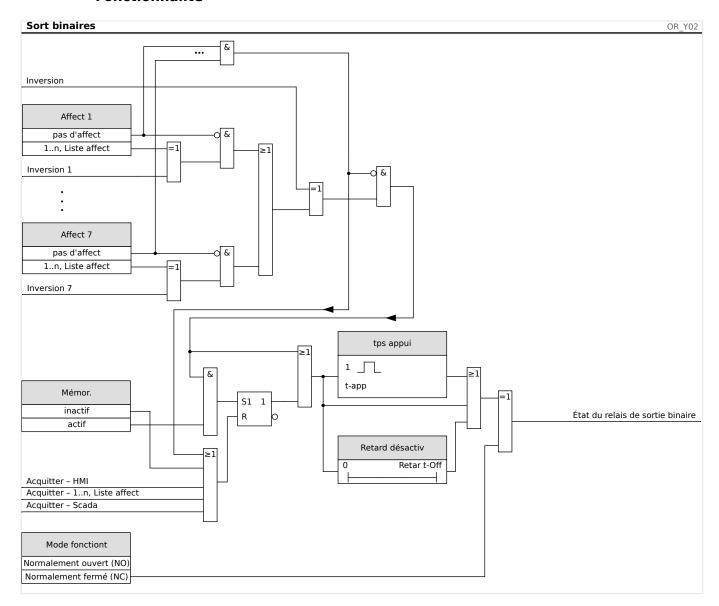
Notez qu'une sortie binaire mémorisée **n'est pas** réinitialisée en cas de redémarrage du MRI4: Après un redémarrage (à chaud ou à froid), toutes les sorties mémorisées retrouvent leur état initial individuel (précédemment considéré).

Options d'acquittement

La réinitialisation d'une sortie binaire en position mémorisée nécessite toujours un acquittement. (Pour une description détaillée, voir \Longrightarrow « Acquittements ».)

Les relais de sortie binaire peuvent être acquittés :

- Via le bouton »C« du tableau de commande.
- Le contact de sortie du relais peut être acquitté par le signal qui a été affecté au paramètre »Acquittement«.
- Tous les relais de sortie binaire peuvent être acquittés simultanément par le signal qui a été affecté au paramètre [Para module / Acquitter] »Acq SB«.
- Via SCADA, tous les relais de sortie peuvent être acquittés simultanément.


Remarque : Les deux dernières options, qui permettent de réinitialiser simultanément toutes les sorties, ne sont disponibles que si [Para module / Acquitter] »Réin à dist« = « actif ».

AVERTISSEMENT!

Les contacts de sortie de relais peuvent être forcés ou désarmés (pour l'aide à la mise en service, reportez-vous aux chapitres suivants : \Longrightarrow « Désarmer les contacts de sortie de relais », \Longrightarrow « Forcer les contacts de sortie de relais »).

Fonctionnalité

Contact système

Le relais d'alarme System OK (SC) est le »contact d'état« des dispositifs. Son emplacement d'installation dépend du type de boîtier. Reportez-vous au schéma de câblage du dispositif (contact WDC).

Le relais System OK (SC) ne peut pas être paramétré. Le contact système est un contact de courant de fonctionnement qui est excité lorsque le dispositif est sans défaut interne. À l'amorçage du dispositif, le relais System OK (SC) reste arrêté. Dès que le système est dûment démarré, le relais est excité et la DEL assignée est activée en fonction (voir Auto-surveillance »).

3 Protocoles de communication

3.1 Paramétrage SCADA (Communication) général

Le groupe de protocoles SCADA disponibles dépend de la variante matérielle commandée (voir le \hookrightarrow « Formulaire de commande du dispositif », \hookrightarrow « Codes des protocoles de communication »).

Vous devez définir celui parmi les protocoles SCADA disponibles que le dispositif MRI4 devra utiliser. Pour cela, réglez [Organis module] »Protocol« sur le paramètre de communication requis.

Une fois cette opération effectuée, vous devez définir d'autres paramètres liés au protocole sélectionné.

3.2 Paramètres TCP/IP

REMARQUE!

L'établissement d'une connexion à l'appareil via TCP/IP n'est possible que s'il est équipé d'une interface Ethernet (RJ45).

Contactez l'administrateur de votre système informatique afin d'établir la connexion réseau.

Dans le menu [Para module / TCP/IP / Config TCP/IP], les paramètres TCP/IP doivent être définis.

Les réglages suivants doivent être effectués :

• »TCP/IP« : peut être réglé sur « actif ». (La valeur par défaut est « inactif », de sorte que le protocole n'est pas utilisé.)

REMARQUE!

Les autres paramètres (voir ci-dessous) peuvent uniquement être définis après le réglage de *»TCP/IP«* sur « actif ».

- »Adresse IP«: adresse IPv4 du MRI4.
- »Masq ss-rés« : masque de sous-réseau qui définit la plage d'adresses IP de votre réseau local.
- »Passer par déf« : passerelle par défaut : cette adresse est contactée pour toutes les connexions aux adresses IP situées hors de votre réseau local (par ex., pour les adresses IP qui ne correspondent pas à la plage du masque de sous-réseau).

Le réglage initial des paramètres TCP/IP ne peut être effectué que sur le tableau (IHM) ou via Smart view en utilisant la connexion USB.

De plus, il existe des paramètres spéciaux dans la branche de menu [Para module / TCP/ IP / Réglages avancés]. Consultez le Manuel de référence. Dans de très rares situations seulement, il sera nécessaire de modifier leur valeur par défaut.

3.3 Profibus

Configuration des modules

Après avoir sélectionné Profibus comme protocole SCADA (via le réglage [Organis module] »Protocol« = « Profibus »), accédez à la branche de menu [Para module / Profibus]; là, vous devez configurer le paramètre de communication suivant :

 »ID escl«, afin de permettre l'identification précise du dispositif. Il s'agit d'un nombre compris entre 2 et 125, qui doit être unique pour tous les différents dispositifs Profibus du réseau.

Le maître doit être également fourni avec le fichier GSD. Le fichier GSD se trouve sur le CD du produit.

D'autres paramètres (liés à Profibus) pouvant présenter un intérêt sont listés dans le Manuel de référence.

Connexion matérielle

- La connexion matérielle au système de contrôle dépend de la variante matérielle commandée (voir > « Formulaire de commande du dispositif », > « Codes des protocoles de communication ») : à l'arrière du MRI4 se trouve une interface RS485 (D-SUB) ou une interface fibre optique (connecteur ST) disponible pour la connexion Profibus.
- Connectez le bus et le MRI4.
- Jusqu'à 123 esclaves peuvent être connectés.
- Avec une interface D-SUB, terminez le bus par une résistance de terminaison.

Gestion des erreurs

Des informations sur les erreurs physiques de connexion (par ex., la vitesse de transmission détectée) peuvent être obtenues à partir de l'enregistreur d'événements (voir 🛶 « Enregistreur d'événements ») ou l'affichage de l'état (branche de menu [Utilisat / Affichage de l'état]).

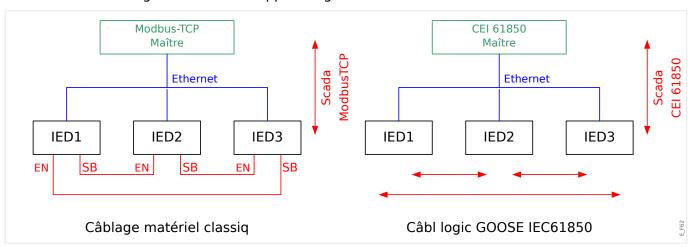
Gestion des erreurs - DEL d'état D-SUB

L'interface D-SUB Profibus à l'arrière du dispositif est équipée d'une DEL d'état.

- Recherche de la vitesse rouge clignotant
- Vitesse trouvée vert clignotant
- Échange de données vert
- Protocole Profibus non sélectionné au niveau de [Organis module] »SCADA . Protocol« — rouge

3.4 CEI 61850

Introduction


Pour comprendre le fonctionnement et l'utilisation d'une sous-station dans un environnement d'automatisation CEI 61850, il est utile de comparer les étapes de la mise en service avec celles d'une sous-station classique d'un environnement Modbus TCP.

Dans une station classique, les IED (Périphérique électroniques intelligents) communiquent verticalement avec le centre de contrôle de niveau supérieur via SCADA. La communication horizontale est exclusivement réalisée par des relais de sortie de câblage (OR) et des entrées numériques (EN), entre autres.

Dans un environnement CEI 61850, la communication entre les IED se déroule numériquement (via Ethernet) à l'aide d'un service appelé GOOSE (Generic Object Oriented Substation Event). Ce service permet de transmettre les informations sur les événements entre chaque IED. Par conséquent, chaque IED doit connaître la capacité fonctionnelle de tous les autres IED connectés.

Chaque dispositif compatible CEI 61850 inclut une description de ses propres fonctionnalités et capacités de communication (IED Capability Description, *.ICD).

Grâce à un outil de configuration de sous-station permettant de décrire la structure de la sous-station, l'affectation des dispositifs à la technique primaire, etc., il possible d'effectuer un câblage virtuel des IED entre eux et avec l'autre appareillage de connexion de la sous-station. Une description de la configuration de la sous-station sera générée sous la forme d'un fichier *.SCD. Au minimum, ce fichier doit être envoyé à chaque module. Les IED sont désormais capables de communiquer entre eux, de réagir aux verrouillages et d'utiliser l'appareillage de connexion.

Étapes de la mise en service d'une sous-station classique avec un environnement Modbus TCP :

- Définition des paramètres des IED
- Installation Ethernet
- Paramètres TCP/IP des IED
- · Câblage conforme au schéma

Étapes de la mise en service d'une sous-station avec un environnement CEI 61850 :

• Définition des paramètres des IED

- Installation Ethernet
- Paramètres TCP/IP des IED

Configuration CEI 61850 (câblage logiciel):

- Exportation d'un fichier ICD depuis chaque module
- Configuration de la sous-station (création d'un fichier SCD)
- Transmission du fichier SCD à chaque dispositif

Création/exportation d'un fichier ICD spécifique au dispositif

Reportez-vous au chapitre « CEI 61850 » du Manuel Smart view.

Création/exportation d'un fichier SCD

Reportez-vous au chapitre « CEI 61850 » du Manuel Smart view.

Configuration de la sous-station, création d'un fichier .SCD (Station Configuration Description)

La configuration de la sous-station, par exemple la connexion de tous les nœuds logiques des dispositifs de protection et de contrôle, et de l'appareillage de connexion s'effectue habituellement à l'aide d'un « outil de configuration de sous-station ». Par conséquent, les fichiers ICD de tous les IED connectés dans l'environnement CEI 61850 doivent être disponibles. Le résultat du « câblage logiciel » à l'échelle de la station peut être exporté sous la forme d'un fichier SCD (Station Configuration Description).

Les sociétés suivantes proposent des outils Suitable Substation Configuration Tools (SCT):

- H&S, Hard- & Software Technologie GmbH & Co. KG, Dortmund (Allemagne) (www.hstech.de).
- Applied Systems Engineering Inc. (=> www.ase-systems.com)
- Kalki Communication Technologies Limited (⇒> www.kalkitech.com)

Importation du fichier .SCD vers le module

Reportez-vous au chapitre « CEI 61850 » du Manuel Smart view.

Sorties virtuelles CEI 61850

Outre les informations sur l'état du nœud logique normalisé, jusqu'à 64 valeurs d'état librement configurables peuvent être attribuées à 64 sorties virtuelles. Cette opération peut être effectuée dans le menu [Para module / CEI 61850 / Sort. virt. 1...4].

Entrées virtuelles CEI 61850

Si une ENTRÉE est définie dans le fichier SCD, l'entrée peut être vérifiée au niveau de [Utilisat / Affichage de l'état / CEI 61850 / Ent. virt. 1 à 4] »GOSINGGIO[1...4].Ind1... 32.stVal«. Pour chaque état, il existe un bit de grandeur correspondant au niveau de [Utilisat / Affichage de l'état / CEI 61850 / Ent. virt. 1 à 4] »GOSINGGIO[1...4].Ind1...32.q«.

État GOOSE

L'état de la connexion GOOSE peut être vérifiée au niveau de [Utilisat / Affichage de l'état / CEI 61850 / État] »Tout abonné Goose actif«. Ce signal résume la qualité de toutes les entrées virtuelles (voir ci-dessus).

3.5 DNP3

Le DNP (Protocole de réseau distribué) est utilisé pour les données et l'échange d'informations entre SCADA (Maître) et les IED (Périphériques électroniques intelligents). Le protocole DNP a été développé dans les premières versions pour la communication série. En raison de la poursuite du développement du protocole DNP, il propose désormais également des options de communication TCP et UDP via Ethernet.

Organisation du module DNP

Selon le matériel du module de protection, jusqu'à trois options de communication DNP sont disponibles au sein de l'organisation du module.

Accédez au menu de planification du dispositif [Organis module] et sélectionnez le protocole SCADA approprié, en fonction du code de l'appareil.

- DNP3 RTU (via le port série)
- DNP3 TCP (via Ethernet)
- DNP3 UDP (via Ethernet)

Paramètres généraux du protocole DNP

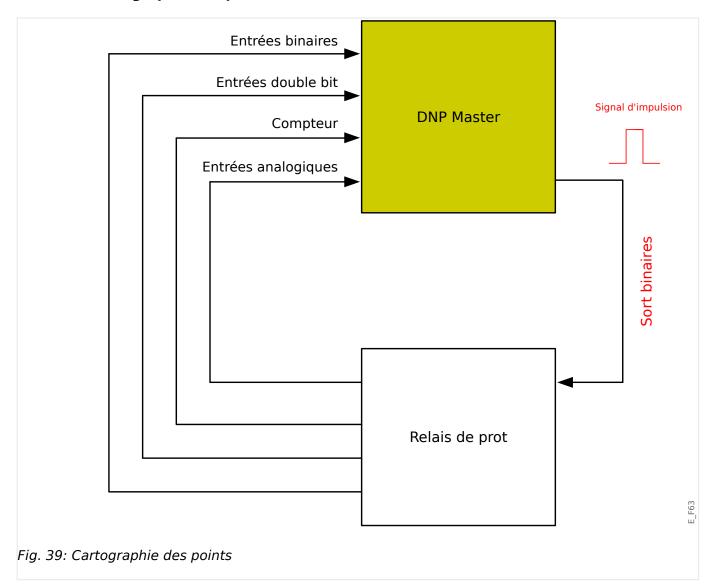
REMARQUE!

Veuillez noter que le rapport non sollicité n'est pas disponible pour la communication série, si plus d'un esclave est connecté à la communication série (collisions). Ne pas utiliser dans ce cas de rapport non sollicité pour DNP RTU.

La fonction de rapport non sollicité est disponible également pour les communications série, si chaque esclave est connecté via une connexion distincte au système maître. Cela signifie que le maître est équipé d'une interface série distincte pour chaque esclave (cartes série multi).

Accédez au menu [Para module / DNP3 / Communication].

Les paramètres de communication (Paramètres généraux) doivent être définis en fonction des besoins du système SCADA (Maître).


L'adressage automatique est disponible pour DNP-TCP. Cela signifie que les identifiants Maître et Esclave sont détectés automatiquement.

REMARQUE!

Certains signaux de sortie (actifs seulement pendant une courte durée) doivent être acquittés séparément (les signaux de déclenchement, par exemple) par le système de communication.

Cartographie des points

REMARQUE!

Veuillez prendre en compte que les désignations des entrées et sorties sont définies depuis la perspective du maître. Cette façon de choisir les désignations provient d'une définition dans la norme DNP. Cela signifie par exemple que les entrées binaires qui peuvent être réglées dans les paramètres de module du protocole DNP sont les "entrées binaires" du Maître.

Accédez au menu [Para module / DNP3 / Point map]. Une fois les paramètres généraux du protocole DNP établis, la cartographie des points va être réalisée à l'étape suivante.

• Entrées binaires (États à envoyer au maître) :

Affectez le signal d'état requis (par ex., »Prot . Décl« à un paramètre disponible [Para module / DNP3 / Point map / Entrées binaires] »Entrée binaire 0...63«.

• Entrées double bit (États du disjoncteur à envoyer au maître)

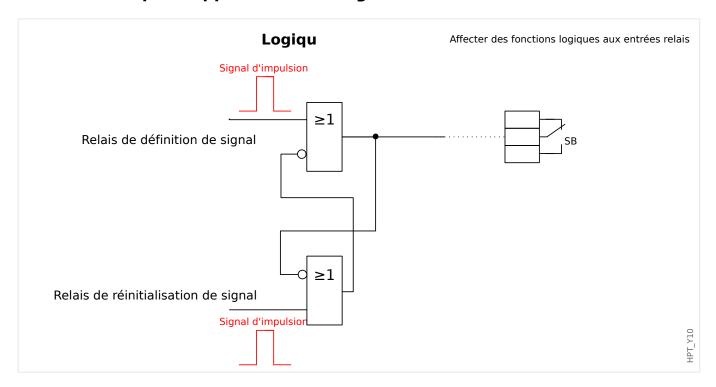
Affectez le signal requis (par ex., la position du disjoncteur »SG[1] . Pos« à un paramètre disponible [Para module / DNP3 / Point map / Entrées double bit] »Entrée double bit 0...5«.

• Compteurs (Compteurs à envoyer au maître)

Affectez le compteur requis (par ex., le nombre d'heures de fonctionnement »Sys . Cptr heures fonct« à un paramètre disponible [Para module / DNP3 / Point map / Compteur binaire] »Entrée double bit 0...7«.

• Entrées analogiques (par exemple, valeurs mesurées à envoyer au maître). Veuillez prendre en compte que les valeurs flottantes doivent être transmises comme nombres entiers. Cela signifie qu'elles doivent être mises à l'échelle (multipliées) avec un facteur d'échelle afin de les amener en format entier.

Affectez la valeur requise (par ex., le courant de phase »TC . IL1« à un paramètre disponible [Para module / DNP3 / Point map / Ent analog] »Valeur analogique 0...31«.


Définissez ensuite la mise à l'échelle de ce paramètre au niveau de [Para module / DNP3 / Point map / Ent analog] »Facteur d'échelle 0...31«.

Enfin, définissez la valeur de bande neutre pour ce paramètre au niveau de [Para module / DNP3 / Point map / Ent analog] »Bande neutre 0...31«. Cela définit le changement de valeur pour cet objet de données (en pourcentage de la valeur maximum) qui provoquera le renvoi de la valeur modifiée par le dispositif de protection. Il s'agit toujours d'un pourcentage de la valeur maximale. Consultez d'autres exemples fournis à la section Paramètres de bande neutre dans DNP3 ».

Utilisez des sorties binaires afin de contrôler, par exemple, des DEL ou des relais au sein du dispositif de protection (via Logic).

Veuillez essayer d'éviter les écarts qui ralentiront la performance de la communication DNP. Cela signifie ne pas laisser d'entrées / de sorties non utilisées entre les entrées / sorties utilisées (par exemple, ne pas utiliser la sortie binaire 1 et 3 lorsque 2 est inutilisée).

3.5.1 Exemple d'application : Configuration d'un relais

Les signaux de sortie binaires du DNP ne peuvent pas être utilisés directement pour commuter les relais parce que les sorties binaires DNP sont des signaux d'impulsion (par définition DNP, pas d'état stable). Des états stables peuvent être créés au moyen de fonctions logiques. Les fonctions logiques peuvent être affectées sur les entrées de relais.

Veuillez noter : Vous pouvez utiliser un élément d'initialisation/réinitialisation (Flip Flop, disponible dans les fonctions logiques).

3.5.2 Paramètres de bande neutre dans DNP3

Le réglage Bande neutre [Para module / DNP3 / Point map / Ent analog] »Bande neutre 0...31« spécifie une valeur mesurée (ou statistique), pour laquelle la valeur actualisée est de nouveau transmise. La bande neutre doit toujours être spécifiée en pourcentage de la valeur maximum.

Exemples de paramétrages de la bande neutre

Il convient de décrire en détail le paramètre Bande Neutre à l'aide de quelques exemples.

Tension (via une carte de mesure de la tension « TU »)

- La carte de transformateur de courant « TU » couvre la plage de tensions comprise entre 0 et 800 U. (Consultez le chapitre « Données techniques » du manuel.)
 Autrement dit, la valeur maximum est 800 U.
- La valeur nominale (secondaire) est égale à 100 U.
- Par conséquent, le facteur de conversion à partir du pourcentage de la tension nominale pour le *paramètre de bande neutre* est :

$$q = 100 U / 800 U = 0,125$$

- Par exemple, une valeur de bande neutre de **10** %, exprimée sous forme de pourcentage de la tension *nominale* est requise.
- · La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$10\% \cdot q = 0.0125 = 1.25\%$$

Courants (CT 1 A)

- Les transformateurs de courant 1 A couvrent la plage comprise entre 0 et 40 A.
- Le courant nominal (secondaire) est égal à 1 A.
- Par conséquent, le facteur de conversion à partir du pourcentage du courant nominal pour le *paramètre de bande neutre* est :

$$q = 1 A / 40 A = 0,025$$

- Par exemple, une valeur de bande neutre de **10** %, exprimée sous forme de pourcentage du courant *nominal* est requise.
- La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$10\% \cdot q = 0,0025 = 0,25\%$$

Courants (CT 5 A)

- Les transformateurs de courant 5 A couvrent la plage comprise entre 0 et 200 A.
- Le courant **nominal** (secondaire) est égal à **5 A**.
- Par conséquent, le facteur de conversion à partir du pourcentage du courant nominal pour le *paramètre de bande neutre* est :

$$q = 5 A / 200 A = 0,025$$

- Par exemple, une valeur de bande neutre de **10** %, exprimée sous forme de pourcentage du courant *nominal* est requise.
- La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$10\% \cdot q = 0.0025 = 0.25\%$$

Courant de terre (CT 1 A)

- La carte de transformateur de courant « TI » couvre la plage comprise entre 0 et 25 A.
- Le courant **nominal** (secondaire) est égal à **1 A**.
- Par conséquent, le facteur de conversion à partir du pourcentage du courant nominal pour le *paramètre de bande neutre* est :

$$q = 1 A / 25 A = 0.04$$

- Par exemple, une valeur de bande neutre de **10** %, exprimée sous forme de pourcentage du courant *nominal* est requise.
- La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$10\% \cdot q = 0.004 = 0.4 \%$$

Courant de terre sensible (CT 1 A)

- La carte de transformateur de courant sensible « TI » couvre la plage comprise entre 0 et 2,5 A.
- Le courant **nominal** (secondaire) est égal à **1 A**.
- Par conséquent, le facteur de conversion à partir du pourcentage du courant nominal pour le *paramètre de bande neutre* est :

$$q = 1 A / 2.5 A = 0.4$$

- Par exemple, une valeur de bande neutre de 1%, exprimée sous forme de pourcentage du courant nominal est requise.
- La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$1\% \cdot q = 0.004 = 0.4\%$$

Puissance (CT 1 A et carte de mesure de la tension « TU »)

- La plage de valeurs est comprise entre 0 et 32000 VA.
- La puissance **nominale** (secondaire) est basée sur la tension nominale et sur le courant nominal (secondaire) : $100 \text{ U} \cdot 1 \text{ A} \cdot \sqrt{3} = 173,21 \text{ VA}$.
- Par conséquent, le facteur de conversion à partir du pourcentage de la puissance nominale pour le *paramètre de bande neutre* est :

$$q = 173,21 \text{ VA} / 32000 \text{ VA} = 0,00541$$

- Par exemple, une valeur de bande neutre de **10** %, exprimée sous forme de pourcentage de la puissance *nominale* est requise.
- La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$10\% \cdot q = 0,000541 = 0,0541 \%$$

Puissance (CT 5 A et carte de mesure de la tension « TU »)

- La plage de valeurs est comprise entre 0 et 160000 VA.
- La puissance **nominale** (secondaire) est basée sur la tension nominale et sur le courant nominal (secondaire) : $100 \text{ U} \cdot 5 \text{ A} \cdot \sqrt{3} = 866,05 \text{ VA}$.
- Par conséquent, le facteur de conversion à partir du pourcentage de la puissance nominale pour le *paramètre de bande neutre* est :

$$q = 866,05 \text{ VA} / 160000 \text{ VA} = 0,00541$$

- Par exemple, une valeur de bande neutre de **10** %, exprimée sous forme de pourcentage de la puissance *nominale* est requise.
- La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$10\% \cdot q = 0.000541 = 0.0541 \%$$

Fréquence (Réseau 50 Hz)

- La plage de valeurs est comprise entre 40 et 70 Hz.
- La fréquence nominale est : 50 Hz.

• Par conséquent, le facteur de conversion à partir du pourcentage de la fréquence nominale pour le *paramètre de bande neutre* est :

$$q = 50 Hz / 70 Hz = 0,714$$

- Par exemple, une valeur de bande neutre de 0,1 %, exprimée sous forme de pourcentage de la fréquence nominale est requise.
- La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$0.1\% \cdot q = 0.000714 = 0.0714\%$$

Fréquence (Réseau 60 Hz)

- La plage de valeurs est comprise entre 40 et 70 Hz (c'est-à-dire la même que pour 50 Hz).
- La fréquence nominale est : 60 Hz.
- Par conséquent, le facteur de conversion à partir du pourcentage de la fréquence nominale pour le *paramètre de bande neutre* est :

$$q = 60 Hz / 70 Hz = 0.857$$

- Par exemple, une valeur de bande neutre de **0,1** %, exprimée sous forme de pourcentage de la fréquence *nominale* est requise.
- La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$0.1\% \cdot q = 0.000857 = 0.0857\%$$

cos(φ)

Cette valeur est spéciale car il n'y a pas de valeur nominale.

- La valeur maximum est 1,0.
- Par exemple, une valeur de bande neutre de 0,01 est requise. (Utiliser des pourcentages ici n'est pas très parlant.)
- La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$0.01 / 1.0 = 1 \%$$
.

φ

- Toutes les valeurs d'angle sont exprimées en degrés, par exemple : la valeur maximum est 360°.
- Par exemple, une valeur de bande neutre de 1° est requise. (Utiliser des pourcentages ici n'est pas très parlant.)
- La valeur du paramètre Bande neutre doit donc être définie comme suit :

$$1^{\circ} / 360^{\circ} = 0,278 \%$$

3.6 CEI 60870-5-103

Pour pouvoir utiliser le protocole CEI 60870-5-103, celui-ci doit être affecté à l'interface X103 dans l'organisation du dispositif. Le dispositif redémarrera une fois ce paramètre défini.

De plus, le protocole CEI103 doit être activé en réglant [Para module / IEC103] »Fonction« sur « actif ».

REMARQUE!

Le paramètre X103 est uniquement disponible si le module est équipé à l'arrière d'une interface de type RS485 ou fibre optique.

REMARQUE!

Si le module est équipé d'une interface fibre optique, la position optique de repos doit être réglée dans les paramètres du module.

Le protocole contrôlé par le temps IEC60870-5-103 repose sur le principe de fonctionnement maître-esclave. Cela signifie que le système de contrôle et de protection de la sous-station envoie une demande ou une instruction à un certain module (adresse esclave) qui fera l'objet d'une réponse ou sera traité en conséquence.

Le dispositif répond aux exigences du mode de compatibilité 2. Le mode de compatibilité 3 n'est pas pris en charge.

Les fonctions CEI 60870-5-103 suivantes seront prises en charge :

- Initialisation (réinitialisation)
- Synchronisation de temps
- Lecture des signaux instantanés obsolètes
- · Demandes générales
- · Signaux cycliques
- Commandes générales
- Transmission des données de perturbation

Initialisation

La communication doit être réinitialisée par une commande de réinitialisation chaque fois que le module est mis sous tension ou que les paramètres de communication sont modifiés. La commande « Reset CU » se réinitialise. Le relais agit sur les deux commandes de réinitialisation (Reset CU ou Reset FCB).

Le relais agit sur la commande de réinitialisation via un signal d'identification ASDU 5 (Application Data Unit Service). Comme raison (cause de transmission, COT) de la transmission de la réponse, une commande « Reset CU » ou « Reset FCB » sera envoyée selon le type de la commande de réinitialisation. Ces informations peuvent faire partie de la section des données du signal ASDU.

Nom du fabricant

La section permettant l'identification du logiciel contient trois chiffres du code du module pour l'identification du type de module. Outre le numéro d'identification mentionné cidessus, le module génère un événement de début de communication.

Synchronisation temporelle

L'heure et la date du relais peuvent être définies au moyen de la fonction de synchronisation du protocole IEC60870-5-103. Si le signal de synchronisation de temps est envoyé avec une demande de confirmation, le module répondra par un signal de confirmation.

Événements spontanés

Les événements générés par le module seront transmis au maître avec les numéros des types de fonctions standard/informations standard. La liste de points de données inclut tous les événements qui peuvent être générés par le module.

Mesure cyclique

Le dispositif génère de façon cyclique des valeurs mesurées via ASDU 9. Ces valeurs peuvent être lues via une requête de classe 2. Tenez compte du fait que les valeurs mesurées seront envoyées comme multiples (1,2 ou 2,4 fois la valeur nominale). La liste de points de données indique comment définir le facteur multiplicateur 1,2 ou 2,4 d'une valeur.

Le paramètre « Transm val mes priv » spécifie si des valeurs de mesure supplémentaires doivent être transmises dans la partie privée. Les valeurs publiques et privées mesurées sont transmises par ASDU9. Cela signifie qu'une valeur ASDU9 « privée » ou « publique » sera transmise. Si ce paramètre est défini, ASDU9 contiendra des valeurs mesurées supplémentaires qui constituent alors une amélioration de la norme. La valeur ASDU9 « privée » est envoyée avec un type de fonction fixe et le numéro d'information qui ne dépend pas du type de module. Reportez-vous à la liste de points de données.

Commandes

La liste de points de données inclut une liste des commandes prises en charge. Le module répondra à toute commande à l'aide d'une confirmation positive ou négative. Si la commande est exécutable, l'exécution avec la raison correspondante de la transmission (COT) sera effectuée en premier, puis l'exécution sera confirmée par la raison COT1 dans une valeur ASDU9.

Enregistrement des perturbations

Les perturbations enregistrées par le dispositif peuvent être lues via les moyens décrits dans la norme CEI 60870-5-103. Le dispositif est conforme au système de contrôle VDEW par la transmission d'un ASDU 23 sans enregistrement des perturbations au début d'un cycle GI.

Un enregistrement de perturbation contient les informations suivantes :

- Valeurs analogiques mesurées, IL1, IL2, IL3, IN, tensions VL1, VL2, VL3, VEN;
- États binaires, transmis sous forme de marques, par exemple des alarmes et des déclenchements.
- Le rapport de transmission ne sera pas pris en charge. Le rapport de transmission est inclus dans le « Multiplicateur ».

Blocage du sens de transmission

Le relais prend en charge la fonction de blocage de la transmission dans le sens de la surveillance. Deux méthodes sont disponibles pour activer ce blocage :

- Activation manuelle via le paramètre Contrôle direct »Activation blocage MD«
- Activation externe, en affectant un signal au paramètre de réglage »Activation bloc.
 MD (Ex)«

Mode test

Le relais prend en charge le mode test (Cause de la transmission 7). Deux méthodes sont disponibles pour activer le mode test :

- Activation manuelle via le paramètre Contrôle direct »Activation mode test«
- Activation externe, en affectant un signal au paramètre de réglage »Activation mode test (Ex)«

3.7 Protocoles de communication configurables

Certains protocoles SCADA pris en charge par le dispositif MRI4 comprennent une option permettant d'adapter le mappage des objets de données aux adresses internes du protocole en fonction des besoins. Ce résultat peut être obtenu en utilisant un outil logiciel PC, SCADAPTER.

Les protocoles prenant en charge ce type de remappage sont actuellement les suivants :

Pour des informations détaillées, consultez la documentation *SCADAPTER* et les chapitres consacrés aux protocoles correspondants. Le transfert d'un nouveau mappage vers le dispositif MRI4 est également décrit dans \Longrightarrow « Mappage des points de données à l'aide de SCADAPTER ».

3.7.1 CEI 60870-5-104

Le protocole CEI 60870-5-104 est un protocole de communication normalisé. Il est disponible sur les appareils HighPROTEC qui sont équipés d'une interface Ethernet.

Même s'il existe un mappage standard des points de données fourni avec le MRI4, il est vraisemblable que la plupart des utilisateurs souhaiteront adapter le mappage en fonction de leurs besoins. Ce résultat peut être obtenu en utilisant un outil logiciel PC, SCADAPTER.

REMARQUE!

Le protocole IEC104 est uniquement disponible si l'appareil est équipé d'une interface Ethernet (RJ45 ou fibre optique avec connecteur duplex LC) sur son panneau arrière.

REMARQUE!

Reportez-vous à la section \Longrightarrow « Interopérabilité CEI 60870-104 » pour des informations concernant la compatibilité standard et le chapitre dédié à la mise en œuvre.

Configuration

Pour commencer, le protocole IEC104 doit être sélectionné en tant que protocole SCADA à utiliser :

Réglez [Organis module] »Protocol« sur « IEC104 ».

Définissez l'adresse commune de l'ASDU, de façon à permettre l'identification unique du dispositif : [Para module / IEC104 / Paramètres généraux] »Adresse commune«.

(Ce réglage est une commande directe, ce qui signifie qu'il n'est jamais enregistré en tant qu'élément d'un réglage de paramètre (fichier *.HptPara) et doit donc être spécifié explicitement!)

Ensuite, le protocole IEC104 doit être activé en réglant [Para module / IEC104 / Paramètres généraux] »Fonction« sur « actif ».

Notez que certains réglages de la branche de menu [Para module / IEC104 / Avancé(s)] sont intentionnellement mis en œuvre en tant que paramètres « en lecture seule », de sorte que l'administrateur du réseau peut vérifier les valeurs, mais sans pouvoir les modifier.

Néanmoins, le réglage [Para module / IEC104 / Avancé(s)] »Heure de mise à jour«, peut être défini sur une durée quelconque comprise dans la plage de 1 s à 60 s : En cas de transmission cyclique des valeurs mesurées, ce réglage définit la durée du cycle (c'est-à-dire, le temps après lequel les valeurs mises à jour sont transmises).

Le fait qu'une valeur mesurée fasse partie ou non d'une transmission cyclique constitue une propriété individuelle du point de données. Pour un mappage de points de données défini par l'utilisateur, cette propriété est configurable. (Pour plus de détails, reportezvous à la documentation de *SCADAPTER*.)

Adresse de l'objet Information

L'outil de configuration *SCADAPTER* permet de créer un tableau de mappage qui affecte les objets de données à leur adresse d'objet Information (« IOA ») respective.

L'IOA comprend trois octets conformément à la norme supplémentaire IEC104. SCADAPTER Permet de définir chaque octet séparément, de sorte que l'utilisateur peut affecter chaque objets de données à une adresse IOA selon les besoins spécifiques de l'application.

Mappage des points de données pour les valeurs de mesure

Dans l'outil de configuration *SCADAPTER*, un réglage *»Bande neutre«* correspond à chaque valeur mesurée (ou statistique). Il définit le changement de valeur qui entraînera une nouvelle transmission de la valeur actualisée.

La transmission cyclique est définie pour une valeur mesurée en réglant le pourcentage Bande neutre pour cette valeur mesurée sur zéro.

Un pourcentage Bande neutre différent de zéro fait référence à la valeur maximale de la valeur mesurée correspondante. Des exemples sont fournies dans la documentation de SCADAPTER.

Pour chaque valeur de mesure, il est possible de sélectionner un des trois modes de présentation différents conformément à la norme supplémentaire IEC104 :

- « Flottant(e) abrégé(e) » : la valeur est un nombre en virgule flottante.
- « Adapté » : la valeur comporte un nombre fixe de décimales. La mise à l'échelle est configurable.
- « Normalisé » : la valeur est relative à la valeur nominale.

Compteurs d'énergie

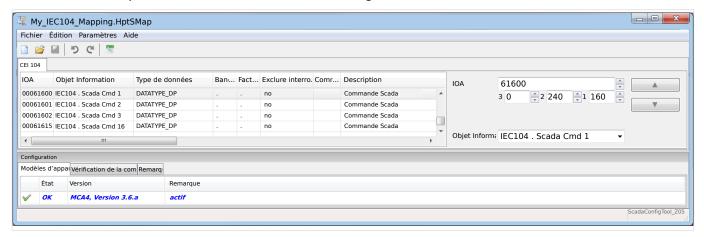
Toutes les valeurs d'énergie sont toujours traitées comme des objets de données de type « Total intégré ».

Compteurs de défaut

Toutes les valeurs de défaut sont toujours traitées comme des objets de données de type « Chaîne binaire ».

États binaires

Pour tous les états de sortie binaire, il est possible de sélectionner un des deux modes de présentation différents conformément à la norme supplémentaire IEC104 :


- 1 point Information 1 point (M_SP_TB_1),
- 2 points Information 2 points (M DP TB 1),
- Chaîne binaire Chaîne binaire de 32 bits (M BO TB 1).

Commandes CEI

Le protocole IEC104 comporte 16 commandes librement configurables. Les commandes peuvent être utilisées à des fins différentes (par exemple, pour acquitter les DEL, les relais de sortie et les commandes de déclenchement mémorisées ou encore pour faire fonctionner un appareil de connexion.

'Utilisation d'une commande IEC104 induit principalement une configuration en 2 étapes :

Une étape consiste à définir les propriétés liées au protocole de la commande correspondante à l'aide de l'outil de configuration *SCADAPTER*.

La deuxième étape implique un réglage au niveau du MRI4 : Les commandes sont disponibles sous forme de valeurs(!) de réglage qui peuvent être affectée au paramètre approprié.

Si, par exemple, la commande IEC104 2 doit acquitter (réinitialiser la mémorisation de) la DEL 1 du MRI4, vous devez effectuer le réglage suivant :

[Para module / DEL / DEL groupe A / DEL 1] »Affect 1« = « IEC104 . Scada Cmd 2 ».

Si, par exemple, la commande doit *faire fonctionner* le relais de sortie numéro 1 à l'emplacement X2 :

[Para module / Sort binaires / Empl SB X2 / SB 1] »Affect 1« = « IEC104 . Scada Cmd 2 ».

Si, par exemple, la commande doit *acquitter* (réinitialiser la mémorisation de) du relais de sortie numéro 1 à l'emplacement X2 :

[Para module / Sort binaires / Empl SB X2 / SB 1] »Acquittement« = « IEC104 . Scada Cmd 2 ».

Si, par exemple, la commande doit *faire fonctionner* (désactiver) l'appareillage de connexion SG[1] :

[Contrôl / SG / SG[1] / Cmd Ex ON/OFF] »SCmd OFF« = « IEC104 . Scada Cmd 2 ».

Pour le contrôle de l'appareillage de connexion, d'autres réglages différents doivent être vérifiés, bien entendu. En particulier, il est nécessaire que [Contrôl / Paramètres généraux] »Autoris commut« soit réglé sur « Dist » ou sur « Local et distant ». Pour plus de détails, consultez \Longrightarrow « Gestionnaire de contrôle / des appareillages de connexion ».

Anwendungsbeispiel - Setzen eines Ausgangsrelais

Le concept d'utilisation de la logique programmable pour configurer un état stable est semblable à la description pour le protocole DNP3 : \Longrightarrow « Exemple d'application : Configuration d'un relais »

Activation d'un mappage de points de données défini par l'utilisateur

Pour obtenir des informations concernant la création d'un fichier de mappage et son téléchargement à partir de ou sur le MRI4, consultez la documentation de *SCADAPTER* et de \Longrightarrow « Mappage des points de données à l'aide de SCADAPTER ». (Étant donné que le

3 Protocoles de communication

3.7 Protocoles de communication configurables

mappage des points de données est une fonction générale utilisable de la même façon pour plusieurs protocoles de communication, il est décrit séparément.)

3.7.2 Modbus®

Configuration du protocole Modbus®

Le protocole de communication Modbus[®] est disponible avec les dispositifs HighPROTEC qui sont équipés d'une interface série (« Modbus RTU ») ou d'une interface Ethernet (« Modbus TCP »).

La définition de protocole standard (mappage des points de données) fournie avec le MRI4 convient à la plupart des applications, de sorte que seulement quelques réglages doivent être effectués (voir ci-dessous).

C'est seulement dans le cas spécial où le mappage interne des points de données a besoin d'être adapté à des communications de sous-station que vous pouvez définir un mappage individuel en utilisant un outil logiciel pour ordinateur distinct, SCADAPTER.

Le protocole Modbus[®], contrôlé par le temps, est fondé sur le principe de fonctionnement Maître-Esclave. Cela signifie que le système de contrôle et de protection de la sousstation envoie une demande ou une instruction à un certain module (adresse esclave) qui fera l'objet d'une réponse ou sera traité en conséquence. S'il n'est pas possible de répondre/exécuter la demande/l'instruction (par exemple, à cause d'une adresse d'esclave non valide), un message d'erreur est renvoyé au maître.

REMARQUE!

Certains signaux (actifs seulement pendant une courte durée) doivent être acquittés séparément (les signaux de déclenchement, par exemple) par le système de communication.

Le maître (système de protection et de contrôle de la sous-station) peut demander des informations au module, comme :

- Type de version d'unité
- Valeurs de mesure/Valeurs statistiques mesurées
- Basculer la position de fonctionnement
- État du module
- · Heure et date
- État des entrées numériques du module
- Alarmes de protection/d'état

Le maître (système de commande) peut donner des commandes/instructions au module, par exemple :

- Contrôle de l'appareillage de connexion (si applicable, en fonction de la version du dispositif appliqué)
- Changement de configuration des paramètres
- Réinitialisation et acquittement d'alarmes/signaux
- Réglage de la date et de l'heure
- Contrôle des relais d'alarme

Pour plus d'informations sur les listes de points de données et le traitement des erreurs, reportez-vous à la documentation Modbus®.

Pour permettre la configuration des modules pour la connexion Modbus[®], certaines valeurs par défaut du système de commande doivent être disponibles.

Configuration

Pour commencer, le protocole Modbus doit être sélectionné en tant que protocole SCADA à utiliser :

Réglez [Organis module] »Protocol«

- = « ModbusRTU » : utilisez le protocole Modbus[®] sur une connexion série.
- = « ModbusTCP » : utilisez le protocole Modbus® sur une connexion Ethernet (TCP/IP)
- = « ModbusTCP/RTU » : utilisez les interfaces Ethernet (TCP/IP) et série pour les messages Modbus.

Continuez ensuite avec les paramètres décrits ci-dessous pour Modbus RTU ou Modbus TCP, selon votre type d'utilisation.

Modbus RTU

Partie 1 : Configuration des dispositifs

Accédez au menu [Para module / Modbus / Communication / RTU] et définissez les paramètres de communication suivants :

- »ID escl« : adresse esclave, pour permettre une identification claire du dispositif.
- »Vit trans« : vitesse de transmission de l'interface série.

Sélectionnez également les paramètres de l'interface RS485, tels que :

- Nombre de bits de données
- L'une des variantes de communication prises en charge suivantes : Nombre de bits de données, pair, impair, parité ou sans parité, nombre de bits d'arrêt.
- *»t-tempo«* : les erreurs de communication ne sont identifiées qu'après expiration du temps de surveillance *»t-tempo«*.
- Temps de réponse (définit le laps de temps pendant lequel une demande du maître doit être répondue).

Partie 2 :Connexion matérielle

- Pour la connexion matérielle du système de commande, une interface RS485 se trouve à l'arrière du module (RS485, fibre optique ou bornes).
- Connexion du bus et du module (câblage).

Traitement d'erreur - Erreurs matérielles

Informations sur les erreurs de communication physique, telles que :

Erreur de vitesse de transmission

• Erreur de parité...

peuvent être obtenues de l'enregistreur d'événements.

Traitement d'erreur - Erreurs de niveau de protocole

Par exemple, si une adresse mémoire non valide est demandée, des codes d'erreur sont renvoyés par le module et doivent être interprétés.

Modbus TCP

REMARQUE!

L'établissement d'une connexion à l'appareil via TCP/IP n'est possible que s'il est équipé d'une interface Ethernet (RJ45).

Contactez l'administrateur de votre système informatique afin d'établir la connexion réseau.

Partie 1 :Configuration des paramètres TCP/IP

Affichez [Para module / TCP/IP / Config TCP/IP] au niveau de l'IHM (panneau) et définissez les paramètres suivants :

- Adresse TCP/IP
- · Masque de sous-réseau
- Passerelle

Partie 2 :Configuration des dispositifs

Appelez le menu »Paramètre du dispositif/Modbus« et définissez les paramètres de communication suivants :

- La définition d'un ID unité n'est nécessaire que si un réseau TCP doit être couplé à un réseau RTU.
- Si un port autre que le port 502 par défaut doit être utilisé, procédez comme suit :
 - Sélectionnez « Privé » dans « Config port TCP » (configuration du port TCP).
 - Définissez le numéro du port.
- Définissez le temps maximum autorisé sans communication. Si la durée expire (sans aucune communication), le dispositif en déduit une défaillance au sein du système maître ou de la fonction de communication.
- Autorisez ou interdisez le blocage des commandes SCADA.

Partie 3 :Connexion matérielle

- Une interface RJ45 placée à l'arrière du module est prévue pour la connexion matérielle au système de commande.
- Établissez la connexion au module à l'aide d'un câble Ethernet adapté.

SCADAPTER

SCADAPTER est un outil autonome pour ordinateur. Les détails de son utilisation sont décrits dans le manuel *SCADAPTER*.

Si vous souhaitez télécharger un mappage précédent défini par l'utilisateur à partir du MRI4 de façon à pouvoir l'utiliser comme modèle pour d'autres adaptations, cela est possible à l'aide de *Smart view*. Cela est vrai également pour le transfert de mappings modifiés vers le MRI4. Voir \Longrightarrow « Mappage des points de données à l'aide de SCADAPTER ».

Démarrez ensuite *SCADAPTER*. Après avoir sélectionné [Fichier / Nouveau] ou [Fichier / Ouvrir], vous devez sélectionner un modèle de dispositif et le protocole de communication (« Modbus », dans ce cas). Six onglets s'affichent alors, « FC1 » ... « FC6 ». Chacun de ces onglets comporte un tableau répertoriant les objets de données mappés.

FC

- Le numéro du « code de fonction » détermine le type des objets de données qu'il peut contenir :
 - FC1, FC2 contiennent les états (mais pas les valeurs de mesure).
 - FC3, FC4 peuvent contenir tous les types d'objets à l'exception des commandes.
 - FC5, FC6 sont utilisés pour les commandes.
 - FC16 est utilisé pour les messages de plusieurs mots spéciaux (principalement pour la synchronisation temporelle).

Pour plus de détails, consultez la spécification Modbus!

Adresse, Position binaire

- Il s'agit de l'adresse Modbus à laquelle l'objet de données doit être mappé.
- La position binaire apparaît uniquement lorsque sa sélection peut s'avérer nécessaire (en particulier, avec les états binaires d'une longueur de 1 bit).

Objet Information, Description, Commentaire

- L'objet de données à mapper et une description. Le type d'information que représente l'objet de données doit être pris en charge par le MRI4, puis la liste de sélection lit les entités prises en charge à partir du fichier de modèle de dispositif.
- Le commentaire est un texte défini par l'utilisateur dépourvu de toute fonctionnalité technique. Ce champ peut être utilisé pour archiver des informations de contexte relatives au mappage.

Format, Taille binaire, Mémorisé

- Sélectionnez le format de l'objet de données :
 - « Int16 » Nombre entier de 16 bits
 - « Int32 » Nombre entier de 32 bits
 - « Uint32 » Nombre entier non signé (c'est-à-dire, non négatif) de 32 bits

- « Flottant(e) » Nombre exprimé en virgule flottante (conformément à la norme IEEE 754)
- La taille binaire est définie automatiquement en fonction du format de l'objet de données.
- La case à cocher « Mémorisé » détermine si les informations Modbus doivent être verrouillées (jusqu'à un acquittement explicite).

Facteur, Adaptation

- Spécifiez le facteur et l'échelle des données (si ces champs de saisie sont affichés). L'échelle peut être définie comme suit :
 - « Primaire » Adaptation de l'objet Information en valeur primaire
 - « Secondaire » Adaptation de l'objet Information en valeur secondaire
 - « Relatif » Adaptation de l'objet Information en valeur nominale

Pour obtenir des informations sur la procédure de téléchargement de mappage modifié vers le MRI4, consultez la documentation *SCADAPTER* et \hookrightarrow « Mappage des points de données à l'aide de SCADAPTER ». (Étant donné que le mappage des points de données est une fonction générale utilisable de la même façon pour plusieurs protocoles de communication, il est décrit séparément.)

3.7.3 High Tech Line 3 - Mappage des points de données compatible Modbus

Il est possible de créer des mappages de points de données Modbus qui simulent la communication avec un autre appareil. Pour cela, il est nécessaire de créer un fichier *.HptSMap et de le charger sur le MRI4, comme décrit dans \Longrightarrow « Mappage des points de données à l'aide de SCADAPTER ».

Il est possible (avec les limitations indiquées ci-dessous) de créer un mappage *. HptSMap qui rende les communications Modbus du MRI4 compatibles avec un dispositif *High Tech Line 3*.

En guise de modèle pour des adaptations individuelles, Woodward a mis au point deux fichiers Modbus-*.HptSMap (ModbusMRI3_IER.HptSMap et ModbusMRU3.HptSMap), qui rendent le MRI4 compatible avec un **MRI3** ou un **MRU3** (autant que possible). Ces fichiers de mappage sont fournis sur le DVD livré avec le produit. Il est également possible de la télécharger à partir de l'adresse Internet imprimée sous forme de code QR sur un adhésif fixé sur le MRI4.

Ces deux fichiers Modbus-*. HptSMap représentent toutes les informations relatives au dispositif *High Tech Line 3* correspondant, avec les exceptions suivantes qui persistent en raison des limitations techniques :

- Il est impossible de modifier les valeurs de réglage du MRI4 via SCADA. Par conséquent, les registres Modbus 0x40 ... 0x7F, qui sont liés aux paramètres de réglage, ne sont pas présentés par les fichiers * .HptSMap. La seule fonctionnalité prise en charge est le changement de groupes de paramètres, adresse Modbus 0x3F : Le groupe de paramètres actif peut être lu et modifié.
- Les enregistrements de défauts ne peuvent pas être lus via Modbus. En revanche, il est possible de lire une entrée de défaut spécifique à HighPROTEC à l'adresse 0x80, qui contient le numéro du défaut, la cause du déclenchement et l'horodatage du défaut.
- Les signaux d'état d'alarme et les états de défaut présentent toujours un état mémorisé. Il est possible d'accuser réception (réinitialiser) les états mémorisés au niveau du MRI4 ou via une commande Modbus particulière. Ce comportement correspond à celui d'un dispositif *High Tech Line 3* dans le cas où uniquement la dernière entrée de défaut est lue via Modbus.
- Tous les états sont définis comme étant mémorisés dans ces deux fichiers
 *.HptSMap. Dans l'éventualité où cela n'est pas souhaité, il est possible de modifier le(s) fichier(s) *.HptSMap à l'aide de l'outil SCADAPTER et de désactiver la mémorisation. (Consultez l'étape 2 du chapitre « Création d'un mappage de protocole » dans le Manuel d'utilisation SCADAPTER.)
- La version du logiciel ne peut pas être lue. À cette adresse Modbus, le MRI4 retourne toujours une valeur constante fixe. Cependant, il est possible de définir cette valeur constante manuellement via *SCADAPTER*.

3.7.4 Mappage des points de données à l'aide de SCADAPTER

Outils logiciels

La procédure de configuration pour un mappage des points de données défini par l'utilisateur fonctionne toujours de la même façon pour tous les protocoles SCADA qui prennent en charge les mappages définis par l'utilisateur. Un mappage d'objets de données est toujours basé sur un fichier distinct de type (extension) *.HptSMap. Ce fichier peut être modifié à l'aide d'un utilitaire PC distinct, SCADAPTER, et Smart view permet de télécharger le mappage de l'utilisateur actif à partir du dispositif de protection (pour de nouvelles modifications) ou de télécharger et d'activer le nouveau fichier de mappage *.HptSMap.

REMARQUE!

Le mappage par défaut ne peut pas être téléchargé aux fins de nouvelles modifications.

Spécification du mappage des points de données

Le paramètre [Para module / nom_protocole / Config. obj. données] »Type de mappage SCADA« peut être réglé sur « Standard » ou « Défini par util. ».

- « Standard » indique que le dispositif de protection utilise les valeurs par défaut comme mappage des points de données (même si un mappage défini par l'utilisateur a déjà été téléchargé dans MRI4).
- « Défini par util. » indique que le dispositif de protection utilise le mappage des points de données défini par l'utilisateur. (Si aucun fichier de mappage valide n'a été téléchargé, le dispositif le signale en définissant la valeur de sortie [Para module / nom protocole / Avancé(s)] »Heure de mise à jour« = « Err 1/2 ».)

Transfert du mappage des points de données

Si un mappage des points de données défini par l'utilisateur existe déjà sur le dispositif de protection, il est possible de le télécharger et de l'utiliser aux fins de nouvelles modifications. (Le mappage par défaut ne peut pas être téléchargé.)

Selon la valeur de *»Type de mappage SCADA«*, le mappage actif est le mappage par défaut ou un fichier de mappage valide précédemment téléchargé.

Le téléchargement d'un fichier de mappage ou le téléchargement (par la suite) d'un fichier de mappage modifié doivent être effectués via *Smart view*, auquel le dispositif de protection doit être connecté.

Une fois la connexion établie avec *Smart view* et que toutes les données relatives au dispositif ont été récupérées, double-cliquez sur l'élément de menu [Para module / nom_protocole / Config. obj. données].

Une boîte de dialogue contenant un bouton « Transfert de configuration SCADA » s'affiche. (Voir le point (1) sur l'illustration ci-dessous.)

Un clic sur ce bouton ouvre une autre boîte de dialogue, « Configuration du mappage des points SCADA ». Cette boîte de dialogue comporte deux boutons, **(2)** et **(a)** sur l'illustration ci-dessous.

Le bouton (a) permet d'effectuer le téléchargement : le dispositif de protection envoie son mappage de protocole SCADA défini par l'utilisateur à la boîte de dialogue

« Configuration du mappage des points SCADA », puis une boîte de dialogue « Enregistrer sous » apparaît et permet à l'utilisateur de créer un nouveau fichier *. HptSMap à partir de ces définitions de protocole. (Ce téléchargement n'est pas possible pour le mappage standard (valeur par défaut).)

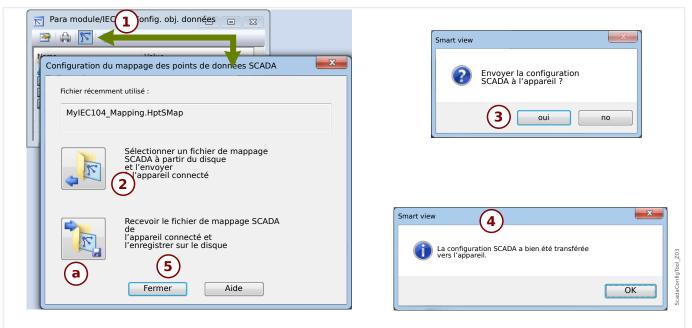


Fig. 40: Exemple d'utilisation de Smart view pour transférer *. HptSMap sur le dispositif de protection.

Le bouton (2), « Sélectionner un fichier de mappage SCADA sur le disque et l'envoyer au dispositif connecté. », lance le téléchargement d'un fichier de mappage modifié. Après avoir cliqué sur ce bouton, une boîte de dialogue de sélection de fichier s'ouvre.

Accédez ensuite au fichier *. HptSMap contenant les définitions SCADA requises et cliquez sur « Ouvrir ».

Smart view Ouvre et vérifie le fichier *. HptSMap. Si le fichier est compatible avec le dispositif de protection connecté, une boîte de dialogue demande à l'utilisateur si les définitions de protocole doivent être transférées vers le dispositif de protection [(3) sur l'illustration].

Après avoir cliqué sur « oui » (et saisi le mot de passe pour le niveau d'accès »Superviseur-Lv3«), les données sont transférée et l'utilisateur est informé de la réussite de l'opération (4).

Vous pouvez maintenant cliquer sur « Fermer » (5) dans la « boîte de dialogue Configuration du mappage des points SCADA », pour revenir à la fenêtre principale *Smart view*.

Enfin, le mappage spécifique à l'utilisateur doit être activé par le réglage [Para module / nom-protocole / Config. obj. données] »Type de mappage SCADA« = « Défini par util. ».

N'oubliez pas de transférer tous les réglages (ou tous les réglages modifiés) vers le dispositif de protection (à partir de *Smart view*). De plus, il est recommandé que l'option « Actualisation automatique » soit active dans *Smart view*, pour que toutes les entrées de la boîte de dialogue [Config. obj. données] soient correctement actualisées.

3.8 Synchronisation de temps

Le dispositif permet à l'utilisateur de le synchroniser avec un générateur d'horloge central. Ceci offre les avantages suivants :

- L'heure ne dévie pas de l'heure de référence. Une déviation accumulée en continu vis-à-vis de l'heure de référence sera équilibrée. Reportez-vous également à la section Spécifications (Tolérances de l'horloge en temps réel).
- Tous les appareils à temps synchronisé fonctionnent avec la même heure. Par conséquent, les événements consignés sur chaque appareil peuvent donc être comparés de manière exacte et évalués (événements individuels de l'enregistreur d'événements, enregistrements de formes d'onde).

L'heure de l'appareil peut être synchronisée via les protocoles suivants :

- IRIG-B
- SNTP
- Protocole de communication Modbus (RTU ou TCP)
- Protocole de communication CEI 60870-5-103
- Protocole de communication CEI 60870-5-104
- Protocole de communication DNP3

Ces protocoles utilisent des interfaces matérielles différentes et offrent une précision différente. Pour plus d'informations à ce sujet, consultez la section \Longrightarrow « Spécifications / Tolérances ».

Sans synchronisation de temps

Cela est possible, mais déconseillé, pour les applications standard de l'industrie.

IRIG-B

Interface matérielle	Application recommandée
Borne IRIG-B	Recommandé, si interface disponible.

SNTP

Interface matérielle	Application recommandée
RJ45 (Ethernet)	Alternative à IRIG-B recommandée, en particulier en cas d'utilisation de CEI 61850 ou Modbus TCP

RTU Modbus

Interface matérielle	Application recommandée
RS485, D-SUB ou Fibre optique	Recommandé en cas d'utilisation du protocole de communication Modbus RTU et qu'aucune horloge en temps réel IRIG-B n'est disponible

Modbus TCP

Interface matérielle	Application recommandée
RJ45 (Ethernet)	Recommandation limitée lorsque le protocole de communication Modbus TCP est utilisé et qu'aucune horloge en temps réel IRIG-B ou serveur SNTP n'est disponible

CEI 60870-5-103

Interface matérielle	Application recommandée
RS485, D-SUB ou Fibre optique	Recommandé en cas d'utilisation du protocole de communication CEI 60870-5-103 et lorsqu'aucune horloge en temps réel IRIG-B n'est disponible

CEI 60870-5-104

Interface matérielle	Application recommandée
RJ45 (Ethernet)	Recommandé en cas d'utilisation du protocole de communication CEI 60870-5-104 et lorsqu'aucune horloge en temps réel IRIG-B n'est disponible

DNP3

Interface matérielle	Application recommandée
RS485 ou RJ45 (Ethernet)	Recommandation limitée en cas d'utilisation du protocole de communication DNP3 et lorsqu'aucune horloge en temps réel IRIG-B ou serveur SNTP n'est disponible

Précision de la synchronisation horaire

La précision de l'heure système synchronisée de l'appareil dépend de plusieurs facteurs :

- · précision du générateur d'horloge connecté,
- protocole de synchronisation utilisé et
- Si Modbus TCP, SNTP, CEI 60870-5-104 ou DNP3 TCP/UDP est utilisé : charge réseau et temps de transmission des paquets de données

REMARQUE!

