

Manual $\mid$ Transformer Differential Protection



## MRDT4

Software-Version: 3.0.b
DOK-HB-MRDT4-2E
Revision: C
English

## MRDT4 Functional Overview

MRDT4
Typical Configuration


## Order Code



[^0]The parameterizing- and disturbance analyzing software Smart view is included in the delivery of HighPROTEC devices.

All devices are equipped with an IRIG-B interface for Time Synchronization.

ANSI: 50, 51, 67, 50N, $51 \mathrm{~N}, 67 \mathrm{~N}, 50 \mathrm{Ns}, 51 \mathrm{Ns}, 67 \mathrm{Ns}, 51 \mathrm{~V}, 51 \mathrm{C}, 25,24,40,59 \mathrm{TN}, 27 \mathrm{TN}, 46,49,37,27,59,59 \mathrm{~N}$, 47, 32, 55, 81U/O, 81R, 78, 60FL, 86, 50BF, 74TC, 38

With up to 80 logic equations.

## Table of Contents

MRDT4 Functional Overview ..... 2
Order Code ..... 3
Table of Contents ..... 5
Comments on the Manual ..... 10
Information Concerning Liability and Warranty ..... 10
IMPORTANT DEFINITIONS ..... 11
Scope of Delivery ..... 15
Storage ..... 16
Important Information ..... 16
Symbols ..... 17
General Conventions ..... 19
Load Reference Arrow System ..... 24
Device ..... 25
Device Planning ..... 25
Device Planning Parameters of the Device ..... 26
Installation and Connection ..... 28
Three-Side-View - 19" ..... 28
Three-Side-View - 8-Pushbutton Version ..... 29
Installation Diagram 8-Pushbutton Version ..... 30
Assembly Groups ..... 31
Grounding ..... 31
Legend for Wiring Diagrams ..... 32
Slot X1: Power Supply Card with Digital Inputs ..... 34
Slot X2: Relay Output Card ..... 38
Slot X3: CT W1 - Current Transformer Measuring Inputs ..... 41
Slot X4: CT W2 - Current Transformer Measuring Inputs ..... 42
Slot X5: Relay Output Card ..... 52
Slot X6: Digital Inputs ..... 53
Slot X100: Ethernet Interface ..... 54
Slot X103: Data Communication ..... 56
Slot X104: IRIG-B00X and Supervision Contact. ..... 64
Navigation - Operation ..... 67
Basic Menu Control ..... 72
Input, Output and LED Settings ..... 73
Configuration of the Digital Inputs ..... 73
Output Relays Settings ..... 81
OR-6 X ..... 85
LED configuration ..... 123
Smart View ..... 127
Measuring Values ..... 128
Read out Measured Values ..... 128
Statistics ..... 136
Configuration of the Minimum and Maximum Values ..... 136
Configuration of the Average Value Calculation ..... 137
Direct Commands ..... 139
Global Protection Parameters of the Statistics Module ..... 139
States of the Inputs of the Statistics Module ..... 141
Signals of the Statistics Module ..... 141
Counters of the Module Statistics ..... 142
System Alarms ..... 149
Demand Management ..... 149
Peak Values ..... 152
Min. and Max. Values. ..... 152
THD Protection. ..... 153
Device Planning Parameters of the Demand Management. ..... 153
Signals of the Demand Management (States of the Outputs) ..... 153
Global Protection Parameter of the Demand Management. ..... 153
States of the Inputs of the Demand Management. ..... 154
Acknowledgments. ..... 155
Manual Acknowledgment ..... 157
External Acknowledgments ..... 157
Manual Resets ..... 158
Reset to Factory Defaults ..... 158
Status Display ..... 159
Operating Panel (HMI). ..... 160
Special Parameters of the Panel ..... 160
Direct Commands of the Panel. ..... 160
Global Protection Parameters of the Panel. ..... 160
Recorders ..... 161
Disturbance Recorder ..... 161
Fault Recorder ..... 169
Event Recorder ..... 176
Trend Recorder ..... 177
Communication Protocols ..... 183
SCADA Interface. ..... 183
TCP/IP Parameter. ..... 184
Modbus®. ..... 185
Profibus. ..... 206
IEC60870-5-103 ..... 219
IEC61850 ..... 223
DNP3. ..... 236
Time Synchronisation ..... 277
SNTP ..... 283
IRIG-B00X ..... 290
Parameters ..... 295
Parameter Definitions ..... 295
Access Authorizations (access areas). ..... 314
Passwords - Areas ..... 314
How to find out what access areas/levels are unlocked? ..... 316
Unlocking Access Areas. ..... 317
Changing Passwords ..... 317
Password Entry at the Panel ..... 318
Password Forgotten ..... 318
Parameter Setting at the HMI ..... 319
Setting Groups ..... 323
Setting Lock ..... 332
Device Parameters ..... 333
Date and Time ..... 333
Version ..... 333
Display of ANSI-Codes. ..... 333
TCP/IP Settings. ..... 333
Direct Commands of the System Module ..... 334
Global Protection Parameters of the System. ..... 335
System Module Input States ..... 337
System Module Signals ..... 338
Special Values of the System Module ..... 339
Field Parameters ..... 340
General Field Parameters ..... 340
Field Parameters - Phase Differential Current. ..... 340
Field Parameters - Earth Differential Current ..... 341
Field Parameters - Current Related ..... 341
Field Parameters of the Transformer. ..... 343
Blockings ..... 344
Permanent Blocking. ..... 344
Temporary Blocking ..... 344
To Activate or Deactivate the Tripping Command of a Protection Module ..... 346
Activate, Deactivate Respectively Block Temporarily Protection Functions ..... 347
Module: Protection (Prot) ..... 351
Blocking all Protective Elements enduringly ..... 351
Blocking all Protective Elements temporarily. ..... 351
Blocking all Trip Commands enduringly ..... 352
Blocking all Trip Commands temporarily ..... 352
General Alarms and General Trips ..... 354
Direct Commands of the Protection Module ..... 359
Global Protection Parameters of the Protection Module ..... 359
Protection Module Input States ..... 360
Protection Module Signals (Output States) ..... 360
Protection Module Values ..... 361
Switchgear/Breaker - Manager ..... 362
Single Line Diagram ..... 363
Switchgear Configuration ..... 363
Switchgear Wear. ..... 374
Control Parameters ..... 381
Controlled Circuit Breaker. ..... 393
Control - Example: Switching of a Circuit Breaker ..... 404
Protective Elements ..... 407
id - Phase Current Differential Protection [87TP] ..... 407
IdG - Ground Current Differential Protection [87TN, 64REF] ..... 449
IdGh - High Set Restricted Ground Fault Protection IdGH ..... 457
I - Overcurrent Protection [50, 51,51Q, 51V*] ..... 461
IH2 - Inrush ..... 492
IG> - Earth Fault [50N/G, 51N/G] ..... 496
I2> and \%I2/I1> - Unbalanced Load [46] ..... 518
ThR-Protection Module: Thermal Replica [49] ..... 527
SOTF - Switch Onto Fault. ..... 534
CLPU - Cold Load Pickup ..... 540
ExP - External Protection ..... 548
Ext Temp Superv Protection Module - External Temperature Supervision ..... 553
Ext Oil Temp Protection Module - External Oil Temperature Protection ..... 559
Sudden Pressure Protection Module - Sudden Pressure Protection ..... 564
RTD Protection Module ..... 570
URTDII Module Interface* ..... 597
Supervision ..... 606
CBF- Circuit Breaker Failure [50BF*/62BF]. ..... 606
TCS - Trip Circuit Supervision [74TC] ..... 629
CTS - Current Transformer Supervision [60L] ..... 636
Self Supervision ..... 642
Programmable Logic. ..... 646
General Description ..... 646
Programmable Logic at the Panel. ..... 651
Commissioning ..... 654
Commissioning/Protection Test ..... 655
Putting out of Operation - Plug out the Relay ..... 656
Service and Commissioning Support ..... 657
General. ..... 657
Forcing the Relay Output Contacts ..... 657
Forcing RTDs* ..... 659
Forcing Analog Outputs*. ..... 660
Forcing Analog Inputs* ..... 661
Failure Simulator (Sequencer)* ..... 662
Technical Data ..... 676
Climatic Environmental Conditions ..... 676
Degree of Protection EN 60529 ..... 676
Routine Test. ..... 676
Housing. ..... 677
Current and Earth Current Measurement ..... 678
Voltage Supply ..... 679
Power Consumption. ..... 679
Display ..... 680
Front Interface RS232 ..... 680
Real Time Clock. ..... 680
Digital Inputs ..... 681
Binary Output Relays ..... 682
Supervision Contact (SC). ..... 682
Time Synchronization IRIG ..... 683
RS485*. ..... 683
Fibre Optic* ..... 683
Optical Fast Ethernet* ..... 683
URTD-Interface* ..... 683
Boot phase ..... 683
Servicing and Maintenance ..... 684
Standards ..... 686
Approvals ..... 686
Design Standards ..... 686
High Voltage Tests ..... 687
EMC Immunity Tests ..... 688
EMC Emission Tests ..... 689
Environmental Tests ..... 690
Environmental Tests ..... 691
Mechanical Tests ..... 692
General Lists ..... 693
Assignment List ..... 693
Signals of the Digital Inputs and Logic ..... 745
Abbreviations, and Acronyms ..... 755
List of ANSI Codes ..... 760
Specifications ..... 762
Specifications of the Real Time Clock ..... 762
Time Synchronisation Tolerances ..... 762
Specifications of the Measured Value Acquisition ..... 763
$\qquad$Protection Elements Accuracy.764

This manual applies to devices (version):

Version 3.0.b

Build: 27766

## Comments on the Manual

This manual explains in general the tasks of device planning, parameter setting, installation, commissioning, operation and maintenance of the HighPROTEC devices.

The manual serves as working basis for:

- Engineers in the protection field,
- commissioning engineers,
- people dealing with setting, testing and maintenance of protection and control devices,
- as well as trained personnel for electrical installations and power stations.

All functions concerning the type code will be defined. Should there be a description of any functions, parameters or inputs/outputs which do not apply to the device in use, please ignore that information.

All details and references are explained to the best of our knowledge and are based on our experience and observations.
This manual describes the (optionally) full featured versions of the devices.

All technical information and data included in this manual reflect their state at the time this document was issued. We reserve the right to carry out technical modifications in line with further development without changing this manual and without previous notice. Hence no claim can be brought based on the information and descriptions this manual includes.

Text, graphic and formulae do not always apply to the actual delivery scope. The drawings and graphics are not true to scale. We do not accept any liability for damage and operational failures caused by operating errors or disregarding the directions of this manual.

No part of this manual is allowed to be reproduced or passed on to others in any form, unless Woodward Kempen GmbH have approved in writing.

This user manual is part of the delivery scope when purchasing the device. In case the device is passed on (sold) to a third party, the manual has to be handed over as well.

Any repair work carried out on the device requires skilled and competent personnel who need to be well aware especially of the local safety regulations and have the necessary experience for working on electronic protection devices and power installations (provided by evidence).

## Information Concerning Liability and Warranty

Woodward does not accept any liability for damage resulting from conversions or changes carried out on the device or planning (projecting) work, parameter setting or adjustment changes done by the customer.

The warranty expires after a device has been opened by others than Woodward specialists.

Warranty and liability conditions stated in Woodward General Terms and Conditions are not supplemented by the above mentioned explanations.

## IMPORTANT DEFINITIONS

The signal definitions shown below serve the safety of life and limb as well as for the appropriate operating life of the device.

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION, used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOT/CE NOTICE is used to address practices not related to personal injury.

CAUTION
CAUTION, without the safety alert symbol, is used to address practices not related to personal injury.

## A WARNING <br> FOLLOW INSTRUCTIONS

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

## WARNING

## PROPER USE

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (1) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (2) invalidate product certifications or listings.

The programmable devices subject to this manual are designed for protection and also control of power installations and operational devices that are fed by voltage sources with a fixed frequency, i.e. fixed at 50 or $\mathbf{6 0}$ Hertz. They are not intended for use with Variable Frequency Drives. The devices are further designed for installation in low-voltage (LV) compartments of medium voltage (MV) switchgear panels or in decentralized protection panels. The programming and parameterization has to meet all requirements of the protection concept (of the equipment that is to be protected). You must ensure that the device will properly recognize and manage (e.g. switch off the circuit breaker) on the basis of your programming and parameterization all operational conditions (failures). The proper use requires a backup protection by an additional protective device. Before starting any operation and after any modification of the programming (parameterization) test make a documentary proof that your programming and parameterization meets the requirements of your protection concept.

The self-supervision contact has to be wired with the master communication system (SCADA) in order to supervise and monitor the state of health of the programmable protective device.

Typical applications for this product family/device line are for instance:

- Feeder protection
- Mains protection
- Machine protection
- Transformer Differential Protection

Any usage beyond these applications the devices are not designed for. This applies also to the use as a partly completed machinery. The manufacturer cannot be held liable for any resulting damage, the user alone bears the risk for this. As to the appropriate use of the device: The technical data and tolerances specified by Woodward have to be met.

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, please visit the download section of our website:
www.woodward.com

If your publication is not there, please contact your customer service representative to get the latest copy.

## CAUTION

## Electrostatic Discharge Awareness

All electronic equipment is electro static-sensitive, some components more than others. To protect these components from electro static damage, you must take special precautions to minimize or eliminate electrostatic discharges.

Follow these precautions when working with or near the control.

1. Before doing maintenance on the electronic control, discharge the static electricity on your body to ground by touching and holding a grounded metal object (pipes, cabinets, equipment, etc.).
2. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.
3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam cups, cup holders, cigarette packages, cellophane wrappers, vinyl books or folders, plastic bottles, and plastic ash trays) away from the control, the modules, and the work area as much as possible.
4. Do not remove any printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:

- Verify the safe isolation from supply. All connectors have to be unplugged.
$\square$ Do not touch any part of the PCB except the edges.
- Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
- When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly undertaken.
© Woodward 2015 All Rights Reserved

## Scope of Delivery



The delivery scope includes:

| $(1)$ | The transportation box |
| :---: | :--- |
| 2 | The protective device |
| 3 | The mounting nuts |
| 4 | The test report |
| 5 | The product CD that includes the manuals |
| 6 | The parameter and evaluation software Smart view |

Please check the consignment for completeness on arrival (delivery note).

Please ascertain whether the type plate, connection diagram, type code and description of the device tally. If you have any doubts please contact our Service Department (contact address to be found on the reverse of the manual).

## Storage

The devices must not be stored outdoors. The storing facilities have to be sufficiently ventilated and must be dry (see Technical Data).

## Important Information

A. WARNING

In line with the customer's requirement the devices are combined in a modular way (in compliance with the order code). The terminal assignment of the device can be found on the top of the device (wiring diagram).

## Symbols




## General Conventions

„Parameters are indicated by right and left double arrow heads and written in italic . ."
»SIGNALS are indicated by right and left double arrow heads and small caps .«
[Paths are indicated by brackets.]

Software and Device names are written in italic.

Module and Instance (Element) names are displayed italic and underlined.
»Pushbuttons, Modes and Menu entries are indicated by right and left double arrow heads ."
$\begin{array}{lllll}1 & 2 & 3 & \text { Image References (Squares) }\end{array}$


| name.Alarm | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (collective alarm). |
| :---: | :---: |
|  | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (oollective alarm). |
| name.Aarm | Each phase selective alam of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (collective alarm). |
| name.Alarm - | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (collective alarm). |
|  | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (cdlective alarm). |
|  | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (cdlective alarm). |
| name.Alarm L3 | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (cdlective alarm). |
|  | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (cdlective alarm). |
|  |  |
| Prot.Blo TripCmd |  |
| CB.Pos Please Refer To Diagram: CB.CB Manager |  |
| CB.Pos ON $\xrightarrow{\text { Please Refer To Diagram: CB.CB Manager }}$ |  |
| .Pos OFF $\xlongequal{\text { Please Refer To Diagram: CB.CB Manager }}$ |  |
| CB.Pos Indeterm $\xrightarrow{\text { Please Refer To Diagram: CB.CB Manager }}$ |  |
| CB.Pos Disturb Please Refer To Diagram: CB.CB Manager |  |
| LOP.LOP BIo Please Refer To Diagram: LOP.LOP Blo |  |
| LOP.Ex FF VT $\xrightarrow{\text { Please Refer To Diagram: LOP.Ex FFVT }}$ |  |
| LOP.ExFFEVT | Please Refer To Diagram: LOP.Ex FF EVT |


|  | Each trip of an active, trip authorized protection module will lead to a general trip. |  |
| :---: | :---: | :---: |
| name.Trip L1 |  |  |
| name.Trip L2 | Each trip of an active, trip authorized protection module will lead to a general trip. |  |
| name.Trip L3 | Each trip of an active, trip authorized protection module will lead to a general trip. |  |
| name.Trip | Each trip of an active, trip authorized protection module will lead to a general trip. |  |
|  | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alam (collective alam). |  |
| name.Alarm L1 | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (collective alarm). |  |
| name.Alarm L1 | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alam (collective alam). |  |
| name.Alarm L2 | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (collective alam). |  |
|  | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alarm (collective alarm). |  |
| name.Alarm L2 <br> name.Alarm L2 | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alam (collective alam) |  |
|  | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alam (collective alam). |  |
| me.Alarm L3 | Each phase selective alam of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alam (collective alam). |  |
|  | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alam (collective alam). |  |
|  | Each phase selective alarm of a module (I, IG, V, VX depending on the device type) will lead to a phase selective general alam (collective alam). |  |


| Q->\&V<.Decoupling Distributed Generator | Please Refer To Diagram: Q->\&V<.Decoupling Distributed Generator | 39 |
| :---: | :---: | :---: |
| CTS.Alarm | Please Refer To Diagram: CTS.Alarm | 40 |
|  | Please Refer To Diagram: SG.Prot ON |  |
| SG.ON Cmd Please Refer To Diagram: SG.ON Cmd |  |  |
| AnIn[1].Value Please Refer To Diagram: Analog values |  |  |
| AnIn[2].Value Please Refer To Diagram: Analog values |  |  |
| AnIn[n].Value Please Refer To Diagram: Analog values |  |  |
| Trip Incomplete (Motor) Start Sequence | - | 46 |

## Access Level

(Please refer to chapter [ParameterlAccess Level])

Read Only-Lv0


Prot-Lv1


## Prot-Lv2

Control-Lv1


Control-Lv2


Supervisor-Lv3


Parameters can only be read within this level.

This level enables execution of Resets and Acknowledgements

This level enables modification of protection settings

This level enables control functions

This level enables modification of switchgear settings

This level provides full access (not limited) to all settings

## Load Reference Arrow System

Within the HighPROTEC the "Load Reference Arrow System" is used in principal. Generator protection relays are working based on the "Generator Reference System".

## Device

MRDT4

## Device Planning

Planning of a device means to reduce the functional range to a degree that suits the protection task to be fulfilled, i.e. the device shows only those functions you really need. If you, for example, deactivate the voltage protection function, all parameter branches related to this function do not appear in the parameter tree any more. All corresponding events, signals etc. will be deactivated too. By this the parameter trees become very transparent. Planning also involves adjustment of all basic system data (frequency etc.).

But it has to be taken into account that by deactivating, for instance, protective functions, you also change the functionality of the device. If you cancel the directional feature of the overcurrent protections then the device no longer trips in a directional way but merely in a non-directional way.

The manufacturer does not accept liability for any personal or material damage as a result of wrong planning.

A planning service is also offered by Woodward Kempen GmbH.

## Beware of inadvertent deactivating protective functions/modules

If you are deactivating modules within the device planning all parameters of those modules will be set on default.
If you are activating one of these modules again all parameters of those reactivated modules will be set on default.

## Device Planning Parameters of the Device

| Parameter | Description | Options | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Hardware Variant 1 | Optional Hardware Extension | »A« 8 digital inputs $\mid 7$ binary output relays, <br> »D« 16 digital inputs \| 13 binary output relays | 16 digital inputs 13 binary output relays | [MRDT4] |
| Hardware Variant 2 | Optional Hardware Extension | »0« W1: Default Ground Current - W2: Default Ground Current , <br> »1«W1: Sensitive Ground Current - W2: Default Ground Current , <br> »2« W1: Default Ground Current - W2: Sensitive Ground Current, <br> »3« W1: Sensitive Ground Current - W2: Sensitive Ground Current | W1: Default Ground Current W2: Default Ground Current | [MRDT4] |
| Housing | Mounting form | »A« Flush mounting, <br> $» B \ll 19$ inch mounting (semi-flush), <br> »H« Customized Version 1, <br> »K« Customized Version 2 | Flush mounting | [MRDT4] |


| Parameter | Description | Options | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Communication | Communication | »A« Without, <br> »B«RS 485: Modbus RTU \| IEC 60870-5-103 | DNP RTU, <br> »C« Ethernet: Modbus TCP \| DNP UDP, TCP, <br> »D«Fiber Optics: Profibus-DP, <br> »E« D-SUB: ProfibusDP, <br> »F« Fiber Optics: <br> Modbus RTU \| IEC <br> 60870-5-103 \| DNP <br> RTU, <br> »G《RS 485/D-SUB: <br> Modbus RTU \| IEC <br> 60870-5-103 \| DNP <br> RTU, <br> »H« Ethernet: <br> IEC61850 \| Modbus TCP | DNP UDP, TCP, <br> »<<RS 485 and Ethernet: Modbus TCP, RTU \| DNP UDP, TCP, RTU, <br> »K« Ethernet/Fiber Optics: IEC61850\| Modbus TCP | DNP UDP, TCP, <br> »L« Ethernet/Fiber Optics: Modbus TCP \| DNP UDP, TCP, <br> $» T «$ RS 485 and Ethernet: Communication Test | »A« Without | [MRDT4] |
| Printed Circuit Board | Printed Circuit Board | »A« Standard, » B « conformal coating | »A« Standard | [MRDT4] |

## Installation and Connection

## Three-Side-View - 19"

$N \bigcirc T / C E \quad$ Dependent on the connection method of the SCADA system used the needed space (depth) differs. If, for instance, a D-Sub-Plug is used, it has to be added to the depth dimension.

NOT/CE $\quad$ The three-side-view shown in this section is exclusively valid for 19" devices.


3-Side-View B2 Housing (19" Devices)

The housing must be carefully earthed. Connect a ground cable ( 4 to $\mathbf{6 m m}{ }^{\mathbf{2}}$ / AWG 12-10) / 1,7 $\mathbf{N m}$ [15 lb•in]) to the housing, using the screw, which is marked with the ground symbol (at the rear side of the device).

The power supply card needs a separate ground connection ( $2.5 \mathrm{~mm}^{2}$ / AWG 14) at terminal X1 (0.56-0.79 Nm [5-7 Ib-in]).

## Three-Side-View - 8-Pushbutton Version

NOTICE
Dependent on the connection method of the SCADA system used the needed space (depth) differs. If, for instance, a D-Sub-Plug is used, it has to be added to the depth dimension.

NOT/CE The installation diagram shown in this section is exclusively valid for devices with 8 pushbuttons at the front side of the HMI.
(INFO-, C-, OK-, CTRL-Pushbutton and 4 Softkeys (Pushbuttons)).


3-Side-View B2 Housing (Devices with 8 Softkeys)
The housing must be carefully earthed. Connect a ground cable ( 4 to $6 \mathbf{~ m m}^{2}$ / AWG 12-10) / $1,7 \mathrm{Nm}$ [15 lb•in]) to the housing, using the screw, which is marked with the ground symbol (at the rear side of the device).

The power supply card needs a separate ground connection ( $2.5 \mathrm{~mm}^{\mathbf{2}}$ / AWG 14) at terminal X1 (0.56-0.79 Nm [5-7 lb•in]).

## Installation Diagram 8-Pushbutton Version

## A. WARNING <br> Even when the auxiliary voltage is switched-off, unsafe voltages might remain

 at the device connections.NOTICE
The installation diagram shown in this section is exclusively valid for devices with 8 pushbuttons at the front side of the HMI. (INFO-, C-, OK-, CTRL-Pushbutton and 4 Softkeys (Pushbuttons)).


B2 Housing Door Cut-out (8-Pushbutton Version)
$\triangle$ WARNING
The housing must be carefully earthed. Connect a ground cable ( 4 to $6 \mathbf{m m}^{2}$ / AWG 12-10) / $1,7 \mathrm{Nm}$ [15 $\mathrm{lb} \cdot \mathrm{in}]$ ) to the housing, using the screw, which is marked with the ground symbol (at the rear side of the device).

The power supply card needs a separate ground connection ( $2.5 \mathrm{~mm}^{2}$ / AWG 14) at terminal X1 (0.56-0.79 Nm [5-7 Ib-in]).

Be careful. Do not overtighten the mountings nuts of the relay (M4 metric 4 mm ). Check the torque by means of a torque wrench ( $1,7 \mathrm{Nm}$ [15 $\mathrm{lb} \cdot \mathrm{in}]$ ). Overtightening the mounting nuts could due to personal injury or damage the relay.

## Assembly Groups

> In line with the customer's requirement the devices are combined in a modular way (in compliance with the order code). In each of the slots an assembly-group may be integrated. In the following the terminal assignment of the individual assembly-groups are shown. The exact installation place of the individual modules can be learned from the connection diagram fixed at the top of your device.

Middle Housing B2
slot1 slot2 slot3
slot4 slot5 slot6


Rear view of B2 housing

Grounding

The housing must be carefully grounded. Connect a ground cable (4 to 6 $\mathrm{mm}^{2}$ / AWG 12-10) / 1,7 Nm [15 Ib•in]) to the housing, using the screw, which is marked with the ground symbol (at the rear side of the device).

The power supply card needs a separate ground connection ( $2.5 \mathrm{~mm}^{2}$ / AWG 14) at terminal X1 (0.56-0.79 Nm [5-7 lb•in]).

CAUTION The devices are very sensitive to electro-static discharges.

## Legend for Wiring Diagrams

In this legend designations of various device types are listed, e. g. transformer protection, motor protection, generator protection, etc. Therefor it can occur that you will not find each designation on the wiring diagram of your device.

| Designation | Meaning |
| :---: | :---: |
| FE | Connection of functional earth |
| Power Supply | Connection for auxiliary power supply |
| I L1 | Phase current input L1 |
| I L2 | Phase current input L2 |
| I L3 | Phase current input L3 |
| IG | Earth current input IG |
| I L1 W1 | Phase current input L1, winding side 1 |
| I L2 W1 | Phase current input L2, winding side 1 |
| I L3 W1 | Phase current input L3, winding side 1 |
| I G W1 | Earth current input IG, winding side 1 |
| IL1 W2 | Phase current input L1, winding side 2 |
| I L2 W2 | Phase current input L2, winding side 2 |
| I L3 W2 | Phase current input L3, winding side 2 |
| I G W2 | Earth current input IG, winding side 2 |
| V L1 | Phase voltage L1 |
| V L2 | Phase voltage L2 |
| V L3 | Phase voltage L3 |
| V 12 | Phase to phase voltage V 12 |
| V 23 | Phase to phase voltage V 23 |
| V 31 | Phase to phase voltage V 31 |
| $V \mathrm{X}$ | Forth voltage measuring input for measuring residual voltage or for Synchro-check |
| BO | Contact output, change over contact |
| NO | Contact output, normally open |
| DI | Digital input |
| COM | Common connection of digital inputs |
| Out+ | Analog output + (0/4... 20 mA or $0 \ldots 10 \mathrm{~V}$ ) |
| IN- | Analog input + (0/4... 20 mA or 0... 10 V ) |
| N.C. | Not connected |
| DO NOT USE | Do not use |
| SC | Self supervision contact |
| GND | Ground |


| Designation | Meaning |
| :--- | :--- |
| HF SHIELD | Connection cable shield |
| Fibre Connection | Fibre optic connection |
| Only for use with external galvanic decoupled CTs. See <br> chapter Current Transformers of the manual. | Only for use with external galvanic decoupled CTs. See <br> chapter Current Transformers of the manual. |
| Caution Sensitive Current Inputs | Caution Sensitive Current Inputs |
| Connection Diagram see specification | Connection Diagram see specification |

## Slot X1: Power Supply Card with Digital Inputs



Rear side of the device (Slots)

The type of power supply card and the number of digital inputs on it used in this slot is dependent on the ordered device type. The different variants have a different scope of functions.

## Available assembly groups in this slot.

- (DI8-X1): This assembly group comprises a wide-range power supply unit; and two non-grouped digital inputs and six (6) digital inputs (grouped).

NOTICE
The available combinations can be gathered from the ordering code.

## DI8-X Power Supply and Digital Inputs

## ^ WARNING Ensure the correct tightening torques.



This assembly group comprises:

- a wide-range power supply unit
- 6 digital inputs, grouped
- 2 digital inputs, non-grouped

Auxiliary voltage supply
■ The aux. voltage inputs (wide-range power supply unit) are non-polarized. The device could be provided with AC or DC voltage.

## Digital inputs

CAUTION For each digital input group the related voltage input range has to be parameterized. Wrong switching thresholds can result in malfunctions/wrong signal transfer times.

The digital inputs are provided with different switching thresholds (can be parameterized) (two AC and five DC input ranges). For the six grouped (connected to common potential) inputs and the two non-grouped inputs the following switching levels can be defined:

- 24 V DC
- 48V DC / 60V DC
- 110 V AC/DC
- 230 V AC/DC

If a voltage $>80 \%$ of the set switching threshold is applied at the digital input, the state change is recognized (physically " 1 "). If the voltage is below $40 \%$ of the set switching threshold, the device detects physically " 0 ".

CAUTION
When using DC supply, the negative potential has to be connected to the common terminal (COM1, COM2, COM3 - please see the terminal marking).

## Terminals

| X？ |  |
| :---: | :---: |
| 1 | $\stackrel{1}{\square}$ |
| 2 | －L＋Power Supply |
| 3 | － |
| 4 | － |
| 5 | －Со̄М1 ${ }^{\text {－}}$ |
| 6 | －D11－ |
| 7 | －сом2 |
| 8 | －D12－－ |
| 9 | －сомз |
| 10 | －COM |
| 11 | －D13 烼 |
| 12 | －D14＝＝ |
| 13 | －DI5 扬 |
| 14 | －D16＝ |
| 15 | －D17 拓 |
| 16 | －D18－${ }^{\text {a }}$ |
| 17 | －do not use |
| 18 | －do not use |

## Electro－mechanical assignment

| DI－8P |  |  |
| :---: | :---: | :---: |
| $\oslash$ |  |  |
|  | $\checkmark$ | ${ }^{\text {L＋}}$ Power Supply |
|  | $\sim$ |  |
|  | $m$ | L－ |
|  | $\checkmark$ | n．c． |
|  | 10 | COM1 7 |
|  |  | D11 |
|  | $\bullet$ | COMR－ 7 |
|  | $\infty$ | $\mathrm{D} 2 \mathrm{\square}$ |
|  | $\infty$ | COMB $\square$ |
|  | 은 | COMB - |
|  |  | $\text { D13 }+\square$ |
|  | $\stackrel{\sim}{\sim}$ | $\text { D14 }+ \text { 元 }$ |
|  |  | D14 |
|  | $\stackrel{m}{\tau}$ | D15 |
|  | $\stackrel{\text { ® }}{\sim}$ |  |
|  | $\stackrel{\square}{\sim}$ | D17 |
|  |  |  |
|  | $\bigcirc$ | D18 $\square^{\text {b }}$ |
|  | $\stackrel{\sim}{\sim}$ | do notuse |
|  | $\infty$ | do not use |
| $\oslash$ |  |  |
|  |  |  |

## Slot X2: Relay Output Card



The type of card in this slot is dependent on the ordered device type. The different variants have a different scope of functions.

Available assembly groups in this slot:
(RO-6 X2): Assembly Group with 6 Relay Outputs.

NOTICE
The available combinations can be gathered from the ordering code.

## Binary Output Relays

The number of the binary output relay contacts is related to the type of the device or type code. The binary output relays are potential-free change-over contacts. In chapter [Assignment/binary outputs] the assignment of the binary output relays is specified. The changeable signals are listed in the »assignment list« which can be found in the appendix.

## A. WARNING <br> Ensure the correct tightening torques.



CAUTION
Please duly consider the current carrying capacity of the binary output relays. Please refer to the Technical Data.

## Terminals



Electro-mechanical assignment


## Slot X3: CT W1 - Current Transformer Measuring Inputs



This slot contains the current transformer measuring inputs for the winding side 1 (W1) of the transformer. Depending on the order code, this might be a standard current measuring card or a sensitive ground current measuring card.

Available assembly groups in this slot:

- (TI-4 X3): Standard ground current measuring card.
- (TIS-4 X3): Sensitive Ground current measuring card. The Technical data of the sensitive ground measuring input deviate are different to the Technical Data of the phase current measuring inputs. Please refer to the Technical Data.


## Slot X4: CT W2 - Current Transformer Measuring Inputs



This slot contains the current transformer measuring inputs for the winding side $2(\mathrm{~W} 2)$ of the transformer.

Available assembly groups in this slot:

- (TI-4 X4): Standard ground current measuring card.

■ (TIS-4 X3): Sensitive Ground current measuring card. The Technical data of the sensitive ground measuring input deviate are different to the Technical Data of the phase current measuring inputs. Please refer to the Technical Data.

## TI X- Standard Phase and Ground Current Measuring Input Card

This measuring card is provided with 4 current measuring inputs: three for measuring the phase currents and one for measuring of the earth current. Each of the current measuring inputs has a measuring input for 1 A and 5 A .

The input for earth current measuring either can be connected to a cable-type current transformer or alternatively it is possible to connect the summation current path of the phase current transformer to this input (Holmgreen connection).

Current transformers have to be earthed on their secondary side.

## ! DANGER

Interrupting the secondary circuits of current transformers causes hazardous voltages.

The secondary side of the current transformers have to be short circuited before the current circuit to the device is opened.

4 DANGER
The current measuring inputs may exclusively be connected to current measuring transformers (with galvanic separation).

Do not interchange the inputs (1 A/5 A)

- Make sure the transformation ratios and the power of the CTs are correctly rated. If the rating of the CTs is not right (overrated), then the normal operational conditions may not be recognized. The pickup value of the measuring unit amounts approx. 3\% of the rated current of the device. Also the CTs need a current greater than approx $3 \%$ of the rated current to ensure sufficient accuracy. Example: For a 600 A CT (primary current) any currents below 18 A cannot be detected any more.
- Overloading can result in destruction of the measuring inputs or faulty signals. Overloading means that in case of a short-circuit the currentcarrying capacity of the measuring inputs could be exceeded.

Ensure the correct tightening torques.


## Terminals

| X?. |  |
| :---: | :---: |
| 1 | 1 A |
| 2 | 5A $\underbrace{}_{\text {IL1 }}$ |
| 3 | N31. |
| 4 | 1A |
| 5 | 5A\} $\xi_{\text {IL2 }}$ |
| 6 | N $\mathrm{S}^{\text {cher }}$ |
| 7 | 1 A |
| 8 |  |
| 9 | N_S |
| 10 | ${ }^{1 A}$ |
| 11 | 5A, $\varepsilon_{\text {IG }}$ |
| 12 | N31' |

## Electro-mechanical assignment



## TIS X - Phase and Sensitive Ground Current Measuring Card

The measuring card is provided with 4 current measuring inputs: three for measuring the phase currents and one for measuring of the earth current. The sensitive Ground current Input has different technical data. Please refer to chapter Technical Data.

The input for earth current measuring either can be connected to a cable-type current transformer or alternatively it is possible to connect the summation current path of the phase current transformer to this input (Holmgreen connection).

## 4 DANGER <br> Current transformers have to be earthed on their secondary side.

## ADANGER

Interrupting the secondary circuits of current transformers causes hazardous voltages.

The secondary side of the current transformers have to be short circuited before the current circuit to the device is opened.

The current measuring inputs may exclusively be connected to current measuring transformers (with galvanic separation).

Do not interchange the inputs (1 A/5 A)

- Make sure the transformation ratios and the power of the CTs are correctly rated. If the rating of the CTs is not right (overrated), then the normal operational conditions may not be recognized. The pickup value of the measuring unit amounts approx. 3\% of the rated current of the device. Also the CTs need a current greater than approx $3 \%$ of the rated current to ensure sufficient accuracy. Example: For a 600 A CT (primary current) any currents below 18 A cannot be detected any more.
- Overloading can result in destruction of the measuring inputs or faulty signals. Overloading means that in case of a short-circuit the currentcarrying capacity of the measuring inputs could be exceeded.


## WARNING <br> Ensure the correct tightening torques.



## Terminals

| X?. |  |
| :---: | :---: |
| 1 | 1 A |
| 2 | 5A $\underbrace{}_{\text {IL1 }}$ |
| 3 | N31. |
| 4 | 1A |
| 5 | 5A\} $\xi_{\text {IL2 }}$ |
| 6 | N $\mathrm{S}^{\text {cher }}$ |
| 7 | 1 A |
| 8 |  |
| 9 | N_S |
| 10 | ${ }^{1 A}$ |
| 11 | 5A, $\varepsilon_{\text {IG }}$ |
| 12 | N31' |

## Electro-mechanical assignment



## CT Wiring

Check the installation direction.

## ! DANGER <br> It is imperative that the secondary sides of measuring transformers be grounded.

## ! DANGER

The current measuring inputs may exclusively be connected to current measuring transformers (with galvanic separation).

1. WARNING CT secondary circuits must always to be low-burdened or short-circuited during operation.

NOT/CE For current and voltage sensing function external wired and appropriate current and voltage transformer shall be used, based on the required input measurement ratings. Those devices provide the necessary insulation functionality.

All current measuring inputs can be provided with 1 A or 5 A nominal. Make sure that the wiring is correct.

## Sensitive Ground Current Measurement

The proper use of sensitive current measuring inputs is the measurement of small currents like they could occur in isolated and high resistance grounded networks.

Due to the sensitiveness of these measuring inputs don't use them for the measurement of ground short circuit currents like they occur in solidly earthed networks.

If a sensitive measuring input should be used for the measurement of ground short circuit currents, it has to be ensured, that the measuring currents are transformed by a matching transformer according to the technical data of the protective device.

## Common CT Wiring Configurations



Three phase current measurement; In secondary =5A.

Winding 2


Three phase current measurement ; In secondary =5A.


Three phase current measurement ; In secondary =5A.
Three phase current measurement ; In secondary =5A.

## Slot X5: Relay Output Card



The type of card in this slot is dependent on the ordered device type. The different variants have a different scope of functions.

Available assembly groups in this slot:
(RO-6 X5): Assembly Group with 6 Relay Outputs. The Relay Output Card is identical with the one on Slot X2.

## Slot X6: Digital Inputs



The type of card in this slot is dependent on the ordered device type. The different variants have a different scope of functions.

Available assembly groups in this slot:
(DI-8 X6): Assembly Group with 8 Digital Inputs.

## Slot X100: Ethernet Interface



An Ethernet interface may be available depending on the device type ordered.
NOT/CE The available combinations can be gathered from the ordering code.

Ethernet - RJ45

Terminals


## Slot X103: Data Communication



The data communication interface in the X103 slot is dependent on the ordered device type. The scope of functions is dependent on the type of data communication interface.