Tenez compte de la précision du générateur horaire utilisé. Les écarts de temps du générateur horaire entraînent les mêmes écarts de temps système du dispositif.

Sélection du fuseau horaire et du protocole de synchronisation

Le relais de protection gère l'heure locale et UTC. Cela signifie que le module peut être synchronisé sur l'heure UTC tout en utilisant l'heure locale pour l'écran de l'utilisateur.

Synchronisation horaire avec l'heure UTC (recommandée) :

La synchronisation horaire est en règle générale réalisée avec l'heure UTC. Cela signifie par exemple, qu'un générateur d'horloge IRIG-B envoie des informations de temps universel coordonné (UTC) au relais de protection. Cette utilisation est recommandée, car dans ce cas la synchronisation horaire peut être assurée en continu. Il n'y a pas de sauts dans le temps dus aux changements d'heure d'été et d'hiver.

Pour que l'appareil affiche l'heure locale en cours, le fuseau horaire et le changement d'heure été/hiver peuvent être configurés.

Suivez les étapes de réglage suivantes au niveau de la branche de menu [Para module / Heur / Fus hor] :

- Réglez le paramètre »Fus hor« sur votre fuseau horaire.
- Ensuite, configurez le passage à l'heure d'été.

Puis, dans la branche de menu [Para module / Heur / TimeSync / TimeSync] :

- Réglez le paramètre *»TimeSync«* sur le protocole de synchronisation horaire utilisé (par exemple, « IRIG-B »).
- Définissez les paramètres du protocole de synchronisation (reportez-vous au chapitre correspondant).

Synchronisation horaire avec l'heure locale :

Si la synchronisation horaire doit être effectuée avec l'heure locale, conservez « UTC+0 London » comme fuseau horaire et n'utilisez pas le passage à l'heure d'été.

REMARQUE!

La synchronisation de l'heure système du relais est réalisée exclusivement par le protocole de synchronisation sélectionné dans le menu [Para module / Heur / TimeSync / TimeSync].

Sans synchronisation horaire:

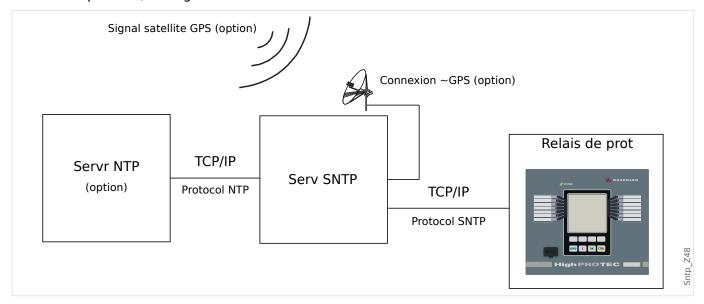
Pour que l'appareil affiche l'heure locale en cours, le fuseau horaire et le changement d'heure été/hiver peuvent être configurés.

Suivez les étapes de réglage suivantes :

- Dans la branche de menu [Para module / Heur / TimeSync / TimeSync], réglez le paramètre »TimeSync« sur « ».
- Puis, au niveau de la branche de menu [Para module / Heur / Fus hor], réglez le paramètre »Fus hor« sur votre fuseau horaire local.
- Ensuite, configurez le passage à l'heure d'été.
- Réglez la date et l'heure au niveau de [Para module / Heur] »Date et heure«.

3.8.1 SNTP

REMARQUE!



Prérequis important : le dispositif doit avoir accès à un serveur SNTP via le réseau connecté. Ce serveur sera de préférence installé localement.

Principe - Utilisation générale

SNTP est un protocole standard pour la synchronisation temporelle à travers un réseau. Au moins un serveur SNTP doit être disponible sur le réseau. Le dispositif peut être configuré pour un ou deux serveurs SNTP.

L'heure système du relais de protection est synchronisée avec le serveur SNTP connecté 1 à 4 fois par minute. En retour, le serveur SNTP synchronise son heure via NTP avec d'autres serveurs NTP. Il s'agit du cas normal. Il peut également synchroniser son heure par GPS, horloge radiocommandée ou autre.

Précision

La précision du serveur SNTP utilisé et l'excellence de son horloge de référence influencent la précision de l'horloge du relais de protection. Informations supplémentaires concernant la précision : \(\subseteq \times \) \(\subseteq \times \) \(\subseteq \times \)

Pour plus d'informations sur la précision, reportez-vous au chapitre Spécifications.

Avec chaque information horaire transmise, le serveur SNTP envoie également des informations sur sa précision :

- Couche : indique sur combien de serveurs NTP interagissants, le serveur SNTP utilisé est connecté à une horloge atomique ou radiocommandée.
- Précision : indique la précision de l'heure système fournie par le serveur SNTP.

De plus, la performance du réseau connecté (trafic et heures de transmission des paquets de données) a une influence sur la précision de la synchronisation temporelle.

3.8 Synchronisation de temps

Il est recommandé de disposer d'un serveur SNTP installé en local et offrant une précision $\leq 200~\mu sec$. Si cela n'est pas possible, l'excellence du serveur connecté peut être vérifiée dans le menu [Utilisat / Affichage de l'état / TimeSync / SNTP] :

- La qualité du serveur donne des informations sur la précision du serveur utilisé. Le niveau de qualité doit être BON ou SUFFISANT. Un serveur dont la qualité est MÉDIOCRE ne doit pas être utilisé, car cela peut entraîner des fluctuations de la synchronisation temporelle.
- La qualité du réseau donne des informations sur la charge du réseau et l'heure de transmission des paquets de données. Le niveau de qualité doit être BON ou SUFFISANT. Un réseau dont la qualité est MÉDIOCRE ne doit pas être utilisé, car cela peut entraîner des fluctuations de la synchronisation temporelle.

Utilisation de deux serveurs SNTP

Dans une configuration à deux serveurs SNTP, le dispositif se synchronise toujours sur le serveur 1 par défaut.

Si le serveur 1 est défaillant, le dispositif bascule automatiquement sur le serveur 2.

Lorsque (suite à une défaillance) le fonctionnement normal du serveur 1 est rétabli, le dispositif rebascule vers ce dernier.

Mise en service SNTP

Activez la synchronisation horaire SNTP via le menu [Para module / Heur / TimeSync] :

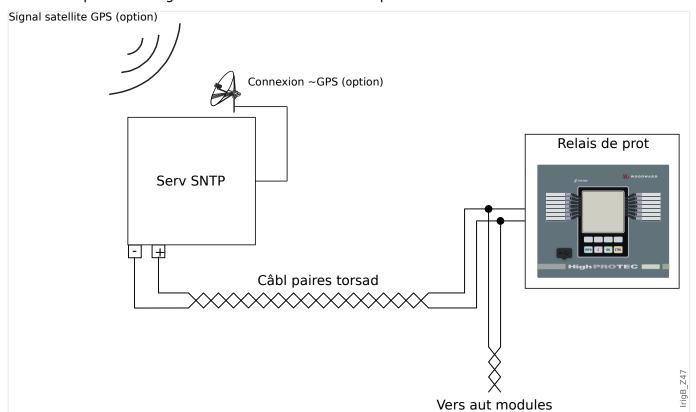
- Réglez le paramètre »TimeSync« sur « SNTP ».
- Définissez l'adresse IP du premier serveur dans le menu SNTP.
- Le cas échéant, définissez l'adresse IP du second serveur.
- Définissez tous les serveurs configurés sur « actif ».

3.8.2 Module IRIG-B00X

REMARQUE!

Exigence : Un générateur de code horaire IRIG-B00X est requis. La norme IRIG-B004 (ainsi que les versions supérieures) prend en charge/transmet les « informations annuelles ».

Si vous utilisez un code horaire IRIG qui ne prend pas en charge les « informations annuelles » (IRIG-B000, IRIG-B001, IRIG-B002, IRIG-B003), vous devez définir « l'année » manuellement dans le module. Dans ce cas, des informations annuelles correctes constituent une condition préalable au bon fonctionnement du module IRIG-B.


Principe - Utilisation générale

La norme IRIG-B est le standard le plus utilisé pour synchroniser l'horloge des dispositifs de protection dans les applications de moyenne tension.

Le dispositif de protection prend en charge le code IRIG-B selon la norme IRIG 200-04.

Cela signifie que tous les formats de synchronisation de temps IRIG-B00X (IRIG-B000 / B001 / B002 / B003 / B004 / B005 / B006 / B007) sont pris en charge. Il est recommandé d'utiliser la norme IRIG-B004 et supérieure qui transmet également les « informations annuelles ».

Le temps du système du dispositif de protection est synchronisé chaque seconde avec le générateur de code IRIG-B connecté. La précision du générateur de code IRIG-B utilisé peut être augmentée en connectant un récepteur GPS.

L'emplacement de l'interface IRIG-B dépend du type de module. Reportez-vous au schéma de câblage fourni avec le dispositif de protection.

Mise en service du module IRIG-B

Activez la synchronisation IRIG-B via le menu [Para module / Heur / TimeSync]:

- Sélectionnez »IRIG-B« dans le menu de synchronisation horaire.
- Réglez la synchronisation de l'heure dans le menu [IRIG-B] sur « actif ».
- Sélectionnez le type IRIG-B (choisissez B000 à B007).

Analyse des défauts

Si le module ne reçoit aucun code horaire IRIG-B pendant plus de 60 s, l'état IRIG-B passe de »actif« à »inactif« et une entrée est créée dans l'enregistreur d'événements.

Vérifiez la fonctionnalité IRIG-B via le menu [Utilisat / Affichage de l'état / TimeSync / IRIG-B]:

Si l'état IRIG-B signalé n'est pas « actif », procédez comme suit :

- Pour commencer, vérifiez le câblage IRIG-B.
- Vérifiez si le type IRIG-B00X approprié est configuré.

Commandes de contrôle IRIG-B

Outre les informations de date et d'heure, le code IRIG-B offre la possibilité de transmettre jusqu'à 18 commandes de contrôle pouvant être traitées par le dispositif de protection. Ces informations doivent être définies et envoyées par le générateur de code IRIG-B.

Le dispositif de protection offre jusqu'à 18 options d'affectation IRIG-B pour ces commandes de contrôle afin d'exécuter les actions affectées. Si une commande de contrôle est attribuée à une action, cette action est déclenchée dès que la commande de contrôle est transmise comme étant vraie. À titre d'exemple, ces commandes permettent de lancer les calculs de statistiques ou d'activer l'éclairage public via un relais.

REMARQUE!

Les commandes de contrôle IRIG-B ne sont pas enregistrées par les enregistreurs d'événements et de perturbations.

Si ces signaux de contrôle doivent être consignés, la méthode recommandée consiste à utiliser une équation logique (1 porte) dans la mesure où la logique programmable est enregistrée en toutes circonstances.

4 Éléments de protection

4.1 Module Prot: Protection générale

Le module module »Module de protection générale« (»Prot«) sert de cadre extérieur à tous les autres modules de protection, c'est-à-dire qu'ils sont tous inclus dans le module.

AVERTISSEMENT!

Dans le module »Prot«, le paramètre [Param protect / Para glob prot / Prot] »Fonction« est réglé sur « inactif » ou, si le module est bloqué, **aucune** fonction de protection du MRI4 n'est opérationnelle.

Blocage permanent de tous les éléments de protection

Pour désactiver de façon permanente la protection entière, accédez au menu [Param protect / Para glob prot / Prot] :

• Réglez le paramètre »Fonction« = « inactif ».

Blocage temporaire de tous les éléments de protection

Pour autoriser le blocage temporaire de la protection entière, accédez au menu [Param protect / Para glob prot / Prot] :

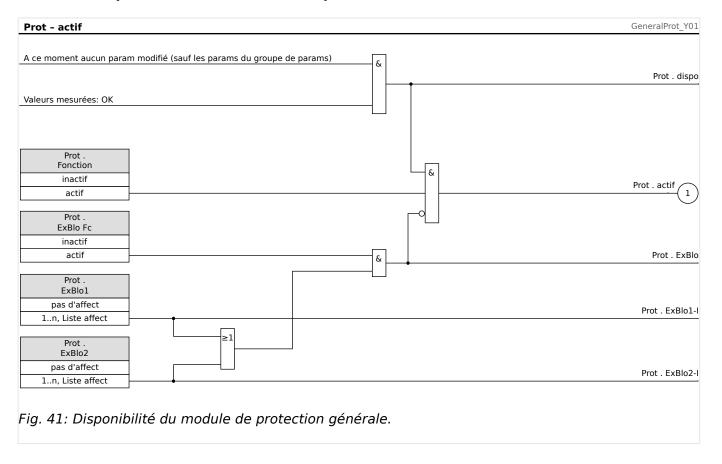
- Réglez le paramètre »ExBlo Fc« = « actif ».
- Affectez un signal de blocage à »ExBlo1«.
- Si vous le souhaitez, vous pouvez aussi affecter un signal de blocage à »ExBlo2«.

Si l'un des signaux affectés devient vrai, la protection entière sera bloquée (tant que l'un de ces signaux reste vrai).

Blocage permanent de toutes les commandes de déclenchement

Pour bloquer de façon permanente toutes les commandes de déclenchement, accédez au menu [Param protect / Para glob prot / Prot] :

• Réglez le paramètre »Blo TripCmd« = « actif ».

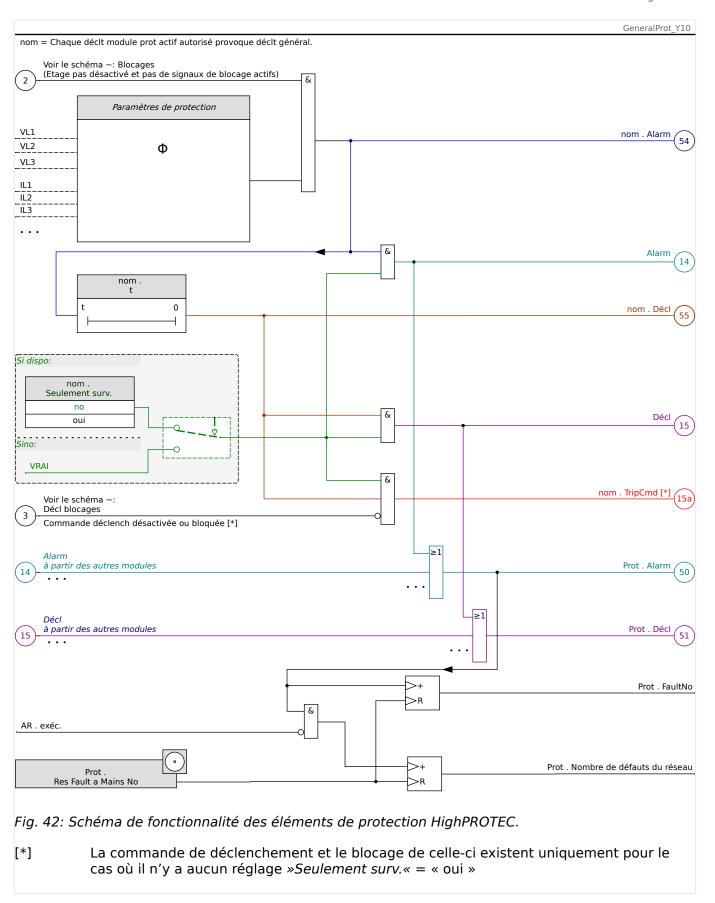

Blocage temporaire de toutes les commandes de déclenchement

Pour autoriser le blocage temporaire de toutes les commandes de déclenchement, accédez au menu [Param protect / Para glob prot / Prot] :

- Réglez le paramètre »ExBlo TripCmd Fc« = « actif ».
- Affectez un signal de blocage à »ExBlo TripCmd«.

Si l'un des signaux affectés devient vrai, toutes les commandes de déclenchement sont bloquées (tant que ce signal reste vrai).

Disponibilité de la fonction de protection


4.1.1 Alarmes générales et déclenchements généraux

Chaque élément de protection génère sa propre alarme et ses propres signaux de déclenchement. Toutes les alarmes et toutes les décisions de déclenchement sont transmises au module maître »Prot«, avec une seule exception importante :

Si un élément de protection présente un réglage »Seulement surv.« (dans la branche de menu [Organis module]), les alarmes et les décisions de déclenchement associées à cet élément de protection sont transmises à »Prot« uniquement avec le réglage »Seulement surv.« = « no ».

Si »Seulement surv.« = « oui », le module fonctionne comme un élément de surveillance : Les alarmes et les décisions de déclenchement sont conservées comme des états spécifiques à l'élément (c'est-à-dire, que ces états peuvent être vérifiés au niveau de la branche de menu [Utilisat / Affichage de l'état] et être affectés comme options de sélection), mais le module ne dispose pas de commande de déclenchement et les décisions d'alarme/déclenchement ne conduisent pas à une Alarme générale ou un déclenchement général.

Ce schéma montre l'idée de base sous-jacente d'un élément de protection. (Néanmoins, gardez à l'esprit que des écarts spécifiques au dispositif ou à la protection sont possibles : Certains dispositifs ne sont pas dotés d'une fonction de mesure de la tension, d'autres sont dépourvus d'une fonction de mesure du courant, certains éléments de protection

nécessitent d'autres fonctions de temporisation et/ou algorithmes spécifiques à la phase, etc. C'est pourquoi, pour connaître les fonctions précises d'un module de protection, consultez le chapitre correspondant.)

Alarme

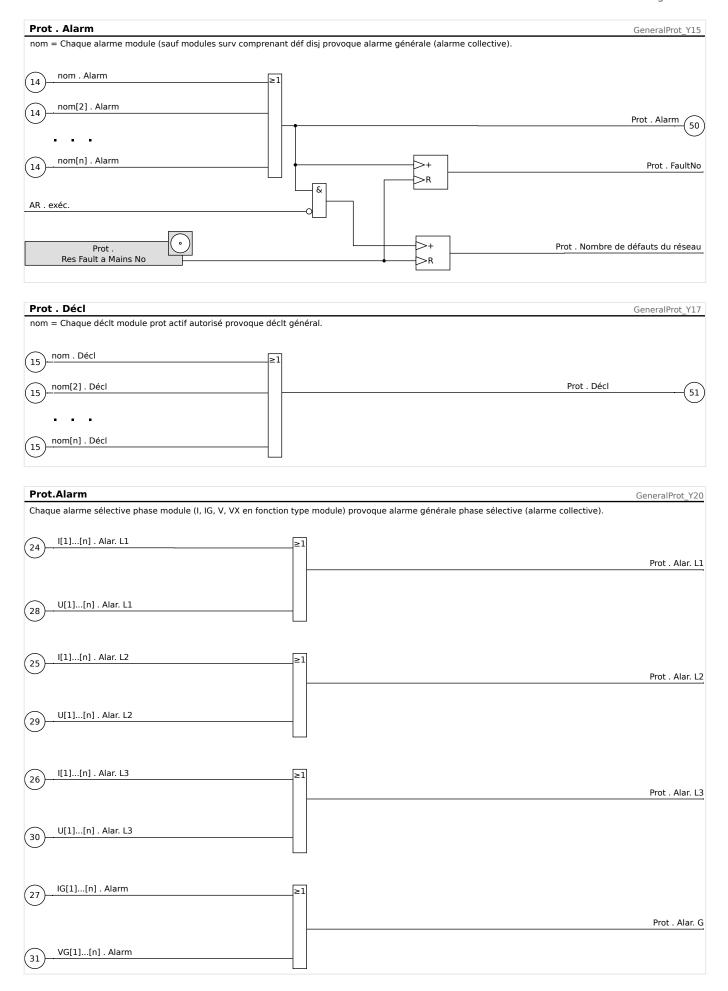
- Si un module de protection, appelé »nom«, détecte un défaut, il émet un signal d'alarme : »nom . Alarm« « (54) » sur le schéma.
 - Excepté en présence d'un réglage »nom . Seulement surv.« = « oui », le signal d'alarme est transmis (« (14) » sur le schéma) au module maître »Prot« et déclenche une Alarme générale : »Prot . Alarm« « (50) » sur le schéma.
 - Dans la mesure également où d'autres éléments de protection peuvent déclencher une Alarme générale, on peut dire que l'Alarme générale est un signal collectif connecté en OU de toutes les alarmes associées à la protection.

Déclenchement

- Si le critère de défaut est toujours détecté après l'expiration d'un étage de temporisation spécifique à la protection »nom . t«, le module émet un signal de déclenchement : »nom . Décl« « (55) » sur le schéma.
 - Excepté en présence d'un réglage »nom . Seulement surv.« = « oui », le signal de déclenchement est transmis (« (15) » sur le schéma) au module maître »Prot« et déclenche une Alarme générale : »Prot . Décl« « (51) » sur le schéma.
 - Dans la mesure également où d'autres éléments de protection peuvent déclencher une Alarme générale, on peut dire que l'Alarme générale est un signal collectif connecté en OU de tous les déclenchements associés à la protection.

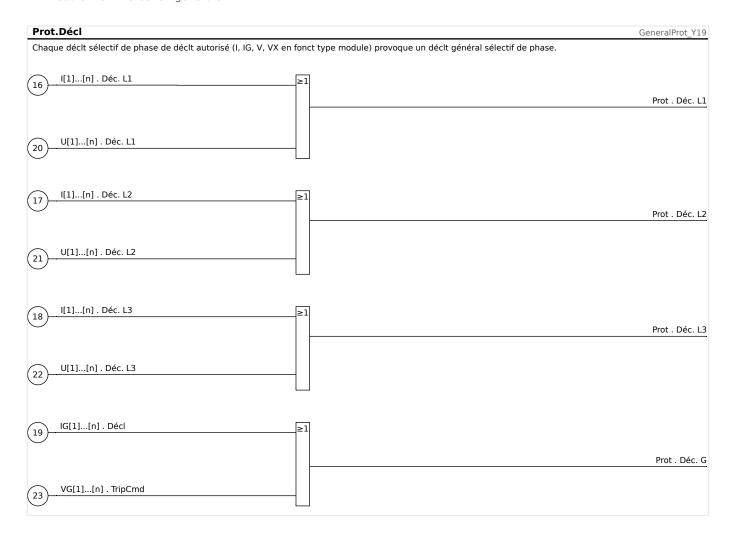
La commande de déclenchement (et le blocage de celle-ci existent uniquement pour le cas où il n'y a aucun réglage »Seulement surv.« = « oui »).

• En cas de *Déclenchement général*, le module de protection émet une *commande de déclenchement* : »nom . TripCmd« – « (15a) » sur le schéma, si la commande de déclenchement du module n'est pas bloquée (voir \Longrightarrow « Blocages »).


Dans la mesure également où d'autres éléments de protection peuvent déclencher une commande de déclenchement, le MRI4 fournit un *gestionnaire de déclenchement* pour chaque disjoncteur, qui permet de leur affecter les commandes de déclenchement (voir \Longrightarrow « 5.2 Gestionnaire de déclenchements - Affectation des commandes »).

Signaux sélectifs de phase

Outre les signaux d'Alarme générale et de Déclenchement général, le module »Prot« utilise également les signaux correspondants spécifiques à la phase. Ces signaux peuvent aussi être déclenchés par tout module de protection »nom« si celui-ci est capable de détecter les défauts en monophasé et à moins qu'il existe un réglage »nom . Seulement surv.« = « oui ».


Exemples : »Prot . Alar. L1« est un signal collectif (connecté en OU) pour toutes les alarmes émises par un élément de protection quelconque concernant la phase L1.

»Prot . Déc. L1« est un signal collectif (connecté en OU) pour tous les déclenchements émis par un élément de protection quelconque concernant la phase L1.

4 Éléments de protection

4.1 Module Prot: Protection générale

4.1.2 Blocages

Le module dispose d'une fonction de blocage temporaire et permanent de la fonctionnalité de protection complète ou de niveaux de protection individuels.

AVERTISSEMENT!

Vérifiez absolument qu'aucun blocage illogique ou présentant un risque mortel n'a été alloué.

Assurez-vous que vous n'avez pas négligemment désactivé les fonctions de protection qui doivent être disponibles selon le concept de protection.

Blocage permanent

Activation ou désactivation de la fonctionnalité de protection complète :

Dans le module »Prot«, la protection complète de l'appareil peut être activée ou désactivée. Réglez le paramètre [Param protect / Para glob prot / Prot] »Fonction« sur « actif » ou « inactif » au niveau du module »Prot«.

AVERTISSEMENT!

Ce n'est que si, dans le module »Prot« le paramètre »Fonction« = « actif », que la protection est activée. Autrement dit, avec »Fonction« = « inactif », aucune fonction de protection n'est opérationnelle. Le module ne peut alors protéger aucun composant.

Activation ou désactivation des modules :

Chacun des modules peut être activé ou désactivé (de façon permanente). Ces opérations s'effectuent lorsque le paramètre »Fonction« est défini sur « actif » ou sur « inactif » au niveau du module correspondant.

Activation ou désactivation permanente de la commande de déclenchement d'une étape de protection :

À chacune des étapes de la protection, la commande de déclenchement envoyée au disjoncteur peut être bloquée de façon permanente. À cet effet, le paramètre »Blo TripCmd« doit être défini sur « actif ».

Blocage temporaire

Bloquer temporairement la protection complète du dispositif par un signal :

Dans le module »Prot«, la protection complète de l'appareil peut être bloquée temporairement par un signal. À condition qu'un blocage externe de module soit autorisé»ExBlo Fc« = "actif". En outre, un signal de blocage correspondant de la »liste des affectations« doit avoir été affecté. Le module est bloqué pendant le temps où le signal de blocage attribué est actif.

AVERTISSEMENT!

Si le module »Prot« est bloqué, la totalité de la fonction de protection devient inopérante. Tant que le signal de blocage est actif, le dispositif ne protège aucun composant.

Bloquer temporairement un module de protection complet par une affectation active :

4 Éléments de protection

4.1 Module Prot: Protection générale

- Pour établir un blocage temporaire d'un module de protection, le paramètre »ExBlo Fc« du module doit être défini sur « actif ». Cela donne l'autorisation : »Ce module peut être bloqué«.
- Dans les paramètres de protection générale, un signal doit être affecté
 à »ExBlo1« ou »ExBlo2«. Le blocage ne devient actif que lorsque le signal affecté est
 actif.

Blocage temporaire de la commande de déclenchement d'une étape de protection par une affectation active.

La commande de déclenchement de l'un des modules de protection peut être bloquée de l'extérieur. Dans ce cas, « de l'extérieur » ne signifie pas seulement de l'extérieur de l'appareil, mais également de l'extérieur du module. Non seulement les signaux externes réels peuvent être utilisés comme signaux de blocage, comme par exemple, l'état d'une entrée numérique, mais vous pouvez également choisir un autre signal de la « liste des affectations ».

- Pour établir un blocage temporaire d'un étage de protection, le paramètre »ExBlo TripCmd Fc« du module doit être défini sur « actif ». Cela donne l'autorisation : « La commande de déclenchement de cette étape peut être bloquée ».
- Dans les paramètres de protection générale, un signal supplémentaire doit être choisi et affecté au paramètre »ExBlo TripCmd« dans la »liste des affectations«. Si le signal sélectionné est activé, le blocage temporaire devient actif.

4.1.2.1 Blocage de la commande de déclenchement

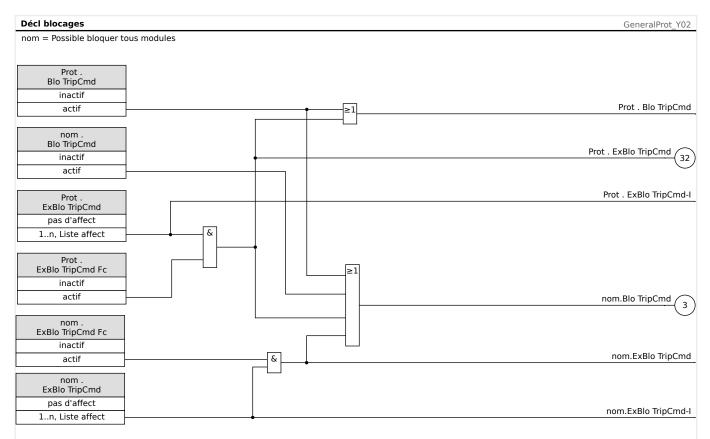
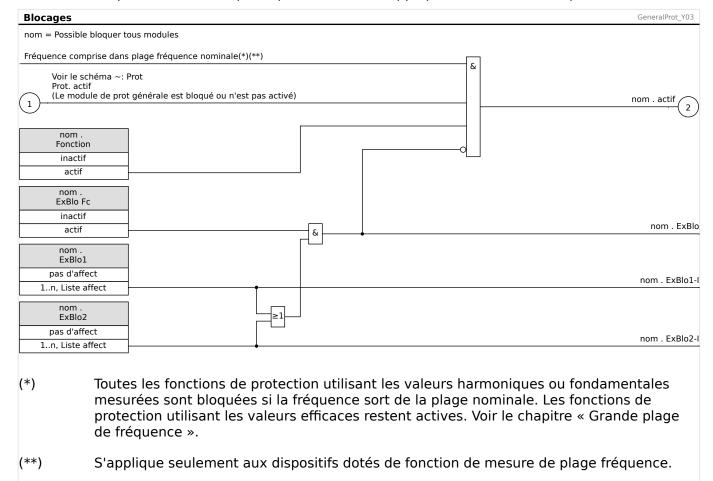
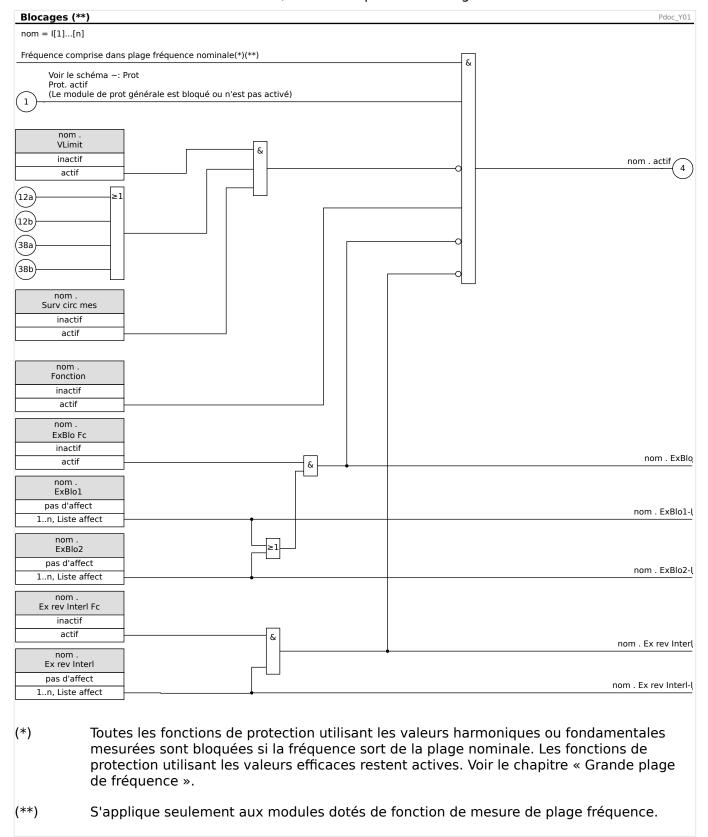



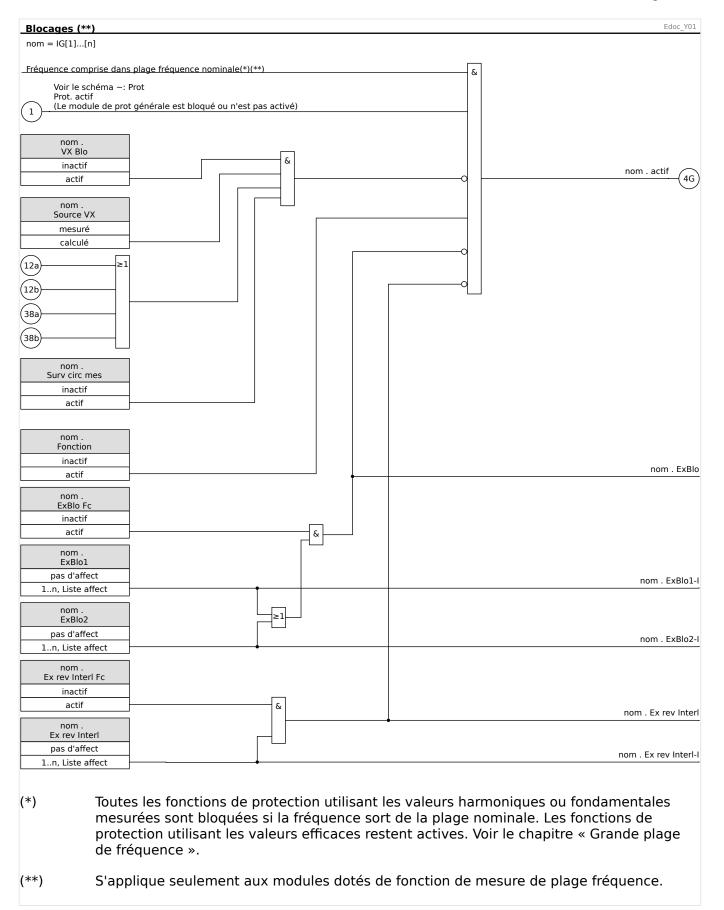
Fig. 43: Activation ou désactivation de la commande de déclenchement d'un module de protection


4.1.2.2 Activation et désactivation ou blocage temporaire d'une fonction de protection

Le schéma suivant s'applique à tous les éléments de protection, excepté à ceux pour lesquels un schéma spécifique au module s'applique immédiatement après :

4.1.2.3 Activation, désactivation ou blocage des modules de courant de phase

Les fonctions de protection du courant ne peuvent pas uniquement être bloquées de façon permanente (»Fonction« = « inactif ») ou temporairement par un signal de blocage de la »liste des affectations«, mais aussi par »verrouillage inverse«.



4 Éléments de protection

4.1 Module Prot: Protection générale

4.1.2.4 Activation, désactivation ou blocage des modules de courant à la terre

Les fonctions de protection du courant à la terre ne peuvent pas uniquement être bloquées de façon permanente (»Fonction« = « inactif ») ou temporairement par un signal de blocage de la »liste des affectations«, mais aussi par »verrouillage inverse«.

4.2 I - Protection contre les surintensités

Le module de surintensité de phase »I« couvre les fonctions de protection ANSI suivantes :

- ANSI 50
- ANSI 51
- ANSI 51Q

AVERTISSEMENT!

Si vous utilisez des blocages de courant d'appel, le délai de déclenchement des fonctions de protection du courant doit être égal ou supérieur à 30 ms afin d'empêcher les déclenchements inopinés.

REMARQUE!

Tous les éléments de protection de surintensité partagent la même structure.

REMARQUE!

Ce module propose des jeux de paramètres adaptatifs.

Les paramètres peuvent être modifiés de manière dynamique au sein des jeux de paramètres à l'aide de Groupes de paramètres adaptatifs. Reportez-vous à \longrightarrow « Groupes de paramètres adaptatifs ».

ANSI 50, 51 - Protection contre les surintensités/courts-circuits, non directionnelle

L'option d'application est définie via le menu [Organis module] :

• [Organis module] »Mode« = « non directionel »

Aucune information directionnelle n'est prise en compte si l'élément de protection du courant est défini comme « non directionel ».

Options:

- [Param protect / Set 1...4 / I-Prot / I[x]] »Méthode mesure« =
 - Fondamental
 - ∘ Eff vrai
 - 。 **12**

ANSI 51Q - Protection contre les surintensités de séquence de phase négative

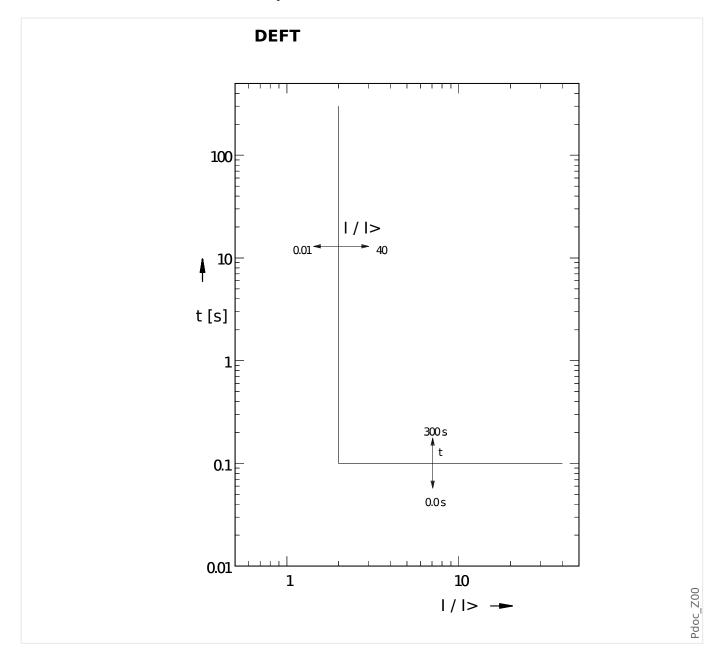
Cette option d'application est activée comme suit :

Méthode de mesure

Pour chaque élément de protection, la méthode de mesure peut être définie via le réglage »Méthode mesure«, que la mesure soit effectuée sur la base de « Fondamental » ou que la mesure « Eff vrai » soit utilisée.

Il est également possible de définir le *»Méthode mesure«* sur « I2 ». Dans ce cas, le courant inverse est mesuré. Cela permet de détecter les défauts déséquilibrés.

4.2.1 Caractéristiques


Pour chaque élément, les caractéristiques suivantes sont disponibles :

- DEFT Surintensité temporisée constante
- Normalement inverse (IEC) Normalement inverse CEI
- Très inverse [VINV] (IEC) Très inverse CEI
- Inverse long Courbe [LINV] (IEC) Inverse long CEI
- Extrêmement Inverse Courbe (IEC) Extrêmement inverse CEI
- Modérément inverse [MINV] Courbe (ANSI) Modérément inverse ANSI
- Très inverse [VINV] (ANSI) Très inverse ANSI
- Extrêmement Inverse Courbe (ANSI) Extrêmement inverse ANSI
- RINV Inverse R
- Therm Flat [TF] Courbe Thermal Flat
- IT Courbe
- I2T Courbe
- I4T Courbe

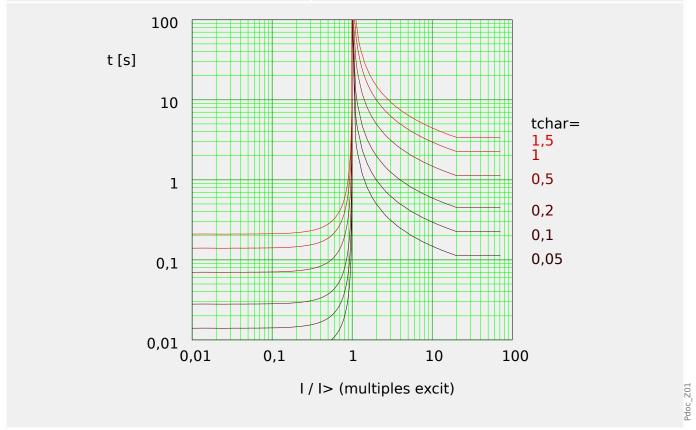
Explication

- t = Retard au déclenchement
- tchar = Facteur de temps / facteur de la caractéristique de déclenchement. La plage de ce paramètre dépend de la courbe de déclenchement sélectionnée.
- I = Courant de défaut
- I> = Si la valeur d'excitation est dépassée, le module/ la fonction active la temporisation jusqu'au déclenchement.

DEFT - Surintensité temporisée constante

IEC Normalement inverse

»Car« = IEC NINV


REMARQUE!

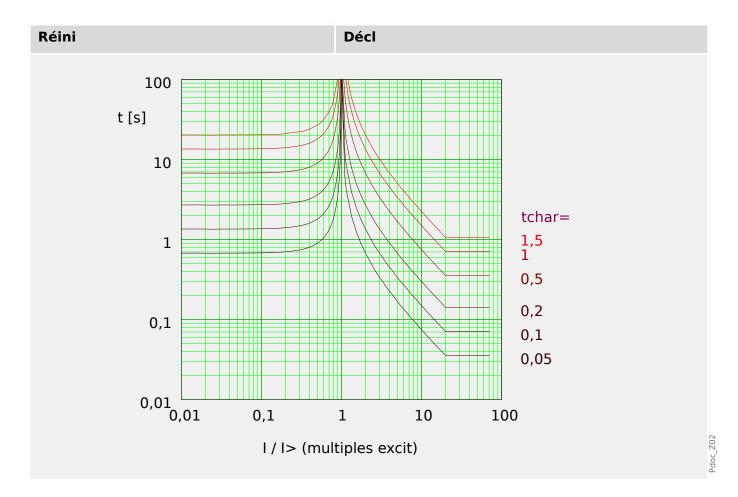
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{0.14}{1 - \left(\frac{I}{I>}\right)^2} \cdot \text{tchar}$	$t = \frac{0.14}{\left(\frac{I}{I>}\right)^{0.02} - 1} \cdot \text{tchar}$
Si: $\frac{I}{I}$ < 1	Si: $1 < \frac{I}{I} \le 20$

IEC Très inverse [VINV]

»Car« = IEC VINV


REMARQUE!

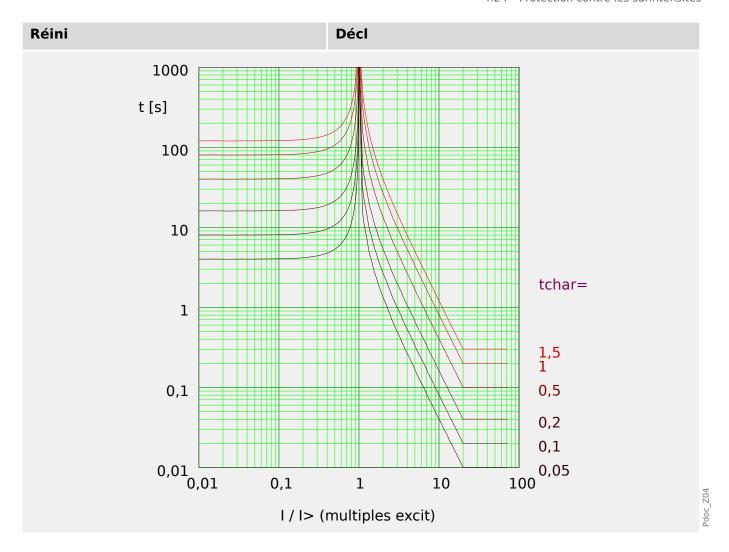
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{13.5}{1 - \left(\frac{I}{I>}\right)^2} \cdot \text{tchar}$	$t = \frac{13.5}{\frac{I}{I>} - 1} \cdot \text{tchar}$
Si: $\frac{I}{I>}$ < 1	Si: $1 < \frac{I}{I} \le 20$

IEC Extrêmement Inverse - Courbe

»Car« = IEC EINV


REMARQUE!

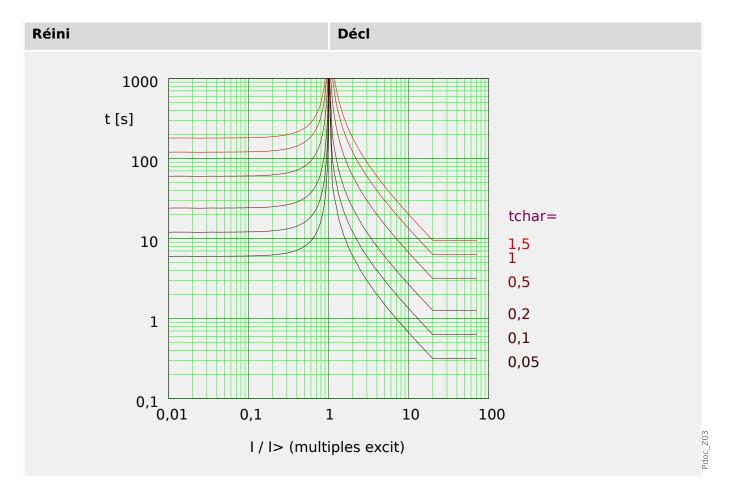
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{80}{1 - \left(\frac{I}{I}\right)^2} \cdot \text{tchar}$	$t = \frac{80}{\left(\frac{I}{I>}\right)^2 - 1} \cdot \text{tchar}$
Si: $\frac{I}{I>}$ < 1	Si: $1 < \frac{I}{I} \le 20$

IEC Inverse long - Courbe [LINV]

»Car« = IEC LINV


REMARQUE!

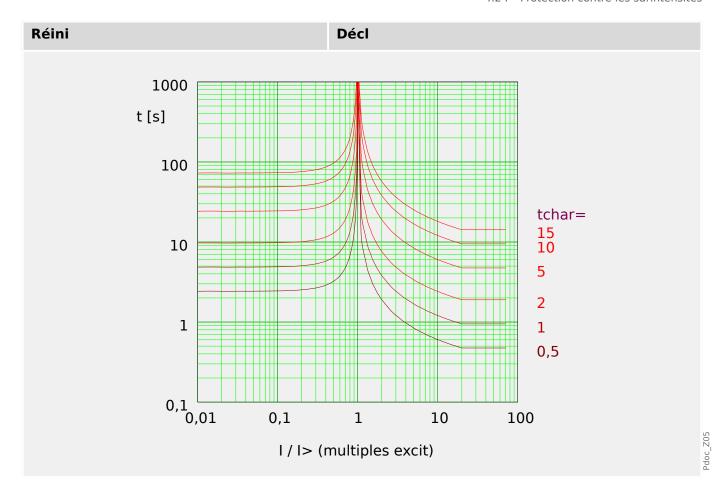
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{120}{1 - \left(\frac{I}{I}\right)^2} \cdot \text{tchar}$	$t = \frac{120}{\frac{I}{I>} - 1} \cdot \text{tchar}$
Si: $\frac{I}{I>}$ < 1	Si: $1 < \frac{I}{I} \le 20$

ANSI Modérément inverse [MINV] - Courbe

»Car« = IEC MINV


REMARQUE!

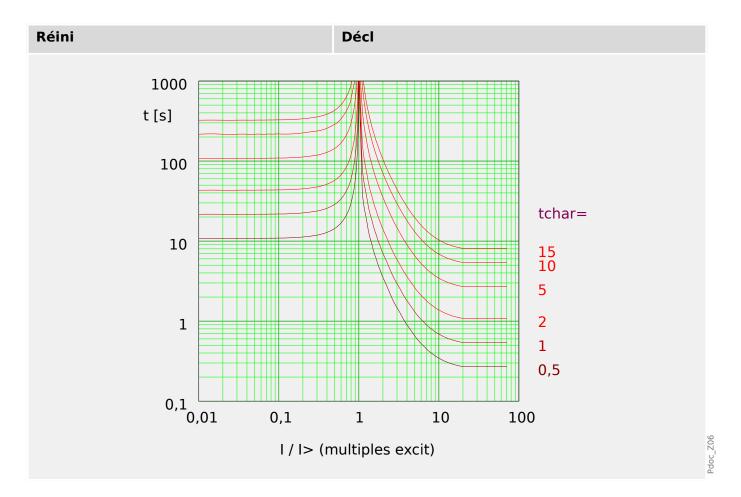
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{4.85}{1 - \left(\frac{I}{I>}\right)^2} \cdot \text{tchar}$	$t = \left(\frac{0.0515}{\left(\frac{I}{I>}\right)^{0.02} - 1} + 0.1140\right) \cdot \text{tchar}$
Si: $\frac{I}{I} < 1$	Si: $1 < \frac{I}{I} \le 20$

ANSI Très inverse [VINV]

»Car« = ANSI VINV


REMARQUE!

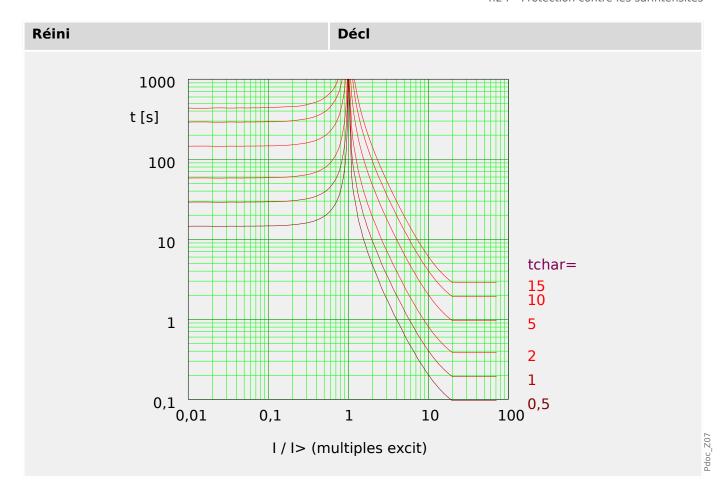
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{21.6}{1 - \left(\frac{I}{I>}\right)^2} \cdot \text{tchar}$	$t = \left(\frac{19,61}{\left(\frac{L}{1>}\right)^{2} - 1} + 0,491\right) \cdot \text{tchar}$
Si: $\frac{I}{I} < 1$	Si: $1 < \frac{I}{I} \le 20$

ANSI Extrêmement Inverse - Courbe

»Car« = ANSI EINV


REMARQUE!

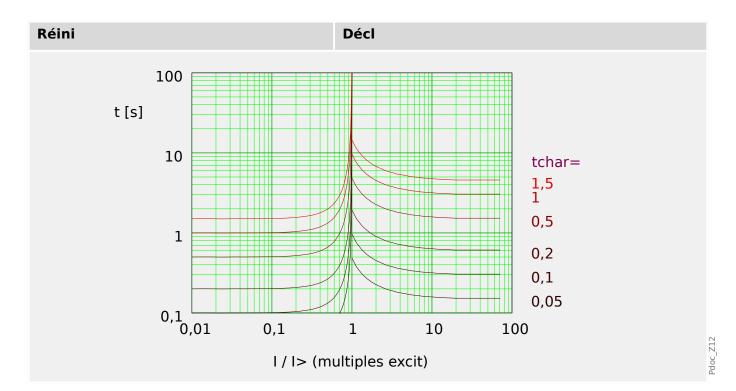
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{29.1}{1 - \left(\frac{I}{I>}\right)^2} \cdot \text{tchar}$	$t = \left(\frac{28.2}{\left(\frac{I}{1>}\right)^2 - 1} + 0.1217\right) \cdot \text{tchar}$
Si: $\frac{I}{I} < 1$	Si: $1 < \frac{I}{I} \le 20$

R Inverse [RINV] - Courbe

»Car« = RINV

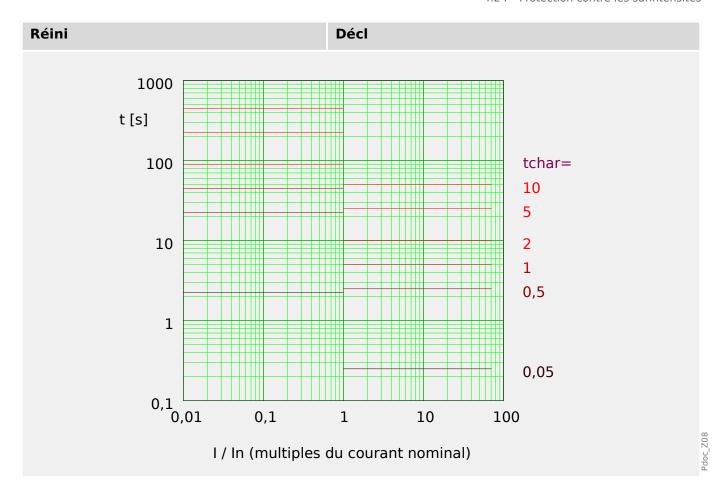

REMARQUE!

Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{1.0}{1 - \left(\frac{I}{I>}\right)^2} \cdot \text{tchar}$	$t = \frac{1,0}{0,339 - \frac{0,236}{\left(\frac{I}{1>}\right)}} \cdot \text{tchar}$
Si: $\frac{I}{I>}$ < 1	Si: $1 < \frac{I}{I} \le 20$

Therm Flat [TF] - Courbe

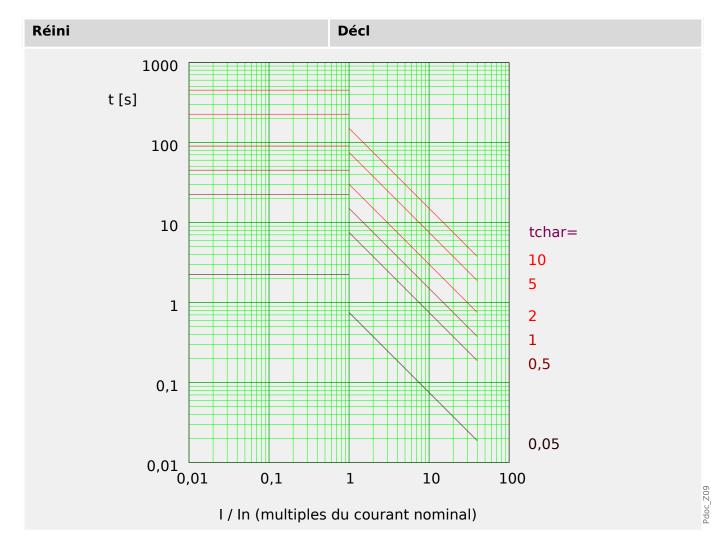

»Car« = Therm Flat

REMARQUE!

Divers modes de réinitialisation sont disponibles.

Réini	Décl
$t = (5 \cdot 3^2) \cdot \text{tchar}$	$t = (5 \cdot 3^0) \cdot \text{tchar}$
Si: $\frac{I}{In}$ < 1	Si: $1 < \frac{I}{In}$

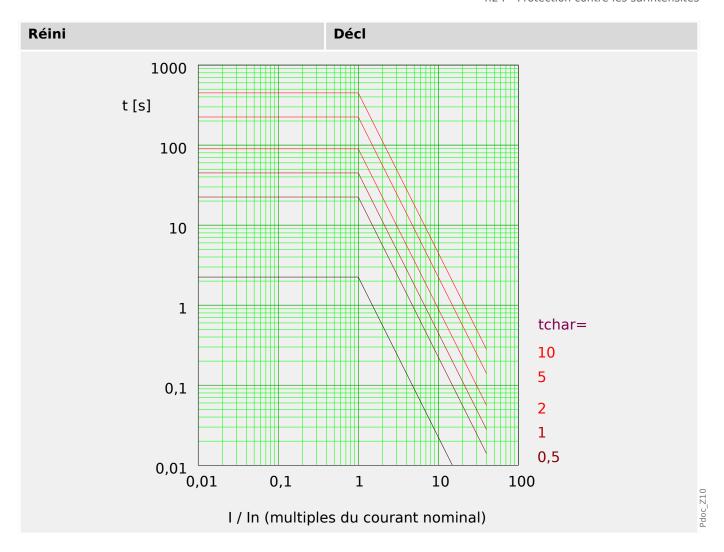
IT - Courbe


$$*Car* = IT$$

REMARQUE!

Divers modes de réinitialisation sont disponibles.

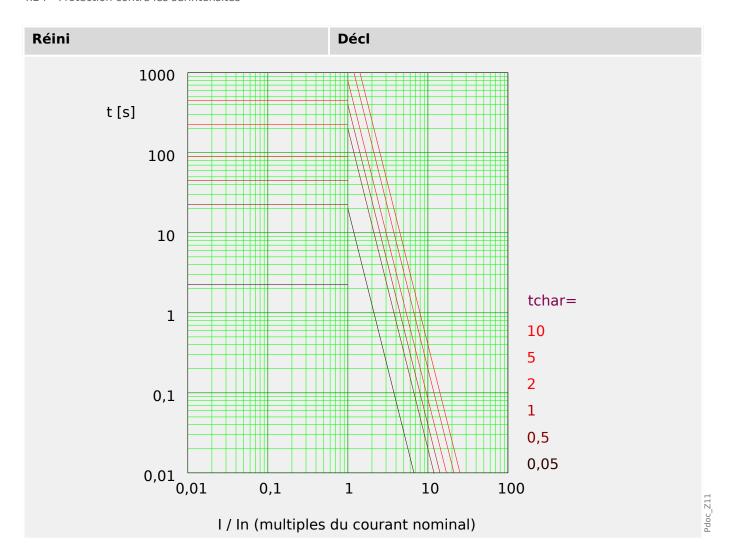
Réini	Décl
$t = (5 \cdot 3^2) \cdot \text{tchar}$	$t = \frac{5 \cdot 3^{1}}{\left(\frac{I}{\ln}\right)^{1}} \cdot \text{tchar}$
Si: $\frac{I}{In}$ < 1	Si: $1 < \frac{I}{In}$


12T - Courbe

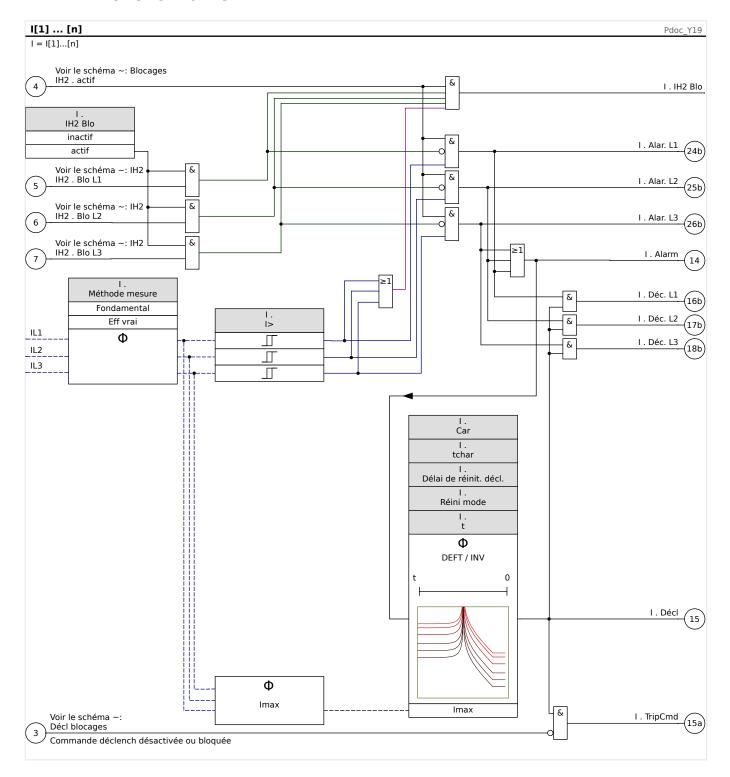
REMARQUE!

Divers modes de réinitialisation sont disponibles.

Réini	Décl
$t = (5 \cdot 3^2) \cdot \text{tchar}$	$t = \frac{5 \cdot 3^2}{\left(\frac{I}{\ln}\right)^2} \cdot \text{tchar}$
$Si: \frac{I}{In} < 1$	Si: $1 < \frac{I}{In}$


14T - Courbe

REMARQUE!



Divers modes de réinitialisation sont disponibles.

Réini	Décl
$t = (5 \cdot 3^2) \cdot \text{tchar}$	$t = \frac{5 \cdot 3^4}{\left(\frac{I}{\ln}\right)^4} \cdot \text{tchar}$
Si: $\frac{I}{In} < 1$	Si: $1 < \frac{I}{\ln}$

4.2.2 Fonctionnalité

4.2.3 I2> - Surintensité de séquence négative [51Q]

Pour activer cette fonction, le paramètre [Param protect / Set n / I-Prot / I[x]] »Méthode mesure« doit être configuré sur « I2 » dans le groupe de paramètres de l'élément de surintensité I[x] correspondant.

La fonction de protection contre les surintensités de séquence négative (I2>) doit être considérée comme un équivalent de la protection contre les surintensités de phase à l'exception près qu'elle utilise le courant inverse (I2>) comme quantités mesurées au lieu des courants triphasés utilisés par la fonction de protection contre les surintensités de phase. Le courant inverse utilisé par I2> est dérivé de la transformation du composant symétrique bien connu suivant :

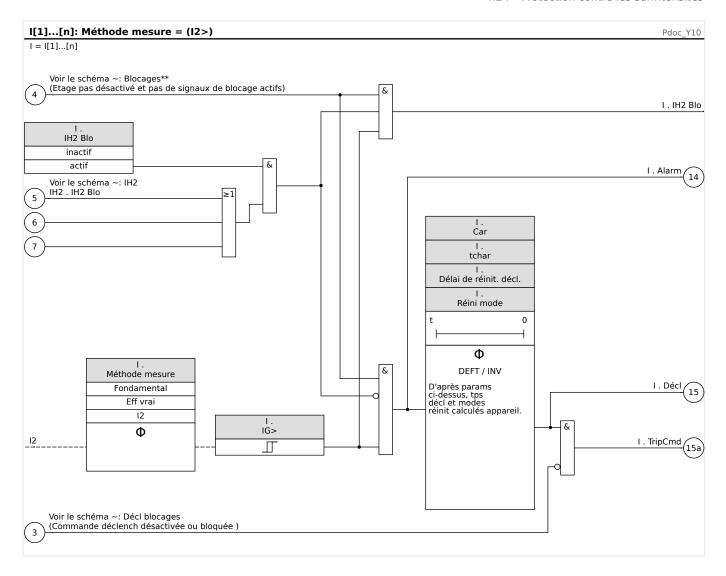
$$I_2 = \frac{1}{3}(I_{L1} + \text{et les}^2 I_{L2} + aI_{L3})$$

La valeur d'excitation d'une fonction de protection I2> doit être définie en fonction de l'occurrence du courant inverse dans l'objet protégé.

En marge de cela, la fonction de protection contre les surintensités de séquence négative (I2>) utilise les mêmes paramètres que la fonction de protection contre les surintensités de phase, comme les caractéristiques de déclenchement et de réinitialisation des deux normes CEI/ANSI, le multiplicateur de temps, etc.

La fonction de protection contre les surintensités de séquence négative (I2>) peut être utilisée pour la protection des lignes, de générateurs, de transformateurs et de moteurs afin de protéger le système contre les défauts déséquilibrés. Comme la fonction de protection I2> opère sur le composant de courant inverse normalement absent lors des conditions de charge, la fonction I2> peut ainsi être définie pour être plus sensible que les fonctions de protection contre les surintensités de phase. D'autre part, la coordination de la fonction de protection contre les surintensités de séquence négative dans un système radial ne signifie pas automatiquement de très longs délais de résolution des défauts pour les dispositifs de protection en amont, car le délai de déclenchement de la fonction de protection a seulement besoin d'être coordonné avec le dispositif suivant en aval de la fonction de protection contre les surintensités de séquence négative. Dans de nombreux cas, ceci fait de la fonction I2> un concept de protection très avantageux en plus de la fonction de protection contre les surintensités de phase.

AVERTISSEMENT!



Si vous utilisez des blocages de courant d'appel, le délai de déclenchement des fonctions de protection du courant doit être égal ou supérieur à 30 ms afin d'empêcher les déclenchements inopinés.

REMARQUE!

Au moment de la fermeture du disjoncteur, un courant inverse peut être le résultat de composantes transitoires.

4.2.4 Mise en service : Protection contre les surintensités, non directionnelle [50, 51]

Objet à tester

• Signaux à mesurer pour chaque élément de protection du courant, valeurs de seuil, temps de déclenchement total (recommandé), ou bien délais de déclenchement et rapports de reprise ; à chaque fois 3 monophasés et un triphasé.

REMARQUE!

Des erreurs de câblage peuvent facilement se produire, en particulier dans les connexions Holmgreen, et être ensuite détectées. La mesure du temps total de déclenchement peut permettre de vérifier que le câblage secondaire est correct (du bornier à la bobine de déclenchement du disjoncteur).

REMARQUE!

Il est recommandé de mesurer le temps total de déclenchement plutôt que le retard au déclenchement. Ce dernier doit être spécifié par le client. Le temps total de déclenchement est mesuré à la position signalant le contact du disjoncteur (et non à la sortie relais!).

Temps total de déclenchement = retard au déclenchement (reportez-vous aux tolérances des étages de protection) + durée de fonctionnement du disjoncteur (environ 50 ms)

Utilisez les durées de fonctionnement du disjoncteur indiquées dans les données techniques spécifiées dans la documentation fournie par le fabricant du disjoncteur.

Moyens nécessaires

- · Source de courant
- Peut être : Ampèremètres
- Temporisation

Procédure à suivre

Test des valeurs de seuil (3 monophasés et 1 triphasé)

À chaque fois, utilisez un courant de 3 à 5 % supérieur à la valeur du seuil d'activation/de déclenchement. Ensuite, vérifiez les valeurs de seuil.

Test du temps de déclenchement total (recommandé)

Mesurez le temps de déclenchement total sur les contacts auxiliaires du disjoncteur (déclenchement du disjoncteur).

Test du retard au déclenchement (mesure à la sortie relais)

Mesurez les temps de déclenchement à la sortie relais.

Test du rapport de reprise

Réduisez le courant à 97 % de la valeur de déclenchement et vérifiez le rapport de reprise.

Test réussi

Le temps de déclenchement total ou les retards au déclenchement individuels, les valeurs de seuil et les rapports de reprise correspondent aux valeurs spécifiées dans la liste des réglages. Les données techniques indiquent les écarts/tolérances admissibles.

4.2.5 Mise en service : Surintensité de séquence négative

Objet à tester

Signaux à mesurer pour chaque fonction de protection du courant, valeurs de seuil, temps de déclenchement total (recommandé), ou bien délais de déclenchement et rapports de compensation.

REMARQUE!

Il est recommandé de mesurer le temps total de déclenchement plutôt que le retard au déclenchement. Ce dernier doit être spécifié par le client. Le temps total de déclenchement est mesuré à la position signalant les contacts des disjoncteurs (et non à la sortie relais!).

Temps total de déclenchement : = retard au déclenchement (reportez-vous aux tolérances des étages de protection) + durée de fonctionnement du disjoncteur (environ 50 ms)

Utilisez les durées de commutation du disjoncteur indiquées dans les données techniques spécifiées dans la documentation fournie par le fabricant du disjoncteur.

Moyens à mettre en œuvre :

- · Source de courant
- Ampèremètres
- Temporisation

Procédure à suivre :

Test des valeurs de seuil

Afin d'obtenir un courant inverse, changez la séquence des phases sur les bornes de la source de courant (si la séquence est ABC, choisissez ACB et si la séquence est ACB, choisissez ABC).

Pour chaque test, utilisez un courant de 3 à 5 % supérieur à la valeur du seuil d'activation/de déclenchement. Ensuite, vérifiez les valeurs de seuil.

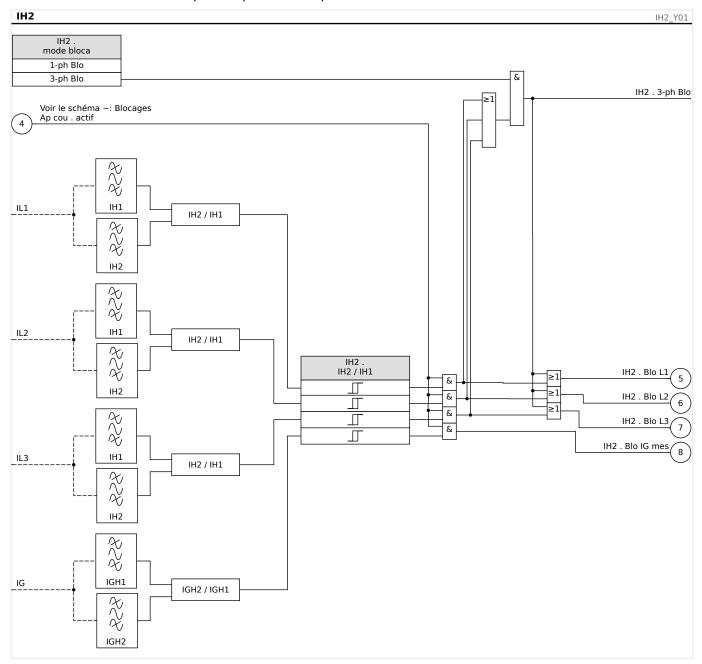
Test du temps de déclenchement total (recommandé)

Mesurez le temps de déclenchement total sur les contacts auxiliaires des disjoncteurs (déclenchement du disjoncteur).

Test du retard au déclenchement (mesure au contact de la sortie relais)

Mesurez les temps de déclenchement au contact de sortie relais.

Test du rapport de compensation


Réduisez le courant à 97 % de la valeur de déclenchement et vérifiez le rapport de compensation.

Test réussi

Le temps de déclenchement total ou les retards au déclenchement individuels, les valeurs de seuil et les rapports de compensation aux valeurs spécifiées dans la liste des réglages. Les données techniques indiquent les écarts/tolérances admissibles.

4.3 IH2 - Appel de courant

Le module d'appel de courant permet d'éviter les déclenchements intempestifs causés par des actions de commutation de charges inductives saturées. Le rapport de la $2^{\grave{e}me}$ à la $1^{\grave{e}re}$ harmonique est pris en compte.

REMARQUE!

N'utilisez pas l'élément d'appel en combinaison avec une protection de surintensité immédiate/instantanée (pour empêcher un déclenchement intempestif).

4.3.1 Mise en service : Appel de courant

La procédure de test dépend du mode de blocage d'appel de courant paramétré :

• [Param protect / Set x / I-Prot / IH2] »mode bloca« = « 1-ph Blo », ou

Pour ce mode, le test doit être effectué en premier pour chaque phase individuellement, puis pour l'ensemble des trois phases à la fois.

• [Param protect / Set x / I-Prot / IH2] »mode bloca« = « 3-ph Blo ».

Pour ce mode, le test se déroule en trois phases.

Objet à tester

Test du blocage d'appel de courant.

Moyens nécessaires

- source de courant triphasé à fréquence réglable
- source de courant triphasé (pour la première harmonique)

Procédure (en fonction du mode de blocage paramétré)

- Faites circuler le courant vers le côté secondaire avec la fréquence nominale.
- Faites circuler de façon abrupte le courant vers le côté secondaire avec une fréquence nominale double. L'amplitude de ce courant doit dépasser le rapport/seuil prédéfini »IH2/IN«.
- Vérifiez que le signal »Alarme ap cou« (alarme : appel de courant) est généré.

Résultats de test réussi

Le signal »Alarme ap cou« est généré et l'enregistreur d'événements indique le blocage de l'étage de protection du courant.

4.4 IG - Protection contre les surintensités de terre [50N/G, 51N/G, 67N/G]

Le module de protection contre les défaut de terre (surintensité de terre) »IG« couvre les fonctions de protection ANSI suivantes :

- ANSI 50N/G
- ANSI 51N/G

AVERTISSEMENT!

Si vous utilisez des blocages d'appel de courant, le retard de déclenchement des fonctions de protection du courant à la terre doit être d'au moins 30 ms ou plus afin d'éviter des déclenchements erronés.

REMARQUE!

Tous les éléments de courant à la terre partagent la même structure.

REMARQUE!

Ce module propose des jeux de paramètres adaptatifs.

Les paramètres peuvent être modifiés de manière dynamique au sein des jeux de paramètres à l'aide de Groupes de paramètres adaptatifs. Reportez-vous à \Longrightarrow « Groupes de paramètres adaptatifs ».

ANSI 50N/G - Protection contre les surintensités de terre, non directionnelle

L'option d'application est définie via le menu [Organis module] :

• [Organis module] »Mode« = « non directionel »

Aucune information directionnelle n'est prise en compte si l'élément de protection du courant est défini comme « non directionel ».

Options:

- [Param protect / Set 1...4 / I-Prot / IG[x]] »Méthode mesure« =
 - Fondamental
 - Eff vrai

ANSI 51N/G - Protection contre les court-circuits de terre, non directionnelle

L'option d'application est définie via le menu [Organis module] :

• [Organis module] »Mode« = « non directionel »

Aucune information directionnelle n'est prise en compte si l'élément de protection du courant est défini comme « non directionel ».

Options:

- [Param protect / Set 1...4 / I-Prot / IG[x]] »Méthode mesure« =
 - Fondamental
 - Eff vrai

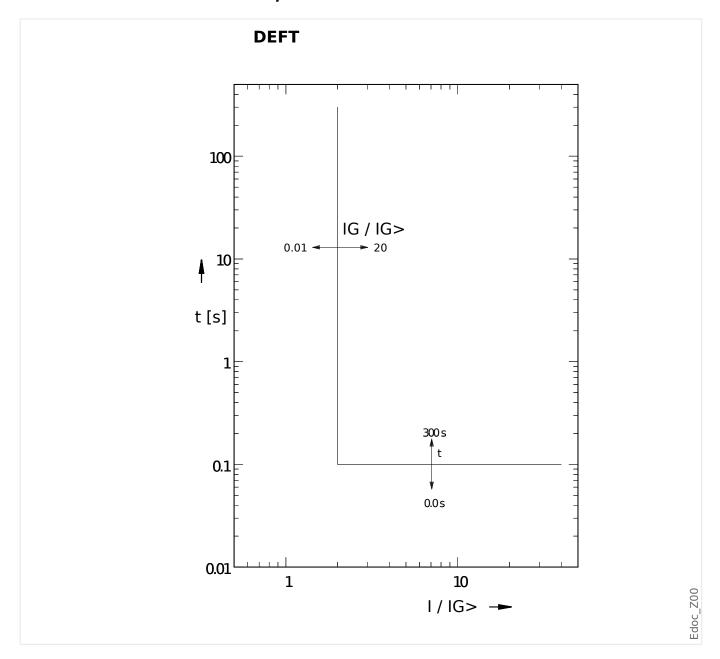
Méthode de mesure

Pour chaque élément de protection, la méthode de mesure peut être définie via le réglage »Méthode mesure«, que la mesure soit effectuée sur la base de « Fondamental » ou que la mesure « Eff vrai » soit utilisée.

Source IG/Source VG

Les paramètres »IG Source« et »Source VX« déterminent si le courant de terre et la tension résiduelle sont « mesuré » ou « calculé ».

4.4.1 Caractéristiques


Pour chaque élément, les caractéristiques suivantes sont disponibles :

- DEFT Surintensité temporisée constante
- Normalement inverse (IEC) Normalement inverse CEI
- Très inverse [VINV] (IEC) Très inverse CEI
- Inverse long Courbe [LINV] (IEC) Inverse long CEI
- Extrêmement Inverse Courbe (IEC) Extrêmement inverse CEI
- Modérément inverse [MINV] Courbe (ANSI) Modérément inverse ANSI
- Très inverse [VINV] (ANSI) Très inverse ANSI
- Extrêmement Inverse Courbe (ANSI) Extrêmement inverse ANSI
- RINV Inverse R
- RXIDG
- Therm Flat [TF] Courbe Thermal Flat
- IT Courbe
- I2T Courbe
- I4T Courbe

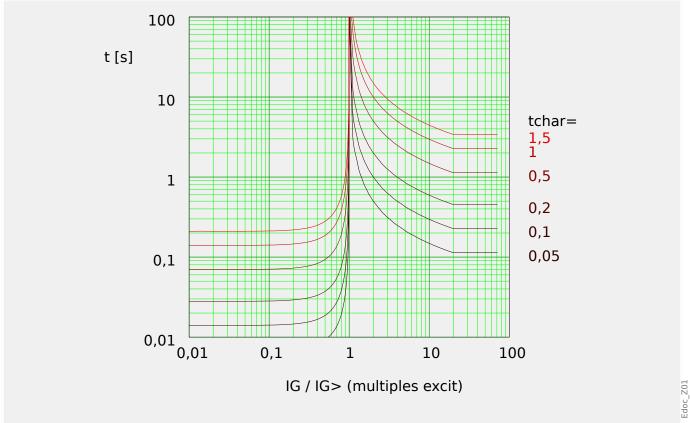
Explication

- t = Retard au déclenchement
- tchar = Facteur de temps / facteur de la caractéristique de déclenchement. La plage de ce paramètre dépend de la courbe de déclenchement sélectionnée.
- IG = Courant de défaut
- IG> = Si la valeur d'excitation est dépassée, le module/étage est activé.

DEFT - Surintensité temporisée constante

IEC Normalement inverse

»Car« = IEC NINV


REMARQUE!

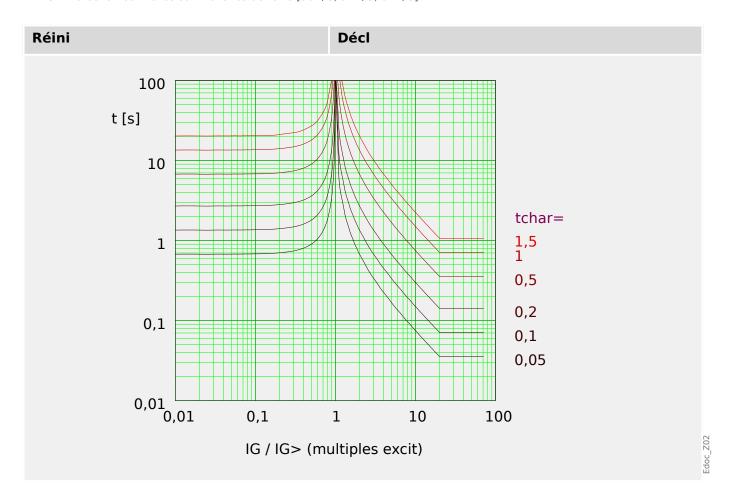
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{0.14}{1 - \left(\frac{IG}{IG}\right)^2} \cdot \text{tchar}$	$t = \frac{0.14}{\left(\frac{\text{IG}}{\text{IG}}\right)^{0.02} - 1} \cdot \text{tchar}$
Si: $\frac{IG}{IG}$ < 1	Si: $1 < \frac{IG}{IG} \le 20$

IEC Très inverse [VINV]

»Car« = IEC VINV


REMARQUE!

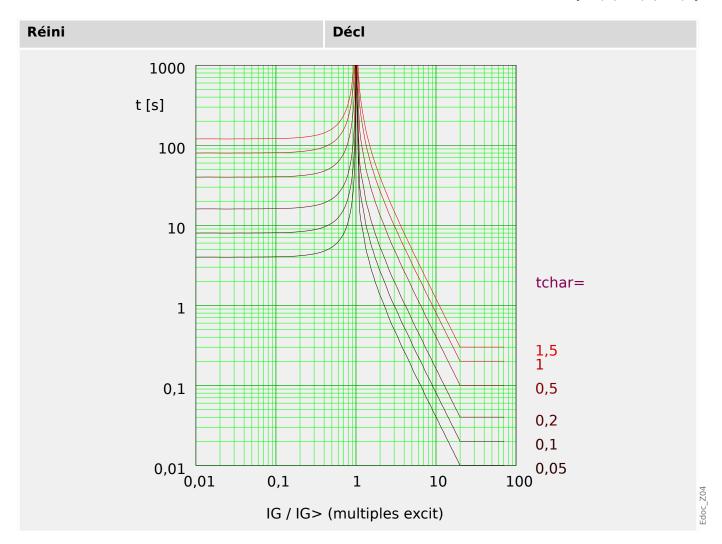
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{13.5}{1 - \left(\frac{IG}{IG}\right)^2} \cdot \text{tchar}$	$t = \frac{13.5}{\frac{IG}{IG} - 1} \cdot \text{tchar}$
Si: IG> < 1	Si: $1 < \frac{IG}{IG} \le 20$

IEC Extrêmement Inverse - Courbe

»Car« = IEC EINV


REMARQUE!

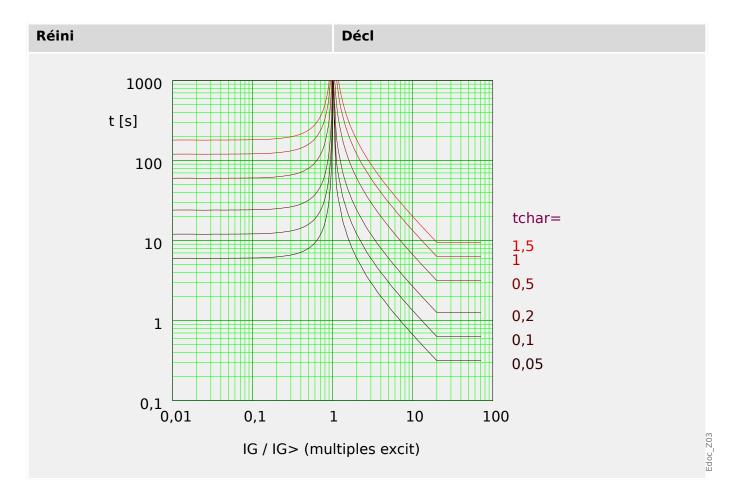
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{80}{1 - \left(\frac{IG}{IG}\right)^2} \cdot \text{tchar}$	$t = \frac{80}{\left(\frac{\text{IG}}{\text{IG}}\right)^2 - 1} \cdot \text{tchar}$
Si: IG> < 1	Si: $1 < \frac{IG}{IG} \le 20$

IEC Inverse long - Courbe [LINV]

»Car« = IEC LINV


REMARQUE!

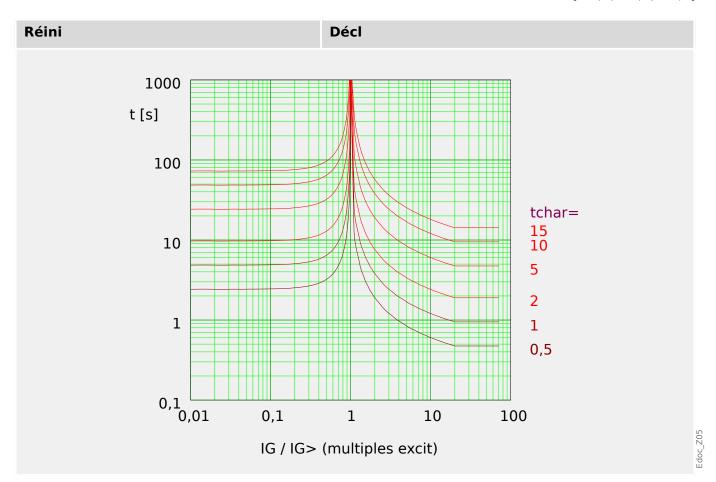
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{120}{1 - \left(\frac{IG}{IG}\right)^2} \cdot \text{tchar}$	$t = \frac{120}{\frac{IG}{IG} - 1} \cdot \text{tchar}$
$\frac{IG}{IG}$ < 1	Si: $1 < \frac{IG}{IG} \le 20$

ANSI Modérément inverse [MINV] - Courbe

»Car« = ANSI MINV


REMARQUE!

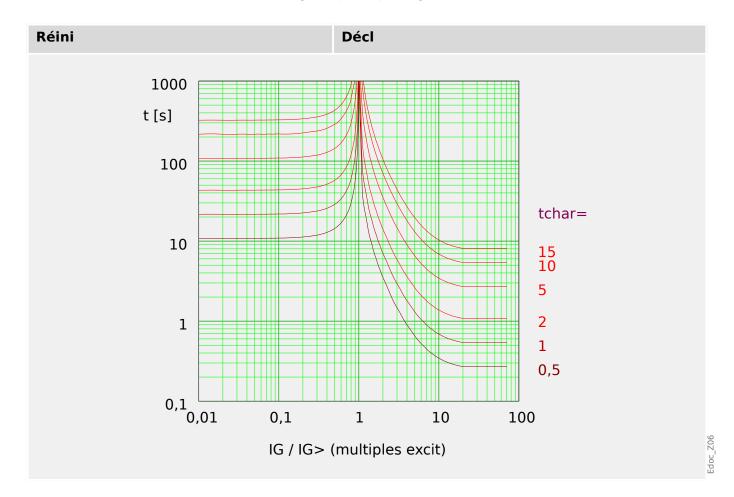
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{4,85}{1 - \left(\frac{IG}{IG}\right)^2} \cdot \text{tchar}$	$t = \left(\frac{0,0515}{\left(\frac{\text{IG}}{\text{IG}>}\right)^{0,02}-1} + 0,1140\right) \cdot \text{tchar}$
Si: <u>IG</u> < 1	Si: $1 < \frac{IG}{IG} \le 20$

ANSI Très inverse [VINV]

»Car« = ANSI VINV


REMARQUE!

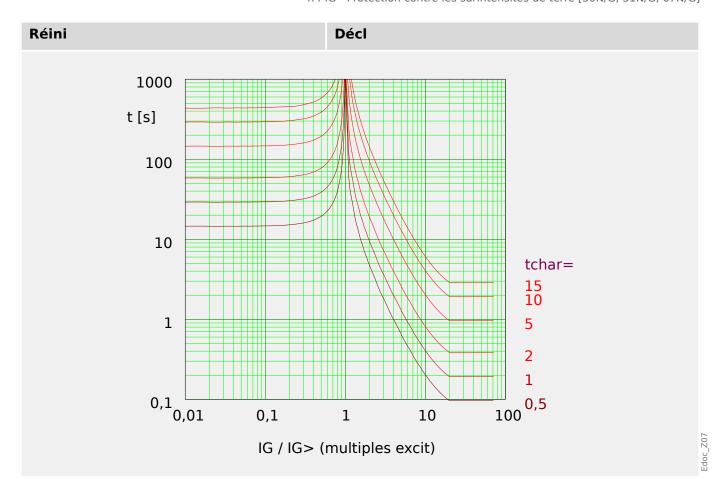
Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{21.6}{1 - \left(\frac{IG}{IG}\right)^2} \cdot \text{tchar}$	$t = \left(\frac{19,61}{\left(\frac{\text{IG}}{\text{IG}}\right)^2 - 1} + 0,491\right) \cdot \text{tchar}$
Si: <u>IG</u> < 1	Si: $1 < \frac{IG}{IG} \le 20$

ANSI Extrêmement Inverse - Courbe

»Car« = ANSI EINV

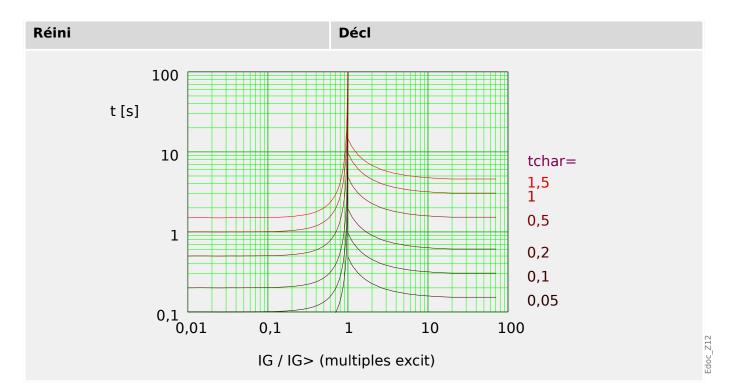

REMARQUE!

Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

Réini	Décl
$t = \frac{29.1}{1 - \left(\frac{IG}{IG}\right)^2} \cdot \text{tchar}$	$t = \left(\frac{28.2}{\left(\frac{\text{IG}}{\text{IG}}\right)^2 - 1} + 0.1217\right) \cdot \text{tchar}$
Si: <u>IG</u> < 1	Si: $1 < \frac{IG}{IG} \le 20$

R Inverse [RINV] - Courbe


REMARQUE!

Divers modes de réinitialisation sont disponibles.

Réinit sur caract, retardée et instantanée.

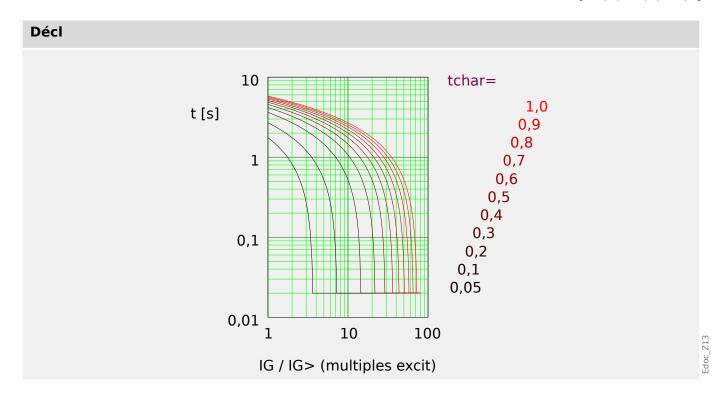
Réini	Décl
$t = \frac{1,0}{1 - \left(\frac{IG}{IG}\right)^2} \cdot \text{tchar}$	$t = \frac{1.0}{0.339 - \frac{0.236}{\left(\frac{IG}{IG}\right)}} \cdot \text{tchar}$
Si: $\frac{IG}{IG}$ < 1	Si: $1 < \frac{IG}{IG} \le 20$

RXIDG

»Car« = RXIDG

REMARQUE!

Divers modes de réinitialisation sont disponibles.


Réinit sur caract, retardée et instantanée.

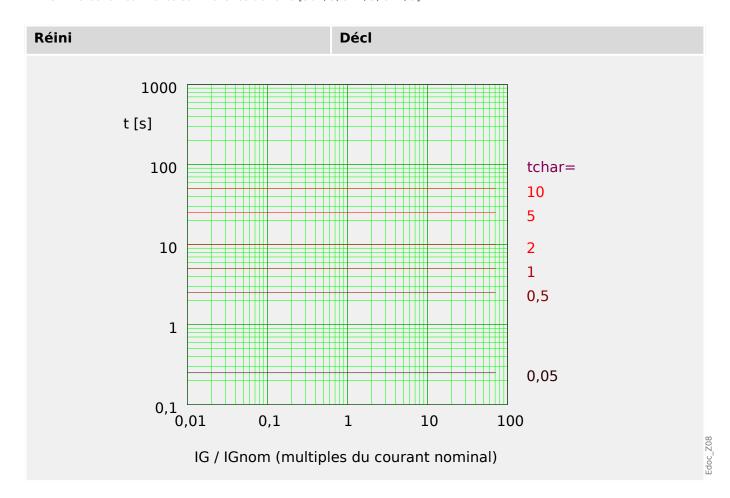
Remarque : Pour t = 0.02 s, la courbe arrête de baisser, i.#xA0;e.#xA0;t reste constant pour les valeurs supérieures de IG.

Décl

$$t = 5.8 - 1.35 \cdot \ln \left(\frac{IG}{IG > \cdot tchar} \right)$$

Si:
$$1 < \frac{IG}{IG} ET t \ge 0.02s$$

Therm Flat [TF] - Courbe

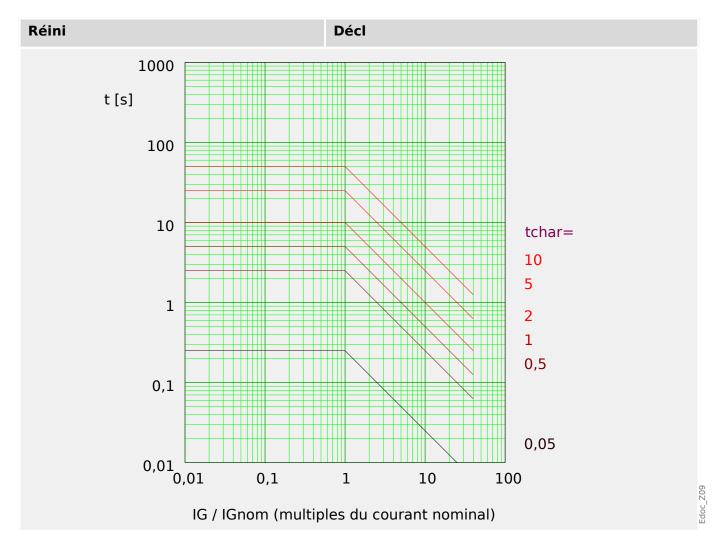

»Car« = Therm Flat

REMARQUE!

Divers modes de réinitialisation sont disponibles.

Réini	Décl
$t = (5 \cdot 1^2) \cdot \text{tchar}$	$t = (5 \cdot 1^{0}) \cdot \text{tchar}$
Si: $\frac{IG}{IGnom} < 1$	Si: $1 < \frac{IG}{IGnom}$

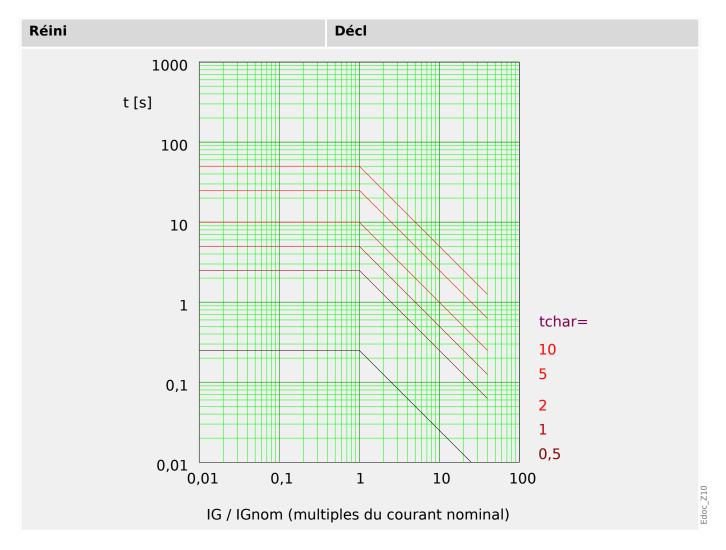
IT - Courbe


$$*Car* = IT$$

REMARQUE!

Divers modes de réinitialisation sont disponibles.

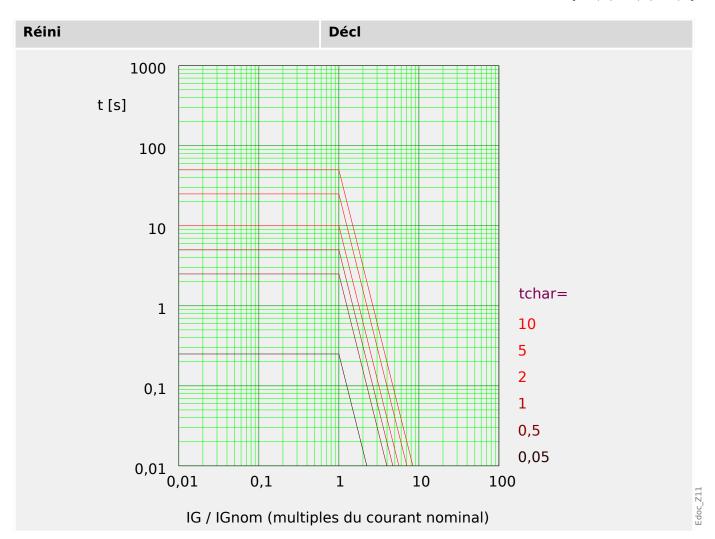
Réini	Décl
$t = (5 \cdot 1^2) \cdot \text{tchar}$	$t = \frac{5 \cdot 1^{1}}{\left(\frac{\text{IG}}{\text{IGnom}}\right)^{1}} \cdot \text{tchar}$
Si: IGnom < 1	Si: $1 < \frac{IG}{IGnom}$


12T - Courbe

REMARQUE!

Divers modes de réinitialisation sont disponibles.

Réini	Décl
$t = (5 \cdot 1^2) \cdot \text{tchar}$	$t = \frac{5 \cdot 1^2}{\left(\frac{\text{IG}}{\text{IGnom}}\right)^2} \cdot \text{tchar}$
Si: IGnom < 1	Si: $1 < \frac{IG}{IGnom}$


14T - Courbe

REMARQUE!

Divers modes de réinitialisation sont disponibles.

Réini	Décl
$t = (5 \cdot 1^2) \cdot \text{tchar}$	$t = \frac{5 \cdot 1^4}{\left(\frac{\text{IG}}{\text{IGnom}}\right)^4} \cdot \text{tchar}$
$Si: \frac{IG}{IGnom} < 1$	Si: $1 < \frac{IG}{IGnom}$

4.4.2 Surintensité à la terre - Fonctionnalité

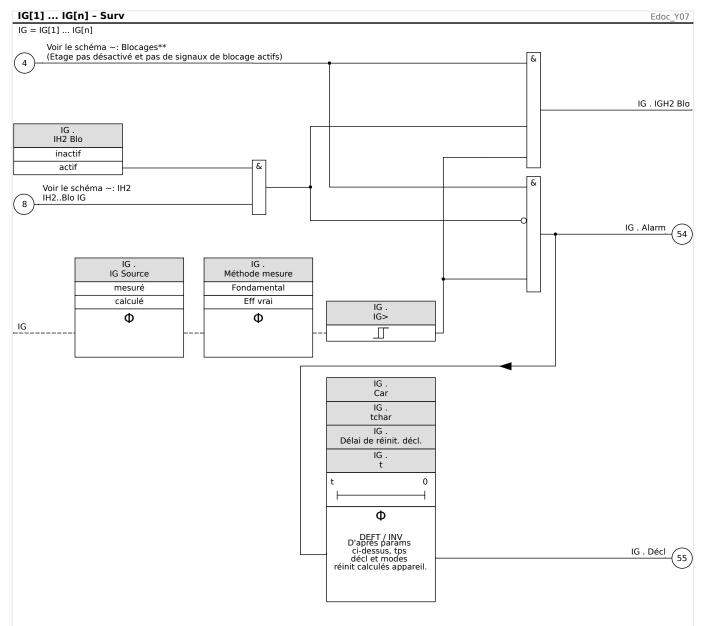
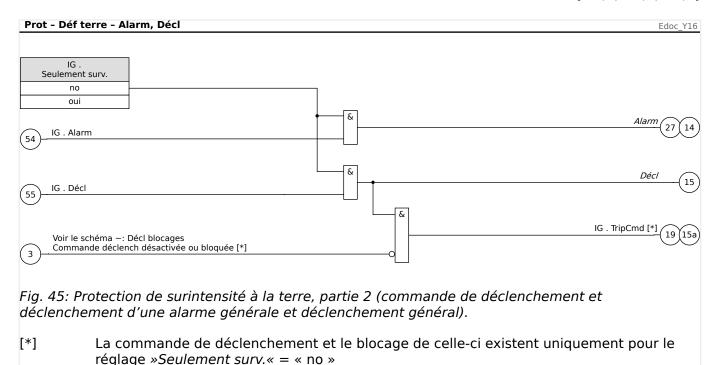



Fig. 44: Protection de surintensité à la terre, partie 1 (fonction de supervision, décision de déclenchement).

4.4.3 Mise en service : Protection des défauts de mise à la terre - nondirectionnelle [50N/G, 51N/G]

Veuillez tester la protection analogique de surintensité à la terre non directionnelle par rapport à la protection de surintensité de phase non directionnelle (voir ╚→> « Mise en service : Protection contre les surintensités, non directionnelle [50, 51] »).

4.5 I2> et %I2/I1> - Charge déséguilibrée [46]

Le module »I2>« de déséquilibre du courant fonctionne de façon similaire au module »V 012« de déséquilibre de la tension. Les courants directs et inverses sont calculés à partir des courants triphasés. Le réglage de seuil (»I2>« ou »I2/FLA«) définit l'amplitude minimale du courant de fonctionnement pour I2 afin que la fonction ANSI 46 soit opérationnelle, ce qui garantit que le relais dispose d'une base fiable pour lancer un déclenchement sur déséquilibre de charge. Le réglage »%(I2/I1)« (option) représente l'excitation de déclenchement déséquilibré. Il se définit par le rapport entre le courant inverse et le courant direct »%(I2/I1)«.

(Remarque : « FLA » = Ib : Intensité à pleine charge (Ampères).)

REMARQUE!

Tous les modules de déséquilibre de charge »12>« sont structurés de façon identique.

La condition nécessaire pour un déclenchement de ce module est que le courant inverse l2 soit supérieur au seuil défini **et**, si cela est configuré, que le pourcentage de déséquilibre de charge soit supérieur à la valeur définie »%(I2/I1)«. Le module initie un déclenchement si cette condition est remplie pour un retard de déclenchement spécifique.

Le courant de charge déséquilibrée continu autorisé est [Param protect / Set 1...4 / I-Prot / I2>[x]] »I2>« et il est spécifié en unités de In.

Pour le retard de déclenchement, deux caractéristiques sont disponibles sous forme d'options de configuration :

- Si »Car« = « DEFT » : Le retard de déclenchement est une valeur de réglage, qui est disponible en tant que paramètre »t«.
- Si »Car« = « INV » : Le retard de déclenchement est calculé par le MRI4.

Le principe de fonctionnement de la caractéristique de déclenchement à temps constant (DEFT) est le suivant : Le module est déclenché si pour le retard de déclenchement *t*, le courant de séquence négative l2 est supérieur au seuil défini **et** (si cela est configuré) le pourcentage de déséquilibre de charge est supérieur au réglage *t* *t*

Le principe de de la caractéristique de temps inverse (INV) est le suivant : Le dispositif de protection calcule en permanence l'énergie thermique θ de l'objet à protéger. Ces calculs sont effectués en continu, indépendamment de toute alarme ou décision de déclenchement. Le module se déclenche si, pour le retard de déclenchement $t_{\rm décl}$ (qui dépend de θ), **toutes** les conditions suivantes sont remplies :

- Le courant de séquence négative 12 est supérieur au seuil défini (»12>«) et
- le pourcentage de déséquilibre de charge est supérieur au réglage »%(I2/I1)« (si configuré) **et**
- l'énergie thermique calculée θ dépasse la valeur maximale θ , qui est calculée en fonction du réglage »K« (capacité de charge thermique).

Pour $\theta = 0$, le retard de déclenchement est calculé comme suit :

$$t_{\text{D\'ecl}} = \frac{K \cdot I_n^2}{I_2^2 - I_{2>}^2}$$

Où:

t _{Décl}	= retard de déclenchement en secondes.
К	= capacité de charge thermique de l'objet en fonctionnement avec un courant de charge déséquilibré à 100 %. Ce paramètre est une propriété intrinsèque de l'objet à protéger, il est par conséquent nécessaire de spécifier sa valeur (paramètre de groupe $*K*$).
	Cette valeur est normalement indiquée sur la fiche technique du générateur.
In	= courant nominal, dans le cas où <i>»CurrentBase</i> « = « Car nom modul »
12	= courant de charge déséquilibrée <i>I2</i> (calculé à partir des valeurs de courant mesurées)
12>	= Valeur de réglage »12>«

En cas de présence d'une chaleur résiduelle, $\theta > 0$, le délai de déclenchement $t_{\text{décl}}$ est réduit en conséquence, ce qui permet un déclenchement plus rapide.

Tant que le courant de charge déséquilibrée I_2 est **supérieur** au seuil »I2>«, il est supposé que l'objet est en phase de *réchauffement*. Au cours de cette phase, la valeur de courant I_2 est prise en compte pour le calcul de l'énergie thermique :

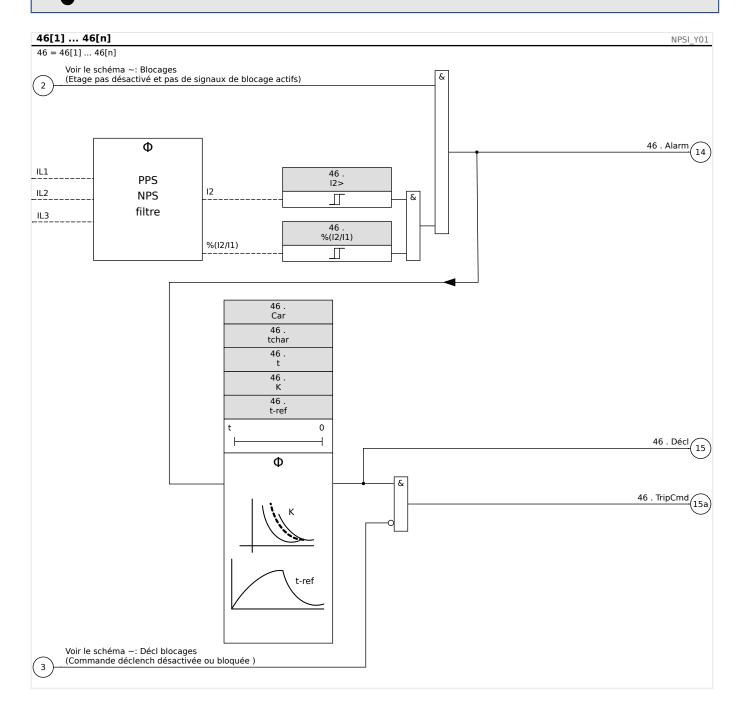
$$\Theta(t) = \Theta_{0, \text{refroidisseur}} + f \cdot \left| \begin{array}{cc} I & I & 2 \end{array} \right|^{2} dt$$

$\theta(t)$	= valeur réelle de l'énergie thermique.
$ heta_{0, ext{refroidisseur}}$	= valeur initiale au début de la phase de réchauffement, c-à-d. l'énergie thermique à la fin de la dernière phase de refroidissement (ou = 0, si la dernière phase de refroidissement est terminée, voir ci-dessous, ou s'il n'y a eu aucune phase de refroidissement précédemment),
f	= facteur d'échelle

Tant que le courant de charge déséquilibrée I2 est **inférieur** au seuil »I2>«, il est supposé que l'objet est en phase de *réchauffement*.

Au cours de cette phase, une constante de refroidissement est prise en compte pour le calcul de l'énergie thermique : Cette constante est une autre propriété intrinsèque de l'objet à protéger, il est par conséquent nécessaire de spécifier sa valeur (paramètre de groupe »t-ref«).

$$\theta(t) = \theta_{0,r\acute{e}chauffeur} \cdot p^{-\frac{t}{\tau_{refroidisseur}}}$$


$\theta(t)$	= valeur réelle de l'énergie thermique,
$ heta_0$,chauffeur	= valeur initiale au début de la phase de refroidissement, c-à-d. l'énergie thermique à la fin de la dernière phase de réchauffement
$ au_{ ext{refroidisseur}}$	= propriété de l'objet, valeur du paramètre »t-ref«.

La phase de refroidissement se poursuit de façon systématique tant que I2 reste inférieur au seuil, ce qui implique que $\theta(t)$ est calculé en continu. (Le calcul s'arrête uniquement lorsque $\theta(t)$ devient inférieur à $0.01\cdot\theta_{\text{max}}$. Ensuite, θ est réinitialisé à 0, ce qui veut dire que la phase de réchauffement suivante débutera avec la valeur initiale $\theta_{0,\text{ref}}=0$.)

REMARQUE!

L'énergie thermique est une valeur auxiliaire qui est calculée et maintenue en interne. Elle ne peut être ni affichée sur le HMI, ni récupérée via un protocole de communication.

4.5.1 Mise en service : module de déséquilibre du courant

Objet à tester :

Test de la fonction de protection de la charge déséquilibrée

Moyens à mettre en œuvre :

- Source de courant triphasé avec déséquilibre de courant réglable ; et
- · Temporisateur.

Procédure à suivre :

Vérifier l'ordre des phases :

- S'assurer que l'ordre des phases est le même que celui défini dans les paramètres de champ (Para champ).
- · Alimenter avec un courant nominal triphasé.
- Aller dans le menu »Valeurs mesurées«.
- Vérifier la valeur de mesure pour le courant déséquilibré »12«. La valeur affichée pour »12« doit être zéro (dans les limites de précision de la mesure physique).

REMARQUE!

Si l'amplitude affichée pour l2 est la même que pour les courants nominaux symétriques qui alimentent le relais, ceci implique que l'ordre des phases des courants détectés par le relais est inversé.

- Éteindre maintenant la phase L1.
- Vérifier encore une fois la valeur de mesure du courant déséquilibré »I2« dans le menu »Valeurs de mesure«. La valeur de mesure du courant asymétrique »I2« doit maintenant être 33 %.
- Allumer la phase L1 mais éteindre la phase L2.
- Vérifier une fois encore la valeur de mesure du courant asymétrique I2 dans le menu »Valeurs de mesure«. La valeur de mesure du courant asymétrique »I2« doit à nouveau être 33 %.
- Allumer la phase L2 mais éteindre la phase L3.
- Vérifier encore une fois la valeur de mesure du courant asymétrique »I2« dans le menu »Valeurs de mesure«. La valeur de mesure du courant asymétrique »I2« doit toujours être 33 %.

Test du retard de déclenchement :

- Appliquer un système de courant symétrique triphasé (courants nominaux).
- Éteindre IL1 (la valeur de seuil »Seuil« pour »I2« doit être inférieure à 33 %).
- Mesurer le temps de déclenchement.

Le déséquilibre de courant »I2« actuel correspond à 1/3 du courant de phase existant affiché.

Test des valeurs de seuil

 Configurer le paramètre »%l2/l1« minimum (2 %) et définir une valeur »Seuil« arbitraire pour l2.

- Pour tester la valeur de seuil, un courant inférieur à trois fois la valeur »Seuil« réglée pour 12 doit alimenter la phase A.
- Le fait de n'alimenter que la phase A donne »%|2/|1 = 100 %«. La première condition »%|2/|1 >= 2 %« est donc toujours remplie.
- Augmenter maintenant le courant de la phase L1 jusqu'à ce que le relais soit activé.

Test du rapport de compensation des valeurs de seuil

Puisque le relais a été déclenché lors du test précédent, diminuer maintenant le courant de la phase A. Le rapport de compensation ne doit pas dépasser 0,97 fois la valeur de seuil.

Test de %12/11

- Configurer une valeur de seuil minimum »Seuil« (I2) (0.01 x In) et réglez »%I2/ I1« sur une valeur supérieure ou égale à 10 %.%(I2/I1)
- Appliquer un système de courant symétrique triphasé (courants nominaux). La valeur de mesure de »%I2/I1« doit être 0 %.
- Augmenter maintenant le courant de la phase L1. Avec cette configuration, la valeur de seuil »Seuil« (I2) doit être atteinte avant que la valeur »%I2/I1« atteigne le seuil de rapport »%(I2/I1)« défini.
- Continuer à augmenter le courant de la phase L1 jusqu'à ce que le relais soit activé.

Test du rapport de compensation de %I2/I1

Puisque le relais a été déclenché lors du test précédent, diminuer maintenant le courant de la phase L1. La compensation de $\frac{9}{11}$ doit être inférieure de 1 % au réglage $\frac{9}{11}$ ($\frac{12}{11}$)«.

Test réussi :

Les retards de déclenchement, valeurs de seuil et rapports de compensation se situent dans les limites des divergences/tolérances autorisées, qui sont spécifiées dans les Caractéristiques techniques.

4.6 Module de protection ThR : Image thermique [49]

La capacité de charge thermique admissible maximale et, par conséquent, le délai de déclenchement d'un composant, dépendent de la quantité du courant circulant à un moment donné, la « charge (courant) existant au préalable », ainsi que d'une constante spécifiée par le composant.

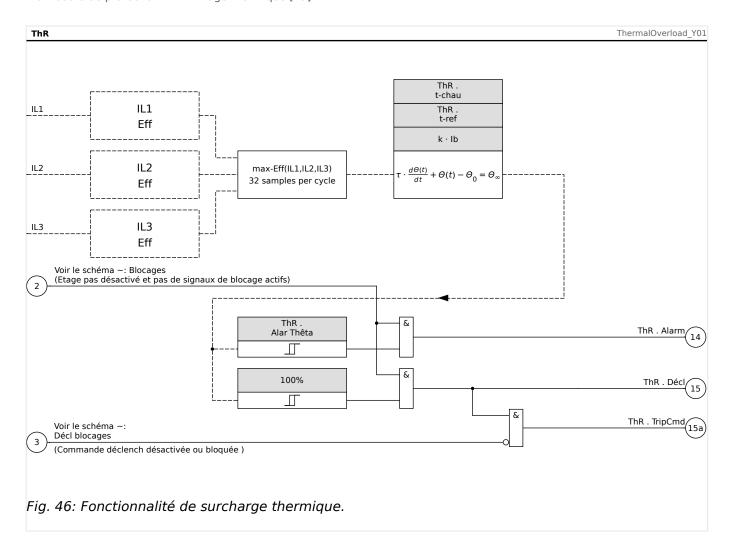
Une fonction d'image thermique complète est mise en œuvre dans l'appareil en tant que réplique de corps homogène de l'équipement à protéger et en tenant compte de la charge existant préalablement. Le concept de la fonction de protection est en une étape, prévu avec une limite d'avertissement.

Pour ce faire, l'appareil calcule la charge thermique de l'équipement à l'aide des valeurs mesurées et des paramètres existants. Si l'on connaît les constantes thermiques, la température de l'équipement peut être établie (simulée).

The thermal state is reset in any of the following cases:

- a (warm or cold) restart of the MRI4;
- a change of the configuration (i. e. changed settings / parameters);
- a change of the active parameter set.

Temps de déclenchement


Les temps de déclenchement généraux de la protection contre les surcharges peuvent être obtenus à partir de l'équation suivante :

$$t = \text{t-chau} \cdot \ln \left(\frac{I^2 - \text{Ip}^2}{I^2 - (K \cdot \text{Ib})^2} \right)$$

Légende:

- t = retard au déclenchement
- t-chau = constante de temps du préchauffage
- t-ref = constante de temps du refroidissement
- Ib = courant de base : courant thermique permanent maximal admissible
- K = facteur de surcharge : La limite thermique maximale est définie comme K·lb, produit du facteur de surcharge et du courant de base.
- I = courant mesuré (en unités de In)
- Ip = courant avant charge

Fonctionnalité

4.6.1 Mise en service : Image thermique

Objet à tester

Fonction de protection : ThR

Moyens nécessaires

- Source de courants triphasé
- Temporisation

Procédure à suivre

Calculez le temps de déclenchement pour que le courant soit constamment exercé à l'aide de la formule de l'image thermique (voir $\sqsubseteq > \kappa 4$).

REMARQUE!

Le paramètre d'augmentation de la température du composant » τ_w « doit être connu pour garantir une protection optimale.

Test des valeurs de seuil

Appliquez le courant basé sur votre calcul mathématique.

Test du délai de déclenchement

REMARQUE!

La capacité thermique doit être égale à zéro avant le démarrage du test. Voir [Utilisat / Valeurs mesurées / ThR] »Cap ther utilisé«.

Pour tester le retard de déclenchement, une temporisation doit être reliée au contact du relais de déclenchement associé.

Appliquez le courant basé sur votre calcul mathématique. La temporisation démarre dès que le courant est appliqué et est arrêtée lorsque le relais se déclenche.

Test réussi

Le temps de déclenchement calculé et le rapport de reprise sont conformes aux valeurs mesurées. Pour les écarts/tolérances admissibles, reportez-vous aux données techniques.

4.7 AR - Réenclenchement automatique [79]

Le réenclenchement automatique est utilisé pour minimiser les coupures sur des lignes aériennes. Selon la norme « VDE-Verlag: Schutztechnik in elektrischen Netzen 1, Page179, ISBN 3-8007-1753-0 », la majorité des défauts (surexcitation de l'arc électrique) sur les lignes aériennes (plus de 60 % en moyenne tension et plus de 85 % en haute tension) sont temporaires et peuvent être résolues au moyen d'un élément de réenclenchement automatique.

REMARQUE!

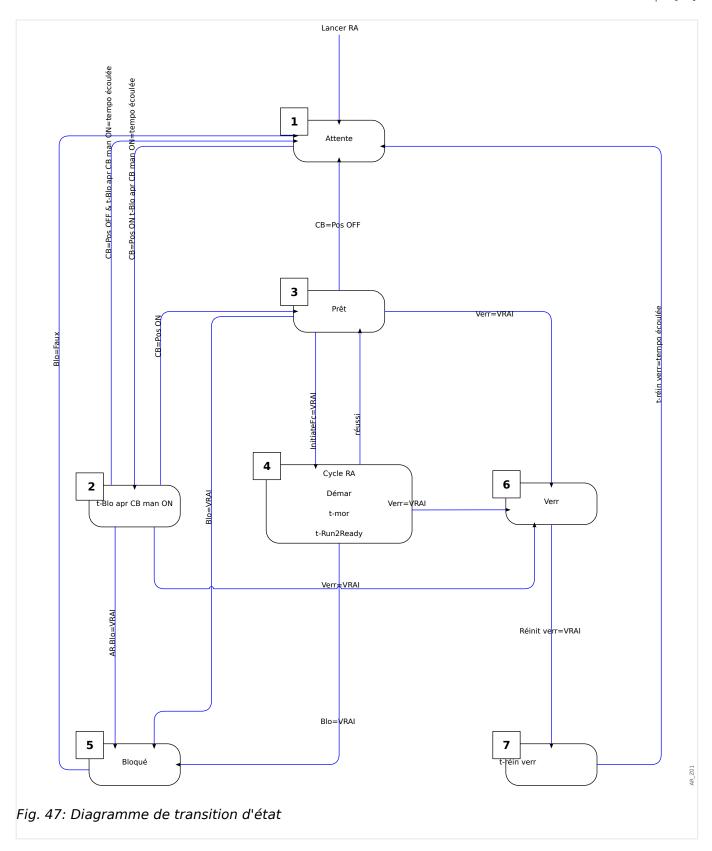
Désactivez l'élément de réenclenchement automatique (réglage [Organis module] »AR . Mode« = « - ») si le dispositif de protection est utilisé pour protéger des câbles, des générateurs ou des transformateurs.

4.7.1 Caractéristiques

La fonction de réenclenchement automatique est conçue avec des fonctionnalités autant complètes que flexibles qui répondent à toutes les exigences de concepts d'utilisation et d'applications techniques.

Les fonctionnalités disponibles de la fonction de réenclenchement automatique sont les suivantes :

- Affectation souple des fonctions de déclenchement pour les différentes impulsions.
- Six impulsions de réenclenchement au maximum.
- Réglage dynamique des valeurs de paramétrage de la protection (par exemple excitation, courbe de temporisation de déclenchement, etc.) pendant le processus de réenclenchement automatique à l'aide du concept de groupe adaptatif.
- Limite d'impulsions de réenclenchement par heure.
- Surveillance de l'usure du réenclenchement automatique avec alarme de maintenance.
- Fonctionnalité de blocage du réenclenchement programmable
- Coordination des zones automatique avec disjoncteurs à réenclenchement en amont.
- Fonctionnalité de blocage automatique de fermeture manuelle du disjoncteur.
- Réinitialisation du verrouillage manuelle/automatique (tableau de commande, entrée de contact, communications, etc.).
- Réenclenchement automatique avec vérification de la synchronisation (uniquement en conjonction avec des modules internes de vérification de la synchronisation et de contrôle).
- Incrémentation des compteurs d'impulsions de AR externes possible.
- Évaluation des résultats de réenclenchement automatique (succès/échec).
- Compteurs séparés pour enregistrer le nombre de procédures de réenclenchement effectuées avec succès / en échec.