Available assembly groups in this slot:

- RS485 Terminals for Modbus, DNP and IEC
- Fiber Optics Interface for Modbus, DNP and IEC
- Fiber Optics Interface for Profibus
- D-SUB Interface for Modbus, DNP and IEC
- D-SUB Interface for Profibus
- Fiber Optics Interface for Ethernet


## Modbus ${ }^{\circledR}$ RTU / IEC 60870-5-103 via RS485

## A. WARNING

There are two different versions of the RS485 interface. By means of the wiring diagram on the top of your device, you have to find out which version is built in your device (Type1 or Type2).

## $\triangle$ WARNING

Ensure the correct tightening torques.


## RS485 - Type 1 (see wiring diagram)

## Protective Relay



Electro-mechanical assignment Type 1 (see wiring diagram)

## Protective Relay



The Modbus ${ }^{\circledR}$ / IEC 60870-5-103 connection cable must be shielded. The shielding has to be fixed at the screw which is marked with the ground symbol at the rear side of the device.

The communication is Halfduplex.

Type 1 Wiring example, Device in the Middle of the BUS


Type 1 Wiring example, Device at the End of the BUS (using the integrated Terminal Resistor)


## WARNING <br> There are two different versions of the RS485 interface. By means of the wiring diagram on the top of your device, you have to find out which version is built in your device (Type1 or Type2).

! WARNING Ensure the correct tightening torques.


## RS485 - Type 2 (see wiring diagram)

## Protective Relay



Electro-mechanical assignment Type 2 (see wiring diagram)


The Modbus ${ }^{\circledR}$ / IEC 60870-5-103 connection cable must be shielded. The shielding has to be fixed at the screw which is marked with the ground symbol at the rear side of the device.

The communication is Halfduplex.

Type 2 Wiring example, Device in the Middle of the BUS


Type 2 Wiring example, Device at the End of the BUS (using the integrated Terminal Resistor)


Type 2 Shielding Options (2-wire + Shield)


Shield at bus master side connected to earth termination
resistors used


Shield at bus device side connected to earth termination
resistors used


Shield at bus device side connected to earth termination resistors not used

Type 2 Shielding Options (3-wire + Shield)


[^1] resistors used


Profibus DP/ Modbus ${ }^{\circledR}$ RTU / IEC 60870-5-103 via fibre optic

## Fibre Optic



## Modbus ${ }^{\circledR}$ RTU / IEC 60870-5-103 via D-SUB

## D-SUB



Electro-mechanical assignment

> D-SUB assignment - bushing
> 1 Earthing/shielding
> 3 RxD TxD - P: High-Level
> 4 RTS-signal
> 5 DGND: Ground, neg. Potential of aux voltage supply
> 6 VP: pos. Potential of the aux voltage supply
> 8 RxD TxD - N: Low-Level screw which is marked with the ground symbol at the back side of the device.

## Profibus DP via D-SUB

## D-SUB <br> 

Electro-mechanical assignment

D-SUB assignment - bushing
1 Earthing/shielding
3 RxD TxD - P: High-Level
4 RTS-signal
5DGND: Ground, neg. Potential of aux voltage supply
6 VP: pos. Potential of the aux voltage supply
8RxD TxD - N: Low-Level

NOT ICE $\quad \begin{aligned} & \text { The connection cable must be shielded. The shielding has to be fixed at the } \\ & \text { screw which is marked with the ground symbol at the back side of the device. }\end{aligned}$

## Profibus DP/ Modbus ${ }^{\circledR}$ RTU / IEC 60870-5-103 via fibre optic

## Fibre Optic



## Ethernet / TCP/IP via Fiber Optics

## Fiber Optics - FO

Fibre connection / LWL


## Slot X104: IRIG-B00X and Supervision Contact



Rear side of the device (Slots)

This comprises the IRIG-B00X and the System contact (Supervision Contact).

## System Contact and IRIG-B00X

## A.WARNING

Ensure the correct tightening torques.


## Terminal



## Electro-mechanical assignment



The System-OK contact (SC relay) cannot be configured. The system contact is a changeover contact that picks up when the device is free from internal faults. While the device is booting up, the System OK relay (SC) remains dropped-off (unenergized). As soon as the system is properly started (and protection is active), the System Contact picks up and the assigned LED is activated accordingly (please refer to the Self Supervision chapter).

## PC Interface - X120

- USB (Mini-B)



## Navigation - Operation

The following illustration applies to protective devices with a small display:


The following illustration applies to protective devices with a large display:


| 1 |  | LEDs group A (left) | Messages inform you about operational conditions, system data or other device particulars. They additionally provide you with information regarding failures and functioning of the device as well as other states of the device and the equipment. <br> Alarm signals can be freely allocated to LEDs out of the »assignment list«. <br> An overview about all alarm signals available in the device can be obtained from the »ASSIGNMENT LIST« which can be found in the appendix. |
| :---: | :---: | :---: | :---: |
|  | SYSTEM $\square$ | LED »System OK« | Should LED »System OK« flash red during operation, contact the Service Dept. immediately. |
| 3 |  | Display | Via the display you can read-out operational data and edit parameters. |
| 4 |  | LEDs group B (right) | Messages inform you about operational conditions, system data or other device particulars. They additionally provide you with information regarding failures and functioning of the device as well as other states of the device and the equipment. <br> Alarm signals can be freely allocated to LEDs out of the »assignment list«. <br> An overview about all alarm signals available in the device can be obtained from the »assignment list« which can be found in the appendix. |
| 5 |  | Softkeys | The function of the »SOFTKEYS« are contextual. On the bottom line of the display the present function is displayed/symbolized. <br> Possible functions are: |



*=Not for all devices available.

## Basic Menu Control

The graphic user interface is equivalent to a hierarchical structured menu tree. For access to the individual submenus the »SOFTKEYS «/Navigation Keys are used. The function of the »SOFTKEYS« can be found as symbol in the footer of the display.

| Softkey | Description |
| :---: | :---: |
| - | Via »SOFTKEY «»up« you will come to the prior menu point/one parameter up by scrolling upwards. |
| $\checkmark$ | - Via »SOFTKEY « »left« you will go one step back. |
| F | Via »SOFTKEY «»down« you will change to the next menu point/one parameter down by scrolling downwards. |
| 1 | ■ Via »SOFTKEY « »right« you will come to a submenu. |
| ㄴ | - Via »SOFTKEY « »Top of list« you will jump directly to the top of a list. |
| $\checkmark$ | - Via »SOFTKEY » ${ }^{\text {- }}$ Bottom of list« you will jump directly to the end of a list. |
| + | - Via »SOFTKEY < »+«the related digit will be incremented. (Continuous pressure -> fast). |
| - | ■ Via »SOFTKEY « »-«the related digit will be decremented. (Continuous pressure -> fast) |
| $\leftarrow$ | ■ Via »SOFTKEY < »left« you will go one digit to the left. |
| $\rightarrow$ | ■ Via »SOFTKEY « »right« you will go one digit to the right. |
| 3 | - Via »SOFTKEY«»Parameter setting« you will call up the parameter setting mode. |
| 0 | Via »SOFTKEY « »Parameter setting« you will call up the parameter setting mode. Password authorization required. |
| X | - Via »SOFTKEY«»delete« data will be deleted. |
| 픈 | ■ Fast forward scrolling is possible via »SOFTKEY « Fast forward« |
| F | ■ Fast backward scrolling is possible via »SOFTKEY«»Fast backward« |

In order to return to the main menu, just keep pressing the Softkey »Arrow-Left« until you arrive at the »main menu».

## Input, Output and LED Settings

## Configuration of the Digital Inputs

Set the following parameters for each of the digital inputs:

- »Nominal voltage«

■ »Debouncing time«: A state change will only be adopted by the digital input after the debouncing time has expired.

- »Inverting" (where necessary)


The debouncing time will be started each time the state of the input signal alternates.

## Assignment of Digital Inputs

There are two options available in order to determine where a Digital Input should be assigned to.


Option 1 - Assigning a Digital Input onto one or mutliple modules.

## Adding an assignment:

Within menu [Device ParameterlDigital Inputs] Digital Inputs can be assigned onto one or multiple targets. Call up the Digital Input (Arrow right on the DI). Click on the Softkey »Parameter Setting/Wrench« . Click on »Add« and assign a target. Assign where required additional targets.

## Deleting an assignment:

Select as described above a Digital Input that should be edited at the HMI.
Call up the assignments of the Digital Input (Arrow-right on the DI) and select the assignment that should be removed/deleted (Please note, this has to marked with the cursor). The assignment can now be deleted at the HMI by means of the Softkey »Parameter setting« and selection of »remove«. Confirm the parameter setting update.

Option 2 - Connecting a Module Input with a Digital Input
Call a module. Within this module assign a Digital Input onto a module input. Example: A protection module should be blocked depending on the state of a Digital Input.. For this assign onto the blocking input within the Global Parameters the Digital Input (e.g. Ex Blo 1).

## Checking the Assignments of a Digital Input

In order to check the targets that a Digital Input is assigned to please proceed as follows:

Call up menu [Device ParameterlDigital Inputs].

Navigate to the Digital Input that should be checked.

## At the HMI:

A multiple assignment, that means if a Digital Input is used more than once (if it is assigned to multiple targets), this will be indicated by an "..." behind a Digital Input. Call up this Digital Input by Softkey »Arrow right« in order to see the list of targets of this Digital Input.

## DI-8P X

## DI Slot X1

Device Parameters of the Digital Inputs on DI-8P X

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Nom voltage | Nominal voltage of the digital inputs | $\begin{aligned} & 24 \mathrm{~V} D C, \\ & 48 \mathrm{~V} D C, \\ & 60 \mathrm{~V} D C, \\ & 110 \mathrm{~V} D, \\ & 230 \mathrm{~V} \text { DC, } \\ & 110 \mathrm{~V} \mathrm{AC}, \\ & 230 \mathrm{VAC} \end{aligned}$ | 24 V DC | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 1] |
| Inverting 1 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 1] |
| Debouncing time 1 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. | no debouncing time, <br> 20 ms , <br> 50 ms , <br> 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 1] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Nom voltage | Nominal voltage of the digital inputs | $\begin{aligned} & 24 \mathrm{~V} D, \\ & 48 \mathrm{~V}, \\ & 60 \mathrm{~V}, \\ & 110 \mathrm{VC}, \\ & 230 \mathrm{~V}, \\ & 110 \mathrm{VAC}, \\ & 230 \mathrm{VAC} \end{aligned}$ | 24 V DC | [Device Para <br> /Digital Inputs <br> IDI Slot X1 <br> /Group 2] |
| Inverting 2 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 2] |
| Debouncing time 2 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. | no debouncing time, <br> 20 ms , <br> 50 ms , <br> 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 2] |
| Nom voltage | Nominal voltage of the digital inputs | $\begin{aligned} & 24 \mathrm{~V} D C, \\ & 48 \mathrm{~V} D C, \\ & 60 \mathrm{~V} D, \\ & 110 \mathrm{~V} D C, \\ & 230 \mathrm{~V}, \\ & 110 \mathrm{VAC}, \\ & 230 \mathrm{VAC} \end{aligned}$ | 24 V DC | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Inverting 3 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Debouncing time 3 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. | no debouncing time, <br> 20 ms , <br> 50 ms , <br> 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Inverting 4 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Debouncing time 4 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. | no debouncing time, 20 ms , 50 ms , 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Inverting 5 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Debouncing time 5 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. | no debouncing time, 20 ms , 50 ms , 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Inverting 6 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Debouncing time 6 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. | no debouncing time, 20 ms , 50 ms , 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Inverting 7 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Debouncing time 7 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. | no debouncing time, 20 ms , 50 ms , 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Inverting 8 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |
| Debouncing time 8 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. 8 | no debouncing time, 20 ms , 50 ms , 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X1 <br> /Group 3] |

## Signals of the Digital Inputs on DI-8P X

| Signal | Description |
| :--- | :--- |
| DI 1 | Signal: Digital Input |
| DI 2 | Signal: Digital Input |
| DI 3 | Signal: Digital Input |
| DI 4 | Signal: Digital Input |
| DI 5 | Signal: Digital Input |
| DI 6 | Signal: Digital Input |
| DI 7 | Signal: Digital Input |
| DI 8 | Signal: Digital Input |

## DI-8 X

DI Slot X6

## Device Parameters of the Digital Inputs on DI-8 X

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Nom voltage | Nominal voltage of the digital inputs | $\begin{aligned} & 24 \mathrm{~V} D C, \\ & 48 \mathrm{~V} D, \\ & 60 \mathrm{~V}, \\ & 110 \mathrm{~V}, \\ & 230 \mathrm{~V}, \\ & 110 \mathrm{VAC}, \\ & 230 \mathrm{~V} \mathrm{AC}, \end{aligned}$ | 24 V DC | [Device Para <br> /Digital Inputs <br> /DI Slot X6 <br> /Group 1] |
| Inverting 1 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X6 <br> /Group 1] |
| Debouncing time 1 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. | no debouncing time, <br> 20 ms , <br> 50 ms , <br> 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X6 <br> /Group 1] |

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Setting range \& Default \& Menu path <br>
\hline Inverting 2 \& Inverting the input signals. \& inactive, <br>
active \& inactive \& [Device Para <br>
/Digital Inputs <br>

IDI Slot X6\end{array}\right]\)| /Group 1] |
| :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Debouncing time 6 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. | no debouncing time, 20 ms , 50 ms , 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X6 <br> /Group 1] |
| Inverting 7 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X6 <br> /Group 1] |
| Debouncing time 7 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. | no debouncing time, 20 ms , 50 ms , 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X6 <br> /Group 1] |
| Inverting 8 | Inverting the input signals. | inactive, active | inactive | [Device Para <br> /Digital Inputs <br> /DI Slot X6 <br> /Group 1] |
| Debouncing time 8 | A change of the state of a digital input will only be recognized after the debouncing time has expired (become effective). Thus, transient signals will not be misinterpreted. 8 | no debouncing time, 20 ms , 50 ms , 100 ms | no debouncing time | [Device Para <br> /Digital Inputs <br> /DI Slot X6 <br> /Group 1] |

## Signals of the Digital Inputs on DI-8 X

| Signal | Description |
| :--- | :--- |
| DI 1 | Signal: Digital Input |
| DI 2 | Signal: Digital Input |
| DI 3 | Signal: Digital Input |
| DI 4 | Signal: Digital Input |
| DI 5 | Signal: Digital Input |
| DI 6 | Signal: Digital Input |
| DI 7 | Signal: Digital Input |
| DI 8 | Signal: Digital Input |

## Output Relays Settings

The conditions of module outputs and signals/protective functions (such as reverse interlocking) can be passed by means of alarm relays. The alarm relays are potential-free contacts (which can be used as opening or closing contact). Each alarm relay can be assigned up to 7 functions out of the »assignment list«.

Set the following parameters for each of the binary output relays:

- Up to 7 signals from the »assignment list« (OR-connected)
- Each of the assigned signals can be inverted.
- The (collective) state of the binary output relay can be inverted (open or closed circuit current principle)
- By the Operating Mode it can be determined whether the relay output works in working current or closedcircuit principle.
- »Latched« active or inactive
- »Latched = inactive«:

If the latching function is »inactive«, the alarm relay respectively the alarm contact will adopt the state of those alarms that were assigned.
»Latched = active"
If the »latching function« is »active«, the state of the alarm relay respectively alarm contact that was set by the alarms will be stored.

The alarm relay can only be acknowledged after reset of those signals that had initiated setting of the relay and after expiry of the minimum retention time.

- »Hold time«: At signal changes, the minimal latching time ensures that the relay will be maintained pickedup or released for at least this period.

CAUTION
If binary outputs are parameterized »Latched=active«, they will keep (return into) their position even if there is a break within the power supply.

If binary output relays are parameterized »Latched=active«, The binary output will also retain, if the binary output is reprogrammed in another way. This applies also if »Latched is set to inactiver. Resetting a binary output that has latched a signal will always require an acknowledgement.

## NOTICE <br> The »System OK Relay" (watchdog) cannot be configured.

## Acknowledgment options

Binary output relays can be acknowledged:

■ Via the push-button » $\mathrm{C} «$ at the operating panel.

■ Each binary output relay can be acknowledged by a signal of the »assignment list« (If »Latched is active«).

- Via the module »Ex Acknowledge« all binary output relays can be acknowledged at once, if the signal for external acknowledgement that was selected from the »assignment list« becomes true. (e.g the state of a digital input).
- Via SCADA, all output relays can be acknowledged at once.


## WARNING <br> Relay output contacts can be set by force or disarmed (for commisioning support, please refer to the „Service/Disarming the Output Relay Contacts" and "Service/Forcing the Output Relay Contacts" sections).



## System Contact

The System OK alarm relay (SC) is the devices »LIFE CONTACT«. Its installation location depends on the housing type. Please refer to the wiring diagram of the device (WDC-contact).

The System-OK relay (SC) cannot be parameterized. The system contact is an operating current contact that picksup, when the device is free from internal faults. While the device is booting up, the System OK relay (SC) remains dropped-off. As soon as the system was duly started up, the relay picks up and the assigned LED is activated accordingly (please refer to chapter Self Supervision).

## OR-6 X

## BO Slot X2 , BO Slot X5

## Direct Commands of OR-6 X

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| DISARMED | This is the second step, after the "DISARMED Ctrl" has been activated, that is required to DISARM the relay outputs. This will DISARM those output relays that are currently not latched and that are not on "hold" by a pending minimum hold time. CAUTION! RELAYS DISARMED in order to safely perform maintenance while eliminating the risk of taking an entire process offline. (Note: Zone Interlocking and Supervision Contact cannot be disarmed). YOU MUST ENSURE that the relays are ARMED AGAIN after maintenance. <br> Only available if: DISARMED Ctrl = active | inactive, active | inactive | [Service <br> /Test (Prot inhibit) <br> /DISARMED <br> /BO Slot X2] |
| Force all Outs | By means of this function the normal Output Relay State can be overwritten (forced). The relay can be set from normal operation (relay works according to the assigned signals) to "force energized" or "force deenergized" state. Forcing all outputs relays of an entire assembly group is superior to forcing a single output relay. | Normal, <br> De-Energized, <br> Energized | Normal | [Service <br> /Test (Prot inhibit) <br> /Force OR <br> /BO Slot X2] |
| Force OR1 | By means of this function the normal Output Relay State can be overwritten (forced). The relay can be set from normal operation (relay works according to the assigned signals) to "force energized" or "force deenergized" state. | Normal, <br> De-Energized, <br> Energized | Normal | [Service <br> /Test (Prot inhibit) <br> /Force OR <br> /BO Slot X2] |
| Force OR2 | By means of this function the normal Output Relay State can be overwritten (forced). The relay can be set from normal operation (relay works according to the assigned signals) to "force energized" or "force deenergized" state. | Normal, <br> De-Energized, <br> Energized | Normal | [Service <br> /Test (Prot inhibit) <br> /Force OR <br> /BO Slot X2] |
| Force OR3 | By means of this function the normal Output Relay State can be overwritten (forced). The relay can be set from normal operation (relay works according to the assigned signals) to "force energized" or "force deenergized" state. | Normal, <br> De-Energized, <br> Energized | Normal | [Service <br> /Test (Prot inhibit) <br> /Force OR <br> /BO Slot X2] |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Force OR4 | By means of this function the normal Output Relay <br> State can be overwritten (forced). The relay can be set <br> from normal operation (relay works according to the <br> assigned signals) to "force energized" or "force de- <br> energized" state. | Normal, <br> De-Energized, <br> Energized | Normal | [Service <br> /Test (Prot inhibit) <br> /Force OR <br> /BO Slot X2] |
| Force OR5 | By means of this function the normal Output Relay <br> State can be overwritten (forced). The relay can be set <br> from normal operation (relay works according to the <br> assigned signals) to "force energized" or "force de- <br> energized" state. | Normal, <br> De-Energized, <br> Energized | Normal | [Service <br> /Test (Prot inhibit) <br> /Force OR |
| Force OR6 | By means of this function the normal Output Relay <br> State can be overwritten (forced). The relay can be set <br> from normal operation (relay works according to the <br> assigned signals) to "force energized" or "force de- <br> energized" state. | Normal, | De-Energized, <br> Energized | Normal |

## Device Parameters of the Binary Output Relays on OR-6 X

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Operating Mode | Operating Mode | Working current principle, <br> Closed-circuit principle | Working current principle | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| t-hold | To clearly identify the state transition of a binary output relay, the "new state" is being hold, at least for the duration of the hold time. | 0.00-300.00s | 0.00s | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| t-Off Delay | Switch Off Delay | 0.00-300.00s | 0.00s | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| Latched | Defines whether the Relay Output will be latched when it picks up. | inactive, active | BO Slot X2: active <br> BO Slot X5: inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Acknowledgement | Acknowledgement Signal - An acknowledgement signal (that acknowledges the corresponding binary output relay) can be assigned to each output relay. The acknowledgement-signal is only effective if the parameter "Latched" is set to active. <br> Only available if: Latched = active | 1..n, Assignment List | -.- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| Inverting | Inverting of the Binary Output Relay. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| Assignment 1 | Assignment | 1..n, Assignment List | BO Slot X2: SG[1].TripCmd BO Slot X5: ..- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| Inverting 1 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| Assignment 2 | Assignment | 1..n, Assignment List | $\because-$ | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| Inverting 2 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| Assignment 3 | Assignment | 1..n, Assignment List | $\because-$ | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| Inverting 3 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |
| Assignment 4 | Assignment | 1..n, Assignment List | -- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 1] |

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Setting range \& Default \& Menu path <br>
\hline Inverting 4 \& Inverting of the state of the assigned signal. \& inactive, <br>
active \& inactive \& [Device Para <br>
/Binary Outputs <br>

/BO Slot X2\end{array}\right]\)| /BO 1] |
| :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| t-Off Delay | Switch Off Delay | 0.00-300.00s | 0.00s | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| Latched | Defines whether the Relay Output will be latched when it picks up. | inactive, active | BO Slot X2: active BO Slot X5: inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| Acknowledgement | Acknowledgement Signal - An acknowledgement signal (that acknowledges the corresponding binary output relay) can be assigned to each output relay. The acknowledgement-signal is only effective if the parameter "Latched" is set to active. <br> Only available if: Latched = active | 1..n, Assignment List | --- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| Inverting | Inverting of the Binary Output Relay. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| Assignment 1 | Assignment | 1..n, Assignment List | BO Slot X2: <br> SG[2].TripCmd <br> BO Slot X5: ..- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| Inverting 1 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| Assignment 2 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| Inverting 2 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| Assignment 3 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Setting range \& Default \& Menu path <br>
\hline Inverting 3 \& Inverting of the state of the assigned signal. \& inactive, <br>
active \& inactive \& [Device Para <br>
/Binary Outputs <br>

/BO Slot X2\end{array}\right]\)| /BO 2] |
| :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Operating Mode | Operating Mode | Working current principle, <br> Closed-circuit principle | Working current principle | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| t-hold | To clearly identify the state transition of a binary output relay, the "new state" is being hold, at least for the duration of the hold time. | 0.00-300.00s | 0.00s | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| t-Off Delay | Switch Off Delay | 0.00-300.00s | 0.00s | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| Latched | Defines whether the Relay Output will be latched when it picks up. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> [BO 3] |
| Acknowledgement | Acknowledgement Signal - An acknowledgement signal (that acknowledges the corresponding binary output relay) can be assigned to each output relay. The acknowledgement-signal is only effective if the parameter "Latched" is set to active. <br> Only available if: Latched = active | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| Inverting | Inverting of the Binary Output Relay. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| Assignment 1 | Assignment | 1..n, Assignment List | BO Slot X2: <br> Prot.Alarm <br> BO Slot X5: -.- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| Inverting 1 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| Assignment 2 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> [BO 3] |

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Setting range \& Default \& Menu path <br>
\hline Inverting 2 \& Inverting of the state of the assigned signal. \& inactive, <br>
active \& inactive \& [Device Para <br>
/Binary Outputs <br>

/BO Slot X2\end{array}\right]\)| /BO 3] |
| :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 7 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 [BO 3] |
| Inverting 7 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| Operating Mode | Operating Mode | Working current principle, <br> Closed-circuit principle | Working current principle | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| t-hold | To clearly identify the state transition of a binary output relay, the "new state" is being hold, at least for the duration of the hold time. | 0.00-300.00s | 0.00s | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| t-Off Delay | Switch Off Delay | 0.00-300.00s | 0.00s | [Device Para /Binary Outputs /BO Slot X2 /BO 4] |
| Latched | Defines whether the Relay Output will be latched when it picks up. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| Acknowledgement | Acknowledgement Signal - An acknowledgement signal (that acknowledges the corresponding binary output relay) can be assigned to each output relay. The acknowledgement-signal is only effective if the parameter "Latched" is set to active. <br> Only available if: Latched = active | 1..n, Assignment List | -.- | [Device Para /Binary Outputs /BO Slot X2 /BO 4] |
| Inverting | Inverting of the Binary Output Relay. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| Assignment 1 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Setting range \& Default \& Menu path <br>
\hline Inverting 1 \& Inverting of the state of the assigned signal. \& inactive, <br>
active \& inactive \& [Device Para <br>
/Binary Outputs <br>

/BO Slot X2\end{array}\right]\)| /BO 4] |
| :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 6 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 /BO 4] |
| Inverting 6 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| Assignment 7 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| Inverting 7 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| Operating Mode | Operating Mode | Working current principle, <br> Closed-circuit principle | Working current principle | [Device Para /Binary Outputs /BO Slot X2 /BO 5] |
| t-hold | To clearly identify the state transition of a binary output relay, the "new state" is being hold, at least for the duration of the hold time. | 0.00-300.00s | 0.00s | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| t-Off Delay | Switch Off Delay | 0.00-300.00s | 0.00s | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| Latched | Defines whether the Relay Output will be latched when it picks up. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| Acknowledgement | Acknowledgement Signal - An acknowledgement signal (that acknowledges the corresponding binary output relay) can be assigned to each output relay. The acknowledgement-signal is only effective if the parameter "Latched" is set to active. <br> Only available if: Latched = active | 1..n, Assignment List | -- | [Device Para /Binary Outputs /BO Slot X2 /BO 5] |

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Setting range \& Default \& Menu path <br>
\hline Inverting \& Inverting of the Binary Output Relay. \& inactive, <br>
active \& inactive \& [Device Para <br>
/Binary Outputs <br>

/BO Slot X2\end{array}\right]\)| /BO 5] |
| :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 5 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| Inverting 5 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 $\text { \| } / \mathrm{BO} 5]$ |
| Assignment 6 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| Inverting 6 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| Assignment 7 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5$]$ |
| Inverting 7 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| Operating Mode | Operating Mode | Working current principle, <br> Closed-circuit principle | Working current principle | [Device Para /Binary Outputs /BO Slot X2 /BO 6] |
| t-hold | To clearly identify the state transition of a binary output relay, the "new state" is being hold, at least for the duration of the hold time. | 0.00-300.00s | 0.00s | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| t-Off Delay | Switch Off Delay | 0.00-300.00s | 0.00s | [Device Para <br> /Binary Outputs <br> /BO Slot X2 [BO 6] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Latched | Defines whether the Relay Output will be latched when it picks up. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Acknowledgement | Acknowledgement Signal - An acknowledgement signal (that acknowledges the corresponding binary output relay) can be assigned to each output relay. The acknowledgement-signal is only effective if the parameter "Latched" is set to active. <br> Only available if: Latched = active | 1..n, Assignment List | -- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Inverting | Inverting of the Binary Output Relay. | inactive, active | inactive | [Device Para /Binary Outputs /BO Slot X2 /BO 6] |
| Assignment 1 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Inverting 1 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Assignment 2 | Assignment | 1..n, Assignment List | $\because-$ | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Inverting 2 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Assignment 3 | Assignment | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Inverting 3 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 4 | Assignment | 1..n, Assignment List | -- | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Inverting 4 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Assignment 5 | Assignment | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Inverting 5 | Inverting of the state of the assigned signal. | inactive, <br> active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Assignment 6 | Assignment | 1..n, Assignment List | $\because-$ | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Inverting 6 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Assignment 7 | Assignment | 1..n, Assignment List | $\because-$ | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| Inverting 7 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| DISARMED Ctrl | Enables and disables the disarming of the relay outputs. This is the first step of a two step process, to inhibit the operation or the relay outputs. Please refer to "DISARMED" for the second step. | inactive, active | inactive | [Service <br> /Test (Prot inhibit) <br> /DISARMED <br> /BO Slot X2] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Disarm Mode | CAUTION!RELAYS DISARMED in order to safely perform maintenance while eliminating the risk of taking an entire process off-line. (Note: The Supervision Contact cannot be disarmed). YOU MUST ENSURE that the relays are ARMED AGAIN after maintenance. | permanent, timeout | permanent | [Service <br> /Test (Prot inhibit) <br> /DISARMED <br> /BO Slot X2] |
| t-Timeout DISARM | The relays will be armed again after expiring of this time. <br> Only available if: Mode $=$ Timeout DISARM | 0.00-300.00s | 0.03s | [Service <br> /Test (Prot inhibit) <br> /DISARMED <br> /BO Slot X2] |
| Force Mode | By means of this function the normal Output Relay States can be overwritten (forced) in case that the Relay is not in a disarmed state. The relays can be set from normal operation (relay works according to the assigned signals) to "force energized" or "force deenergized" state. | permanent, timeout | permanent | [Service <br> /Test (Prot inhibit) <br> /Force OR <br> /BO Slot X2] |
| t-Timeout Force | The Output State will be set by force for the duration of this time. That means for the duration of this time the Output Relay does not show the state of the signals that are assigned on it. <br> Only available if: Mode $=$ Timeout DISARM | 0.00-300.00s | 0.03s | [Service <br> /Test (Prot inhibit) <br> /Force OR <br> /BO Slot X2] |

## Input States of the Binary Output Relays on OR-6 X

\(\left.\begin{array}{|l|l|l|}\hline Name \& Description \& Assignment via <br>
\hline BO1.1 \& Module input state: Assignment \& [Device Para <br>
\& \& /Binary Outputs <br>
\& \& IBO Slot X2 <br>

\& Module input state: Assignment\end{array}\right]\)| IDevice Para |
| :--- |
| BO1.2 |

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| B02.2 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| B02.3 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| B02.4 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| B02.5 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| B02.6 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| B02.7 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| Ack signal BO 2 | Module input state: Acknowledgement signal for the binary output relay. If latching is set to active, the binary output relay can only be acknowledged if those signals that initiated the setting are fallen back and the hold time is expired. | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 2] |
| B03.1 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| B03.2 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| B03.3 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| B03.4 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| B03.5 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| B03.6 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| B03.7 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| Ack signal BO 3 | Module input state: Acknowledgement signal for the binary output relay. If latching is set to active, the binary output relay can only be acknowledged if those signals that initiated the setting are fallen back and the hold time is expired. | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 3] |
| B04.1 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| B04.2 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| B04.3 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| B04.4 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| B04.5 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| B04.6 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| B04.7 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| Ack signal BO 4 | Module input state: Acknowledgement signal for the binary output relay. If latching is set to active, the binary output relay can only be acknowledged if those signals that initiated the setting are fallen back and the hold time is expired. | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 4] |
| B05.1 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| B05.2 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| B05.3 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| B05.4 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| B05.5 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| B05.6 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| B05.7 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| Ack signal BO 5 | Module input state: Acknowledgement signal for the binary output relay. If latching is set to active, the binary output relay can only be acknowledged if those signals that initiated the setting are fallen back and the hold time is expired. | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 5] |
| B06. 1 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| B06.2 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| B06.3 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| B06.4 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |
| B06.5 | Module input state: Assignment | [Device Para <br> /Binary Outputs <br> /BO Slot X2 <br> /BO 6] |


| Name | Description | Assignment via |
| :--- | :--- | :--- |
| BO6.6 | Module input state: Assignment | [Device Para |
| /Binary Outputs |  |  |
| /BO Slot X2 |  |  |
| /BO 6] |  |  |

## Signals of the Binary Output Relays on OR-6 X

| Signal | Description |
| :--- | :--- |
| BO 1 | Signal: Binary Output Relay |
| BO 2 | Signal: Binary Output Relay |
| BO 3 | Signal: Binary Output Relay |
| BO 4 | Signal: Binary Output Relay |
| BO 5 | Signal: Binary Output Relay |
| BO 6 | Signal: Binary Output Relay |
| DISARMED! | Signal: CAUTION! RELAYS DISARMED in order to safely perform maintenance while <br> eliminating the risk of taking an entire process off-line. (Note: The Self Supervision Contact <br> cannot be disarmed). YOU MUST ENSURE that the relays are ARMED AGAIN after <br> maintenance |
| Outs forced | Signal: The State of at least one Relay Output has been set by force. That means that the <br> state of at least one Relay is forced and hence does not show the state of the assigned <br> signals. |

## Global Protection Parameters of the LED Module

## LEDs group $A$,LEDs group $B$

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Latched | Defines whether the LED will be latched when it picks up. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| Ack signal | Acknowledgement signal for the LED. If latching is set to active the LED can only be acknowledged if those signals that initiated the setting are no longer present. <br> Dependency Only available if: Latched = active | 1..n, Assignment List | --- | [Device Para /LEDs <br> /LEDs group A <br> /LED 1] |
| LED active color | The LED lights up in this color if the state of the ORassignment of the signals is true. | green, <br> red, red flash, green flash, | LEDs group A : green <br> LEDs group B: red | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 1] |
| LED inactive color | The LED lights up in this color if the state of the ORassignment of the signals is untrue. | green, <br> red, red flash, green flash, | - | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 1] |
| Assignment 1 | Assignment | 1..n, Assignment List | LEDs group A: Prot.active LEDs group B: -.- | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| Inverting 1 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 1] |
| Assignment 2 | Assignment | 1..n, Assignment List | --- | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| Inverting 2 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 1] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 3 | Assignment | 1..n, Assignment List | -.- | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| Inverting 3 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 1] |
| Assignment 4 | Assignment | 1..n, Assignment List | -.- | [Device Para /LEDs <br> /LEDs group A <br> /LED 1] |
| Inverting 4 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| Assignment 5 | Assignment | 1..n, Assignment List | -.- | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| Inverting 5 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 1] |
| Latched | Defines whether the LED will be latched when it picks up. | inactive, active | LEDs group A: active LEDs group B: inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 2] |
| Ack signal | Acknowledgement signal for the LED. If latching is set to active the LED can only be acknowledged if those signals that initiated the setting are no longer present. <br> Only available if: Latched = active | 1..n, Assignment List | $\because-$ | [Device Para /LEDs <br> /LEDs group A <br> /LED 2] |
| LED active color | The LED lights up in this color if the state of the ORassignment of the signals is true. | green, <br> red, <br> red flash, <br> green flash, | red | [Device Para /LEDs <br> /LEDs group A <br> /LED 2] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| LED inactive color | The LED lights up in this color if the state of the ORassignment of the signals is untrue. | green, <br> red, <br> red flash, <br> green flash, | - | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 2] |
| Assignment 1 | Assignment | 1..n, Assignment List | LEDs group A : SG[1].TripCmd LEDs group B: -.- | [Device Para /LEDs <br> /LEDs group A <br> /LED 2] |
| Inverting 1 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 2] |
| Assignment 2 | Assignment | 1..n, Assignment List | LEDs group A: SG[2].TripCmd LEDs group B: -.- | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 2] |
| Inverting 2 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 2] |
| Assignment 3 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 2] |
| Inverting 3 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A /LED 2] |
| Assignment 4 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 2] |
| Inverting 4 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 2] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 5 | Assignment | 1..n, Assignment List | -- | [Device Para /LEDs <br> /LEDs group A <br> /LED 2] |
| Inverting 5 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 2] |
| Latched | Defines whether the LED will be latched when it picks up. | inactive, active | inactive | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 3] |
| Ack signal | Acknowledgement signal for the LED. If latching is set to active the LED can only be acknowledged if those signals that initiated the setting are no longer present. <br> Only available if: Latched = active | 1..n, Assignment List | --- | [Device Para /LEDs <br> /LEDs group A /LED 3] |
| LED active color | The LED lights up in this color if the state of the ORassignment of the signals is true. | green, <br> red, red flash, green flash, | LEDs group A: red flash <br> LEDs group B: red | [Device Para /LEDs <br> /LEDs group A <br> /LED 3] |
| LED inactive color | The LED lights up in this color if the state of the ORassignment of the signals is untrue. | green, red, red flash, green flash, | - | [Device Para /LEDs <br> /LEDs group A <br> /LED 3] |
| Assignment 1 | Assignment | 1..n, Assignment List | LEDs group A: <br> Prot.Alarm <br> LEDs group B: -.- | [Device Para /LEDs <br> /LEDs group A <br> /LED 3] |
| Inverting 1 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 3] |
| Assignment 2 | Assignment | 1..n, Assignment List | -- | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 3] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Inverting 2 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A /LED 3] |
| Assignment 3 | Assignment | 1..n, Assignment List | --- | [Device Para /LEDs <br> /LEDs group A <br> /LED 3] |
| Inverting 3 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 3] |
| Assignment 4 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 3] |
| Inverting 4 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 3] |
| Assignment 5 | Assignment | 1..n, Assignment List | -.- | [Device Para /LEDs <br> /LEDs group A <br> /LED 3] |
| Inverting 5 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 3] |
| Latched | Defines whether the LED will be latched when it picks up. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 4] |
| Ack signal | Acknowledgement signal for the LED. If latching is set to active the LED can only be acknowledged if those signals that initiated the setting are no longer present. <br> Only available if: Latched = active | 1..n, Assignment List | -.- | [Device Para /LEDs <br> /LEDs group A <br> /LED 4] |

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { LED active color } & \begin{array}{l}\text { The LED lights up in this color if the state of the OR- } \\
\text { assignment of the signals is true. }\end{array} & \begin{array}{l}\text { green, } \\
\text { red, } \\
\text { red flash, } \\
\text { green flash, }\end{array}
$$ \& red \& [Device Para <br>
/LEDs <br>

/LEDs group A\end{array}\right]\)| /LED 4] |
| :--- |

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Setting range \& Default \& Menu path <br>
\hline Inverting 4 \& Inverting of the state of the assigned signal. \& inactive, <br>
active \& inactive \& [Device Para <br>
/LEDs <br>

/LEDs group A\end{array}\right]\)| /LED 4] |
| :--- | :--- | :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 2 | Assignment | 1..n, Assignment List | -- | [Device Para /LEDs <br> /LEDs group A /LED 5] |
| Inverting 2 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A /LED 5] |
| Assignment 3 | Assignment | 1..n, Assignment List | -.- | [Device Para /LEDs <br> /LEDs group A <br> /LED 5] |
| Inverting 3 | Inverting of the state of the assigned signal. | inactive, <br> active | inactive | [Device Para /LEDs <br> /LEDs group A /LED 5] |
| Assignment 4 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 5] |
| Inverting 4 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 5] |
| Assignment 5 | Assignment | 1..n, Assignment List | -.- | [Device Para /LEDs <br> /LEDs group A /LED 5] |
| Inverting 5 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A /LED 5] |
| Latched | Defines whether the LED will be latched when it picks up. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A /LED 6] |

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Ack signal } & \begin{array}{l}\text { Acknowledgement signal for the LED. If latching is set } \\
\text { to active the LED can only be acknowledged if those } \\
\text { signals that initiated the setting are no longer present. } \\
\text { Only available if: Latched = active }\end{array} & \begin{array}{l}\text { 1..n, Assignment } \\
\text { List }\end{array}
$$ \& -\because \& [Device Para <br>
/LEDs <br>

/LEDs group A\end{array}\right]\)| /LED 6] |
| :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 4 | Assignment | 1..n, Assignment List | -- | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 6] |
| Inverting 4 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 6] |
| Assignment 5 | Assignment | 1..n, Assignment List | -- | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 6] |
| Inverting 5 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 6] |
| Latched | Defines whether the LED will be latched when it picks up. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A /LED 7] |
| Ack signal | Acknowledgement signal for the LED. If latching is set to active the LED can only be acknowledged if those signals that initiated the setting are no longer present. <br> Only available if: Latched = active | 1..n, Assignment List | -.- | [Device Para /LEDs <br> /LEDs group A /LED 7] |
| LED active color | The LED lights up in this color if the state of the ORassignment of the signals is true. | green, <br> red, <br> red flash, <br> green flash, | red | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |
| LED inactive color | The LED lights up in this color if the state of the ORassignment of the signals is untrue. | green, red, red flash, green flash, | - | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |
| Assignment 1 | Assignment | 1..n, Assignment List | -- | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 7] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Inverting 1 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |
| Assignment 2 | Assignment | 1..n, Assignment List | $\because \cdot$ | [Device Para /LEDs <br> /LEDs group A /LED 7] |
| Inverting 2 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 7] |
| Assignment 3 | Assignment | 1..n, Assignment List | -.- | [Device Para /LEDs <br> /LEDs group A /LED 7] |
| Inverting 3 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A /LED 7] |
| Assignment 4 | Assignment | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 7] |
| Inverting 4 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |
| Assignment 5 | Assignment | 1..n, Assignment List | -.- | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |
| Inverting 5 | Inverting of the state of the assigned signal. | inactive, active | inactive | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |

## LED Module Input States

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| LED1.1 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| LED1.2 | Module input state: LED | [Device Para /LEDs <br> LEDs group A /LED 1] |
| LED1.3 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| LED1.4 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| LED1.5 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| Acknow Sig 1 | Module input state: Acknowledgement Signal (only for automatic acknowledgement) | [Device Para /LEDs <br> /LEDs group A /LED 1] |
| LED2.1 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 2] |
| LED2. 2 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 2] |
| LED2.3 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 2] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| LED2.4 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 2] |
| LED2.5 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 2] |
| Acknow Sig 2 | Module input state: Acknowledgement Signal (only for automatic acknowledgement) | [Device Para /LEDs <br> /LEDs group A /LED 2] |
| LED3. 1 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 3] |
| LED3. 2 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 3] |
| LED3. 3 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 3] |
| LED3.4 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 3] |
| LED3.5 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 3] |
| Acknow Sig 3 | Module input state: Acknowledgement Signal (only for automatic acknowledgement) | [Device Para /LEDs <br> /LEDs group A <br> /LED 3] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| LED4. 1 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 4] |
| LED4. 2 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 4] |
| LED4.3 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 4] |
| LED4.4 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 4] |
| LED4.5 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 4] |
| Acknow Sig 4 | Module input state: Acknowledgement Signal (only for automatic acknowledgement) | [Device Para /LEDs <br> /LEDs group A <br> /LED 4] |
| LED5.1 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 5] |
| LED5. 2 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 5] |
| LED5.3 | Module input state: LED | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 5] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| LED5.4 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 5] |
| LED5. 5 | Module input state: LED | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 5] |
| Acknow Sig 5 | Module input state: Acknowledgement Signal (only for automatic acknowledgement) | [Device Para <br> /LEDs <br> /LEDs group A <br> /LED 5] |
| LED6. 1 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A /LED 6] |
| LED6. 2 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 6] |
| LED6. 3 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 6] |
| LED6. 4 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 6] |
| LED6.5 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 6] |
| Acknow Sig 6 | Module input state: Acknowledgement Signal (only for automatic acknowledgement) | [Device Para /LEDs <br> /LEDs group A <br> /LED 6] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| LED7.1 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |
| LED7. 2 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |
| LED7. 3 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |
| LED7. 4 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |
| LED7.5 | Module input state: LED | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |
| Acknow Sig 7 | Module input state: Acknowledgement Signal (only for automatic acknowledgement) | [Device Para /LEDs <br> /LEDs group A <br> /LED 7] |

## LED configuration

The LEDs can be configured within menu:
[Device Para/LEDs/Group X]

## CAUTION

Attention must be paid that there are no overlapping functions due to double or multiple LED assignment of colors and flashing codes.

## CAUTION

If LEDs are parameterized »Latched=active«, they will keep (return into) their blink code/color even if there is a break within the power supply.

If LEDs are parameterized »Latched=active«, The LED blink code will also retain, if the LED is reprogrammed in another way. This applies also if »Latched is set to inactive巛. Resetting a LED that has latched a signal will always require an acknowledgement.

## NOT/CE This chapter contains information on the LEDs that are placed on the left hand of the display (group A). <br> If your device is also equipped with LEDs on the right hand of the display (group B), the information in this chapter is valid analog. The only difference is "group A" and "group B" within the menu paths.

Via push button » NFO « it is always possible to display the current alarms/alarm texts that are assigned to an LED. Please refer to chapter Navigation (description of the »INFO-key«).

Set the following parameters for each LED:

- »Latching/self holding function«: If »Latching« is set to »active«, the state that is set by the alarms will be stored. If latching »Latching« is set to »inactive«, the LED always adopts the state of those alarms that were assigned.
- »Acknowledgment« (signal from the »assignment list«)
- »LED active color«, LED lights up in this color in case that at least one of the allocated functions is valid (red, red flashing, green, green flashing, off).
- »LED inactive color«, LED lights up in this color in case that none of the allocated functions is valid (red, red flashing, green, green flashing, off).
- Apart from the $L E D$ for System $O K$, each LED can be assigned up to five functions/alarms out of the "assignment list«.

■ »Inverting" (of the signals), if necessary.

## Acknowledgment options

LEDs can be acknowledged by:

Via the push-button »C« at the operating panel.

■ Each LED can be acknowledged by a signal of the »assignment list« (If »Latched = active«).

■ Via the module »Ex Acknowledge« all LEDs can be acknowledged at once, if the signal for external acknowledgment that was selected from the »assignment list« becomes true (e.g. the state of a digital input).

- Via SCADA, all LEDs can be acknowledged at once.

The Product-CD that is delivered with the device contains a PDF-Template in order to create and print out self adhesive films for LED assignment texts (front foil) by means of a laser printer. Recommendation: (AVERY Zweckform Art.Nr.3482)


## The »System OK« LED

This LED flashes green while the device is booting. After completed booting, the LED for System OK lights up in green thus signalizing that the protection (function) is »activated». Please refer to chapter "Self-Supervision" and to the external document "Troulbe Shooting Guide" to find out further information on blink codes of the System OK LED

LED System OK cannot be parameterized.

## Smart View

Smart view is a parameter setting and evaluation software.

- Menu-controlled parameter setting incl. validity checks
- Offline configuration of all relay types
- Reading and evaluating of statistical data and measuring values
- Setting into operation assistance
- Display of the device status
- Fault analysis via event- and fault recorder


## Measuring Values

## Read out Measured Values

In menu »Operation/Measured Values« both measured and calculated values can be viewed. The measured values are ordered by »Standard values« and »special values« (depending on the type of device).

## Measurement Display

Menu [Device Para\Measurem Display] offers options to change the display of measured values.

## Scaling of Measured values

By means of the parameter »Scaling« the user can determine how measured values are to be displayed within the HMI and Smart view.

- Primary quantities
- Secondary quantities
- Per Unit quantities


## Power Units (applies only for devices with power measurement)

By means of the parameter »Power Units« the User can determine how measured values are to be displayed within the HMI and Smart view.

- Power Auto Scaling
- kW, kVAr or kVA
- MW, MVAr or MVA
- GW, GVAr or GVA


## Energy Units (applies only for devices with energy measurement)

By means of the parameter »Energy Units« the User can determine how measured values are to be displayed within the HMI and Smart view.

- Energy Auto Scaling
- kWh, kVArh or kVAh
- MWh, MVArh or MVAh

■ GWh, GVArh or GVAh
In case of an overflow of the counter, the counter will start counting again at zero. A corresponding signal will indicate the counter overflow.

## Counter overflow at:

| Energy Auto Scaling | Depends on the settings for the current and voltage transformers |
| :--- | :--- |
| kWh, kVArh or kVAh | $999,999.99$ |
| MWh, MVArh or MVAh | $999,999.99$ |
| GWh, GVArh or GVAh | $999,999.99$ |

## Temperature Unit (applies only for devices with temperature measurement)

By means of the parameter » Temperatur Unit« the User can determine how measured values are to be displayed within the HMI and Smart view.

## Cutoff level

In order to suppress noise within measured values that are close to zero the user has the option to set cutoff levels. By means of the cutoff levels, measuring quantities that are close to zero will be displayed as zero. These parameters have no impact on recorded values.

## Phase Differential Current - Measured Values

Id

| Value | Description | Menu path |
| :--- | :--- | :--- |
| IS L1 | Measured value (calculated): Restraint Current Phase L1 | [Operation |
| /Measured Values |  |  |
|  |  | IId |

## Earth Differential Current - Measured Values

IdG

| Value | Description | Menu path |
| :--- | :--- | :--- |
| ISG W1 | Measured value (calculated): Ground Stabilizing Current Winding 1 | [Operation <br> /Measured Values <br> /ldG W1] |
| Idg W1 | Measured value (calculated): Ground Differential Current Winding 1 | [Operation <br> IMeasured Values <br> /ldG W1] |
| ISG W2 | Measured value (calculated): Ground Stabilizing Current Winding 2 | [Operation <br> IMeasured Values |
| Idg W2 | Measured value (calculated): Ground Differential Current Winding 2 | /IdG W2] |

## Current - Measured Values

Verfügbare Elemente:
[StW Sternp, StW Netz]

## CT W1 ,CT W2

If the device is not equipped with an voltage measuring card the first measuring input on the first current measuring card (slot with the lowest number) will be used as the reference angle (»/L1 «).

| Value | Description | Menu path |
| :--- | :--- | :--- |
| IL1 | Measured value: Phase current (fundamental) | [Operation |
|  |  | IMeasured Values |
|  |  | ICT W1 |
| II2 | Meurrent $]$ |  |
|  |  | [Operation |
|  |  | IMeasured Values |
|  |  | ICT W1 |


| Value | Description | Menu path |
| :---: | :---: | :---: |
| IL3 | Measured value: Phase current (fundamental) | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |
| IG meas | Measured value (measured): IG (fundamental) | [Operation <br> /Measured Values <br> ICT W1 <br> /Current ] |
| IG calc | Measured value (calculated): IG (fundamental) | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |
| 10 | Measured value (calculated): Zero current (fundamental) | [Operation <br> /Measured Values <br> ICT W1 <br> /Current ] |
| 11 | Measured value (calculated): Positive phase sequence current (fundamental) | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |
| 12 | Measured value (calculated): Unbalanced load current (fundamental) | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |
| IL1 H2 | Measured value: 2nd harmonic/1st harmonic of IL1 | [Operation <br> /Measured Values <br> ICT W1 <br> /Current ] |
| IL2 H2 | Measured value: 2nd harmonic/1st harmonic of IL2 | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |
| IL3 H2 | Measured value: 2nd harmonic/1st harmonic of IL3 | [Operation <br> /Measured Values <br> ICT W1 <br> /Current ] |


| Value | Description | Menu path |
| :---: | :---: | :---: |
| IG H2 meas | Measured value: 2 nd harmonic/1st harmonic of IG (measured) | [Operation <br> /Measured Values <br> ICT W1 <br> /Current ] |
| IG H2 calc | Measured value (calculated): 2nd harmonic/1st harmonic of IG (calculated) | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |
| phi IL1 | Measured value (calculated): Angle of Phasor IL1 | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |
| phi IL2 | Measured value (calculated): Angle of Phasor IL2 | [Operation <br> /Measured Values <br> ICT W1 <br> /Current ] |
| phi IL3 | Measured value (calculated): Angle of Phasor IL3 | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |
| phi IG meas | Measured value (calculated): Angle of Phasor IG meas | [Operation <br> /Measured Values <br> ICT W1 <br> /Current ] |
| phi IG calc | Measured value (calculated): Angle of Phasor IG calc | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |
| phi 10 | Measured value (calculated): Angle Zero Sequence System | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |
| phi 11 | Measured value (calculated): Angle of Positive Sequence System | [Operation <br> /Measured Values <br> /CT W1 <br> /Current ] |


| Value | Description | Menu path |
| :---: | :---: | :---: |
| phi 12 | Measured Value (calculated): Angle of Negative Sequence System | [Operation <br> /Measured Values <br> ICT W1 <br> /Current ] |
| IL1 RMS | Measured value: Phase current (RMS) | [Operation <br> /Measured Values <br> /CT W1 <br> /Current RMS] |
| IL2 RMS | Measured value: Phase current (RMS) | [Operation <br> /Measured Values <br> ICT W1 <br> /Current RMS] |
| IL3 RMS | Measured value: Phase current (RMS) | [Operation <br> /Measured Values <br> ICT W1 <br> /Current RMS] |
| IG meas RMS | Measured value (measured): IG (RMS) | [Operation <br> /Measured Values <br> /CT W1 <br> /Current RMS] |
| IG calc RMS | Measured value (calculated): IG (RMS) | [Operation <br> /Measured Values <br> ICT W1 <br> /Current RMS] |
| \%IL1 THD | Measured value (calculated): IL1 Total Harmonic Distortion | [Operation <br> /Measured Values <br> /CT W1 <br> /Current RMS] |
| \%IL2 THD | Measured value (calculated): IL2 Total Harmonic Distortion | [Operation <br> /Measured Values <br> /CT W1 <br> /Current RMS] |
| \%IL3 THD | Measured value (calculated): IL3 Total Harmonic Distortion | [Operation <br> /Measured Values <br> ICT W1 <br> /Current RMS] |


| Value | Description | Menu path |
| :--- | :--- | :--- |
| IL1 THD | Measured value (calculated): IL1 Total Harmonic Current | [Operation <br> IMeasured Values <br> ICT W1 |
|  |  | Current RMS] |
| IL2 THD | Measured value (calculated): IL2 Total Harmonic Current | [Operation |
| IMeasured Values |  |  |
|  |  | ICT W1 <br> ICurrent RMS] |
| IL3 THD | Measured value (calculated): IL3 Total Harmonic Current | [Operation |
| IMeasured Values |  |  |
| \%(I2/I1) | Measured value (calculated): I2/I1, phase sequence will be taken <br> into account automatically. | ICT W1 |
|  |  | ICurrent RMS] |

## Statistics

## Statistics

In menu »Operation/Statistics« the min., max. and mean values of the measured and calculated measured quantities can be found.

## Configuration of the Minimum and Maximum Values

The calculation of the minimum and maximum values will be started:

- When a Reset signal becomes active (Min/Max)
- When the device is restarted
- After configuration

|  | Minimum and Maximum Values (Peak Values/Pointers) |  |
| :---: | :---: | :---: |
|  | Time interval for the calculation of the minimum and maximum values | Reset |
| Configuration Options <br> Where to configure? Within menu [Device Paral Statistics) Min/Max] | The minimum and maximum values will be reset with the rising edge of the corresponding reset signal. | Res Min <br> Res Max <br> (e.g. via digital Inputs). These signals will reset the minimum and maximum pointers. |
| Display of Minimum Values | Where? Within menu [ | peration\Statistics\Min] |
| Display of Maximum Values | Where? Within menu [Operation\StatisticslMax] |  |

## Configuration of the Average Value Calculation

## Configuration of the Current Based Average Value Calculation*

*=Availability depends on the ordered device code.

|  | Current based Average Values and Peak Values |  |  |
| :---: | :---: | :---: | :---: |
|  | Time period for the calculation of the average and peak values | Start options | Reset of the average and peak values |
| Configuration Options <br> Where to configure? <br> In [Device Paral Statistics Demand Current Demand] | sliding: <br> (sliding: average calculation based on sliding period) <br> fixed: <br> (fixed: Average calculation is reset by the end of the period, that means with the next starting period) | duration: <br> (fixed or sliding period) <br> Start Fct: <br> (The average values are calculated based on the time period between two rising edges ot this signal) | Res Fc <br> (e.g. via Digital Input in order to reset the average values in advance (before the next rising edge of the start signal). This applies to option „Start FC" only. |
| Trip (command) option to limit the average current demand: Yes | Please refert to chapter „System Alarms" |  |  |
| View average values and peak values | Where? Within menu [Operation\Statistics\Demand] |  |  |

## Configuration of the Voltage Based Average Value Calculation*

*=Availability depends on the ordered device code.

|  | Voltage based Average Values |  |  |
| :---: | :---: | :---: | :---: |
|  | Time period for the calculation of the average values | Start options | Reset of the average and peak values |
| Configuration Options <br> Where to configure? <br> In [Device Paral Statistics Umit] | sliding: <br> (sliding: average calculation based on sliding period) <br> fixed: <br> (fixed: Average calculation is reset by the end of the period, that means with the next starting period) | duration: <br> (fixed or sliding period) <br> Start Fct: <br> (The average values are calculated based on the time period between two rising edges ot this signal) | Res Fc <br> (e.g. via Digital Input in order to reset the average values in advance (before the next rising edge of the start signal). This applies to option „Start FC" only. |
| View average values | Where? Within menu [Operation\Statistics\Vavg] |  |  |

## Configuration of the Power Based Average Value Calculation*

*=Availability depends on the ordered device code.

|  | Power based Average Values (Demand) and Peak Values |  |
| :--- | :--- | :--- | :--- |

## Direct Commands

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { ResFc all } & \begin{array}{l}\text { Resetting of all Statistic values (Current Demand, } \\
\text { Power Demand, Min, Max) }\end{array} & \begin{array}{l}\text { inactive, } \\
\text { active }\end{array} & \text { inactive } & \begin{array}{l}\text { [Operation } \\
\text { /Reset] }\end{array} \\
\hline \text { ResFc I Demand } & \begin{array}{l}\text { Resetting of Statistics - Current Demand (avg, peak } \\
\text { avg) }\end{array} & \begin{array}{l}\text { inactive, } \\
\text { active }\end{array} & \text { inactive } & \text { [Operation } \\
\text { /Reset] }\end{array}
$$\right] \begin{array}{l}[Operation <br>

/Reset]\end{array}\right]\)| ResFc Min |
| :--- |
| Resetting of all Minimum values |

Global Protection Parameters of the Statistics Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| ResFc Max | Resetting of all Maximum values | 1..n, Assignment List | --- | [Device Para <br> /Statistics <br> /Min / Max] |
| ResFc Min | Resetting of all Minimum values | 1..n, Assignment List | -.- | [Device Para <br> /Statistics <br> /Min / Max] |
| Start I Demand via: | Start Current demand by: | Duration, StartFct | Duration | [Device Para <br> /Statistics <br> /Demand <br> /Current Demand] |
| Start I Demand Fc | Start of the calculation, if the assigned signal becomes true. <br> Only available if: Start I Demand via: = StartFct | 1..n, Assignment List | -.- | [Device Para <br> /Statistics <br> /Demand <br> /Current Demand] |
| ResFc I Demand | Resetting of Statistics - Current Demand (avg, peak avg) | 1..n, Assignment List | -.- | [Device Para <br> /Statistics <br> /Demand <br> /Current Demand] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Duration I Demand | Recording time <br> Only available if: Start I Demand via: = Duration | 2 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 6 h, 12 h, 1 d, 2 d, 5 d, 7 7 d, 10 d, 30 d | 15 s | [Device Para <br> /Statistics <br> /Demand <br> /Current Demand] |
| Window I Demand | Window configuration | sliding, fixed | sliding | [Device Para <br> /Statistics <br> /Demand <br> /Current Demand] |

## States of the Inputs of the Statistics Module

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| StartFc I Demand-I | State of the module input: Start of the Statistics of the Current Demand | [Device Para <br> /Statistics <br> /Demand <br> /Current Demand] |
| ResFc Vavg-I | State of the module input: Resetting of the sliding average calculation. | [] |
| ResFc I Demand-I | State of the module input: Resetting of Statistics - Current Demand (avg, peak avg) | [Device Para <br> /Statistics <br> /Demand <br> /Current Demand] |
| ResFc P Demand-I | State of the module input: Resetting of Statistics - Power Demand (avg, peak avg) | [] |
| ResFc Max-I | State of the module input: Resetting of all Maximum values | [Device Para <br> /Statistics <br> /Min / Max] |
| ResFc Min-I | State of the module input: Resetting of all Minimum values | [Device Para <br> /Statistics <br> /Min / Max] |

## Signals of the Statistics Module

| Signal | Description |
| :--- | :--- |
| ResFc all | Signal: Resetting of all Statistic values (Current Demand, Power Demand, Min, Max) |
| ResFc I Demand | Signal: Resetting of Statistics - Current Demand (avg, peak avg) |
| ResFc Max | Signal: Resetting of all Maximum values |
| ResFc Min | Signal: Resetting of all Minimum values |

## Counters of the Module Statistics

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Value } & \text { Description } & \text { Menu path } \\
\hline \text { Res Cr I Demand } & \begin{array}{l}\text { Number of resets since last booting. The timestamp shows date } \\
\text { and time of the last reset. }\end{array} & \begin{array}{l}\text { [Operation } \\
\text { IStatistics }\end{array} \\
\hline \text { Res Cr Min values } & \begin{array}{l}\text { Number of resets since last booting. The timestamp shows date } \\
\text { and time of the last reset. }\end{array} & \begin{array}{l}\text { IOperation } \\
\text { ICT W2] }\end{array} \\
\hline \text { Res Cr Max values } & \begin{array}{l}\text { Number of resets since last booting. The timestamp shows date } \\
\text { and time of the last reset. }\end{array}
$$ \& IOperation <br>

IMin\end{array}\right]\)| ICT W2] |
| :--- |

## Phase Differential Current - Statistic Values

| Value | Description | Menu path |
| :---: | :---: | :---: |
| IS L1 max | Measured value (calculated): Restraint Current Phase L1 Maximum Value | [Operation <br> /Statistics <br> /Max <br> /ld] |
| IS L2 max | Measured value (calculated): Restraint Current Phase L2 Maximum Value | [Operation <br> /Statistics <br> /Max <br> /ld] |
| IS L3 max | Measured value (calculated): Restraint Current Phase L3 Maximum Value | [Operation <br> /Statistics <br> /Max <br> /ld] |
| Id L1 max | Measured value (calculated): Differential Current Phase L1 Maximum Value | [Operation <br> /Statistics <br> /Max <br> /ld] |
| Id L2 max | Measured value (calculated): Differential Current Phase L2 Maximum Value | [Operation <br> /Statistics <br> /Max <br> /ld] |
| Id L3 max | Measured value (calculated): Differential Current Phase L3 Maximum Value | [Operation <br> /Statistics <br> /Max <br> /ld] |

## Earth Differential Current - Statistic Values

| Value | Description | Menu path |
| :---: | :---: | :---: |
| ISG W1 max | Measured value (calculated): Ground Stabilizing Current Winding 1 Maximum Value | [Operation <br> /Statistics <br> /Max <br> /IdG W1] |
| Idg W1 max | Measured value (calculated): Ground Differential Current Winding 1 Maximum Value | [Operation <br> /Statistics <br> /Max <br> /IdG W1] |
| ISG W2 max | Measured value (calculated): Ground Stabilizing Current Winding 2 Maximum Value | [Operation <br> /Statistics <br> /Max <br> /IdG W2] |
| Idg W2 max | Measured value (calculated): Ground Differential Current Winding 2 Maximum Value | [Operation <br> /Statistics <br> /Max <br> /IdG W2] |

## Current - Statistic Values

| Value | Description | Menu path |
| :---: | :---: | :---: |
| 11 max | Maximum value positive phase sequence current (fundamental) | [Operation <br> /Statistics <br> /Max <br> /CT W1] |
| 11 min | Minimum value positive phase sequence current (fundamental) | [Operation <br> /Statistics <br> /Min <br> /CT W1] |
| 12 max | Maximum value unbalanced load (fundamental) | [Operation <br> /Statistics <br> /Max <br> /CT W1] |
| 12 min | Minimum value unbalanced load current (fundamental) | [Operation <br> /Statistics <br> /Min <br> /CT W1] |
| IL1 H2 max | Maximum ratio of 2nd harmonic over fundamental of IL1 | [Operation <br> /Statistics <br> /Max <br> /CT W1] |
| IL1 H2 min | Minimum ratio of 2nd harmonic over fundamental of IL1 | [Operation /Statistics /Min /CT W1] |
| IL2 H2 max | Maximum ratio of 2nd harmonic over fundamental of IL2 | [Operation <br> /Statistics <br> /Max <br> /CT W1] |
| IL2 H2 min | Minimum ratio of 2nd harmonic over fundamental of IL2 | [Operation <br> /Statistics <br> /Min <br> /CT W1] |
| IL3 H2 max | Maximum ratio of 2nd harmonic over fundamental of IL3 | [Operation <br> /Statistics <br> /Max <br> /CT W1] |


| Value | Description | Menu path |
| :---: | :---: | :---: |
| IL3 H2 min | Minimum ratio of 2nd harmonic/1st harmonic minimum value of IL3 | [Operation <br> /Statistics <br> /Min <br> /CT W1] |
| IG H2 meas max | Measured value: Maximum ratio of 2nd harmonic over fundamental of IG (measured) | [Operation <br> /Statistics <br> /Max <br> /CT W1] |
| IG H2 meas min | Measured value: Minimum ratio of 2nd harmonic over fundamental of IG (measured) | [Operation <br> /Statistics <br> /Min <br> /CT W1] |
| IG H2 calc max | Measured value (calculated): Maximum ratio of 2nd harmonic over fundamental of IG (calculated) | [Operation <br> /Statistics <br> /Max <br> /CT W1] |
| IG H2 calc min | IG H2 calc min | [Operation <br> /Statistics <br> /Min <br> /CT W1] |
| IL1 max RMS | IL1 maximum value (RMS) | [Operation <br> /Statistics <br> /Max <br> /CT W1] |
| IL1 avg RMS | IL1 average value (RMS) | [Operation <br> /Statistics <br> /Demand <br> /CT W1] |
| IL1 min RMS | IL1 minimum value (RMS) | [Operation <br> /Statistics <br> /Min <br> /CT W1] |
| IL2 max RMS | IL2 maximum value (RMS) | [Operation <br> /Statistics <br> /Max <br> /CT W1] |


| Value | Description | Menu path |
| :---: | :---: | :---: |
| IL2 avg RMS | IL2 average value (RMS) | [Operation <br> /Statistics <br> /Demand <br> /CT W1] |
| IL2 min RMS | IL2 minimum value (RMS) | [Operation <br> /Statistics <br> /Min <br> /CT W1] |
| IL3 max RMS | IL3 maximum value (RMS) | [Operation <br> /Statistics <br> /Max <br> /CT W1] |
| IL3 avg RMS | IL3 average value (RMS) | [Operation <br> /Statistics <br> /Demand <br> /CT W1] |
| IL3 min RMS | IL3 minimum value (RMS) | [Operation <br> /Statistics <br> /Min <br> /CT W1] |
| IG meas max RMS | Measured value: IG maximum value (RMS) | [Operation <br> /Statistics <br> /Max <br> /CT W1] |
| IG meas min RMS | Measured value: IG minimum value (RMS) | [Operation <br> /Statistics <br> /Min <br> /CT W1] |
| IG calc max RMS | Measured value (calculated):IG maximum value (RMS) | [Operation <br> /Statistics <br> /Max <br> /CT W1] |
| IG calc min RMS | Measured value (calculated):IG minimum value (RMS) | [Operation <br> /Statistics <br> /Min <br> /CT W1] |


| Value | Description | Menu path |
| :--- | :--- | :--- |
| \%(I2/I1) max | Measured value (calculated): I2/I1 maximum value, phase <br> sequence will be taken into account automatically | [Operation <br> IStatistics <br> IMax |
| \%(I2/I1) min | Measured value (calculated): I2/I1 minimum value, phase sequence <br> will be taken into account automatically |  |
| IL1 Peak demand | IL1 Peak value, RMS value | IStatistics <br> IMin |
| IL2 Peak demand | IL2 Peak value, RMS value | ICT W1] |
|  |  | [Operation <br> IStatistics <br> IDemand <br> ICT W1] |
| IL3 Peak demand | IL3 Peak value, RMS value | [Operation |
| IStatistics |  |  |
| IDemand |  |  |

## System Alarms

Available Elements:
SysA

## NOT/CE Please note that Power Protection and (Active/Reactive/Apparent) Power Demand is only available within Protective Devices that offer current and voltage measurement.

Within the System Alarms menu [SysA] the User can configure:

- General Settings (activate/inactivate the Demand Management, optional assign a signal, that will block the Demand Management);
- Power Protection (Peak values);
- Demand Management (Power and Current); and
- THD Protection.

Please note, that all thresholds are to be set as primary values.

## Demand Management

Demand is the average of system current or power over a time interval (window). Demand management supports the User to keep energy demand below target values bound by contract (with the energy supplier). If the contractual target values are exceeded, extra charges are to be paid to the energy supplier.

Therefore, demand management helps the User detect and avoid averaged peak loads that are taken into account for the billing. In order to reduce the demand charge respective to demand rate, peak loads, if possible, should be diversified. That means, if possible, avoiding large loads at the same time. In order to assist the User in analyzing the demand, demand management might inform the User by an alarm. The User might also use demand alarms and assign them on relays in order to perform load shedding (where applicable).

Demand management comprises:

- Power Demand
- Watt Demand (Active Power);
- VAr Demand (Reactive Power);
- VA Demand (Apparent Power); and
- Current Demand.


## Configuring the Demand

Configuring the demand is a two step procedure. Proceed as follows.

Step1: Configure the general settings within the [Device Para/Statistics/Demand] menu:

■ Set the trigger source to »Duration巛.

- Select a time base for the » window«.
- Determine if the window is »fixed« or »sliding«.
- If applicable assign a reset signal.

The interval time (window) can be set to fixed or sliding.
Example for a fixed window: If the range is set for 15 minutes, the protective device calculates the average current or power over the past 15 minutes and updates the value every 15 minutes.

Example for a sliding window: If the sliding window is selected and the interval is set to 15 minutes, the protective device calculates and updates the average current or power continuously, for the past 15 minutes (the newest measuring value replaces the oldest measuring value continuously).

## Window configuration = sliding



## Window configuration $=$ fixed



Step 2:

■ In addition, the Demand specific settings have to be configured in the [SysA/Demand] menu.

- Determine if the demand should generate an alarm or if it should run in the silent mode.
(Alarm active/inactive).
- Set the threshold.
- Where applicable, set a delay time for the alarm.


## Peak Values

The protective device also saves the peak demand values for current and power. The quantities represent the largest demand value since the demand values were last reset. Peak demands for current and system power are date and time stamped.

Within the [Operation/Statistics] menu, the current Demand and Peak demand values can be seen.

## Configuring the Peak Value Supervision

The supervision for the peak values can be configurated within menu [SysA/Power] in order to monitor:

- Active Power (Watt),
- Reactive Power (VAr)
- Apparent Powr (VA)

The specific settings are to be set within menu [SysA/Power].

- Determine if the peak value supervision should generate an alarm or if it should run in the silent mode. (Alarm active/inactive).
- Set the threshold.
- Where applicable, set a delay time for the alarm.


## Min. and Max. Values.

Within [Operation/Statistics] menu the minimum (min.) and maximum (max.) values can be seen.
Minimum values since last reset: The minimum values are continuously compared to the last minimum value for that measuring value. If the new value is less than the last minimum, the value is updated. Within the [Device Para/Statistics/"Min / Max"] menu, a reset signal can be assigned.

Maximum values since last reset: The maximum values are continuously compared to the last maximum value for that measuring value. If the new value is greater than the last maximum, the value is updated. Within the [Device Para/Statistics/"Min / Max"] menu, a reset signal can be assigned.

## THD Protection

In order to supervise power quality, the protective device can monitor the voltage (phase-to-phase) and current THDs.

Within the [SysA/THD] menu:

- Determine if an alarm is to be issued or not (Alarm active/inactive);
- Set the threshold; and
- Where applicable, set a delay time for the alarm.


## Device Planning Parameters of the Demand Management

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | do not use | [Device planning] |  |  |
| U |  |  |  |  |

Signals of the Demand Management (States of the Outputs)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Alm Current Demd | Signal: Alarm averaged demand current |
| Alarm I THD | Signal: Alarm Total Harmonic Distortion Current |
| Trip Current Demand | Signal: Trip averaged demand current |
| Trip I THD | Signal: Trip Total Harmonic Distortion Current |

Global Protection Parameter of the Demand Management

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Function | Permanent activation or deactivation of module/stage. | inactive, <br> active | inactive | [SysA |
| /General settings] |  |  |  |  |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the <br> module/stage. This parameter is only effective if a <br> signal is assigned to the corresponding global <br> protection parameter. If the signal becomes true, those <br> modules/stages are blocked that are parameterized <br> "ExBlo Fc=active". | 1..n, Assignment <br> List | .-- | [SysA |
| /General settings] |  |  |  |  |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT Winding Side | Measuring values will be used from this winding side | $\begin{aligned} & \mathrm{W} 1, \\ & \mathrm{~W} 2 \end{aligned}$ | W1 | [SysA <br> /General settings] |
| Alarm | Alarm | inactive, active | inactive | [SysA <br> /Demand <br> /Current Demand] |
| Threshold | Threshold (to be entered as primary value) | 10-500000A | 500A | [SysA <br> /Demand <br> /Current Demand] |
| t-Delay | Tripping Delay | 0-60min | Omin | [SysA <br> /Demand <br> /Current Demand] |
| Alarm | Alarm | inactive, active | inactive | [SysA <br> /THD <br> /I THD] |
| Threshold | Threshold (to be entered as primary value) | 1-500000A | 500A | [SysA <br> /THD <br> /I THD] |
| t-Delay | Tripping Delay | 0-3600s | Os | [SysA <br> /THD <br> /I THD] |

## States of the Inputs of the Demand Management

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo-I | Module input state: External blocking | [SysA |
|  |  | /General settings] |

## Acknowledgments

Collective Acknowledgments for latched signals:

| Collective Acknowledgments |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | LEDs | Binary Output Relays | SCADA | Pending <br> Trip Command | LEDs + Binary Output Relays + SCADA + Pending Trip Command |
| Via Smart view or at the panel all... <br> can be acknowledged. <br> At the panel, the menu [Operation\} Acknowledge] can directly be accessed via the »C« key | All LEDs at once: <br> Where? <br> [Operation\} <br> Acknowledge] | All Binary Output Relays at once: <br> Where? <br> [Operation\} <br> Acknowledge] | All SCADA signals at once: <br> Where? <br> [Operation\} Acknowledge] | All pending trip commands at once: <br> Where? <br> [Operation\} Acknowledge] | All at once: <br> Where? <br> [Operation\} <br> Acknowledge] |
| External <br> Acknowledgment <br> Via a signal from the assignment list (e.g. a digital Input) all... can be acknowledged. | All LEDs at once: <br> Where? Within the menu Ex Acknowledge | All Binary Output Relays at once: <br> Where? Within the menu Ex Acknowledge | All SCADA signals at once: <br> Where? Within_ the menu Ex Acknowledge | All pending trip commands at once: <br> Where? Within the menu Ex Acknowledge |  |

*The External Acknowledgement might be disabled if parameter »Ex Ack «is set to »inactive« within menu [Device Para/Ex Acknowledge]. This blocks also the acknowlegement via Communication (e.g. Modbus).

Options for individual acknowledgments for latched signals:

| Individual Acknowledgment |  |  |  |
| :--- | :---: | :---: | :---: |
|  | LEDs | Binary Output Relays | Pending <br> Trip Command |
| Via a signal from the <br> assignment list (e.g.:a <br> digital Input) a single... can <br> be acknowledged. | Single LED: | Binary Output Relay: | Pending Trip Command. <br> Where? |
| Within the configuration |  |  |  |
| menu of this single LED. |  |  |  | | Within the configuration |
| :---: |
| menu of this single Binary |
| Output Relay. |$\quad$| Whithine module |
| :---: |
| TripControl |

NOT/CE As long as you are within the parameter setting mode, you cannot acknowledge.

NOT/CE In case of a fault during parameter setting via the operating panel, you must first leave the parameter mode by pressing either push-button »C« or »OK« before you may access to menu »Acknowledgments« via push-button.

## Manual Acknowledgment

- Press the C-Button at the panel.
- Select the item to be acknowledged via the Softkeys:
- Binary output relays,
- LEDs,
- SCADA,
- a pending trip command or
$\square$ all (above) mentioned items at once.
- Press the Softkey with the »Wrench-Symbol«.
- Enter your password.


## External Acknowledgments

Within the menu [Ex Acknowledge] you can assign a signal (e.g. the state of a digital input) from the assignment list that:

- acknowledges all (acknowledgeable) LEDs at once;
- acknowledges all (acknowledgeable) binary outputs at once:

■ acknowledges all (acknowledgeable) SCADA-signals at once.


Within the menu [Protection ParalGlobal Prot ParalTripControl] you can assign a signal that:
a acknowledges a pending trip command.

For details, please refer to chapter »TripContro/«.

## Manual Resets

In menu »Operation/Reset« you can:

- reset counters,
- delete records (e.g. disturbance records) and
- reset special things (like statistics, thermal replica...).


## NOTICE The description of the reset commands can be found within the corresponding modules.

## Reset to Factory Defaults

## 4. WARNING

This Function will reset the device to the factory defaults.
All records will be deleted and and the measured values and counters will be reset. The operation hours counter will be kept.

This Function is available at the HMI only.

- Press the »C-key« during a cold start, in order to access the »Reset« menu.
- Select »Reset to factory default«.
- Confirm »Reset device to factory defaults and reboot« with »Yes« in order to execute the reset to factory defaults.«


## Status Display

In the status display within the »Operation« menu, the present state of all signals can be viewed. This means the User is able to see if the individual signals are active or inactive at that moment. The User can see all signals sorted by protective elements/modules.

| State of the module input/signal is... | Is shown at the panel as... |
| :---: | :---: |
| false / »0« |  |
| true / »1« |  |

## Operating Panel (HMI)

HMI

## Special Parameters of the Panel

This menu »Device Parameter/HMI« is used to define the contrast of the display, the maximum admissible edit time and the menu language (after expiry of which, all unsaved parameter changes will be rejected).