Le tableau suivant fournit un aperçu des fonctions de AR et des branches de menu :

Dossier du menu de Réenclenchement automatique	Fonction
AR [Param protect / Para glob prot / AR]	Dans ce menu, vous pouvez affecter des blocages externes, des verrouillages externes, des incrémentations d'impulsions externes et des réinitialisations externes. Ces événements externes ne peuvent être effectifs que s'ils ont été activés (autorisés) dans les paramètres généraux. Veuillez vous référer au tableau ci-dessous.
Paramètres généraux [Param protect / Set 14 / AR / Paramètres généraux]	Plusieurs paramètres généraux peuvent être activés dans ce menu : la fonction elle-même (blocage externe, coordination de zones, verrouillage externe et incrémentation d'impulsion externe) peut être activée. Les événements déclencheurs correspondants (par exemple, des entrées numériques) doivent être affectés dans les paramètres de protection globaux correspondants. Veuillez vous référer au tableau ci-dessus. En outre, ce menu contient certaines temporisations, le nombre de tentatives de réenclenchement autorisé (déclenchement/alarme), et permet d'activer le mode de réinitialisation.
Gestionnaire d'impulsions [Param protect / Set 14 / AR / Gest impuls]	Dans le menu Paramètres du Gestionnaire d'impulsions, vous spécifiez les logiques de commande entre les différentes impulsions et les fonctions de protection. Les événements de déclenchement (démarrage) peuvent être affectés pour chaque impulsion (y compris la pré-impulsion). Pour chaque impulsion, 4 fonctions de déclenchement au maximum (fonctions de protection dédiées au démarrage de cette impulsion) peuvent être sélectionnées dans une liste de fonctions de protection disponibles. Lorsque le processus de réenclenchement automatique est exécuté à l'état Impulsion X, les paramètres de protection et de contrôle correspondants seront utilisés pour contrôler l'opération pendant cette étape. Les temps morts doivent en outre être définis. Le temps mort est défini individuellement pour chaque impulsion, à l'exception de l'impulsion 0 pour laquelle il n'est pas nécessaire de paramétrer un temps mort. L'impulsion 0 est uniquement un état virtuel permettant de définir l'intervalle jusqu'à la génération de la première impulsion. Chaque temps mort spécifie l'intervalle de temps devant s'écouler avant que

Dossier du menu de Réenclenchement automatique	Fonction
	la commande de réenclenchement ne puisse être générée pour cette impulsion.
Surveillance usure [Param protect / Set 14 / AR / Surv usure]	Ce groupe de paramètres comprend tous les paramètres qui surveillent les conditions d'usure et de maintenance liées aux opérations de réenclenchement automatique. Le paramètre »Max AR/h« définit le nombre maximum de cycle AR par heure. Les informations et les commandes correspondantes peuvent être utiles pour un fonctionnement optimal de l'application de réenclenchement automatique.
Blocage AR [Param protect / Para glob prot / AR / Bloc Fc]	Ce groupe de paramètres spécifie les fonctions de protection permettant de bloque la fonction de réenclenchement automatique, même si elle est déjà initialisée. Notez la différence entre la fonction de protection pouvant être bloquée par le réenclenchement automatique et le(s) fonction(s) dont le rôle est de bloquer le réenclenchement automatique.

4.7.1.1 États du réenclenchement automatique

Le diagramme suivant montre les transitions d'état entre les différents états de la fonction de réenclenchement automatique. Le diagramme affiche la logique de fonctionnement et la séquence de temporisation en fonction de la direction de transition d'état et les événements qui déclenchent les transitions.

En général, la fonction de réenclenchement automatique est active (sera initiée) uniquement si toutes les conditions suivantes sont remplies :

- La fonction de réenclenchement automatique est activée ([Param protect / Set 1...4 / AR / Paramètres généraux] »Fonction« = « actif »)
- Le disjoncteur est configuré dans la branche de menu [Param protect / Para glob prot / AR].

 Le réenclenchement automatique n'est pas bloqué par les entrées de blocage (»ExBlo1/2«).

État 1 : Attente

Le réenclenchement automatique est à cet état lorsque les conditions suivantes sont remplies :

- Le disjoncteur est à l'état Ouvert.
- La fonction de réenclenchement automatique n'est pas initialisée pour toute fonction d'initialisation (démarrage) quelconque.
- Aucun signal de blocage du réenclenchement automatique externe ou interne n'est présent.

REMARQUE!

Aucune opération d'impulsion de réenclenchement automatique n'est possible si la fonction de réenclenchement automatique est à l'état Attente.

État 2 : Blocage de fermeture « t-manual »

En supposant que le disjoncteur soit ouvert et que le AR soit à l'état Attente, le disjoncteur est fermé manuellement. L'événement « Pos CB On » lance une temporisation de blocage de fermeture manuelle et génère des résultats dans une transition de l'état »Attente« à un état transitoire »t-Blo after CB man ON«. La fonction de réenclenchement automatique passe à l'état »Prêt« uniquement lorsque la temporisation de blocage de fermeture manuelle expire et que le disjoncteur est fermé. La temporisation de blocage de fermeture manuelle permet d'éviter un lancement erroné de la fonction de réenclenchement automatique si la condition Commutation sur défaut est remplie.

État 3 : Prêt

Une fonction de réenclenchement automatique est considérée comme à l'état »Prêt« lorsque toutes les conditions suivantes sont remplies :

- Le disjoncteur est à la position Fermé.
- La temporisation de blocage de fermeture manuelle expire après une opération de fermeture manuelle/à distance.
- La fonction de réenclenchement automatique n'est pas initialisée pour toute fonction d'initialisation (démarrage) quelconque.
- Aucun signal de blocage du AR externe ou interne n'est présent.

REMAROUE!

Un démarrage du réenclenchement automatique est uniquement possible lorsque la fonction de réenclenchement automatique est à l'état Prêt.

État 4 : Exécution (Cycle)

L'état »Exéc.« (Exécution) ne peut être atteint que si les conditions suivantes sont remplies :

- Le réenclenchement automatique était auparavant à l'état »Prêt«.
- Le disjoncteur était auparavant à la position Fermé.
- Aucun signal de blocage du AR externe ou interne n'est présent.
- Au moins une des fonctions d'initialisation affectées est vraie (déclenche le réenclenchement automatique).

REMARQUE!

Un processus de réenclenchement automatique complet avec réenclenchement multiimpulsions est exécuté à l'état Exécution (Exéc.).

Si le réenclenchement automatique est à l'état »Exéc.«, la fonction de réenclenchement automatique transfère sa commande vers un automatisme de contrôle à l'état »Exéc.«, avec plusieurs états subordonnés. Ceux-ci sont décrits en détail dans un chapitre dédié, voir > « Cycle de réenclenchement automatique (impulsion) ».

État 5 : Bloqué

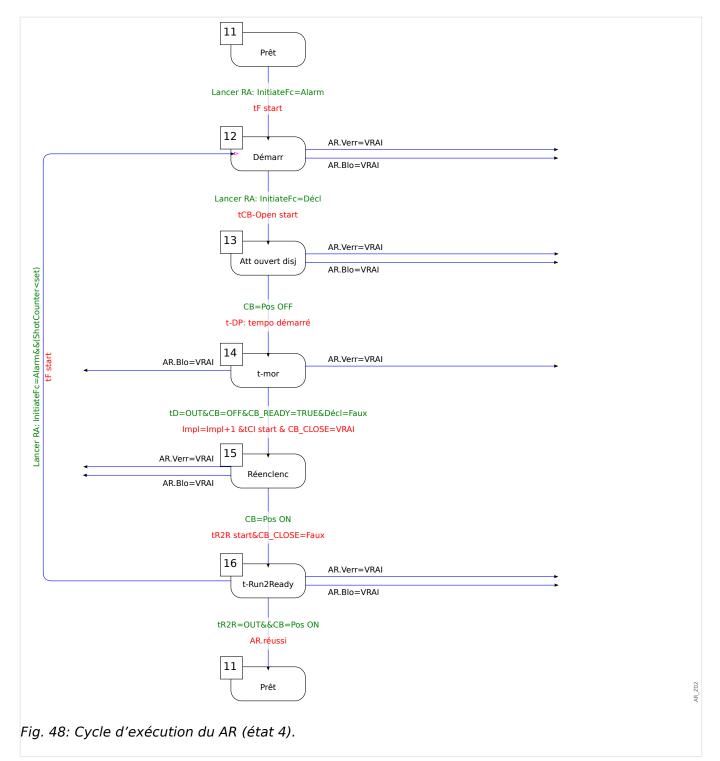
Une fonction de réenclenchement automatique passe à l'état »Bloqué« lorsque l'une des fonctions de blocage affectées est vraie.

La fonction de réenclenchement automatique existe à l'état »Bloqué« si le signal de blocage affecté n'est plus présent.

État 6 : Verrouillage

Une fonction de réenclenchement automatique passe à l'état »Verr« lorsque l'une des conditions suivantes est vraie :

- Un réenclenchement automatique en échec a été détecté après toutes les impulsions de réenclenchement automatique programmées. Cette défaillance est permanente.
- Échec de réenclenchement (séquence incomplète)
- Le débit de réenclenchement automatique par heure dépasse la limite
- La temporisation de défaut s'écoule (délai de déclenchement trop long)
- Défaillance du disjoncteur pendant le démarrage du AR
- Une opération de fermeture du disjoncteur manuelle pendant le processus de réenclenchement automatique
- Au moins une fonction de protection est encore en déclenchement avant que la commande de réenclenchement ne soit générée


La fonction de réenclenchement automatique quitte l'état »Verr« si le signal de réinitialisation de verrouillage programmé est évalué et la temporisation de réinitialisation du verrouillage expire.

REMARQUE!

Une alarme de maintenance (alarme de maintenance 1 ou alarme de maintenance 2) n'entraînera pas un verrouillage de la fonction de AR.

4.7.2 Cycle de réenclenchement automatique (impulsion)

État 11 : Prêt

Une fonction de réenclenchement automatique est considérée comme à l'état »Prêt« lorsque toutes les conditions suivantes sont remplies :

- Le disjoncteur est à la position Fermé.
- La temporisation de blocage de fermeture manuelle expire après une opération de fermeture manuelle/à distance.
- La fonction de réenclenchement automatique n'est pas initialisée pour toute fonction d'initialisation (démarrage) quelconque.
- Aucun signal de blocage du réenclenchement automatique externe ou interne n'est présent.

État 12 : Exécution (Exéc.)

Il s'agit du premier état subordonné une fois que le processus de réenclenchement automatique passe de l'état »Prêt« à l'état »Exéc.« déclenché à partir du premier événement d'initialisation du réenclenchement automatique. À l'état »Exéc.«, l'élément de réenclenchement automatique supervise le signal de déclenchement de la fonction d'initialisation pendant qu'une temporisation de défaut prédéfinie s'écoule. L'élément de réenclenchement automatique passe à l'état »Att ouvert disj« (Attente ouverture disjoncteur) en recevant le signal de déclenchement si la temporisation de défaut N'EXPIRE PAS et qu'il n'existe aucune autre condition de blocage ou de verrouillage.

État 13 : Attente ouverture disjoncteur (Att ouvert disj)

Pendant qu'il est à l'état »Att ouvert disj«, le réenclenchement automatique contrôle si le disjoncteur est réellement déclenché (ouvert) après avoir reçu l'indicateur de déclenchement de la fonction de protection d'initialisation dans un intervalle de supervision de disjoncteur prédéfini (200 ms). Si c'est le cas, le réenclenchement automatique démarre le temps mort programmé et passe à l'état de temps mort »t-mor«.

État 14 : t-mor

Pendant qu'il est à l'état de temps mort »t-mor«, le temps mort prédéfini pour l'impulsion de réenclenchement automatique actuelle s'écoule et ne peut pas être interrompu, à moins que des conditions de blocage ou de verrouillage ne soient générées.

Une fois le temps mort écoulé, le réenclenchement automatique génère la commande de réenclenchement du disjoncteur et passe à l'état suivant, »Réenclenc« (Réenclenchement), uniquement si les conditions suivantes sont remplies :

- Le disjoncteur est à la position Ouvert (Ouv).
- Il est prêt pour l'opération de réenclenchement suivante (si l'entrée logique Disjoncteur prêt est utilisée)
- Aucune excitation des fonctions d'initialisation du réenclenchement automatique actuelles (affectées)
- Aucun déclenchement des fonctions d'initialisation du réenclenchement automatique actuelles (affectées)
- Aucune commande de déclenchement générale

Avant que la commande de réenclenchement du disjoncteur ne soit générée, le compteur d'impulsions actuel sera incrémenté. Ce point est très important pour les fonctions d'initialisation et de blocage contrôlées par impulsion.

Avant le passage à l'état »Réenclenc«, la temporisation de supervision du réenclenchement du disjoncteur prédéfinie (»t-Brk-ON-cmd«) sera également démarré.

État 15 : Réenclenchement

S'il n'existe aucune autre condition de blocage ou de verrouillage, et si le disjoncteur est à l'état fermé pendant l'écoulement de la temporisation de la supervision du réenclenchement du disjoncteur, le réenclenchement automatique démarre la temporisation [Param protect / Set 1...4 / AR / Paramètres généraux] »t-Run2Ready« et passe à l'état : »t-Run2Ready«.

État 16 : t-Run2Ready

Réenclenchement automatique réussi :

Pendant qu'elle est à l'état »t-Run2Ready«, et s'il n'existe aucune autre condition de blocage ou de verrouillage et qu'aucune autre défaillance n'est détectée dans la temporisation»t-Run2Ready«, la logique de réenclenchement automatique quitte l'état »Exéc.« pour repasser à l'état »Prêt«. L'indicateur « Réussi » est défini.

Réenclenchement automatique non réussi :

Si une défaillance est de nouveau détectée (pendant le démarrage de la fonction d'initialisation contrôlée par impulsion) alors que la temporisation »t-Run2Ready« s'écoule encore, la commande du réenclenchement automatique passe de nouveau à l'état »Exécution«. En cas de défaillance permanente, le processus décrit cidessus sera répété jusqu'à ce que toutes les impulsions programmées aient été exécutées et que le processus de réenclenchement automatique passe à l'état »Verr«. L'indicateur « Échec » est défini.

4.7.3 Diagramme de temporisation

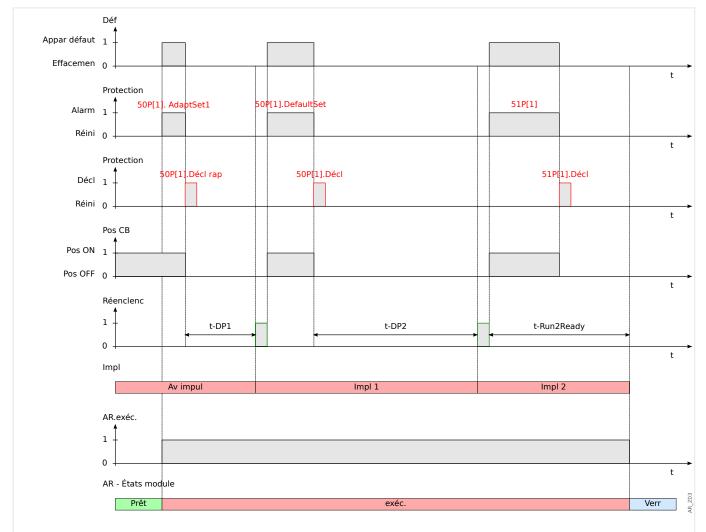


Fig. 49: Diagramme de temporisation de réenclenchement automatique pour un schéma de réenclenchement automatique à 2 impulsions **en échec** avec une accélération à la pré-impulsion.

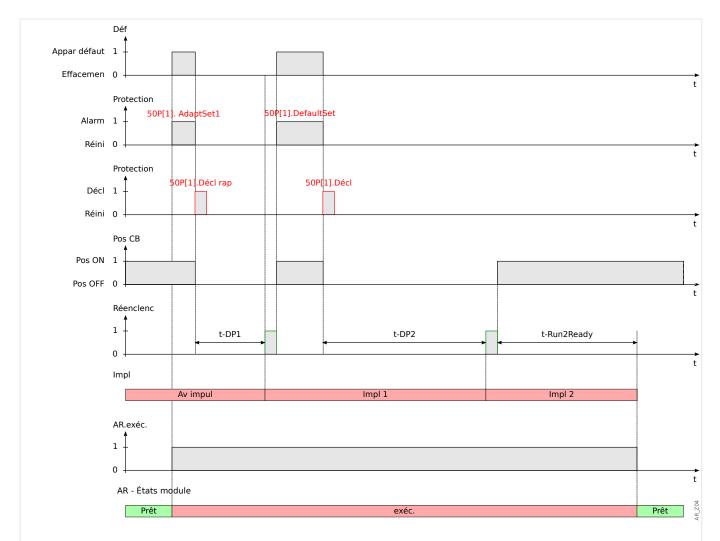


Fig. 50: Diagramme de temporisation de réenclenchement automatique pour un schéma de réenclenchement automatique à 2 impulsions **réussi** avec une accélération à la pré-impulsion.

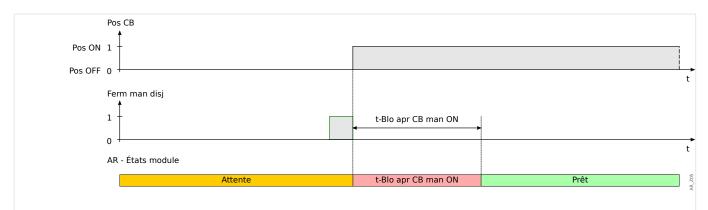


Fig. 51: États du réenclenchement automatique pendant la fermeture manuelle du disjoncteur.

Que se passe-t-il si le dispositif de protection détecte un signal de déclenchement pendant l'écoulement de la temporisation »t-Blo apr CB man ON« ?

Pendant l'écoulement de la temporisation »t-Blo apr CB man ON«, tout déclenchement ouvre le disjoncteur, indépendamment de la temporisation. La temporisation se poursuit.

Avant son expiration, le module de AR vérifie à nouveau l'état du disjoncteur et détecte que ce dernier est ouvert. Le réenclenchement automatique passe à l'état »ATTENTE«,

aucun réenclenchement automatique n'est possible (Remarque : Le AR ne passe pas à l'état »VERR« !)

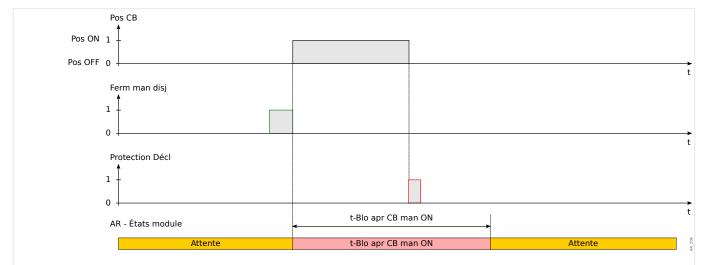


Fig. 52: Déclenchement de la protection pendant l'écoulement de la temporisation du blocage de fermeture manuelle.

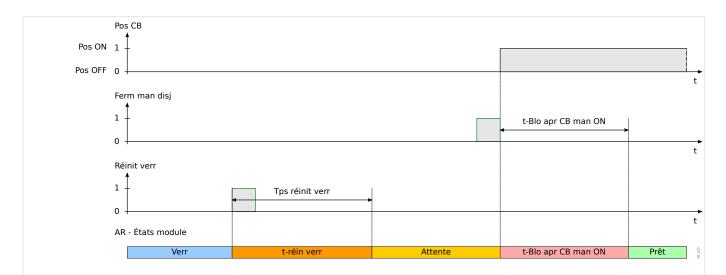


Fig. 53: Logique de réinitialisation du verrouillage du réenclenchement automatique si la réinitialisation du verrouillage se produit avant la fermeture du disjoncteur manuelle.

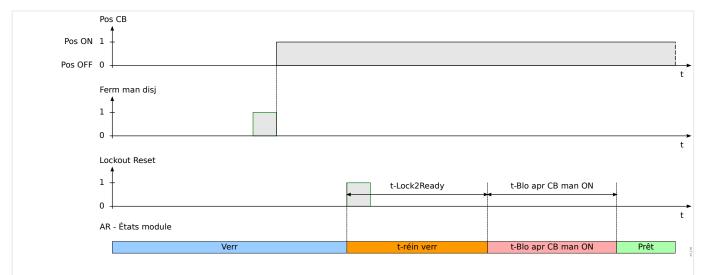


Fig. 54: Logique de réinitialisation du verrouillage du réenclenchement automatique si la réinitialisation du verrouillage se produit après la fermeture du disjoncteur manuelle.

4.7.4 Coordination de zones

Que signifie la Coordination de zones ?

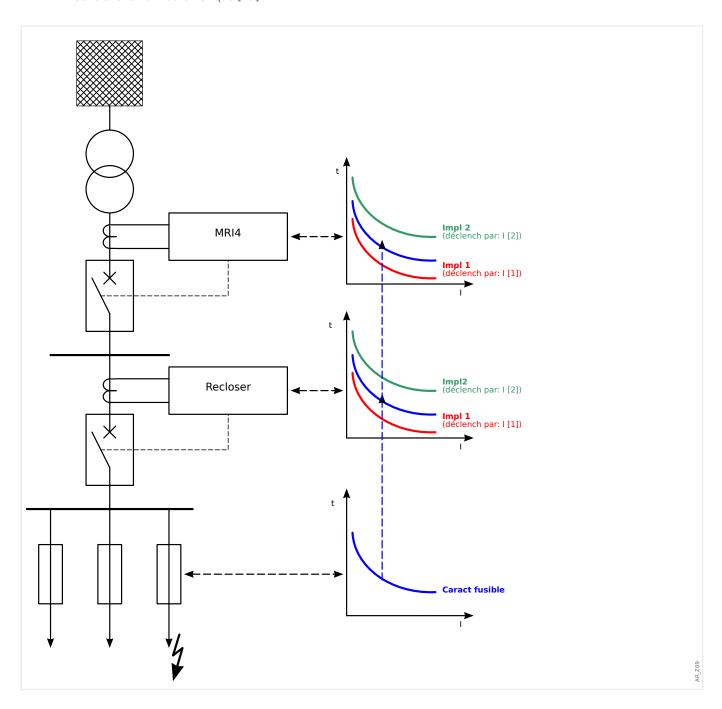
Coordination de zones signifie que le périphérique de protection en amont effectue un réenclenchement automatique virtuel pendant que le périphérique de protection en aval effectue un véritable réenclenchement automatique. La coordination de zones permet de maintenir la sélectivité, même si la caractéristique de déclenchement d'un périphérique de protection en aval est modifiée après le cycle de réenclenchement. Le réenclenchement automatique virtuel du périphérique en amont suit le réenclenchement automatique en aval.

Quelle application peut être réalisée au moyen de la coordination de zones ?

Un système radial de distribution est protégé par un périphérique de protection en amont (avec un disjoncteur) et un périphérique de protection en aval avec un réenclenchement et un fusible. Il est possible de réaliser un « schéma d'économie des fusibles » à l'aide de la coordination de zones. Pour « économiser les fusibles », le périphérique de protection en aval peut déclencher une tentative de réenclenchement avec des valeurs de déclenchement basses (déclassement du fusible afin d'éviter de l'endommager). Si la tentative de réenclenchement échoue, les valeurs de déclenchement peuvent éventuellement être augmentées (surclassement du fusible) pour la seconde tentative de déclenchement (en utilisant des valeurs/caractéristiques de déclenchement).

Ouels sont les éléments essentiels ?

Les seuils de déclenchement des périphériques en amont et en aval doivent être identiques, mais les temporisations de déclenchement doivent être sélectionnées.


Comment activer la coordination de zones?

La fonction de coordination de zones fait partie de l'élément de réenclenchement automatique et peut être activée en réglant le paramètre [Param protect / Set 1...4 / AR / Paramètres généraux] »Coord zones« = « actif » pour un périphérique de protection de ligne en amont.

Comment fonctionne la coordination de zones (avec le périphérique de protection en amont) ?

Lorsque la fonction de coordination de zones est activée, elle agit de façon similaire à une fonction de réenclenchement normale avec le même paramétrage (nombre maximum de tentatives de réenclenchement, temps mort pour chaque impulsion, fonction d'initialisation pour chaque impulsion et autres temporisations pour le processus de réenclenchement automatique), mais avec les fonctionnalités de coordination de zones suivantes pour effectuer une coordination avec les réenclencheurs en aval :

- Le temps mort correspondant pour chaque impulsion sera démarré, même si le disjoncteur pour le relais de ligne en amont n'est PAS déclenché à partir des fonctions d'initialisation de protection affectées.
- Le temps mort commence à s'écouler lorsque la fonction de réenclenchement automatique détecte un problème dans le signal d'excitation de protection contre les surintensités affecté. Cela montre que le courant de défaut a été déclenché par l'ouverture du réenclenchement.
- Le compteur d'impulsions d'une coordination de zones activée sera incrémenté après l'expiration du temps mort, même si aucune commande de réenclenchement n'est générée et si la temporisation »t-Run2Ready« a démarré entre temps.
- Si une défaillance permanente existe après le réenclenchement du réenclencheur en aval, le courant de défaut excite de nouveau la protection de surintensité en amont, mais avec un contrôle des seuils d'excitation et des courbes de fonctionnement par le nombre d'impulsions incrémenté. De cette manière, la ligne en amont « suivra » les paramètres de protection du réenclencheur en aval impulsion par impulsion.
- Pour une défaillance transitoire, le réenclenchement avec coordination de zones sera de nouveau initialisé en raison de l'absence du courant de défaut et sera réinitialisé normalement après l'expiration de la temporisation de réinitialisation »t-Run2Ready«.

4.8 SOTF - Commutation sur défaut

Si ligne défectueuse est alimentée (par ex., si un sectionneur de mise à la terre est placé sur la position fermée), un déclenchement instantané est requis. Le module »SOTF« est fourni pour générer un signal permissif aux autres fonctions de protection, telles que les surintensités pour accélérer leurs déclenchements (via des paramètres adaptatifs, voir Groupes de paramètres adaptatifs »).

La condition SOTF est reconnue en fonction du mode de fonctionnement utilisateur. Les options suivantes sont disponibles pour le réglage [Param protect / Para glob prot / SOTF] »Mode«:

- »Mode« = « Pos CB » : état du disjoncteur ;
- »Mode« = « I< » : pas de circulation de courant ;
- »Mode« = « Pos CBEtI< » : état du disjoncteur **et** pas de circulation de courant ;
- »Mode« = « CB manuel ON » : disjoncteur actionné manuellement ;
- »Mode« = « SOTF ext » : déclencheur externe.

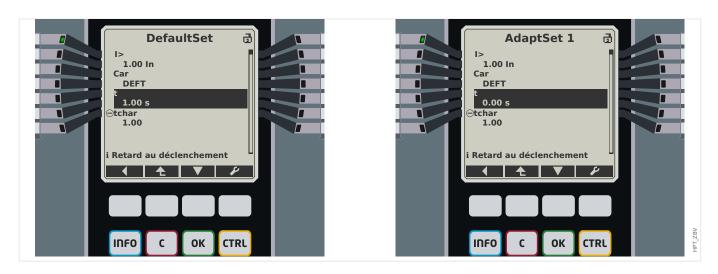
Le module »SOTF« requiert qu'un appareillage de connexion (disjoncteur) soit affecté au paramètre [Param protect / Para glob prot / SOTF] »SG affecté«. Seuls les appareillages de connexion équipés de transformateurs de mesure fournissant des données de mesure au MRI4 sont autorisés.

Ce module émet uniquement un signal. Il n'est pas armé et ne lance pas de commande de déclenchement.

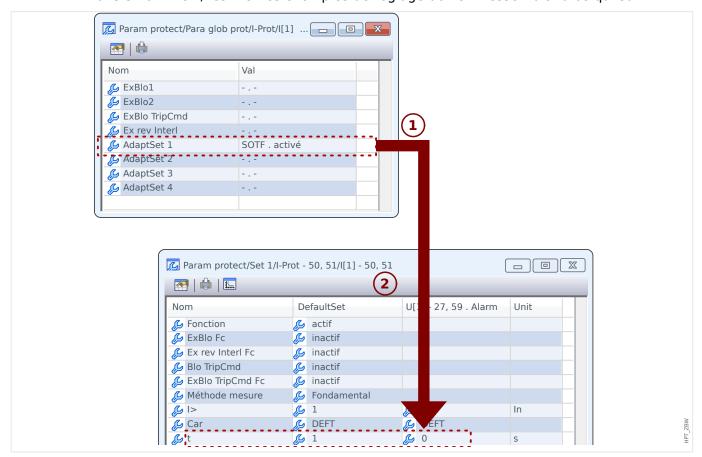
Afin d'influencer les paramètres de déclenchement de la protection contre les surintensités en cas de commutation sur défaut, vous devez affectez le signal »SOTF . activé« à un jeu de paramètres adaptatifs. (Reportez-vous à « Groupes de paramètres adaptatifs » pour obtenir une description générale). Au sein du jeu de paramètres adaptatifs, vous devez modifier la caractéristique de déclenchement de la protection contre les surintensités en fonction de vos besoins.

Exemple : Déclenchement immédiat de l'élément de surintensité »I[1]«

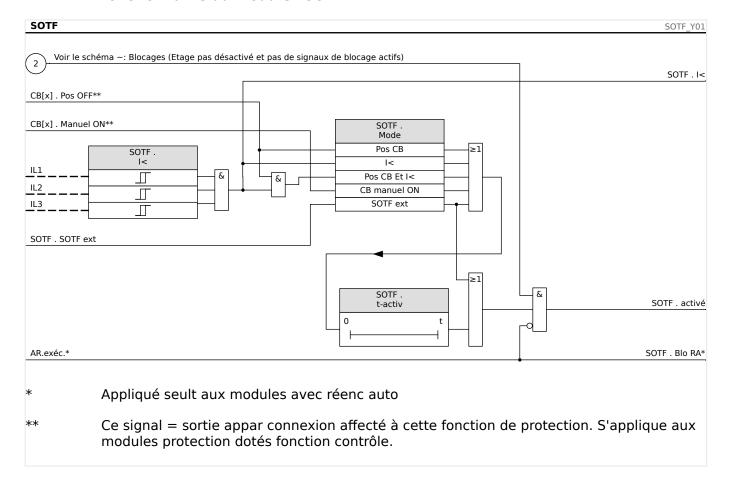
Supposons que tous les réglages pour l'élément de surintensité de phase »I[1]« aient été effectués. (Reportez-vous à ¬ « I - Protection contre les surintensités » pour obtenir une description détaillée.) Ensuite, lors d'une deuxième étape, nous souhaitons définir le délai de déclenchement »I[1] . t« de la valeur par défaut 1,00 s à 0 s, dès que la condition SOTF est reconnue. Les étapes suivantes sont fournies à titre d'exemple pour effectuer cette opération :


• Il y a 4 groupes adaptatifs. Si, par exemple, nous sélectionnons le Groupe adaptatif 1, nous devons commencer par effectuer le réglage suivant :

[Param protect / Para glob prot / I-Prot / I[1]] »AdaptSet 1 « = « SOTF . activé ».


• Ensuite, affectez la valeur « AdaptSet 1 » au délai de déclenchement :

[Param protect / Set 1...4 / I-Prot / I[1]] »AdaptSet 1« [AdaptSet 1] = 0,00 s


Lors de l'accès à la branche de menu [Param protect / Set 1...4 / I-Prot / I[1]] sur le tableau, vous devriez être en mesure de visualiser les pages suivantes :

Dans Smart view, les mêmes exemples de réglage doivent ressembler à ce qui suit :

Fonctionnalité du module »SOTF«

4.8.1 Mise en service : Commutation sur défaut

Objet à tester

Test du module Commutation sur défaut en fonction du mode de fonctionnement paramétré :

- État du disjoncteur (Pos CB),
- Pas de circulation de courant (I<),
- État du disjoncteur et pas de circulation de courant (Pos CB et I<),
- Disjoncteur actionné manuellement (CB manuel On), et/ou
- Déclencheur externe (Ex SOTF).

Moyens à mettre en œuvre :

- Source de courant triphasé (si le mode d'activation dépend du courant),
- Ampèremètres (peuvent être nécessaires si le mode d'activation dépend du courant),
- Temporisateur.

Exemple de test pour le mode CB manuel ON

REMARQUE!

Mode I< : Pour tester l'efficacité : utilisez initialement aucun courant. Lancez la temporisation et effectuez un brusque changement en alimentant un courant visiblement supérieur au seuil I< sur les entrées de mesure du relais.

Mode I< et État du disjoncteur : Activez le disjoncteur manuellement et effectuez simultanément un brusque changement en alimentant un courant visiblement supérieur au seuil I<.

État du mode Bkr : Le disjoncteur doit être en position OFF. Le signal « SOTF.enabled » = 0 n'est pas vrai. Si le disjoncteur est activé, le signal « SOTF.enabled » = 1 devient vrai tant que la temporisation t-activ est opérationnelle.

- Le disjoncteur doit être en position OFF. Il ne doit y avoir aucun courant de charge.
- L'affichage de l'état du dispositif indique le signal SOTF . activé« = 1.

Test

- Activez le disjoncteur manuellement et démarrez la temporisation en même temps.
- Une fois le temps d'appui t-activ expiré, l'état du signal doit passer à »SOTF . activé« = 0.
- · Noter le temps mesuré.

Test réussi

Le temps de déclenchement total ou les retards au déclenchement individuels, les valeurs de seuil et les rapports de reprise correspondent aux valeurs spécifiées dans la liste des réglages. Les données techniques indiquent les écarts/tolérances admissibles.

4.9 CLPU - Excitation de charge à froid

Lorsque la charge électrique est démarrée ou redémarrée après une coupure prolongée, le courant de charge a tendance à avoir une surtension temporaire qui pourrait être plusieurs fois supérieure au courant de charge normal en raison du démarrage du moteur. Ce phénomène est appelé appel en charge froide. Si le seuil d'excitation de surintensité est défini en fonction de l'appel en charge froide maximum possible, la protection contre la surintensité pourra être insensible à certains défauts. Ceci rendra difficile, voire impossible, la coordination entre tous les systèmes de protection. Par ailleurs, la protection contre la surintensité pourrait se déclencher en cas d'appel de charge si elle se base sur les études de courants de défaut. Le module CLPU est fourni pour générer un signal de blocage/de désensibilisation destiné à empêcher que des protections contre la surintensité soient déclenchées par inadvertance. La fonction d'excitation de charge à froid détecte une transition du chaud au froid conformément aux quatre modes de détection de charge à froid sélectionnables :

- CB POS (État du disjoncteur);
- I< (Sous-intensité);
- CB POS AND I< (État du disjoncteur et sous-intensité) et
- CB POS AND I< (État du disjoncteur OU sous-intensité).

Après qu'une transition de charge du chaud au froid aura été détectée, un temporisateur de déchargement spécifié démarrera. Ce temporisateur de déchargement pouvant être défini par l'utilisateur est utilisé dans certains cas pour s'assurer que la charge est vraiment assez « froide ». Après expiration du temporisateur de déchargement, la fonction CLPU émet un signal « activer »CLPU.enabled« qui peut être utilisé pour bloquer des éléments de protection sensibles tels que des éléments de surintensité instantanée, de déséquilibre du courant ou de protection de l'alimentation, au choix de l'utilisateur. Ce signal d'activation peut, si l'utilisateur le souhaite, être utilisé pour désensibiliser certains éléments de surintensité à inversion de temps en activant des paramètres adaptatifs des éléments de surintensité correspondants.

À la fin d'une condition de charge froide (une condition de charge de chaud à froid est détectée), par exemple suite à la fermeture d'un disjoncteur ou à une injection de courant de charge, un détecteur d'appel de charge sera activé pour superviser les allées et venues du processus du courant d'appel de charge. Un appel de charge est détecté sur le courant de charge arrivant dépasse un seuil de courant d'appel spécifié par l'utilisateur. Cet appel de charge est considéré comme terminé si le courant de charge est descendu à 90 % du seuil de courant d'appel. Après que le courant d'appel a diminué, un temporisateur d'établissement démarre. Le signal d'activation de l'excitation de charge à froid ne peut être réinitialisé qu'après l'expiration du temporisateur d'établissement. Un autre temporisateur max-Block, qui démarre parallèlement au détecteur d'appel de charge après la fin d'une condition de charge froide, peut également terminer le signal d'activation de CLPU si une condition d'appel de charge est anormalement prolongée.

La fonction d'excitation de charge à froid peut être bloquée manuellement par un signal externe ou interne, au choix de l'utilisateur. Pour les dispositifs dotés d'une fonction de réenclenchement, la fonction CLPU sera bloquée automatiquement si le réenclenchement est activé (réenclenchement automatique en cours d'exécution).

PRUDENCE!

Ce module émet uniquement un signal (il n'est pas réarmé).

Pour influencer les paramètres de déclenchement de la protection contre la surintensité, l'utilisateur doit affecter le signal « CLPU.enabled » à un groupe de paramètres adaptatifs. Reportez-vous à la section Paramètre / Groupes de paramètres adaptatifs. Dans le groupe de paramètres adaptatifs, l'utilisateur doit modifier la caractéristique de déclenchement de la protection contre la surintensité conformément aux besoins.

REMARQUE!

Ayez conscience de l'importance des deux temporisateurs.

t char Off (retard d'excitation) : La charge ne sera plus diversifiée une fois ce délai expiré.

t max bloc (Retard débloc) : Une fois la condition de démarrage remplie (par ex. : disjoncteur actionné manuellement), le signal « CLPU.enabled » sera émis pendant ce temps. Ceci signifie que pendant ce temps, les seuils de déclenchement de la protection contre la surintensité peuvent être désensibilisés grâce à des paramètres adaptatifs (reportez-vous à la section Paramètres). Ce temporisateur sera arrêté si le courant descend en dessous de 0,9 fois le seuil du détecteur d'appel de charge et reste en dessous de ce seuil pendant le temps d'établissement.

REMARQUE!

Cette notice s'applique uniquement aux modules protection dotés d'une fonctionnalité de contrôle! Cet élément de protection requiert qu'un appareillage de connexion (disjoncteur) lui soit affecté. Seuls des appareillages de connexion (disjoncteurs) dont les transformateurs de mesure fournissent des données de mesure au module de protection peuvent être affectés à ce module de protection.

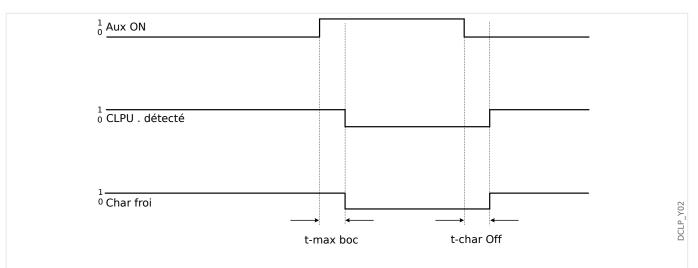
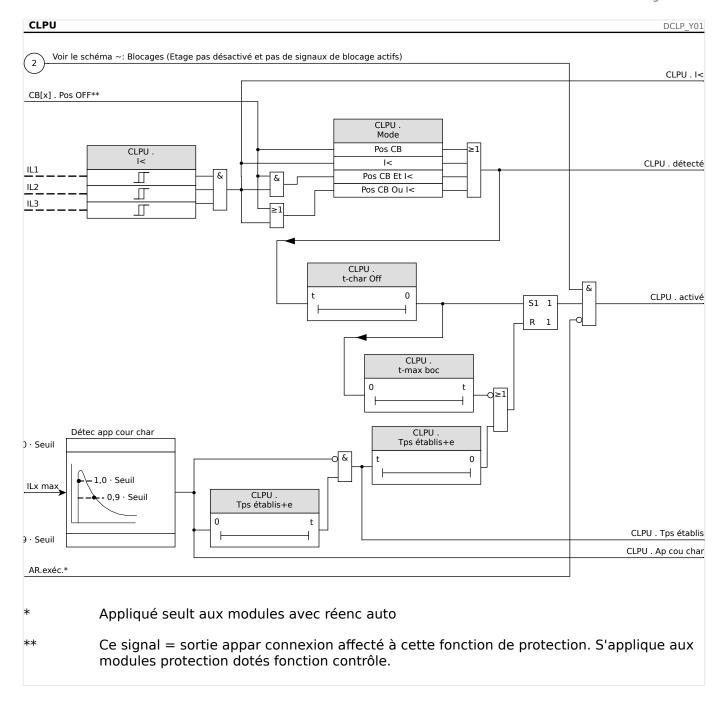



Fig. 55: Exemple de mode : Position du disjoncteur.

4.9.1 Mise en service du module d'excitation de charge à froid

Objet à tester :

Test du module d'excitation de charge à froid conformément au mode de fonctionnement configuré :

- I< (Pas de courant);
- État disj (Position du disjoncteur) ;
- I< (Pas de courant) et État disj (Position du disjoncteur) ; et
- I< (Pas de courant) ou État disj (Position du disjoncteur).

Moyens à mettre en œuvre :

- Source de courant triphasée (si le Mode d'activation est fonction du courant) ;
- Ampèremètres (peut être nécessaire si le Mode d'activation est fonction du courant); et
- Temporisateur.

Exemple de test pour État de mode du disjoncteur (Position du disjoncteur)

REMARQUE!

Mode I< : Pour tester le délai de déclenchement, faire démarrer le temporisateur et alimenter avec un courant de modification soudain nettement inférieur au seuil I<. Mesurer le délai de déclenchement. Pour mesurer le rapport d'ouverture automatique, alimentez avec un courant à modification subite nettement supérieur au seuil I<.

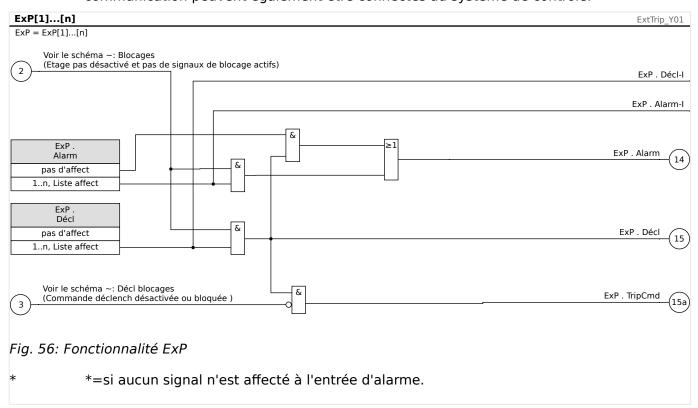
Mode I< et État du disjoncteur : combiner la modification subite (commutation du courant sur ON et OFF) avec la commutation manuelle du disjoncteur sur ON et OFF.

Mode I< ou État du disjoncteur : dans un premier temps, effectuer le test avec un courant de modification soudain commuté en position ON et OFF (au-dessus et dessous du seuil I<-). Mesurer les temps de déclenchement. Enfin, effectuer le test manuellement en commutant le disjoncteur sur ON et OFF.

- Le disjoncteur doit être en position OFF. Il ne doit y avoir aucun courant de charge.
- L'affichage de l'état du dispositif indique « CLPU.Enabled »=1.
- L'affichage de l'état du dispositif indique « CLPU.I »=1.
- Test du délai de déclenchement et du rapport de réinitialisation :
- Commuter le disjoncteur manuellement en position ON et faites simultanément démarrer le temporisateur.
- Une fois que le temporisateur »t Max Block (Retard débloc)« a expiré, le signal « CPLU.Enabled »=0 doit devenir faux.
- Noter le temps mesuré.
- Commuter le disjoncteur manuellement en position OFF et faites simultanément démarrer le temporisateur.
- Une fois la temporisation »t load Off« échue, le signal « CPLU.Enabled »=1 doit entrer en vigueur.
- Noter le temps mesuré.

Test réussi :

Le total des délais de déclenchement ou les délais de déclenchement individuels, les valeurs de seuil et les rapports d'ouverture automatique correspondent aux valeurs spécifiées dans la liste de réglage. Les divergences/tolérances admissibles sont mentionnées dans la section Données techniques.


4.10 ExP - Protection externe

REMARQUE!

Les 4 étapes de la protection externe ExP[1] ... ExP[4] partagent la même structure.

L'utilisation du module Protection externe permet d'incorporer les éléments suivants à la fonction de l'appareil : commandes de déclenchement, alarmes et blocages des systèmes de protection externes. Les modules qui ne disposent pas d'une interface de communication peuvent également être connectés au système de contrôle.

4.10.1 Mise en service : Protection externe

Objet à tester :

Test du module de protection externe.

Moyens à mettre en œuvre :

Selon l'application.

Procédure à suivre :

Simulez le fonctionnement de la protection externe (excitation, déclenchement et blocages) en (dés)activant les entrées numériques :

Après l'activation du module via [Organis module] »Mode« = « uti », affectez une entrée numérique disponible aux paramètres globaux pour l'excitation et le déclenchement, par exemple :

• [Param protect / Para glob prot / ExP / ExP[n]] »Alarm« = "Empl EN X1 . EN 1 ».

4 Éléments de protection

4.10 ExP - Protection externe

• [Param protect / Para glob prot / ExP / ExP[n]] »Décl« = "Empl EN X1 . EN 2 ».

La même procédure s'applique aux paramètres de blocage, par exemple :

• [Param protect / Para glob prot / ExP / ExP[n]] »ExBlo1« = "Empl EN X1 . EN 3 ».

Test réussi :

Le MRI4 identifie et traite correctement la totalité des excitations, déclenchements et blocages externes. Vérifiez également les entrées correspondantes au niveau de l' Enregistr événement.

4.11 Surveillance

4.11.1 CBF- Défaut de disjoncteur [50BF*/62BF]

* = uniquement disponible dans les relais de protection permettant la mesure du courant.

4.11.1.1 Principe - Utilisation générale

Le module »CBF« est conçu pour fournir une protection de sauvegarde en cas de dysfonctionnement d'un disjoncteur pendant la correction des défauts. Ce signal doit être utilisé pour déclencher le disjoncteur en amont (injection ou système BUS, par exemple) par l'intermédiaire d'un relais de sortie ou d'une communication (SCADA).

Selon le dispositif commandé et le type, il existe différents/plusieurs schémas disponibles pour détecter une panne de disjoncteur.

Schémas de surveillance

Le réglage [Param protect / Para glob prot / Surv / CBF] »Schéma« vous permet de sélectionner une méthode de surveillance à utiliser pour détecter un défaut de disjoncteur. Les options suivantes sont disponibles :

 « 50BF » : une temporisation de surveillance est lancée dès que le module »CBF« est déclenché par un signal de déclenchement. Une panne de disjoncteur sera détectée et un signal sera émis si le courant mesuré ne chute pas en dessous d'un seuil défini pendant la période définie.

Ce seuil peut être défini de [Param protect / Set 1...4 / Surv / CBF] »I-CBF >«.

 « Pos CB » : une temporisation de surveillance est lancée dès que le module »CBF« est déclenché par un signal de déclenchement. Un défaut de disjoncteur sera détecté et un signal sera émis si l'évaluation des indicateurs de position du disjoncteur ne signifie pas que le disjoncteur a été ouvert avec succès pendant la période définie.

Ce schéma est recommandé si les défauts de disjoncteur doivent être détectés pendant qu'il n'y a pas ou peu de charge (courants faibles). Ce peut être le cas si une surtension ou une fréquence excessive est détectée pour une application de générateur qui fonctionne en mode de secours.

 « 50BF et Pos CB » : une temporisation de surveillance est lancée dès que le module »CBF« est déclenché par un signal de déclenchement. Un défaut de disjoncteur est détecté et un signal est émis si le courant mesuré ne chute pas sous un seuil défini et si simultanément l'évaluation des indicateurs de position du disjoncteur ne signifie pas que le disjoncteur a été ouvert avec succès pendant la période définie.

Ce schéma est recommandé si les défauts de disjoncteur doivent être revérifiés. Ce schéma émet une commande de déclenchement vers le disjoncteur en amont même si les indicateurs de position signalent à tort que le disjoncteur a été ouvert ou si la mesure du courant indique à tort (défectueux) que le disjoncteur est en position ouverte.

Démarrage/déclenchement du temporisateur CBF

Le réglage [Param protect / Set 1...4 / Surv / CBF] »t-CBF« définit un temps de surveillance : La temporisation démarre après le déclenchement du module CBF. Même si le signal de déclenchement chute à nouveau, cette temporisation se poursuit. Si la temporisation expire (avant d'être arrêtée par l'ouverture du disjoncteur), le

module »CBF« émet une commande de déclenchement. Ce signal de déclenchement doit être utilisé pour déclencher le disjoncteur en amont (de secours).

REMARQUE!

Afin d'empêcher une activation intempestive du module »CBF«, le temps de surveillance »t-CBF« doit être supérieur à la somme des éléments suivants :

- Temps de fonctionnement du relais de protection
- + Temps de fermeture-ouverture du disjoncteur (reportez-vous aux données techniques du fabricant du disjoncteur)
- + Temps d'arrêt (indicateurs de courant ou de position)
- + Marge de sécurité.

Arrêt de la temporisation CBF

La temporisation »t-CBF« si l'ouverture du disjoncteur est détectée. Selon le schéma de surveillance (> « 4.11.1.1 Schémas de surveillance »), la temporisation s'arrêtera si le courant chute sous le seuil actuel ou si les signaux de position indiquent la position ouverte du disjoncteur ou une combinaison des deux. Le module »CBF« reste à l'état rejeté jusqu'à l'abandon du signal de déclenchement (reprise).

États

Le module »CBF« passe à l'état rejeté si les déclencheurs de panne du disjoncteur sont toujours actifs alors que la position ouverte du disjoncteur a été correctement détectée.

Le module »CBF« repasse en mode de secours en cas de chute des signaux de déclenchement (reprise).

Verrouillage (Mémorisation)

Un signal de verrouillage sera émis simultanément avec le signal CBF (déclenchement) . Le signal de verrouillage est permanent. Ce signal doit être acquitté au niveau du pupitre opérateur.

Ce signal peut être utilisé pour bloquer le disjoncteur contre une tentative d'activation.

Déclencheurs

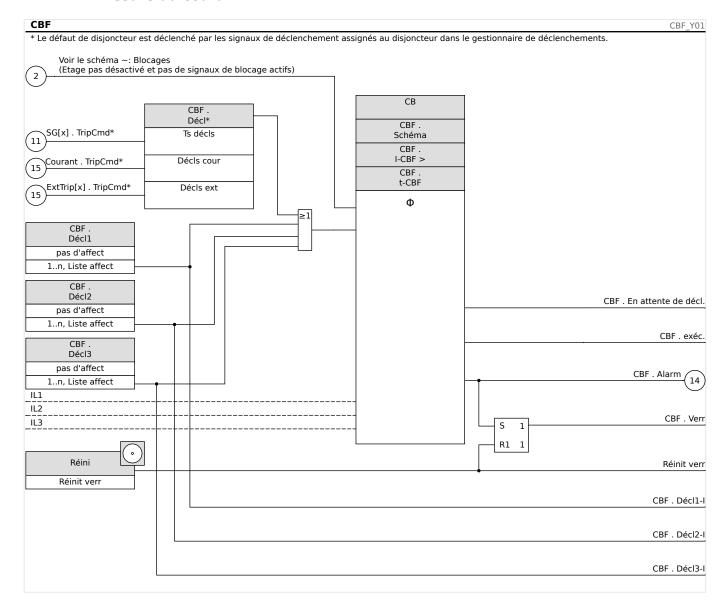
Le réglage [Param protect / Para glob prot / Surv / CBF] »Décl« permet de sélectionner un mode de déclenchement. En outre, trois entrées de déclencheurs programmables sont disponibles et pourraient déclencher le module »CBF«, même si elles ne sont pas attribuées dans le gestionnaire de disjoncteurs au disjoncteur qui doit être surveillé.

Ces entrées de déclenchement supplémentaires peuvent être réglées à [Param protect / Para glob prot / Surv / CBF] »Décl1« ... »Décl3«.

Les options suivantes sont disponibles pour »Décl« :

- « Ts décls » : tous les signaux de déclenchement affectés à ce disjoncteur (dans le gestionnaire de déclenchements, \$\subseteq \times \cdot \text{S.2 Gestionnaire de déclenchements Affectation des commandes ») activent le module »CBF«.
- « Décls ext » : tous les déclenchements externes affectés à ce disjoncteur (dans le gestionnaire de déclenchements —> « 5.2 Gestionnaire de déclenchements Affectation des commandes ») activent le module »CBF«.

Tous les déclenchements externes sont fournis dans le Manuel de référence (MRI4-3.6-FR-REF), chapitre « Listes sélect », sous la forme du tableau « Décls ext ».


 « Décls cour » : tous les déclenchements de courant affectés à ce disjoncteur (dans le gestionnaire de déclenchements → « 5.2 Gestionnaire de déclenchements – Affectation des commandes ») activent le module »CBF«.

Tous les déclenchements de courant sont fournis dans le Manuel de référence (MRI4-3.6-FR-REF), chapitre « Listes sélect », sous la forme du tableau « Décls cour ».

• « -.- » : aucune affectation, l'utilisateur souhaite utiliser l'une des trois autres entrées de déclenchement attribuables.

4.11.1.2 Fonctionnalité

Protection contre les défauts de disjoncteur pour les appareils permettant la mesure du courant

4.11.1.3 Exemple de mise en service : Schéma de surveillance 50BF

Objet à tester :

Test de la protection contre les pannes de disjoncteur (schéma de surveillance 50BF).

Moyens nécessaires :

- · Source de courant
- ampèremètre ; et
- · Temporisateur.

REMARQUE!

Lors du test, le courant appliqué doit toujours être supérieur au seuil de déclenchement »I-CBF«. Si le courant de test chute sous le seuil lorsque le disjoncteur est en position « Off », aucune excitation ne sera fournie.

Procédure (monophasé) :

Pour tester le délai de déclenchement de la protection CBF, le courant de test doit être supérieur à la valeur du seuil de l'un des modules de protection du courant attribué pour déclencher la protection CBF. Le retard de déclenchement CBF peut être mesuré à partir du moment où l'une des entrées de déclenchement devient active lorsque le déclenchement de la protection CBF est évalué.

Pour éviter les erreurs de câblage, vérifiez que le disjoncteur du système en amont se désactive.

Le temps, mesuré par le temporisateur, doit respecter les tolérances spécifiées.

Résultats de test réussi :

Les temps réels mesurés sont conformes aux temps des consignes. Le disjoncteur de la section de niveau supérieur se désactive.

AVERTISSEMENT!

Rebranchez le câble de commande de l'interrupteur!

4.11.2 TCS - Surveillance du circuit de déclenchement [74TC]

La surveillance du circuit de déclenchement permet de s'assurer que le circuit de déclenchement est prêt à fonctionner. La surveillance peut avoir lieu de deux façons. La première présume que seul »Aux On (52a)« est utilisé dans le circuit de déclenchement. La seconde présume qu'en plus de »Aux On (52a)«, »Aux Off (52b)« est également utilisé pour la surveillance du circuit.

Avec »Aux On (52a)« seulement dans le circuit de déclenchement, la surveillance n'est effective lorsque le disjoncteur est fermé, tandis que si »Aux On (52a)« et »Aux Off (52b) « sont utilisés, le circuit de déclenchement est surveillé tant que l'alimentation de commande est activée.

Notez que les entrées numériques utilisées à cette fin doivent être configurées correctement en fonction de la tension de commande du circuit de déclenchement. Si une rupture du circuit de déclenchement est détectée, une alarme est émise avec le délai spécifié, qui doit être plus long que le temps écoulé entre la fermeture d'un contact de déclenchement et le moment où l'état du disjoncteur est clairement reconnu par le relais.

REMARQUE!

L'emplacement 1 a 2 entrées numériques, chacune d'elles dispose d'une racine distincte (séparation de contact) pour la surveillance du circuit de déclenchement.

REMARQUE!

Cette notice s'applique uniquement aux modules protection dotés d'une fonctionnalité de contrôle! Cet élément de protection requiert qu'un appareillage de connexion (disjoncteur) lui soit affecté.

Dans ce cas, la tension d'alimentation du circuit de déclenchement sert également de tension d'alimentation des entrées numériques, la défaillance de la tension d'alimentation dans un circuit de déclenchement peut donc être directement détectée.

Afin d'identifier une défaillance de conducteur dans le circuit de déclenchement sur la ligne d'alimentation ou dans la bobine de déclenchement, la bobine doit effectuer une boucle dans le circuit de surveillance.

Le délai doit être défini de façon à ce que les opérations de déclenchement ne provoquent pas de déclenchements intempestifs dans le module.

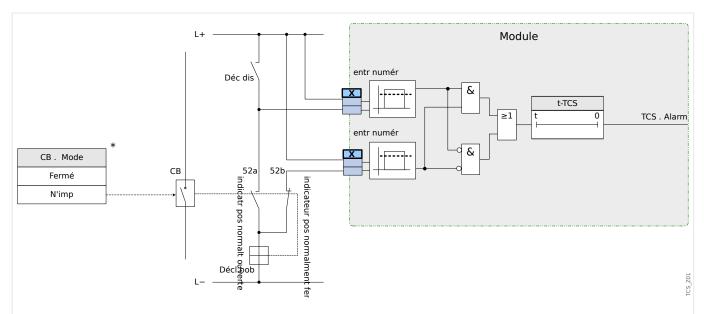


Fig. 57: Exemple de connexion : Surveillance du circuit de déclenchement avec de contacts auxiliaires de disjoncteur »Aux ON« (52a) et »Aux OFF« (52b).

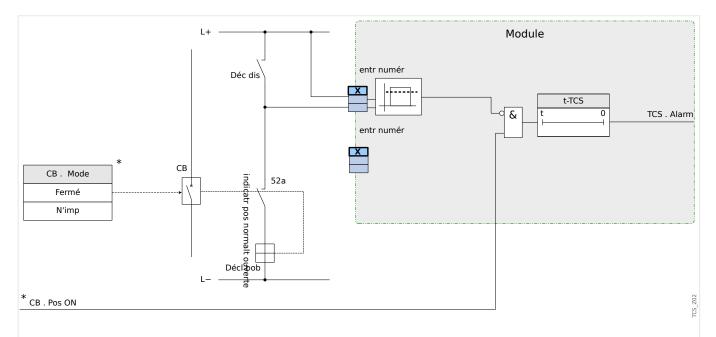


Fig. 58: Exemple de connexion : Surveillance du circuit de déclenchement avec un contact auxiliaire de disjoncteur »Aux ON« (52a).

4.11.2.1 Mise en service : Surveillance du circuit de déclenchement [74TC]

Pour les disjoncteurs qui se déclenchent avec peu d'énergie (par ex., via un optocoupleur), il est nécessaire de vérifier que le courant appliqué par les entrées numériques ne provoque pas de déclenchement intempestif du disjoncteur.

REMARQUE!

Objet à tester

Test de surveillance du circuit de déclenchement.