## Direct Commands of the Panel

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Contrast | Contrast | $0-100 \%$ | $50 \%$ | [Device Para <br> /HMI] |
| Q |  |  |  |  |

## Global Protection Parameters of the Panel

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { t-max Edit/Access } & \begin{array}{l}\text { If no other key(s) is pressed at the panel, after } \\
\text { expiration of this time, all cached (changed) parameters } \\
\text { are canceled. The device access will be locked by } \\
\text { falling back into Read-only level Lv0. }\end{array} & 20-3600 \mathrm{~s} & 180 \mathrm{~s} & \begin{array}{l}\text { [Device Para } \\
\text { /HMI] }\end{array} \\
\hline \text { Display Off } & \begin{array}{l}\text { The display back light will be turned off when this timer } \\
\text { has expired. }\end{array}
$$ \& 20-3600 \mathrm{~s} \& 180s \& [Device Para <br>

/HMI]\end{array}\right]\)| [Device Para |
| :--- |
| /HMI] |

## Recorders

## Disturbance Recorder

Available elements:
Disturb rec
The disturbance recorder works with 32 samples per cycle. The disturbance recorder can be started by one of eight start events (selection from the »assignment list«/OR-Logic). The disturbance record contains the measuring values inclusively pre-trigger-time. By means of Smart view/Datavisualizer (option) the oscillographic curves of the analogue (current, voltage) and digital channels/traces can be shown and evaluated in a graphical form. The disturbance recorder has a storage capacity of 120s. The disturbance recorder is able to record up to 10 s (adjustable) per record. The amount of records depends on the file size of each record.

The disturbance recorder can be parameterized in the menu »Device Parameter/Recorder/Disturb rec«.

Determine the max. recording time to register a disturbance event. The max. total length of a recording is 10 s (inclusive pre-trigger and post-trigger time).

To trigger the disturbance recorder, up to 8 signals can be selected from the »assignment list«. The trigger events are OR-linked. If a disturbance record is written, a new disturbance record cannot be triggered until all trigger signals, which have triggered the previous disturbance record, are gone. Recording is only done for the time the assigned event exists (event controlled), plus the time for the pre- and post-trigger, but not longer than 10s. The time for forward run and tracking of the disturbance recorder is shown in percent of the total recording length.

## NOTICE <br> The post-trigger time will be up to "Post-trigger time" depending on the duration of the trigger signal. The post-trigger will be the remaining time of the "Max file size" but at maximum "Post-trigger time"



## Example

The disturbance recorder is started by the general activation facility. After the fault has been cancelled (+ follow-up time), the recording process is stopped (but after 10s at the latest).

The parameter »Auto Delete« defines how the device shall react if there is no saving place available. In case »Auto Delete« is »active«, the first recorded disturbance will be overwritten according to the FIFO principle. If the parameter is set to »inactive«, recording of the disturbance events will be stopped until the storage location is released manually.

## Example Disturbance Recorder Timing Chart I



## Example Disturbance Recorder Timing Chart II



## Read Out Disturbance Records

Within the Menu Operation/Disturb rec you can

- Detect accumulated Disturbance Records.


## NOT/CE Within the Menu»Operation/Recorders/Man Trigger« you can trigger the disturbance recorder manually.

## Deleting Disturbance Records

Within the Menu Operation/Disturb rec you can

■ Delete Disturbance Records.

■ Choose via »SOFTKEY«»up« and »SOFTKEY«»down« the disturbance record that is to be deleted.

■ Call up the detailed view of the disturbance record via »SOFTKEY «»right«.

■ Confirm by pressing »SOFTKEY«»delete«

- Enter your password followed by pressing the key »OK«
- Choose whether only the current of whether all disturbance records should be deleted.

■ Confirm by pressing »SOFTKEY«»OK«

## Direct Commands of the Disturbance Recorder

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Man Trigger } & \text { Manual Trigger } & \begin{array}{l}\text { False, } \\
\text { True }\end{array}
$$ \& False \& <br>
[Operation <br>
Res all rec \& Reset all records \& inactive, \& inactive \& (Recors <br>

/Man Trigger]\end{array}\right]\)| [Operation |
| :--- |
| /Reset] |

## Global Protection Parameters of the Disturbance Recorder

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Start: 1 | Start recording if the assigned signal is true. | 1..n, Assignment List | Prot.Alarm | [Device Para /Recorders /Disturb rec] |
| Start: 2 | Start recording if the assigned signal is true. | 1..n, Assignment List | $\because-$ | [Device Para <br> /Recorders <br> /Disturb rec] |
| Start: 3 | Start recording if the assigned signal is true. | 1..n, Assignment List | $\because-$ | [Device Para <br> /Recorders <br> /Disturb rec] |
| Start: 4 | Start recording if the assigned signal is true. | 1..n, Assignment List | -.- | [Device Para <br> /Recorders <br> /Disturb rec] |
| Start: 5 | Start recording if the assigned signal is true. | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Recorders <br> /Disturb rec] |
| Start: 6 | Start recording if the assigned signal is true. | 1..n, Assignment List | -- | [Device Para <br> /Recorders <br> /Disturb rec] |
| Start: 7 | Start recording if the assigned signal is true. | 1..n, Assignment List | -.- | [Device Para <br> /Recorders <br> /Disturb rec] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Start: 8 | Start recording if the assigned signal is true. | 1..n, Assignment List | --- | [Device Para <br> /Recorders <br> /Disturb rec] |
| Auto overwriting | If there is no more free memory capacity left, the oldest file will be overwritten. | inactive, active | active | [Device Para <br> /Recorders <br> /Disturb rec] |
| Post-trigger time | The post trigger time is settable up to a maximum of $50 \%$ of the Maximum file size setting. The post-trigger will be the remaining time of the "Max file size" but at maximum "Post-trigger time" | 0-50\% | 20\% | [Device Para <br> /Recorders <br> /Disturb rec] |
| Pre-trigger time | The pre trigger time is settable up to a maximum of $50 \%$ of the Maximum file size setting. | 0-50\% | 20\% | [Device Para <br> /Recorders <br> /Disturb rec] |
| Max file size | The maximum storage capacity per record is 10 seconds, including pre-trigger and post-trigger time. The disturbance recorder has a total storage capacity of 120 seconds. | 0.1-10.0s | 2s | [Device Para <br> /Recorders <br> /Disturb rec] |

## Disturbance Recorder Input States

\(\left.\begin{array}{|l|l|l|}\hline Name \& Description \& Assignment via <br>
\hline Start1-I \& State of the module input:: Trigger event / start recording if: \& [Device Para <br>
/Recorders <br>

/Disturb rec]\end{array}\right]\)| [Device Para |
| :--- |
| /Recorders |
| Start2-I |
|  |

## Disturbance Recorder Signals

| Signal | Description |
| :--- | :--- |
| recording | Signal: Recording |
| memory full | Signal: Memory full |
| Clear fail | Signal: Clear failure in memory |
| Res all records | Signal: All records deleted |
| Res rec | Signal: Delete record |
| Man Trigger | Signal: Manual Trigger |

## Special Parameters of the Disturbance Recorder

| Value | Description | Default | Size | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Rec state | Recording state | Ready | Ready, <br> Recording, <br> Writing file, | [Operation <br> /Status Display <br> Trigger Blo |
| /Recorders |  |  |  |  |
| /Disturb rec] |  |  |  |  |, | [Operation |
| :--- |
| Error code |

## Fault Recorder

Fault rec

## Purpose of the Fault recorder

The Fault Recorder provides compressed information about faults (e.g. Trip Causes). The compressed information can be read out also at the HMI. This might be helpful for fast fault analysis already at the HMI. After a fault, a popup window will be sent onto the display in order to draw the users attention to the fault. The Fault Recorder will provide information on the causes of the fault. A detailed fault analysis (in oscillographic form) can be done means of the Disturbance Recorder. The reference between the Fault Records and the corresponding Disturbance Records are the »Fault Number« and the »Grid Fault Number«.

## Definitions

| Time to Trip: | Time between First Alarm (Prot.Pickup) and First Trip (Prot.Trip) decision |
| :--- | :--- |
| Fault Duration: | Time period from the rising edge of the General Pickup (»Prot.Pıckup«) signal up to the falling <br> edge of the General Pickup Signal. Please note that General Pickup is an or-connection <br> (disjunction) of all Pickup signals. General Trip is an OR-connection of all Trips. |




## Behaviour of the Fault Recorder

## Who triggers the Fault Recorder?

The Fault Recorder will be triggered by the rising edge of the »РRот. Рıскир« (General Pickup) signal. Please note that »РRот. РıскиР« (General Pickup) is an or-connection of all Pickup signals. The first Pickup will trigger the Fault recorder.

At which point of time will the fault measurements be captured?
The fault measurements will be captured (written) when the trip decision is taken. The point in time, when the measurements are captured (after a trip) can be delayed optionally by the parameter »t-meas-delay«. This might be reasonable in order to achieve more reliable measuring values (e.g. in order to avoid measuring disturbances caused by significant DC-components).

## Modes

In case of a fault record should be written even if an general alarm has not lead to a trip, the parameter »RecordMode« is to be set to »Alarms and Trips«.

Set parameter »Record-Mode« to »Trips only«, if an Alarm that is not followed by a trip decision should not lead to a trip.

When does the overlay (popup) appears on the display of the HMI?
A popup will appear on the HMI display, when the General Pickup (Prot.Pickup) disappears.

NOT/CE $\quad$ No time to trip will be shown if the pickup signal that triggers the fault recorder is issued by another protection module than the trip signal. This might happen if more than one protection module is involved into a fault.

NOTICE
Please note: The parameter settings (thresholds etc.) that are shown in a fault record are not part of the fault record itself. They are always read out from the current device setting. If parameters settings that are shown in a fault record could have been updated, they will be indicated with an asterisk symbol within the fault record.

To prevent this please proceed as follows:

Save any fault record that should be archived to your local network/hard disk before doing any parameter change. Delete all the fault records in your fault recorder afterwards.

## Memory

The last stored fault record is saved (fail-safe) within the Fault Recorder (the others are saved within a memory that depends on the auxiliary power of the protective relay). If there is no more memory free, the oldest record will be overwritten (FIFO). Up to 20 records can be stored.

How to close the overlay/popup?
By using Softkey »OK«.

How to find out fast, if a fault has lead to a trip or not?
Faults that lead to a trip will be indicated by a flash icon
(right side) within the overview menu of the fault recorder.

Which fault record pops up?
The newest fault.

## Content of a Fault Record

A fault record comprises information about:

| Date/Time | Date and Time of the Fault |
| :--- | :--- | :--- | :--- | :--- |
| FaultNr | The number of the fault will be incremented with each fault (General Alarm or <br> „Prot.PIckup«) |
| Grid Fault No. | This counter will be incremented by each General Pickup (Exception AR: this applies <br> only to devices that offer auto reclosing). |
| Active Set | The active parameter set |

## How to set up the Fault Recorder

The »Record-Mode« will determine if trips only cause a fault record or if also Alarms without a consecutively trip should cause a fault record. This parameter is to be set within menu [Device ParalRecorders|Fault rec]

How to navigate within the Fault Recorder
Navigation within the
Fault recorder
Back to overview.
Next (upper) item within this
fault record.
Previous fault record.
Next (lower) item within this
fault record.

## How to read Out the Fault Recorder

In order to read out a fault record there are two options available:

- Option 1: A Fault has popped up on the HMI (because an trip or pickup has occurred).
- Option 2: Call up manually the Fault recorder menu.

Option 1 (in case a fault record pops up on the display (overlay):

- Analyze the fault record by using Softkeys Arrow Up and Arrow Down.
- Or close the Popup by using Softkey OK


## Option 2 :

- Call up the main menu;

■ Call up the sub-menu »Operation/Recorders/Fault rec.«;

- Select a fault record; and
- Analyze the fault record by using Softkeys Arrow Up and Arrow Down.


## Direct Commands of the Fault Recorder

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Res all rec | Reset all records | inactive, |  |  |
| active |  |  |  |  |$\quad$ inactive $\quad$| [Operation |
| :--- |
| /Reset] |

Global Protection Parameters of the Fault Recorder

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Record-Mode | Recorder Mode (Set the behaviour of the recorder) | Alarms and Trips, <br> Trips only | Trips only | [Device Para |
| /Recorders |  |  |  |  |
| /Fault rec] |  |  |  |  |

## Fault Recorder Signals

| Signal | Description |
| :--- | :--- |
| Res rec | Signal: Delete record |

## Event Recorder

## Event rec

The event recorder can register up to 300 events and the last (minimum) 50 saved events are recorded fail-safe. The following information is provided for any of the events:

Events are logged as follows:

| Record No. | Fault No. | No of grid faults | Date of Record | Module.Name | State |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Sequential <br> Number | Number of the <br> ongoing fault | A grid fault No. can <br> have several Fault <br> No. | Time stamp | What has <br> changed? | Changed Value |
| This counter will |  |  |  |  |  |
| be incremented |  |  |  |  |  |
| by each General |  |  |  |  |  |
| Alarm |  |  |  |  |  |
| (Prot.Alarm) | This counter will be <br> incremented by each <br> General Alarm <br> (Exception AR: this <br> applies only to <br> devices that offer <br> auto reclosing) |  |  |  |  |

There are three different classes of events:

## Alternation of binary states are shown as:

■ $0->1$ if the signal changes physically from » $0 \ll$ to $» 1<$.

- 1->0 if the signal changes physically from » $1<$ to » $0<$.
$\square$ Counters increment is shown as:
- Old Counter state -> New Counter state (e.g. 3->4)
- Alternation of multiple states are shown as:
- Old state -> New state (e.g. 0->2)


## Read Out the Event Recorder

- Call up the »main menu«.
- Call up the submenu »Operation/Recorders/Event rec».
- Select an event.


## Direct Commands of the Event Recorder

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Res all rec | Reset all records | inactive, | inactive | [Operation |
| active |  |  | /Reset] |  |

## Event Recorder Signals

| Signal | Description |
| :--- | :--- |
| Res all records | Signal: All records deleted |

## Trend Recorder

Available Elements:
Trend rec

## Configuring the Trend Recorder

The Trend Recorder is to be configured within [Device Para/Recorders/Trend Recorder] menu.

The User has to set the time interval. This defines the distance between two measuring points.

The User can select up to ten values that will be recorded.
Trend rec


Global Protection Parameters of the Trend Recorder

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Resolution | Resolution (recording frequency) | 60 min , <br> 30 min , <br> 15 min , <br> 10 min , <br> 5 min | 15 min | [Device Para <br> /Recorders <br> /Trend rec] |
| Trend1 | Observed Value1 | 1..n, TrendRecList | CT W1.IL1 RMS | [Device Para <br> /Recorders <br> /Trend rec] |
| Trend2 | Observed Value2 | 1..n, TrendRecList | CT W1.IL2 RMS | [Device Para <br> /Recorders <br> /Trend rec] |
| Trend3 | Observed Value3 | 1..n, TrendRecList | CT W1.IL3 RMS | [Device Para <br> /Recorders <br> /Trend rec] |
| Trend4 | Observed Value4 | 1..n, TrendRecList | CT W1.IG meas RMS | [Device Para <br> /Recorders <br> /Trend rec] |
| Trend5 | Observed Value5 | 1..n, TrendRecList | -- | [Device Para <br> /Recorders <br> /Trend rec] |
| Trend6 | Observed Value6 | 1..n, TrendRecList | --- | [Device Para <br> /Recorders <br> /Trend rec] |
| Trend7 | Observed Value7 | 1..n, TrendRecList | -. | [Device Para <br> /Recorders <br> /Trend rec] |
| Trend8 | Observed Value8 | 1..n, TrendRecList | -- | [Device Para <br> /Recorders <br> /Trend rec] |
| Trend9 | Observed Value9 | 1..n, TrendRecList | --- | [Device Para <br> /Recorders <br> /Trend rec] |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Trend10 | Observed Value10 | 1..n, TrendRecList | -. | [Device Para |
| /Recorders |  |  |  |  |
| /Trend rec] |  |  |  |  |

## Trend Recorder Signals (Output States)

| Signal | Description |
| :--- | :--- |
| Hand Reset | Hand Reset |

## Direct Commands of the Trend Recorder

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\ \hline \text { Reset } & \text { Delete all entries } & \text { inactive, } & \text { inactive } & \text { [Operation } \\ \text { IReset] }\end{array}\right]$

## Genearal Values of the Trend Recorder

| Value | Description | Default | Size | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Max avail Entries | Maximum available entries in the current <br> configuration | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /Trend rec] |

## Global Values of the Trend Recorder

The » TrendRecList« below summarizes all signals that the User can assign.

| Name | Description |
| :---: | :---: |
| --- | No assignment |
| CT W1.IL1 | Measured value: Phase current (fundamental) |
| CT W1.IL2 | Measured value: Phase current (fundamental) |
| CT W1.IL3 | Measured value: Phase current (fundamental) |
| CT W1.IG meas | Measured value (measured): IG (fundamental) |
| CT W1.IG calc | Measured value (calculated): IG (fundamental) |
| CT W1.IL1 RMS | Measured value: Phase current (RMS) |
| CT W1.IL2 RMS | Measured value: Phase current (RMS) |
| CT W1.IL3 RMS | Measured value: Phase current (RMS) |
| CT W1.IG meas RMS | Measured value (measured): IG (RMS) |
| CT W1.IG calc RMS | Measured value (calculated): IG (RMS) |
| CT W1.IO | Measured value (calculated): Zero current (fundamental) |
| CT W1.I1 | Measured value (calculated): Positive phase sequence current (fundamental) |
| CT W1.I2 | Measured value (calculated): Unbalanced load current (fundamental) |
| CT W1.\%(12/I1) | Measured value (calculated): I2/I1, phase sequence will be taken into account automatically. |
| CT W1.IL1 avg RMS | IL1 average value (RMS) |
| CT W1.IL2 avg RMS | IL2 average value (RMS) |
| CT W1.IL3 avg RMS | IL3 average value (RMS) |
| CT W1.IL1 THD | Measured value (calculated): IL1 Total Harmonic Current |
| CT W1.IL2 THD | Measured value (calculated): IL2 Total Harmonic Current |
| CT W1.IL3 THD | Measured value (calculated): IL3 Total Harmonic Current |
| CT W2.IL1 | Measured value: Phase current (fundamental) |
| CT W2.IL2 | Measured value: Phase current (fundamental) |
| CT W2.IL3 | Measured value: Phase current (fundamental) |
| CT W2.IG meas | Measured value (measured): IG (fundamental) |
| CT W2.IG calc | Measured value (calculated): IG (fundamental) |
| CT W2.IL1 RMS | Measured value: Phase current (RMS) |
| CT W2.IL2 RMS | Measured value: Phase current (RMS) |
| CT W2.IL3 RMS | Measured value: Phase current (RMS) |
| CT W2.IG meas RMS | Measured value (measured): IG (RMS) |
| CT W2.IG calc RMS | Measured value (calculated): IG (RMS) |
| CT W2.10 | Measured value (calculated): Zero current (fundamental) |
| CT W2.11 | Measured value (calculated): Positive phase sequence current (fundamental) |
| CT W2.12 | Measured value (calculated): Unbalanced load current (fundamental) |
| CT W2.\%(12/I1) | Measured value (calculated): I2/I1, phase sequence will be taken into account automatically. |
| CT W2.IL1 avg RMS | IL1 average value (RMS) |


| Name | Description |
| :---: | :---: |
| CT W2.IL2 avg RMS | IL2 average value (RMS) |
| CT W2.IL3 avg RMS | IL3 average value (RMS) |
| CT W2.IL1 THD | Measured value (calculated): IL1 Total Harmonic Current |
| CT W2.IL2 THD | Measured value (calculated): IL2 Total Harmonic Current |
| CT W2.IL3 THD | Measured value (calculated): IL3 Total Harmonic Current |
| ThR.Thermal Cap Used | Measured value: Thermal Capacity Used |
| URTD.W1 L1 | Measured Value: Winding Temperature |
| URTD.W1 L1 max | Measured Value: Winding Temperature Maximum Value |
| URTD.W1 L2 | Measured Value: Winding Temperature |
| URTD.W1 L2 max | Measured Value: Winding Temperature Maximum Value |
| URTD.W1 L2 | Measured Value: Winding Temperature |
| URTD.W1 L2 max | Measured Value: Winding Temperature Maximum Value |
| URTD.W2 L1 | Measured Value: Winding Temperature |
| URTD.W2 L1 max | Measured Value: Winding Temperature Maximum Value |
| URTD.W2 L2 | Measured Value: Winding Temperature |
| URTD.W2 L2 max | Measured Value: Winding Temperature Maximum Value |
| URTD.W2 L2 | Measured Value: Winding Temperature |
| URTD.W2 L2 max | Measured Value: Winding Temperature Maximum Value |
| URTD.Amb1 | Measured Value: Ambient Temperature |
| URTD.Amb1 max | Measured Value: Ambient Temperature Maximum Value |
| URTD.Amb2 | Measured Value: Ambient Temperature |
| URTD.Amb2 max | Measured Value: Ambient Temperature Maximum Value |
| URTD.Aux1 | Measured Value: Auxiliary Temperature |
| URTD.Aux1 max | Measured Value: Auxiliary Temperature Maximum Value |
| URTD.Aux2 | Measured Value: Auxiliary Temperature |
| URTD.Aux2 max | Measured Value: Auxiliary Temperature Maximum Value |
| URTD.Aux3 | Measured Value: Auxiliary Temperature |
| URTD.Aux3 max | Measured Value: Auxiliary Temperature Maximum Value |
| URTD.Aux4 | Measured Value: Auxiliary Temperature |
| URTD.Aux4 max | Measured Value: Auxiliary Temperature Maximum Value |
| URTD.RTD Max | Maximum temperature of all channels. |
| RTD.Hottest WD W1 | Hottest winding on side W1 |
| RTD.Hottest WD W2 | Hottest winding on side W2 |
| RTD.Hottest Amb | Hottest Ambient Temperature |
| RTD.Hottest Aux Temp | Hottest Auxiliary temperature in degrees C. |

## Communication Protocols

## SCADA Interface

## Scada

## Device Planning Parameters of the Serial Scada Interface

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Options \& Default \& Menu path <br>
\hline Protocol \& Select used SCADA protocol \& \begin{array}{l}do not use, <br>
Modbus RTU, <br>
Modbus TCP, <br>
DNP3 RTU, <br>
DNP3 TCP, <br>
DNP3 UDP, <br>
IEC60870-5-103, <br>
IEC61850, <br>

Profibus\end{array} \& do not use \& [Device planning]\end{array}\right]\)|  |
| :--- |

Signals (Output States) of the SCADA Interface

| Signal | Description |
| :--- | :--- |
| SCADA connected | At least one SCADA System is connected to the device. |
| SCADA not connected | No SCADA System is connected to the device |

## TCP/IP Parameter

Tcplp

Global TCP/IP Parameters

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Keep Alive Time | Keep Alive Time is the duration between two keep alive transmissions in idle condition | 1-7200s | 720s | [Device Para /TCP/IP <br> /Advanced Settings] |
| Keep Alive Interval | Keep Alive Interval is the duration between two successive keep alive retransmissions, if the acknowledgement to the previous keepalive transmission was not received. | 1-60s | 15s | [Device Para /TCP/IP <br> /Advanced Settings] |
| Keep Alive Retry | Keep alive retry is the number of retransmissions to be carried out before declaring that the remote end is not available. | 3-3 | 3 | [Device Para /TCP/IP <br> IAdvanced Settings] |

## Modbus ${ }^{\circledR}$

Modbus

## Modbus ${ }^{\circledR}$ Protocol Configuration

The time-controlled Modbus ${ }^{\circledR}$ protocol is based on the Master-Slave working principle. This means that the substation control and protection system sends an enquiry or instruction to a certain device (slave address) which will then be answered or carried out accordingly. If the enquiry/instruction cannot be answered/carried out (e.g. because of an invalid slave address), a failure message is returned to the master.

The Master (substation control and protection system) can query information from the device, such as:

- Type of unit version
- Measuring values/Statistical measured values
- Switch operating position
- State of device
- Time and date
- State of the device's digital inputs
- Protection-/State alarms

The Master (control system) can give commands/instructions to the device, such as:

- Control of switchgear (where applicable, i.e. each acc. to the applied device version)
- Change-over of parameter set
- Reset and acknowledgement of alarms/signals
- Adjustment of date and time
- Control of alarm relays

For detailed information on data point lists and error handling, please refer to the Modbus ${ }^{\circledR}$ documentation.

To allow configuration of the devices for Modbus ${ }^{\circledR}$ connection, some default values of the control system must be available.

## Modbus RTU

## Part 1: Configuration of the Devices

Call up »Device parameter/Modbus« and set the following communication parameters there:

- Slave-address, to allow clear identification of the device.
- Baud-Rate

Also, select below indicated RS485 interface-related parameters from there, such as:

- Number of data bits
- One of the following supported communication variants: Number of data bits, even, odd, parity or no parity, number of stop bits.

■ »t-timeout«: communication errors are only identified after expiry of a supervision time »t-timeout«.

- Response time (defining the period within which an enquiry from the master has to be answered).

Part 2: Hardware Connection

- For hardware connection to the control system, there is an RS485 interface at the rear side of the device (RS485, fiber optic or terminals).
- Connect bus and device (wiring).


## Error Handling - Hardware Errors

Information on physical communication errors, such as:

- Baudrate Error
- Parity Error ...
can be obtained from the event recorder.

Error Handling - Errors on protocol level

If, for example, an invalid memory address is enquired, error codes will be returned by the device that need to be interpreted.

## Modbus TCP

## NOT / CE Establishing a connection via TCP/IP to the device is only possible if your device is equipped with an Ethernet Interface (RJ45).

Contact your IT administrator in order to establish the network connection.

## Part 1: Setting the TCP/IP Parameters

Call up »Device parameter/TCP/IP« at the HMI (panel) and set the following parameters:

- TCP/IP address
- Subnetmask
- Gateway


## Part 2: Configuration of the Devices

Call up »Device parameter/Modbus« and set the following communication parameters:

- Setting a Unit Identifier is only necessary if a TCP network should be coupled to a RTU network.
- If a different port than the default port 502 should be used please proceed as follows:
- Choose "Private" within the TCP-Port-Configuration.

Set the port-number

- Set the maximum accepted time of "no communication". If this time has expired - without any comunication, the device concludes a failure within the master system.
- Allow or disallow the blocking of SCADA commands.


## Part 3: Hardware Connection

- There is a RJ45 interface at the rear side of the device for the hardware connection to the control system.
- Establish the connection to the device by means of a proper Ethernet cable.


## Direct Commands of the Modbus ${ }^{\circledR}$

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Res Diagn Cr | All Modbus Diagnosis Counters will be reset. | inactive, | inactive | [Operation |
| IReset] |  |  |  |  |

Global Protection Parameters of the Modbus ${ }^{\circledR}$

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Slave ID | Device address (Slave ID) within the bus system. Each device address has to be unique within a bus system. | 1-247 | 1 | [Device Para <br> /Modbus <br> /Communication] |
| Unit ID | The Unit Identifier is used for routing. This parameter is to be set, if a Modbus RTU and a Modbus TCP network should be coupled. | 1-255 | 255 | [Device Para <br> /Modbus <br> /Communication] |
| TCP Port Config | TCP Port Configuration. This parameter is to be set only if the default Modubs TCP Port should not be used. | Default, <br> Private | Default | [Device Para <br> /Modbus <br> /Communication] |
| Port | Port number <br> And Only available if: TCP Port Config = Private | 502-65535 | 502 | [Device Para <br> /Modbus <br> /Communication] |
| t-timeout | Within this time the answer has to be received by the SCADA system, otherwise the request will be disregarded. In that case the Scada system detects a communication failure and the Scada System has to send a new request. | 0.01-10.00s | 1 s | [Device Para <br> /Modbus <br> /Communication] |
| Baud rate | Baud rate | $\begin{aligned} & 1200, \\ & 2400, \\ & 4800, \\ & 9600, \\ & 19200, \\ & 38400 \end{aligned}$ | 19200 | [Device Para <br> /Modbus <br> /Communication] |
| Physical Settings | Digit 1: Number of bits. Digit 2: E=even parity, O=odd parity, $\mathrm{N}=$ no parity. Digit 3: Number of stop bits. More information on the parity: It is possible that the last data bit is followed by a parity bit which is used for recognition of communication errors. The parity bit ensures that with even parity ("EVEN") always an even number of bits with valence "1" or with odd parity ("ODD") an odd number of "1" valence bits are transmitted. But it is also possible to transmit no parity bits (here the setting is "Parity = None"). More information on the stop-bits: The end of a data byte is terminated by the stop-bits. | 8E1, <br> 801, <br> 8N1, <br> 8N2 | 8E1 | [Device Para <br> /Modbus <br> /Communication] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| t-call | If there is no request telegram sent from Scada to the device after expiry of this time - the device concludes a communication failure within the Scada system. | 1-3600s | 10s | [Device Para <br> /Modbus <br> /Communication] |
| Scada CmdBlo | Activating (allowing)/ Deactivating (disallowing) the blocking of the Scada Commands | inactive, active | inactive | [Device Para <br> /Modbus <br> /Communication] |
| Disable Latching | Disable Latching: If this parameter is active (true), none of the Modbus states will be latched. That means that trip signals wont be latched by Modbus. | inactive, active | inactive | [Device Para <br> /Modbus <br> /Communication] |
| AllowGap | If this parameter is active (True), the user can request a set of modbus register without getting an exception, because of invalid address in the requested array. The invalid addresses have a special value 0xFAFA, but the user is responsible for ignoring invalid addresses. Attention: This special value can be valid, if address is valid. | inactive, active | inactive | [Device Para <br> /Modbus <br> /Communication] |
| Optical rest position | Optical rest position | Light off, <br> Light on | Light on | [Device Para <br> /Modbus <br> /Communication] |
| Config Bin Inp1 | Configurable Binary Input | 1..n, Assignment List | $\therefore$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp1 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp2 | Configurable Binary Input | 1..n, Assignment List | -- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp2 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Config Bin Inp3 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp3 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp4 | Configurable Binary Input | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp4 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp5 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp5 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp6 | Configurable Binary Input | 1..n, Assignment List | $\therefore-$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp6 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp7 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Latched Config Bin Inp7 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp8 | Configurable Binary Input | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp8 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp9 | Configurable Binary Input | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp9 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp10 | Configurable Binary Input | 1..n, Assignment List | --' | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp10 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp11 | Configurable Binary Input | 1..n, Assignment List | -- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp11 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Config Bin Inp12 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp12 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp13 | Configurable Binary Input | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp13 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp14 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp14 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp15 | Configurable Binary Input | 1..n, Assignment List | $\therefore-$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp15 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp16 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Latched Config Bin Inp16 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp17 | Configurable Binary Input | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp17 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp18 | Configurable Binary Input | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp18 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp19 | Configurable Binary Input | 1..n, Assignment List | --' | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp19 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp20 | Configurable Binary Input | 1..n, Assignment List | -- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp20 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Config Bin Inp21 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp21 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp22 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp22 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp23 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp23 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp24 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp24 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp25 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Latched Config Bin Inp25 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp26 | Configurable Binary Input | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp26 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp27 | Configurable Binary Input | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp27 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp28 | Configurable Binary Input | 1..n, Assignment List | --' | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp28 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp29 | Configurable Binary Input | 1..n, Assignment List | -- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp29 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Config Bin Inp30 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp30 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp31 | Configurable Binary Input | 1..n, Assignment List | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp31 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp32 | Configurable Binary Input | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Latched Config Bin Inp32 | Latched Configurable Binary Input | inactive, active | inactive | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Mapped Meas 1 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | $\because-$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 2 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 3 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | $\because-$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Mapped Meas 4 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 5 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | -- | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 6 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | -- | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 7 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | -- | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 8 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 9 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | $\because-$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 10 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | -- | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 11 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | $\because-$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 12 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | 1..n, TrendRecList | $\because-$ | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mapped Meas 13 | Mapped Measured Values. They can be used to <br> provide measured values to the Modbus Master. | 1..n, TrendRecList | -.- | [Device Para <br> /Modbus <br> /Configb Registers <br> /Measured Values] |
| Mapped Meas 14 | Mapped Measured Values. They can be used to <br> provide measured values to the Modbus Master. | 1..n, TrendRecList | .-- | [Device Para <br> /Modbus |
| /Configb Registers |  |  |  |  |
| /Measured Values] |  |  |  |  |$|$| [Device Para |
| :--- |
| Mapped Meas 15 |
| Mapped Measured Values. They can be used to |
| provide measured values to the Modbus Master. |

## States of the Module Inputs of the MODBUS ${ }^{\circledR}$ Protocol

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| Config Bin Inp1-I | State of the module input: Config Bin Inp | [Device Para |
| IModbus |  |  |
| IConfigb Registers |  |  |
| IStates] |  |  |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Config Bin Inp5-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp6-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp7-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp8-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp9-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp10-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp11-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp12-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp13-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Config Bin Inp14-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp15-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp16-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp17-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp18-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp19-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp20-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp21-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp22-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Config Bin Inp23-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp24-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp25-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp26-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp27-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp28-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp29-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp30-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |
| Config Bin Inp31-I | State of the module input: Config Bin Inp | [Device Para <br> /Modbus <br> /Configb Registers <br> /States] |


| Name | Description | Assignment via |
| :--- | :--- | :--- |
| Config Bin Inp32-I | State of the module input: Config Bin Inp | [Device Para |
|  |  | Modbus |
|  |  | IConfigb Registers |
|  |  | States] |

## Values of the MODBUS ${ }^{\circledR}$ Protocol

| Value | Description | Menu path |
| :---: | :---: | :---: |
| Mapped Meas 1 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |
| Mapped Meas 2 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData Modbus] |
| Mapped Meas 3 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData /Modbus] |
| Mapped Meas 4 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |
| Mapped Meas 5 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData /Modbus] |
| Mapped Meas 6 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |
| Mapped Meas 7 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |
| Mapped Meas 8 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData /Modbus] |
| Mapped Meas 9 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData /Modbus] |


| Value | Description | Menu path |
| :---: | :---: | :---: |
| Mapped Meas 10 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |
| Mapped Meas 11 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |
| Mapped Meas 12 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |
| Mapped Meas 13 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |
| Mapped Meas 14 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |
| Mapped Meas 15 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |
| Mapped Meas 16 | Mapped Measured Values. They can be used to provide measured values to the Modbus Master. | [Operation <br> /Count and RevData <br> /Modbus] |

## Counters of the MODBUS ${ }^{\circledR}$ Protocol

| Parameter | Description |
| :---: | :---: |
| Device Type | Device Type: Device type code for relationship between devcie name and its Modbus code: Woodward: <br> MRI4-1000 <br> MRU4-1001 <br> MRA4-1002 <br> MCA4-1003 <br> MRDT4-1005 <br> MCDTV4-1006 <br> MCDGV4-1007 <br> MRM4-1009 <br> MRMV4-1010 |
| Comm Version | Modbus Communication version. This version number changes if something becomes incompatible between different Modbus releases. |

## Modbus ${ }^{\circledR}$ Signals (Output States)

NOT/CE $\quad \begin{aligned} & \text { Some signals (that are for a short time active only) have to be acknowledged } \\ & \text { separately (e.g. Trip signals) by the Communication System. }\end{aligned}$

| Signal | Description |
| :--- | :--- |
| Transmission | Signal: SCADA active |
| Scada Cmd 1 | Scada Command |
| Scada Cmd 2 | Scada Command |
| Scada Cmd 3 | Scada Command |
| Scada Cmd 4 | Scada Command |
| Scada Cmd 5 | Scada Command |
| Scada Cmd 6 | Scada Command |
| Scada Cmd 7 | Scada Command |
| Scada Cmd 8 | Scada Command |
| Scada Cmd 9 | Scada Command |
| Scada Cmd 10 | Scada Command |
| Scada Cmd 11 | Scada Command |
| Scada Cmd 12 | Scada Command |
| Scada Cmd 13 | Scada Command |
| Scada Cmd 14 | Scada Command |
| Scada Cmd 15 | Scada Command |
| Scada Cmd 16 | Scada Command |

## Modbus ${ }^{\circledR}$ Values

| Value | Description | Default | Size | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| NoOfRequestsTotal | Total number of requests. Includes requests for <br> other slaves. | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /Modbus] |
| NoOfRequestsForMe | Total Number of requests for this slave. | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /Modbus] |
| NoOfResponse | Total number of requests having been responded. | 0 | $0-9999999999$ | [Operation <br> /Count and RevData |
| NoOfResponsTimeO | Total number of requests with exceeded response <br> time. Physically corrupted Frame. |  |  |  |
| verruns | 0 | $0-9999999999$ | [Operation <br> /Count and RevData |  |
| /Modbus] |  |  |  |  |

## Profibus

## Profibus

Part 1: Configuration of the Devices
Call up »Device parameter/Profibus« and set the following communication parameter:

Slave-address, to allow clear identification of the device.

In addition to that the Master has to be provided with the GSD-file. The GSD-file can be taken from the Product-CD.

## Part 2: Hardware Connection

For hardware connection to the control system, there is optional an D-SUB interface at the rear side of the device.

- Connect bus and device (wiring).
- Up to 123 slaves can be connected.
- Terminate the Bus by means of an Terminate Resistor.


## Error Handling

Information on physical communication errors, such as:

Baudrate Error
can be obtained from the event recorder or the status display.

## Error Handling - Status LED at the rear side

The Profibus D-SUB interface at the rear side of the device is equipped with an status LED.

- Baud Search -> red flashing
- Baud Found -> green flashing
- Data Exchange -> green
- No Profibus/Unplugged, not connected -> red


## Direct Commands of the Profibus

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Reset Comds | All Profibus Commands will be reset. | inactive, | inactive | [Operation |
| active |  |  | Reset] |  |

## Global Protection Parameters of the Profibus

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 1 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Latched 1 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Assignment 2 | Assignment | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Latched 2 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Assignment 3 | Assignment | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Latched 3 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Assignment 4 | Assignment | 1..n, Assignment List | $\because-$ | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Latched 4 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 1-16] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 5 | Assignment | 1..n, Assignment List | $\because-$ | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Latched 5 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 6 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Latched 6 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 7 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Latched 7 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 8 | Assignment | 1..n, Assignment List | -- | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Latched 8 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Assignment 9 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Latched 9 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 10 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Profibus <br> /Assignment 1-16] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Latched 10 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Assignment 11 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Latched 11 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, <br> active | inactive | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 12 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Latched 12 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Assignment 13 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Latched 13 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 14 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Latched 14 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Assignment 15 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Profibus <br> IAssignment 1-16] |
| Latched 15 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> IAssignment 1-16] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 16 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Latched 16 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 17 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 17 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 18 | Assignment | 1..n, Assignment List | $\because \cdot$ | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 18 | Defines whether the Input is latched. Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 19 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 19 | Defines whether the Input is latched. Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 20 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 20 | Defines whether the Input is latched. Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 21 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Profibus <br> /Assignment 17-32] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Latched 21 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 22 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 22 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, <br> active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 23 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 23 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 24 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 24 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 25 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 25 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 26 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 26 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Assignment 27 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 27 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 28 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 28 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 29 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 29 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 30 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 30 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 31 | Assignment | 1..n, Assignment List | -.- | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Latched 31 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 32 | Assignment | 1..n, Assignment List | --- | [Device Para <br> /Profibus <br> /Assignment 17-32] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Latched 32 | Defines whether the Input is latched. <br> Only available if: Latched = active | inactive, active | inactive | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Slave ID | Device address (Slave ID) within the bus system. Each device address has to be unique within a bus system. | 2-125 | 2 | [Device Para <br> /Profibus <br> /Bus parameters] |

## Inputs of the Profibus

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Assignment 1-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 2-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 3-1 | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 4-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 5-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 6-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 7-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 8-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 9-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Assignment 10-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 11-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 12-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 13-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 14-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 15-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 16-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 1-16] |
| Assignment 17-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 18-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 19-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 20-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 21-\| | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 17-32] |
| Assignment 22-I | Module input state: Scada Assignment | [Device Para <br> /Profibus <br> /Assignment 17-32] |

\(\left.\begin{array}{|l|l|l|}\hline Name \& Description \& Assignment via <br>
\hline Assignment 23-I \& Module input state: Scada Assignment \& [Device Para <br>

/Profibus\end{array}\right]\)| IAssignment 17-32] |
| :--- |
| Assignment 24-I |
|  | Module input state: Scada Assignment | [Device Para |
| :--- |
| /Profibus |
| Assignment 25-I |
|  |

## Profibus Signals (Output States)

| Signal | Description |
| :--- | :--- |
| Data OK | Data within the Input field are OK (Yes=1) |
| SubModul Err | Assignable Signal, Failure in Sub-Module, Communication Failure. |
| Connection active | Connection active |
| Scada Cmd 1 | Scada Command |
| Scada Cmd 2 | Scada Command |
| Scada Cmd 3 | Scada Command |
| Scada Cmd 4 | Scada Command |
| Scada Cmd 5 | Scada Command |
| Scada Cmd 6 | Scada Command |
| Scada Cmd 7 | Scada Command |
| Scada Cmd 8 | Scada Command |
| Scada Cmd 9 | Scada Command |
| Scada Cmd 10 | Scada Command |
| Scada Cmd 11 | Scada Command |
| Scada Cmd 12 | Scada Command |
| Scada Cmd 13 | Scada Command |
| Scada Cmd 14 | Scada Command |
| Scada Cmd 15 | Scada Command |
| Scada Cmd 16 | Scada Command |

## Profibus Values

| Value | Description | Default | Size | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Fr Sync Err | Frames, that were sent from the Master to the <br> Slave are faulty. | 1 | $1-99999999$ | [Operation <br> /Count and RevData <br> /Profibus] |
| crcErrors | Number of CRC errors that the ss manager has <br> recognized in received response frames from ss <br> (each error caused a subsystem reset) | 1 | $1-99999999$ | [Operation <br> /Count and RevData <br> /Profibus] |
| frLossErrors | Number of frame loss errors that the ss manager <br> recognized in received response frames from ss <br> (each error caused a subsystem reset) | 1 | $1-99999999$ | [Operation <br> /Count and RevData <br> /Profibus] |
| ssCrcErrors | Number of CRC errors that the subsystem has <br> recognized in received trigger frames from host | 1 | $1-99999999$ | [Operation <br> /Count and RevData <br> /Profibus] |
| ssResets | Number of subsystem resets/restarts from ss <br> manager | 1 | $0-9999999999$ |  | | [Operation |
| :--- |
| IStatus Display |


| Value | Description | Default | Size | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Slave State | Communication State between Slave and Master. | Baud Search | Baud Search, Baud Found, PRM OK, PRM REQ, PRM Fault, CFG Fault, Clear Data, Data exchange | [Operation <br> /Status Display <br> /Profibus <br> /State] |
| Baud rate | The baud rate that has been detected lastly, will still be shown after a connection issue. | -- | $12 \mathrm{Mb} / \mathrm{s}$, <br> $6 \mathrm{Mb} / \mathrm{s}$, <br> $3 \mathrm{Mb} / \mathrm{s}$, <br> 1.5 Mb/s, <br> $0.5 \mathrm{Mb} / \mathrm{s}$, <br> 187500 baud, <br> 93750 baud, <br> 45450 baud, <br> 19200 baud, <br> 9600 baud, | [Operation <br> /Status Display <br> /Profibus <br> /State] |
| PNO Id | PNO Identification Number. GSD Identification Number. | 0C50h | 0C50h | [Operation <br> /Status Display <br> /Profibus <br> /State] |

IEC60870-5-103
IEC 103

## IEC60870-5-103 Protocol Configuration

In order to use the IEC60870-5-103 protocol it has to be assigned to the X103 Interface within the Device Planning. The device will reboot after setting this parameter.

## NOT C E The parameter X103 is only available if the device is at the rear side equipped with an interface like RS485 or Fiber Optic.

## NOT/CE If the device is equipped with an Fiber Optic Interface, the Optical Rest Position has to be set within the Device Parameters .

The time-controlled IEC60870-5-103 protocol is based on the Master-Slave working principle. This means that the substation control and protection system sends an enquiry or instruction to a certain device (slave address) which will then be answered or carried out accordingly.
The device meets the compatibility mode 2 . Compatibility mode 3 is not supported.
The following IEC60870-5-103-functions will be supported:

- Initialization (Reset)
- Time Synchronization

■ Reading out of time stamped, instantaneous signals

- General Queries
- Cyclic Signals
- General Commands
- Transmission of Disturbance Data


## Initialization

The communication has to be reset by a Reset Command each time that the device is turned on or that communication parameters have been changed. The "Reset CU" Command resets. The relay acts on both Reset Commands (Reset CU or Reset FCB).

The relay acts on the reset command by an identification signal ASDU 5 (Application Service Data Unit), as a reason (Cause Of Transmission, COT) for the transmission of the answer either a "Reset CU" or a "Reset FCB" will be sent depending on the type of the reset command. This information can be part of the data section of the ASDUsignal.

## Name of the Manufacturer

The section for the identification of the software contains three digits of the device code for the identification of the device type. Beside the upper mentioned identification number the device generates a communication start event.

## Time Synchronization

Time and date of the relay can be set by means of the time synchronization function of the IEC60870-5-103 protocol. If the time synchronization signal is send out with a confirmation request, the device will answer with a confirmation signal.

## Spontaneous Events

The events that are generated by the device will be forwarded to the master with numbers for standard function types / standard information. The data point list comprises all events that can be generated by the device.

## Cyclic Measurement

The device generates on a cyclic base measured values by means of ASDU 9. They can be read out via a class 2 query. Please take into account that the measured values will be send out as multiples ( 1.2 or 2.4 times the rated value). How to set 1.2 or 2.4 as multiplier for a value can be taken from the data point list.

The parameter "Transm priv meas val" defines if additional measurement values should be transmitted in the private part. Public and private measured values are transmitted by ASDU9. That means that either a "private" or a "public" ASDU9 will be transmitted. If this parameter is set, the ASDU9 will contain additional measured values that are an enhancement of the standard. The "private" ASDU9 is send with a fixed function type and information number that does not depend the type of device. Please refer to the data point list.

## Commands

The data point list comprises a list of the supported commands. Any command will be responded by the device with a positive or negative confirmation. If the command is executable, the execution with the corresponding reason for the transmission (COT) will be lead in at first, and subsequently the execution will be confirmed with COT1 within a ASDU9.

## Disturbance Recording

The disturbances recorded by the device can be read out by means described in standard IEC60870-5-103. The device is in compliance with the VDEW-Control System by transmission of an ASDU 23 without disturbance records at the beginning of an Gl-Cycle.

A disturbance record contains the following information:

- Analog Measured Values, IL1, IL2, IL3, IN, Voltages VL1, VL2, VL3, VEN;
- Binary States, transmitted as marks, e.g. Alarms and Trips.
- The Transmission ratio will not be supported. The transmission ratio is included in the "Multiplier".


## Blocking the Transmission Direction

The relay does not support functions to block the transmission in a certain direction (supervision direction).

Global Protection Parameters of the IEC60870-5-103

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Slave ID | Device address (Slave ID) within the bus system. Each device address has to be unique within a bus system. | 1-247 | 1 | [Device Para /IEC 103] |
| t-call | If there is no request telegram sent from Scada to the device after expiry of this time - the device concludes a communication failure within the Scada system. | 1-3600s | 60s | [Device Para /IEC 103] |
| Transm priv meas val | Transmit additional (private) measuring values | inactive, active | inactive | [Device Para /IEC 103] |
| Transfer Disturb Rec | Activates the transmission of disturbance records | inactive, active | inactive | [Device Para [IEC 103] |
| Baud rate | Baud rate | $\begin{aligned} & 1200, \\ & 2400, \\ & 4800, \\ & 9600, \\ & 19200, \\ & 38400, \\ & 57600 \end{aligned}$ | 19200 | [Device Para /IEC 103] |
| Physical Settings | Digit 1: Number of bits. Digit 2: E=even parity, O=odd parity, $\mathrm{N}=$ no parity. Digit 3: Number of stop bits. More information on the parity: It is possible that the last data bit is followed by a parity bit which is used for recognition of communication errors. The parity bit ensures that with even parity ("EVEN") always an even number of bits with valence "1" or with odd parity ("ODD") an odd number of "1" valence bits are transmitted. But it is also possible to transmit no parity bits (here the setting is "Parity = None"). More information on the stop-bits: The end of a data byte is terminated by the stop-bits. | $\begin{aligned} & 8 \mathrm{E} 1, \\ & 8 \mathrm{O} 1, \\ & 8 \mathrm{~N} 1, \\ & 8 \mathrm{~N} 2 \end{aligned}$ | 8 E 1 | [Device Para /IEC 103] |
| Optical rest position | Optical rest position | Light off, <br> Light on | Light on | [Device Para /IEC 103] |

## IEC60870-5-103 Signals (Output States)

| Signal | Description |
| :--- | :--- |
| Scada Cmd 1 | Scada Command |
| Scada Cmd 2 | Scada Command |
| Scada Cmd 3 | Scada Command |
| Scada Cmd 4 | Scada Command |
| Scada Cmd 5 | Scada Command |
| Scada Cmd 6 | Scada Command |
| Scada Cmd 7 | Scada Command |
| Scada Cmd 8 | Scada Command |
| Scada Cmd 9 | Scada Command |
| Scada Cmd 10 | Scada Command |
| Transmission | Signal: SCADA active |
| Failure Event lost | Failure event lost |

## IEC60870-5-103 Values

| Value | Description | Default | Size | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| NReceived | Total Number of received Messages | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC 103] |
| NSent | Total Number of sent Messages | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC 103] |
| NBadFramings | Number of bad Messages | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC 103] |
| NBadParities | Number of Parity Errors | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC 103] |
| NBreakSignals | Number of Communication Interrupts | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC 103] |
| NinternalError | Number of Internal Errors | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC 103] |
| NBadCharChecksum | Number of Checksum Errors | 0 | 0-99999999999 | [Operation <br> /Count and RevData /IEC 103] |

## IEC61850

## IEC61850

## Introduction

To understand the functioning and mode of operation of a substation in an IEC61850 automation environment, it is useful to compare the commissioning steps with those of a conventional substation in a Modbus TCP environment.

In a conventional substation the individual IEDs (Intelligent Electronic Devices) communicate in vertically direction with the higher level control center via SCADA. The horizontal communication is exclusively realized by wiring output relays (OR) and digital inputs (DI) among each other.

In an IEC61850 environment communication between the IEDs takes place digitally (via Ethernet) by a service called GOOSE (Generic Object Oriented Substation Event). By means of this service information about events is submitted between each IED. Therefore each IED has to know about the functional capability of all other connected IEDs.

Each IEC61850 capable device includes a description of it's own functionality and communications skills (IED Capability Description, *.ICD).
By means of a Substation Configuration Tool to describe the structure of the substation, assignment of the devices to the primary technique, etc. a virtual wiring of the IEDs among each other and with other switch gear of the substation can be done. A description of the substation configuration will be generated in form of a *.SCD file. At last this file has to be submitted to each device. Now the IEDs are able to communicate closed among each other, react to interlockings and operate switch gear.


## Commissioning steps for a conventional substation with

 modbus TCP environment:- Parameter setting of the IEDs
- Ethernet installation
- TCP/IP settings for the IEDs
- Wiring according to wiring scheme

Commissioning steps for a substation with IEC61850 environment:

1. Parameter setting of the IEDs

Ethernet installation
TCP/IP settings for the IEDs
2. IEC61850 configuration (software wiring)
a) Exporting an ICD file from each device
b) Configuration of the substation (generating a SCD file)
c) Transmit SCD file to each device

## Generation/Export of a device specific ICD file

Please refer to chapter "IEC61850" of the Smart view Manual.

## Generation/Export of a SCD file

Please refer to chapter "IEC61850" of the Smart view Manual.

## Substation configuration, <br> Generation of .SCD file (Station Configuration Description)

The substation configuration, i. e. connection of all logical nodes of protection and control devices, as well as switch gear usually is done with a "Substation Configuration Tool". Therefore the ICD files of all connected IEDs in the IEC61850 environment have to be available. The result of the station wide "software wiring" can be exported in the form of a SCD file (Station Configuration Description).

Suitable Substation Configuration Tools (SCT) are available by the following Companies:
H\&S, Hard- \& Software Technologie GmbH \& Co. KG, Dortmund (Germany) (www.hstech.de).
Applied Systems Engineering Inc. (www.ase-systems.com)
Kalki Communication Technologies Limited (www.kalkitech.com)

## Import of the .SCD file into the device

Please refer to chapter "IEC61850" of the Smart view Manual.

## IEC 61850 Virtual Outputs

Additionally to the standardized logical node status information up to 32 free configurable status information can be assigned to 32 Virtual Outputs. This can be done in the menu [Device Para/IEC61850].

## Direct Commands of the IEC 61850

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| ResetStatistic | Reset of all IEC61850 diagnostic counters | inactive, | inactive | [Operation |
| active |  |  | Reset] |  |

Global Parameters of the IEC 61850

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Function | Permanent activation or deactivation of module/stage. | inactive, <br> active | inactive | [Device Para <br> /IEC61850] |
| Deadb integr time | Deadband integration time. | $0-300$ | 0 | [Device Para <br> IEC61850] |

Global Parameters of the IEC 61850

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| VirtualOutput1 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | --- | [Device Para /IEC61850] |
| VirtualOutput2 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para /IEC61850] |
| VirtualOutput3 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | $\because-$ | [Device Para \|/IEC61850] |
| VirtualOutput4 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para \|/IEC61850] |
| VirtualOutput5 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -- | [Device Para /IEC61850] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| VirtualOutput6 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | --- | [Device Para /IEC61850] |
| VirtualOutput7 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para /IEC61850] |
| VirtualOutput8 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | --- | [Device Para /IEC61850] |
| VirtualOutput9 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para \|/IEC61850] |
| VirtualOutput10 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | $\because \cdot$ | [Device Para /IEC61850] |
| VirtualOutput11 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -- | [Device Para /IEC61850] |
| VirtualOutput12 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para /IEC61850] |
| VirtualOutput13 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para /IEC61850] |
| VirtualOutput14 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -- | [Device Para /IEC61850] |
| VirtualOutput15 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | $\because-$ | [Device Para /IEC61850] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| VirtualOutput16 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | --- | [Device Para /IEC61850] |
| VirtualOutput17 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para /IEC61850] |
| VirtualOutput18 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | --- | [Device Para /IEC61850] |
| VirtualOutput19 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para \|/IEC61850] |
| VirtualOutput20 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | $\because \cdot$ | [Device Para /IEC61850] |
| VirtualOutput21 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -- | [Device Para /IEC61850] |
| VirtualOutput22 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para /IEC61850] |
| VirtualOutput23 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para /IEC61850] |
| VirtualOutput24 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -- | [Device Para /IEC61850] |
| VirtualOutput25 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | $\because-$ | [Device Para /IEC61850] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| VirtualOutput26 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para /IEC61850] |
| VirtualOutput27 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | $\because \cdot$ | [Device Para /IEC61850] |
| VirtualOutput28 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | --- | [Device Para /IEC61850] |
| VirtualOutput29 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | --- | [Device Para \|/IEC61850] |
| VirtualOutput30 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -- | [Device Para /IEC61850] |
| VirtualOutput31 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | $\because-$ | [Device Para /IEC61850] |
| VirtualOutput32 | Virtual Output. This signal can be assigned or visualized via the SCD file to other devices within the IEC61850 substation. | 1..n, Assignment List | -.- | [Device Para /IEC61850] |

## States of the Inputs of the IEC 61850

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| VirtOut1-I | Module input state: Binary state of the Virtual Output (GGIO) | [Device Para |
| IEC61850] |  |  |


| Name | Description | Assignment via |
| :--- | :--- | :--- |
| VirtOut19-I | Module input state: Binary state of the Virtual Output (GGIO) | [Device Para |
| IEC61850] |  |  |, | [Device Para |
| :--- |
| IEC61850] |, | Module input state: Binary state of the Virtual Output (GGIO) |
| :--- |
| VirtOut20-I |
| Module input state: Binary state of the Virtual Output (GGIO) |
| VirtOut21-I |
| Module input state: Binary state of the Virtual Output (GGIO) |
| VirtOut23-I |
|  |
|  |

## IEC 61850 Module Signals (Output States)

| Signal | Description |
| :---: | :---: |
| MMS Client connected | At least one MMS client is connected to the device |
| All Goose Subscriber active | All Goose subscriber in the device are working |
| Virtlnp1 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp2 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp3 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp4 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp5 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp6 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp7 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| VirtInp8 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp9 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp10 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp11 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp12 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp13 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp14 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp15 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp16 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp17 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp18 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp19 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp20 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp21 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp22 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp23 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp24 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp25 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp26 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp27 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp28 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp29 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp30 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp31 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Virtlnp32 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| Quality of GGIO In1 | Self-Supervision of the GGIO Input |
| Quality of GGIO In2 | Self-Supervision of the GGIO Input |
| Quality of GGIO In3 | Self-Supervision of the GGIO Input |
| Quality of GGIO In4 | Self-Supervision of the GGIO Input |


| Signal | Description |
| :---: | :---: |
| Quality of GGIO In5 | Self-Supervision of the GGIO Input |
| Quality of GGIO In6 | Self-Supervision of the GGIO Input |
| Quality of GGIO In7 | Self-Supervision of the GGIO Input |
| Quality of GGIO In8 | Self-Supervision of the GGIO Input |
| Quality of GGIO In9 | Self-Supervision of the GGIO Input |
| Quality of GGIO In10 | Self-Supervision of the GGIO Input |
| Quality of GGIO In11 | Self-Supervision of the GGIO Input |
| Quality of GGIO In12 | Self-Supervision of the GGIO Input |
| Quality of GGIO In13 | Self-Supervision of the GGIO Input |
| Quality of GGIO In14 | Self-Supervision of the GGIO Input |
| Quality of GGIO In15 | Self-Supervision of the GGIO Input |
| Quality of GGIO In16 | Self-Supervision of the GGIO Input |
| Quality of GGIO In17 | Self-Supervision of the GGIO Input |
| Quality of GGIO In18 | Self-Supervision of the GGIO Input |
| Quality of GGIO In19 | Self-Supervision of the GGIO Input |
| Quality of GGIO In20 | Self-Supervision of the GGIO Input |
| Quality of GGIO In21 | Self-Supervision of the GGIO Input |
| Quality of GGIO In22 | Self-Supervision of the GGIO Input |
| Quality of GGIO In23 | Self-Supervision of the GGIO Input |
| Quality of GGIO In24 | Self-Supervision of the GGIO Input |
| Quality of GGIO In25 | Self-Supervision of the GGIO Input |
| Quality of GGIO In26 | Self-Supervision of the GGIO Input |
| Quality of GGIO In27 | Self-Supervision of the GGIO Input |
| Quality of GGIO In28 | Self-Supervision of the GGIO Input |
| Quality of GGIO In29 | Self-Supervision of the GGIO Input |
| Quality of GGIO In30 | Self-Supervision of the GGIO Input |
| Quality of GGIO In31 | Self-Supervision of the GGIO Input |
| Quality of GGIO In32 | Self-Supervision of the GGIO Input |
| SPCSO1 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO2 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO3 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO4 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO5 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO6 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO7 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO8 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO9 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCS010 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO11 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO12 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |


| Signal | Description |
| :--- | :--- |
| SPCSO13 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO14 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO15 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO16 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO17 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO18 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO19 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO20 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO21 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO22 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO23 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO24 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO25 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO26 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO27 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO28 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO29 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO30 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO31 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| SPCSO32 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |

## IEC 61850 Module Values

| Value | Description | Default | Size | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| NoOfGooseRxAll | Total number of received GOOSE messages <br> including messages for other devices (subscribed <br> and not subscribed messages). | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /IEC61850] |
| NoOfGooseRxSubscr <br> ibed | Total Number of subscribed GOOSE messages <br> including messages with incorrect content. | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /IEC61850] |
| NoOfGooseRxCorrec <br> t | Total Number of subscribed and correctly <br> received GOOSE messages. | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /IEC61850] |
| NoOfGooseRxNew | Number of subscribed and correctly received <br> GOOSE messages with new content. | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /IEC61850] |


| Value | Description | Default | Size | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| NoOfGooseTxAll | Total Number of GOOSE messages that have been published by this device. | 0 | 0-9999999999 | [Operation <br> /Count and RevData \|IEC61850] |
| NoOfGooseTxNew | Total Number of new GOOSE messages (modified content) that have been published by this device. | 0 | 0-99999999999 | [Operation <br> /Count and RevData /IEC61850] |
| NoOfServerRequests All | Total number of MMS Server requests including incorrect requests. | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC61850] |
| NoOfDataReadAll | Total Number of values read from this device including incorrect requests. | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC61850] |
| NoOfDataReadCorre ct | Total Number of correctly read values from this device. | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC61850] |
| NoOfDataWrittenAll | Total Number of values written by this device including incorrect ones. | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC61850] |
| NoOfDataWrittenCorr ect | Total Number of correctly written values by this device. | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC61850] |
| NoOfDataChangeNot ification | Number of detected changes within the datasets that are published with GOOSE messages. | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC61850] |
| No of Client Connections | Number of active MMS client connections | 0 | 0-9999999999 | [Operation <br> /Count and RevData /IEC61850] |

## Values of the IEC 61850

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Value } & \text { Description } & \text { Default } & \text { Size } & \text { Menu path } \\
\hline \text { GoosePublisherState } & \text { State of the GOOSE Publisher (on or off) } & \text { Off } & \begin{array}{l}\text { Off, } \\
\text { On, } \\
\text { Error }\end{array} & \begin{array}{l}\text { [Operation } \\
\text { /Status Display } \\
\text { IIEC61850 } \\
\text { /State] }\end{array} \\
\hline \begin{array}{l}\text { GooseSubscriberStat } \\
\text { e }\end{array} & \text { State of the GOOSE Subscriber (on or off) } & \text { Off } & \text { Off, } & \begin{array}{l}\text { [Operation } \\
\text { IStatus Display } \\
\text { On, } \\
\text { IIEC61850 }\end{array}
$$ <br>

/State]\end{array}\right]\)| [Operation |
| :--- | :--- | :--- | :--- |
| IStatus Display |

## DNP3

## DNP3

DNP (Distributed Network Protocol) is for data and information exchange between SCADA (Master) and IEDs (Intelligent Electronic Devices). The DNP protocol has been developed in first releases for serial communication. Due to further development of the DNP protocol, it offers now also TCP and UDP communication options via Ethernet.

## DNP Device Planning

Depending on the hardware of the proctective device up to three DNP communication options are available within the Device Planning.

Call up the device planning menu.

Select (depending on device code) the appropriate SCADA Protocol.

- DNP3 RTU (via serial Port)
- DNP3 TCP (via Ethernet)
- DNP3 UDP (via Ethernet)


## DNP Protocol General Settings

NOT/CE Please note that unsolicited reporting is not available for serial communication, if more than one slave is connected to the serial communication (collisions). Do not use in these cases unsolicited reporting for DNP RTU.

Unsolicited reporting is available also for serial communication, if each slave is connected via a separated connection to the Master-System. That means, the master is equipped with a separate serial interface for each slave (multi serial cards).

Call up menu [Device Para/DNP3/Communication].

The Communication (General Settings) Settings have to be set according to the needs of the SCADA (Master) System.

Self Addressing is available for DNP-TCP. That means that the Master and Slave id are auto-detected.

## Point Mapping

## NOT/CE Please take into account that the designations of inputs and outputs are set from the Masters perspective. This way of choosing the designations is due to a definition in the DNP standard. That means for example that Binary Inputs that can be set within the Device Parameters of the DNP protocol are the "Binary Inputs" of the Master.

Call up menu [Device Para/DNP3/Point Map]. Once the general settings of the DNP protocol are done, the point mapping is to be done as a next step.

- Binary Inputs (States to be send to the master)
- Double Bit Inputs (Breaker states to be send to the master)
- Counters (Counters to be send to the master)
- Analog Inputs (e.g. measured values to be send to the master). Please take into account that floating values have to be transmitted as integers. That means they have to be scaled (multiplied) with a scaling factor in order to bring them into the integer format.

Use Binary outputs in order to control e.g. LEDs or Relays within the protective device (via Logic).

## Point Mapping



Please try to avoid gaps that will slow down the performance of the DNP communication. That means do not leave unused inputs / outputs in between used inputs / outputs (e.g. Do not use Binary Output 1 and 3 when 2 is unused).

## Application Example Setting a Relay:

Binary Output signals of the DNP cannot directly be used in order to switch relays because the DNP Binary Outputs are pulse signals (by DNP definition, not steady state). Steady states can be created by means of Logic functions. The Logic Functions can be assigned onto the Relay Inputs.

Please note: You can use a Set/Reset element (Flip Flop) from Logics.

## Logics



## Direct Commands of the DNP

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Res all Diag Cr } & \text { Reset all diagnosis counters } & \begin{array}{l}\text { inactive, } \\
\text { active }\end{array} & \text { inactive } & \begin{array}{l}\text { [Operation } \\
\text { /Reset] }\end{array} \\
\hline \text { Slave Id } & \begin{array}{l}\text { Slaveld defines the DNP3 address of this device } \\
\text { (Outstation) }\end{array}
$$ \& 0-65519 \& 1 \& [Device Para <br>
/DNP3 <br>

/Communication]\end{array}\right]\)| [Device Para |  |  |  |
| :--- | :--- | :--- | :--- |
| Master Id | Masterld defines the DNP3 address of master <br> (SCADA) | $0-65519$ | 65500 |

## Global Protection Parameters of the DNP

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Device Para <br> /DNP3 <br> /Communication] |
| IP Port Number | Port Number of the IP address | 0-65535 | 20000 | [Device Para <br> /DNP3 <br> /Communication] |
| Baud rate | Baud rate for communication | $\begin{array}{\|l\|} \hline 1200, \\ 2400, \\ 4800, \\ 9600, \\ 19200, \\ 38400, \\ 57600, \\ 115200 \\ \hline \end{array}$ | 19200 | [Device Para <br> /DNP3 <br> /Communication] |
| Frame Layout | Frame Layout | 8E1, <br> 801, <br> 8N1, <br> 8N2 | 8E1 | [Device Para <br> /DNP3 <br> /Communication] |
| Optical rest position | Optical rest position | Light off, Light on | Light on | [Device Para <br> /DNP3 <br> /Communication] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| SelfAddress | Support of self (automatic) addresses | inactive, active | inactive | [Device Para <br> /DNP3 <br> /Communication] |
| DataLink confirm | Enables or disables the data layer confirmation (ack). | Never, <br> Always, <br> On_Large | Never | [Device Para <br> /DNP3 <br> /Communication] |
| t-DataLink confirm | Data layer confirmation timeout | 0.1-10.0s | 1 s | [Device Para <br> /DNP3 <br> /Communication] |
| DataLink num retries | Number of repetition of data link packet sending after failing | 0-255 | 3 | [Device Para <br> /DNP3 <br> /Communication] |
| Direction Bit | Enables Direction Bit functionality. The Direction Bit is 0 for SlaveStation and 1 for MasterStation | inactive, active | inactive | [Device Para /DNP3 <br> /Communication] |
| Max Frame Size | This value is used to limit the net Frame Size | 64-255 | 255 | [Device Para <br> /DNP3 <br> /Communication] |
| Test Link Period | This value specifies the time period when to send a Test Link-Frame | 0.0-120.0s | Os | [Device Para <br> /DNP3 <br> /Communication] |
| AppLink confirm | Determines if the device will request that the Application Layer response be confirmed or not | Never, <br> Always, <br> Event | Always | [Device Para <br> /DNP3 <br> /Communication] |
| t-AppLink confirm | Application layer response timeout | 0.1-10.0s | 5s | [Device Para /DNP3 <br> /Communication] |
| AppLink num retries | The number of times the device will retransmit an Application Layer fragment | 0-255 | 0 | [Device Para <br> /DNP3 <br> /Communication] |
| Unsol Reporting | Enables supports unsolicited reporting. This is only for Network connections available. For serial connection this setting is fix set to inactive | inactive, active | inactive | [Device Para <br> /DNP3 <br> /Communication] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Unsol Reporting Timeout | Set the amount of time that the outstation will wait for an Application Layer confirmation back from the master indicating that the master received the unsolicited response message. | 1.0-60.0s | 10s | [Device Para <br> /DNP3 <br> /Communication] |
| Unsol Reporting Retry | Set the number of retries that an outstation transmits in each unsolicited response series if it does not receive confirmation back from the master. | 0-255 | 2 | [Device Para <br> /DNP3 <br> /Communication] |
| TestSeqNo | Test if sequence number of request is incremented. If it is not correctly incremented the request will be ignored. It is recommended to have it inactive but some older DNP implementations need it activated. | inactive, active | inactive | [Device Para <br> /DNP3 <br> /Communication |
| TestSBO | It enables a stricter comparing of SBO and operate command. For older DNP versions it is recommanded to deactivated it. | inactive, active | active | [Device Para <br> /DNP3 <br> /Communication] |
| Timeout SBO | DNP Outputs can be controlled in a two stage procedure (SBO: Select Before Operate). These outputs are to be selected first by a select command. After this the bit is reserved for this operate request. When this timer is expired, the bit will be released. | 1.0-60.0s | 30s | [Device Para <br> /DNP3 <br> /Communication] |
| ColdRestart | Enables support for Cold Restart function. | inactive, active | inactive | [Device Para <br> /DNP3 <br> /Communication] |
| Deadb integr time | Deadband integration time. | 0-300 | 1 | [Device Para <br> /DNP3 <br> /Communication] |
| Binarylnput 0 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 1 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Binarylnput 2 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 3 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | $\because-$ | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 4 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | $\therefore-$ | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 5 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | --- | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 6 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 7 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 8 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 9 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 10 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Binarylnput 11 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 12 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | $\because$ | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 13 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 14 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para /DNP3 /Point map /Binary Inputs] |
| Binarylnput 15 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 16 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para /DNP3 /Point map /Binary Inputs] |
| Binarylnput 17 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 18 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 19 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Binarylnput 20 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 21 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | $\because$ | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 22 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 23 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para /DNP3 /Point map /Binary Inputs] |
| Binarylnput 24 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 25 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para /DNP3 /Point map /Binary Inputs] |
| Binarylnput 26 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 27 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 28 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Binarylnput 29 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 30 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | $\because$ | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 31 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 32 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para /DNP3 /Point map /Binary Inputs] |
| Binarylnput 33 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 34 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para /DNP3 /Point map /Binary Inputs] |
| Binarylnput 35 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 36 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 37 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Binarylnput 38 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 39 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | $\because$ | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 40 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 41 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para /DNP3 /Point map /Binary Inputs] |
| Binarylnput 42 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 43 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para /DNP3 /Point map /Binary Inputs] |
| Binarylnput 44 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 45 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 46 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Binarylnput 47 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 48 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | $\because$ | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 49 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 50 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para /DNP3 /Point map /Binary Inputs] |
| Binarylnput 51 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 52 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para /DNP3 /Point map /Binary Inputs] |
| Binarylnput 53 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 54 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 55 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Binarylnput 56 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | --' | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 57 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 58 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 59 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | $\because-$ | [Device Para IDNP3 /Point map /Binary Inputs] |
| Binarylnput 60 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 61 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 62 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput 63 | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| DoubleBitlnput 0 | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Double Bit Inputs] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| DoubleBitlnput 1 | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Double Bit Inputs] |
| DoubleBitlnput 2 | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | 1..n, Assignment List | $\because-$ | [Device Para <br> /DNP3 <br> /Point map <br> /Double Bit Inputs] |
| DoubleBitlnput 3 | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Double Bit Inputs] |
| DoubleBitlnput 4 | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | 1..n, Assignment List | --- | [Device Para /DNP3 <br> /Point map <br> /Double Bit Inputs] |
| DoubleBitlnput 5 | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /Double Bit Inputs] |
| BinaryCounter 0 | Counter can be used to report counter values to the DNP master. | 1..n, Assignment List | -.- | [Device Para /DNP3 <br> /Point map <br> /BinaryCounter] |
| BinaryCounter 1 | Counter can be used to report counter values to the DNP master. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /BinaryCounter] |
| BinaryCounter 2 | Counter can be used to report counter values to the DNP master. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /BinaryCounter] |
| BinaryCounter 3 | Counter can be used to report counter values to the DNP master. | 1..n, Assignment List | -.- | [Device Para <br> /DNP3 <br> /Point map <br> /BinaryCounter] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| BinaryCounter 4 | Counter can be used to report counter values to the DNP master. | 1..n, Assignment List | -. | [Device Para <br> /DNP3 <br> /Point map <br> /BinaryCounter] |
| BinaryCounter 5 | Counter can be used to report counter values to the DNP master. | 1..n, Assignment List | -- | [Device Para <br> /DNP3 <br> /Point map <br> /BinaryCounter] |
| BinaryCounter 6 | Counter can be used to report counter values to the DNP master. | 1..n, Assignment List | --- | [Device Para <br> /DNP3 <br> /Point map <br> /BinaryCounter] |
| BinaryCounter 7 | Counter can be used to report counter values to the DNP master. | 1..n, Assignment List | --- | [Device Para /DNP3 <br> /Point map <br> /BinaryCounter] |
| Analog value 0 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -.- | [Device Para /DNP3 <br> /Point map <br> /Analog Input] |
| Scale Factor 0 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para /DNP3 /Point map /Analog Input] |
| Dead Band 0 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> IAnalog Input] |
| Analog value 1 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | --- | [Device Para /DNP3 /Point map IAnalog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 1 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> IAnalog Input] |
| Dead Band 1 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> (Analog Input] |
| Analog value 2 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -.- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |
| Scale Factor 2 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 2 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 3 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 3 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> IAnalog Input] |
| Dead Band 3 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> (Analog Input] |
| Analog value 4 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -.- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |
| Scale Factor 4 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 4 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 5 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 5 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> IAnalog Input] |
| Dead Band 5 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> (Analog Input] |
| Analog value 6 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -.- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |
| Scale Factor 6 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 6 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 7 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 7 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> IAnalog Input] |
| Dead Band 7 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 8 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -.- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |
| Scale Factor 8 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 8 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 9 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 9 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> IAnalog Input] |
| Dead Band 9 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> (Analog Input] |
| Analog value 10 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -.- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |
| Scale Factor 10 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 10 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 11 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 11 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> IAnalog Input] |
| Dead Band 11 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> (Analog Input] |
| Analog value 12 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -.- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |
| Scale Factor 12 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 12 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 13 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 13 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 13 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 14 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Scale Factor 14 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 14 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 15 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 15 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> IAnalog Input] |
| Dead Band 15 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> (Analog Input] |
| Analog value 16 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -.- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |
| Scale Factor 16 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 16 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 17 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 17 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> IAnalog Input] |
| Dead Band 17 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> (Analog Input] |
| Analog value 18 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -.- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |
| Scale Factor 18 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 18 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 19 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 19 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 19 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 20 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Scale Factor 20 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 20 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 21 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 21 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 21 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 22 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Scale Factor 22 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 22 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 23 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 23 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 23 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 24 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Scale Factor 24 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 24 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 25 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 25 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 25 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 26 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Scale Factor 26 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 26 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 27 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 27 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 27 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 28 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Scale Factor 28 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 28 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 29 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 29 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 29 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 30 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | --- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Scale Factor 30 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 30 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Analog value 31 | Analog value can be used to report values to the master (DNP) | 1..n, TrendRecList | -- | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scale Factor 31 | The scale factor is used to convert the measured value in an integer format | 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000 | 1 | [Device Para <br> /DNP3 <br> /Point map <br> /Analog Input] |
| Dead Band 31 | If a change of measured value is greater than the deadband value it will be reported to the master. | 0.01-100.00\% | 1\% | [Device Para /DNP3 <br> /Point map <br> IAnalog Input] |

## Inputs of the DNP

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Binarylnput0-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput1-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput2-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput3-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput4-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Binarylnput5-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput6-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput7-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput8-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput9-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput10-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput11-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput12-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput13-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Binarylnput14-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput15-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput16-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput17-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput18-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput19-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput20-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput21-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput22-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Binarylnput23-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput24-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput25-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput26-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput27-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput28-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput29-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput30-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput31-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Binarylnput32-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput33-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput34-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput35-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput36-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput37-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput38-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput39-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput40-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Binarylnput41-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput42-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput43-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput44-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput45-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput46-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput47-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput48-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput49-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Binarylnput50-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput51-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput52-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput53-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput54-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput55-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput56-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput57-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput58-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Binarylnput59-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput60-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput61-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para <br> /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput62-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| Binarylnput63-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Binary Inputs] |
| DoubleBitlnput0-I | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | [Device Para <br> /DNP3 <br> /Point map <br> /Double Bit Inputs] |
| DoubleBitlnput1-I | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Double Bit Inputs] |
| DoubleBitlnput2-I | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Double Bit Inputs] |
| DoubleBitlnput3-I | Double Bit Digital Input (DNP). This corresponds to a double bit binary output of the protective device. | [Device Para /DNP3 <br> /Point map <br> /Double Bit Inputs] |


| Name | Description | Assignment via |
| :--- | :--- | :--- |
| DoubleBitlnput4-I | Double Bit Digital Input (DNP). This corresponds to a double bit <br> binary output of the protective device. | [Device Para |
|  | /DNP3 |  |
| DoubleBitlnput5-I | Double Bit Digital Input (DNP). This corresponds to a double bit <br> binary output of the protective device. | [Device Para |
|  |  | /Double Bit Inputs] |

## Options of the DNP

| Name | Description |
| :--- | :--- |
| .-- | No assignment |
| Prot.FaultNo | Disturbance No |
| Prot.No of grid faults | Number of grid faults: A grid fault, e.g. a short circuit, might cause several faults with trip and <br> autoreclosing, each fault being identified by an increased fault number. In this case, the grid fault number <br> remains the same. |
| SG[1].TripCmd Cr | Counter: Total number of trips of the switchgear (circuit breaker, load break switch...). Resettable with <br> Total or All. |
| SG[2].TripCmd Cr | Counter: Total number of trips of the switchgear (circuit breaker, load break switch...). Resettable with <br> Total or All. |
| Sys.Operating hours Cr | Operating hours counter of the protective device |

## Selectable Switchgears of the DNP

| Name | Description |
| :--- | :--- |
| -- | No assignment |
| SG[1].Pos | Signal: Circuit Breaker Position $(0=$ Indeterminate, $1=0 F F, 2=0 N, 3=$ Disturbed $)$ |
| SG[2].Pos | Signal: Circuit Breaker Position $(0=$ Indeterminate, $1=0 F F, 2=0 N, 3=$ Disturbed $)$ |

## DNP Signals (Output States)

## NOTICE

Some signals (that are for a short time active only) have to be acknowledged separately (e.g. Trip signals) by the Communication System.

| Signal | Description |
| :---: | :---: |
| busy | This message is set if the protocol is started. It will be reset if the protocol is shut down. |
| ready | The message will be set if the protocol is successfully started and ready for data exchange. |
| active | The communication with the Master (Scada) is active. |
| BinaryOutput0 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput1 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput2 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput3 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput4 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput5 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput6 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput7 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput8 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput9 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput10 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput11 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput12 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput13 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput14 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput15 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput16 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput17 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput18 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput19 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput20 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput21 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput22 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput23 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput24 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput25 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput26 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput27 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput28 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput29 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput30 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| BinaryOutput31 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |

DNP Values

| Value | Description | Default | Size | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| NReceived | Diagnostic counter: Number of received <br> characters | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /DNP3] |
| NSent | Diagnostic counter: Number of sent characters | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /DNP3] |
| NBadFramings | Diagnostic counter: Number of bad framings. A <br> large number indicates a disturbed serial <br> connection. | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /DNP3] |
| NBadParities | Diagnostic counter: Number of parity errrors. A <br> large number indicates a disturbed serial <br> connection. | 0 | $0-9999999999$ | [Operation <br> /Count and RevData <br> /DNP3] |
| NBreakSignals | Diagnostic counter: Number of break signals. A <br> large number indicates a disturbed serial <br> connection. | 0 | $0-9999999999$ | [Operation <br> /Count and RevData |
| /DNP3] |  |  |  |  |

## Time Synchronisation

## TimeZones

The user has the possibility to synchronise the device with a central time generator. This offers the following advantages:

- The time does not drift off from the reference time. A continuously accumulating deviation from the reference time thereby will be balanced. Also refer to the chapter Specifications (Tolerances Real Time Clock).
- All time synchronised devices operate with the same time. Thus logged events of the individual devices can be compared exactly and be evaluated in conjunction (single events of the event recorder, disturbance records).