4 Éléments de protection

4.11 Surveillance

Procédure, partie 1

Simulez une défaillance de la tension de commande dans les circuits d'alimentation.

Résultat de test réussi, partie 1

Après l'expiration de t-TCS, la surveillance du circuit de déclenchement TCS du module doit signaler une alarme.

Procédure, partie 2

Simulez une rupture de câble dans le circuit de commande du disjoncteur.

Résultat de test réussi, partie 2

Après l'expiration de t-TCS, la surveillance du circuit de déclenchement TCS du module doit signaler une alarme.

4.11.3 CTS - Surveillance de transformateur de courant [60L]

Les ouvertures et les ruptures de fils dans des circuits de mesure entraînent des défaillance de transformateur de courant.

Le module »CTS« peut détecter une défaillance de transformateur de courant, si le courant à la terre calculé ne correspond pas à celui mesuré. Si une valeur de seuil réglable (différence entre le courant à la terre mesuré et calculé) est dépassée, une défaillance de transformateur de courant peut être présumée. Ceci est signalé par un message/une alarme.

La condition préalable est que les courants du conducteur soient mesurés par l'appareil et le courant à la terre, par exemple, par un transformateur de courant à noyau torique.

Les principes de mesure de la surveillance du circuit sont basés sur la comparaison des courants résiduels mesurés et calculés :

Dans un cas idéal :

$$(\overrightarrow{\text{IL1}} + \overrightarrow{\text{IL2}} + \overrightarrow{\text{IL3}}) + \overrightarrow{\text{KI}} * \overrightarrow{\text{IG}} = 3) * I_{0)} + \overrightarrow{\text{KI}} * \overrightarrow{\text{IG}} = 0)$$

KI représente un facteur de correction qui tient compte des différentes rapports de transformation des transformateurs de courant de phase et à la terre. Le dispositif calcule automatiquement ce facteur à partir des paramètres nominaux de champ, par exemple la relation entre les valeurs nominales de courants primaires et secondaires des transformateurs de courant de phase et à la terre.

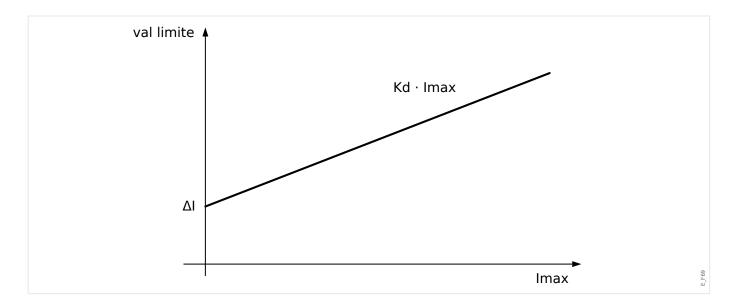
Pour compenser l'erreur de rapport proportionnel au courant des circuits de mesure, il est possible d'utiliser le facteur de correction dynamique Kd. Comme fonction du courant maximal mesuré, ce facteur tient compte de l'erreur de mesure linéaire montante.

La valeur limite de surveillance d'un transformateur de courant est calculée comme suit :

DI = écart I (valeur nominale)

Kd = facteur de correction

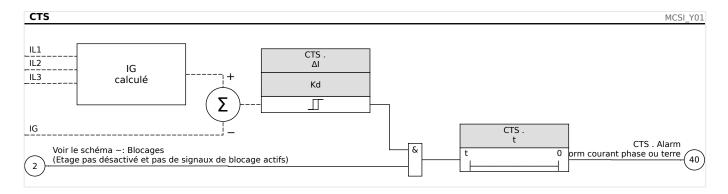
Imax = courant maximum


 $Valeur\ limite = DI + Kd \times Imax$

Condition préalable pour l'identification d'une erreur

3) *
$$\overrightarrow{I_{0}}$$
 + KI * $\overrightarrow{IG} \ge DeltaI + Kd * Imax$

La méthode d'évaluation de surveillance du circuit à l'aide du facteur Kd peut être représentée graphiquement comme suit :


4.11 Surveillance

PRUDENCE!

Si le courant est mesuré dans deux phases uniquement (IL1/IL3 par exemple) ou s'il n'y a pas de mesure de courant à la terre distincte (normalement via un transformateur de courant à câble), la fonction de surveillance doit être désactivée.

4.11.3.1 Mise en service : surveillance des défaillances de transformateur de courant

REMARQUE!

Condition préalable :

- Mesures du courant des trois phases (appliquées aux entrées de mesure de l'appareil) et :
- Le courant à la terre est détecté à l'aide d'un transformateur à câble (et non d'une connexion de Holmgreen).

Objet à tester

Contrôle de la surveillance du transformateur de courant (en comparant les courants à la terre calculés et mesurés).

Moyens nécessaires

Source de courants triphasé

Procédure, partie 1

- Définissez la valeur limite du CTS sur »delta I=0.1*In«.
- Alimentez un système de courant symétrique triphasé, (courant nominal approx.) sur le côté secondaire.
- Déconnectez le courant d'une phase de l'une des entrées de mesure (l'alimentation symétrique sur le côté secondaire doit être maintenue).
- Assurez-vous que le signal »CTS.Alarm« est généré.

Résultat de test réussi, partie 1

• Le signal »CTS.Alarm« est généré.

Procédure, partie 2

- Alimentez un système de courant symétrique triphasé, (courant nominal approx.) sur le côté secondaire.
- Alimentez un courant supérieur à la valeur de seuil pour la surveillance du circuit de mesure à l'entrée de mesure du courant à la terre.
- Vérifiez que le signal »CTS.Alarm« est généré à présent.

Résultat de test réussi, partie 2

Le signal »CTS.Alarm« est généré.

4.11.4 Supervision de la séquence de phase

Le MRI4 calcule la séquence de phase au niveau de chaque entrée de mesure (en fonction des composants de séquence positive et de séquence négative). La séquence de phase calculée (c'est-à-dire, « ACB » ou « ABC ») est comparée en permanence au réglage effectué au niveau de [para champ / Paramètres généraux] »Ordre phases«.

Le menu [Utilisat / Affichage de l'état / Surv / Ordre phases] contient un signal (avertissement) spécifique pour chaque unité CT et VT. Si la vérification d'une unité CT / VT révèle que la séquence de phase actuelle est différente du réglage défini sous [para champ], le signal correspondant devient vrai (actif).

En général, la supervision de la séquence de phase est utile lors de la mise en service du MRI4 car elle permet de s'assurer que le réglage »Ordre phases« défini sous [para champ] est correct.

AVERTISSEMENT!

La supervision exige des valeurs minimales pour le courant (dans le cas d'une unité CT), ou pour la tension (dans le cas d'une unité VT) car, à défaut, la séquence de phase ne peut pas être déterminée de façon fiable.

- Pour une unité VT : La tension minimale est de 0,1·Vn.
- Pour une unité CT : Le courant minimum est de 0,1·In.

5 Gestionnaire de contrôle / des appareillages de connexion

AVERTISSEMENT!

Une mauvaise configuration de l'appareillage de connexion peut entraîner la mort ou des blessures graves. C'est le cas, notamment, lors de l'ouverture d'un sectionneur sous charge ou lors de la commutation d'un connecteur de masse sur les parties actives d'un système.

Outre les fonctions de protection, les relais de protection prendront de plus en plus le contrôle de l'appareillage de connexion, comme les disjoncteurs, les contacteurs de coupure de la charge, les sectionneurs et les connecteurs de masse.

Une configuration correcte de tous les appareillages de connexion est une condition indispensable au bon fonctionnement du dispositif de protection. C'est aussi le cas lorsque les appareillages de connexion ne sont pas contrôlés, mais seulement supervisés.

Schéma de ligne simple

Le schéma de ligne simple comprend la description graphique du disjoncteur et sa désignation (nom), ainsi que ses caractéristiques (protégé ou non contre les courts-circuits...). Pour l'affichage dans le logiciel des modules, la désignation de l'appareillage de connexion (par exemple, $\mathbf{QA1}$, $\mathbf{QA2}$, au lieu du nom de module abstrait »SG[x]«) sont extraits du schéma de ligne simple (fichier de configuration).

Autres les propriétés de commutation, un fichier de configuration comprend également un schéma de ligne simple. Les propriétés de commutation de l'appareillage de connexion et le schéma de ligne simple sont couplés via le fichier de configuration. Étant donné que le schéma de ligne simple est indépendant du type de périphérique, il est possible d'importer un nouveau/autre schéma de ligne simple dans le fichier de configuration.

REMARQUE!

Chaque fois qu'un fichier de configuration est chargé sur un dispositif de protection, un schéma de ligne simple est toujours chargé simultanément.

Cela signifie que chaque fois qu'un fichier de configuration est transféré d'un dispositif vers un autre, un schéma de ligne simple approprié doit être chargé via le menu [Organis module].

L'utilisateur peut créer et modifier des lignes simples (pages) à l'aide de l'éditeur de page. Les lignes simples (Pages de contrôle) doivent être chargées sur le dispositif de protection via *Smart view*. Pour obtenir des détails sur la création, la modification et le chargement des lignes simples (pages de contrôle), reportez-vous au manuel Éditeur de page ou contactez l'assistance technique. Le manuel de l'éditeur de page est accessible simplement via le menu d'aide de l'éditeur de page.

5.1 Contrôle de l'appareillage de connexion

Représentation d'un appareillage de connexion dans l'éditeur de page

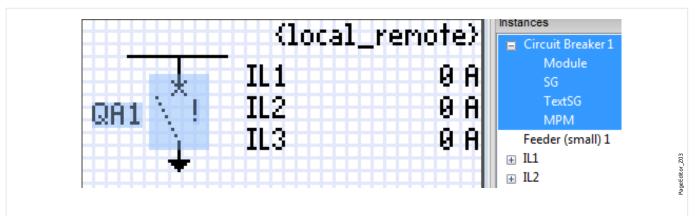


Fig. 59: Exemple de page de contrôle, avec mise en évidence du « disjoncteur ».

Bien qu'un appareillage de connexion soit toujours présenté de la même façon dans *l'éditeur de page*, avec un point d'exclamation (« ! ») sur le côté, ce symbole peut être représenté de différentes façons : une pour l'appareil de connexion fermé, une pour l'appareillage de connexion ouvert, une pour les positions intermédiaire et de dysfonctionnement.

Une fois que la ligne simple a été transférée au dispositif de protection, l'appareillage de connexion est représenté en fonction de l'indication de position configurée.

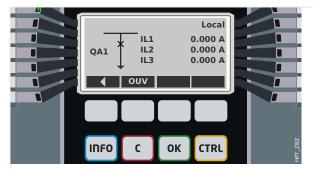


Fig. 60: Exemple de page de contrôle, avec le « disjoncteur » en position fermée.

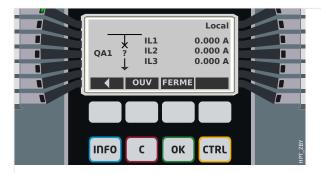


Fig. 61: Exemple de page de contrôle, avec le « disjoncteur » en position de dysfonctionnement (ou invraisemblable).

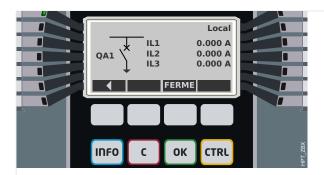


Fig. 62: Exemple de page de contrôle, avec le « disjoncteur » en position ouverte.

Appareillage de connexion avec la propriété « Pouvoir de coupure »

Pour chaque appareillage de connexion, vous pouvez définir dans *l'éditeur de page* la propriété « **Pouvoir de coupure** ». Si cette propriété est définie, vous pouvez déclarer que l'appareillage de connexion est un disjoncteur, qui est capable de commuter les courants de phase en cas de déclenchement de protection.

Par conséquent, le MRI4 rend le *gestionnaire de déclenchements* disponible uniquement pour les appareillages de connexion avec un « pouvoir de coupure ». (Pour obtenir des détails concernant le gestionnaire de déclenchements, reportez-vous à \Longrightarrow « 5.2 Gestionnaire de déclenchements – Affectation des commandes ».)

REMARQUE!

Les dispositifs HighPROTEC nécessitent que le premier dispositif de commutation, »SG[1] «, ait la propriété « **Pouvoir de coupure** » définie, car il s'agit de l'appareillage de connexion vers lequel une commande de déclenchement de protection est acheminée par défaut.

Une page de contrôle sans « Pouvoir de coupure » pour »SG[1]« ne passera pas la vérification de compatibilité avec succès dans *l'éditeur de page*.

Appareillage de connexion « contrôlé »

Pour chaque appareillage de connexion, vous pouvez définir dans *l'éditeur de page* la propriété « **Contrôlé** ». Si cette propriété est définie, le dispositif de protection doit pouvoir exécuter les commandes de commutation manuelle pour l'appareillage de connexion.

Si cette propriété n'est pas définie, mais que la propriété « Pouvoir de coupure » est définie, l'appareillage de connexion peut toujours être utilisé pour les commandes de déclenchement de **protection**. Cependant, il ne sera pas disponible pour les opérations de commutation manuelle.

Si aucune des propriétés « Pouvoir de coupure » ou « Contrôlé » n'est définie, l'appareillage de connexion est seulement surveillé, autrement dit, l'état/la position est disponible, mais l'appareillage n'est pas destiné à être utilisé activement par le dispositif de protection.

Changement de l'ordre des appareillages de connexion dans l'éditeur de page

Ce chapitre s'applique uniquement aux appareils comprenant plusieurs dispositifs de commutation.

5.1 Contrôle de l'appareillage de connexion

En général, les dispositifs de commutation configurés sont représentés par leur nom défini par l'utilisateur. Cela s'applique également à leur représentation sur l'IHM du dispositif de protection dans les boîtes de dialogue de *Smart view*.

L'exception à cette représentation concerne les noms des dispositifs de commutation dans les protocoles SCADA. Les protocoles SCADA ne connaissent pas les noms définis par l'utilisateur pour les dispositifs de commutation. Ils utilisent le numéro de l'appareillage de connexion.

De ce fait, l'Éditeur de page permet de changer l'affectation d'un numéro d'appareillage de connexion : Sélectionnez l'élément de menu [Configuration / Ordre des dispositifs de commutation...] (raccourci clavier : « F6 »). Une boîte de dialogue s'ouvre dans laquelle tous les dispositifs d'appareillage de connexion sont listés avec leur numéro respectif. Après avoir sélectionné l'un de ces dispositifs, les boutons « Vers le haut » et « Vers le bas » peuvent être utilisés afin de changer leur ordre.

REMARQUE!

En raison des exigences de l'application, le dispositif de commutation associé au numéro 1 devrait disposer d'un pouvoir de coupure. D'autres dispositifs de commutation, si disponibles, peuvent être de type arbitraire.

L'affectation d'un numéro de dispositif de commutation à un type particulier est vérifiée par *Smart view*: Un avertissement s'affiche si l'échange de page de contrôle définie par l'utilisateur modifie le type de dispositif de commutation d'un quelconque numéro de dispositif de commutation. Cet avertissement peut être confirmé si la modification du type de dispositif de commutation a été effectuée intentionnellement.

5.1.1 Réglages du dispositif de protection

Affectation des indications de position (Entrées numériques)

Réglages dans le menu du dispositif [Contrôl / SG / SG[x] / Pos Indicatrs câbl]:

»Aux ON« — Le disjoncteur est en position ON si l'état du signal affecté est 'vrai' (52a).

Exception : Pour la partie de commutation à la terre du « Commutateur à trois positions », ce réglage est appelé : »Aux GROUND« — L'appareillage de connexion est en position de mise à la terre si l'état de signal attribué est 'vrai'.

• »Aux OFF« — Le disjoncteur est en position OFF si l'état du signal affecté est 'vrai' (52b).

Exception : Pour la « Combinaison sectionneur/mise à la terre », ce réglage est appelé : »Aux GROUND« — L'appareillage de connexion est en position de mise à la terre si l'état de signal attribué est 'vrai'.

- »Prêt« Le disjoncteur est prêt à fonctionner si l'état du signal affecté est 'vrai'. Cette entrée numérique est utilisable par certaines fonctions de protection (si elles sont disponibles dans le module) telles que le réenclenchement automatique (ex. signal de déclenchement).
- »Supprim« Le disjoncteur débrochable est enlevé

Réglage des temporisations de surveillance

Réglages dans le menu du dispositif [Contrôl / SG / SG[x] / Paramètres généraux]:

- »t-dépl ON« Moment de déplacement en position ON
- »t-dépl OFF« Moment de déplacement en position OFF

Affectation des commandes aux relais de sortie

Uniquement disponible si l'appareillage de connexion a été défini comme « **Contrôlé** » dans l'éditeur de page (voir \Longrightarrow « 5.1 Appareillage de connexion « contrôlé » »).

Réglages dans le menu du dispositif [Para module / Sort binaires / Empl SB Xx / SB y] :

»Affect 1« ... »Affect 7« : par exemple, pour l'appareillage de connexion numéro 1 configurable sur "SG[1] . Cmd ON » / « SG[1] . Cmd OFF »

Pour plus de détails, voir \Longrightarrow « Gestionnaire de contrôle / des appareillages de connexion ».

En option : Commande OUVRIR/FERMER externe

Uniquement disponible si l'appareillage de connexion a été défini comme « **Contrôlé** » dans l'éditeur de page (voir \Longrightarrow « 5.1 Appareillage de connexion « contrôlé » »).

Réglages dans le menu du dispositif [Contrôl / SG / SG[x] / Cmd Ex ON/OFF]:

- »SCmd ON« Commande d'activation (ON) ; ex. état de la logique ou de l'état de l'entrée numérique
- »SCmd OFF« Commande de désactivation (OFF) ; ex. état de la logique ou de l'état de l'entrée numérique

Pour plus de détails, voir ⇒ « 5.2 FERMETURE/OUVERTURE ex ».

Verrouillages

Uniquement disponible si l'appareillage de connexion a été défini comme « **Contrôlé** » dans l'éditeur de page (voir \Longrightarrow « 5.1 Appareillage de connexion « contrôlé » »).

Réglages dans le menu du dispositif [Contrôl / SG / SG[x] / Verrs sécur]:

- »Sécu ON1« ... »Sécu ON3« Verrouillage de sécurité de la commande ON (autrement dit, les commandes de fermeture sont rejetées si le signal affecté est vrai).
- »Sécu OFF1« ... »Sécu OFF3« Verrouillage de sécurité de la commande OFF (autrement dit, les commandes d'ouverture sont rejetées si le signal affecté est vrai).

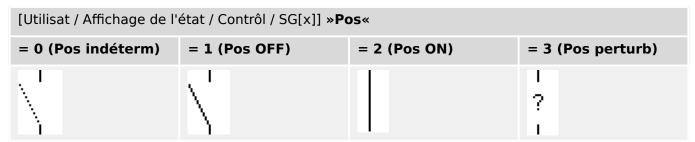
Pour plus de détails, voir ⊨> « 5.2 Verrouillages ».

Gestionnaire de déclenchements (Affectation des commandes de déclenchement)

Uniquement disponible si la propriété « **Pouvoir de coupure** » a été définie pour cet appareillage de connexion dans l'éditeur de page.

Réglages dans le menu du dispositif [Contrôl / SG / SG[x] / Gestr décl]:

- »Cmd Off1« ... Commande de coupure (Off) envoyée au disjoncteur si l'état du signal affecté prend la valeur 'vrai'.
- »t-TripCmd« Temps d'appui minimal de la commande OFF (disjoncteur, contacteur de coupure de la charge)
- »Mémor.« Définit si la commande de déclenchement est mémorisée.
- »Acq TripCmd« Acquittement de la commande de déclenchement


Pour plus de détails, voir > « 5.1 Appareillage de connexion avec la propriété « Pouvoir de coupure » » et > « 5.2 Gestionnaire de déclenchements - Affectation des commandes ».

En option : Usure de l'appareillage de connexion

Voir ⊨> « Usure de l'appareillage de connexion ».

5.1.2 Commutateur

Dispositif de commutation générique.

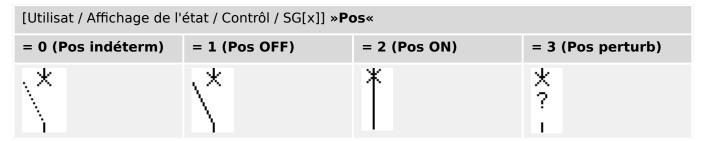
Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]				
»Aux ON« »Aux OFF« »Prêt« »Supprim«				
<i>'</i>				

5.1.3 Commutateur invisible

Dispositif de commutation invisible sur le schéma de ligne simple, mais disponible dans le dispositif de protection.

(Étant donné qu'il n'existe pas sur la ligne simple, il ne peut pas être sélectionné via l'IHM (tableau) et ne peut donc pas être actionné manuellement.)

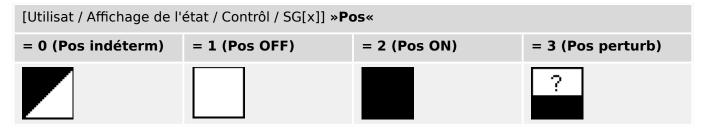

[Utilisat / Affichage de l'état / Contrôl / SG[x]] »Pos «				
= 0 (Pos indéterm) = 1 (Pos OFF) = 2 (Pos ON) = 3 (Pos perturb)				
(Invisible)				

Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]			
»Aux ON« »Aux OFF« »Prêt« »Supprim«			
✓	✓	✓	✓

5.1.4 Disjoncteur

Dispositif de commutation, capable de créer, transmettre et couper des courants dans des conditions normales de fonctionnement et de créer et transmettre des courants pendant une période spécifique et de les couper dans des conditions anormales de fonctionnement (par ex., court-circuit).



Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]				
»Aux ON« »Aux OFF« »Prêt« »Supprim«				
v v v				

5.1.5 Disjoncteur 1

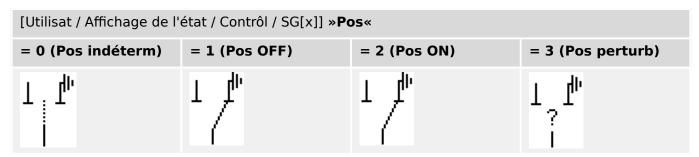
Dispositif de commutation, capable de créer, transmettre et couper des courants dans des conditions normales de fonctionnement et de créer et transmettre des courants pendant une période spécifique et de les couper dans des conditions anormales de fonctionnement (par ex., court-circuit).

Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]				
»Aux ON« »Aux OFF« »Prêt« »Supprim«				
<i>y y y</i>				

5.1.6 Sectionneur (Isolateur)

Dispositif de commutation qui fournit, dans la position ouverte, une distance d'isolement.


[Utilisat / Affichage de l'état / Contrôl / SG[x]] »Pos «				
= 0 (Pos indéterm)	= 1 (Pos OFF)	= 2 (Pos ON)	= 3 (Pos perturb)	
\ ¹	\ ¹	†	2	
1	\		: 	

Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]				
»Aux ON« »Aux OFF« »Prêt« »Supprim«				
✓	✓	_	_	

5.1.7 Combinaison sectionneur/mise à la terre

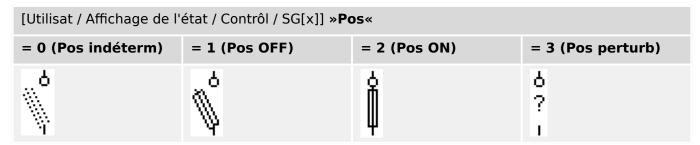
Commutateur qui combine un sectionneur et un commutateur de terre. Ce commutateur a deux positions (connecté – relié à la terre).

Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]				
»Aux ON« »Aux GROUND« »Prêt« »Supprim«				
✓				

5.1.8 Commutateur de mise à la terre

Commutateur de mise à la terre avec court-circuit créant de la capacité.

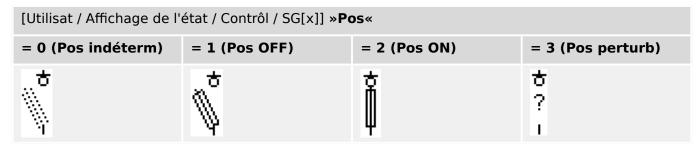

[Utilisat / Affichage de l'état / Contrôl / SG[x]] »Pos «				
= 0 (Pos indéterm)	= 1 (Pos OFF)	= 2 (Pos ON)	= 3 (Pos perturb)	
	_{\frac{7}{k}}	_{\bar{7}}	ሂ ? <u>‡</u>	

Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]			
»Aux ON« »Aux OFF« »Prêt« »Supprim«			
✓	✓	_	_

5.1.9 Commutateur de charge à fusible

Dispositif de commutation capable de créer, transmettre et couper des courants normaux, dans lequel une liaison par fusible forme le contact mobile.


Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]				
»Aux ON«	Aux ON« »Aux OFF« »Prêt« »Supprim«			
✓	✓	✓	✓	

5.1.10 Commutateur de charge à fusible - Sectionneur

Dispositif de commutation capable de créer, transmettre et couper les courants normaux.

Répond, en position ouverte, aux exigences d'isolement d'un sectionneur, dans lequel une liaison par fusible forme le contact mobile.

Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]				
»Aux ON« »Aux OFF« »Prêt« »Supprim«				
✓	✓	✓	✓	

5.1.11 Sectionneur à fusible (Isolateur)

Dispositif de commutation qui fournit, dans la position ouverte, une distance d'isolement, dans lequel une liaison par fusible forme le contact mobile.

[Utilisat / Affichage de l'état / Contrôl / SG[x]] » Pos «				
= 0 (Pos indéterm) = 1 (Pos OFF) = 2 (Pos ON) = 3 (Pos perturb)				
		†	1 ? !	

Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]				
»Aux ON«	»Aux OFF« »Prêt« »Supprim«			
✓	✓	_	_	

5.1.12 Commutateur de charge

Dispositif de commutation capable de créer, transmettre et couper les courants normaux.

[Utilisat / Affichage de l'état / Contrôl / SG[x]] »Pos«				
= 0 (Pos indéterm) = 1 (Pos OFF) = 2 (Pos ON) = 3 (Pos perturb)				
\\\	\°	†	ዕ ? !	

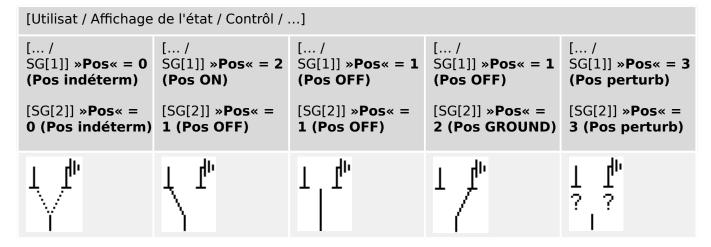
Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]				
»Aux ON«	»Aux OFF« »Prêt« »Supprim«			
✓	✓	✓	✓	

5.1.13 Commutateur de charge - Sectionneur

Dispositif de commutation capable de créer, transmettre et couper les courants normaux.

Répond, en position ouverte, aux exigences d'isolement d'un sectionneur.


[Utilisat / Affichage de l'état / Contrôl / SG[x]] » Pos «				
= 0 (Pos indéterm) = 1 (Pos OFF) = 2 (Pos ON) = 3 (Pos perturb				
\ \	/*	†	† ? !	

Affectation des indications de position (Entrées numériques)

[Contrôl / SG / SG[x] / Pos Indicatrs câbl]				
»Aux ON«	»Aux OFF« »Prêt« »Supprim«			
✓	✓	✓	✓	

5.1.14 Commutateur à trois positions

Commutateur qui combine un sectionneur et un commutateur de terre. Ce commutateur a trois positions (connecté – déconnecté – relié à la terre) et est intrinsèquement protégé contre toute anomalie de fonctionnement.

Le « sectionneur à trois positions » comprend deux appareillages de connexion. Un appareillage de connexion correspond au sectionneur du « commutateur à trois positions » et l'autre au sectionneur de mise à la terre.

La séparation entre deux appareillages de connexion permet la commutation à partir de la position »Pos ON« via la position »Pos OFF« dans la position »Pos GROUND«.

D'un point de vue sécuritaire, il existe deux positions de commutation distinctes, »Isolation« et »À la terre«. Grâce à cette séparation, il est possible de régler les temporisations de surveillance et de commutation pour la mise à la terre et l'isolation. En outre, des verrouillages individuels et des noms de modules (désignations) peuvent être définis pour la mise à la terre et l'isolation.

REMARQUE!

La surveillance de l'exécution des commandes affichera le message suivant en cas de tentative de commutation de la position de mise à la terre (directe) vers la position d'isolation, et inversement :

• [Utilisat / Affichage de l'état / Contrôl / SG[x]] »CES SwitchgDir«

La position « Pos GROUND » du « commutateur à trois positions » est signalée par la mention « CB POS OFF » dans la documentation SCADA (registres).

Affectation des indications de position (Entrées numériques)

Voir \Longrightarrow « 5.1.1 Affectation des indications de position (Entrées numériques) ». Ces réglages sont disponibles dans le menu du dispositif :

Sectionneur, par ex., »SG[1]«:

[Contrôl / SG / SG[1] / Pos Indicatrs câbl]

»Aux ON«	»Aux OFF«	»Prêt«	»Supprim«
✓	✓	✓	✓

5 Gestionnaire de contrôle / des appareillages de connexion

5.1 Contrôle de l'appareillage de connexion

Commutateur de terre, par ex., »SG[2]«:

[Contrôl / SG / SG[2] / Pos Indicatrs câbl]

»Aux GROUND«	»Aux OFF«	»Prêt«	»Supprim«
✓	✓	_	-

5.1.15 Disjoncteur débrochable

Disjoncteur monté sur camion (« Débrochable »).

[Utilisat / Affichage de l'état / Contrôl / SG[x]]					
»Pos« (*)				»Supprim«	
(*) la même vale également la ren					
= 0 (Pos indéterm)	= 1 (Pos OFF)	= 2 (Pos ON)	= 3 (Pos perturb)	= 1	
Å.	$\hat{\hat{x}}$	*	Ŷ ? ? }	< >	

(*) Remarque : Le tableau ci-dessus ne fournit pas la liste de toutes les combinaisons de positions qui sont techniquement possibles pour les deux appareillages de connexion, mais répertorie seulement certaines « positions finales » communes à titre d'exemples.

Le « disjoncteur débrochable » comprend deux appareillages de connexion. L'un des appareillages correspond au disjoncteur et le second au chariot mobile.

Il n'existe pas de connexion fixe entre le disjoncteur et le chariot. Un verrouillage doit être défini par l'utilisateur, car il n'est pas possible de retirer le disjoncteur tant qu'il se trouve en position fermée. Le disjoncteur peut être commuté en position de retrait ou de non-retrait. Les signaux de la prise du circuit de commande (basse tension) doivent être câblés et configurés avec le dispositif de protection. Le contrôle (surveillance) sera défini sur »Supprim« lors du retrait de la prise du circuit de commande. Le disjoncteur est défini sur »Pos OFF« tant que le signal »Supprim« est actif.

REMARQUE!

Il n'est pas possible de modifier les signaux de position d'un disjoncteur retiré.

Affectation des indications de position (Entrées numériques)

Voir ⊨> « 5.1.1 Affectation des indications de position (Entrées numériques) ». Ces réglages sont disponibles dans le menu du dispositif :

Disjoncteur, par ex., »SG[1]«:

[Contrôl / SG / SG[1] / Pos Indicatrs câbl]

»Aux ON«	»Aux OFF«	»Prêt«	»Supprim«
✓	✓	✓	✓

5 Gestionnaire de contrôle / des appareillages de connexion

5.1 Contrôle de l'appareillage de connexion

Chariot mobile, par ex., »SG[2]«:

[Contrôl / SG / SG[2] / Pos Indicatrs câbl]

»Aux ON«	»Aux OFF«	»Prêt«	»Supprim«
✓	✓	_	_

5.1.16 Commutateur de charge à fusible débrochable

Commutateur de charge à fusible monté sur camion.

[Utilisat / Affichage	[Utilisat / Affichage de l'état / Contrôl / SG[x]]					
»Pos« (*)				»Supprim«		
(* la même valeu également la ren						
= 0 (Pos indéterm)	= 1 (Pos OFF)	= 2 (Pos ON)	= 3 (Pos perturb)	= 1		
.i. J	$\hat{\hat{\mathbf{g}}}$		↑ ₹? ?.	< >		

(*) Remarque : Le tableau ci-dessus ne fournit pas la liste de toutes les combinaisons de positions qui sont techniquement possibles pour les deux appareillages de connexion, mais répertorie seulement certaines « positions finales » communes à titre d'exemples.

Le « commutateur de charge à fusible débrochable » comprend deux appareillages de connexion. L'un des appareillages correspond au commutateur de charge à fusible et le second au chariot mobile.

Il n'existe pas de connexion fixe entre le commutateur de charge à fusible et le chariot. Un verrouillage doit être défini par l'utilisateur, car il n'est pas possible de retirer le commutateur de charge à fusible tant qu'il se trouve en position fermée. Le disjoncteur peut être commuté en position de retrait ou de non-retrait. Les signaux de la prise du circuit de commande (basse tension) doivent être câblés et configurés avec le dispositif de protection. Le contrôle (surveillance) sera défini sur »Supprim« lors du retrait de la prise du circuit de commande. Le disjoncteur est défini sur »Pos OFF« tant que le signal »Supprim« est actif.

REMARQUE!

Il n'est pas possible de modifier les signaux de position d'un commutateur de charge à fusible débrochable retiré.

Affectation des indications de position (Entrées numériques)

Voir \Longrightarrow « 5.1.1 Affectation des indications de position (Entrées numériques) ». Ces réglages sont disponibles dans le menu du dispositif :

Commutateur de charge à fusible, par ex., »SG[1]« :

[Contrôl / SG / SG[1] / Pos Indicatrs câbl]

»Aux ON«	»Aux OFF«	»Prêt«	»Supprim«
✓	✓	✓	✓

Chariot mobile, par ex., »SG[2]«: [Contrôl / SG / SG[2] / Pos Indicatrs câbl] »Aux ON« »Aux OFF« »Prêt« »Supprim«

5.2 Configuration de l'appareillage de connexion

Câblage

Dans un premier temps, les indicateurs de position de l'appareillage de connexion doivent être reliés aux entrées numériques du dispositif de protection.

L'un des contacts des indicateurs de position (»FERMETURE Aux« ou »OUVERTURE Aux«) **doit être** nécessairement connecté. Néanmoins, il est recommandé de connecter les deux indicateurs de position.

Ensuite, les sorties de commande (sorties relais) doivent être reliées à l'appareillage de connexion.

REMARQUE!

Tenez compte de l'option suivante : dans les paramètres généraux d'un disjoncteur, les commandes OUVERTURE/FERMETURE d'un élément de protection peuvent être transmises aux mêmes relais de sortie que ceux auxquels les autres commandes de contrôle sont transmises.

Si les commandes sont transmises à d'autres relais de sortie, le nombre de câbles augmente.

Réglage de la surveillance/des temps variables

Le menu [Contrôl / SG / SG[x] / Paramètres généraux] permet de régler les temps variables »t-dépl ON« et »t-dépl OFF« de chacun des appareillages de connexion.

Selon le type d'appareillage de connexion, il peut être nécessaire de définir d'autres paramètres, comme le temps de présence »t-paus«.

REMARQUE!

Les valeurs de réglage des temporisations »t-dépl ON« et »t-dépl OFF« sont surveillés et correspondent à des temps variables, c'est-à-dire qu'ils ne sont pas utilisés seulement pour décider des positions intermédiaire ou de dysfonctionnement. En effet, il est important de savoir que la durée maximale du signal de commutation, envoyé à l'appareillage de connexion, est égale à ces valeurs.

Autrement dit : La durée de »Cmd ON« est égale à »t-dépl ON« à sa durée maximale, étant limitée par l'indication de la nouvelle position du commutateur.

De même : La durée de »Cmd OFF« est égale à »t-dépl OFF« à sa durée maximale, étant limitée par l'indication de la nouvelle position du commutateur.

Affectation des indications de position

L'indication de position est nécessaire à l'appareil pour obtenir (évaluer) les informations sur l'état actuel/la position du disjoncteur. Les indications de position de l'appareillage de connexion sont affichées sur l'écran des appareils. Chaque changement de position d'un appareillage de connexion se traduit par un changement du symbole correspondant sur l'appareillage.

REMARQUE!

Il est recommandé, pour la détection de la position d'un appareillage de connexion, de toujours utiliser les deux indicateurs de positionnement! Si un seul contact est utilisé, aucune position intermédiaire ou perturbée ne peut être détectée.

Une surveillance de transition réduite (délai entre l'émission de la commande et l'indication de position de l'appareillage de connexion) est également possible sur un contact Aux.

Dans le menu [Contrôl / SG / SG[x]], les affectations pour les indications de position doivent être définies.

Détection de la position de l'appareillage de connexion avec deux contacts Aux - FERMETURE Aux et OUVERTURE Aux (configuration recommandée!)

Pour la détection de leurs positions, les appareillages de connexion sont dotés de contacts Aux (FERMETURE Aux et OUVERTURE Aux). Il est recommandé d'utiliser les deux contacts pour détecter également les positions intermédiaires et perturbées.

Le dispositif de protection surveille en permanence l'état des entrées »Aux ON-I« et »Aux OFF-I«.

Ces signaux sont validés sur la base des temporisations de surveillance »t-dépl ON« et des fonctions de validation »t-dépl OFF«. Par conséquent, la position de l'appareillage de connexion sera détectée par les signaux suivants :

- »Pos ON«
- »Pos OFF«
- · »Pos indéterm«
- »Pos perturb«
- »Pos« (Signal : Position du disjoncteur (0 = indéterminée, 1 = OFF, 2 = ON, 3 = perturbée))

Surveillance de la commande FERMETURE

Quand une commande FERMETURE est initiée, la temporisation »t-dépl ON« est initiée. Pendant l'exécution de la temporisation, l'état »Pos indéterm« devient vrai. Si la commande est exécutée, puis correctement renvoyée de l'appareillage de connexion avant la fin de la temporisation, »Pos ON« devient vrai. Si la temporisation a expiré sans recevoir l'indication attendue de nouvelle position, »Pos perturb« devient vrai.

Surveillance de la commande OUVERTURE

Quand une commande FERMETURE est initiée, la temporisation »t-dépl OFF« est initiée. Pendant l'exécution de la temporisation, l'état »Pos indéterm« devient vrai. Si la commande est exécutée, puis correctement renvoyée de l'appareillage de connexion

avant la fin de la temporisation, »Pos OFF« devient vrai. Si la temporisation a expiré sans recevoir l'indication attendue de nouvelle position, »Pos perturb« devient vrai.

Le tableau suivant montre comment les positions de l'appareillage de connexion sont validées :

États des entrées numériques		Positions validées du disjoncteur				
Aux ON-I	Aux OFF-I	Pos ON	Pos OFF	Pos indéterm	Pos perturb	Pos
0	0	0	0	1 (pendant une temporisation variable)	0 (pendant une temporisation variable)	0 Pos indéterm
1	1	0	0	1 (pendant une temporisation variable)	0 (pendant une temporisation variable)	0 Pos indéterm
0	1	0	1	0	0	1 Pos OFF
1	0	1	0	0	0	2 Pos ON
0	0	0	0	0 (Temporisatio variable écoulée)	1 n(Temporisatio variable écoulée)	3 nPos perturb
1	1	0	0	0 (Temporisatio variable écoulée)	1 n(Temporisatio variable écoulée)	3 nPos perturb

Indication de position unique **FERMETURE Aux ou OUVERTURE Aux**

Si l'indication de position unique est utilisée, »SI SingleContactInd« devient vrai.

La surveillance du temps variable ne fonctionne que dans un sens. Si le signal OUVERTURE Aux est connecté à l'appareil, seule la « commande OUVERTURE » peut être supervisée, et si le signal FERMETURE Aux est connecté à l'appareil, seule la « commande FERMETURE » peut être supervisée.

Indication de position unique - FERMETURE

Si seul le signal FERMETURE Aux est utilisé pour l'indication de l'état d'une « commande FERMETURE », la commande de commutation lancera également le temps variable, l'indication de position indique alors une position »Pos indéterm« dans cet intervalle de temps. Lorsque l'appareillage de connexion atteint la position finale indiquée par les signaux »Pos ON« et »CES réussi« avant l'expiration de la temporisation, le signal »Pos indéterm« disparaît.

Si le temps variable expire avant que l'appareillage de connexion n'atteigne la position finale, l'opération de commutation échoue, l'indication de position devient »Pos perturb« et le signal »Pos indéterm« disparaît. Une fois le temps variable écoulé, la temporisation »t-paus« démarre (si définie). Pendant cette durée, l'indication de position affiche également un état »Pos indéterm«. Lorsque »t-paus« expire, l'indication de position devient »Pos ON«.

Le tableau suivant montre comment les positions du disjoncteur sont validées en fonction de la valeur **FERMETURE Aux** :

États des entrées numériques		Positions validées du disjoncteur				
Aux ON-I	Aux OFF-I	Pos ON	Pos OFF	Pos indéterm	Pos perturb	Pos
0	Non câblé	0	0	1 (Pendant l'écoulement de »t-dépl ON«)	(Pendant l'écoulement de »t-dépl ON«)	0 Pos indéterm
0	Non câblé	0	1	0	0	1 Pos OFF
1	Non câblé	1	0	0	0	2 Pos ON

Si aucune entrée numérique n'est affectée au contact »Aux CLOSE«, l'indication de position »Pos« prend la valeur 3 (perturbée).

Indication de position unique - OUVERTURE Aux

Si seul le signal OUVERTURE Aux est utilisé pour la surveillance de la « commande OUVERTURE », la commande de commutation lancera la temporisation variable. L'indicateur de position indiquera une position »Pos indéterm«. Lorsque l'appareillage de connexion atteint sa position finale avant expiration de la temporisation variable, les signaux »Pos OFF« et »CES réussi« sont émis. Au même moment, le signal »Pos indéterm« disparaît.

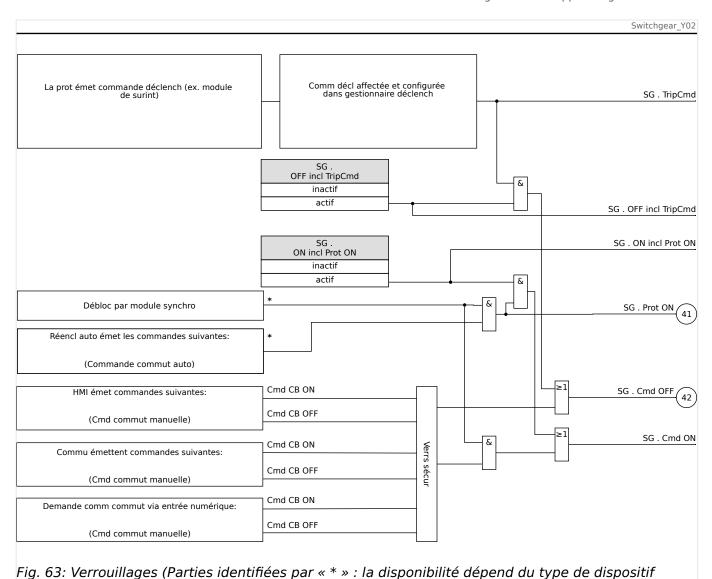
Si le temps variable a expiré avant que l'appareillage de connexion n'atteigne la position d'OUVERTURE, l'opération de commutation échoue, l'indication de position devient »Pos perturb« et le signal »Pos indéterm« disparaît.

Une fois le temps variable écoulé, la temporisation »t-paus« démarre (si définie). Pendant cette durée, l'indication de position »Pos indéterm« est affichée. Une fois le temps de présence »t-paus« écoulé, la position OUVERTURE de l'appareillage de connexion est indiquée par le signal »Pos OFF«.

Le tableau suivant montre comment les positions du disjoncteur sont validées en fonction de la valeur **OUVERTURE Aux** :

États des entrées numériques		Positions validées du disjoncteur					
Aux ON-I	Aux OFF-I	Pos ON	Pos OFF	Pos indéterm	Pos perturb	Pos	
Non câblé	0	0	0		0 (Pendant l'écoulement	0 Pos indéterm	
				de »t-dépl OFF«)	de <i>»t-dépl</i> <i>OFF«</i>)		
Non câblé	1	0	1	0	0	1 Pos OFF	
Non câblé	0	1	0	0	0	2 Pos ON	

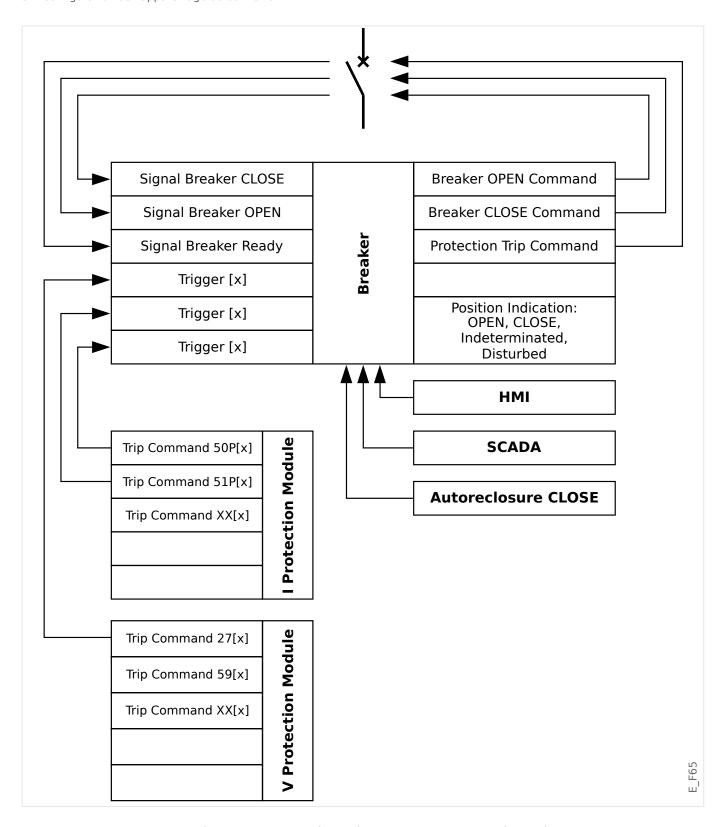
Si aucune entrée numérique n'est affectée au contact »OUVERTURE Aux«, l'indication de position »Pos« prend la valeur 3 (perturbée).


Verrouillages

Pour éviter les anomalies de fonctionnement, des verrouillages doivent être mis en place. Cette opération peut être effectuée de façon mécanique ou électrique.

Pour un appareillage de connexion contrôlable, il est possible d'affecter jusqu'à trois verrouillages dans les deux sens de commutation (FERMETURE/OUVERTURE). Ces verrouillages empêchent la commutation dans le sens correspondant.

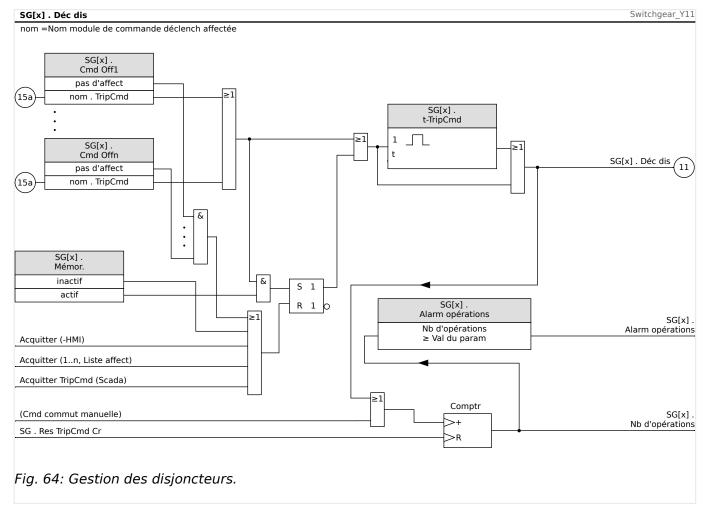
La commande de protection OUVERTURE et la commande de refermeture du module de Réenclenchement automatique (module AR, la disponibilité dépend du type de dispositif commandé) sont toujours exécutées sans verrouillage. Dans le cas où une commande de protection OUVERTURE **ne doit pas** être émise, celle-ci doit être bloquée séparément.


D'autres verrouillages peuvent être réalisés par l'intermédiaire du module logique.

Gestionnaire de déclenchements - Affectation des commandes

commandé.)

Les commandes de déclenchement des éléments de protection doivent être attribuées aux appareillages de connexion disposant d'un système d'ouverture/fermeture (disjoncteur). Chacun de ces appareillages de connexion est fourni avec un gestionnaire de déclenchements.



Le menu [Contrôl / Qxx / Gestr décl] (où « Qxx » correspond à la dénomination de l'appareillage de connexion, telle que définie sur le schéma de ligne simple) comporte des paramètres de réglage » $Cmd\ Off\ n$ «, auxquels vous pouvez affecter les commandes de déclenchement de protection. Dans le gestionnaire de déclenchements, toutes ces commandes de déclenchement de protection affectées sont combinées par un « OU » logique, ce qui, par la suite, provoque l'émission d'une commande de déclenchement d'appareillage de connexion.

Seule la commande de déclenchement d'appareillage de connexion, émise par le gestionnaire de déclenchements, est effectivement envoyée à l'appareillage de

connexion. Cela signifie que seules les commandes de déclenchement attribuées dans le gestionnaire de déclenchements entraînent une opération de l'appareillage de connexion.

Par ailleurs, l'utilisateur peut définir le temps d'attente minimum de la commande de déclenchement à l'intérieur de ce module et spécifier si la commande de déclenchement est mémorisée ou non (voir également la section « Mémorisation » ci dessous, \Longrightarrow « 5.2 Mémorisation »).

Notez que sur le schéma ci-dessus, « SG[x] » représente le « numéro d'appareillage de connexion x ». Cependant, la dénomination exacte est définie dans le fichier de ligne simple, voir aussi \searrow « 5 Schéma de ligne simple ».

Mémorisation

Si une commande de déclenchement est configurée comme »Mémor.« = « actif », elle reste active jusqu'à son acquittement (voir le chapitre « Acquittement », \sqsubseteq > « Acquittements »).

Une commande de déclenchement mémorisée est réinitialisée uniquement dans les cas suivants et seulement après l'arrêt de toutes les commandes de déclenchement affectées des éléments de protection :

- Elle est acquittée (par l'utilisateur au niveau de l'IHM ou via SCADA), voir
 « Acquittements ».
- Elle est réinitialisée (acquittée) par le signal qui a été affecté au paramètre »Acq TripCmd«.
- Elle est reconfigurée sur »Mémor.« = « inactif ».

• Si aucune commande de déclenchement de protection n'est affectée, c'est-à-dire que **tous les** »Cmd Off n« ont été définis sur « - ».

FERMETURE/OUVERTURE ex

S'il est nécessaire que l'appareillage de connexion soit ouvert ou fermé par un signal externe, l'utilisateur peut affecter un signal qui déclenchera la commande FERMETURE et un signal qui déclenchera la commande OUVERTURE (par exemple, des entrées numériques ou des signaux de sortie de la logique).

Le signal externe FERMETURE peut être affecté à [Contrôl / SG / SG[x] / Cmd Ex ON/ OFF] »SCmd ON«.

Le signal externe OUVERTURE peut être affecté à [Contrôl / SG / SG[x] / Cmd Ex ON/ OFF] »SCmd OFF«.

Une commande OUVERTURE est prioritaire. Les commandes FERMETURE dépendent de la pente, tandis que les commandes OUVERTURE dépendent du niveau.

Commutation via SCADA

La commutation via des commandes SCADA est possible si [Contrôl / Paramètres généraux] »Autoris commut« est réglé sur « Dist » ou sur « Local et distant ». (Voir aussi — > « 5.2 Autorisation de commutation ».)

Par un exemple de commutation via le protocole CEI 60870-5-104, voir \Longrightarrow « 3.7.1 Commandes CEI ». Le principe est essentiellement le même pour les autres protocoles qui prennent en charge les commandes SCADA.

Autorisation de commutation

L'autorité de commutation définit les types de commandes de commutation dont l'exécution est autorisée. Cela n'a pas d'influence sur les déclenchements initiés par les fonctions de protection.

Pour le réglage de l'autorité de commutation [Contrôl / Paramètres généraux] »Autoris commut«, les choix suivants sont possibles :

- « Aucu » : Les opérations de commutation sont bloquées. (Notez que les déclenchements de protection restent possibles.)
- « Local » : Opérations de commutation uniquement via les boutons du tableau.
- « Dist » : Opérations de commutation uniquement via SCADA, les entrées numériques ou les signaux internes.
- « Local et distant » : Opérations de commutation via des boutons, SCADA, les entrées numériques ou les signaux internes.

Commutation non verrouillée

À des fins de test, pendant la mise en service et des opérations temporaires, les verrouillages peuvent être désactivés.

AVERTISSEMENT!

La commutation non verrouillée peut entraîner des blessures graves ou la mort!

Pour la commutation non verrouillée, le réglage [Contrôl / Paramètres généraux] »Réi NonIL« fournit les options suivantes :

- « Opération simple » : Commutation non verrouillée pour une seule commande
- « permanent » : Permanente
- « Timeout » : Commutation non verrouillée pour un temps défini

Le temps défini pour la commutation non verrouillée est réglé au niveau du paramètre »Timeout NonlL« et s'applique également pour le mode « Opération simple ».

La commutation non verrouillée peut également être activée en affectant un signal à »Timeout NonIL«.

Réglage manuel de la position de l'appareillage de connexion

En cas de problème au niveau des contacts d'indication de position (contacts AUX) ou de fils cassés, l'indication de position provenant des signaux attribués peut être réglée manuellement afin de conserver la possibilité de commuter l'appareillage de connexion concerné.

Celui-ci est disponible au niveau de [Contrôl / SG / SG[x] / Paramètres généraux] »Position manip«.

Une position d'appareillage de connexion manipulée est signalée à l'écran par un point d'exclamation « ! » en regard du symbole de l'appareillage de connexion.

AVERTISSEMENT!

La manipulation de la position de l'appareillage de connexion peut entraîner des blessures graves ou la mort !

Double verrouillage

Toutes les commandes de contrôle d'un appareillage de connexion installé dans une baie doivent être traitées de manière séquentielle. Lors de l'exécution d'une commande de contrôle, aucune autre commande ne sera traitée.

Commutation du contrôle de direction

Les commandes de commutation sont validées avant exécution. Lorsque l'appareillage de connexion se trouve déjà dans la position souhaitée, la commande de commutation n'est pas relancée. (Un disjoncteur ouvert ne peut pas être ouvert à nouveau.) Ceci est également valable pour la commande de commutation au niveau HMI ou via SCADA.

Anti-pompage

En appuyant sur la touche de commande FERMER, une seule impulsion de commutation FERMER est envoyée, quelle que soit la durée de la pression exercée sur la touche programmable. L'appareillage de connexion exécute la commande de fermeture une seule fois.

5.3 Usure de l'appareillage de connexion

Caractéristiques d'usure de l'appareillage de connexion

Le MRI4 gère différentes valeurs statistiques relativement à chaque appareillage de connexion.

• Le nombre d'opérations de commutation est disponible au niveau de [Utilisat / Nb et RevData / Contrôl / SG[x]] »TripCmd Cr«.

Au niveau de [Contrôl / SG[x] / Usu SG] »Alarm opérations«, l'utilisateur peut définir une limite pour le nombre maximum d'opérations de commutation. En cas de dépassement de cette limite, un signal d'alarme associé est défini au niveau de [Utilisat / Affichage de l'état / Contrôl / SG[x]] »Alarm opérations«.

• La somme des coupures de courant est disponible au niveau de [Utilisat / Nb et RevData / Contrôl / SG[x]] »Som décl IL1«, ..., »Som décl IL3«.

Au niveau de [Contrôl / SG[x] / Usu SG] »Alarm Isum Intr«, l'utilisateur peut définir un seuil pour la somme maximale autorisée des coupures de courant. En cas de dépassement de ce seuil, un signal d'alarme associé est défini au niveau de [Utilisat / Affichage de l'état / Contrôl / SG[x]] »Déc Isum Intr«, plus les signaux sélectifs de phase respectifs »Déc Isum Intr : Ixx«.

- Le MRI4 gère en permanence la « capacité d'ouverture » au niveau de [Utilisat / Nb et RevData / Contrôl / SG[x]] »Capacité CB OUV« (sous forme de valeur de pourcentage). Si le pourcentage de 100 % est atteint, la maintenance de l'appareillage de connexion est requise.
- Le signal [Utilisat / Affichage de l'état / Contrôl / SG[x]] »SGwear SG lent« indique que l'appareillage de connexion est devenu plus lent. (Voir aussi < 5.3 Alarme d'appareillage de connexion lent ».) Cela peut indiquer un dysfonctionnement en amont.
- L'utilisateur peut définir une courbe d'usure spécifique à l'appareillage de connexion, voir ci-dessous (⇒ « 5.3 Courbe d'usure de l'appareillage de connexion »). À partir de cette courbe, le MRI4 définit un signal d'alarme au niveau de [Utilisat / Affichage de l'état / Contrôl / SG[x]] »Alarm WearLevel«.
- Le MRI4 gère la fréquence des cycles OUVERTURE/FERMETURE : Au niveau de [Contrôl / SG[x] / Usu SG] »Isum Intr ph Alm«, l'utilisateur peut définir un seuil pour la somme maximale autorisée des courants d'interruption par heure. En cas de dépassement de ce seuil, un signal d'alarme associé est défini au niveau de [Utilisat / Affichage de l'état / Contrôl / SG[x]] »Isum Intr ph Alm«. Cette alarme permet de détecter en amont les opérations excessives au niveau de l'appareillage de connexion.

Alarme d'appareillage de connexion lent

Une augmentation du délai de fermeture ou d'ouverture de l'appareillage de connexion indique qu'une opération de maintenance est nécessaire. Si le temps mesuré dépasse le temps »t-dépl OFF« or »t-dépl ON«, le signal [Utilisat / Affichage de l'état / Contrôl / SG[x]] »SGwear SG lent« est activé.

Courbe d'usure de l'appareillage de connexion

Afin de maintenir l'appareillage de connexion en bon état de fonctionnement, celui-ci doit être surveillé. L'intégrité de l'appareillage de connexion (fonctionnement) dépend avant tout des éléments suivants :

- Le nombre de cycles de FERMETURE/OUVERTURE.
- L'amplitude des coupures de courant.
- La fréquence de fonctionnement de l'appareillage de connexion (opérations par heure).

L'utilisateur doit entretenir l'appareillage de connexion conformément au calendrier de maintenance que le fabricant doit lui fournir (statistiques d'utilisation de l'appareillage de connexion). À l'aide d'un quota de 10 points, l'utilisateur peut répliquer la courbe d'usure de l'appareillage de connexion à partir du menu [Contrôl / SG / SG[x] / Usu SG]. Chaque point se compose de deux paramètres : la coupure de courant en kiloampères et le nombre d'opérations autorisées. Peu importe le nombre de points utilisés, l'opération compte le dernier point comme zéro. Le relais de protection va interpoler les opérations autorisées en fonction de la courbe d'usure de l'appareillage de connexion. Lorsque la coupure de courant est supérieure à celle du dernier point, le relais de protection suppose que le nombre d'opérations est égal à zéro.