The device's time can be synchronised via the following protocols:

- IRIG-B
- SNTP
- Communications-Protocol Modbus (RTU or TCP)
- Communications-Protocol IEC60870-5-103

The provided protocols use different hardware interfaces and differ also in their achieved time accuracy. Further information can be found in the chapter Specifications.

| Used Protocol | Hardware-Interface | Recommended Application |
| :--- | :---: | :---: |
| Without time <br> synchronisation | --- | Not recommended |
| IRIG-B | IRIG-B Terminal | Recommended, if interface available |
| SNTP | RJ45 (Ethernet) <br> Fibre Optic | Recommended alternative to IRIG-B, especially when using <br> IEC 61850 or Modbus TCP |
| Modbus RTU | RJ45 (Ethernet) | Limited recommendation when Modbus TCP communication <br> protocol is used and no IRIG-B code generator or SNTP-Server is <br> available |
| Modbus TCP | RS485, D-SUB or |  |
| Fibre Optic |  |  |$\quad$| Recommended when using IEC 10870-5-103 communication |
| ---: |
| protocol and no IRIG-B code generator is available |

## Accuracy of Time Synchronisation

The accuracy of the device's synchronised system time depends on several factors:
$\square$ accuracy of the connected time generator

- used synchronisation protocol

■ when using Modbus TCP or SNTP: Network load and data package transmission times

## NOT/CE Please consider the accuracy of the used time generator. Fluctuations of the time generator's time will cause the same fluctuations of the protection relay's system time.

## Selection of Timezone and Synchronisation Protocol

The protection relay masters both UTC and local time. This means that the device can be synchronised with UTC time while using local time for user display.

## Time Synchronisation with UTC time (recommended):

Time synchronisation is usually done using UTC time. This means for example that an IRIG-B time generator is sending UTC time information to the protection relay. This is the recommended use case, since here a continuous time synchronisation can be ensured. There are no "leaps in time" through change of summer- and wintertime.

To achieve that the device shows the current local time, the timezone and the change between summer- and wintertime can be configured.

Please carry out the following parameterization steps under [Device Para/ Time]:

1. Select your local timezone in the timezone menu.
2.There also configure the switching of daylight saving time.
3.Select the used time synchronisation protocol in the TimeSync menu (e.g. "IRIG-B").
4.Set the parameters of the synchronisation protocol (refer to the according chapter).

Time Synchronisation with local time:
Should the time synchronisation however be done using local time, then please leave the timezone to » UTC +0 London« and do not use switching of daylight saving time.

## NOT/CE The synchronisation of the relay's system time is exclusively done by the synchronisation protocol selected in the menu [Device Para/ Time/ TimeSync/ Used Protocol].

## Without Time Synchronisation:

To achieve that the device shows the current local time, the timezone and the change between summer- and wintertime can be configured.

Please carry out the following parameterization steps under [Device Para/ Time]:

1. Select your local timezone in the timezone menu.
2. There also configure the switching of daylight saving time.
3. Select »manual« as your used protocol in the TimeSync menu.
4. Set date and time.

Global Protection Parameters of the Time Synchronization

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| DST offset | Difference to wintertime | -180-180min | 60min | [Device Para <br> /Time <br> /Timezone] |
| DST manual | Manual setting of the Daylight Saving Time | inactive, active | active | [Device Para <br> /Time <br> /Timezone] |
| Summertime | Daylight Saving Time <br> Only available if: DST manual = active | inactive, active | inactive | [Device Para <br> /Time <br> /Timezone] |
| Summertime m | Month of clock change summertime <br> Only available if: DST manual = inactive | January, <br> February, <br> March, <br> April, <br> May, <br> June, <br> July, <br> August, <br> September, <br> October, <br> November, <br> December | March | [Device Para <br> /Time <br> /Timezone] |
| Summertime d | Day of clock change summertime <br> Only available if: DST manual = inactive | Sunday, <br> Monday, <br> Tuesday, <br> Wednesday, <br> Thursday, <br> Friday, <br> Saturday, <br> General day | Sunday | [Device Para <br> /Time <br> /Timezone] |
| Summertime w | Place of selected day in month (for clock change summertime) <br> Only available if: DST manual = inactive | First, <br> Second, <br> Third, <br> Fourth, <br> Last | Last | [Device Para <br> /Time <br> /Timezone] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Summertime h | Hour of clock change summertime <br> Only available if: DST manual = inactive | 0-23h | 2h | [Device Para <br> /Time <br> /Timezone] |
| Summertime min | Minute of clock change summertime Only available if: DST manual = inactive | 0-59min | Omin | [Device Para <br> /Time <br> /Timezone] |
| Wintertime m | Month of clock change wintertime <br> Only available if: DST manual = inactive | January, <br> February, <br> March, <br> April, <br> May, <br> June, <br> July, <br> August, <br> September, <br> October, <br> November, <br> December | October | [Device Para <br> /Time <br> /Timezone] |
| Wintertime d | Day of clock change wintertime <br> Only available if: DST manual = inactive | Sunday, <br> Monday, <br> Tuesday, <br> Wednesday, <br> Thursday, <br> Friday, <br> Saturday, <br> General day | Sunday | [Device Para <br> /Time <br> /Timezone] |
| Wintertime w | Place of selected day in month (for clock change wintertime) <br> Only available if: DST manual = inactive | First, <br> Second, <br> Third, <br> Fourth, <br> Last | Last | [Device Para <br> /Time <br> /Timezone] |
| Wintertime h | Hour of clock change wintertime <br> Only available if: DST manual = inactive | 0-23h | 3h | [Device Para <br> /Time <br> /Timezone] |
| Wintertime min | Minute of clock change wintertime <br> Only available if: DST manual = inactive | 0-59min | Omin | [Device Para <br> /Time <br> /Timezone] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Time Zones | Time Zones | UTC+14 Kiritimati, | UTC+0 London | [Device Para <br> /Time <br> /Timezone] |
|  |  | UTC+13 Rawaki, |  |  |
| $\otimes$ |  | UTC+12.75 Chatham Island, |  |  |
|  |  | UTC+12 Wellington, |  |  |
|  |  | UTC+11.5 Kings- |  |  |
|  |  | ton, |  |  |
|  |  | UTC+11 Port Vila, |  |  |
|  |  | UTC+10.5 Lord Howe Island, |  |  |
|  |  | UTC+10 Sydney, |  |  |
|  |  | UTC+9.5 Adelaide, |  |  |
|  |  | UTC+9 Tokyo, |  |  |
|  |  | UTC+8 Hong Kong, |  |  |
|  |  | UTC+7 Bangkok, |  |  |
|  |  | UTC+6.5 Rangoon, |  |  |
|  |  | UTC+6 Colombo, |  |  |
|  |  | UTC+5.75 Kathmandu, |  |  |
|  |  | UTC+5.5 New Delhi, |  |  |
|  |  | UTC+5 Islamabad, |  |  |
|  |  | UTC+4.5 Kabul, |  |  |
|  |  | UTC+4 Abu Dhabi, |  |  |
|  |  | UTC+3.5 Tehran, |  |  |
|  |  | UTC+3 Moscow, |  |  |
|  |  | UTC+2 Athens, |  |  |
|  |  | UTC+1 Berlin, |  |  |
|  |  | UTC+0 London, |  |  |
|  |  | UTC-1 Azores, |  |  |
|  |  | UTC-2 Fern. d. Noronha, |  |  |
|  |  | UTC-3 Buenos Ai- |  |  |
|  |  | res, |  |  |
|  |  | UTC-3.5 St. John's, |  |  |
|  |  | UTC-4 Santiago, |  |  |
|  |  | UTC-5 New York, |  |  |
|  |  | UTC-6 Chicago, |  |  |
|  |  | UTC-7 Salt Lake |  |  |
|  |  | City, |  |  |
|  |  | UTC-8 Los Ange- |  |  |
|  |  |  |  |  |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| TimeSync | Time synchronisation | ,- | - | [Device Para |
|  |  | IRIG-B, |  | /Time |
| SNTP, |  | /TimeSync |  |  |
| ITimeSync] |  |  |  |  |
|  |  | Modbus, |  | IEC60870-5-103, |
|  |  | DNP3 |  |  |

## SNTP

## SNTP

## NOT/CE Important pre-condition: The protective relay needs to have access to a SNTP server via the connected network. This server preferably should be installed locally.

## Principle - General Use

SNTP is a standard protocol for time synchronisation via a network. For this at least one SNTP server has to be available within the network. The device can be configured for one or two SNTP servers.

The protection relay's system time will be synchronised with the connected SNTP server 1-4 times per minute. In turn the SNTP server synchronises its time via NTP with other NTP servers. This is the normal case. Alternatively it can synchronise its time via GPS, radio controlled clock or the like.

GPS Satellite Signal (optional)



#### Abstract

Accuracy

The accuracy of the used SNTP server and the excellence of its reference clock influences the accuracy of the protection relay's clock. For further information about accuracy refer to chapter Specifications.

With each transmitted time information, the SNTP server also sends information about its accuracy: - Stratum: The stratum indicates over how many interacting NTP-Servers the used SNTP server is connected to an atomic or radio controlled clock. - Precision: This indicates the accuracy of the system time provided by the SNTP server.

Additionally the performance of the connected network (traffic and data package transmission times) has an influence on the accuracy of the time synchronisation.

Recommended is a locally installed SNTP server with an accuracy of $\leq 200 \mu \mathrm{sec}$. If this cannot be realised, the connected server's excellence can be checked in the menu [Operation/Status Display/TimeSync]: - The server quality gives information about the accuracy of the used server. The quality should be GOOD or SUFFICIENT. A server with BAD quality should not be used, because this could cause fluctuations in time synchronisation. - The network quality gives information about the network's load and data package transmission time. The quality should be GOOD or SUFFICIENT. A network with BAD quality should not be used, because this could cause fluctuations in time synchronisation.


## Using two SNTP Servers

When configuring two SNTP servers, the device selects the server with the lower stratum value, because this generally provides a more precise time synchronisation. If the servers have the same stratum value, the device selects the server with the better precision. It does not matter, which of the servers is configured as server 1 or server 2.

When the last used server fails, the device automatically switches to the other server. Should the first server recover after some time, the device switches back to this (better) server automatically.

## SNTP Commissioning

Activate the SNTP time synchronisation by means of the menu [Device Para/ Time/ TimeSync]:

- Select»SNTP« in the time synchronisation menu.
- Set the IP address of the first server in the SNTP menu.
- Set the IP address of the second server, if available.
- Set all configured servers to "active".


## Fault Analysis

If there is no SNTP signal for more than 120 sec , the SNTP status changes from "active" to "inactive" and an entry in the Event Recorder will be created.

The SNTP functionality can be checked in the menu [Operation/Status Display/TimeSync/Sntp]: If the SNTP status is not indicated as being "active", please proceed as follows:

- Check if the wiring is correct (Ethernet-cable connected).
- Check if a valid IP address is set in the device (Device Para/TCP/IP).
- Check if the Ethernet connection is active (Device Para/TCP/IP/Link = Up?).
- Check if both the SNTP server and the protection device answer to a Ping.
- Check if the SNTP server is up and working.


## Device Planning Parameters of the SNTP

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Options \& Default \& Menu path <br>
\hline Mode \& Mode \& do not use, <br>

use\end{array}\right)\) do not use | [Device planning] |  |
| :--- | :--- |
| Q |  |

## Direct Commands of the SNTP

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Res Counter | Reset all Counters. | inactive, | inactive | active |

Global Protection Parameters of the SNTP

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Server1 | Server 1 | inactive, active | inactive | [Device Para <br> /Time <br> /TimeSync <br> /SNTP] |
| IP Byte1 | IP1.IP2.IP3.IP4 | 0-255 | 0 | [Device Para <br> /Time <br> /TimeSync <br> /SNTP] |
| IP Byte2 | IP1.IP2.IP3.IP4 | 0-255 | 0 | [Device Para <br> /Time <br> /TimeSync <br> /SNTP] |
| IP Byte3 | IP1.IP2.IP3.IP4 | 0-255 | 0 | [Device Para <br> /Time <br> /TimeSync <br> /SNTP] |
| IP Byte4 | IP1.IP2.IP3.IP4 | 0-255 | 0 | [Device Para /Time /TimeSync /SNTP] |
| Server2 | Server 2 | inactive, active | inactive | [Device Para <br> /Time <br> /TimeSync <br> /SNTP] |
| IP Byte1 | IP1.IP2.IP3.IP4 | 0-255 | 0 | [Device Para /Time /TimeSync /SNTP] |
| IP Byte2 | IP1.IP2.IP3.IP4 | 0-255 | 0 | [Device Para <br> /Time <br> /TimeSync <br> /SNTP] |
| IP Byte3 | IP1.IP2.IP3.IP4 | 0-255 | 0 | [Device Para <br> /Time <br> /TimeSync <br> /SNTP] |

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Setting range \& Default \& Menu path <br>
\hline IP Byte4 \& IP1.IP2.IP3.IP4 \& 0-255 \& 0 \& <br>
[Device Para <br>

/Time\end{array}\right]\)| ITimeSync |
| :--- |
| ISNTP] |

## Signals of the SNTP

| Signal | Description |
| :--- | :--- |
| SNTP active | Signal: If there is no valid SNTP signal for 120 sec, SNTP is regarded as inactive. |

## SNTP Counters

| Value | Description | Default | Size | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| NoOfSyncs | Total Number of Synchronizations. | 0 | 0-9999999999 | [Operation <br> /Count and RevData /TimeSync <br> /SNTP] |
| NoOfConnectLost | Total Number of lost SNTP Connections (no sync for 120 sec ). | 0 | 0-9999999999 | [Operation <br> /Count and RevData /TimeSync /SNTP] |
| NoOfSmallSyncs | Service counter: Total Number of very small Time Corrections. | 0 | 0-9999999999 | [Operation <br> /Count and RevData /TimeSync <br> /SNTP] |
| NoOfNormSyncs | Service counter: Total Number of normal Time Corrections | 0 | 0-9999999999 | [Operation <br> /Count and RevData /TimeSync <br> /SNTP] |
| NoOfBigSyncs | Service counter: Total Number of big Time Corrections | 0 | 0-9999999999 | [Operation <br> /Count and RevData /TimeSync <br> /SNTP] |
| NoOfFiltSyncs | Service counter: Total Number of filtered Time Corrections | 0 | 0-9999999999 | [Operation <br> /Count and RevData /TimeSync /SNTP] |

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Value } & \text { Description } & \text { Default } & \text { Size } & \text { Menu path } \\
\hline \text { NoOfSlowTrans } & \text { Service counter: Total Number of slow Transfers. } & 0 & 0-9999999999 & \begin{array}{l}\text { [Operation } \\
\text { /Count and RevData } \\
\text { /TimeSync } \\
\text { /SNTP] }\end{array} \\
\hline \text { NoOfHighOffs } & \text { Service counter: Total Number of high Offsets. } & 0 & 0-9999999999 & \begin{array}{l}\text { [Operation } \\
\text { /Count and RevData } \\
\text { /TimeSync }\end{array} \\
\text { /SNTP] }\end{array}
$$\right] \begin{array}{l}[Operation <br>
/Count and RevData <br>

/TimeSync\end{array}\right]\)| /SNTP] |
| :--- |

## SNTP Values

| Value | Description | Default | Size | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Used Server | Which Server is used for SNTP synchronization. | None | Server1, Server2, None | [Operation <br> /Status Display <br> /TimeSync <br> /SNTP] |
| PrecServer1 | Precision of Server 1 | Oms | $\begin{aligned} & 0- \\ & 1000.00000 \mathrm{~ms} \end{aligned}$ | [Operation <br> /Status Display <br> /TimeSync <br> /SNTP] |
| PrecServer2 | Precision of Server 2 | Oms | $\begin{aligned} & 0- \\ & 1000.00000 \mathrm{~ms} \end{aligned}$ | [Operation <br> /Status Display <br> /TimeSync <br> /SNTP] |
| ServerQlty | Quality of Server used for Synchronization (GOOD, SUFFICIENT, BAD) | - | GOOD, SUFFICIENT, BAD, | [Operation <br> /Status Display <br> /TimeSync <br> /SNTP] |
| NetConn | Quality of Network Connection (GOOD, SUFFICIENT, BAD). | - | GOOD, SUFFICIENT, BAD, | [Operation <br> /Status Display <br> /TimeSync <br> /SNTP] |

## IRIG-B00X

## IRIG-B

## NOT/CE Requirement: An IRIG-B00X time code generator is needed. IRIG-B004 and higher will support/transmit the "year information".

If you are using an IRIG time code that does not support the "year information" (IRIG-B000, IRIG-B001, IRIG-B002, IRIG-B003), you have to set the "year" manually within the device. In these cases the correct year information is a precondition for a properly working IRIG-B.

## Principle - General Use

The IRIG-B standard is the most used standard to synchronize the time of protection devices in medium voltage applications.

The protection device supports IRIG-B according to the IRIG STANDARD 200-04.
This means that all time synchronization formats IRIG-B00X (IRIG-B000 / B001 / B002 / B003 / B004 / B005 / B006 / B007) are supported. It is recommended to use IRIG-B004 and higher which also transmits the "year information".

The system time of the protection device is being synchronized with the connected IRIG-B code generator once a second. The accuracy of the used IRIG-B code generator can be increased by connecting a GPS-receiver to it.


The location of the IRIG-B interface depends to the device type. Please refer to the wiring diagram supplied with the protective device.

## IRIG-B Commissioning

Activate the IRIG-B synchronization within menu [Device Para/ Time/ TimeSync]:

- Select »IRIG-B« in the time synchronisation menu.
- Set the time synchronization in the IRIG-B menu to »Active«.
- Select the IRIG-B type (choose B000 through B007).


## Fault Analysis

If the device does not receive any IRIG-B time code for more than 60 s , the IRIG-B status switches from »active« to »inactive« and there is created an entry within the Event Recorder.

Check the IRIG-B functionality through the menu [Operation/ Status display/ TimeSync/ IRIG-B]:
Should the IRIG-B status not be reported as being »active«, please proceed as follows:

- To begin with check the IRIG-B wiring.
- Check, if the correct IRIG-B00X type is configured.


## IRIG-B Control Commands

In addition to the date and time information, the IRIG-B code offers the option to transmit up to 18 control commands that can be processed by the protective device. They have to be set and issued by the IRIG-B code generator.

The protective device offers up to 18 IRIG-B assignment options for those control commands in order to carry out the assigned action. If there is a control command assigned to an action, this action is being triggered as soon as the control command is transmitted as being true. As an example there can be triggered the start of statistics or the street lighting can be switched on through a relay.

## Device Planning Parameters of the IRIG-B00X

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | do not use | [Device planning] |  |  |
| U |  |  |  |  |

## Direct Commands of the IRIG-B00X

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Res IRIG-B Cr | Resetting of the Diagnosis Counters: IRIG-B | inactive, | inactive | [Operation <br> /Reset] |
| active |  |  |  |  |

Global Protection Parameters of the IRIG-B00X
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Function } & \text { Permanent activation or deactivation of module/stage. } & \begin{array}{ll}\text { inactive, } \\
\text { active }\end{array}
$$ \& inactive \& [Device Para <br>
/Time <br>
/TimeSync <br>

/RIG-B]\end{array}\right]\)| [Device Para |
| :--- |
| /Time |
| IRIG-B00X |

## Signals of the IRIG-B00X (Output States)

| Signal | Description |
| :---: | :---: |
| IRIG-B active | Signal: If there is no valid IRIG-B signal for 60 sec, IRIG-B is regarded as inactive. |
| High-Low Invert | Signal: The High and Low signals of the IRIG-B are inverted. This does NOT mean that the wiring is faulty. If the wiring is faulty no IRIG-B signal will be detected. |
| Control Signal1 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal2 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal3 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal4 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal5 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal6 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal7 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal8 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal9 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal10 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal11 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal12 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal13 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal14 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal15 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal16 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal17 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| Control Signal18 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |

## IRIG-B00X Values

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Value } & \text { Description } & \text { Default } & \text { Size } & \text { Menu path } \\
\hline \text { NoOfFramesOK } & \text { Total Number valid Frames. } & 0 & 0-65535 & \begin{array}{l}\text { [Operation } \\
\text { /Count and RevData } \\
\text { /TimeSync } \\
\text { /IRIG-B] }\end{array} \\
\hline \text { NoOfFrameErrors } & \begin{array}{l}\text { Total Number of Frame Errors. Physically } \\
\text { corrupted Frame. }\end{array} & 0 & 0-65535 & \begin{array}{l}\text { [Operation } \\
\text { /Count and RevData } \\
\text { ITimeSync }\end{array}
$$ <br>

/IRIG-B]\end{array}\right]\)| [Operation |
| :--- |
| /Count and RevData |
| ITimeSync |

## Parameters

Parameter setting and planning can be done:

- directly at the device or

■ by way of the Smart view software.

## Parameter Definitions

## Device Parameters

Device Parameters are part of the Parameter Tree. By means of them you can (depending on the type of device):

- Set cutoff levels,
- Configure Digital Inputs,
- Configure Output Relays,
- Assign LEDs,
- Assign Acknowledgment Signals,
- Configure Statistics,
- Configure Protocol Parameters,
- Adapt HMI Settings,
- Configure Recorders (reports),
- Set Date and Time,
- Change Passwords,
- Check the version (build) of the device.


## Field Parameters

Field Parameters are part of the Parameter Tree. Field Parameters comprise the essential, basic settings of your switchboard such as rated frequency, transformer ratios.

## Protection Parameters

Protection Parameters are part of the Parameter Tree. This tree comprises:

- Global Protection Parameters are part of the Protection Parameters: All settings and assignments that are done within the Global Parameter Tree are valid independent of the Setting Groups. They have to be set once only. In addition to that they comprise the CB Management.
- The Parameter Setting Switch is part of the Protection Parameters: You can either direct switch onto a certain parameter setting group or you can determine the conditions for switching onto another parameter setting group.
- Setting Group Parameters are part of the Protection Parameters: By means of the Parameter Setting Group Parameters you can individually adapt your protective device to the current conditions or grid conditions. They can be individually set in each Setting group.


## Device Planning Parameters

Device Planning Parameters are part of the Parameter Tree.

- Improving the Usability (clearness): All protection modules that are currently not needed can be
- de-protected (switched to invisible) by means of Device Planning. In Menu Device Planning you can adapt the scope of functionality of the protective device exactly to your needs. You can improve the usability by de-projecting all modules that are currently not needed.
- Adapting the device to your application: For those modules that you need, determine how they should work (e.g. directional, non-directional, <, >...).


## Direct Commands

Direct Commands are part of the Device Parameter Tree but they are NOT part of the parameter file. They will be executed directly (e.g. Resetting of a Counter).

## State of the Module Inputs

Module Inputs are part of the Parameter Tree. The State of the Module Input is context-dependent.

By means of the Module Inputs influence can be taken on the Modules. You can assign Signals onto Module Inputs. The state of the signals that are assigned to an input can be taken from the Status Display. Module Inputs can be identified by an „-I" at the end of the name.

## Signals

Signals are part of the Parameter Tree. The state of the signal is context-dependent.

- Signals represent the state of your installation/equipment (e.g. Position Indicators of the Circuit Breaker).
- Signals are assessments of the state of the grid and the equipment (System OK, Transformer failure detected...).
- Signals represent decisions that are taken by the device (e.g. Trip command) based on your parameter settings.


## Adaptive Parameter Sets



Adaptive Parameter Sets are part of the Parameter Tree.
By means of Adaptive Parameter Sets you can modify temporarily single parameters within the parameter setting groups.

# NOT / CE Adaptive Parameters fall back automatically, if the acknowledged signal, that has activated them, has fallen back. Please take into account that Adaptive Set 1 is dominant to Adaptive Set 2 . Adaptive Set 2 is dominant to Adaptive Set 3. Adaptive Set 3 is dominant to Adaptive Set 4. 

NOT /CE In order to increase the usability (clearness) Adaptive Parameter Sets become visible if an corresponding activation signals has been assigned (Smart view 2.0 and higher).<br>Example: In order to use Adaptive Parameters within Protective Element I[1] please proceed as follows:<br>Assign within the Global Parameter tree within Protective Element I[1] an activation signal for AdaptiveParameterSet 1.<br>- AdaptiveParameterSet 1 becomes now visible within the Protection Parameter Sets for element I[1].

By means of additional activation signals further Adaptive Parameter Sets can be used.

The functionality of the IED (relay) can be enhanced / adapted by means of Adaptive Parameters in order to meet the requirements of modified states of the grid or the power supply system respectively to manage unpredictable events.

Moreover, the adaptive parameter can also be used to realize various special protective functions or to expand the existing function modules in a simple way without to redesign the existing hardware or software platform costly.

The Adaptive Parameter feature allows, besides a standard parameter set, one of the four parameter sets labeled from 1 to 4 , to be used for example in a time overcurrent element under the control of the configurable Set Control Logics. The dynamical switch-over of the adaptive parameter set is only active for a particular element when its adaptive set control logic is configured and only as long as the activation signal is true.

For some protection elements such as time overcurrent and instantaneous overcurrent ( 50P, 51P, 50G, 51G...), besides the "default" setting there exist another 4 "alternative" settings for pickup value, curve type, time dial, reset mode set values which can be switched-over dynamically by means of the configurable adaptive setting control logics in the single set parameter.

If the Adaptive Parameter feature is not used, the adaptive set control logics will not be selected (assigned). The protective elements work in this case just like a normal protection using the "Default" settings. If one of the Adaptive Set Control logics" is assigned to a logic function, the protective element will be "switched-over" to the corresponding adaptive settings if the assigned logic function is asserted and will fall back to the "Default" Setting if the assigned signal that has been activated the Adaptive Set has fallen back.

## Application Example

During a Switch-OnTo-Fault condition, it is usually requested to make the embedded protective function tripping the faulted line faster, instantaneously or sometimes non-directionally.

Such a Switch-OnTo-Fault application can easily be realized using the Adaptive Parameter features above mentioned: The standard time overcurrent protection element (e.g. 51P) normally works with an inverse curve type (e.g. ANSI Type A), while in case of SOTF condition, it should trip instantaneously. If the SOTF logic function »SOTF enabled « is detecting a manual circuit breaker close condition the relay switches to AdaptiveSet1 if the signal »SOTF.enabled< is assigned to AdaptiveSet1. The corresponding AdaptiveSet1 will become active and that means e.g. »curve type $=D E F T «$ and $» t=0 «$ sec.


The screenshot above shows the adaptive setting configurations following applications based on only one simple overcurrent protection element:

1. Standard Set: Default settings
2. Adaptive Set 1: SOTF application (Switch-Onto-Fault)
3. Adaptive Set 2: CLPU application (Cold Load Pickup)
4. Adaptive Set 3: Voltage-Controlled time overcurrent protection (ANSI 51V)
5. Adaptive Set 4: Negative- Phase- Sequence- Voltage-Controlled time overcurrent protection

## Application Examples

- The output signal of the Switch Onto Fault module can be used to activate an Adaptive Parameter Set that sensibilizes the overcurrent protection.
- The output signal of the Cold Load Pickup module can be used to activate an Adaptive Parameter Set that desensitizes the overcurrent protection.
- By means of Adaptive Parameter Sets an Adaptive Auto Reclosure can be realized. After a reclosure attempt the tripping thresholds or tripping curves of the overcurrent protection can be adapted.
- Depending on undervoltage the overcurrent protection can be modified (Voltage Controlled).
- The earth overcurrent protection can be modified by the residual voltage.
- Matching the ground current protective settings dynamically and automatically according to the singlephase load diversity (Adaptive relay Setting - Normal Setting/Alternative Setting)

Adaptive Parameter Sets are only available for devices with current protection modules.

## Adaptive Parameter Set Activation Signals

| Name | Description |
| :---: | :---: |
| -- | No assignment |
| IH2[1].Blo L1 | Signal: Blocked L1 |
| IH2[1].Blo L2 | Signal: Blocked L2 |
| IH2[1].Blo L3 | Signal: Blocked L3 |
| IH2[1].Blo IG meas | Signal: Blocking of the ground (earth) protection module (measured ground current) |
| IH2[1].Blo IG calc | Signal: Blocking of the ground (earth) protection module (calculated ground current) |
| IH2[1].3-ph Blo | Signal: Inrush was detected in at least one phase - trip command blocked. |
| IH2[2].Blo L1 | Signal: Blocked L1 |
| IH2[2].Blo L2 | Signal: Blocked L2 |
| IH2[2].Blo L3 | Signal: Blocked L3 |
| IH2[2].Blo IG meas | Signal: Blocking of the ground (earth) protection module (measured ground current) |
| IH2[2]. Blo IG calc | Signal: Blocking of the ground (earth) protection module (calculated ground current) |
| IH2[2].3-ph Blo | Signal: Inrush was detected in at least one phase - trip command blocked. |
| SOTF.enabled | Signal: Switch Onto Fault enabled. This Signal can be used to modify Overcurrent Protection Settings. |
| CLPU.enabled | Signal: Cold Load enabled |
| ExP[1].Alarm | Signal: Alarm |
| ExP[2].Alarm | Signal: Alarm |
| ExP[3].Alarm | Signal: Alarm |
| ExP[4].Alarm | Signal: Alarm |
| Ext Sudd Press.Alarm | Signal: Alarm |
| Ex Oil Temp.Alarm | Signal: Alarm |
| Ext Temp Superv[1].Alarm | Signal: Alarm |
| Ext Temp Superv[2].Alarm | Signal: Alarm |
| Ext Temp Superv[3].Alarm | Signal: Alarm |
| CTS[1].Alarm | Signal: Alarm Current Transformer Measuring Circuit Supervision |
| CTS[2].Alarm | Signal: Alarm Current Transformer Measuring Circuit Supervision |
| DI Slot X1.DI 1 | Signal: Digital Input |
| DI Slot X1.DI 2 | Signal: Digital Input |
| DI Slot X1.DI 3 | Signal: Digital Input |
| DI Slot X1.DI 4 | Signal: Digital Input |
| DI Slot X1.DI 5 | Signal: Digital Input |
| DI Slot X1.DI 6 | Signal: Digital Input |
| DI Slot X1.DI 7 | Signal: Digital Input |
| DI Slot X1.DI 8 | Signal: Digital Input |
| DI Slot X6.DI 1 | Signal: Digital Input |
| DI Slot X6.DI 2 | Signal: Digital Input |
| DI Slot X6.DI 3 | Signal: Digital Input |
| DI Slot X6.DI 4 | Signal: Digital Input |


| Name | Description |
| :---: | :---: |
| DI Slot X6.DI 5 | Signal: Digital Input |
| DI Slot X6.DI 6 | Signal: Digital Input |
| DI Slot X6.DI 7 | Signal: Digital Input |
| DI Slot X6. DI 8 | Signal: Digital Input |
| Modbus.Scada Cmd 1 | Scada Command |
| Modbus.Scada Cmd 2 | Scada Command |
| Modbus.Scada Cmd 3 | Scada Command |
| Modbus.Scada Cmd 4 | Scada Command |
| Modbus.Scada Cmd 5 | Scada Command |
| Modbus.Scada Cmd 6 | Scada Command |
| Modbus.Scada Cmd 7 | Scada Command |
| Modbus.Scada Cmd 8 | Scada Command |
| Modbus.Scada Cmd 9 | Scada Command |
| Modbus.Scada Cmd 10 | Scada Command |
| Modbus.Scada Cmd 11 | Scada Command |
| Modbus.Scada Cmd 12 | Scada Command |
| Modbus.Scada Cmd 13 | Scada Command |
| Modbus.Scada Cmd 14 | Scada Command |
| Modbus.Scada Cmd 15 | Scada Command |
| Modbus.Scada Cmd 16 | Scada Command |
| IEC61850.Virtlnp1 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp2 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp3 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp4 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnn5 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnn6 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp7 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp8 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp9 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp10 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp11 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp12 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp13 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp14 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp15 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp16 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp17 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp18 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp19 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp20 | Signal: Virtual Input (IEC61850 GGIO Ind) |


| Name | Description |
| :---: | :---: |
| IEC61850.Virtlnp21 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp22 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp23 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp24 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp25 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp26 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp27 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp28 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp29 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp30 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp31 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp32 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.SPCSO1 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO2 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO3 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO4 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO5 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO6 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO7 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO8 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO9 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO10 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO11 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO12 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO13 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO14 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO15 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO16 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC 103.Scada Cmd 1 | Scada Command |
| IEC 103.Scada Cmd 2 | Scada Command |
| IEC 103.Scada Cmd 3 | Scada Command |
| IEC 103.Scada Cmd 4 | Scada Command |
| IEC 103.Scada Cmd 5 | Scada Command |
| IEC 103.Scada Cmd 6 | Scada Command |
| IEC 103.Scada Cmd 7 | Scada Command |
| IEC 103.Scada Cmd 8 | Scada Command |
| IEC 103.Scada Cmd 9 | Scada Command |
| IEC 103.Scada Cmd 10 | Scada Command |
| Profibus.Scada Cmd 1 | Scada Command |
| Profibus.Scada Cmd 2 | Scada Command |