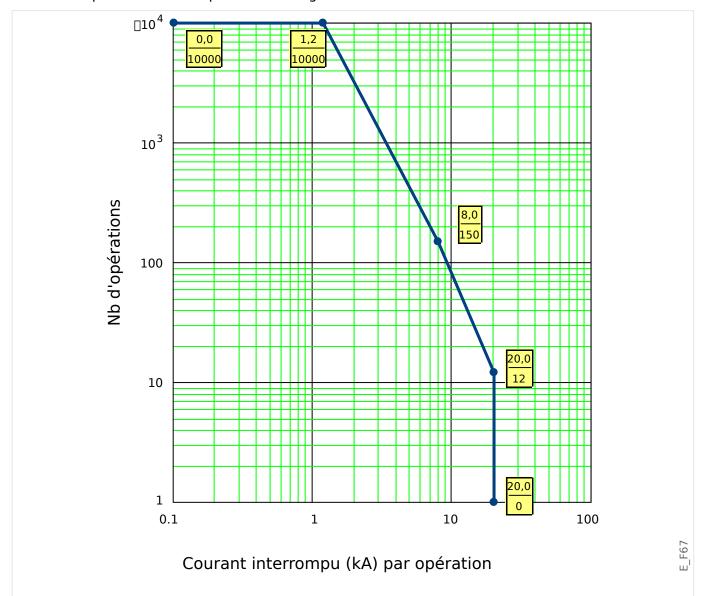
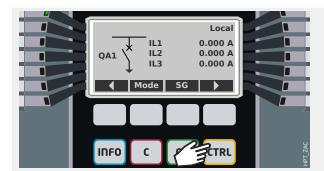



Fig. 65: Courbe de maintenance du disj pour un disj 25 ~kV typique

5.4 Contrôle - Exemple : commutation d'un disjoncteur

L'exemple suivant montre comment commuter un disjoncteur via le pupitre opérateur du module.

En appuyant sur la touche « CTRL », vous accédez à un écran présentant la ligne unique et disposez d'un accès direct aux fonctions de contrôle et valeurs de mesure associées.

Remarque : le nom d'appareillage de connexion »QA1« est uniquement fourni à titre d'exemple. Le groupe de dispositifs d'appareillage de connexion disponibles et leur dénomination dépendent de votre application spécifique.

Une opération de commutation peut être exécutée si l'autorité de commutation (qui est affichée dans le coin supérieur droit) est réglée sur « Local » ou « Local et distant ».

Remarque: notez que cet écran de ligne unique, ainsi que les deux touches de fonction « Paramètres généraux » et « SG » sont également accessibles via le menu principal:

- Le chemin de menu [Contrôl / Page contrôl] fournit l'accès à cette page de ligne unique.
- Le chemin de menu [Contrôl / Paramètres généraux] permet d'accéder à la même branche de menu que la touche de fonction « Mode ».
- Le chemin de menu [Contrôl / SG] permet d'accéder à la même branche de menu que la touche de fonction « SG ».

La touche de fonction « Mode » vous ramène dans la branche de menu [Contrôl / Paramètres généraux].

À partir de là, vous pouvez effectuer plusieurs réglages liés aux appareillages de connexion, notamment (re)définir l'autorité de commutation.

Pour le paramètre »Autoris commut«, les options suivantes sont disponibles :

- « Aucu » : Aucune fonction de contrôle.
- « Local » : contrôle uniquement via les boutons situés sur le tableau de commande (IHM).
- « Dist » : contrôle uniquement via SCADA, les entrées numériques ou les signaux internes.

5.4 Contrôle - Exemple : commutation d'un disjoncteur

 « Local et distant » : contrôle via les boutons de l'IHM, SCADA, les entrées numériques ou les signaux internes.


Comme dit précédemment, le réglage doit être « Local » ou « Local et distant » pour cet exemple.

La touche de fonction « SG » vous permet d'accéder à un écran qui répertorie tous les dispositifs d'appareillage de connexion connectés.

(Pour les dispositifs HighPROTEC de type »MC... «, jusqu'à 6 dispositifs d'appareillage de connexion sont pris en charge. Un dispositif de type »MR...« peut contrôler un dispositif d'appareillage de connexion.)

Après avoir sélectionné un dispositif d'appareillage de connexion, la touche de fonction « > » (Entrée) vous permet d'accéder au menu dédié au dispositif d'appareillage de connexion sélectionné. Ce menu vous offre la possibilité d'effectuer différents réglages, tels que les temps de contrôle, les indicateurs de position, les commandes externes MARCHE/ARRÊT, les verrouillages.

La touche de fonction « ▶ » (Entrée) vous permet d'accéder à une ligne unique améliorée (après avoir entré le mot de passe pour le niveau d'accès « Control-Lv1 »). Le dispositif d'appareillage de connexion est mis en évidence à l'aide de petits marqueurs (et, dans le cas de la mise en œuvre de plusieurs dispositifs d'appareillage de connexion, la touche de fonction « Sélect » apparaît pour vous permettre de sélectionner un autre dispositif).

Si l'autorité de commutation autorise la commutation locale, les touches de fonction « OUV » et « FERME » sont présentes et permettent d'exécuter une opération de commutation. (Notez que généralement, c'est-à-dire avec l'indication d'état de position correcte donnée par le dispositif d'appareillage de connexion, une seule de ces deux touches de fonction est disponible : Si, par exemple, un dispositif d'appareillage de connexion particulier est déjà ouvert, seule la touche de fonction « FERME » est visible.)

5.4 Contrôle - Exemple : commutation d'un disjoncteur

Après avoir appuyé sur la touche de fonction « FERME », une boîte de dialogue de confirmation s'affiche et empêche toute opération de commutation intempestive.

Après avoir appuyé sur « oui », l'opération de commutation est exécutée.

La nouvelle position du dispositif d'appareillage de connexion est affichée (dès qu'elle est atteinte selon le retour de l'indication de position ou une fois le temps de commutation configuré écoulé).

De plus, la fonction des touches de fonction change de sorte que les nouvelles opérations de commutation autorisées sont disponibles.

6 Alarmes réseau

REMARQUE!

Notez que la protection et la demande de puissance (active/réactive/apparente) ne sont disponibles que dans les dispositifs de protection offrant une mesure du courant et de la tension.

Après activation (via [Organis module] »SysA . Mode« = « uti »), l'utilisateur peut effectuer la configuration à partir du menu Alarmes du système [SysA] :

- les Paramètres généraux (activer/désactiver la Maîtrise de la demande, affecter un signal en option, qui bloquera la Maîtrise de la demande),
- la gestion de la demande (de courant),
- Protection THD (Taux de distorsion harmonique).

Notez que tous les seuils doivent être définis comme valeurs primaires.

Maîtrise de la demande

La demande correspond à la moyenne du courant ou de la puissance du réseau sur une période donnée (fenêtre). La gestion de la demande vous aide à maintenir la demande d'énergie en-dessous des valeurs cibles liées par contrat (avec le fournisseur d'énergie). Si les valeurs cibles contractuelles sont dépassées, des frais supplémentaires doivent être réglés au fournisseur d'énergie.

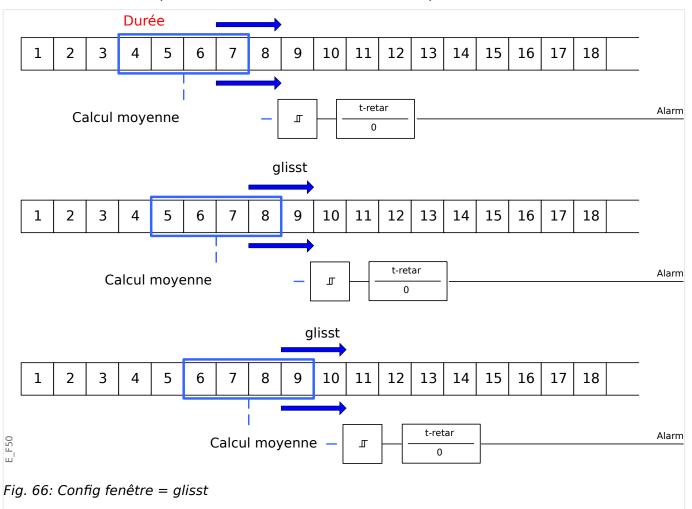
Ainsi, la gestion de la demande vous aide à détecter et à éviter les charges de pointe moyenne qui sont prises en compte pour la facturation. Afin de réduire les frais de la demande par rapport au taux de demande, les charges de pointe doivent être si possible diversifiées. Cela signifie, éviter si possible les fortes charges simultanées. Afin de vous aider à analyser la demande, la fonction de Maîtrise de la demande peut vous alerter par une alarme. Vous pouvez également utiliser des alarmes de demande et les affecter à des relais afin d'effectuer un délestage des charges (si applicable).

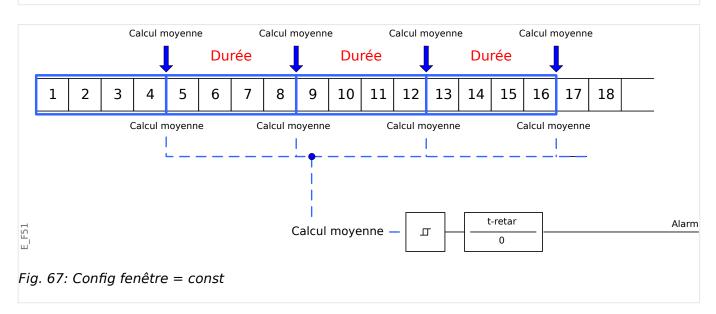
La maîtrise de la demande comprend :

· Demande de courant.

Configuration de la demande

La procédure de configuration de la demande se déroule en deux étapes. Procédez comme suit :


Étape 1 : Configurez les paramètres généraux à partir du menu [Para module / Statistiq / Demand] :


- Définissez l'origine de déclenchement sur »Durée«.
- Sélectionnez une base de temps pour la »fenêtre«.
- Déterminez si la fenêtre est »const« ou »glisst«.
- Le cas échéant, affectez un signal de réinitialisation.

La période (fenêtre) peut être définie à fixe ou mobile.

Exemple de fenêtre fixe : Si la plage est définie à 15 minutes, le dispositif de protection calcule la puissance ou le courant moyen sur les 15 minutes écoulées et met à jour la valeur toutes les 15 minutes.

Exemple de fenêtre mobile : Si la fenêtre mobile est sélectionné et que l'intervalle est défini à 15 minutes, le dispositif de protection calcule et met à jour la puissance ou le courant moyen en continu, sur les 15 minutes écoulées (la valeur de mesure la plus récente remplace en continu la valeur de mesure la plus ancienne).

Étape 2:

- De plus, les paramètres spécifiques à la demande doivent être configurés dans le menu [SysA].
- Déterminez si la demande doit générer une alarme ou si elle doit s'exécuter en mode silencieux (»Alarm« = « actif » ou « inactif »).
- Définissez le seuil (»Seuil«).
- Si applicable, définissez un délai (»t-retar«) pour l'alarme.

Valeurs de crête

Le dispositif de protection enregistre également les valeurs des demandes de crête pour le courant et la puissance. Les quantités représentent la valeur de la demande la plus élevée depuis la dernière réinitialisation des valeurs de demande. Les demandes de pointe de courant et de puissance réseau sont horodatées.

Le menu [Para module / Statistiq / Demand] permet d'afficher les valeurs de demande de courant et de crête.

Valeurs minimale et maximale

Valeurs minimales depuis la dernière réinitialisation : Les valeurs minimales sont comparées en permanence à la dernière valeur minimale de la valeur de mesure. Si la nouvelle valeur est inférieure à la dernière valeur minimale, la valeur est mise à jour. Le menu [Para module / Statistiq] permet d'affecter un signal de réinitialisation.

Valeurs maximales depuis la dernière réinitialisation : Les valeurs maximales sont comparées en permanence à la dernière valeur maximale de la valeur de mesure. Si la nouvelle valeur est inférieure à la dernière valeur maximale, la valeur est mise à jour. Le menu [Para module / Statistiq] permet d'affecter un signal de réinitialisation.

Protection THD (Taux de distorsion harmonique)

Afin de surveiller la qualité de la puissance, le dispositif de protection peut surveiller la tension (phase/phase) et le taux de distorsion harmonique du courant.

Dans le menu [SysA / THD] :

- Déterminez si une alarme doit être émise ou non (»Alarm« = « actif » ou « inactif »).
- Définissez le seuil (»Seuil«) et
- Si applicable, définissez un délai d'alarme (»t-retar«).

7 Enregistreurs

Le MRI4 utilise plusieurs enregistreurs qui collectent les messages de journal de types particuliers (dans une mémoire non volatile) :

• Les messages d'auto-surveillance (> « Messages d'auto-surveillance ») sont des messages de différents types, internes au dispositif. Il peut s'agir, par exemple, des événements liés à la sécurité (par ex., si un mot de passe incorrect est saisi) ou des messages de dépannage qui sont liés au fonctionnement du dispositif.

Les entrées sont accessibles au niveau de la branche de menu [Utilisat / Autosurveillance / Messages].

• L' enregistreur de perturbations (> « Enregistreur de perturbations ») ajoute une nouvelle entrée lors de chaque nouvel événement de perturbation (configuré comme signal de déclencheur).

Les entrées sont accessibles au niveau de la branche de menu [Utilisat / Enregist / Enr perturb].

De plus, un double-clic sur une entrée dans la fenêtre de l'enregistreur de perturbations dans Smart view permet à l'utilisateur d'enregistrer les données associées à l'entrée dans un fichier *. HptDr qui peut être ouvert dans le logiciel pour PC *DataVisualizer* aux fins d'analyse graphique.

• L' enregistreur de défauts (> « Enregistreur de défauts ») collecte des informations sur les défauts (par ex., sur les causes de déclenchement).

Les entrées sont accessibles au niveau de la branche de menu [Utilisat / Enregist / Enr déf.].

• L' enregistreur d'événements (> « Enregistreur d'événements ») recueille les modifications d'état des compteurs et états binaires des différents modules MRI4, afin de fournir à l'utilisateur un aperçu des événements récents.

Les entrées sont accessibles au niveau de la branche de menu [Utilisat / Enregist / Enr. évt].

• L' enregistreur de tendances (> « Enregistreur de tendances ») enregistre les valeurs de mesure analogique au fil du temps.

Un résumé (horodatage, nombre d'entrées) est accessible au niveau de la branche de menu [Utilisat / Enregist / Enr tend].

De plus, un double-clic sur ce résumé dans la fenêtre de l'enregistreur de tendances dans Smart view permet à l'utilisateur d'enregistrer toutes les données dans un fichier *. HptDr qui peut être ouvert dans le logiciel pour PC *DataVisualizer* aux fins d'analyse graphique.

7.1 Enregistreur de perturbations

- Les enregistrements de perturbations peuvent être téléchargés (pour consultation) via le logiciel d'évaluation et de configuration de paramètres *Smart view*.
- Les enregistrements de perturbations peuvent être affichés et analysés dans le DataVisualizer. (Cet outil est toujours installé avec Smart view).
- Ces enregistrements peuvent être convertis au format COMTRADE à l'aide du DataVisualizer.

L'enregistreur de perturbations utilise 32 échantillons par cycle. L'enregistreur de perturbations peut être déclenché par un des huit signaux de démarrage configurables. L'enregistrement de perturbation contient les valeurs de mesure, y compris le temps après déclenchement. Avec *Smart view/DataVisualizer*, les courbes oscillographiques des canaux/traces analogiques (courant, tension) et numériques peuvent être graphiquement présentés et évalués. L'enregistreur de perturbations offre une capacité de stockage de 120 s. Il peut enregistrer jusqu'à 15 s (réglable) par enregistrement. La quantité d'enregistrements dépend de la taille de chaque enregistrement.

Lecture des enregistrements des perturbations

Dans le menu [Utilisat / Enregist / Enr perturb], vous pouvez voir les enregistrements de perturbations accumulés.

REMARQUE!

Dans le menu [Utilisat / Enregist / Déc. manuel], vous pouvez déclencher manuellement l'enregistreur de perturbations.

Suppression des enregistrements de perturbations sur le tableau

Dans le menu [Utilisat / Enregist / Enr perturb], vous pouvez :

- Supprimer les enregistrements de perturbations.
- Choisir l'enregistrement à supprimer à l'aide de la »TOUCHE DE FONCTION PROGRAMMABLE« »haut« et la »TOUCHE DE FONCTION PROGRAMMABLE« »bas«.
- Afficher la vue détaillée de l'enregistrement de perturbation via la »TOUCHE DE FONCTION PROGRAMMABLE« »droite«.
- Confirmer à l'aide de la »TOUCHE DE FONCTION PROGRAMMABLE« »Supprimer«.
- Entrer votre mot de passe, puis appuyer sur la touche »OK«.
- Indiquer si seul le courant de tous les enregistrements de perturbations doit être supprimé.
- Confirmer en appuyant sur la »TOUCHE DE FONCTION PROGRAMMABLE« »OK«.

Configuration de l'enregistreur de perturbations

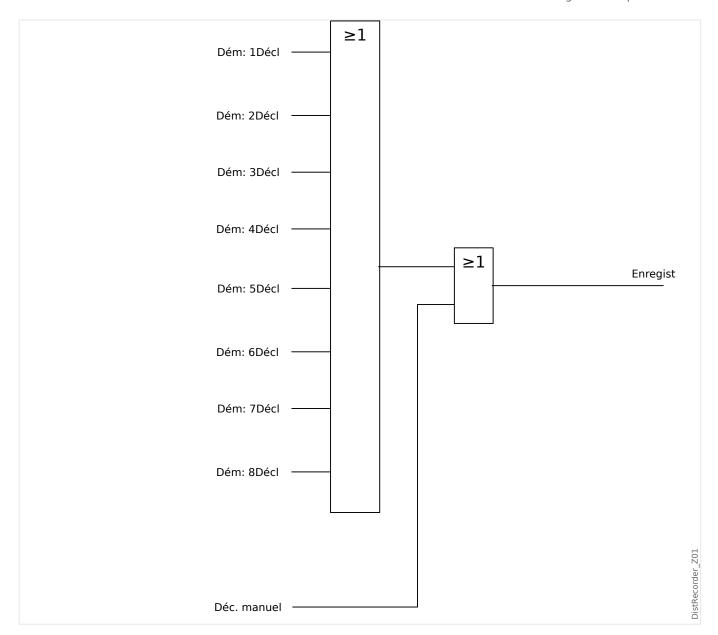
L'enregistreur de perturbations peut être configuré dans le menu [Para module / Enregist / Enr perturb].

Configurez le temps maximal d'enregistrement d'un événement de perturbation. Cette opération peut être effectuée via le paramètre »Tail max fich«, la valeur maximale est

15 s (y compris les temps avant et après déclenchement). Les temps avant et après déclenchement de l'enregistreur de perturbations sont définis (via les paramètres »Tps avant décl.« et »Tps apr déclenc.«) en pourcentage de la valeur »Tail max fich«.

Pour déclencher l'enregistreur de perturbations, jusqu'à 8 signaux peuvent être sélectionnés. Les signaux du déclencheur sont liés par l'argument OU. Si un enregistrement de perturbation a été consigné, un nouvel enregistrement de perturbation ne peut être déclenché tant que tous les signaux qui ont déclenché l'enregistrement de perturbation précédent, n'ont pas disparu.

REMAROUE!


Si tT est la durée du signal de déclenchement et si tMax=»Tail max fich«, tPre=(»Tps avant décl.« · tMax), tPost=(»Tps apr déclenc.« · tMax), les durées résultantes sont les suivantes :

- La temporisation avant déclenchement est toujours égale à tPre.
- L'événement de perturbation est enregistré pendant le temps tEv, qui correspond à : tEv = min(tT, (tMax -tPre))
- La temporisation après déclenchement tRest courante est : tRest = min(tPost , (tMax -tPre-tEv))

À l'évidence, il peut arriver que (selon la durée courante du signal de déclenchement et le réglage tPre), tEv < tT, autrement dit, que l'événement de perturbation ne soit pas enregistré dans son intégralité. Le seul moyen pour limiter ce risque (autrement qu'en réglant valeur inférieure pour tPre) consiste à configurer une valeur supérieure pour tMax. Néanmoins, cela a pour conséquence qu'un nombre plus réduit d'événements peut être mémorisé.

De la même façon, il peut arriver qu'il ne reste plus de temps après déclenchement (autrement dit, que tRest = 0). Notez que l'enregistrement est toujours arrêté après l'expiration du temps tMax=»Taille maximale du fichier« configuré.

De plus, décidez du comportement de l'enregistreur de perturbation au cas où la capacité de stockage soit épuisée : Voulez-vous qu'il remplace automatiquement les enregistrements les plus anciens (»Écras. auto« = « actif ») ou voulez-vous qu'il arrête les enregistrements (»Écras. auto« = « inactif ») jusqu'à l'effacement manuel de la mémoire.

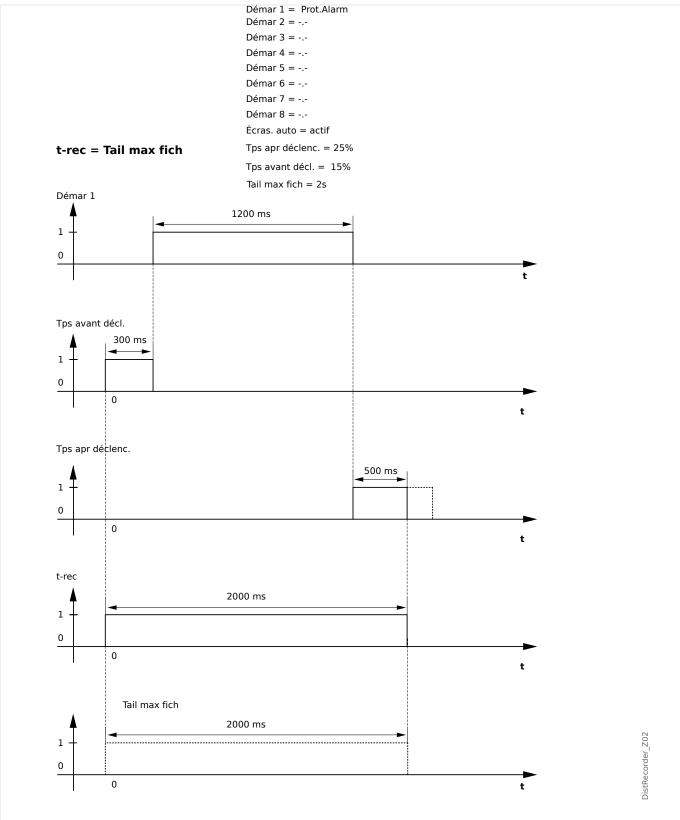


Fig. 68: Exemple de diagramme des temps de l'enregistreur de perturbations I

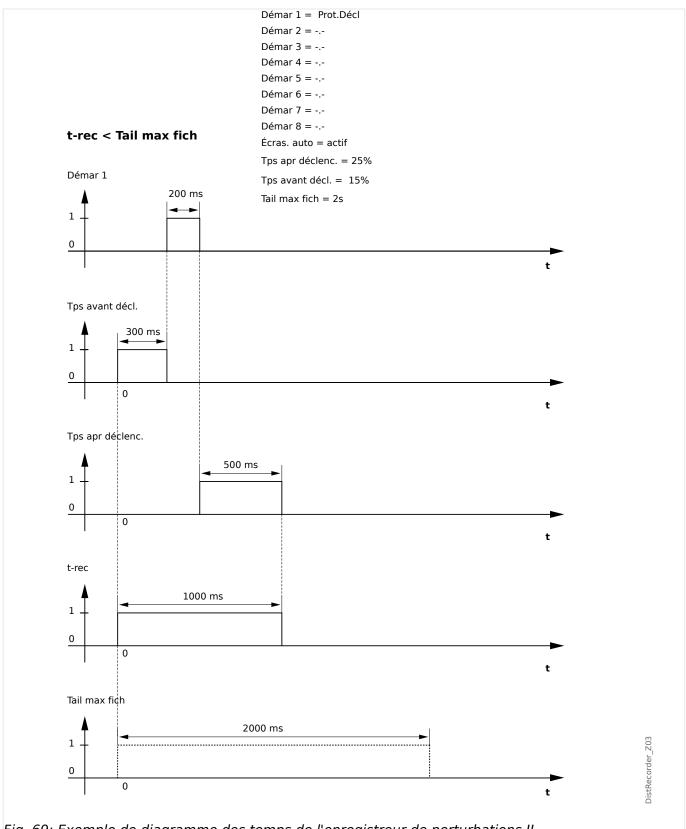
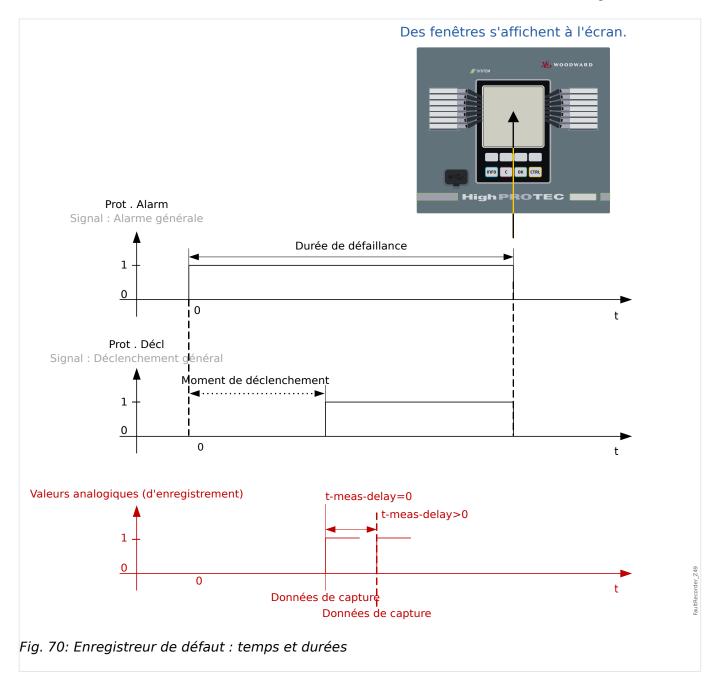


Fig. 69: Exemple de diagramme des temps de l'enregistreur de perturbations II


7.2 Enregistreur de défauts

Fonction de l'enregistreur de défauts

L'enregistreur de défauts fournit des informations compressées sur les défauts (par ex. sur les causes de déclenchement). Les informations compressées peuvent également être lues au niveau de l'interface homme-machine (IHM). Ceci peut être utile pour une analyse rapide des défauts. Après la survenue d'un défaut, une fenêtre contextuelle s'affichera pour attirer l'attention des utilisateurs sur le défaut. L'enregistreur de défauts fournira des informations sur les causes du défaut. Une analyse détaillée des défauts (sous forme de courbes oscillographiques) peut être effectuée à l'aide de l'enregistreur de perturbations. Les références entre les enregistrements de défauts et les enregistrements de perturbations correspondants sont le »Numéro de défaut (FaultNo)« et le »Numéro de défaut de réseau (GridFaultNo)«.

Temps et durées

Moment de déclenchement :	Intervalle de temps entre la <i>Première alarme</i> (»Prot . Alarm«) et la décision de <i>Premier déclenchement</i> (»Prot . Décl«).
Durée de défaut :	période de temps s'écoulant entre le front montant du signal d'excitation générale (»Prot . Alarm«) et le front descendant du signal d'excitation générale. Veuillez noter que l'excitation générale est une connexion OU (disjonction) de tous les signaux d'excitation. Déclenchement général (»Prot Décl«) est une connexion OU de tous les déclenchements.

Comportement de l'enregistreur de défauts

Qui déclenche l'enregistreur de défauts?

L'enregistreur de défauts sera déclenché par le front montant du signal »Prot . Alarm« (Excitation générale). Notez que »Prot . Alarm«(Excitation générale) est une connexion OU de tous les signaux d'excitation. La première excitation déclenchera l'enregistreur de défauts.

À quel moment les mesures de défaut seront-elles saisies ?

Les mesures de défauts seront saisies (écrites) lorsque la décision de déclenchement aura été prise. Le moment de saisie des mesures (après un déclenchement) peut être optionnellement retardé par le paramètre [Para module / Enregist / Enr déf. /] »Enr déf. . t-meas-delay«. Ceci peut être raisonnable pour obtenir des valeurs mesurés plus fiables (par ex. pour éviter des perturbations des mesures dues à des composants CC importants).

Modes

S'il est nécessaire de procéder à l'écriture d'un enregistrement de défaut même si une alarme générale n'a pas entraîné de déclenchement, le paramètre [Para module / Enregist / Enr déf. /] »Enr déf. . Mode enregistrement« doit être réglé sur « Alarmes et déclenchements ».

Définissez le paramètre *»Mode enregistrement«* sur « Déclenchements uniquement » si une alarme non suivie d'une décision de déclenchement ne doit pas provoquer de déclenchement.

Quand la superposition (fenêtre contextuelle) s'affiche-t-elle sur l'écran de l'IHM?

Une fenêtre contextuelle s'affichera sur l'écran de l'IHM lorsque l'excitation générale (»Prot . Alarm«) aura disparu.

REMARQUE!

Le temps restant jusqu'au déclenchement ne sera pas affiché si le signal d'excitation déclenchant l'enregistreur de défauts est émis par un autre module de protection que le signal de déclenchement. Ceci peut se produire si plusieurs modules de protection sont impliqués dans un défaut.

REMARQUE!

Veuillez noter : Les paramètres (seuils, etc.) affichés dans un enregistrement de défauts ne font pas partie de cet enregistrement proprement dit. Ils sont toujours lus dans le paramétrage actuel du module. S'il arrive que les réglages de paramètres affichés dans un enregistrement de défaut sont actualisés, ils sont indiqués par un symbole d'astérisque dans cet enregistrement.

Pour l'éviter, procédez comme suit :

enregistrez tous les enregistrements de défauts devant être archivés sur votre réseau/ disque dur local avant toute modification de paramètres. Supprimez ensuite tous les enregistrements de défauts dans votre enregistreur de défauts.

Mémoire

Le dernier enregistrement de défauts stocké est enregistré (sécurisé) dans l'enregistreur de défauts (les autres sont enregistrés dans une mémoire, en fonction de la puissance auxiliaire du relais de protection). Si la mémoire est saturée, l'enregistrement le plus ancien est écrasé (FIFO). Jusqu'à 20 enregistrements peuvent être stockés.

Comment fermer la superposition/fenêtre contextuelle?

Avec la touche de fonction programmable »OK«.

Comment identifier rapidement si un défaut a entraîné ou non un déclenchement ?

Dans le menu de présentation de l'enregistreur de défauts, les défaut ayant conduit à un déclenchement sont indiqués par une icône d'éclair « f » (sur le côté droit).

Quel enregistrement de défaut s'ouvre dans une nouvelle fenêtre?

Le défaut le plus récent.

Contenu d'un enregistrement de défaut

Un enregistrement de défaut comprend les informations suivantes :

Partie 1 : Information	s communes (indépendantes de la fonction de protection)
Date et heure	Date et heure du défaut
FaultNo	Ce compteur sera incrémenté à chaque défaut (»Prot . Alarm«)
Nombre de défauts du réseau	Ce compteur sera également incrémenté à chaque »Prot . Alarm«, à l'exception de l'AR (s'applique uniquement aux dispositifs permettant un réenclenchement automatique).
Act Set	Le groupe de paramètres actifs
Durée de défaillance	période de temps s'écoulant entre le front montant du signal d'excitation générale (»Prot . Alarm«) et le front descendant du signal d'excitation générale. Veuillez noter que l'excitation générale est une connexion OU (disjonction) de tous les signaux d'excitation. Déclenchement général (»Prot Décl«) est une connexion OU de tous les déclenchements.
Moment de déclenchement	Le temps écoulé entre l'excitation et le déclenchement. Veuillez noter : Le temps restant jusqu'au déclenchement ne sera pas affiché si la première excitation et le premier déclenchement sont émis par des modules de protection différents.
Excit	Nom du premier module excité.
Décl	Nom du premier module déclenché.
AdaptSet actif	Si des groupes adaptatifs sont utilisés, le nombre de groupes actifs s'affichera.

Partie 2 : Informations spécifiques à la fonction de protection qui a détecté le défaut				
par exemple, Type déf	Les informations fournies dans cette partie dépendent du module de protection.			
	Par exemple, dans le cas des fonctions de protection sélective des phases, des données sont également fournies concernant les phases simples.			

Partie 3 : Informations dépendant du dispositif de protection				
Valeurs mesurées	Différentes valeurs mesurées au moment du déclenchement (ou retardées en fonction du paramétrage) seront affichées.			
	Le groupe de données dépend des valeurs mesurées disponibles avec le dispositif concerné.			

Comment naviguer dans l'enregistreur de défauts

Navigation dans l'enregistreur de défauts	Touche de fonction
Retour à la vue d'ensemble.	4
Élément (supérieur) suivant dans cet enregistrement de défauts.	A
Enregistrement de défauts précédent	▶▶
Élément (inférieur) suivant dans cet enregistrement de défauts.	▼

Comment lire l'enregistreur de défauts sur le tableau

Pour lire un enregistrement de défauts, deux options sont disponibles :

- Option 1 : un défaut s'est affiché sur l'IHM (suite à un déclenchement ou à une excitation).
- Option 2 : appelez manuellement le menu de l'enregistreur de défauts.

Option 1 (si un enregistrement de défauts s'affiche sur l'écran (superposition) :

- Analysez l'enregistrement de défauts avec les touches de fonction programmables
 « ▲ » et « ▼ ».
- Ou fermez la fenêtre contextuelle avec la touche de fonction programmable OK.

Option 2:

- Accédez à la branche de menu [Utilisat / Enregist / Enr déf.].
- Sélectionnez un enregistrement de défaut.
- Analysez l'enregistrement de défauts avec les touches de fonction programmables « ▲ » et « ▼ ».

7.3 Enregistreur d'événements

L'enregistreur d'événements peut enregistrer jusqu'à 300 événements et au moins les 50 derniers événements sont enregistrés de façon sécurisée. Les informations suivantes sont fournies pour chacun des événements :

Les événements sont consignés de la façon suivante :

N° d'enregistrement	Numéro séquentiel
N° de défaut	Numéro du défaut en cours.
	Ce compteur sera incrémenté à chaque excitation générale (»Prot . Alarm«).
Nombre de défauts du réseau	Un numéro de défaut de réseau peut avoir plusieurs numéros de défaut.
	Ce compteur sera incrémenté à chaque excitation générale.
	(Réenclenchement automatique d'exception : s'applique uniquement aux dispositifs permettant un réenclenchement automatique).
Date d'enregistrement	Marqueur chronologique
Nom du module	Qu'est-ce qui a changé ?
État	Valeur modifiée

Il existe trois différentes classes d'événements :

- Une alternance d'états binaires apparaît sous la forme :
- 0->1 si le signal passe physiquement de »0« à »1«.
- 1->0 si le signal passe physiquement de »1« à »0«.
- L'incrémentation des compteurs se présente sous la forme :
- Ancien état du compteur -> Nouvel état du compteur (par exemple, 3->4)
- Une alternance d'états multiples apparaît sous la forme :
- Ancien état -> Nouvel état (par exemple, 0->2)

Lecture de l'enregistreur d'événements

- Accédez à la branche de menu [Utilisat / Enregist / Enr. évt].
- Sélectionnez un événement.

7.4 Enregistreur de tendances

Lecture de l'enregistreur de tendances

L'enregistreur de tendances permet d'enregistrer les données mesurées dans leur développement temporel.

- Accédez à la branche de menu [Utilisat / Enregist / Enr tend].
- Sur le tableau de commande, un récapitulatif s'affiche (horodatage, nombre d'entrées).

En raison des restrictions techniques de l'affichage LCD, il est impossible de visualiser le détail des données enregistrées.

• Néanmoins, via Smart view, il est possible de double-cliquer sur une entrée du récapitulatif. Cela permet de télécharger les données analogiques à partir du MRI4 et de les enregistrer dans un fichier (doté de l'extension de fichier *.HptTr).

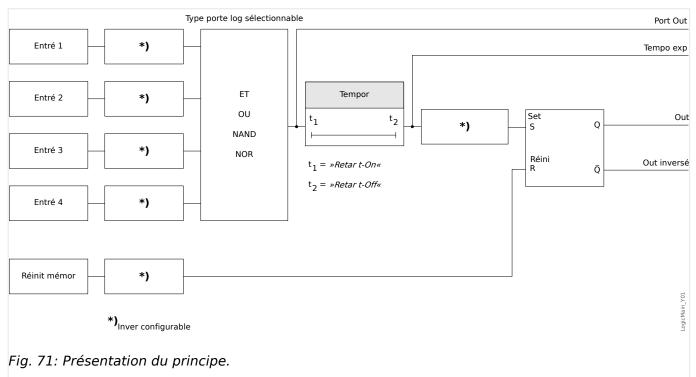
Par la suite, le fichier *. HptTr peut être ouvert dans le logiciel DataVisualizer. Consultez le manuel DataVisualizer pour une description détaillée.

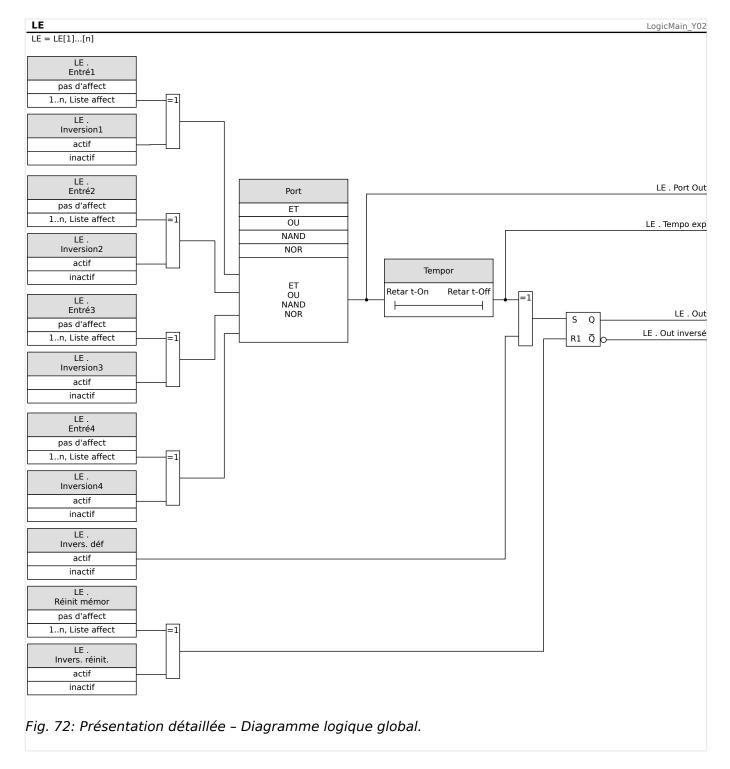
Configuration de l'enregistreur de tendances

L'enregistreur de tendances peut être configuré à partir du menu [Para module / Enregist / Enr tend].

L'intervalle de temps définit la distance entre deux points de mesure.

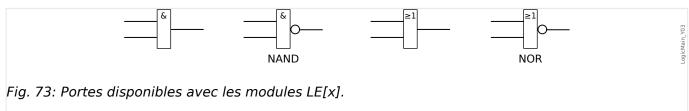
Jusqu'à dix valeurs peuvent être sélectionnées pour l'enregistrement.




8 Logique programmable

Description générale

Le relais de protection comprend des équations logiques programmables pour la programmation des relais de sortie, le blocage des fonctions de protection et des fonctions logiques personnalisées du relais.


La logique permet de contrôler les relais de sortie en fonction de l'état des entrées qui peuvent être choisies à partir de la liste des affectations (excitations de la fonction de protection, états de fonction de protection, états du disjoncteur, alarmes du système et entrées du module ; voir \longrightarrow « Modules, paramètres, signaux et valeurs »). L'utilisateur peut utiliser les signaux de sortie d'une équation logique comme entrées d'équations plus élevées (par exemple, le signal de sortie de l'équation logique 10 peut être utilisé comme entrée d'une équation logique 11).

Portes disponibles (opérateurs)

L'équation logique permet d'utiliser les portes suivantes :

Signaux d'entrée

L'utilisateur peut assigner jusqu'à 4 signaux d'entrée (à partir de la liste des affectations) aux entrées de la porte.

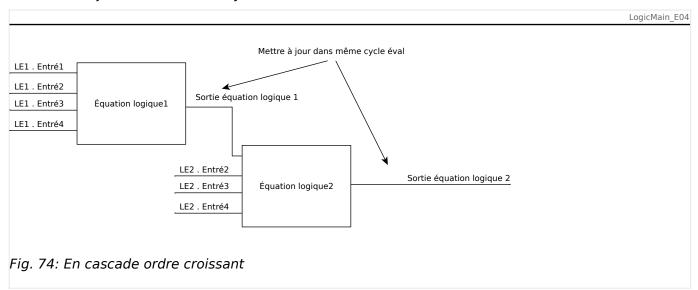
En option, chacun des 4 signaux d'entrée peut être inversé

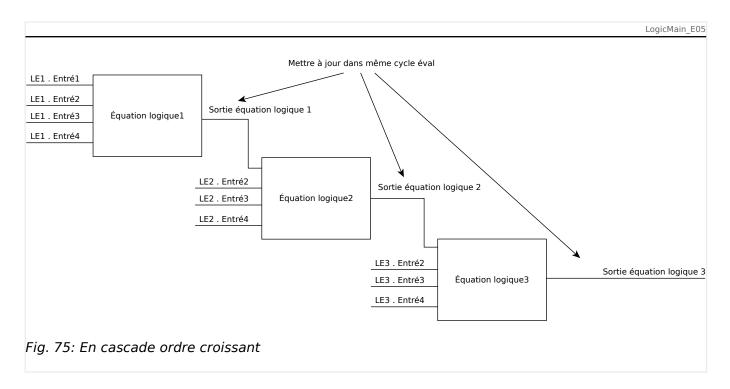
Porte de temporisation (délai d'activation et de désactivation)

La sortie de la porte peut être retardée. L'utilisateur peut définir un délai d'activation et de désactivation.

Mémorisation

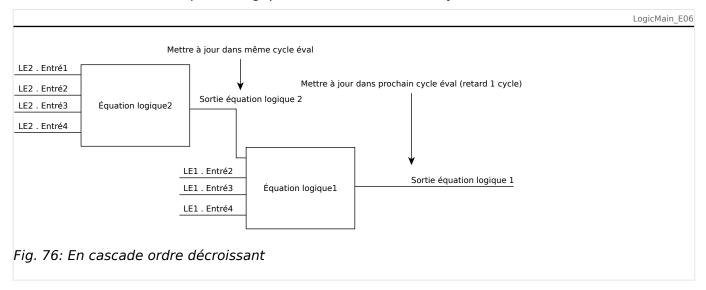
Les équations logiques émettent deux signaux. Un signal non mémorisé et un signal mémorisé. La sortie mémorisée est également disponible comme sortie inversée.

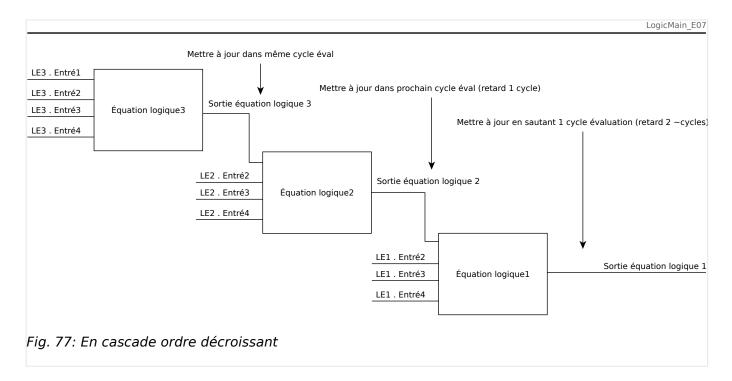

Pour réinitialiser le signal mémorisé, l'utilisateur doit affecter un signal de réinitialisation à partir de la liste des affectations. Le signal de réinitialisation peut également être inversé. La mémorisation fonctionne sur la base de la priorité de réinitialisation. Ceci signifie que l'entrée de réinitialisation est dominante.


Sorties logiques en cascade

Le module évaluera les états de sortie des équations logiques à partir de l'équation logique 1 jusqu'à l'équation logique avec le plus grand nombre. Ce cycle d'évaluation (module) sera répété en continu.

Mise en cascade des équations logiques dans une séquence croissante


La mise en cascade dans une séquence croissante signifie que l'utilisateur utilise le signal de sortie de « Équation logique **n** » comme entrée de « Équation logique **n+1** ». Si l'état de « Équation logique **n+1** » sera mis à jour dans le même cycle.



Mise en cascade des équations logiques dans une séquence décroissante

La mise en cascade dans une séquence décroissante signifie que l'utilisateur utilise le signal de sortie de « Équation logique $\mathbf{n+1}$ » comme entrée de « Équation logique \mathbf{n} ». Si la sortie de « Équation logique $\mathbf{n+1}$ » change, ce changement du signal d'alimentation de l'entrée de « Équation logique \mathbf{n} » sera retardé d'un cycle.

Logique programmable depuis le tableau

AVERTISSEMENT!

AVERTISSEMENT Une mauvaise utilisation des équations logiques pourrait entraîner des blessures ou endommager l'équipement électrique. N'utilisez pas les équations logiques si vous ne pouvez pas garantir un fonctionnement en toute sécurité.

Comment configurer une équation logique?

- Affichez le menu [Logiqu / LE x] :
- Définissez les signaux d'entrée (en les inversant, si nécessaire).
- Si nécessaire, configurez les minuteries (»LEx.Retar t-On« et »LEx.Retar t-Off«).
- Si le signal de sortie mémorisé est utilisé, affectez un signal de réinitialisation à l'entrée de réinitialisation.
- L'option »Affichage état« permet à l'utilisateur de vérifier l'état des entrées et sorties logiques de l'équation logique.

Si les équations logiques doivent être configurées en cascade, l'utilisateur doit être conscient des temporisations (cycles) en cas de séquences décroissantes (reportez-vous à la section : Sorties logiques en cascade).

Avec l'affichage de l'état [Utilisat / Affichage de l'état], les états logiques peuvent être vérifiés.

9 Auto-surveillance

Les dispositifs de protection appliquent divers programmes de contrôle en fonctionnement normal et pendant la phase de démarrage pour assurer leur propre auto-surveillance et détecter tout éventuel fonctionnement défectueux.

Auto-surveillance au sein des dispositifs		
Surveillance de	Supervisé par	Action sur le problème détecté
Phase de démarrage	La durée (temps autorisé) de la phase de démarrage est surveillée.	Le module va être redémarré. ⇒ Le module va être mis hors service après trois tentatives de démarrage infructueuses.
Surveillance de la durée d'un cycle de protection (cycle logiciel)	La durée maximale autorisée pour un cycle de protection est contrôlée par une analyse temporelle.	Le contact d'auto-surveillance ne sera plus alimenté si la durée autorisée pour un cycle de protection est dépassée (premier seuil). Le module de protection va être redémarré, si le cycle de protection dépasse le second seuil.
Suivi de la communication entre le processeur principal et le processeur de signal numérique (DSP)	Le traitement de la valeur mesurée cyclique du DSP est surveillé par le processeur principal.	Le module va être redémarré, si un problème est détecté. Le contact d'auto-surveillance va être mis hors tension.
Convertisseur analogique/ numérique	Le DSP effectue un contrôle de plausibilité des données numérisées.	La protection sera bloquée, si une défaillance est détectée, afin d'éviter un déclenchement défectueux.
Contrôle de cohérence des données après une panne d'alimentation (par ex., panne de l'alimentation durant la modification des paramètres).	Une logique interne détecte les données fragmentaires sauvegardées suite à une coupure de l'alimentation.	Si les nouvelles données sont incomplètes ou corrompues, elles seront supprimées au cours de la phase de redémarrage du module. Le module continuera de fonctionner avec le dernier ensemble de données valides.
Cohérence des données en général	Génération de sommation de contrôle.	Le module sera être mis hors service en cas de détection de données incohérentes non causées par une panne de l'alimentation (erreur interne fatale).
Réglage des paramètres (Module)	Protection du réglage des paramètres par des contrôles de plausibilité.	Des invraisemblances dans la configuration des paramètres peuvent être détectées au

Auto-surveillance au sein des dispositifs		
Surveillance de	Supervisé par	Action sur le problème détecté
		moyen de contrôles de plausibilité.
		Les invraisemblances détectées sont mises en évidence par un point d'interrogation. Veuillez vous reporter au chapitre réglage des paramètres pour des informations détaillées.
Qualité de l'alimentation	Un circuit matériel garantit que le module puisse uniquement être utilisé si l'alimentation se trouve dans la plage spécifiée par les données techniques.	Si la tension d'alimentation est trop faible, le module ne démarrera pas ou sera mis hors service respectivement.
Creux de la tension d'alimentation	Des creux de courte durée de la tension d'alimentation sont détectés et peuvent être comblés dans la plupart des cas au moyen du tampon intégré dans le matériel d'alimentation. Ce tampon permet également la cessation des procédures d'écriture de données en cours.	Le module de surveillance de l'utilisation du système détectera les creux répétitifs de courte durée de la tension d'alimentation.
Données internes du dispositif (charge mémoire, ressources internes, etc.)	Un module interne surveille l'utilisation du système.	Le module de surveillance de l'utilisation du système initie dans le cas d'une erreur fatale un redémarrage du module. En cas de défaillances mineures, la DEL Système va se mettre à clignoter alternativement en rouge et vert (veuillez consulter le <i>Guide de dépannage</i>). Le problème sera enregistré sous forme de message système.
Batterie	La batterie est surveillée en permanence. Avis : la batterie sert de tampon à l'horloge (horloge en temps réel). Les fonctionnalités du dispositif ne sont pas affectées si la batterie tombe en panne, sauf pour la mémoire tampon de l'horloge lorsque l'appareil n'est plus alimenté.	Si la charge de la batterie est basse, la DEL Système va se mettre à clignoter alternativement en rouge et vert (veuillez consulter le Guide de dépannage).

Auto-surveillance au sein des dispositifs		
Surveillance de	Supervisé par	Action sur le problème détecté
État de la communication du module (SCADA)	Le module SCADA projeté et activé surveille son lien avec le système de communication principal.	Vous pouvez vérifier s'il existe une communication active avec le système principal dans le menu [Utilisat / Affichage de l'état / Scada].
		Afin de contrôler cet état, vous pouvez attribuer ce statut sur une LED et/ou un relais de sortie.
		Pour plus d'informations sur l'état de la communication GOOSE, veuillez vous reporter au chapitre > « CEI 61850 ».

9.1 Démarrage du module (Redémarrage)

Le dispositif redémarre dans les situations suivantes :

- Il est connecté à la tension d'alimentation,
- l'utilisateur initie (intentionnellement) un redémarrage du dispositif,
- · les réglages par défaut du dispositif sont rétablis,
- l'auto-surveillance interne du module détecte une erreur fatale.

Chaque (re-)démarrage du MRI4 apparaît comme une nouvelle entrée dans les messages d'auto-surveillance, \Longrightarrow « Messages d'auto-surveillance », par exemple :

Fig. 78: Exemple de message de redémarrage.

La raison du démarrage/redémarrage du dispositif est affichée de façon numérique sous la forme « Val ». La valeur « 1 » dans l'exemple ci-dessus désigne un démarrage normal. Consultez le tableau ci-dessous pour obtenir la liste complète.

La raison est également consignée dans l'enregistreur d'événements (Événement : redémarrage système).

Codes	e démarrage du dispositif
1.	Démarrage normal
	Démarrage après déconnexion propre de la tension d'alimentation.
2.	Redémarrage par l'opérateur
	Redémarrage du dispositif déclenché par l'opérateur via l'IHM ou Smart view.
3.	Redémarrage au moyen de super réinitialisation
	Redémarrage automatique lors de la reconfiguration du module aux paramètres d'usine.
4.	(obsolète)
5 .	(obsolète)
6 .	Origine de l'erreur inconnue

Codes	le démarrage du dispositif
	Redémarrage en raison d'une origine de l'erreur inconnue.
7.	Redémarrage forcé (initié par le processeur principal)
	Le processeur principal a identifié des conditions ou données non valides.
8.	Dépassement de limite de durée du cycle de protection
	Interruption inattendue du cycle de protection.
9.	Redémarrage forcé (initié par le processeur de signal numérique)
	Le processeur de signal numérique a identifié des conditions ou données non valides.
10 .	Dépassement de limite de durée du traitement de la valeur mesurée
	Interruption inattendue du traitement de la valeur mesurée cyclique.
11.	Creux de la tension d'alimentation
	Redémarrage suite à un creux de tension de courte durée ou une panne de la tension d'alimentation.
12 .	Accès interdit à la mémoire
	Redémarrage après accès interdit à la mémoire.

9.2 Messages d'auto-surveillance

Le menu [Utilisat / Auto-surveillance / Messages] fournit un accès à la liste des messages d'auto-surveillance. En particulier, il est recommandé de vérifier ces messages en cas de problème directement lié à la fonctionnalité du MRI4.

La fonction d'auto-surveillance collecte différents messages liés à la sécurité (par ex., la saisie d'un mot de passe erroné) et des messages concernant l'état interne du MRI4, les avertissement et les messages d'erreur.

Tous les messages susceptibles de s'afficher sous [Messages] sont décrits en détail dans un document distinct, le « *HighPROTEC Troubleshooting Guide* » (Guide de démarrage HighPROTEC)(HPT-3.6-FR-TSG).

Au niveau (du tableau) de l'IHM du MRI4, certaines limitations dues au type d'affichage existent, de sorte que la liste affiche uniquement une courte entrée pour chaque message. Après avoir sélectionné un message particulier (à l'aide des touches de fonction « ▲ »/Haut et « ▼ »/Bas), la touche de fonction « ▶ »/Entrée affiche un écran comportant tous les détails associés à ce message. Il est également possible d'utiliser la touche de fonction « × »/Supprimer pour supprimer ce message, ainsi que tous les messages plus anciens.

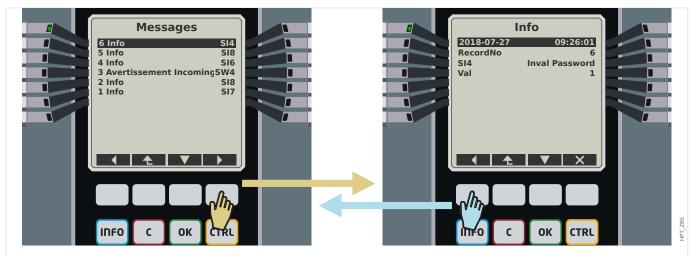


Fig. 79: Exemple d'affichage des messages d'auto-surveillance.

Tous les messages sont affichés avec un identifiant (par ex., « **SI8** Redémarrage du dispositif » ou « **SI4** Mot de passe incorrect »). Cet identifiant facilite la localisation d'informations détaillées associées dans le *Guide de dépannage*. L'identifiant commence toujours par un « **S** », suivi de la lettre « **I** » (utilisé pour « Information »), d'un « **W** » (pour « Avertissement ») ou un « **E** » (pour « Erreur »).

Idée générale:

- **E** : les erreurs indiquent de graves problèmes. Il est judicieux de rechercher le message dans le *Guide de dépannage*.
- W : les avertissements doivent être examinés par l'utilisateur. Ils peuvent indiquer un problème nécessitant d'être résolu. D'autre part, en fonction de l'application, ils peuvent également n'avoir aucun effet. Observez l'exemple de message « SW4 Synchronisation horaire » présenté ci-dessous, qui indique un interruption (au moins temporaire) du signal de synchronisation horaire externe. Pour la plupart des applications industrielles, une heure système correctement synchronisée est requise et, par conséquent, l'utilisateur voudra probablement vérifier la cause à l'origine de

ce message. Cependant, le même message s'affiche également dans le cas où l'utilisateur a intentionnellement omis une synchronisation horaire externe.

• I : les messages d'information peuvent être utiles pour l'analyse approfondie d'un problème, mais en général, ces messages n'ont, en fait, qu'un caractère informatif et n'affecte pas le fonctionnement du MRI4.

La vérification des messages d'auto-surveillance à l'aide de *Smart view* est plus pratique (voir l'exemple de figure ci-dessous) qu'en utilisant l'IHM : Tous les messages sont listés dans une même fenêtre de boîte de dialogue. Les boutons de cette barre d'outils permettent de limiter la liste à un type de gravité particulier : À titre d'exemple, il est possible de masquer tous les messages « d'information » et de n'afficher que les messages de type « avertissement » et « erreur ».

Cette barre d'outils comporte également un bouton Supprimer de doté de la même fonction que le « × » de l'IHM : Il permet de supprimer le message sélectionné, ainsi que tous les messages plus anciens.

Notez qu'il n'est pas possible (que ce soit sur l'IHM ou dans *Smart view*) de sélectionner un seul message spécifique en vue de sa suppression. Une « suppression » élimine tous les messages dont l'horodatage précède celui du message sélectionné.

9.3 Syslog

Il est possible de transférer chaque nouveau message d'auto-surveillance (> « Messages d'auto-surveillance ») vers un ordinateur serveur dédié. Cette opération est effectuée automatiquement avec chaque nouveau message au moment où il est émis. Ainsi, il peut y avoir un système de consignation central qui reçoit tous les messages de dispositif pour l'ensemble de vos appareils HighPROTEC, afin qu'il ne soit pas nécessaire d'établir de nouvelles connexions *Smart view* à chaque dispositif seulement à cet effet.

Le transfert utilise le protocole de communication **Syslog** pour le transfert. Il s'agit d'un protocole réseau UDP/IP standard assez simple qui transmet les messages texte dont la taille n'excède pas 1024 octets via le port UDP 514. Cependant, le numéro du port est configurable sur le MRI4.)

Il doit y avoir sur l'ordinateur serveur un *démon syslog* qui est exécuté pour recevoir les messages. Bien entendu, les outils disponibles pour vérifier et présenter les messages dépendent de la configuration de cet ordinateur.

Par défaut, la fonction Syslog du MRI4 est désactivée. Si vous souhaitez l'utiliser, vous devez d'abord l'activer :

[Organis module] »Syslog . Mode« = « actif »

Le protocole Syslog doit encore être activé à l'aide du réglage suivant :

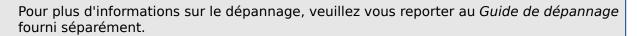
• [Para module / Sécurité / Syslog] »Fonction« = « actif ».

Enfin, il faut spécifier l'adresse IP(v4) et le numéro de port de l'ordinateur serveur pour que le MRI4 sache où envoyer les messages :

- [Para module / Sécurité / Syslog] »Numéro port IP« doit être défini sur le numéro de port correct.
 - La valeur par défaut (514) peut être simplement conservé si l'ordinateur serveur écoute sur le port standard.
- [Para module / Sécurité / Syslog] »Adresse IP, partie 1« ... »Adresse IP, partie 4« : ces quatre paramètres spécifient l'adresse IP de l'ordinateur serveur, c'est-à-dire que le réglage est un nombre entier compris entre 0 et 255.

9.4 Dispositif mis hors service « Module arrêté »

Le module de protection va être mis hors service, s'il existe un état indéfini ne pouvant pas être évité après trois redémarrages.


Dans cet état, le système LED sera allumé en rouge ou rouge clignotant. L'écran affichera le message « Module arrêté » suivi d'un code d'erreur à 6 chiffres, par exemple E01487.

Des informations supplémentaires sur les erreurs peuvent être accessibles par le personnel de service. Celles-ci permettent une analyse plus approfondie du défaut et des possibilités de diagnostic pour le personnel de service.

REMARQUE!

Dans un tel cas, veuillez contacter le personnel de service Woodward et leur fournir le code d'erreur.

10 Mise en service

Avant de commencer à travailler sur un appareillage de connexion ouvert, il est impératif que l'appareillage de connexion complet soit hors service et que les 5 consignes de sécurité suivantes soient respectées : ,

DANGER!

Précautions de sécurité :

- · Débranchez l'alimentation.
- Empêchez toute reconnexion.
- Vérifiez que l'équipement est hors service.
- Reliez l'appareil à la terre et court-circuitez toutes les phases.
- Couvrez ou protégez toutes les parties actives adjacentes.

DANGER!

Le circuit secondaire d'un transformateur de courant ne doit jamais être ouvert pendant le fonctionnement. Les hautes tensions présentent un risque mortel.

AVERTISSEMENT!

Même lorsque la tension auxiliaire est déconnectée, il est probable qu'il subsiste encore des tensions dangereuses au niveau des connexions des composants.

Toutes les consignes de sécurité et d'installation nationales et internationales applicables relatives au travail dans des installations électriques doivent toujours être respectées (VDE, EN, DIN, IEC, par exemple).

AVERTISSEMENT!

Avant de connecter la tension initiale, vérifiez les points suivants :

- L'appareil a été correctement mis à la terre.
- Tous les circuits de signaux doivent être testés.
- Tous les circuits de contrôle doivent être testés.
- Le câblage du transformateur doit être vérifié.
- · Les valeurs des unités CT sont correctes.
- · Les charges des unités CT sont correctes.
- Les conditions de fonctionnement sont conformes aux données techniques.
- Les valeurs nominales et le fonctionnement des fusibles CT sont corrects.
- Toutes les entrées numériques sont correctement câblées.
- La polarité et la capacité de l'alimentation ont été vérifiées.
- Les entrées et sorties analogiques sont correctement câblées.

REMARQUE!

Les écarts des valeurs mesurées admissibles et l'ajustement de l'appareil dépendent des données techniques/tolérances.

10.1 Test de mise en service/protection

AVERTISSEMENT!

Le test de mise en service/protection doit être effectué par un personnel agréé et qualifié. Avant que l'appareil ne soit mis en marche, veillez à lire et à bien comprendre la documentation correspondante.

AVERTISSEMENT!

Lors de chaque test des fonctions de protection, vérifiez les points suivants :

- Tous les signaux/messages sont-ils correctement générés ?
- Toutes les fonctions de blocage paramétrées générales fonctionnent-elles correctement ?
- Toutes les fonctions de blocage paramétrées temporaires (via EN) fonctionnent-elles correctement ?
- Pour assurer le contrôle de toutes les DEL et fonctions de relais, ces éléments doivent disposer des fonctions d'alarme et de déclenchement correspondantes des fonctions/éléments de protection respectifs. Ces éléments doivent être testés en pratique.

AVERTISSEMENT!

Vérifiez tous les blocages temporaires (via des entrées numériques) :

Afin d'éviter les dysfonctionnements, tous les blocages liés au déclenchement/nondéclenchement de la fonction de protection doivent être testés. Le test peut être très complexe et doit donc être effectué par les mêmes personnes qui ont créé le concept de protection.

PRUDENCE!

Vérifiez tous les blocages de déclenchement généraux :

tous les blocages de déclenchement généraux doivent être testés.

REMARQUE!

Avant la mise en service initiale du dispositif de protection, tous les temps et toutes les valeurs de déclenchement de la liste de réglage doivent être confirmés par un test secondaire

REMARQUE!

Toute description des fonctions, paramètres, entrées ou sorties ne correspondant pas à l'appareil utilisé peut être ignorée.

10.2 Mise hors service - Déconnexion du relais

AVERTISSEMENT!

Avertissement! Le démontage du relais entraînera une perte de la fonction de protection. Vérifiez que vous disposez d'une protection de secours. Si vous n'êtes pas conscient des conséquences du démontage de l'appareil, arrêtez-vous! N'entreprenez rien.

AVERTISSEMENT!

Informez SCADA avant de commencer.

Débranchez l'alimentation.

Assurez-vous que l'armoire est hors service et qu'il n'y a aucune tension susceptible de provoquer des blessures.

Débranchez les bornes à l'arrière de l'appareil. Ne tirez pas sur les câbles, tirez sur les prises ! En cas de blocage, utilisez un tournevis.

Fixez les câbles et les bornes dans l'armoire à l'aide de serre-câbles pour éviter toute connexion électrique accidentelle.

Tenez la partie avant de l'appareil lorsque vous desserrez les écrous de fixation.

Retirez délicatement l'appareil de l'armoire.

Si aucun autre appareil ne doit être monté ou remplacé, fermez la trappe du panneau avant.

Fermez l'armoire.

10.3 Aide à l'entretien et à la mise en service

Le menu Service comporte diverses fonctions d'aide à la maintenance et à la mise en service de l'appareil.

10.3.1 Généralités

Dans le menu [Service / Général], l'utilisateur peut lancer un redémarrage du dispositif.

La DEL »Système OK« (« Opérationnel ») s'allume en vert fixe quand, après la phase d'amorçage, \longrightarrow « 12 Phase d'amorçage » : les fonctions de protection du dispositif MRI4 fonctionnent. Dans tous les autres cas, consultez le *Guide de dépannage*.

10.3.2 Ordre phases

Dans le menu [Utilisat / Affichage de l'état / Surv / Ordre phases], des signaux indiquent si l'ordre des phases calculé par le dispositif est différent du réglage sous [para champ / Paramètres généraux] »Ordre phases«. Pour plus de détails, consultez > « Supervision de la séquence de phase ».

10.3.3 Forcer les contacts de sortie de relais

REMAROUE!

Consultez > « Présentation des emplacements - Groupes complets » pour obtenir des informations sur les contacts de sortie de relais disponibles. Les paramètres, leur valeur par défaut et les plages de configuration sont fournis dans le Manuel de référence.

Principe - Utilisation générale

DANGER!

Vous DEVEZ VOUS ASSURER que les contacts de sortie de relais fonctionnent normalement une fois la maintenance terminée. S'ils ne fonctionnent pas normalement, le dispositif de protection NE fournira PAS de protection.

Pour les opérations de mise en service ou de maintenance, la configuration des contacts de sortie de relais peut être forcée.

Ce mode [Service / Mode Test (inhib Prot) / Force RS / Empl SB Xx] permet de forcer les contacts de sortie de relais :

- · De façon permanente, ou
- par temporisation.

Si les contacts sont définis avec une temporisation, ils ne garderont leur « position forcée » que pour cette durée. Si la temporisation expire, le relais fonctionnera normalement. Si les contacts sont définis sur « Permanent », ils garderont leur « position forcée » en permanence.

Deux options sont disponibles :

- Forcer un seul relais »Force RSx« et
- Forcer un groupe entier de contacts de sortie de relais »Force ts sort«.

Forcer un groupe entier est prioritaire sur forcer un seul contact de sortie de relais!

REMARQUE!

Un contact de sortie de relais N'obéira PAS à une commande tant qu'il est désarmé.

REMARQUE!

Un contact de sortie de relais obéira à une commande Forcer :

- S'il n'est pas désarmé, et
- Si la commande directe est appliquée au(x) relais.

N'oubliez pas que le fait de forcer tous les contacts de sortie de relais (du même groupe d'assemblage) est prioritaire sur la commande visant à forcer un seul contact de sortie de relais.

10.3.4 Désarmer les contacts de sortie de relais

REMARQUE!

Consultez \Longrightarrow « Présentation des emplacements – Groupes complets » pour obtenir des informations sur les contacts de sortie de relais disponibles. Les paramètres, leur valeur par défaut et les plages de configuration sont fournis dans le Manuel de référence.

Principe - Utilisation générale

Ce mode [Service / Mode Test (inhib Prot) / DÉSARMÉ / Empl SB Xx][Service/Mode Test/ DÉSARMÉ], permet de désactiver des groupes entiers de contacts de sortie de relais. Grâce au mode test, les opérations de commutation des contacts de sortie de relais sont bloquées. Si les contacts de sortie de relais sont désarmés, les opérations de maintenance peuvent être exécutées sans devoir mettre hors ligne tous les processus.

DANGER!

Vous DEVEZ VOUS ASSURER que les contacts de sortie de relais sont DE NOUVEAU ARMÉS une fois la maintenance terminée. S'ils ne sont pas armés, le dispositif de protection NE fournira PAS de protection.

REMARQUE!

il n'est pas possible de désarmer le contact de sortie de verrouillage de sécurité des zones et de surveillance. Ce mode [Service / Mode Test (inhib Prot) / DÉSARMÉ] permet de désarmer des groupes entiers de contacts de sortie de relais :

- De façon permanente, ou
- · Par temporisation.

Si les contacts sont définis avec une temporisation, ils ne garderont leur « position désarmée » que pour cette durée. Si la temporisation expire, les contacts de sortie de relais fonctionneront normalement. Si les contacts sont définis sur « Permanent », ils garderont leur « position désarmée » en permanence.

REMARQUE!

Un contact de sortie de relais NE sera PAS désarmé tant :

- Qu'il est mémorisé (et pas encore réinitialisé).
- Qu'une temporisation « Retar t-OFF » en cours n'est pas expirée (temps d'appui d'un contact de sortie de relais).
- Que la commande de désarmement n'est pas définie sur « actif ».
- Que la commande directe n'est pas appliquée.

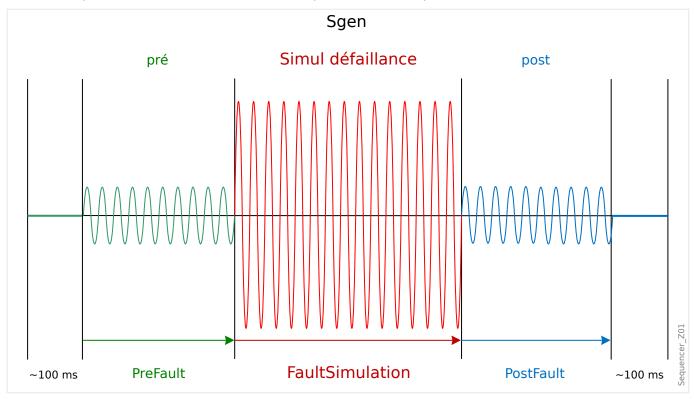
REMARQUE!

Un contact de sortie de relais sera désarmé s'il n'est pas mémorisé, et

- Qu'il n'y a pas de temporisation « Retar t-OFF » en cours (temps d'appui d'un contact de sortie de relais) et
- Que la commande de désarmement est définie sur « actif », et
- Que la commande directe de désarment est appliquée.

10.3.5 Simulateur de panne (séquenceur)*

* = La disponibilité dépend du module commandé.


Pour l'aide à la mise en service et l'analyse des pannes, le dispositif de protection offre une option permettant de simuler les quantités de mesure.

[Après avoir défini Organis module] »Mode« = « uti », le menu de simulation est accessible via [Service / Mode Test (inhib Prot) / Sgen].

Le cycle de simulation se compose de trois états :

- Avant défaut
- Défaut
- Après défaut (Phase).

En plus de ces trois états, il existe deux courtes étapes de réinitialisation d'environ 100 ms (l'une précédant le passage à l'état Avant défaut, l'autre consécutive au passage à l'état Après défaut), pendant lesquelles toutes les fonctions de protection sont désactivées. Ces étapes sont nécessaires pour la réinitialisation de tous les modules de protection et filtres associés. Cela permet de les repositionner à l'état « Sain ».

Les états sont consignés par l'enregistreur d'événements et de perturbations de la façon suivante :

- **0** : Fonctionnement normal (sans simulation de panne)
- 1 : Avant défaut
- 2 : Défaut
- 3 : Après défaut
- 4 : Phase d'initialisation/réinitialisation

Au niveau de la branche de menu [Service / Mode Test (inhib Prot) / Sgen / Configuration / Heure], la durée de chaque phase peut être définie. En outre, les quantités de mesure à simuler peuvent être déterminées (p. ex. : tensions, courants et angles correspondants) pour chaque phase (et terre). La simulation s'arrête si un courant de phase est supérieur à $0.1 \cdot \text{In}$. La simulation peut être redémarrée une fois que le courant est redescendu sous $0.1 \cdot \text{In}$ pendant au moins 5 secondes.

De plus, au niveau de la branche de menu [Service / Mode Test (inhib Prot) / Sgen / Process], il existe deux paramètres de blocage »ExBlo1«, »ExBlo2«. Les signaux affectés à l'un ou l'autre de ces paramètres bloquent le simulateur de panne. Par exemple, il peut être recommandé de bloquer le simulateur de panne (pour raison de sécurité) si le disjoncteur est en position fermée.

Il est également possible d'affecter un signal au paramètre »Ex ForcePost«. Ce signal interrompt l'état effectif du simulateur de panne (Avant défaut ou Défaut), puis il effectue la transition vers l'état Après défaut. Cette fonctionnalité permet de vérifier si le dispositif de protection peut générer une décision de déclenchement appropriée. Si tel est le cas, il n'est pas nécessaire de patienter systématiquement jusqu'à la fin normale de l'état Défaut. Il est possible d'affecter le signal de déclenchement à »Ex ForcePost«. Ceci permet un arrêt immédiat de l'état Défaut dès que le signal de déclenchement a été correctement généré.

DANGER!

Placer le module en mode simulation signifie mettre le dispositif de protection hors service pendant la durée de la simulation. N'utilisez pas cette fonctionnalité pendant le fonctionnement du dispositif si vous ne pouvez pas garantir qu'une protection de secours est en cours d'exécution et fonctionne correctement.

REMARQUE!

Les compteurs d'énergie sont arrêtés pendant que le simulateur de panne est en fonctionnement.

REMARQUE!

Les tensions de simulation sont toujours des tensions phase/neutre, indépendamment de la méthode de connexion des transformateurs de tension secteur (Phase/phase / Wye / Triangle ouvert).

REMARQUE!

En raison des dépendances internes, la fréquence du module de simulation est 0,16 % supérieure à la fréquence nominale.

Simulation à froid

Simulation sans déclenchement du disjoncteur :

La commande de déclenchement (»TripCmd«) de toutes les fonctions de protection est bloquée. La fonction de protection peut se déclencher, mais elle ne génère aucune commande.

 Réglez [Service / Mode Test (inhib Prot) / Sgen / Process] »Mode TripCmd« = « No TripCmd »

Simulation à chaud

La simulation est autorisée à déclencher le disjoncteur :

 Réglez [Service / Mode Test (inhib Prot) / Sgen / Process] »Mode TripCmd« = « Avec TripCmd »

Fonctionnement Marche/Arrêt

Démarrage manuel, pas d'arrêt :

Exécution complète : Avant défaut, Défaut, Après défaut.

- Réglez [Service / Mode Test (inhib Prot) / Sgen / Process] »Ex ForcePost« = « Pas d'affectation »
- Appuyez sur/Affichez le contrôle direct [Service / Mode Test (inhib Prot) / Sgen / Process] »Démar simul«.

Démarrage manuel, arrêt initié par un signal externe :

Forcer l'état postérieur : dès que la valeur de ce signal est vrai (true), la simulation des pannes est forcée de passer en mode Après défaut.

- Réglez [Service / Mode Test (inhib Prot) / Sgen / Process] »Ex ForcePost« sur le signal requis.
- Appuyez sur/Affichez le contrôle direct [Service / Mode Test (inhib Prot) / Sgen / Process] »Démar simul«.

Démarrage manuel, arrêt manuel :

Dès que la commande d'arrêt est émise, la simulation des pannes prend fin et le MRI4 reprend son fonctionnement normal.

- Démarrage : comme décrit ci-dessus.
- Arrêt : Appuyez sur/Affichez le contrôle direct [Service / Mode Test (inhib Prot) / Sgen / Process] »Arrêt simul«.

Démarrage par signal externe :

Le démarrage du simulateur de panne est déclenché par le signal externe affecté (sauf si un courant de phase dépasse $0.1 \cdot$ In ou si le simulateur de panne est bloqué, voir description ci-dessus).

• Réglez [Service / Mode Test (inhib Prot) / Sgen / Process] »Démar simul ex« sur le signal requis.

11 Entretien et maintenance

Dans le cadre de l'entretien et de la maintenance, les contrôles matériels suivants du MRI4 doivent être effectués :

Relais de sortie

Tous les 1 à 4 ans, selon les conditions ambiantes :

• Vérifiez les relais de sortie via les branches de menu test [Service / Mode Test (inhib Prot) / Force RS] / [Service / Mode Test (inhib Prot) / DÉSARMÉ], voir > « Aide à l'entretien et à la mise en service »).

Entrées numériques

Tous les 1 à 4 ans, selon les conditions ambiantes :

• Fournissez une tension aux entrées numériques et vérifiez si le signal d'état approprié apparaît.

Prises de courant et mesures actuelles

Tous les 1 à 4 ans, selon les conditions ambiantes :

• Fournissez un courant de test aux entrées de mesure de courant et vérifiez les valeurs de mesure affichées par le MRI4.

Batterie

En général, la durée de vie de la batterie est supérieure à 10 ans. Échange par Woodward.

Avis : la batterie sert de tampon à l'horloge (horloge en temps réel). Les fonctionnalités du dispositif ne sont pas affectées si la batterie tombe en panne, sauf pour la mémoire tampon de l'horloge lorsque l'appareil n'est plus alimenté.

• Le dispositif vérifie l'état de la batterie dans le cadre de son processus d'autosurveillance, c'est pourquoi aucune opération de test dédiée n'est nécessaire. Si la charge de la batterie est basse, la DEL Système clignote en rouge/vert et un code d'erreur est généré (voir le *Guide de dépannage*).

Contact d'auto-surveillance

Tous les 1 à 4 ans, selon les conditions ambiantes :

• Débranchez l'alimentation auxiliaire de l'unité. Ensuite, le Contact d'autosurveillance doit s'ouvrir. Rebranchez l'alimentation auxiliaire.

Montage mécanique de l'unité de la porte de l'armoire

À chaque entretien ou annuellement :

Couple de toutes les connexions de câble

À chaque entretien ou annuellement :

Vérifiez le couple par rapport aux spécifications du chapitre Installation (MRI4 - Installation et câblage ») qui décrit les modules matériels.

Nous recommandons de procéder à un test de protection tous les 4 ans. Cet intervalle peut être étendu à 6 ans si un test fonctionnel est réalisé tous les 3 ans.

12 Données techniques

REMARQUE!

Utilisez uniquement des fils de cuivre, 75 °C.

Taille du conducteur AWG 14 [2,5 mm²].

Données environnementales et climatiques

Température de stockage :	-30°C à +70°C (-22°F à 158°F)
Température de fonctionnement :	-20°C à +60°C (-4°F à 140°F)
Humidité admissible en moyenne :	<75 % rel. (sur 56 jusqu'à 95 % rel.)
Altitude d'installation admise :	< 2 000 m (6 561,67 pi) au dessus du niveau de la mer Dans le cas d'une altitude de 4 000 m (13 123,35 pi), l'application d'un changement de
	classification de fonctionnement et des tensions d'essais peut s'avérer nécessaire.

Degré de pollution et catégorie d'équipement

Degré de pollution :	2
Catégorie d'équipement :	1

Degré de protection EN 60529

Panneau avant du HMI avec opercules	IP54
Panneau avant du HMI sans opercules	IP50
Bornes à l'arrière	IP20

Essai de routine

Essai d'isolement conformément à la norme CEI 60255-5 :	Tous les tests doivent être réalisés par rapport à la terre et d'autres circuits d'entrée et de sortie.
Alimentation auxiliaire, entrées numériques, entrées de mesure de courant, signal de relais de sortie :	3 kV (eff.) / 50 Hz
Entrées de mesure de tension :	3 kV (eff.) / 50 Hz
Toutes les interfaces de communication câblées :	1,5 kVcc

Boîtier

Boîtier B1 : Hauteur/Largeur :	183 mm (7,205 po) / 141,5 mm (5,571 po)

Profondeur du boîtier (avec bornes) :	208 mm (8,189 po)
Matériau du boîtier :	Aluminium extrudé
Matériau du panneau avant :	Feuille d'aluminium
Position de montage :	Horizontal (±45 ° autorisé par rapport à l'axe des abscisses)
Poids:	environ 2,4 kg (5,291 lb)

Mesure du courant et du courant à la terre

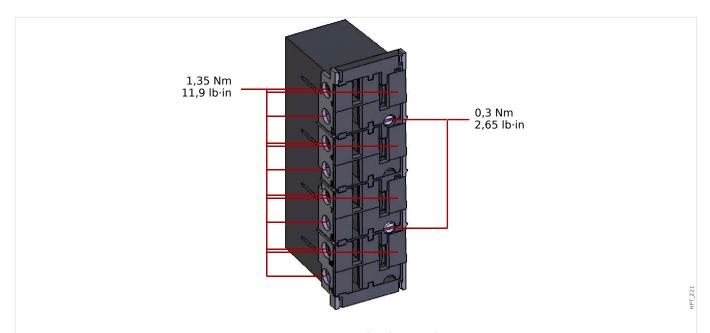


Fig. 80: Connecteur enfichable avec sectionneur intégré (Entrées de courant conventionnelles)

Plage de fréquence :	50 Hz / 60 Hz ± 10 %
Bornes :	Borniers à vis avec sectionneurs intégrés (contacts)
Vis	Captives M4, suivant le protocole VDEW
Sections de raccordement :	1 x ou 2 x 2,5 mm ² (2 x AWG 14) avec embout
	$1 \times ou \ 2 \times 4,0 \ mm^2 \ (2 \times AWG \ 12)$ avec manchon de câble ou de contournement.
	$1 \times ou \ 2 \times 6 \ mm^2$ (2 x AWG 10) avec manchon de câble ou de contournement.
	Les borniers de la carte de mesure du courant peuvent être utilisés avec 2 (double) conducteurs AWG 10, 12, 14 ou sinon avec des conducteurs simples.

Mesure du courant de phase et de terre :	
Courant nominal :	1 A / 5 A
Plage de mesure max. :	jusqu'à 40 x In (courant de phase)
	jusqu'à 25 x In (courant de terre standard)
Capacité :	4 x In/en continu
Protection contre les surintensités :	30 x ln / 10 s
	100 x ln / 1 s
	250 x In/10 ms (1 demi-onde)
Consommation :	Entrées de courant de phase
	À In = 1 A : S = 25 mVA
	À In = 5 A : S = 90 mVA
	Entrée de courant à la terre
	À In = 1 A : S = 25 mVA
	À In = 5 A : S = 90 mVA

Entrées de courant sensible à la terre :	
Courant nominal :	1 A / 5 A
Plage de mesure max. :	Jusqu'à 2,5 x In
Capacité :	2 x In/en continu
Protection contre les surintensités :	10 x ln / 10 s
	25 x ln / 1 s
	100 x In/10 ms (1 demi-onde)
Consommation :	À 1 A : S = 550 mVA
	A 0,1 A : S = 7 mVA
	À 5 A : S = 870 mVA
	À 0,5 A : S = 10 mVA

Mesure de la fréquence

Fréquences nominales :	50 Hz / 60 Hz
------------------------	---------------

Tension d'alimentation

Tension aux. :	$24 - 270 \text{Ucc} / 48 - 230 \text{Uca} (-20/+10 \%) \approx$
Temps de marge en cas de rupture d'alimentation :	>= 50 ms à la tension auxiliaire minimale
	Le dispositif va s'arrêter après expiration du temps de marge.
	Remarque : la communication peut être interrompue.
Courant de fermeture permissible max. :	valeur de crête 18 A pour < 0,25 ms
	valeur de crête 12 A pour < 1 ms
Fusible (intégré à l'unité d'alimentation longue portée) :	6,3 A temporisé
	(Ce fusible ne doit pas être remplacé par l'utilisateur, mais il est nécessaire pour une utilisation sûre.)

La tension d'alimentation doit être protégée par un fusible externe :

- fusible miniature temporisé 2,5 A, 5 x 20 mm (environ 1/5 po x 0,8 po) selon la norme CEI 60127
- fusible miniature temporisé 3,5 A, 6,3 x 32 mm (environ 1/4 po x 1 $\frac{1}{4}$ po) selon la norme UL 248-14

Consommation

Plage d'alimentation	Consommation en mode ralenti	Consommation max.
24 - 270 Ucc:	Approx. 7 W	Approx. 10 W
48 - 230 Uca:	Approx. 7 W / 13 VA	Approx. 10 W / 17 VA
(pour les fréquences de 50/60 Hz) :		

Affichage

Type d'écran :	LCD avec DEL de rétroéclairage
Résolution graphique de l'écran :	128 x 64 pixels

DEL

Type de DEL :	Bicolore (rouge/vert)
Nombre de DEL, boîtier B1 :	8

Interface frontale USB

Type:	Mini-B
-------	--------

Horloge en temps réel

Réserve de marche de l'horloge en temps réel : 1 an minimum

Entrées numériques

Tension d'entrée max. :	300 Ucc / 259 Uca
Courant d'entrée :	cc <4 mA
	ca <16 mA
Temps de réaction :	< 20 ms
Temps de reprise :	
Entrées de court-circuit	< 30 ms
Entrées ouvertes	< 90 ms

Seuils de commutation :	24 VCC, 48 VCC, 60 VCC, 110 VCC, 110 VCA, 230 VCC, 230 VCA
Un = 24 Ucc	
Seuil de commutation 1 ON :	min. 19,2 Ucc
Seuil de commutation 1 OFF :	max. 9.6 Ucc
Un = 48 V / 60Ucc	
Seuil de commutation 2 ON :	min. 42,6 Ucc
	max. 21.3 Ucc

Seuil de commutation 2 OFF :	
Un = 110 / 120 Uca / cc	
Seuil de commutation 3 ON :	min. 88 Ucc / 88 Uca
Seuil de commutation 3 OFF :	max. 44 Ucc / 44 Uca
Un = 230 / 240 Uca / cc	
Seuil de commutation 4 ON :	min. 184 Ucc / 184 Uca
Seuil de commutation 4 OFF :	max. 92 Ucc / 92 Uca
Bornes :	Borne à vis

Relais de sortie binaire

Courant continu :	5 A ca/cc
Courant de commutation max. :	25 A ca/cc pendant 4 s
	30 A ca/cc pendant 0,5 s
	48W (VA) à G/D = 40 ms
	30 A / 230 Uca selon la norme ANSI IEEE C37.90-2005
	30 A / 250 Ucc selon la norme ANSI IEEE C37.90-2005
Courant de déclenchement max. :	5 A ca jusqu'à 240 Uca
	4 A ca à 230 U et cos $\phi = 0.4$
	5 A cc jusqu'à 30 U (résistif)
	0,3 A cc à 250 U (résistif)
	0.1 A cc à 220 U et G/D = 40 ms
Tension de commutation max. :	250 Uca / 250 Ucc
Capacité de commutation :	3000 VA
Temps de fonctionnement : (*)	typ. 7 ms
Délai de réinitialisation : (*)	typ. 3 ms
Type de contact :	1 contact à bascule ou normalement ouvert ou normalement fermé
Bornes :	Bornes à vis

^(*) Le temps de fonctionnement et les délais de réinitialisation correspondent aux temps de commutation matérielle pures (bobine – contact d'alimentation/coupure), c'est-à-dire sans le temps nécessaire au logiciel pour calculer les décisions.

Contact de surveillance (SC)

Courant continu :	5 A ca/cc
Courant de commutation max. :	15 A ca/cc pendant 4 s
Courant de déclenchement max. :	5 A ca jusqu'à 250 Uca
	5 A cc jusqu'à 30 U (résistif)
	0,25 A cc à 250 U (résistif)
Tension de commutation max. :	250 Uca / 250 Ucc
Capacité de commutation :	1250 VA
Type de contact :	1 contact à bascule
Bornes :	Bornes à vis

Synchronisation de temps IRIG-B00X

Tension d'entrée nominale :	5 U
Connexion:	Borniers à vis (paire torsadée)

RS485*

* disponibilité selon le module

Connexion:	Connecteur D-Sub 9 broches (résistances de terminaison externes/dans D-Sub)
	ou bornes à 6 vis RM 3,5 mm (138 MIL) (résistances de terminaison internes)

PRUDENCE!

Si l'interface RS485 est dotée de bornes, le câble de communication doit être blindé.

Module fibre optique avec connecteur ST*

* disponibilité selon le module

Connecteur:	Port ST
Fibre compatible :	$50/125~\mu m,~62,5/125~\mu m,~100/140~\mu m$ et $200~\mu m$ HCS
Longueur d'onde	820 nm
Puissance d'entrée optique minimale :	-24 dBm
Puissance de sortie optique minimale :	$-19,8$ dBm avec fibre 50/125 μm

	–16,0 dBm avec fibre 62,5/125 μm
	$-12,5$ dBm avec fibre 100/145 μm
	–8,5 dBm avec fibre 200 μm HCS
Longueur maximale de la liaison :	approx. 2,7 km (en fonction de l'atténuation)

Remarque : La vitesse de transmission des interfaces optiques est limitée à 3 MBaud pour les liaisons Profibus.

Module Ethernet optique avec connecteur LC*

* disponibilité selon le module

Connecteur:	Port LC
Fibre compatible :	50/125 μm et 62,5/125 μm
Longueur d'onde :	1300 nm
Puissance d'entrée optique minimale :	-30 dBm
Puissance de sortie optique minimale :	$-22,5$ dBm avec fibre 50/125 μm
	–19 dBm avec fibre 62,5/125 μm
Longueur maximale de la liaison :	approx. 2 km (en fonction de l'atténuation)

Connexions Smart view

Le MRI4 peut communiquer avec le logiciel d'utilisation Smart view, comme suit :

- Connexion USB (via l'interface USB située à l'avant du MRI4).
- Connexion TCP/IP (via l'interface Ethernet* située sur le panneau arrière du MRI4).
 (* disponibilité selon le dispositif)

Il peut y avoir jusqu'à 3 sessions Smart view simultanées avec le même dispositif MRI4.

Messages d'auto-surveillance

La capacité de stockage pour les messages d'auto-surveillance (voir \Longrightarrow « Messages d'auto-surveillance ») se décompose comme suit :

- **E** Erreurs jusqu'à 500 messages. Chaque nouvelle erreur au-delà de ce nombre supprime le message d'erreur le plus ancien.
- **W** Avertissements jusqu'à 500 messages. Chaque nouvel avertissement au-delà de ce nombre supprime le message d'avertissement le plus ancien.
- I Messages d'information jusqu'à 500 Chaque nouveau message d'information au-delà de ce nombre supprime le message d'avertissement le plus ancien.

Phase d'amorçage

La protection est disponible environ 6 secondes après la mise sous tension. Au bout de 27 secondes environ (selon la configuration), la phase d'amorçage est terminée (HMI et communications initialisés).

12.1 Spécifications / Tolérances

12.1.1 Spécifications de l'horloge en temps réel

Résolution :	1 ms
Tolérance :	< 1 minute/mois (+20 °C [68 °F])
	$<\pm~1~{ m ms}$ si synchronisé via IRIG-B

Tolérances de synchronisation horaire

La précision des différents protocoles de synchronisation horaire est variable :

Protocole utilisé	Écart de temps sur un mois	Écart par rapport au générateur d'horloge
Sans synchronisation de temps	< 1 min (+20 °C)	Écarts de temps
IRIG-B	Selon l'écart de temps du générateur d'horloge	< ± 1 ms
SNTP	Selon l'écart de temps du générateur d'horloge	$<\pm 1$ ms, si la connexion réseau est de BONNE qualité (vérifier l'état de fonctionnement de SNTP)
CEI 60870-5-103	Selon l'écart de temps du générateur d'horloge	< ± 1 ms
Modbus TCP	Selon l'écart de temps du générateur d'horloge	Selon la charge du réseau
Modbus RTU	Selon l'écart de temps du générateur d'horloge	< ± 1 ms
DNP3 TCP	Selon l'écart de temps du générateur d'horloge	Selon la charge du réseau
DNP3 UDP	Selon l'écart de temps du générateur d'horloge	Selon la charge du réseau
DNP3 RTU	Selon l'écart de temps du générateur d'horloge	< ± 1 ms

Notez que la disponibilité des protocoles dépend de la variante de MRI4 commandée (voir « Formulaire de commande du dispositif »).

12.1.2 Spécifications de l'acquisition de valeurs mesurées

Mesure du courant de phase et de terre

Plage de fréquence :	50 Hz / 60 Hz ± 10 %
Précision :	classe 0,5
Erreur d'amplitude si I < In :	±0,5 % du courant nominal *3)
Erreur d'amplitude si I > In :	±0,5 % du courant mesuré *3)
Erreur d'amplitude si I > 2 In :	±1,0 % du courant mesuré *3)
Harmoniques :	jusqu'à 20 % de la 3ème harmonique ±2 %
	jusqu'à 20 % de la 5ème harmonique ±2 %
Effet de la fréquence :	$<\pm2$ % / Hz dans la plage de ±5 Hz de la fréquence nominale configurée
Effet de la température :	$<\pm1$ % dans la plage de 0°C à + 60 °C (+32 °F à + 140 °F)

 $^{^{*3)}}$ Pour le courant de terre sensible, la précision ne dépend pas de la valeur nominale, mais elle est référencée à 100 mA (avec In = 1 A) respectivement. 500 mA (avec In = 5 A).

12.1.3 Précision des éléments de protection

REMARQUE!

Le délai de déclenchement fait référence au temps écoulé entre l'alarme et le déclenchement. La précision du temps de fonctionnement est relative au temps écoulé entre l'entrée par défaut et le moment où l'élément de protection est excité.

Conditions de référence pour tous les éléments de protection : onde sinusoïdale, à fréquence nominale, THD < 1 %, méthode de mesure : Fondamental

12.1.3.1 Protection contre les surintensités

Éléments de protection contre les surintensités :	Précision
I[x]	
l>	$\pm 1,5$ % de la valeur du paramètre ou ± 1 % In.
Rapport de compensation	97 % ou 0,5 % In
t	DEFT
	±1 % ou ±10 ms
Temps de fonctionnement	< 36 ms
À un courant de test ≥ 2 fois la valeur d'excitation	
Temps de dégagement	< 55 ms
tchar	±5 % (en fonction de la courbe sélectionnée)
Délai de réinit. décl. (»Réini mode«= « retardée »)	±1 % ou ±10 ms

Éléments de protection contre les surintensités : I[x] avec le réglage »Méthode mesure«= "12" (courant inverse)	Précision
l>	$\pm 2,0$ % de la valeur du paramètre ou ± 1 % In.
Rapport de compensation	97 % ou 0,5 % In
t	DEFT
	±1 % ou ±10 ms
Temps de fonctionnement	<60 ms
À un courant de test ≥ 2 fois la valeur d'excitation	
Temps de dégagement	< 45 ms

12.1.3.2 Protection de surintensité à la terre

Éléments de protection contre les surintensités à la terre : IG[x]	Précision *3)
IG>	±1,5 % de la valeur du paramètre ou 1 % In.
Rapport de compensation	97 % ou 0,5 % In
t	DEFT
	±1 % ou ±10 ms
Temps de fonctionnement	< 45 ms
À partir de IE supérieur à 1,2 x IE>	
Temps de dégagement	< 55 ms
tchar	±5 % (en fonction de la courbe sélectionnée)
Délai de réinit. décl. (»Réini mode«= « retardée »)	±1 % ou ±10 ms
VG>	$\pm 1,5$ % de la valeur du paramètre ou ± 1 % Vn.
Rapport de compensation	97 % ou 0,5 % Vn

[•] $^{*3)}$ Pour le courant de terre sensible, la précision ne dépend pas de la valeur nominale, mais elle est référencée à 100 mA (avec In = 1 A), respectivement 500 mA (avec In = 5 A)

12.1.3.3 Protection thermique

Image thermique :	Précision *1)
ThR	
K·Ib	±5 % de la valeur de réglage ou 1 % In
Délai de déclenchement, conformément à l'équation dans > « 4.6 Temps de déclenchement », pour objet à l'état froid (c'est-à-dire pas the chauffage précédent)	±5 % de la valeur calculée ou ±1 s
Rapport de compensation	97 %

 $^{^{*1)}}$ Précision pour les valeurs de réglage suivantes :

- $K \cdot lb \ge 0.1 ln$
- t-chau ≤ 30000 s
- t-ref ≤ 30000 s

12.1.3.4 Protection associée au courant

Surveillance du courant d'appel :	Précision
IH2	
IH2 / IH1	±1 % In
Rapport de compensation	5 % IH2 ou 1 % In
Temps de fonctionnement	<30 ms*1)

• $^{*1)}$ La surveillance du courant d'appel est possible si l'harmonique fondamentale (IH1) > 0,1 In et 2ème harmonique (IH2) > 0,01 In.

Courant de déséquilibre :	Précision *1)
I2>[x]	
12>	±2 % de la valeur du paramètre ou 1 % In.
Rapport de compensation	97 % ou 0,5 % In
%(I2/I1)	±1 %
t	DEFT
	±1 % ou ±10 ms
Temps de fonctionnement	< 70 ms
Temps de dégagement	< 50 ms
K	±5 % INV
t-ref	±5 % INV

^{• *1)} Le courant de séquence négative I2 doit être \geq 0,01 x In ; le courant de séquence positive I1 doit être \geq 0,1 x In.

12.1.3.5 Protection et surveillance diverses

Réenclenchement automatique :	Précision
AR	
t (tous les temporisateurs)	±1 % ou ±20 ms

Enclenchement sur défaut :	Précision
SOTF	
Temps de fonctionnement	< 35 ms
l<	±1,5 % de la valeur de réglage ou 1 % In
t-activ	±1 % ou ±20 ms

Excitation de charge à froid :	Précision
CLPU	
Seuil	$\pm 1,5$ % de la valeur du paramètre ou 1 % ln.
Temps de fonctionnement	< 35 ms
l<	$\pm 1,5$ % de la valeur du paramètre ou 1 % ln.
t-char Off	±1 % ou ±15 ms
t-max boc	±1 % ou ±15 ms
Tps établis	±1 % ou ±15 ms

Protection contre les défauts de disjoncteur :	Précision
CBF	
t-CBF	±1 % ou ±10 ms
I-CBF >	±1,5 % de la valeur du paramètre ou 1 % In
Temps de fonctionnement	< 40 ms
À partir de I supérieur à 1,3 x I-CBF >	
Temps de dégagement	< 40 ms

Déclenchement de surveillance du circuit :	Précision
TCS	
t-TCS	±1 % ou ±10 ms

Surveillance du transformateur de courant :	Précision
стѕ	
ΔΙ	±2 % de la valeur du paramètre ou 1,5 % In
Rapport de compensation	94 %
Ret alarme	±1 % ou ±10 ms

13 Annexe

13.1 Normes

13.1.1 Homologations

CE	
	N° fichier UL : E217753 certification UL508 (Commandes industrielles)
€ ®	N° fichier CSA : 251990) certification CSA-C22.2 No. 14 (Commandes industrielles)
	EAC certification EAC (conformité Eurasie)
KEMA≼	KEMA Type testé (et certifié) selon CEI 60255-1 et selon CEI 61850
KE	KESCO 동일성 선언서 (Déclaration d'identité)

- Conforme IEEE 1547-2003
- Révision IEEE 1547a-2014
- Conforme ANSI C37.90-2005

13.1.2 Normes de conception

Norme générique	EN 61000-6-2, 2005
	EN 61000-6-3, 2006
Norme applicable au produit	CEI 60255-1; 2009
	CEI 60255-26 ; 2013
	CEI 60255-27; 2013
	UL 508 (équipement de commande industriel), 2005
	CSA C22.2 No. 14-95 (équipement de commande industriel),1995
	ANSI C37.90, 2005

13.1.3 Tests électriques

Essais haute tension

Essai sur les interférences haute tension		
CEI 60255-22-1	Dans un circuit	1 kV / 2 s
CEI 60255-26		
IEEE C37.90.1		
CEI 61000-4-18		
	Circuit à la terre	2,5 kV / 2 s
classe 3	Circuit à circuit	2,5 kV / 2 s

Test de tension d'isolement		
CEI 60255-27	Tous les circuits allant à d'autres circuits et pièces conductrices	2,5 kV (eff.) / 50Hz, 1 min.
CEI 60255-5	exposées	
EN 50178		
	Interfaces d'exception	1,5 kV CC, 1 min.
	Entrées mesure tension	3 kV (eff.)/50 Hz, 1 min

Test d'impulsion de haute tension		
CEI 60255-27		5 kV / 0,5 J, 1,2 / 50 μs
CEI 60255-5		

Test de résistance d'isolement		
CEI 60255-27	Dans un circuit	500 V CC , 5 s
EN 50178		
	Circuit à circuit	500 V CC , 5 s

Essais d'immunité CEM

Essai d'immunité aux transitoires électriques rapides en salves		
CEI 60255-22-4	Entrées d'alimentation, secteur	±4 kV, 2,5 kHz
CEI 60255-26	Autres entrées et sorties	±2 kV, 5 kHz
CEI 61000-4-4		

Essai d'immunité aux transitoires électriques rapides en salves		
classe 4		

Essai d'immunité aux ondes de choc (saut)		
CEI 60255-22-5	Dans un circuit	2 kV
CEI 60255-26	Circuit à la terre	4 kV
CEI 61000-4-5		
classe 4		
classe 3	Câbles de communication à la terre	2 kV

Essai d'immunité aux décharges électrostatiques (DES)		
CEI 60255-22-2	Décharge dans l'air	8 kV
CEI 60255-26	Décharge au contact	6 kV
CEI 61000-4-2		
classe 3		

Essai d'immunité aux champs électromagnétiques rayonnés aux fréquences radioélectriques		
CEI 60255-22-3	26 MHz / 80 MHz	10 V/m
CEI 60255-26	80 MHz / 1 GHz	35 V/m
CEI 61000-4-3	1 GHz / 3 GHz	10 V/m

Immunité aux perturbations conduites, induites par les champs radioélectriques		
CEI 61000-4-6	150 kHz / 80 MHz	10 V
CEI 60255-26		
classe 3		

Essai d'immunité au champ magnétique de la fréquence du réseau		
CEI 61000-4-8	continu	30 A/m
CEI 60255-26	3 secondes	300 A/m
classe 4		

Essais d'émission CEM

Essai de suppression des interférences radio		
CEI/CISPR 22	150kHz / 30MHz	Valeur limite classe B
CEI 60255-26		

Essai de rayonnement des interférences radio		
IEC/CISPR 11	30MHz / 1GHz	Valeur limite classe A
CEI 60255-26		

13.1.4 Essais d'environnement

Classification		
CEI 60068-1	Classification climatique	20/060/56
CEI 60721-3-1	Classification des conditions d'environnement (Stockage)	1K5/1B1/1C1L/1S1/1M2 mais min30°C (-22°F)
CEI 60721-3-2	Classification des conditions d'environnement (Transport)	2K2/2B1/2C1/2S1/2M2 mais min30°C (-22°F)
CEI 60721-3-3	Classification des conditions d'environnement (Utilisation à poste fixe, protégé contre les intempéries)	3K6/3B1/3C1/3S1/3M2 mais min20°C (-4°F) / max. 60°C (140°F)
Essai A : Froid		
CEI 60068-2-1	Température	-4°F / -20°C
CEI 60255-27	Durée de l'essai	16 h
Essai B : Chaleur sèche		
CEI 60068-2-2	Température	140°F / 60°C
CEI 60255-27	Humidité relative	<50 %
	Durée de l'essai	72 h
Essai Cab : Chaleur humid	e (Stable)	
CEI 60255-27	Température	140°F / 60°C
CEI 60068-2-78	Humidité relative	95%
	Durée de l'essai	56 jours
Essai Db : Chaleur humide (Cyclique)		
CEI 60068-2-30	Température	140°F / 60°C
CEI 60255-27	Humidité relative	95%
	Cycles (12 h + 12 h)	2

Essai Nb : Variation de température		
CEI 60068-2-14	Température	60 °C / -20 °C
	cycle	5
	Durée de l'essai	1 °C/5 min

Essai BD : Essai de transport de chaleur sèche et de stockage		
CEI 60255-27	Température	70°C
CEI 60068-2-2	Durée de l'essai	16 h

Essai AB : Essai de transport à froid et de stockage		
CEI 60255-27	Température	-30°C
CEI 60068-2-1	Durée de l'essai	16 h

13.1.5 Essais mécaniques

Essai Fc : Essai de réponse aux vibrations		
CEI 60068-2-6	(10 Hz / 59 Hz)	0,035 mm (0,0014 po)
CEI 60255-27	Déplacement	
CEI 60255-21-1	(59Hz / 150Hz)	0,5 gn
classe 1	Accélération	
	Nombre de cycles sur chaque axe	1

Essai Fc : Essai d'endurance aux vibrations		
CEI 60068-2-6	(10 Hz / 150 Hz)	1,0 gn
CEI 60255-21-1	Accélération	
classe 1	Nombre de cycles sur chaque axe	20

Essai Ea : Essai de résistance aux chocs		
CEI 60068-2-27 CEI 60255-27	Essai de réponse aux chocs	5 gn, 11 ms, 3 impulsions dans chaque direction
CEI 60255-21-2 classe 1	Essai de résistance aux chocs	15 gn, 11 ms, 3 impulsions dans chaque direction

Essai Eb : Essai d'endurance aux chocs		
CEI 60068-2-29	Essai d'endurance aux chocs	10 gn, 16 ms, 1000 impulsions dans
CEI 60255-21-2		chaque direction
classe 1		

Essai Fe : Essai sismique		
CEI 60068-3-3	Essai de vibrations sismiques dans un seul axe	1 à 9 Hz horizontal : 7,5 mm (0,295 po)
CEI 60255-27	Seul die	(0,293 μ0)
CEI 60255-21-3		1 à 9 Hz vertical : 3,5 mm (0,137 po)
		1 balayage par axe
classe 2		9 à 35 Hz horizontal : 2 gn,
		9 à 35 Hz vertical : 1 gn,

Essai Fe : Essai sismique	
	1 balayage par axe

13.2 Interopérabilité CEI 60870-104

Cette norme complémentaire présente les groupes de paramètres et les paramètres alternatifs à partir desquels les sous-groupes doivent être sélectionnés pour implémenter des systèmes de téléconduite particuliers. Certaines valeurs de paramètres, telles que le choix des champs « structurés » ou « non structurés » de l'ADRESSE DE L'OBJET INFORMATION des ASDU, représentent des alternatives qui s'excluent mutuellement. Cela signifie qu'une seule valeur des paramètres définis est autorisée par système. D'autres paramètres, tels le groupe listé des différentes informations de processus dans la commande et la direction de la surveillance permettent de spécifier le groupe complet ou des sous-groupes, en fonction des besoins des applications. Cette clause résume les paramètres des clauses précédentes afin de faciliter une sélection appropriée pour une application données. Si un système est composé de l'équipement issu de fabricants différents, il est nécessaire que tous les partenaires s'accordent sur les partenaires sélectionnés.

La liste d'interoperabilité est définie dans la norme CEI 60870-5-101 et étendue avec les paramètres utilisés dans cette norme. Les descriptions de paramètres qui ne s'appliquent pas à cette norme supplémentaire sont barrées et la case à cocher correspondante est noire.

REMARQUE : en outre, la spécification complète d'un système peut nécessiter la sélection individuelle de certains paramètres pour certaines parties du système, telle que la sélection individuelle des facteurs d'échelle pour les valeurs mesurées adressables individuellement.

Les paramètres sélectionnés ont été marqués comme suit :

	La fonction ou l'ASDU n'est pas utilisé.
[X]	La fonction ou l'ASDU est utilisé conformément à la norme (par défaut).
[R]	La fonction ou l'ASDU est utilisé en mode inverse.
[B]	La fonction ou l'ASDU est utilisé en mode standard et inverse.

La sélection possible (vide, X, R ou B) est spécifiée pour chaque clause ou paramètre spécifique.

13.2.1 Système ou dispositif

(Paramètre spécifique au système, indique la définition d'un système ou d'un dispositif en cochant l'un des éléments suivants à l'aide d'un « X »)

	Définition d'un système
	Définition d'une station de commande (Maître)
[X]	Définition d'une station téléopérée (Esclave)

13.2.2 Configuration réseau

(Paramètre spécifique au réseau, toutes les configurations utilisées doivent être cochées à l'aide d'un « X »)

	Point à point		Multipoint
--	---------------	--	------------

		Point à point multiple		Étoile multipoint
--	--	------------------------	--	-------------------

13.2.3 Couche physique

(Paramètre spécifique au réseau, toutes les interfaces et débits binaires utilisés doivent être cochés à l'aide d'un « X »)

Vitesse de transmission (contrôle de la direction)

100 bit/s	2400 bit/s	2400 bit/s
200 bit/s	4800 bit/s	4800 bit/s
300 bit/s	9600 bit/s	9600 bit/s
600 bit/s		19200 bit/s
1200 bit/s		38400 bit/s
		64000 bit/s

Vitesse de transmission (surveillance de la direction)

100 bit/s	2400 bit/s	2400 bit/s
200 bit/s	4800 bit/s	4800 bit/s
300 bit/s	9600 bit/s	9600 bit/s
600 bit/s		19200 bit/s
1200 bit/s		38400 bit/s
		64000 bit/s

13.2.4 Couche de liaison

(Paramètre spécifique au réseau, toutes les options utilisées doivent être cochées à l'aide d'un « X ». Spécifiez la longueur de trame maximum. Si une affectation non standard de messages de classe 2 est implémentée pour une transmission déséquilibrée, indique l'ID du type et la cause de transmission (COT) de tous les messages affectés à la classe 2.)

Le format de trame FT 1.2, le caractère 1 et l'intervalle de temporisation fixe sont utilisés exclusivement dans cette norme supplémentaire.

Transmission de liaison			Champ d'adresse de la liaison		
-	Transmission équilibrée	-	Non présent(e) (transmission équilibrée uniquement)		
	Transmission déséquilibrée		Un octet		
			Deux octets		
			Structuré(e)		

Transmission de liaison	Champ d'adresse de la liaison
	■ Non structuré(e)

■ Longueur maximale L (nombre d'octets)

Lors de l'utilisation d'une couche de liaison déséquilibrée, les types d'ASDU suivants sont déclassés en messages de classe 2 (basse priorité) avec les causes de transmission indiquées :

L'affectation des ASDU aux messages de classe 2 est utilisée comme suit :

Identification du type	Cause de la transmission
9, 11, 13, 21	<1>

■ Les affectations spéciales des ASDU aux messages de classe 2 ne sont pas utilisées.

Remarque : (En réponse à une interrogation de classe 2, une station contrôlée peut répondre avec des données de classe 1 quand aucune donnée de classe 2 n'est disponible).

13.2.5 Couche d'application

Mode de transmission pour les données d'application

Le mode 1 (octet le moins significatif en premier), tel que défini dans l'article 4.10 de CEI 60870-5-4, est exclusivement utilisé dans cette norme supplémentaire.

Adresse commune d'ADSU

(Paramètre spécifique au système, toutes les configurations utilisées doivent être cochées à l'aide d'un « X »)

	Un octet	[X]	Deux octets
_	on occer	F, . 1	Dean detets

Adresse de l'objet Information (en anglais, Information object address)

(Paramètre spécifique au système, toutes les configurations utilisées doivent être cochées à l'aide d'un « X »)

	Un octet	[X]	Structuré(e)
	Deux octets	[X]	Non structuré(e)
[X]	Trois octets		

Cause de la transmission

(Paramètre spécifique au système, toutes les configurations utilisées doivent être cochées à l'aide d'un « X »)

-	Un octet	[X]	Deux octets (avec l'adresse de l'expéditeur).
			L'adresse de l'expéditeur est réglée sur zéro si elle n'est pas utilisée.

Longueur de l'APDU

(Paramètre spécifique au système, spécifiez la longueur maximale de l'APDU pour chaque système)

La longueur maximale de l'APDU est 253 (par défaut). La longueur maximale peut être réduite par le système.

■ Longueur maximale de l'APDU par système

Sélection d'ASDU standard

Informations sur le processus dans la direction de la surveillance

(Paramètre spécifique à la station, indicateur « X » pour chaque ID de type s'il est uniquement utilisé dans la direction standard, « R » s'il est uniquement utilisé dans la direction inverse et « B », s'il est utilisé dans les deux directions)

[X]	<1>	:= Information 1 point	M_SP_NA_1
	<2>	:= Information 1 point avec identificateur temporel	M_SP_TA_1
[X]	<3>	:= Information 2 points	M_DP_NA_1
	<4>	:= Information 2 points avec identificateur temporel	M_DP_TA_1
	<5>	:= Information de position d'étape	M_ST_NA_1
	<6>	:= Information de position d'étape avec identificateur temporel	M_ST_TA_1
[X]	<7>	:= Chaîne binaire de 32 bits	M_BO_NA_1
	<8>	:= Chaîne binaire de 32 bits avec identificateur temporel	M_BO_TA_1
[X]	<9>	:= Valeur mesurée, valeur normalisée	M_ME_NA_1
	<10>	:= Valeur mesurée, valeur normalisée avec identificateur temporel	M_ME_TA_1
[X]	<11>	:= Valeur mesurée, valeur adaptée	M_ME_NB_1
	<12>	:= Valeur mesurée, valeur adaptée avec identificateur temporel	M_ME_TB_1
[X]	<13>	:= Valeur mesurée, nombre à virgule flottante abrégé	M_ME_NC_1
	<14>	:= Valeur mesurée, nombre à virgule flottante abrégé avec identificateur temporel	M_ME_TC_1
[X]	<15>	:= Totaux intégrés	M_IT_NA_1
	<16>	:= Totaux intégrés avec identificateur temporel	M_IT_TA_1
•	<17>	:= Événement d'équipement de protection avec identificateur temporel	M_EP_TA_1

	<18>	:= Événements de démarrage d'équipement de protection avec identificateur temporel	M_EP_TB_1
	<19>	:= Information de circuit de sortie d'équipement de protection avec identificateur temporel	M EP TC 1
	<20>	:= Information 1 point avec détection de changement d'état	M_SP_NA_1
	<21>	:= Valeur mesurée, valeur normalisée sans descripteur de qualité	M_ME_ND_1
[X]	<30>	:= Information 1 point avec identificateur temporel CP56Time2a	M_SP_TB_1
[X]	<31>	:= Information 2 points avec identificateur temporel CP56Time2a	M_DP_TB_1
	<32>	:= Information de position d'étape avec identificateur temporel CP56Time2a	M_ST_TB_1
[X]	<33>	:= Chaîne binaire de 32 bits avec identificateur temporel CP56Time2a	M_BO_TB_1
[X]	<34>	:= Valeur mesurée, valeur normalisée avec identificateur temporel CP56Time2a	M_ME_TD_1
[X]	<35>	:= Valeur mesurée, valeur adaptée avec identificateur temporel CP56Time2a	M_ME_TE_1
[X]	<36>	:= Valeur mesurée, nombre à virgule flottante abrégé avec identificateur temporel CP56Time2a	M_ME_TF_1
[X]	<37>	:= Totaux intégrés avec identificateur temporel CP56Time2a	M_IT_TB_1
	<38>	:= Événement d'équipement de protection avec identificateur temporel CP56Time2a	M_EP_TD_1
	<39>	:= Événements de démarrage d'équipement de protection avec identificateur temporel CP56Time2a	M_EP_TE_1
	<40>	:= Information de circuit de sortie d'équipement de protection avec identificateur temporel CP56Time2a	M_EP_TF_1

Les ASDU du groupe <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, <19> ou du groupe <30> - <40> sont utilisés.

Informations sur le processus dans la direction de la contrôle

(Paramètre spécifique à la station, indicateur « X » pour chaque ID de type s'il est uniquement utilisé dans la direction standard, « R » s'il est uniquement utilisé dans la direction inverse et « B », s'il est utilisé dans les deux directions)

[X]	<45>	:= Commande simple	C_SC_NA_1
[X]	<46>	:= Commande double	C_DC_NA_1
	<47>	:= Commande de régulation d'étape	C_RC_NA_1
	<48>	:= Commande de consigne, valeur normalisée	C_SE_NA_1
	<49>	:= Commande de consigne, valeur adaptée	C_SE_NB_1
	<50>	:= Commande de consigne, nombre à virgule flottante abrégé	C_SE_NC_1
	<51>	:= Chaîne binaire de 32 bits	C_BO_NA_1

<58>	:= Commande simple avec identificateur temporel CP56Time2a	C_SC_TA_1
<59>	:= Commande double avec identificateur temporel CP56Time2a	C_DC_TA_1
<60>	:= Commande de régulation d'étape avec identificateur temporel CP56Time2a	C_RC_TA_1
<61>	:= Commande de consigne, valeur normalisée avec identificateur temporel CP56Time2a	C_SE_TA_1
<62>	:= Commande de consigne, valeur adaptée avec identificateur temporel CP56Time2a	C_SE_TB_1
<63>	:= Commande de consigne, nombre en virgule flottante abrégé avec identificateur temporel CP56Time2a	C_SE_TC_1
<64>	:= Chaîne binaire de 32 bits avec identificateur temporel CP56Time2a	C_BO_TA_1

Les ASDU du groupe <45> - <51> ou du groupe <58> - <64> sont utilisés.

Informations sur le système dans la direction de la surveillance

(Paramètre spécifique à la station, indicateur « X » si la fonction est utilisée).

[X]	<70> := F	Fin de l'initialisation	M_EI_NA_1
[\]		iii de i iiiidalisadoii	IVI_LI_INA

Informations système dans le contrôle de la direction

(Paramètre spécifique à la station, indicateur « X » pour chaque ID de type s'il est uniquement utilisé dans la direction standard, « R » s'il est uniquement utilisé dans la direction inverse et « B », s'il est utilisé dans les deux directions)

[X]	<100>	:= Commande d'interrogation	C_IC_NA_1
	<101>	:= Commande d'interrogation de compteur	C_CI_NA_1
	<102>	:= Commande de lecture	C_RD_NA_1
[X]	<103>	:= Commande de synchronisation d'horloge (option)	C_CS_NA_1
	<104>	:= Commande de test	C_TS_NA_1
[X]	<105>	:= Commande de réinitialisation de processus	C_RP_NA_1
	<106>	:= Commande de délai d'acquisition	C_CD_NA_1
	<107>	:= Commande de test avec identificateur temporel CP56Time2a	C_TS_TA_1

Paramètre dans la direction de contrôle

(Paramètre spécifique à la station, indicateur « X » pour chaque ID de type s'il est uniquement utilisé dans la direction standard, « R » s'il est uniquement utilisé dans la direction inverse et « B », s'il est utilisé dans les deux directions)

<110>	:= Paramètre de valeur mesurée, valeur normalisée	P_ME_NA_1
<111>	:= Paramètre de valeur mesurée, valeur adaptée	P_ME_NB_1
<112>	:= Paramètre de valeur mesurée, nombre à virgule flottante abrégé	P_ME_NC_1

 \square <113> := Activation de paramètre P_AC_NA_1

Transfert de fichier

(Paramètre spécifique à la station, indicateur « X » pour chaque ID de type s'il est uniquement utilisé dans la direction standard, « R » s'il est uniquement utilisé dans la direction inverse et « B », s'il est utilisé dans les deux directions)

<120>	:= Fichier prêt	F_FR_NA_1
<121>	:= Section prête	F_SR_NA_1
<122>	:= Appel de répertoire, sélection de fichier, appel de fichier, appel de section	F_SC_NA_1
<123>	:= Dernière section, dernier segment	F_LS_NA_1
<124>	:= Fichier d'acquittement, section d'acquittement	F_AF_NA_1
<125>	:= Segment	F_SG_NA_1
<126>	:= Répertoire {vide ou X, uniquement disponible dans la direction (standard) de surveillance}	F_DR_TA_1
<127>	:= Journal de requêtes - Requête de fichier d'archivage	F_SC_NB_1

Affectations d'identificateur de type et de cause de transmission

(Paramètres spécifiques à la station)

- Cases ombrées : option non requise.
- Cases noires : option non autorisée ou non prise en charge par cette norme supplémentaire
- ☐ Cases blanches : fonctions ou ASDU non utilisés.