| Name | Description |
| :---: | :---: |
| Profibus.Scada Cmd 3 | Scada Command |
| Profibus.Scada Cmd 4 | Scada Command |
| Profibus.Scada Cmd 5 | Scada Command |
| Profibus.Scada Cmd 6 | Scada Command |
| Profibus.Scada Cmd 7 | Scada Command |
| Profibus.Scada Cmd 8 | Scada Command |
| Profibus.Scada Cmd 9 | Scada Command |
| Profibus.Scada Cmd 10 | Scada Command |
| Profibus.Scada Cmd 11 | Scada Command |
| Profibus.Scada Cmd 12 | Scada Command |
| Profibus.Scada Cmd 13 | Scada Command |
| Profibus.Scada Cmd 14 | Scada Command |
| Profibus.Scada Cmd 15 | Scada Command |
| Profibus.Scada Cmd 16 | Scada Command |
| Logics.LE1.Gate Out | Signal: Output of the logic gate |
| Logics.LE1.Timer Out | Signal: Timer Output |
| Logics.LE1.Out | Signal: Latched Output (Q) |
| Logics.LE1.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE2.Gate Out | Signal: Output of the logic gate |
| Logics.LE2.Timer Out | Signal: Timer Output |
| Logics.LE2.Out | Signal: Latched Output (Q) |
| Logics.LE2.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE3.Gate Out | Signal: Output of the logic gate |
| Logics.LE3.Timer Out | Signal: Timer Output |
| Logics.LE3.Out | Signal: Latched Output (Q) |
| Logics.LE3.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE4.Gate Out | Signal: Output of the logic gate |
| Logics.LE4.Timer Out | Signal: Timer Output |
| Logics.LE4.Out | Signal: Latched Output (Q) |
| Logics.LE4.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE5.Gate Out | Signal: Output of the logic gate |
| Logics.LE5.Timer Out | Signal: Timer Output |
| Logics.LE5.Out | Signal: Latched Output (Q) |
| Logics.LE5.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE6.Gate Out | Signal: Output of the logic gate |
| Logics.LE6.Timer Out | Signal: Timer Output |
| Logics.LE6.Out | Signal: Latched Output (Q) |
| Logics.LE6.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE7.Gate Out | Signal: Output of the logic gate |
| Logics.LE7.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE7.Out | Signal: Latched Output (Q) |
| Logics.LE7.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE8.Gate Out | Signal: Output of the logic gate |
| Logics.LE8.Timer Out | Signal: Timer Output |
| Logics.LE8.Out | Signal: Latched Output (Q) |
| Logics.LE8.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE9.Gate Out | Signal: Output of the logic gate |
| Logics.LE9.Timer Out | Signal: Timer Output |
| Logics.LE9.Out | Signal: Latched Output (Q) |
| Logics.LE9.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE10.Gate Out | Signal: Output of the logic gate |
| Logics.LE10.Timer Out | Signal: Timer Output |
| Logics.LE10.Out | Signal: Latched Output (Q) |
| Logics.LE10.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE11.Gate Out | Signal: Output of the logic gate |
| Logics.LE11.Timer Out | Signal: Timer Output |
| Logics.LE11.Out | Signal: Latched Output (Q) |
| Logics.LE11.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE12.Gate Out | Signal: Output of the logic gate |
| Logics.LE12.Timer Out | Signal: Timer Output |
| Logics.LE12.Out | Signal: Latched Output (Q) |
| Logics.LE12.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE13.Gate Out | Signal: Output of the logic gate |
| Logics.LE13.Timer Out | Signal: Timer Output |
| Logics.LE13.Out | Signal: Latched Output (Q) |
| Logics.LE13.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE14.Gate Out | Signal: Output of the logic gate |
| Logics.LE14.Timer Out | Signal: Timer Output |
| Logics.LE14.Out | Signal: Latched Output (Q) |
| Logics.LE14.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE15.Gate Out | Signal: Output of the logic gate |
| Logics.LE15.Timer Out | Signal: Timer Output |
| Logics.LE15.Out | Signal: Latched Output (Q) |
| Logics.LE15.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE16.Gate Out | Signal: Output of the logic gate |
| Logics.LE16.Timer Out | Signal: Timer Output |
| Logics.LE16.Out | Signal: Latched Output (Q) |
| Logics.LE16.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE17.Gate Out | Signal: Output of the logic gate |
| Logics.LE17.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE17.Out | Signal: Latched Output (Q) |
| Logics.LE17.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE18.Gate Out | Signal: Output of the logic gate |
| Logics.LE18.Timer Out | Signal: Timer Output |
| Logics.LE18.Out | Signal: Latched Output (Q) |
| Logics.LE18.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE19.Gate Out | Signal: Output of the logic gate |
| Logics.LE19.Timer Out | Signal: Timer Output |
| Logics.LE19.Out | Signal: Latched Output (Q) |
| Logics.LE19.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE20.Gate Out | Signal: Output of the logic gate |
| Logics.LE20.Timer Out | Signal: Timer Output |
| Logics.LE20.Out | Signal: Latched Output (Q) |
| Logics.LE20.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE21.Gate Out | Signal: Output of the logic gate |
| Logics.LE21.Timer Out | Signal: Timer Output |
| Logics.LE21.Out | Signal: Latched Output (Q) |
| Logics.LE21.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE22.Gate Out | Signal: Output of the logic gate |
| Logics.LE22.Timer Out | Signal: Timer Output |
| Logics.LE22.Out | Signal: Latched Output (Q) |
| Logics.LE22.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE23.Gate Out | Signal: Output of the logic gate |
| Logics.LE23.Timer Out | Signal: Timer Output |
| Logics.LE23.Out | Signal: Latched Output (Q) |
| Logics.LE23.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE24.Gate Out | Signal: Output of the logic gate |
| Logics.LE24.Timer Out | Signal: Timer Output |
| Logics.LE24.Out | Signal: Latched Output (Q) |
| Logics.LE24.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE25.Gate Out | Signal: Output of the logic gate |
| Logics.LE25.Timer Out | Signal: Timer Output |
| Logics.LE25.Out | Signal: Latched Output (Q) |
| Logics.LE25.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE26.Gate Out | Signal: Output of the logic gate |
| Logics.LE26.Timer Out | Signal: Timer Output |
| Logics.LE26.Out | Signal: Latched Output (Q) |
| Logics.LE26.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE27.Gate Out | Signal: Output of the logic gate |
| Logics.LE27.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE27.Out | Signal: Latched Output (Q) |
| Logics.LE27.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE28.Gate Out | Signal: Output of the logic gate |
| Logics.LE28.Timer Out | Signal: Timer Output |
| Logics.LE28.Out | Signal: Latched Output (Q) |
| Logics.LE28.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE29.Gate Out | Signal: Output of the logic gate |
| Logics.LE29.Timer Out | Signal: Timer Output |
| Logics.LE29.Out | Signal: Latched Output (Q) |
| Logics.LE29.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE30.Gate Out | Signal: Output of the logic gate |
| Logics.LE30.Timer Out | Signal: Timer Output |
| Logics.LE30.Out | Signal: Latched Output (Q) |
| Logics.LE30.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE31.Gate Out | Signal: Output of the logic gate |
| Logics.LE31.Timer Out | Signal: Timer Output |
| Logics.LE31.Out | Signal: Latched Output (Q) |
| Logics.LE31.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE32.Gate Out | Signal: Output of the logic gate |
| Logics.LE32.Timer Out | Signal: Timer Output |
| Logics.LE32.Out | Signal: Latched Output (Q) |
| Logics.LE32.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE33.Gate Out | Signal: Output of the logic gate |
| Logics.LE33.Timer Out | Signal: Timer Output |
| Logics.LE33.Out | Signal: Latched Output (Q) |
| Logics.LE33.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE34.Gate Out | Signal: Output of the logic gate |
| Logics.LE34.Timer Out | Signal: Timer Output |
| Logics.LE34.Out | Signal: Latched Output (Q) |
| Logics.LE34.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE35.Gate Out | Signal: Output of the logic gate |
| Logics.LE35.Timer Out | Signal: Timer Output |
| Logics.LE35.Out | Signal: Latched Output (Q) |
| Logics.LE35.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE36.Gate Out | Signal: Output of the logic gate |
| Logics.LE36.Timer Out | Signal: Timer Output |
| Logics.LE36.Out | Signal: Latched Output (Q) |
| Logics.LE36.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE37.Gate Out | Signal: Output of the logic gate |
| Logics.LE37.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE37.Out | Signal: Latched Output (Q) |
| Logics.LE37.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE38.Gate Out | Signal: Output of the logic gate |
| Logics.LE38.Timer Out | Signal: Timer Output |
| Logics.LE38.Out | Signal: Latched Output (Q) |
| Logics.LE38.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE39.Gate Out | Signal: Output of the logic gate |
| Logics.LE39.Timer Out | Signal: Timer Output |
| Logics.LE39.Out | Signal: Latched Output (Q) |
| Logics.LE39.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE40.Gate Out | Signal: Output of the logic gate |
| Logics.LE40.Timer Out | Signal: Timer Output |
| Logics.LE40.Out | Signal: Latched Output (Q) |
| Logics.LE40.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE41.Gate Out | Signal: Output of the logic gate |
| Logics.LE41.Timer Out | Signal: Timer Output |
| Logics.LE41.Out | Signal: Latched Output (Q) |
| Logics.LE41.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE42.Gate Out | Signal: Output of the logic gate |
| Logics.LE42.Timer Out | Signal: Timer Output |
| Logics.LE42.Out | Signal: Latched Output (Q) |
| Logics.LE42.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE43.Gate Out | Signal: Output of the logic gate |
| Logics.LE43.Timer Out | Signal: Timer Output |
| Logics.LE43.Out | Signal: Latched Output (Q) |
| Logics.LE43.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE44.Gate Out | Signal: Output of the logic gate |
| Logics.LE44.Timer Out | Signal: Timer Output |
| Logics.LE44.Out | Signal: Latched Output (Q) |
| Logics.LE44.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE45.Gate Out | Signal: Output of the logic gate |
| Logics.LE45.Timer Out | Signal: Timer Output |
| Logics.LE45.Out | Signal: Latched Output (Q) |
| Logics.LE45.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE46.Gate Out | Signal: Output of the logic gate |
| Logics.LE46.Timer Out | Signal: Timer Output |
| Logics.LE46.Out | Signal: Latched Output (Q) |
| Logics.LE46.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE47.Gate Out | Signal: Output of the logic gate |
| Logics.LE47.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE47.Out | Signal: Latched Output (Q) |
| Logics.LE47.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE48.Gate Out | Signal: Output of the logic gate |
| Logics.LE48.Timer Out | Signal: Timer Output |
| Logics.LE48.Out | Signal: Latched Output (Q) |
| Logics.LE48.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE49.Gate Out | Signal: Output of the logic gate |
| Logics.LE49.Timer Out | Signal: Timer Output |
| Logics.LE49.Out | Signal: Latched Output (Q) |
| Logics.LE49.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE50.Gate Out | Signal: Output of the logic gate |
| Logics.LE50.Timer Out | Signal: Timer Output |
| Logics.LE50.Out | Signal: Latched Output (Q) |
| Logics.LE50.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE51.Gate Out | Signal: Output of the logic gate |
| Logics.LE51.Timer Out | Signal: Timer Output |
| Logics.LE51.Out | Signal: Latched Output (Q) |
| Logics.LE51.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE52.Gate Out | Signal: Output of the logic gate |
| Logics.LE52.Timer Out | Signal: Timer Output |
| Logics.LE52.Out | Signal: Latched Output (Q) |
| Logics.LE52.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE53.Gate Out | Signal: Output of the logic gate |
| Logics.LE53.Timer Out | Signal: Timer Output |
| Logics.LE53.Out | Signal: Latched Output (Q) |
| Logics.LE53.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE54.Gate Out | Signal: Output of the logic gate |
| Logics.LE54.Timer Out | Signal: Timer Output |
| Logics.LE54.Out | Signal: Latched Output (Q) |
| Logics.LE54.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE55.Gate Out | Signal: Output of the logic gate |
| Logics.LE55.Timer Out | Signal: Timer Output |
| Logics.LE55.Out | Signal: Latched Output (Q) |
| Logics.LE55.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE56.Gate Out | Signal: Output of the logic gate |
| Logics.LE56.Timer Out | Signal: Timer Output |
| Logics.LE56.Out | Signal: Latched Output (Q) |
| Logics.LE56.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE57.Gate Out | Signal: Output of the logic gate |
| Logics.LE57.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE57.Out | Signal: Latched Output (Q) |
| Logics.LE57.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE58.Gate Out | Signal: Output of the logic gate |
| Logics.LE58.Timer Out | Signal: Timer Output |
| Logics.LE58.Out | Signal: Latched Output (Q) |
| Logics.LE58.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE59.Gate Out | Signal: Output of the logic gate |
| Logics.LE59.Timer Out | Signal: Timer Output |
| Logics.LE59.Out | Signal: Latched Output (Q) |
| Logics.LE59.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE60.Gate Out | Signal: Output of the logic gate |
| Logics.LE60.Timer Out | Signal: Timer Output |
| Logics.LE60.Out | Signal: Latched Output (Q) |
| Logics.LE60.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE61.Gate Out | Signal: Output of the logic gate |
| Logics.LE61.Timer Out | Signal: Timer Output |
| Logics.LE61.Out | Signal: Latched Output (Q) |
| Logics.LE61.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE62.Gate Out | Signal: Output of the logic gate |
| Logics.LE62.Timer Out | Signal: Timer Output |
| Logics.LE62.Out | Signal: Latched Output (Q) |
| Logics.LE62.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE63.Gate Out | Signal: Output of the logic gate |
| Logics.LE63.Timer Out | Signal: Timer Output |
| Logics.LE63.Out | Signal: Latched Output (Q) |
| Logics.LE63.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE64.Gate Out | Signal: Output of the logic gate |
| Logics.LE64.Timer Out | Signal: Timer Output |
| Logics.LE64.Out | Signal: Latched Output (Q) |
| Logics.LE64.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE65.Gate Out | Signal: Output of the logic gate |
| Logics.LE65.Timer Out | Signal: Timer Output |
| Logics.LE65.Out | Signal: Latched Output (Q) |
| Logics.LE65.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE66.Gate Out | Signal: Output of the logic gate |
| Logics.LE66.Timer Out | Signal: Timer Output |
| Logics.LE66.Out | Signal: Latched Output (Q) |
| Logics.LE66.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE67.Gate Out | Signal: Output of the logic gate |
| Logics.LE67.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE67.Out | Signal: Latched Output (Q) |
| Logics.LE67.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE68.Gate Out | Signal: Output of the logic gate |
| Logics.LE68.Timer Out | Signal: Timer Output |
| Logics.LE68.Out | Signal: Latched Output (Q) |
| Logics.LE68.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE69.Gate Out | Signal: Output of the logic gate |
| Logics.LE69.Timer Out | Signal: Timer Output |
| Logics.LE69.Out | Signal: Latched Output (Q) |
| Logics.LE69.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE70.Gate Out | Signal: Output of the logic gate |
| Logics.LE70.Timer Out | Signal: Timer Output |
| Logics.LE70.Out | Signal: Latched Output (Q) |
| Logics.LE70.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE71.Gate Out | Signal: Output of the logic gate |
| Logics.LE71.Timer Out | Signal: Timer Output |
| Logics.LE71.Out | Signal: Latched Output (Q) |
| Logics.LE71.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE72.Gate Out | Signal: Output of the logic gate |
| Logics.LE72.Timer Out | Signal: Timer Output |
| Logics.LE72.Out | Signal: Latched Output (Q) |
| Logics.LE72.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE73.Gate Out | Signal: Output of the logic gate |
| Logics.LE73.Timer Out | Signal: Timer Output |
| Logics.LE73.Out | Signal: Latched Output (Q) |
| Logics.LE73.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE74.Gate Out | Signal: Output of the logic gate |
| Logics.LE74.Timer Out | Signal: Timer Output |
| Logics.LE74.Out | Signal: Latched Output (Q) |
| Logics.LE74.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE75.Gate Out | Signal: Output of the logic gate |
| Logics.LE75.Timer Out | Signal: Timer Output |
| Logics.LE75.Out | Signal: Latched Output (Q) |
| Logics.LE75.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE76.Gate Out | Signal: Output of the logic gate |
| Logics.LE76.Timer Out | Signal: Timer Output |
| Logics.LE76.Out | Signal: Latched Output (Q) |
| Logics.LE76.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE77.Gate Out | Signal: Output of the logic gate |
| Logics.LE77.Timer Out | Signal: Timer Output |


| Name | Description |
| :--- | :--- |
| Logics.LE77.Out | Signal: Latched Output (Q) |
| Logics.LE77.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE78.Gate Out | Signal: Output of the logic gate |
| Logics.LE78.Timer Out | Signal: Timer Output |
| Logics.LE78.Out | Signal: Latched Output (Q) |
| Logics.LE78.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE79.Gate Out | Signal: Output of the logic gate |
| Logics.LE79.Timer Out | Signal: Timer Output |
| Logics.LE79.Out | Signal: Latched Output (Q) |
| Logics.LE79.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE80.Gate Out | Signal: Output of the logic gate |
| Logics.LE80.Timer Out | Signal: Timer Output |
| Logics.LE80.Out | Signal: Latched Output (Q) |
| Logics.LE80.Out inverted | Signal: Negated Latched Output (Q NOT) |

## Access Authorizations (access areas)

## Passwords - Areas

The following table shows the access areas and the authorization passwords that they require in order to access them.

| Access to: |
| :--- | :--- | :--- | | Level 0 provides Read Only access to all |
| :--- |
| settings and parameters of the device. |
| The device will fall back into this level |
| automatically after a longer period or |
| inactivity |, | This password provides access to the |
| :--- |
| reset- and acknowledge options. In |
| addition to that, it permits the execution of |
| manual trigger signals. |\(\left|\begin{array}{l}This password provides access to the <br>

reset and acknowledge options. In <br>
addition to that it permits changing of <br>
protection settings and the configuration <br>

of the trip manager.\end{array}\right|\)| This password grants permission for |
| :--- |
| switching operations (switching |
| switchgears) |

[^2]Supervisor-Lv3


NOT/CE You have to ensure, that the access authorizations are protected by secure passwords. These passwords have to be kept as a secret and to be known only by the authorized persons.

A lock symbol indicates in the upper right corner of the display if there are any access authorizations active at the moment . That means, within the mode "Read Only Lv0" a closed (locked) lock symbol will be shown in the upper right corner of the display. As soon as there are any access authorizations active (above the "Read Only-Lv0" level), the upper right corner of the display will show an unlocked (open) lock symbol.

## NOTICE

During setting parameters the C-Button will be used for the cancelling of parameter changes. Because of that it is not possible, to acknowledge (LEDs, Output Relays...) as long as there are non saved (cached only) parameters.

Acknowledgement can only be executed, when the upper right corner of the display shows this symbol:

## g

NOTICE
The passwords are part of the device (fixed assignments). That means, passwords will not be overwritten, if a parameter file is transmitted into a device.
Existing passwords are persistent (assigned to a device). If an offline created parameter file is transmitted into a device, or if a parameter file is transmitted from one device to another, this will have no impact on existing passwords within the device.

## Available Levels/Access Authorizations

The access authorizations are designed in form of two hierachic strings.
The supervisor (administrator) password provides access to all parameters and settings.
Access Level for Protection Settings Access Level for Control Settings


Legend: Lv = Level
Parameters are read only
Parameters can be modified

## How to find out what access areas/levels are unlocked?

The menu [Device para\Access levels] provides the information, which access areas (authorizations) are currently unlocked.

As soon as there is an unlocked access area (authorization) above »Read Only-LvO«, this will be indicated by an unlocked lock symbol within the upper right corner of the device display.

## Unlocking Access Areas

Within the menu [Device Para\Access level] access areas can be unlocked or locked (at the HMI).

## Changing Passwords

Passwords can be changed at the device in menu [Device Para/Passwords] or by means of the Smart view software.

## NOT/CE A password must be a user-defined combination of the numerics 1, 2, 3 and 4.

All other characters and keys won't be accepted.

When you want to change a password, the existing one has to be entered firstly. The new password (up to 8 digits) is then to be confirmed twice. Please proceed as follows:

- In order to change the password please enter your old password by means of the Softkeys followed by pressing the »OK«-key.
■ Enter the new password by means of the Softkeys and press the »OK«-key.
- Afterwards enter the new password once again by means of the Softkeys and press the »OK«-key.


## Deactivating Passwords during Commissioning

It is possible optionally to deactivate passwords during commissioning. It is not allowed to use this feature for other purposes than commissioning. In order to deactivate the password protection replace the existing password with an empty one for the corresponding access areas. All access authorizations (access areas) that are protected by an empty password are unlocked permanent. That means, that all parameters and settings within those areas can be modified without any further access authorization. It is no longer possible to change into the » Read Only-Lv0« level (the protective device will also not fall back into this mode if the maximum edit time is expired ( t -max-Edit).

## A WARNING <br> You have to ensure that all passwords are activated again after the commissioning. That means, that all access areas have to be protected by a password that consists of 4 digits as minimum. <br> Woodward will not overtake any liability for any personal injuries or damages that are caused by deactivated password protection.

## Password Entry at the Panel

Passwords can be entered by way of the Softkeys.


Example: For password (3244) press successively:

- Softkey 3
- Softkey 2
- Softkey 4

■ Softkey 4

## Password Forgotten

By pressing the» C « key during cold booting a reset menu will be called up. By selecting »Reset All Passwords?« and confirming with »Yes« all passwords will be reset to the defaults »1234«.

## Parameter Setting at the HMI

Every parameter belongs to an access area. Editing and changing of a parameter requires a sufficient access authorization.
The User can obtain the required access authorizations by unlocking access areas in advance of parameter changes or context-dependent. In the following sections both options will be explained.

## Option 1: Direct Authorization for an Access Area

Call up menu [Device Para\Access level].

Select the required access level respectively navigate to the required access authorization (level). Enter the required password. If the correct password has been entered, the required access authorization will be obtained. In order to do the parameter changes please proceed as follows:

Move to the parameter you want to change by using the Softkeys. If the parameter is selected, the lower right corner of the display should show a »Wrench« symbol.

```
B
```

This symbol indicates, that the parameter is unlocked and can be edited, because the required access authorization is available. Confirm the Softkey »Wrench«, in order to edit the parameter. Change the parameter.

Now you can:

- save the change you made and have them adopted by the system or:
- change additional parameters and save finally all the altered parameters and have them adopted by the system.

To save parameter changes immediately,

- press the »OK« key for saving changed parameters directly and to have them adopted by the device. Confirm the parameter changes by pressing the »Yes« Softkey or dismiss by pressing »No«.

To change additional parameters and save afterwards,
move to other parameters and change them

## NOTICE

A star symbol in front of the changed parameters indicates that the modifications have only been saved temporarily, they are not yet finally stored and adopted by the device.
In order to make things easier to follow, especially where complex parameter changes are involved, on every superior/higher-ranking menu level the intended change of the parameter is indicated by the star symbol (star trace). This makes it possible to control or follow up from the main menu level at any time where parameter changes have been made and have not been saved finally.
In addition to the star trace to the temporary saved parameter changes, a general parameter changing symbol is faded-in at the left corner of the display, and so it is possible from each point of the menu tree to see that there are parameter changes still not adopted by the device.

Press the »OK« key to initiate the final storage of all parameter changes. Confirm the parameter changes by pressing the »Yes« softkey or dismiss by pressing Softkey »No«.

NOT/CE $\quad \begin{aligned} & \text { If the display shows a Key Symbol instead of a Wrench-Symbol, this will } \\ & \text { indicate, that the required access authorization is not available. }\end{aligned}$

## CH

In order to edit this parameter, a password is required, that provides the required authorization.

Plausibility check: In order to prevent obvious wrong settings the device monitors constantly all temporary saved parameter changes. If the device detects an implausibility, this is indicated by a question mark in front of the respective parameter.
In order to make things easier to follow up, especially where complex parameter changes are involved, on every superior/higher-ranking menu level, above the temporarily saved parameters an invalidity is indicated by the question mark (plausibility trace). This makes it possible to control or follow from the main menu level at any time where implausibilities are intended to be saved.

In addition to the question mark trace to the temporary saved implausible parameter changes a general implausibility symbol/question mark is faded-in at the left corner of the display, and so it is possible to see from each point of the menu tree that implausibilities have been detected by the device.

A star/parameter change indication is always overwritten by the question mark/implausibility symbol.

If a device detects an implausibility, it rejects saving and adopting of the parameters.

## Option 2: Context-dependent Access Authorization

Navigate to the parameter, that is to be changed. If the parameter is selected, the lower right corner of the display shows a »Key«-Symbol.

## CH

This symbol indicates, that the device is still within the »Read Only LvO«-Level, or that the current level does not provide sufficient access rights to allow editing of this parameter.

Press this Softkey and enter the password ${ }^{11}$ that provides access to this parameter.
Please change the parameter settings.
${ }^{1)}$ This page provides also information, which password/access authorization is required to do changes on this parameter.

Now you can:

- save the change you made and have them adopted by the system or:
- change additional parameters and save finally all the altered parameters and have them adopted by the system.

To save parameter changes immediately,
press the »OK« key for saving changed parameters directly and to have them adopted by the device. Confirm the parameter changes by pressing the »Yes« Softkey or dismiss by pressing »No«.

To change additional parameters and save afterwards,

- move to other parameters and change them


## NOTICE

A star symbol in front of the changed parameters indicates that the modifications have only been saved temporary, they are not yet finally stored and adopted by the device.
In order to make things easier to follow up, especially where complex parameter changes are involved, on every superior/higher-ranking menu level the intended change of the parameter is indicated by the star symbol (star trace). This makes it possible to control or follow from the main menu level at any time where parameter changes have been made and have not been saved finally.
In addition to the star trace to the temporary saved parameter changes, a general parameter changing symbol is faded-in at the left corner of the display, and so it is possible from each point of the menu tree to see that there are parameter changes still not adopted by the device.

Press the »OK« key to initiate the final storage of all parameter changes. Confirm the parameter changes by pressing the »Yes« Softkey or dismiss by pressing Softkey »No«.

Plausibility check: In order to prevent obvious wrong settings the device monitors constantly all temporary saved parameter changes. If the device detects an implausibility, this is indicated by a question mark in front of the respective parameter.
In order to make things easier to follow up, especially where complex parameter changes are involved, on every superior/higher-ranking menu level, above the temporary saved parameters an invalidity is indicated by the question mark (plausibility trace). This makes it possible to control or follow from the main menu level at any time where implausibilities are intended to be saved.

In addition to the question mark trace to the temporary saved implausible parameter changes a general implausibility symbol/question mark is faded-in at the left corner of the display, and so it is possible to see from each point of the menu tree that implausibilities have been detected by the device.

A star/parameter change indication is always overwritten by the question mark/implausibility symbol.

If a device detects an implausibility, it rejects saving and adopting of the parameters.

## Setting Groups

## Setting Group Switch

Within the menu »Protection Para/P-Set Switch« you have the following possibilities:

- To set one of the four setting groups active manually.
- To assign a signal to each setting group that sets this group to active.
- Scada switches the setting groups.

| Option | Setting Group Switch |
| :--- | :--- |
| Manual Selection | Switch over, if another setting group is chosen manually within the menu <br> "Protection Para/P-Set Switch" |
| Via Input Function <br> (e.g. Digital Input) | Switch over not until the request is clear. <br> That means, if there is more or less than one request signal active, no switch <br> over will be executed. |
|  | Example:: <br> DI3 is assigned onto Parameter set 1. DI3 is active "1". <br> DI4 is assigned onto Parameter set 2. DI4 is inactive "0". |
|  | Now the device should switch from parameter set 1 to parameter set 2. . Therefore <br> at first DI3 has to become inactive "0". Than DI4 has to be active "1". |
|  | If DI4 becomes again inactive "0", parameter set 2 will remain active "1" as long <br> as there is no clear request (e.g. DI3 becomes active "1", all the other <br> assignments are inactive "0") |
| Via Scada | Switch over if there is a clear SCADA request. <br> Otherwise no switch over will be executed. |

## NOT/CE $\quad$ The description of the parameters can be found within chapter System Parameters.

## Signals that can be used for PSS

| Name | Description |
| :---: | :---: |
| --- | No assignment |
| CTS[1].Alarm | Signal: Alarm Current Transformer Measuring Circuit Supervision |
| CTS[2].Alarm | Signal: Alarm Current Transformer Measuring Circuit Supervision |
| DI Slot X1.DI 1 | Signal: Digital Input |
| DI Slot X1.DI 2 | Signal: Digital Input |
| DI Slot X1.DI 3 | Signal: Digital Input |
| DI Slot X1.DI 4 | Signal: Digital Input |
| DI Slot X1.DI 5 | Signal: Digital Input |
| DI Slot X1.DI 6 | Signal: Digital Input |
| DI Slot X1.DI 7 | Signal: Digital Input |
| DI Slot X1.DI 8 | Signal: Digital Input |
| DI Slot X6.DI 1 | Signal: Digital Input |
| DI Slot X6.DI 2 | Signal: Digital Input |
| DI Slot X6.DI 3 | Signal: Digital Input |
| DI Slot X6.DI 4 | Signal: Digital Input |
| DI Slot X6.DI 5 | Signal: Digital Input |
| DI Slot X6.DI 6 | Signal: Digital Input |
| DI Slot X6.DI 7 | Signal: Digital Input |
| DI Slot X6.DI 8 | Signal: Digital Input |
| Logics.LE1.Gate Out | Signal: Output of the logic gate |
| Logics.LE1.Timer Out | Signal: Timer Output |
| Logics.LE1.Out | Signal: Latched Output (Q) |
| Logics.LE1.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE2.Gate Out | Signal: Output of the logic gate |
| Logics.LE2.Timer Out | Signal: Timer Output |
| Logics.LE2.Out | Signal: Latched Output (Q) |
| Logics.LE2.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE3.Gate Out | Signal: Output of the logic gate |
| Logics.LE3.Timer Out | Signal: Timer Output |
| Logics.LE3.Out | Signal: Latched Output (Q) |
| Logics.LE3.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE4.Gate Out | Signal: Output of the logic gate |
| Logics.LE4.Timer Out | Signal: Timer Output |
| Logics.LE4.Out | Signal: Latched Output (Q) |
| Logics.LE4.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE5.Gate Out | Signal: Output of the logic gate |
| Logics.LE5.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE5.Out | Signal: Latched Output (Q) |
| Logics.LE5.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE6.Gate Out | Signal: Output of the logic gate |
| Logics.LE6.Timer Out | Signal: Timer Output |
| Logics.LE6.Out | Signal: Latched Output (Q) |
| Logics.LE6.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE7.Gate Out | Signal: Output of the logic gate |
| Logics.LE7.Timer Out | Signal: Timer Output |
| Logics.LE7.Out | Signal: Latched Output (Q) |
| Logics.LE7.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE8.Gate Out | Signal: Output of the logic gate |
| Logics.LE8.Timer Out | Signal: Timer Output |
| Logics.LE8.Out | Signal: Latched Output (Q) |
| Logics.LE8.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE9.Gate Out | Signal: Output of the logic gate |
| Logics.LE9.Timer Out | Signal: Timer Output |
| Logics.LE9.Out | Signal: Latched Output (Q) |
| Logics.LE9.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE10.Gate Out | Signal: Output of the logic gate |
| Logics.LE10.Timer Out | Signal: Timer Output |
| Logics.LE10.Out | Signal: Latched Output (Q) |
| Logics.LE10.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE11.Gate Out | Signal: Output of the logic gate |
| Logics.LE11.Timer Out | Signal: Timer Output |
| Logics.LE11.Out | Signal: Latched Output (Q) |
| Logics.LE11.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE12.Gate Out | Signal: Output of the logic gate |
| Logics.LE12.Timer Out | Signal: Timer Output |
| Logics.LE12.Out | Signal: Latched Output (Q) |
| Logics.LE12.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE13.Gate Out | Signal: Output of the logic gate |
| Logics.LE13.Timer Out | Signal: Timer Output |
| Logics.LE13.Out | Signal: Latched Output (Q) |
| Logics.LE13.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE14.Gate Out | Signal: Output of the logic gate |
| Logics.LE14.Timer Out | Signal: Timer Output |
| Logics.LE14.Out | Signal: Latched Output (Q) |
| Logics.LE14.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE15.Gate Out | Signal: Output of the logic gate |
| Logics.LE15.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE15.Out | Signal: Latched Output (Q) |
| Logics.LE15.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE16.Gate Out | Signal: Output of the logic gate |
| Logics.LE16.Timer Out | Signal: Timer Output |
| Logics.LE16.Out | Signal: Latched Output (Q) |
| Logics.LE16.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE17.Gate Out | Signal: Output of the logic gate |
| Logics.LE17.Timer Out | Signal: Timer Output |
| Logics.LE17.Out | Signal: Latched Output (Q) |
| Logics.LE17.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE18.Gate Out | Signal: Output of the logic gate |
| Logics.LE18.Timer Out | Signal: Timer Output |
| Logics.LE18.Out | Signal: Latched Output (Q) |
| Logics.LE18.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE19.Gate Out | Signal: Output of the logic gate |
| Logics.LE19.Timer Out | Signal: Timer Output |
| Logics.LE19.Out | Signal: Latched Output (Q) |
| Logics.LE19.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE20.Gate Out | Signal: Output of the logic gate |
| Logics.LE20.Timer Out | Signal: Timer Output |
| Logics.LE20.Out | Signal: Latched Output (Q) |
| Logics.LE20.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE21.Gate Out | Signal: Output of the logic gate |
| Logics.LE21.Timer Out | Signal: Timer Output |
| Logics.LE21.Out | Signal: Latched Output (Q) |
| Logics.LE21.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE22.Gate Out | Signal: Output of the logic gate |
| Logics.LE22.Timer Out | Signal: Timer Output |
| Logics.LE22.Out | Signal: Latched Output (Q) |
| Logics.LE22.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE23.Gate Out | Signal: Output of the logic gate |
| Logics.LE23.Timer Out | Signal: Timer Output |
| Logics.LE23.Out | Signal: Latched Output (Q) |
| Logics.LE23.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE24.Gate Out | Signal: Output of the logic gate |
| Logics.LE24.Timer Out | Signal: Timer Output |
| Logics.LE24.Out | Signal: Latched Output (Q) |
| Logics.LE24.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE25.Gate Out | Signal: Output of the logic gate |
| Logics.LE25.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE25.Out | Signal: Latched Output (Q) |
| Logics.LE25.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE26.Gate Out | Signal: Output of the logic gate |
| Logics.LE26.Timer Out | Signal: Timer Output |
| Logics.LE26.Out | Signal: Latched Output (Q) |
| Logics.LE26.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE27.Gate Out | Signal: Output of the logic gate |
| Logics.LE27.Timer Out | Signal: Timer Output |
| Logics.LE27.Out | Signal: Latched Output (Q) |
| Logics.LE27.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE28.Gate Out | Signal: Output of the logic gate |
| Logics.LE28.Timer Out | Signal: Timer Output |
| Logics.LE28.Out | Signal: Latched Output (Q) |
| Logics.LE28.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE29.Gate Out | Signal: Output of the logic gate |
| Logics.LE29.Timer Out | Signal: Timer Output |
| Logics.LE29.Out | Signal: Latched Output (Q) |
| Logics.LE29.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE30.Gate Out | Signal: Output of the logic gate |
| Logics.LE30.Timer Out | Signal: Timer Output |
| Logics.LE30.Out | Signal: Latched Output (Q) |
| Logics.LE30.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE31.Gate Out | Signal: Output of the logic gate |
| Logics.LE31.Timer Out | Signal: Timer Output |
| Logics.LE31.Out | Signal: Latched Output (Q) |
| Logics.LE31.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE32.Gate Out | Signal: Output of the logic gate |
| Logics.LE32.Timer Out | Signal: Timer Output |
| Logics.LE32.Out | Signal: Latched Output (Q) |
| Logics.LE32.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE33.Gate Out | Signal: Output of the logic gate |
| Logics.LE33.Timer Out | Signal: Timer Output |
| Logics.LE33.Out | Signal: Latched Output (Q) |
| Logics.LE33.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE34.Gate Out | Signal: Output of the logic gate |
| Logics.LE34.Timer Out | Signal: Timer Output |
| Logics.LE34.Out | Signal: Latched Output (Q) |
| Logics.LE34.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE35.Gate Out | Signal: Output of the logic gate |
| Logics.LE35.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE35.Out | Signal: Latched Output (Q) |
| Logics.LE35.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE36.Gate Out | Signal: Output of the logic gate |
| Logics.LE36.Timer Out | Signal: Timer Output |
| Logics.LE36.Out | Signal: Latched Output (Q) |
| Logics.LE36.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE37.Gate Out | Signal: Output of the logic gate |
| Logics.LE37.Timer Out | Signal: Timer Output |
| Logics.LE37.Out | Signal: Latched Output (Q) |
| Logics.LE37.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE38.Gate Out | Signal: Output of the logic gate |
| Logics.LE38.Timer Out | Signal: Timer Output |
| Logics.LE38.Out | Signal: Latched Output (Q) |
| Logics.LE38.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE39.Gate Out | Signal: Output of the logic gate |
| Logics.LE39.Timer Out | Signal: Timer Output |
| Logics.LE39.Out | Signal: Latched Output (Q) |
| Logics.LE39.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE40.Gate Out | Signal: Output of the logic gate |
| Logics.LE40.Timer Out | Signal: Timer Output |
| Logics.LE40.Out | Signal: Latched Output (Q) |
| Logics.LE40.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE41.Gate Out | Signal: Output of the logic gate |
| Logics.LE41.Timer Out | Signal: Timer Output |
| Logics.LE41.Out | Signal: Latched Output (Q) |
| Logics.LE41.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE42.Gate Out | Signal: Output of the logic gate |
| Logics.LE42.Timer Out | Signal: Timer Output |
| Logics.LE42.Out | Signal: Latched Output (Q) |
| Logics.LE42.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE43.Gate Out | Signal: Output of the logic gate |
| Logics.LE43.Timer Out | Signal: Timer Output |
| Logics.LE43.Out | Signal: Latched Output (Q) |
| Logics.LE43.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE44.Gate Out | Signal: Output of the logic gate |
| Logics.LE44.Timer Out | Signal: Timer Output |
| Logics.LE44.Out | Signal: Latched Output (Q) |
| Logics.LE44.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE45.Gate Out | Signal: Output of the logic gate |
| Logics.LE45.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE45.Out | Signal: Latched Output (Q) |
| Logics.LE45.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE46.Gate Out | Signal: Output of the logic gate |
| Logics.LE46.Timer Out | Signal: Timer Output |
| Logics.LE46.Out | Signal: Latched Output (Q) |
| Logics.LE46.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE47.Gate Out | Signal: Output of the logic gate |
| Logics.LE47.Timer Out | Signal: Timer Output |
| Logics.LE47.Out | Signal: Latched Output (Q) |
| Logics.LE47.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE48.Gate Out | Signal: Output of the logic gate |
| Logics.LE48.Timer Out | Signal: Timer Output |
| Logics.LE48.Out | Signal: Latched Output (Q) |
| Logics.LE48.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE49.Gate Out | Signal: Output of the logic gate |
| Logics.LE49.Timer Out | Signal: Timer Output |
| Logics.LE49.Out | Signal: Latched Output (Q) |
| Logics.LE49.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE50.Gate Out | Signal: Output of the logic gate |
| Logics.LE50.Timer Out | Signal: Timer Output |
| Logics.LE50.Out | Signal: Latched Output (Q) |
| Logics.LE50.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE51.Gate Out | Signal: Output of the logic gate |
| Logics.LE51.Timer Out | Signal: Timer Output |
| Logics.LE51.Out | Signal: Latched Output (Q) |
| Logics.LE51.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE52.Gate Out | Signal: Output of the logic gate |
| Logics.LE52.Timer Out | Signal: Timer Output |
| Logics.LE52.Out | Signal: Latched Output (Q) |
| Logics.LE52.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE53.Gate Out | Signal: Output of the logic gate |
| Logics.LE53.Timer Out | Signal: Timer Output |
| Logics.LE53.Out | Signal: Latched Output (Q) |
| Logics.LE53.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE54.Gate Out | Signal: Output of the logic gate |
| Logics.LE54.Timer Out | Signal: Timer Output |
| Logics.LE54.Out | Signal: Latched Output (Q) |
| Logics.LE54.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE55.Gate Out | Signal: Output of the logic gate |
| Logics.LE55.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE55.Out | Signal: Latched Output (Q) |
| Logics.LE55.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE56.Gate Out | Signal: Output of the logic gate |
| Logics.LE56.Timer Out | Signal: Timer Output |
| Logics.LE56.Out | Signal: Latched Output (Q) |
| Logics.LE56.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE57.Gate Out | Signal: Output of the logic gate |
| Logics.LE57.Timer Out | Signal: Timer Output |
| Logics.LE57.Out | Signal: Latched Output (Q) |
| Logics.LE57.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE58.Gate Out | Signal: Output of the logic gate |
| Logics.LE58.Timer Out | Signal: Timer Output |
| Logics.LE58.Out | Signal: Latched Output (Q) |
| Logics.LE58.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE59.Gate Out | Signal: Output of the logic gate |
| Logics.LE59.Timer Out | Signal: Timer Output |
| Logics.LE59.Out | Signal: Latched Output (Q) |
| Logics.LE59.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE60.Gate Out | Signal: Output of the logic gate |
| Logics.LE60.Timer Out | Signal: Timer Output |
| Logics.LE60.Out | Signal: Latched Output (Q) |
| Logics.LE60.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE61.Gate Out | Signal: Output of the logic gate |
| Logics.LE61.Timer Out | Signal: Timer Output |
| Logics.LE61.Out | Signal: Latched Output (Q) |
| Logics.LE61.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE62.Gate Out | Signal: Output of the logic gate |
| Logics.LE62.Timer Out | Signal: Timer Output |
| Logics.LE62.Out | Signal: Latched Output (Q) |
| Logics.LE62.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE63.Gate Out | Signal: Output of the logic gate |
| Logics.LE63.Timer Out | Signal: Timer Output |
| Logics.LE63.Out | Signal: Latched Output (Q) |
| Logics.LE63.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE64.Gate Out | Signal: Output of the logic gate |
| Logics.LE64.Timer Out | Signal: Timer Output |
| Logics.LE64.Out | Signal: Latched Output (Q) |
| Logics.LE64.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE65.Gate Out | Signal: Output of the logic gate |
| Logics.LE65.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE65.Out | Signal: Latched Output (Q) |
| Logics.LE65.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE66.Gate Out | Signal: Output of the logic gate |
| Logics.LE66.Timer Out | Signal: Timer Output |
| Logics.LE66.Out | Signal: Latched Output (Q) |
| Logics.LE66.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE67.Gate Out | Signal: Output of the logic gate |
| Logics.LE67.Timer Out | Signal: Timer Output |
| Logics.LE67.Out | Signal: Latched Output (Q) |
| Logics.LE67.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE68.Gate Out | Signal: Output of the logic gate |
| Logics.LE68.Timer Out | Signal: Timer Output |
| Logics.LE68.Out | Signal: Latched Output (Q) |
| Logics.LE68.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE69.Gate Out | Signal: Output of the logic gate |
| Logics.LE69.Timer Out | Signal: Timer Output |
| Logics.LE69.Out | Signal: Latched Output (Q) |
| Logics.LE69.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE70.Gate Out | Signal: Output of the logic gate |
| Logics.LE70.Timer Out | Signal: Timer Output |
| Logics.LE70.Out | Signal: Latched Output (Q) |
| Logics.LE70.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE71.Gate Out | Signal: Output of the logic gate |
| Logics.LE71.Timer Out | Signal: Timer Output |
| Logics.LE71.Out | Signal: Latched Output (Q) |
| Logics.LE71.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE72.Gate Out | Signal: Output of the logic gate |
| Logics.LE72.Timer Out | Signal: Timer Output |
| Logics.LE72.Out | Signal: Latched Output (Q) |
| Logics.LE72.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE73.Gate Out | Signal: Output of the logic gate |
| Logics.LE73.Timer Out | Signal: Timer Output |
| Logics.LE73.Out | Signal: Latched Output (Q) |
| Logics.LE73.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE74.Gate Out | Signal: Output of the logic gate |
| Logics.LE74.Timer Out | Signal: Timer Output |
| Logics.LE74.Out | Signal: Latched Output (Q) |
| Logics.LE74.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE75.Gate Out | Signal: Output of the logic gate |
| Logics.LE75.Timer Out | Signal: Timer Output |


| Name | Description |
| :--- | :--- |
| Logics.LE75.Out | Signal: Latched Output (Q) |
| Logics.LE75.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE76.Gate Out | Signal: Output of the logic gate |
| Logics.LE76.Timer Out | Signal: Timer Output |
| Logics.LE76.Out | Signal: Latched Output (Q) |
| Logics.LE76.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE77.Gate Out | Signal: Output of the logic gate |
| Logics.LE77.Timer Out | Signal: Timer Output |
| Logics.LE77.Out | Signal: Latched Output (Q) |
| Logics.LE77.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE78.Gate Out | Signal: Output of the logic gate |
| Logics.LE78.Timer Out | Signal: Timer Output |
| Logics.LE78.Out | Signal: Latched Output (Q) |
| Logics.LE78.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE79.Gate Out | Signal: Output of the logic gate |
| Logics.LE79.Timer Out | Signal: Timer Output |
| Logics.LE79.Out | Signal: Latched Output (Q) |
| Logics.LE79.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE80.Gate Out | Signal: Output of the logic gate |
| Logics.LE80.Timer Out | Signal: Timer Output |
| Logics.LE80.Out | Signal: Latched Output (Q) |
| Logics.LE80.Out inverted | Signal: Negated Latched Output (Q NOT) |

## Setting Lock

By means of the Setting Lock, parameter settings can be locked against any changes as long as the assigned signal is true (active). The Setting Lock can be activated within menu [Field Para/General Settings/Lock Settings].