Combinaisons Identification du type de marque/Cause de transmission

- « X » si utilisé(e) seulement dans la direction standard ;
- « R » si utilisé(e) seulement dans la direction arrière ;
- « B » si utilisé(e) dans les deux directions.

ldent type	ification du	Cause de la transmission																		
		1	2	3	4	5	6	7	8	9	10	11	12	13		/37 41	/44	45	46	47
<1>	M_SP_NA_1			[X]											[X]					
<2>	M_SP_TA_1																			
<3>	M_DP_NA_1			[X]								[X]	[X]		[X]					
<4>	M_DP_TA_1																			
<5>	M_ST_NA_1																			

Ident type	Cause de la transmission																			
		1	2	3	4	5	6	7	8	9	10	11	12	13	20 36	/37 41	/44	45	46	47
<6>	M_ST_TA_1																			
<7>	M_BO_NA_1			[X]											[X]					
<8>	M_BO_TA_1																			
<9>	M_ME_NA_1	[X]		[X]											[X]					
<10>	M_ME_TA_1																			
<11>	M_ME_NB_1	[X]		[X]											[X]					
<12>	M_ME_TB_1																			
<13>	M_ME_NC_1	[X]		[X]											[X]					
<14>	M_ME_TC_1			-		•														
<15>	M_IT_NA_1			[X]																
<16>	M_IT_TA_1																			
<17>	M_EP_TA_1																			
<18>	M_EP_TB_1			•																
<19>	M_EP_TC_1																			
<20>	M_PS_NA_1																			
<21>	M_ME_ND_1																			
<30>	M_SP_TB_1			[X]																
<31>	M_DP_TB_1			[X]																
<32>	M_ST_TB_1																			
<33>	M_BO_TB_1			[X]																
<34>	M_ME_TD_1			[X]																
<35>	M_ME_TE_1			[X]																
<36>	M_ME_TF_1			[X]																
<37>	M_IT_TB_1			[X]																
<38>	M_EP_TD_1																			
<39>	M_EP_TE_1																			
<40>	M_EP_TF_1																			
<45>	C_SC_NA_1						[X]	[X]	[X]	[X]	[X]									
<46>	C_DC_NA_1						[X]	[X]	[X]	[X]	[X]									
<47>	C_RC_NA_1																			

Identification du type	Ca	use	de l	la tr	ans	mis	sion												
	1	2	3	4	5	6	7	8	9	10	11	12	13	20 36	/37 41	/44	45	46	47
<48> C_SE_NA_1																			
<49> C_SE_NB_1																			
<50> C_SE_NC_1																			
<51> C_BO_NA_1																			
<58> C_SC_TA_1																			
<59> C_DC_TA_1																			
<60> C_RC_TA_1																			
<61> C_SE_TA_1																			
<62> C_SE_TB_1																			
<63> C_SE_TC_1																			
<64> C_BO_TA_1																			
<70> M_EI_NA_1*																			
<100>C_IC_NA_1																			
<101>C_CI_NA_1																			
<102>C_RD_NA_1																			
<103>C_CS_NA_1																			
<104>C_TS_NA_1																			
<105>C_RP_NA_1						[X]	[X]												
<106>C_CD_NA_1																			
<107>C_TS_TA_1																			
<110>P_ME_NA_1																			
<111>P_ME_NB_1																			
<112>P_ME_NC_1																			
<113>P_AC_NA_1																			
<120>F_FR_NA_1																			
<121>F_SR_NA_1																			
<122>F_SC_NA_1																			
<123>F_LS_NA_1																			
<124>F_AF_NA_1																			
<125>F_SG_NA_1																			

Identification du type	Ca	Cause de la transmission																	
	1	2	3	4	5	6	7	8	9	10	11	12	13		/37 41	/44	45	46	47
<126>F_DR_TA_1*																			
* Vide ou X uniqueme	ent																		

13.2.6 Fonctions d'application de base

Initialisation de station

(Paramètre spécifique à la station, indicateur « X » si la fonction est utilisée)

[X] Initialisation à distance

Transmission cyclique des données

(Paramètre spécifique à la station, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions)

[X] Transmission cyclique des données

Procédure de lecture

(Paramètre spécifique à la station, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions)

□ Procédure de lecture

Transmission spontanée

(Paramètre spécifique à la station, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions)

[X] Transmission spontanée

Double transmission des objets d'information avec la cause de la transmission spontanée

(Paramètre spécifique à la station, indicateur « X » pour chaque type d'information pour lequel un identificateur de type sans horaire et un identificateur de type correspondant avec horaire sont émis en réponse à un seul changement spontané d'un objet surveillé)

Les identifications de type suivantes peuvent être transmises successivement suite à un seul changement d'état d'un objet d'information. Les adresse de l'objet d'information spécifique pour lequel la double transmission est activée sont définies dans une liste spécifique au projet.

☐ Information 1 point M_SP_NA_1, M_SP_TA_1, M_SP_TB_1 et M_PS_NA_1

Information 2 points M_DP_NA_1, M_DP_TA_1 et M_DP_TB_1
Information de position d'étape M_ST_NA_1, M_ST_TA_1 et M_ST_TB_1
Chaîne binaire de 32 bits M_BO_NA_1, M_BO_TA_1 et M_BO_TB_1 (si définie pour un projet spécifique)
Valeur mesurée, valeur normalisée M_ME_NA_1, M_ME_TA_1, M_ME_ND_1 et M_ME_TD_1
Valeur mesurée, valeur adaptée M_ME_NB_1, M_ME_TB_1 et M_ME_TE_1
Valeur mesurée, nombre en virgule flottante abrégé M_ME_NC_1, M_ME_TC_1 et M_ME_TF_1

Interrogation de station

(Paramètre spécifique à la station, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions)

[X]	global		
	groupe 1	groupe 7	groupe 13
	groupe 2	groupe 8	groupe 14
	groupe 3	groupe 9	groupe 15
	groupe 4	groupe 10	groupe 16
	groupe 5	groupe 11	Les adresses d'objet
	groupe 6	groupe 12	d'information affectées à chaque groupe doivent être indiquées dans un tableau distinct.

Synchronisation de l'horloge

(Paramètre spécifique à la station, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions)

[X] Synchronisation de l'horloge

Transmission de commande

(Paramètre spécifique à l'objet, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions).

[X]	Transmission de commande directe
	Transmission de commande directe de consigne
[X]	Sélection et exécution de commande
	Sélection et exécution de commande de consigne
[X]	C_SE_ACTTERM utilisé
	Aucune définition supplémentaire

[X]	Durée d'impulsion courante (durée déterminée par un paramètre système au niveau de la station externe)
	Durée d'impulsion longue (durée déterminée par un paramètre système au niveau de la station externe)
	Sortie persistante
[X]	Surveillance du délai maximum dans la direction de commande des commandes et des commandes de consigne

[configurable]

Délai maximum autorisé des commandes et des commandes de consigne

Transmission des totaux intégrés

(Paramètre spécifique à la station ou l'objet, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions)

	Mode A : Gel local avec transmission spontanée
	Mode B : Gel local avec interrogation du compteur
	Mode C : Gel et transmission par commandes d'interrogation de compteur
	Mode D : Gel par interrogation de compteur, valeurs gelées signalées spontanément
[X]	Lecture de compteur
	Gel de compteur sans réinitialisation
	Gel de compteur avec réinitialisation
	Réinitialisation de compteur
	Compteur général des requêtes
	Compteur des requêtes, groupe 1
	Compteur des requêtes, groupe 2
	Compteur des requêtes, groupe 3
	Compteur des requêtes, groupe 4

Chargement des paramètres

(Paramètre spécifique à l'objet, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions).

Valeur de seuil
Facteur de lissage
Limite inférieure pour la transmission des valeurs mesurées
Limite supérieure pour la transmission des valeurs mesurées

Activation de paramètre

(Paramètre spécifique à l'objet, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions).

Activation/Désactivation de transmissions cyclique ou périodique persistante de l'objet adressé

Procédure de test

(Paramètre spécifique à la station, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions)

□ Procédure de test

Transfert de fichier

(Paramètre spécifique à la station, indicateur « X » si la fonction est utilisée).

Transfert de fichier dans la direction de la surveillance

Fichier transparent
Transmission des données de perturbations de l'équipement de protection
Transmission des séquences d'événements
Transmission des séquences de valeurs analogiques enregistrées

Transfert de fichier dans la direction de contrôle

☐ Fichier transparent

Analyse en arrière-plan

(Paramètre spécifique à la station, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions)

☐ Analyse en arrière-plan

Acquisition du délai de transmission

(Paramètre spécifique à la station, indicateur « X » si la fonction est uniquement utilisée dans la direction standard, « R » si elle est uniquement utilisée dans la direction inverse et « B », si elle est utilisée dans les deux directions)

Acquisition du délai de transmission

Définition des temporisations

Paramètre	Valeur par défaut	Remarques	Valeur sélectionnée
t ₀	30 s	Temporisation de l'établissement de connexion	30 s (fixe)

Paramètre	Valeur par défaut	Remarques	Valeur sélectionnée
t_1	15 s	Temporisation des APDU d'envoi ou de test	15 s (fixe)
t ₂	10 s	Temporisation pour les acquittements en l'absence de messages de données ${\sf t_2} < {\sf t_1}$	10 s (fixe)
t ₃	20 s	Temporisation pour l'envoi des trames de test en cas d'état d'inactivité prolongé	20 s (fixe)

Nombre maximum d'APDU k au format I et APDU d'acquittement le plus récent (w)

Paramètre	Valeur par défaut	Remarques	Valeur sélectionnée
k	12 APDU	Différence maximale du nombre de séquences reçues pour l'envoi de variable d'état	12 s (fixe)
W	8 APDU	Dernier acquittement après réception d'APDU w au format I	8 s (fixe)

Les valeurs pour k et w sont en lecture seule et ne peuvent donc pas être configurées.

Numéro du port

Paramètre	Valeur	Remarques
Numéro du port	2404)	Configurable, valeur par défaut = 2404

Suite RFC 2200

RFC 2200 est une norme Internet officielle qui décrit l'état de normalisation des protocoles utilisés sur Internet, tel que déterminé par l'IAB (Internet Architecture Board). Cette norme offre un large spectre de normes actuelles couramment utilisées sur Internet. La sélection appropriée de documents à partir de RFC 2200 définie dans cette norme pour des projets donnés doit être choisie par l'utilisateur de cette norme.

[X]	Ethernet 802.3
	Interface série X.21
	Autre sélection issue de RFC 2200

13.3 Abréviations et acronymes

Les abréviations et acronymes suivants sont utilisés dans ce manuel.

°C	Degrés Celsius
°F	Degrés Fahrenheit
Α	Ampère(s)
AC (CA)	Courant alternatif
Ack. (Acq.)	Acquitter
AND (ET)	Porte logique (le résultat est vrai si tous les signaux d'entrée sont vrais.)
ANSI	American National Standards Institute
avg. (moy.)	Moyenne
AWG	American wire gauge
BF (CBF)	Défaut de disjoncteur
Bkr (CB)	Disjoncteur
Blo	Blocage(s)
BO (SB)	Relais de sortie binaire
BO1 (SB1)	1er relais de sortie binaire
BO2 (SB2)	2e relais de sortie binaire
BO3 (SB3)	3e relais de sortie binaire
calc	Calculé
СВ	Disjoncteur
CBF	Module de protection contre les défauts de disjoncteur
CD	Disque compact
Char (Car)	Forme de la courbe
CLPU	Module d'excitation de charge à froid
Cmd.	Commande
CMN (C)	Entrée commune
СОМ	Entrée commune
Comm	Communication
Cr.	Compteur(s)
CSA	Association canadienne de normalisation
CT (TC)	Transformateur de commande
Ctrl.	Contrôle

CTS	Surveillance du transformateur de courant	
CTS	Surveillance du transformateur de courant	
d	Jour	
D-Sub-Plug (Prise D-Sub)	Interface de communication	
DC (CC)	Courant continu	
DEFT	Caractéristique de déclenchement à temps constant (Le temps de déclenchement ne dépend pas du niveau du courant.)	
delta phi	Saut de vecteur	
df/dt	Vitesse de variation de la fréquence	
DI (EN)	Entrée numérique	
Diagn Cr (Cr Diagn)	Compteur(s) de diagnostic	
Diagn.	Diagnostic	
DIN	Deutsche Industrie Norm	
dir	Directionnel	
EINV	Caractéristique de déclenchement à temps extrêmement inverse	
EMC (CEM)	Compatibilité électromagnétique	
EN (NE)	Norme européenne	
err. / Err.	Erreur	
EVT con	Paramètre qui détermine si la tension résiduelle est mesurée ou calculée.	
Ex	Externe	
Ex Oil Temp (Temp hui ex)	Température d'huile extérieure	
ExBlo	Blocage(s) externe(s)	
ExP	Module de protection externe	
ExP	Protection externe	
Ext Sudd Press (Ext press soud)	Pression soudaine	
Ext Temp Superv (Surv temp ext)	Surveillance de la température extérieure	
f	Module de protection de la fréquence	
Fc	Fonction (activer ou désactiver la fonctionnalité = autoriser ou refuser.)	
FIFO	First in first out	
FIFO Principal First in first out		

gn Accélération de la Terre dans le sens vertical (9,81 m/s2) GND Terre h Heure HMI Interface homme machine (panneau avant du relais de protections)	on)
h Heure	on)
	on)
HMI Interface homme machine (nanneau avant du relais de protection	on)
interface formine machine (partieur avant du felais de protecti	
HTL Désignation de produit interne du fabricant	
Hz Hertz	
l Étage à maximum de courant de phase	
l Courant de défaut	
I Courant	
I-BF Seuil de déclenchement	
10 Courant nul (composants symétriques)	
Composante directe du courant (composants symétriques)	
Composante indirecte du courant (composants symétriques)	
12> Étage de charge déséquilibrée	
I2T Caractéristique thermique	
14T Caractéristique thermique	
IA (IL1) Courant de phase A	
IB (IL2) Courant de phase B	
IC (IL3) Courant de phase C	
IC Désignation de produit interne du fabricant	
Id Module de protection différentielle	
IdG Module de protection différentielle limitée des défauts à la terre	2
IdGH Module de protection limitée du seuil des défauts à la terre	
IdH Seuil supérieur du module de protection différentielle	
CEI Commission électrotechnique internationale	
CEI 61850 CEI 61850	
IEEE Institute of Electrical and Electronics Engineers	
IG Protection du courant à la terre - Étage	
IG Courant à la terre	
IG Courant de défaut	
IGnom Courant nominal à la terre	
IH1 1re harmonique	

IH2 2e harmonique in. (po.) Pouce incl. Inclus(e) InEn Enclenchement accidentel Info. Information Intert. Verrouillage Intertripping Interdéclenchement INV Caractéristique inverse (l'heure du déclenchement sera calculée en fonction du niveau du courant) IR (IG calc) Courant à la terre (résiduel) calculé IRIG Entrée pour synchronisation de temporisation (horloge) IRIGB Module IRIG-B IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme kHz Kilovolt(s) kVd Kilovolt(s) kVdC ou kVDC (kVCC) Kilovolt(s) courant continu kVdC ou kVDC (kVCC) Kilovolt(s) courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 <t< th=""><th>IH2</th><th colspan="2">Appel de courant d'un module</th></t<>	IH2	Appel de courant d'un module	
incl. Inclus(e) InEn Enclenchement accidentel Info. Information Intert. Verrouillage Intertripping Interdéclenchement INV Caractéristique inverse (l'heure du déclenchement sera calculée en fonction du niveau du courant) IR (IG calc) Courant à la terre (résiduel) calculé IRIG Entrée pour synchronisation de temporisation (horloge) IRIG-B Module IRIG-B IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme kHz Kilohertz kV Kilovolt(s) kVdc ou kVDC (kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoG-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	IH2	2e harmonique	
InEn Enclenchement accidentel Info. Information Interl. Verrouillage Intertripping Interdéclenchement INV Caractéristique inverse (l'heure du déclenchement sera calculée en fonction du niveau du courant) IR (IG calc) Courant à la terre (résiduel) calculé IRIG Entrée pour synchronisation de temporisation (horloge) IRIG-B Module IRIG-B IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme kHz Kilohertz kV Kilovolt(s) kVdc ou kVDC (KVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoF-Z1 Perte d'excitation LoF-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	in. (po.)	Pouce	
Info. Information Interl. Verrouillage Intertripping Interdéclenchement INV Caractéristique inverse (l'heure du déclenchement sera calculée en fonction du niveau du courant) IR (IG calc) Courant à la terre (résiduel) calculé IRIG Entrée pour synchronisation de temporisation (horloge) IRIG-B Module IRIG-B IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme kHz Kilohertz kV Kilovolt(s) kVK cou kVDC (kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LOE-Z1 Perte d'excitation LOE-Z2 Perte d'excitation LOG (PdP) perte de potentiel LIV Basse tension	incl.	Inclus(e)	
Interl. Verrouillage Intertripping Interdéclenchement INV Caractéristique inverse (l'heure du déclenchement sera calculée en fonction du niveau du courant) IR (IG calc) Courant à la terre (résiduel) calculé IRIG Entrée pour synchronisation de temporisation (horloge) IRIG-B Module IRIG-B IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme KHz Kilohertz kV Kilovolt(s) KVC ou kVDC (Kilovolt(s) courant continu (KVCc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long L0E-Z1 Perte d'excitation L0E-Z2 Perte d'excitation L0G(SC) L0G(PdP) perte de potentiel LIV Basse tension	InEn	Enclenchement accidentel	
Intertripping Interdécienchement INV Caractéristique inverse (l'heure du décienchement sera calculée en fonction du niveau du courant) IR (IG calc) Courant à la terre (résiduel) calculé IRIG Entrée pour synchronisation de temporisation (horloge) IRIG-B Module IRIG-B IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme kHz Kilohertz kV Kilovolt(s) KVdc ou kVDC (kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LIV Basse tension	Info.	Information	
INV Caractéristique inverse (l'heure du déclenchement sera calculée en fonction du niveau du courant) IR (IG calc) Courant à la terre (résiduel) calculé IRIG Entrée pour synchronisation de temporisation (horloge) IRIG-B Module IRIG-B IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme kHz Kilohertz kV Kilovolt(s) kVdc ou kVDC (Klovolt(s) courant continu (kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LIV Basse tension	Interl.	Verrouillage	
niveau du courant) IR (IG calc) Courant à la terre (résiduel) calculé IRIG Entrée pour synchronisation de temporisation (horloge) IRIG-B Module IRIG-B IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme kHz Kilohertz kV Kilovolt(s) kVdc ou kVDC (kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LIV Basse tension	Intertripping	Interdéclenchement	
IRIG Entrée pour synchronisation de temporisation (horloge) IRIG-B Module IRIG-B IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme KHz Kilohertz kV Kilovolt(s) KVdc ou kVDC (kilovolt(s) courant continu (KVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LIV Basse tension	INV		
IRIG-B Module IRIG-B IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme KHZ KilohertZ kV Kilovolt(s) KVdc ou kVDC (kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte de potentiel LOP (PdP) perte de potentiel LV Basse tension	IR (IG calc)	Courant à la terre (résiduel) calculé	
IT Caractéristique thermique IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) J Joule kg Kilogramme KHz Kilohertz kV Kilovolt(s) KVdc ou kVDC (kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	IRIG	Entrée pour synchronisation de temporisation (horloge)	
IX (IG) 4e entrée du groupe de mesure du courant (terre ou neutre) Joule kg Kilogramme kHz Kilohertz kV Kilovolt(s) KVdc ou kVDC (kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte de potentiel LOP (PdP) perte de potentiel LV Basse tension	IRIG-B	Module IRIG-B	
Joule kg Kilogramme kHz Kilohertz kV Kilovolt(s) kVdc ou kVDC (kVcc ou kVCC) Kilovolt(s) courant continu I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	IT	Caractéristique thermique	
kg Kilogramme kHz Kilohertz kV Kilovolt(s) kVdc ou kVDC (KVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	IX (IG)	4e entrée du groupe de mesure du courant (terre ou neutre)	
kHz Kilohertz kV Kilovolt(s) kVdc ou kVDC (kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	J	Joule	
kV Kilovolt(s) kVdc ou kVDC (KIlovolt(s) courant continu (KVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	kg	Kilogramme	
kVdc ou kVDC (kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	kHz	Kilohertz	
(kVcc ou kVCC) I/In Rapport de courant/courant nominal. L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	kV	Kilovolt(s)	
L1 Phase A L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension		Kilovolt(s) courant continu	
L2 Phase B L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	l/ln	Rapport de courant/courant nominal.	
L3 Phase C Ib-in Livre/pouce LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	L1	Phase A	
Ib-inLivre/pouceLED (DEL)Diode électroluminescenteLINVCaractéristique de déclenchement inverse longLoE-Z1Perte d'excitationLoE-Z2Perte d'excitationLogicsLogiqueLOP (PdP)perte de potentielLVBasse tension	L2	Phase B	
LED (DEL) Diode électroluminescente LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	L3	Phase C	
LINV Caractéristique de déclenchement inverse long LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	lb-in	Livre/pouce	
LoE-Z1 Perte d'excitation LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	LED (DEL)	Diode électroluminescente	
LoE-Z2 Perte d'excitation Logics Logique LOP (PdP) perte de potentiel LV Basse tension	LINV	Caractéristique de déclenchement inverse long	
Logics Logique LOP (PdP) perte de potentiel LV Basse tension	LoE-Z1	Perte d'excitation	
LOP (PdP) perte de potentiel LV Basse tension	LoE-Z2	Perte d'excitation	
LV Basse tension	Logics	Logique	
	LOP (PdP)	perte de potentiel	
LVRT Maintien de l'alimentation en cas d'incident de tension	LV	Basse tension	
	LVRT	Maintien de l'alimentation en cas d'incident de tension	

m	Mètre	
mA	Milliampère(s)	
man.	Manuel	
max.	Maximum	
mes.	Mesuré	
min.	Minimum	
min.	Minute	
MINV	Caractéristique de déclenchement inverse modéré	
MK	Code de désignation de produit interne du fabricant	
mm	Millimètre	
мми	Unité de gestion de mémoire	
ms	Millisecondes	
MV	Moyenne tension	
mVA	Millivolt-Ampère (puissance)	
N.C.	Non connecté	
N.O.	Normalement ouvert (Contact)	
NINV	Caractéristique de déclenchement normal inverse	
Nm	Newton-mètre	
No (N°)	Numéro	
Nom.	Nominal	
NT	Code de désignation de produit interne du fabricant	
P	Puissance active inverse	
Para.	Paramètre	
PC	Ordinateur personnel	
PCB	Circuit imprimé	
PE	Terre protégée	
p.u.	par unité	
PF	Facteur de puissance - Module	
Ph	Phase	
PQS	Protection de l'alimentation - Module	
pri	Primaire	
PROT ou Prot	Module de protection (module maître)	
PS1	Groupe de paramètres 1	

DC2		
PS2	Groupe de paramètres 2	
PS3	Groupe de paramètres 3	
PS4	Groupe de paramètres 4	
PSet	Groupe de paramètres	
PSS	Commutateur de groupe de paramètres (commutation d'un groupe de paramètres à un autre)	
Q	Puissance réactive inverse	
Q->&V<	Protection contre la sous-tension et protection directionnelle de la puissance réactive	
R	Réinitialisation	
rec. (enr)	Enregistrement	
rel	Relatif	
res (réin, réini ou réinit)	Réinitialisation	
ResetFct	Réinitialiser fonction	
RevData	Révision des données	
RMS (EFF)	Valeur efficace	
Rst	Reset (Réinitialisation)	
RTD	Module de protection thermique	
S	Seconde(s)	
SC	Contact d'auto-surveillance (Synonymes : contact d'état, chien de garde, contact d'état de santé)	
Sca	SCADA	
SCADA	Module de communication	
sec	Seconde(s)	
sec	Secondaire	
Sgen	Générateur de signal sinusoïdal	
Sig.	Signal	
SNTP	Module SNTP	
SOTF	Commutation sur défaut - Module	
StartFct	Fonction d'activation	
Sum (Som)	Somme	
SW	Logiciel	
Sync	Contrôle de la synchronisation	

t tout. Temps (heure) Tcmd Commande de déclenchement TCP/IP Protocole de communication TCS Surveillance du circuit de déclenchement Thr Module d'image thermique TI Code de désignation de produit interne du fabricant TripCmd Commande de déclenchement txt Texte UL Underwriters Laboratories UMZ DEFT (caractéristique de déclenchement à temps constant) USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant Vac / V ac (Vca / V Volts courant alternatif
Tcmd Commande de déclenchement TCP/IP Protocole de communication TCS Surveillance du circuit de déclenchement ThR Module d'image thermique TI Code de désignation de produit interne du fabricant TripCmd Commande de déclenchement txt Texte UL Underwriters Laboratories UMZ DEFT (caractéristique de déclenchement à temps constant) USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
TCP/IP Protocole de communication TCS Surveillance du circuit de déclenchement ThR Module d'image thermique TI Code de désignation de produit interne du fabricant TripCmd Commande de déclenchement txt Texte UL Underwriters Laboratories UMZ DEFT (caractéristique de déclenchement à temps constant) USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
TCS Surveillance du circuit de déclenchement ThR Module d'image thermique TI Code de désignation de produit interne du fabricant TripCmd Commande de déclenchement txt Texte UL Underwriters Laboratories UMZ DEFT (caractéristique de déclenchement à temps constant) USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
ThR Module d'image thermique TI Code de désignation de produit interne du fabricant TripCmd Commande de déclenchement txt Texte UL Underwriters Laboratories UMZ DEFT (caractéristique de déclenchement à temps constant) USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
TI Code de désignation de produit interne du fabricant TripCmd Commande de déclenchement txt Texte UL Underwriters Laboratories UMZ DEFT (caractéristique de déclenchement à temps constant) USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
TripCmd Commande de déclenchement txt Texte UL Underwriters Laboratories UMZ DEFT (caractéristique de déclenchement à temps constant) USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
txt Texte UL Underwriters Laboratories UMZ DEFT (caractéristique de déclenchement à temps constant) USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation Vonta Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
UL Underwriters Laboratories UMZ DEFT (caractéristique de déclenchement à temps constant) USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation Vol12 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
UMZ DEFT (caractéristique de déclenchement à temps constant) USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation Vongosantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
USB Bus série universel V (U) Étage de tension V Volts V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
V (U) Étage de tension V Volts V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
V Volts V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
V/f> Surexcitation V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
V012 Composantes symétriques : surveillance de la composante directe ou de la composante inverse du courant
composante inverse du courant
Vac / V ac (Vca / V Volts courant alternatif
ca)
Vdc / V dc (Vcc / V Volts courant continu cc)
VDE Verband Deutscher Elektrotechnik
VDEW Verband der Elektrizitätswirtschaft
VE Tension résiduelle
VG Étage de tension résiduelle
VINV Caractéristique de déclenchement très inverse
VTS Surveillance du transformateur de tension
W Watt(s)
WDC Watch dog contact (contact de surveillance)
www World Wide Web
XCT (ECT) 4e entrée de mesure du courant (terre ou courant neutre)
XInv Caractéristique inverse

13.4 Liste des codes ANSI

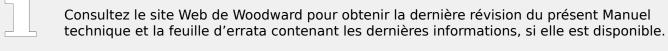
(Cette liste est principalement basée sur la norme IEEE C37.2-2008.)

ANSI	MRI4	Fonctions
14		Sous-régime
21		Protection de distance
21P		Protection de distance de phase
24		Protection contre la surexcitation (volts par hertz)
25		Synchronisation ou synchronisme, vérification via le 4ème canal de mesure de la carte de mesure de tension
26		Protection thermique
27		Protection contre la sous-tension
27(t)		Protection contre la sous-tension (selon le temps)
27A		Protection contre la sous-tension (auxiliaire) via le 4ème canal de mesure de la carte de mesure de tension
27M		Protection (principale) de phase contre la sous-tension (selon le temps)
27N		Sous-tension neutre, via le 4ème canal de mesure de la carte de mesure de tension
27TN		Sous-tension neutre de troisième harmonique via le 4ème canal de mesure de la carte de mesure de tension
32		Protection de la puissance directionnelle
32F		Protection de la puissance directe
32R		Protection de la puissance inverse
37		Sous-intensité/Sous-alimentation
38		Protection de la température (en option via interface/boîtier externe)
40		Perte d'excitation/Perte de champ
46	12>	Protection contre le courant déséquilibré
46G		Protection contre le courant de générateur déséquilibré
47		Protection contre la tension déséquilibrée
48		Séquence incomplète (surveillance de l'heure de démarrage)
49	ThR	Protection thermique
49M		Protection du moteur thermique
49R		Protection du rotor thermique
495		Protection du stator thermique
50BF	CBF	Défaut de disjoncteur

ANSI	MRI4	Fonctions
50	1	Surintensité (instantanée)
50J		JAM (rotor bloqué)
50P	50P	Surintensité de phase (instantanée)
50N/G	IG	Surintensité neutre (instantanée)
50Ns	IG	Surintensité neutre sensible (instantanée)
50R	IG	Surintensité neutre (instantanée)
51	1	Surintensité
51		Surintensité de phase
51N/G	IG	Surintensité neutre
51Ns	IG	Surintensité neutre sensible
51LR		Rotor verrouillé
51LRS		Démarrage de rotor verrouillé (durant la séquence de démarrage)
51C	(via les paramètres adaptatifs)	Surintensité contrôlée par la tension
51Q	1	Surintensité de séquence de phase inverse (plusieurs caractéristiques de déclenchement)
51V		Surintensité limitée de la tension
55		Protection du facteur de puissance
56		Relais d'application de champ
59		Protection contre la surtension
59M		Protection (principale) de phase contre la surintensité
59TN		Surtension neutre de troisième harmonique via le 4ème canal de mesure de la carte de mesure de tension
59A		Protection contre la surtension via le 4ème canal (auxiliaire) de mesure de la carte de mesure de tension
59N		Protection contre la surtension neutre
60FL		Surveillance d'un transformateur de tension
60L	CTS	Surveillance du transformateur de courant
64R		Protection des défauts de mise à la terre du rotor
64REF		Protection limitée des défauts à la terre
66		Démarrages par h (démarrage inhibé)
67		Surtension directionnelle
67N		Surtension neutre directionnelle

ANSI	MRI4	Fonctions
67Ns	IG	Surtension neutre directionnelle sensible
68		Blocage par Détection d'oscillation de puissance
74TC	TCS	Surveillance du circuit de déclenchement
78		Déclenchement déphasé
78V		Protection contre le saut de vecteur de tension
79	AR	Réenclenchement automatique
81		Protection de fréquence
81U		Protection de fréquence insuffisante
810		Protection de fréquence excessive
81R		ROCOF (df/dt)
86		Verrouillage
87		Protection différentielle (Générateur/Transformateur/bus)
87B		Protection différentielle bus
87G		Protection différentielle de génératrice
87GN		Protection différentielle de masse de génératrice
87M		Protection différentielle de moteur
87SV		Surveillance Ouvrir CT (voir aussi 87 / 87B)
87T		Protection différentielle de transformateur
87TN		Protection différentielle de masse de transformateur
CLK	IRIG-B,	Synchronisation de l'horloge (par ex., via IRIG-B)
DDR	Enregistr perturbat	Enregistrement de perturbations hors défaut
DFR	Enregistr défaut	Enregistrement de défauts numériques
LGC	Logiq	Logique, schéma
MET	Valeurs mesurées	Mesure de sous-station (énergie, ampères, volts, watts, var, facteur de puissance, demande)
SER	Enregistr événement	Données d'événements horodatées
TCM	TCS	Surveillance du circuit de déclenchement

13.5 Historique de révision


Ce chapitre dresse la liste de toutes les modifications introduites depuis la version 3.0. Pour obtenir l'historique des changements pour les versions 2.x, contactez Woodward.

REMARQUE!

En principe, toutes les versions logicielles et matérielles **3.x** sont compatibles entre elles. Pour toute question spécifique et pour des informations plus détaillées, contactez l'assistance Woodward.

Documentation à jour ?

13.5.1 Version: 3.6

• Date: 2019-Janvier-31

• Révision : D

Logiciel

Les fonctions de protection du MRI4 ont été adaptées afin de répondre aux exigences de la norme VDE-AR-N-4110:2018.

Détection de la direction de défaut de phase

Correction de bogue : Une erreur dans l'algorithme de décision de la direction a été corrigée car elle pouvait entraîner des décisions de direction erronées pour les systèmes « ACB ». (Les séquences de phase « ABC » n'étaient pas affectées.)

»Seulement surv.«

Un nouveau paramètre de planification du dispositif »Seulement surv.« a été ajouté aux fonctions de protection suivantes :

• IG[x] – Protection de surintensité à la terre (voir ⇒ « Surintensité à la terre – Fonctionnalité »)

Avec le réglage »Seulement surv.« = "oui", la fonctionnalité du module est limitée à une fonction de surveillance : Les décisions d'alarme et de déclenchement existent toujours sous la forme d'états qui peuvent être vérifiés au niveau de la branche de menu [Utilisat / Affichage de l'état] et affectés en tant qu'options de sélection), mais elles n'entraînent plus d'alarme générale ou de déclenchement général et, par conséquent, aucune commande de déclenchement n'est émise. (Voir « Alarmes générales et déclenchements généraux ».)

Menu Sécurité

De nombreuses améliorations introduites dans cette version HighPROTEC sont liées au thème de la sécurité informatique.

Une nouvelle branche de menu [Utilisat / Sécurité / États de sécurité] collecte les informations relatives aux différents réglages de sécurité. Par exemple, des entrées vous indiquent si les mots de passe de connexion ont été définis sur une valeur définie par l'utilisateur ou si elles ont encore leur valeur par défaut. Si la sécurité informatique est une préoccupation pour votre application, il est recommandé de vérifier toutes ces entrées lors de la mise en service. (Voir \Longrightarrow « 1.4 Aperçu des paramètres liés à la sécurité ».)

De plus, un journal de sécurité est accessible via le chemin de menu [Utilisat / Sécurité / Journal de sécurité]. Ce journal comprend un sous-groupe des *messages d'auto-surveillance* (voir ci-dessous), réservé exclusivement aux messages de sécurité. (Voir > 1.4 Messages liés à la sécurité ».)

Accès à Smart view

Un autre changement lié à la sécurité consiste dans le fait que MRI4 accepte les connexions uniquement à partir des versions récentes de *Smart view*.

Il est possible de définir des mots de passe de connexion *Smart view* : Il existe un mot de passe »*Connexion USB*« pour la connexion via l'interface USB et un autre mot de passe »*Connexion réseau distante*« pour une connexion via un réseau. Quand un mot de

passe de connexion a été défini, *Smart view* établit une connexion uniquement après la saisie de ce mot de passe. (Cependant, par défaut, les deux mots de passe de connexion sont définis sur des valeurs vides.)

Toutes les connexions sont maintenant cryptées et les certificats garantissent l'identité exacte des parties prenant part à la communication.

(Voir ⊨> « Mots de passe de connexion, accès Smart view ».)

Mots de passe

Désormais, les mots de passe sont stockés de sorte qu'ils sont conservés après une mise à jour du micrologiciel. (Voir \hookrightarrow « Mots de passe ».)

Pénalités de temps pour les mots de passe incorrects

Si un mot de passe incorrect est saisi à plusieurs reprises, le MRI4 bloque toute nouvelle saisie de mot de passe pour une durée croissante, jusqu'à la saisie du mot de passe correct. Un message dédié informe l'utilisateur de ce blocage. Ce comportement concerne tous les types de mot de passe (y compris, les mots de passe de connexion mentionnés ci-dessus), mais il affecte uniquement la saisie du mot de passe (c'est-à-dire,

la touche de fonction programmable). Il n'empêche pas l'utilisateur d'exécuter d'autres activités ne nécessitant pas la saisie de mot de passe pendant la durée de ce blocage.

Voir ⊨> « 1.4.2 Pénalité de temps pour la saisie de mot de passe incorrect ».

Auto-surveillance, Syslog

L'enregistreur des messages d'auto-surveillance, qui est accessible via la branche de menu [Utilisat / Auto-surveillance / Messages], a été amélioré, car maintenant il collecte différents messages liés à la sécurité (par ex., chaque saisie d'un mot de passe incorrect) et les messages d'état internes du MRI4, les avertissements et les messages d'erreur.

Un module Syslog peut être activé pour transmettre automatiquement chaque nouveau message interne (d'auto-surveillance) à un ordinateur serveur dédié. Il utilise le protocole « Syslog » qui est une norme largement connue et utilisée pour la transmission des messages de journal.

Voir ⇒ « Messages d'auto-surveillance », ⇒ « Syslog ».

SCADA »ID escl«

Pour tous les protocoles SCADA, le *»ID escl«* n'est plus un paramètre de réglage, mais une commande directe.

Étant donné que les commandes directes ne sont jamais enregistrées dans un fichier *.HptPara, le risque de non-respect de l'exigence d'unicité des ID d'esclave en chargeant un fichier *.HptPara sur plusieurs appareils HighPROTEC a été éliminé. Bien entendu, cette sécurité supplémentaire s'accompagne d'un inconvénient, puisque lors de la mise en service, le »ID escl« doit toujours être défini même si un fichier *.HptPara préparé est utilisé.

Nouveau protocole de communication CEI 60870-5-104

Le protocole de communication conforme à la norme CEI 60870-5-104 est maintenant disponible.

Voir ⊌> « CEI 60870-5-104 ».

Ce protocole peut également être utilisé comme source de synchronisation horaire. (Voir Synchronisation de temps ».)

Points de données configurables pour Modbus et CEI 60870-5-104

Les protocoles de communication Modbus et CEI 60870-5-104 peuvent maintenant être adaptés à l'application en procédant au (re-)mappage des points de données. Cela facilite l'intégration transparente de MRI4 dans un réseau de sous-stations existant. Un nouvel outil pour les systèmes d'exploitation Windows, *SCADAPTER*, est disponible pour le mappage des points de données avec les adresses internes du protocole.

Reportez-vous à \Longrightarrow « Mappage des points de données à l'aide de SCADAPTER » et à la documentation *SCADAPTER* distincte.

Deux fichiers de mappage de points de données pour une communication Modbus compatible avec les appareils *High Tech Line 3*, **MRI3** et **MRU3** sont également livrés avec le produit. Voir \Longrightarrow « High Tech Line 3 - Mappage des points de données compatible Modbus ».

Protocoles de communication CEI 61850

Les paramètres pour les entrées et sorties virtuelles ont été renommées.

Le nombre d'entrées et de sorties virtuelles a augmenté et est passé (de 32) à 64.

Voir 🖶 « CEI 61850 ».

Acquittement manuel des DEL

Il est maintenant possible d'acquitter (réinitialiser) les DEL mémorisées en appuyant sur la touche « C » pendant environ 1 seconde sans avoir à saisir de mot de passe. Cela est dû à une nouvelle valeur par défaut pour le paramètre suivant : [Para module / Acquitter] »Acquitter via la touche « C »« = « Acquitter DEL sans mot de passe »

Voir ⊨> « 1.5 Acquittement manuel (en appuyant sur la touche C du tableau) ».

Sort binaires, DEL, Gestr décl

La fonction d'inversion d'un signal de déclenchement (entrée) a été modifiée.

Le comportement de mémorisation a été modifié : Désormais, il y a davantage de conditions qui entraînent la réinitialisation d'un état mémorisé.

(Voir ⇒ « Paramètres de relais de sortie », ⇒ « DEL », ⇒ « 5.2 Gestionnaire de déclenchements - Affectation des commandes ».)

Manuel technique

La documentation technique a été divisée en deux documents indépendants :

- Le *Manuel d'utilisation* (c'est-à-dire, le présente document, MRI4-3.6-FR-MAN) décrit le MRI4, ses fonctions et applications.
 - Par rapport à la version HighPROTEC précédente, tous les chapitres du Manuel d'utilisation ont été globalement révisés et modifiés aux fins d'une meilleure lisibilité et exactitude.
- Le *Manuel de référence* MRI4-3.6-FR-REF contient tous les paramètres, réglages, valeurs et états binaires. À chaque entrée correspond un tableau comportant toutes

les propriétés (par ex., la branche de menu, le nom du module, la valeur par défaut et la plage de valeurs, plus un court texte d'aide).

À titre d'exemple, le présent Manuel technique s'appelait précédemment (jusqu'à la Révision 3.4) DOK-HB-MRI4-2D. Il a été renommé MRI4-3.6-FR-MAN.

Un chapitre relatif aux exigences du transformateur de courant a été ajouté, voir \Longrightarrow « Exigences relatives au transformateur de courant ».

13.5.2 Version: 3.4

• Date: 2017-Octobre-01

• Révision : C

Matériel

- Un capuchon de protection métallique a été ajouté aux connecteurs LC pour Ethernet / TCP/IP via fibre optique. Étant donné que ce capuchon améliore l'immunité CEM, il est recommandé de toujours le fixer après avoir branché les connecteurs LC.
- Un nouveau type de communication « T » est disponible :

RS485 (CEI 60870-5-103, MODBUS RTU, DNP3.0 RTU) + RJ45 Ethernet 100 Mbit/s (CEI 61850, Modbus TCP, DNP3.0 TCP/UDP)

Logiciel

- Désormais, le micrologiciel de l'appareil est également disponible en roumain.
- Si le MRI4 est connecté à *Smart view* (à partir de la version 4.50), la synchronisation de la date et de l'heure considère automatiquement que les réglages du fuseau horaire peuvent être différents sur l'ordinateur et sur le MRI4.

Communication

Le menu [Para module / HMI / Sécurité] fournit maintenant les paramètres de réglage suivants :

- »Smart view via Eth« active ou désactive l'accès de Smart view via Ethernet.
- »Smart view via USB« active ou désactive l'accès de Smart view via l'interface USB.

(Voir ⊨> « Mots de passe de connexion, accès Smart view ».)

IEC 60870-5-103

Le protocole de communication prend désormais en charge le blocage de la transmission dans la direction de la surveillance et le mode test. (Voir > « CEI 60870-5-103 ».)

Modbus

Pour les dispositifs dotés d'interfaces RS485 et Ethernet (types de communication « I » ou « T »), le réglage de projet « Modbus RTU/TCP » est maintenant disponible (via le paramètre [Organis module] Scada. Protocol«). Ce réglage permet au dispositif de communiquer via les lignes série (RTU) et Ethernet (TCP) en parallèle. Notez notamment que :

- Tous les maîtres voient le même groupe d'états.
- Tous les maîtres peuvent réinitialiser les états mémorisés.
- Tous les maîtres peuvent contrôler le même disjoncteur, effectuer des réinitialisations et des acquittements.

Para module

La boîte de dialogue de réinitialisation, qui s'affiche en cas de pression de la touche »C« lors d'un démarrage à froid, a été adaptée à de nouvelles demandes liées à la sécurité : Un nouveau paramètre de réglage »Config. réinit. dispositif« est disponible pour permettre la suppression des options de la boîte de dialogue de réinitialisation. (Voir Restauration des paramètres d'usine, réinitialisation de tous les mots de passe ».)

Surintensité - I[n], IG[n]

Toutes les caractéristiques de temps inverse ANSI et CEI possèdent désormais une limite de temps conformément à la norme CEI 60255-151. (Voir > « Caractéristiques », > « Caractéristiques ».)

Une nouvelle caractéristique de temps inverse « RINV » a été ajoutée. (Voir ⇒ « 4.2.1 R Inverse [RINV] - Courbe », ⇒ « 4.4.1 R Inverse [RINV] - Courbe ».)

Module d'image thermique - ThR

La plage de réglage du facteur de surcharge »K« a été étendue (de 0,80 à 1,20) à 0,80 à 1,50 (CEI 60255-149).

Auto-surveillance

Les messages internes du dispositif (notamment, les messages d'erreur) sont maintenant accessibles sous le menu [Utilisat / Auto-surveillance / Messages].

Tous les messages susceptibles de s'afficher ici sont décrits dans un document distinct, le « HighPROTEC Troubleshooting Guide » (Guide de dépannage HighPROTEC) (D0K-HB-TS).

Surv

Le MRI4 supervise la séquence de phase et la compare au réglage effectué au niveau de [para champ / Paramètres généraux] »Ordre phases « (c'est-à-dire « ACB » ou « ABC »).

Dans le menu [Utilisat / Affichage de l'état / Surv / Ordre phases], un signal spécifique existe pour chaque unité CT et VT et il est activé si la vérification de ces unités CT / VT révèle que la séquence de phase actuelle est différente du réglage effectué sous [para champ]. (Voir > « Supervision de la séquence de phase ».)

DEL

Un nouveau mode d'acquittement automatique existe pour toutes les DEL : La mémorisation de toutes les DEL est acquittée (réinitialisée) en cas d'alarme (déclenchée par un module de protection) ou en cas d'alarme générale, »Prot . Alarm«.

L'acquittement automatique doit être activé en réglant : [Para module / DEL / DEL groupe A / DEL 1...n] »Mémor.« = « actif, acq. par alarme »

(Voir ⊨> « 1.5 Acquittement manuel (en appuyant sur la touche C du tableau) ».)

Acquittement manuel

Il est possible d'acquitter les DEL, SCADA, les relais de sortie binaire et / ou une commande de déclenchement en attente en appuyant sur la touche »C« sur le tableau.

Après avoir affecté les éléments requis au »Acquitter via la touche « C »«, une simple pression sur la touche »C« (pendant environ 1 seconde) permet de les acquitter.

13 Annexe

13.5 Historique de révision

S'il est nécessaire de pouvoir acquitter sans avoir à saisir de mot de passe, définissez un mot de passe vide pour le niveau »Prot-Lv1«. (Voir \hookrightarrow « 1.5 Acquittement manuel (en appuyant sur la touche C du tableau) ». Pour obtenir des informations générales sur les mots de passe et des considérations liées à la sécurité, reportez-vous à \hookrightarrow « Sécurité ».)

13.5.3 **Version: 3.1**

REMARQUE!

Cette version n'a pas été publiée!

• Date: 2017-Mars-06

Matériel

Aucun changement.

Logiciel

Reconnexion - Recon[n]

Le module de reconnexion a été amélioré conformément à la norme VDE-AR-N 4120.

- L'état de déblocage est désormais sélectionnable via Recon. Cond débloc réencl (options : V Débloc interne, Débl ext V PCC Fc, Les deux).
- La méthode de mesure est désormais sélectionnable via Recon. Méthode mesure (options : Fondamental, Eff vrai, V glisst moy Supv).

SCADA

Des points de données ont été ajoutés pour la seconde instance du module de reconnexion.

TCP

Correction de bogue :

• Des problèmes de communication PPP/TCP ont été résolus.

13.5.4 Version: 3.0.b

• Date: 2016-Février-20

• Révision : B

Matériel

Aucun changement.

Logiciel

La fonction d'auto-supervision a été améliorée.

Surintensité - I[n]

Correction de bogue :

• Un problème d'initialisation a été résolu au niveau du module de surintensité. En cas de caractéristique MeasureMode I2 et DEFT, ce problème pouvait occasionner une excitation ou un déclenchement intempestif après le démarrage.

Sys

Correction de bogue :

• Dans des conditions particulières, un démarrage à chaud intempestif pouvait se produire.

SCADA / Modbus

Correction de bogue :

• Le protocole Modbus ne lisait pas correctement l'heure système.

Auto-surveillance

Correction de bogue :

• Des avertissements liés à la surveillance de la température interne ne fonctionnaient pas normalement.

13.5.5 Version: 3.0

• Date: 2015-Octobre-01

• Révision : B

Matériel

- Une nouvelle plaque avant gris foncé remplace le boîtier bleu utilisé pour tous les produits des versions 2.x.
- Cette nouvelle plaque avant fournit une interface USB pour permettre la connexion au logiciel d'exploitation *Smart view*. (Cette interface remplace l'interface série des versions **2.x**.)
- Un nouveau type de communication « I » est disponible :

RS485 (IEC 60870-5-103, MODBUS RTU, DNP3.0 RTU) + Ethernet 100 Mbit/s RJ45 (Modbus TCP, DNP3.0 TCP/UDP)

- L'option « Tropicalisé » est désormais disponible à la commande.
- Les caractères « -2 » dans le code du type fait référence à la mise à niveau majeure de la version 2.x à la version 3.x.

Logiciel

Désormais, le micrologiciel de l'appareil est également disponible en espagnol.

D'autres petits changements et réorganisation ont été implémentés au niveau du menu et de l'affichage.

Protection

Les causes de déclenchement sont affichées directement sur l'afficheur.

Maintien de l'alimentation en cas d'incident de tension (LVRT) - LVRT

Un second élément LVRT a été ajouté.

Perte de potentiel - PdP

La fonction de détection de bus mort est configurable.

L'affectation de disjoncteur est facultative. (Si aucun disjoncteur n'est affecté, la position est ignorée.)

Le blocage général IOC a été supprimé.

Le seuil de courant de charge PdP . I< peut être défini en utilisant une plage de 0,5 à 4 In.

Q->&V< / Recon

La partie de reconnexion a été séparée et est devenue un module indépendant.

Les fonctions de découplage du module de Reconnexion ont été étendues à toutes les commandes de déclenchement.

SCADA

Le protocole DNP3 est disponible (avec RTU/TCP/UDP).

Nouvelles interfaces fibre optique pour SCADA.

La procédure de réglage (structure des menus, réglages par défaut) a été modifiée.

Nouveau signal « État de la connexion SCADA ».

Fonction Ethernet « TCP Keep Alive » conforme RFC 793.

Correction de bogue :

• Après une exception matérielle, l'adresse IP peut être perdue.

SCADA / CEI 61850

Nouvelle prise en charge du contrôle direct.

Prise en charge des descriptions LN via l'entrée DAI du fichier SCD.

Amélioration de la gestion de l'entrée InGGIO.

La vitesse des messages GOOSE a été améliorée. Le problème éventuel avec les messages GOOSE corrélés dans le temps a été résolu.

Nouveaux nœuds logiques pour les compteurs électriques, LVRT, ExP, TCM, 47.

Nouvelle classe LNClass pour les capteurs et la surveillance.

Actualisation des rapports si les angles atteignent zéro et si les angles des phaseurs sont supérieurs à la bande neutre.

Amélioration de l'algorithme de bande neutre.

Désormais, il est possible d'affecter des signaux d'alarme CEI 61850 aux DEL de l'appareil.

Ajout d'un compteur pour le nombre de connexions client/serveur actives.

Le problème d'absence de modes de puissance directionnelle a été résolu.

SCADA / Modbus

Ajout du Registre d'état rapide.

Ajout de registres configurables.

Lecture de l'enregistreur de défauts et de certaines informations spécifiques à l'appareil via Modbus.

Amélioration de la stabilité du protocole Modbus TCP.

CEI 60870-5-103

Correction de bogue :

• Le problème de lecture des perturbations a été résolu.

SNTP

Le démarrage du réseau après la protection est activé.

Correction de bogue :

- SNTP peut ne pas avoir fonctionné correctement si la batterie s'est déchargée.
- Le paramètre d'heure d'été par défaut a été remplacé par « Dimanche ».

Connexion interface PC / Smart view

À partir de la version R4.30 de *Smart view*, il est possible d'échanger la ligne simple sur les dispositifs qui prennent cette fonction en charge.

L'interface utilisateur prend en charge la validation améliorée des fichiers SCD CEI 61850.

Les courbes de caractéristiques peuvent désormais être représentées graphiquement.

Un éditeur de pages permet de créer des lignes simples et des pages d'appareil.

Correction de bogue :

- Après une interruption des communications, les formes d'onde ne doivent plus être reçues de l'ordinateur.
- Après une interruption du téléchargement du module d'appareil, la gestion des fichiers peut présenter des erreurs.

Simulation PC

L'état des DEL a été ajouté au logiciel de simulation.

Enregistreur de tendance

Correction de bogue :

• Un problème de perte de mémoire a été résolu.

Sort analog - AnOut

Correction de bogue :

 Après un redémarrage du dispositif, la sortie peut atteindre une crête à 100 % pendant une courte période.

Lors de la mise à niveau à partir d'un dispositif de version 2.x, les points suivants doivent être considérés concernant les réglages :

- Tous les paramètres de communication doivent être redéfinis. Une conversion automatique n'est possible que partiellement.
- L'affectation VirtualOutput des communications CEI 61850 a été restructurée.

Tous les réglages d'affectation doivent être redéfinis.

- La partie de reconnexion Q->&V< a été séparée sous forme de nouveau module ReCon. Une conversion automatique n'est pas possible.
- Le mode V-Prot V<(t) a été abandonné et remplacé par le module LVRT.

Index

A

В

ANSI 46)	224
49)	229
50	184
50BF	257
50N/G	206
51	184
51N/G	206
51Q	200
60L	265
62BF	257
79)	232
AR	
Appel de courant d'un module	
accès réseau	
acquittement	
acquitter	
DEL mémorisées / relais de sortie / signaux SCADA / commande de déclenchement	63
algorithme cryptographique	
angles de phase (calcul)	
appareillage de connexion	
autorité de commutation	
distante	304
locale	304
Boîte de dialogue Réinitialiser	

C

	CBF		257
	CEI 61850	81,	137
	CEI 60870-5-103	80, 116,	147
	CEI 60870-5-104	80,	151
	CTS		265
	Code du type (voir Formulaire de commande)		24
	Commandes directes		. 30
	Commutation sur défaut - Module		247
	Compteurs		. 30
	Contact d'auto-surveillance		. 92
	certificat		. 53
	codes de démarrage		331
	codes de redémarrage		331
	commande OUVRIR/FERMER externe		273
	connecteur LC	81,	123
	connecteur ST	80,	120
	connexion cryptée		. 53
	connexion de borne à anneau		106
	contrôle		304
D			
	D-SUB	80, 121,	122
	DEL Système		340
	DEL »Système«		340
	DNP3	80,	140
	Dispositif arrêté		336
E			
	Enregistreur		310
	Enregistrements d'événements	310,	
	Enregistrements de démarrage du moteur		310
	Enregistrements de tendances	310,	
	Enregistrements des perturbations	310,	
	Enregistreur de défauts	310,	316
	Listoriano (Matour)		
	Historique (Moteur)		310
	Messages d'auto-surveillance		310

		310
	Statistiques du moteur	 310
	Entrée d'un module	30
	Ethernet	23ء
F		
	Fichier ErPara	30
	Formulaire de commande (Référence commerciale)	24
	fibre optique	
G		
	Gestionnaire de déclenchements274, 2	298
	Groupes de paramètres adaptatifs	40
Н		
	HMI	26
	High Tech Line 3 - Communication 1 compatible Modbus	L60
ı		
	l2>	224
	I2>[x]2	200
	IG[x]	206
	IH2	204
	IHM	55
	I[x]	.84
l		
	Journal de sécurité	51
L		
	Logique	323
	ligne unique	304
М		
	Messages d'auto-surveillance	
	Messages liés à la sécurité	333
	Modbus	
	Module d'image thermique	
		257
	disjoncteur	

	Mots de passe par défaut	
	message (auto-surveillance)	333
	mot de passe	55
	mot de passe de connexion	52, 53
	mot de passe de niveau d'accès	52
	mots de passe	
	désactiver	56
	réinitialiser	52, 61
	zones d'accès	57
N		
	niveaux de coupure (pour les valeurs	68
	mesurées)	
_		
P		
	Paramètres adaptatifs	30
	Paramètres de sécurité	
	Paramètres du groupe de réglages	
	Paramètres globaux	
	Profibus	
	Protection du courant à la terre - Étage	
	protection de ligne	
	protection de lighe	
R		
	RJ45	RO 112
	RS485	
	Réenclenchement automatique	
	restaurer les paramètres d'usine	
	réinitialiser les états mémorisés	63
	(= acquitter)	
S		
3		
	SC	92
	SCADA	304
	SOTF	247
	Signaux	30
	Surveillance TC	
	Syslog	
	Système LED	
	Système de référence de générateur	
	Système fléché de référence de charge	
	Sécurité	

	Sécurité informatique	
	schéma de ligne simple	
	structure de menus	14
T		
	Test des DEL6	
	ThR	
	Touches de fonction programmables	
	tableau de commande26, 5	
	temporisation de surveillance (pour les 27 appareillages de connexion)	
	touches CTRL 30	٦4
	CIRL	
V		
V		
	Valeur mesurée	30
	Valeur statistique	30
	Valeurs	30
	verrouillages	74
Z		
	zones d'accès	57
É		
	Éditeur de page	50
	Étage de charge déséquilibrée200, 22	
	Étage à maximum de courant de phase	
	Étalonnage des valeurs mesurées	
	États de sécurité	
Φ		
	© Réf images	
	(1) 17	71
	(11)	
	(14)	
	(14) 172, 199, 222, 226, 229, 255, 255, 26	
	(15) 172, 199, 222, 226, 229, 25	55
	(15.)	
	(15a) 172, 199, 222, 226, 230, 25	
	(16b)	

(17b)		199
(18b)		199
(19)		222
(2)		180
(24b)		199
(25b)		199
(26b)		199
(27)		223
(3)		179
(32)		179
(4)		181
(40)		266
(41)		296
(42)		297
(4G)		183
(5)		204
(50)	172,	
(51)	172,	175
(54)	172,	222
(55)	173,	222
(6)		204
(7)		204
(8)		204

Vos commentaires sur le contenu de nos publications sont les bienvenus.

Envoyez vos commentaires à : kemp.doc@woodward.com

Veuillez indiquer le numéro du manuel : MRI4-3.6-FR-MAN

http://wwdmanuals.com/mri4-2

Woodward Kempen GmbH se réserve le droit de mettre à jour une partie de cette publication à tout moment. Les informations fournies par Woodward Kempen GmbH sont considérées comme correctes et fiables. Toutefois, Woodward Kempen GmbH décline toute responsabilité, sauf indication contraire explicite.

Woodward Kempen GmbH Krefelder Weg 47 • D-47906 Kempen (Germany) Postfach 10 07 55 (P.O.Box) • D-47884 Kempen (Germany) Téléphone : : +49 (0) 21 52 145 1

Internet: - www.woodward.com

Ventes

Téléphone : : +49 (0) 21 52 145 331 Fax : : +49 (0) 21 52 145 354 Courriel : : SalesPGD EMEA@woodward.com

Service

Téléphone : : +49 (0) 21 52 145 600 Fax : : +49 (0) 21 52 145 455 Courriel : : SupportPGD_Europe@woodward.com

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address / phone / fax / email information for all locations is available on our website.