## Bypass of the Setting Lock

The setting lock can be overwritten (temporarily) in case that the status of the signal that activates the setting lock cannot be modified or should not be modified (spare key).

The Setting Lock can be bypassed by means of the Direct Control Parameter »Setting Lock Bypass" [Field Para/General Settings/Setting Lock Bypass]. The protective device will fall back into the Setting Lock either:

- Directly after a parameter change has been saved, else
- 10 minutes after the bypass has been activated.


## Device Parameters

Sys

## Date and Time

In menu »Device parameters/Date/Time« you can set date and time.

## Version

Within this menu »Device parameters/Version« you can obtain information on the soft- and hardware version.

## Display of ANSI-Codes

The display of ANSI codes can be activated within menu »Device parameters/HMI//Display ANSI device numbers"

## TCP/IP Settings

Within menu »Device Para / TCP/IP/TCP/IP Config« the TCP/IP settings have to be set.

The first-time setting of the TCP/IP Parameters can be done at the panel (HMI) only.

## NOTICE <br> Establishing a connection via TCP/IP to the device is only possible if your device is equipped with an Ethernet Interface (RJ45).

Contact your IT administrator in order to establish the network connection.
Set the TCP/IP Parameters
Call up »Device parameter/TCP/IP« at the HMI (panel) and set the following parameters:

- TCP/IP address
- Subnetmask
- Gateway


## Direct Commands of the System Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Ack BO LED Scd TCmd | Reset the binary output relays, LEDs, SCADA and the Trip Command. | inactive, active | inactive | [Operation <br> /Acknowledge] |
| $\otimes$ |  |  |  |  |
| Ack LED | All acknowledgeable LEDs will be acknowledged. | inactive, active | inactive | [Operation <br> IAcknowledge] |
| $\otimes$ |  |  |  |  |
| Ack BO | All acknowledgeable binary output relays will be acknowledged. | inactive, active | inactive | [Operation <br> /Acknowledge] |
| $\mathbb{\otimes}$ |  |  |  |  |
| Ack Scada | SCADA will be acknowledged. | inactive, active | inactive | [Operation <br> /Acknowledge] |
| $\otimes$ |  |  |  |  |
| Reboot | Rebooting the device. | no, yes | no | [Service <br> /General] |
| $\otimes$ |  |  |  |  |
| Setting Lock Bypass | Short-period unlock of the Setting Lock | inactive, active | inactive | [Field Para <br> /General settings] |
| $\otimes$ |  |  |  |  |

CAUTION
CAUTION, rebooting the device manually will release the Supervision Contact.

## Global Protection Parameters of the System

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| PSet-Switch | Switching Parameter Set | PS1, <br> PS2, <br> PS3, <br> PS4, <br> PSS via Inp fct, <br> PSS via Scada | PS1 | [Protection Para /PSet-Switch] |
| PS1: activated by | This Setting Group will be the active one if: The Parameter Setting Group Switch is set to "Switch via Input" and the other three input functions are inactive at the same time. In case that there is more than one input function active, no Parameter Setting Group Switch will be executed. In case all input functions are inactive, the device will keep working with the Setting Group that was activated lastly. <br> Only available if: PSet-Switch = PSS via Inp fct | 1..n, PSS | -.- | [Protection Para /PSet-Switch] |
| PS2: activated by | This Setting Group will be the active one if: The Parameter Setting Group Switch is set to "Switch via Input" and the other three input functions are inactive at the same time. In case that there is more than one input function active, no Parameter Setting Group Switch will be executed. In case all input functions are inactive, the device will keep working with the Setting Group that was activated lastly. <br> Only available if: PSet-Switch = PSS via Inp fct | 1..n, PSS | -.- | [Protection Para /PSet-Switch] |
| PS3: activated by | This Setting Group will be the active one if: The Parameter Setting Group Switch is set to "Switch via Input" and the other three input functions are inactive at the same time. In case that there is more than one input function active, no Parameter Setting Group Switch will be executed. In case all input functions are inactive, the device will keep working with the Setting Group that was activated lastly. <br> Only available if: PSet-Switch = PSS via Inp fct | 1..n, PSS | $\because-$ | [Protection Para /PSet-Switch] |
| PS4: activated by | This Setting Group will be the active one if: The Parameter Setting Group Switch is set to "Switch via Input" and the other three input functions are inactive at the same time. In case that there is more than one input function active, no Parameter Setting Group Switch will be executed. In case all input functions are inactive, the device will keep working with the Setting Group that was activated lastly. <br> Only available if: PSet-Switch = PSS via Inp fct | 1..n, PSS | $\because-$ | [Protection Para /PSet-Switch] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Remote Reset | Enables or disables the option to acknowledge from external/remote via signals (assignments) and SCADA. | inactive, active | active | [Device Para /Ex Acknowledge] |
| Ack LED | All acknowledgeable LEDs will be acknowledged if the state of the assigned signal becomes true. <br> Only available if: Remote Reset = active | 1..n, Assignment List | -.- | [Device Para <br> /Ex Acknowledge] |
| Ack BO | All acknowledgeable binary output relays will be acknowledged if the state of the assigned signal becomes true. <br> Only available if: Remote Reset = active | 1..n, Assignment List | --- | [Device Para <br> /Ex Acknowledge] |
| Ack Scada | SCADA will be acknowledged if the state of the assigned signal becomes true. <br> Only available if: Remote Reset = active | 1..n, Assignment List | -.- | [Device Para <br> /Ex Acknowledge] |
| Scaling | Display of the measured values as primary, secondary or per unit values | Per unit values, Primary values, Secondary values | Per unit values | [Device Para <br> /Measurem Display <br> /General settings] |
| Lock Settings | No parameters can be changed as long as this input is true. The parameter settings are locked. | 1..n, Assignment List | -- | [Field Para <br> /General settings] |

## System Module Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| Ack LED-I | Module input state: LEDs acknowledgement by digital input | [Device Para <br> /Ex Acknowledge] |
| Ack BO-I | Module input state: Acknowledgement of the binary Output <br> Relays | [Device Para <br> /Ex Acknowledge] |
| Ack Scada-I | Module input state: Acknowledge Scada via digital input. The <br> replica that SCADA has got from the device is to be reset. | [Device Para <br> /Ex Acknowledge] |
| PS1-I | State of the module input respectively of the signal, that should <br> activate this Parameter Setting Group. | [Protection Para <br> /PSet-Switch] |
| PS2-I | State of the module input respectively of the signal, that should <br> activate this Parameter Setting Group. | [Protection Para <br> /PSet-Switch] |
| PS3-I | State of the module input respectively of the signal, that should <br> activate this Parameter Setting Group. | [Protection Para <br> /PSet-Switch] |
| PS4-I | State of the module input respectively of the signal, that should <br> activate this Parameter Setting Group. | [Protection Para <br> /PSet-Switch] |
| Lock Settings-I | State of the module input: No parameters can be changed as <br> long as this input is true. The parameter settings are locked. | [Field Para <br> /General settings] |

## System Module Signals

| Signal | Description |
| :---: | :---: |
| Reboot | Signal: Rebooting the device: 1=Normal Start-up; 2=Reboot by the Operator; 3=Reboot by means of Super Reset; 4=outdated; 5=outdated; 6=Unknown Error Source; 7=Forced Reboot (initiated by the main processor); 8=Exceeded Time Limit of the Protection Cycle; 9=Forced Reboot (initiated by the digital signal processor); 10=Exceeded Time Limit of the Measured Value Processing; 11=Sags of the Supply Voltage; 12=Illegal Memory Access. |
| Act Set | Signal: Active Parameter Set |
| PS 1 | Signal: Parameter Set 1 |
| PS 2 | Signal: Parameter Set 2 |
| PS 3 | Signal: Parameter Set 3 |
| PS 4 | Signal: Parameter Set 4 |
| PSS manual | Signal: Manual Switch over of a Parameter Set |
| PSS via Scada | Signal: Parameter Set Switch via Scada. Write into this output byte the integer of the parameter set that should become acitve (e.g. 4 => Switch onto parameter set 4). |
| PSS via Inp fct | Signal: Parameter Set Switch via input function |
| min 1 param changed | Signal: At least one parameter has been changed |
| Setting Lock Bypass | Signal: Short-period unlock of the Setting Lock |
| Param to be saved | Number of parameters to be saved. 0 means that all parameter changes are overtaken. |
| Ack LED | Signal: LEDs acknowledgement |
| Ack BO | Signal: Acknowledgement of the Binary Outputs |
| Ack Counter | Signal: Reset of all Counters |
| Ack Scada | Signal: Acknowledge Scada |
| Ack TripCmd | Signal: Reset Trip Command |
| Ack LED-HMI | Signal: LEDs acknowledgement :HMI |
| Ack BO-HMI | Signal: Acknowledgement of the Binary Outputs :HMI |
| Ack Counter-HMI | Signal: Reset of all Counters :HMI |
| Ack Scada-HMI | Signal: Acknowledge Scada :HMI |
| Ack TripCmd-HMI | Signal: Reset Trip Command :HMI |
| Ack LED-Sca | Signal: LEDs acknowledgement :SCADA |
| Ack BO-Sca | Signal: Acknowledgement of the Binary Outputs :SCADA |
| Ack Counter-Sca | Signal: Reset of all Counters :SCADA |
| Ack Scada-Sca | Signal: Acknowledge Scada : SCADA |
| Ack TripCmd-Sca | Signal: Reset Trip Command :SCADA |
| Res OperationsCr | Signal:: Res OperationsCr |
| Res AlarmCr | Signal:: Res AlarmCr |
| Res TripCmdCr | Signal:: Res TripCmdCr |
| Res TotalCr | Signal:: Res TotalCr |

## Special Values of the System Module

| Value | Description | Menu path |
| :--- | :--- | :--- |
| Build | Build | [Device Para <br> Nersion] |
| Version | Version | [Device Para <br> Nersion] |
| Operating hours Cr | Operating hours counter of the protective device | [Operation <br> ICount and RevData <br> ISys] |

## Field Parameters

## Field Para

Within the field parameters you can set all parameters, that are relevant for the primary side and the mains operational method like frequency, primary and secondary values...

## General Field Parameters

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Phase Sequence | Phase Sequence direction | ABC, <br> ACB | ABC | [Field Para |
| /General settings] |  |  |  |  |
| f | Nominal frequency | 50 Hz, <br> 60 Hz | 50 Hz | [Field Para |
| /General settings] |  |  |  |  |

Field Parameters - Phase Differential Current

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Id Cutoff Level | The Differential Current shown in the Display or within <br> the PC Software will be displayed as zero, if the <br> Differential Current falls below this Cutoff Level. This <br> parameter has no impact on recorders. | $0.0-0.100$ In | 0.005 In | [Device Para <br> /Measurem Display <br> /Diff] |
| IS Cutoff Level | The Restraint Current shown in the Display or within <br> the PC Software will be displayed as zero, if the <br> Restraint Current falls below this Cutoff Level. This <br> parameter has no impact on recorders. | $0.0-0.100 \mathrm{In}$ | 0.0051 ln | [Device Para <br> /Measurem Display <br> /Diff] |

## Field Parameters - Earth Differential Current

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| IdG Cutoff Level | The Ground Differential Current shown in the Display or <br> within the PC Software will be displayed as zero, if the <br> Ground Differential Current falls below this Cutoff <br> Level. This parameter has no impact on recorders. | $0.0-0.100 \mathrm{In}$ | 0.005 ln | [Device Para <br> /Measurem Display <br> /Diff] |
| ISG Cutoff Level | The GroundRestraint Current shown in the Display or <br> within the PC Software will be displayed as zero, if the <br> Ground Restraint Current falls below this Cutoff Level. <br> This parameter has no impact on recorders. | $0.0-0.100 \mathrm{In}$ | 0.005 In | [Device Para <br> /Measurem Display |
| /Diff] |  |  |  |  |

Field Parameters - Current Related


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| ECT dir | Earth fault protection with directional feature depends also on the correct wiring of the earth current transformer. An incorrect polarity/wiring can be corrected by means of the settings " $0^{\circ}$ " or " $180^{\circ}$ ". The operator has the possibility of turning the current vector by 180 degrees (change of sign) without modification of the wiring. This means, that - in terms of figures - the determined current indicator was turned by $180^{\circ}$ by the device. | $\begin{aligned} & \hline 0^{\circ}, \\ & 180^{\circ} \end{aligned}$ | $0^{\circ}$ | [Field Para /CT W1] |
| IL1, IL2, IL3 Cutoff Level | The Current shown in the Display or within the PC Software will be displayed as zero, if the Current falls below this Cutoff Level. This parameter has no impact on recorders. | 0.0-0.100ln | 0.005In | [Device Para <br> /Measurem Display <br> /CT W1] |
| IG meas Cutoff Level | The measured Earth Current shown in the Display or within the PC Software will be displayed as zero, if the measured Earth Current falls below this Cutoff Level. This parameter has no impact on recorders. | 0.0-0.100ln | 0.005In | [Device Para <br> /Measurem Display <br> /CT W1] |
| IG calc Cutoff Level | The calculated Earth Current shown in the Display or within the PC Software will be displayed as zero, if the calculated Earth Current falls below this Cutoff Level. This parameter has no impact on recorders. | 0.0-0.100ln | 0.005In | [Device Para <br> /Measurem Display <br> /CT W1] |
| 1012 Cutoff Level | The Symmetrical Component shown in the Display or within the PC Software will be displayed as zero, if the Symmetrical Component falls below this Cutoff Level. This parameter has no impact on recorders. | 0.0-0.100ln | 0.005In | [Device Para <br> /Measurem Display <br> /CT W1] |

## Field Parameters of the Transformer

## Transformer

Global Protection Parameters of the Transformer

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| SN | Rated Power of the Transformer in MVA | $\begin{aligned} & 0.001 \text { - } \\ & \text { 2000.000MVA } \end{aligned}$ | 11MVA | [Field Para <br> /Transformer] |
| $\otimes$ |  |  |  |  |
| Rated Voltage (W1) | Rated Voltage (Phase-Phase) Winding Side 1 | 60-500000V | 10500V | [Field Para <br> /Transformer] |
|  |  |  |  |  |
| Rated Voltage (W2) | Rated Voltage (Phase-Phase) Winding Side 2 | 60-500000V | 110000 V | [Field Para <br> /Transformer] |
| $\otimes$ |  |  |  |  |
| W1 <br> Connection/Ground ing | Note: The zero current will be removed in order to prevent faulty tripping of the differential protection. If a star point is connected to ground according to the winding connection, the zero current (symmetrical components) will be removed. | Y, <br> D, <br> Z, <br> YN, <br> ZN | D | [Field Para <br> /Transformer] |
| W2 <br> Connection/Ground ing | Note: The zero current will be removed in order to prevent faulty tripping of the differential protection. If a star point is connected to ground according to the winding connection, the zero current (symmetrical components) will be removed. | y, <br> d, <br> Z, <br> yn, <br> zn | yn | [Field Para <br> /Transformer] |
| Phase Shift | Phase Shift between primary and secondary side. The phase shift angle is factor ( $1,2,3 \ldots 11$ ) multiplied with 30 degrees. | 0-11 | 1 | [Field Para <br> /Transformer] |
| Tap changer | Tap changer, the tapchanger refers to the primary side (W1). | -15-15\% | 0\% | [Field Para <br> /Transformer] |
|  |  |  |  |  |

## Blockings

The device provides a function for temporary and permanent blocking of the complete protection functionality or of single protection stages.

Make absolutely sure that no illogical or even life-threatening blockings are allocated.

Make sure that you do not carelessly deactivate protection functions which have to be available according to the protection concept.

## Permanent Blocking

## Switching ON or OFF the complete protection functionality

In module $»$ Protection« the complete protection of the device can be switched on or off. Set the parameter Function to »active» or »inactive« in module »Protu.

## 4. WARNING <br> Only if in module »Prot« the parameter »Function« is = »active», the protection is activated; i.e. with »Function" = »inactive«, no protection function is operating. Then the device cannot protect any components.

## Switching modules ON or OFF

Each of the modules can be switched on or off (permanently). This is achieved when the parameter »Function« is set to »active« or »inactive« in the respective module.

Activating or deactivating the tripping command of a protection stage permanently In each of the protection stages the tripping command to the CB can be permanently blocked. For this purpose the parameter »TripCmd Blo« has to be set to »active«.

## Temporary Blocking

To block the complete protection of the device temporarily by a signal
In module »Protu the complete protection of the device can be blocked temporarily by a signal. On condition that a module-external blocking is permitted »ExBlo Fc=active«. In addition to this, a related blocking signal from the »assignment list« must have been assigned. For the time the allocated blocking signal is active, the module is blocked.

## $\triangle$ WARNING <br> If the module $»$ Prot« is blocked, the complete protection function does not work. As long as the blocking signal is active, the device cannot protect any components.

To block a complete protection module temporarily by an active assignment

- In order to establish a temporary blockage of a protection module, the parameter »ExBlo Fc« of the module has to be set to »active«. This gives the permission: »This module can be blocked«.
- Within the general protection parameters a signal has to be additionally chosen from the »ASSIGNMENT LISTM. The blocking only becomes active when the assigned signal is active.

To block the tripping command of a protection stage temporarily by an active assignment.
The tripping command of any of the protection modules can be blocked from external. In this case, external does not only mean from outside the device, but also from outside the module. Not only real external signals are permitted to be used as blocking signals, as for example, the state of a digital input, but you can also choose any other signal from the »assignment list«.

In order to establish a temporary blockage of a protection stage, the parameter »ExBlo TripCmd Fc« of the module has to be set to »active«. This gives the permission: »The tripping command of this stage can be blocked«.

- Within the general protection parameters, a signal has to be chosen additionally and assigned to the parameter »ExBlo« from the »assignment list«. If the selected signal is activated, the temporary blockage becomes effective.


## To Activate or Deactivate the Tripping Command of a Protection Module

Trip blockings
name $=$ all modules that are lockable

32

## Activate, Deactivate Respectively Block Temporarily Protection Functions

The following diagram applies to all protective elements except: Phase current, Earth current and Q->\&V< protection elements.
Blockings


[^3]The following diagram is applies to the $\mathrm{Q}->\& \mathrm{~V}<$ Protection:
Prot - active


Current protective functions cannot only be blocked permanently (»function = inactive«) or temporarily by any blocking signal from the »assignment list«, but also by »reverse Interlocking«.

The following diagram applies phase current elements:
Blockings **


[^4]Earth current protective functions cannot only be blocked permanently (»function = inactive«) or temporarily by any blocking signal from the »assignment list«, but also by »reverse Interlocking«.

The following diagram applies to earth current elements:
Blockings **
name $=1 G[1] \ldots[n]$


## Module: Protection (Prot)

## Prot

The module »Protection« serves as outer frame for all other protection modules, i.e. they are all enclosed by the module »Protection«.

## ! WARNING If in module »Protection« the parameter »Function« is set on »inactive« or in case the module is blocked, then the complete protective function of the device does not work anymore.

## Protection inactive

If the master module »Protection« was permanently deactivated or if a temporary blockage of this module has occurred and the allocated blocking signal is still active, then the complete functionality (protection) of the device is zero. In such a case the protective function is »inactive«.

## Protection active

If the master module »Protection« was activated and a blockade for this module was not activated respectively the assigned blocking signal is inactive at that moment, then the »Protection« is »active«.

## Blocking all Protective Elements enduringly

In order to allow (the principle use) of blocking the entire protection call up the menu [Protection/Para/Global Prot Para/Prot]:

- Set the parameter »Function = inactive«.


## Blocking all Protective Elements temporarily

In order to allow (the principle use) of blocking the entire protection call up the menu [Protection/Para/Global Prot Para/Prot]:

- Set the parameter »ExBlo Fc = active«;
- Choose an assignment for »ExBlo1«, and
$\square$ Optionally choose an assignment for »ExBlo2«.

If one of the signals becomes true, then the entire protection will be blocked as long as one of these signals are true.

## Blocking all Trip Commands enduringly

In order to allow (the principle use) of blocking the entire protection call up the menu [Protection/Para/Global Prot Para/Prot]:

- Set the parameter »Blo TripCmd = inactive«.


## Blocking all Trip Commands temporarily

In order to allow (the principle use) of blocking the entire protection, call up the menu [Protection/Para/Global Prot Para/Prot]:

- Set the parameter »ExBlo TripCmd Fc= active«.

■ Choose an assignment for »ExBlo TripCmd«. All Trip commands will be blocked temporarily if this assginment becomes true.
Prot - active

## General Alarms and General Trips

Each protective element generates it's own alarm and trip signals. All alarms and trip decision are passed on to the master module »Protu.

If a protective element picks up, respectively has decided about a trip, two signals will be issued:

1. The module or the protection stage issues an alarm e.g. »[1].ALARM« or »[1].TRIP《.
2. The master module »Prot« collects/summarizes the signals and issues an alarm or a trip signal »Prot.Alarm« „Prot.Trip«.

Further examples: »Prot.Alarm L1« is a collective signal (OR-connected) for all alarms issued by any of the protective elements concerning Phase L1.
»Prot.TRIP L1 «is a collective signal (OR-connected) for all trips issued by any of the protective elements concerning Phase L1.
»Prot.alarm« is the collective alarm signal OR-ed from all protection elements.»Prot.Trip« is the collective alarm signal OR-ed from all protection elements.

The trip commands of a the protective elements have to be assigned within the Circuit Breaker Manager $\underline{C B}$. Manager. Only those trip decisions that are assigned within the CB Manager are isssued to the Circuit Breaker.

[^5]Prot.Trip
name $=$ Each trip of an active, trip authorized protection module will lead to a general trip.

Prot.Alarm
name = Each alarm of a module (except from supervision modules but including CBF) will lead to a general alarm (collective alarm).

Prot.Tip
Each phase
Each phase selective trip of a trip authorized module (I, IG, V, VX depending on the device type) will lead to a phase
selective general trip. selective general trip.



Prot.Alarm Each phase selective alarm of a module (I, IG, V, VX depending on the
device type) will lead to a phase selective general alarm (collective alarm).

Prot.Alarm L1



## Direct Commands of the Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Res Fault a Mains <br> No | Resetting of fault number and number of grid faults. | inactive, | inactive | [Operation |
| IReset] |  |  |  |  |
| active |  |  |  |  |

Global Protection Parameters of the Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | active | [Protection Para /Global Prot Para /Prot] |
| ExBlo Fc | Activate (allow) the external blocking of the global protection functionality of the device. | inactive, active | inactive | [Protection Para /Global Prot Para /Prot] |
| ExBlo1 | If external blocking of this module is activated (allowed), the global protection functionality of the device will be blocked if the state of the assigned signal becomes true. | 1..n, Assignment List | -- | [Protection Para /Global Prot Para /Prot] |
| ExBlo2 | If external blocking of this module is activated (allowed), the global protection functionality of the device will be blocked if the state of the assigned signal becomes true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /Prot] |
| Blo TripCmd | Permanent blocking of the Trip Command of the entire Protection. | inactive, active | inactive | [Protection Para /Global Prot Para /Prot] |
| ExBlo TripCmd Fc | Activate (allow) the external blocking of the trip command of the entire device. | inactive, active | inactive | [Protection Para /Global Prot Para /Prot] |
| ExBlo TripCmd | If external blocking of the tripping command is activated (allowed), the tripping command of the entire device will be blocked if the state of the assigned signal becomes true. | 1..n, Assignment List | -- | [Protection Para /Global Prot Para /Prot] |

## Protection Module Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | /Global Prot Para |
| ExBlo2-I | Module input state: External blocking2 |  |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | /Prot] |

## Protection Module Signals (Output States)

| Signal | Description |
| :--- | :--- |
| available | Signal: Protection is available |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm L1 | Signal: General-Alarm L1 |
| Alarm L2 | Signal: General-Alarm L2 |
| Alarm L3 | Signal: General-Alarm L3 |
| Alarm G | Signal: General-Alarm - Earth fault |
| Alarm | Signal: General Alarm |
| Trip L1 | Signal: General Trip L1 |
| Trip L2 | Signal: General Trip L2 |
| Trip L3 | Signal: General Trip L3 |
| Trip G | Signal: General Trip Ground fault |
| Trip | Signal: General Trip |
| Res Fault a Mains No | Signal: Resetting of fault number and number of grid faults. |

## Protection Module Values

| Parameter | Description |
| :--- | :--- |
| FaultNo | Disturbance No |
| No of grid faults | Number of grid faults: A grid fault, e.g. a short circuit, might cause several faults with trip and <br> autoreclosing, each fault being identified by an increased fault number. In this case, the grid <br> fault number remains the same. |
| Trip | First trip cause which is the same as listed in fault record: See SCADA doc for code (section <br> Cause of Trip). See manual (section Fault Recorder) for more information. |

## Switchgear/Breaker - Manager

## ! WARNING WARNING Misconfiguration of the switchgear can result in death or serious injury.

Beside protection functions, protective relays more and more will take care about controlling switchgear, like circuit breakers, load break switches, disconnectors and ground connectors.

The Switchgear/Breaker-Manager of this protective device is designed to manage one switchgear.
The correct configuration is an indispensable precondition for the proper functioning of the protective device. This also is the case, when the switchgear is not controlled, but supervised only.

## Single Line Diagram

The single line diagram includes the graphically description of the switchgear and its designation (name) as well as its features (short circuit proof or not ...). For displaying in the devices software, the switchgear' designations (e. g. QA1, QA2, instead of $S G[x]$ ) will be taken from the single line diagram (configuration file).

The configuration file includes the single line diagram and the switchgear properties. Switchgear properties and single line diagram are coupled via the configuration file.

## Switchgear Configuration

## Wiring

At first the switchgears' positioning indicators have to be connected to the digital inputs of the protection device. One of the position indicators (either the »Aux ON « or the »Aux OFF «) contact has to be connected necessarily. It is recommended to connect both contacts.

Thereafter the command outputs (relay outputs) have to be connected with the switchgear.
$N \bigcirc T / C E \quad$ Please observe the following option: In the general settings of a circuit breaker, the ON/OFF commands of a protection element can be issued to the same output relays, where the other control commands are issued.
If the commands are issued to different relays output relays the amount of wiring increases.

## Assignment of Position Indications

The position indication is needed by the device to get (evaluate) the information about the current status /position of the breaker. The switchgears' position is shown in the devices display. Each position change results in a change of the switchgear symbol.

## NOTICE For the detection of a switchgear's position always two separate Aux contacts are recommended! If only one Aux contact is used, no intermediate or disturbed positions can be detected. <br> A reduced transition supervision (time between issue of the command and position feedback indication of the switchgear) is also possible by one Aux contact.

In the menu [Control/Bkr/Pos Indicators wiring] the assignments for the position indications have to be set.

## Detection of switchgear position with two Aux contacts - Aux ON and Aux OFF (recommended!)

For detection of position the switchgear is provided with Aux contacts (Aux ON and Aux OFF). It is recommended to use both contacts to detect intermediate and disturbed positions too.

The protection device continuously supervises the status of the inputs »Aux $O N-/ «$ and »Aux $O F F-/ «$. These signals are validated based on the supervision timers »t-Move ON« and »t-Move OFF« validation functions. As a result, the switchgear position will be detected by the following signals:

- Pos ON
- Pos OFF
- Pos Indeterm
- Pos Disturb.
- Pos (State=0,1,.2 or 3)


## Supervision of the ON command

When an ON command is initiated, the »t-Move ON« timer will be started. While the timer is running, the »POS Indeterm « State will become true. If the command is executed and properly fed back from the switchgear before the timer has run down, »POS ON« will become true. Otherwise, if the timer has expired »POS Disturb« will become true.

## Supervision of the OFF command

When an OFF command is initiated, the »t-Move OFF« timer will be started. While the timer is running, the »POS InDETERM « State will become true. If the command is executed and properly fed back before the timer has run down, »POS OFF« will become true. Otherwise, if the timer has expired »POS Disturb« will become true.

The following table shows how switchgear positions are validated:

| States of the Digital Inputs |  | Validated Switchgear Positions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aux ON-I | Aux OFF-I | POS ON | POS OFF | POS <br> Indeterm | POS Disturb | POS <br> State |
| 0 | 0 | 0 | 0 | 1 <br> (while a Moving <br> timer is running) | 0 <br> (while a Moving <br> timer is running) | 0 <br> Intermediate |
| 1 | 1 | 0 | 0 | 1 <br> (while a Moving <br> timer is running) | 0 <br> (while a Moving <br> timer is running) | 0 <br> Intermediate |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 <br> OFF |
| 0 | 0 | 0 | 0 | 0 <br> (Moving timer <br> elapsed) | 1 <br> (Moving timer <br> elapsed) | Disturbed |
| 1 | 1 | 0 | 0 | 0 <br> (Moving timer <br> elapsed) | 1 <br> (Moving timer <br> elapsed) | 3 <br> Disturbed |

## Single Position Indication Aux ON or Aux OFF

If the single pole indication is used, the »SI SingleContactlnd« will become true.

The moving time supervision works only in one direction. If the Aux OFF signal is connected to the device, only the "OFF command" can be supervised and if the Aux ON signal is connected to the device, only the "ON command" can be supervised.

## Single Position Indication - Aux ON

If only the Aux ON signal is used for the Status Indication of an "ON command", the switch command will also start the moving time, the position indication indicates an INTERMEDIATE position during this time interval. When the switchgear reaches the end position indicated by the signals »Pos ON« and »CES succesfu before the moving time has elapsed the signal Pos Indeterm disappears.

If the moving time elapsed before the switchgear has reached the end position, the switching operation was not successful and the Position Indication will change to POS Disturb and the signal Pos Indeterm disappears.

The following table shows how breaker positions are validated based on Aux ON:

| States of the Digital Input |  | Validated Switchgear Positions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aux ON-I | Aux OFF-I | POS ON | POS OFF | POS <br> Indeterm | POS Disturb | POS <br> State |
| 0 | Not wired | 0 | 0 | 1 <br> (while t-Move <br> ON is running) | 0 <br> (while t-Move <br> ON is running) | 0 <br> Intermediate |
| 0 | Not wired | 0 | 1 | 0 | 0 | 1 <br> OFF |
| 1 | Not wired | 1 | 0 | 0 | 0 | 2 <br> ON |

If there is no digital input assigned to the »Aux On« contact, the position indication will have the value 3 (disturbed).

## Single Position Indication - Aux OFF

If only the Aux OFF signal is used for the monitoring of the "OFF command", the switch command will start the moving timer. The Position Indication will indicate an INTERMEDIATE position. When the the switchgear reaches its end position before the moving timer elapses, and »CES succesf« will be indicated. At the same time the signal »Pos Indeterm« disappears.
If the moving time elapsed before the switchgear has reached the OFF position, the switching operation was not successful and the Position Indication will change to »Pos Disturb« and the signal »Pos Indeterm« disappears.

The following table shows how breaker positions are validated based on Aux OFF:

| States of the Digital Input |  | Validated Switchgear Positions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aux ON-I | Aux OFF-I | POS ON | POS OFF | POS <br> Indeterm | POS Disturb | POS <br> State |
| Not wired | 0 | 0 | 0 | 1 <br> (while t-Move <br> OFF is running) | 0 <br> (while t-Move <br> OFF is running) | 0 <br> Intermediate |
| Not wired | 1 | 0 | 1 | 0 | 0 | 1 |
| Not wired | 0 | 1 | 0 | 0 | 0 | OFF |

If there is no digital input assigned to the »Aux OFF« contact, the position indication will have the value 3 (disturbed).

## Setting of Supervision Times

In the menu [Control/Bkr/General Settings] the supervision times of the individual switchgear have to be set. Dependent on the type of switchgear it can be necessary to set further parameters.

## Interlockings

To avoid faulty operations, interlockings have to be provided. This can be realised mechanically, or electrically within the menu [Control/Bkr/General Settings] .

For a controllable switchgear up to three interlockings can be assigned in both switching directions (ON/OFF). These interlockings prevent switching in the corresponding direction.

The protection OFF command and the reclosing command of the AR* module are always executed without interlockings. For the case, that a protection OFF command must not be issued, this must be blocked separately.

Further interlockings can be realised by means of the Logic module.
*=availability depends on ordered device.


* Availability dependent on devioe type


## Trip Manager - Assignment of commands

The trip commands of the protection elements have to be assigned within menu [Control/Bkr/Trip Manager] to the switchgear (presumed, that the switchgear is make/break capable).
In the Trip Manger all tripping commands are combined by an "OR" logic. The actual tripping command to the switchgear is exclusively given by the Trip Manager. This means, that only tripping commands which are assigned in the Trip Manager lead to an operation of the switchgear. In addition to that, the User can set the minimum hold time of the tripping command within this module and define whether the tripping command is latched or not.

The exact name of the Switchgear is defined in the

| Single Line file. |
| :--- |
| $\mathrm{SG}[x]$.Trip CB |
| Module |

name $=$ Module


## Ex ON/OFF

If the switchgear should be opened or closed by an external signal, the User can assign one signal that will trigger the ON and one signal that will trigger the OFF command (e.g. digital inputs or output signals of the Logics) within menu [Control/Bkr/Ex ON/OFF Cmd] . An OFF command has priority. ON commands are slope oriented, OFF commands are level oriented

## Synchronised Switching*

*=availability depends on ordered device type

Before a switchgear may connect two mains sections, synchronism of these sections must be assured. In the submenu [Synchronous Switching] the parameter »Synchronism«defines which signal indicates synchronism.

If the synchronism condition shall be evaluated by the internal Synch-Check module the signal »Sync. Ready to Close« (release by synch-check module) has to be assigned. Alternatively a digital input or a logic output can be assigned.

In the synchronisation mode "Generator-to-System" additionally the synchronism request has to be assigned to the Sync-check function in the menu [Protection ParalGlobal Prot ParalSync].

If a synchronism signal is assigned, the switching command will only be executed, when the synchronism signal will become true within the maximum supervision time »t-MaxSyncSupervu. This supervision time will be started with the issued ON command. If no synchronism signal has been assigned, the synchronism release is permanently.


## Switching Authority

For the Switching Authority [Control|General Settings], the following general settings are possible:

NONE: No control function;

LOCAL:
REMOTE:
LOCAL\&REMOTE:

Control only via push buttons at the panel;
Control only via SCADA, digital inputs, or internal signals; and
Control via push buttons, SCADA, digital inputs, or internal signals.

## Non interlocked Switching

For test purposes, during commissioning and temporarily operations, interlockings can be disabled.

## ! WARNING WARNING: Non interlocked Switching can lead to serious injuries or death!

For non interlocked switching the menü [Control\General Settings] provides the following options:

- Non interlocked switching for one single command
- Permanent
- Non interlocked switching for a certain time
- Non interlocked switching, activated by an assigned signal

The set time for non interlocked switching applies also for the „single Operation" mode.

## Manual Manipulation of the Switchgear Position

In case of faulty position indication contacts (Aux contacts) or broken wires, the position indication resulted from the assigned signals can be manipulated (overwritten) manually, to keep the ability to switch the affected switchgear. A manipulated switchgearposition will be indicated on the display by an exclamation mark "!" beside the switchgear symbol.

## ! WARNING WARNING: Manipulation of the Switchgear Position can lead to serious injuries or death!

## Double Operation Locking

All control commands to any switchgear in a bay have to be processed sequentially. During a running control command no other command will be handled.

## Switch Direction Control

Switching command are validated before execution. When the switchgear is already in the desired position, the switch command will not be issued again. An opened circuit breaker cannot be opened again. This also applies for switching command at the HMI or via SCADA.

## Anti Pumping

By pressing the ON command softkey only a single switching ON impulse will be issued independent, how low the softkey is actuated. The switchgear will close only once per close command.

## Counters of the Command Excecution Supervision

| Parameter | Description |
| :--- | :--- |
| CES SAuthority | Command Execution Supervision: Number of rejected Commands because of missing <br> switching authority. |
| CES DoubleOperating | Command Execution Supervision: Number of rejected Commands because a second switch <br> command is in conflict with a pending one. |
| CES No. of rej. Com | Command Execution Supervision: Number of rejected Commands because Locked by <br> ParaSystem |

## Switchgear Wear

## NOTICE

NOTICE: Current related functions of the swichtgear wear element (e.g. breaker wear curve) are available in devices only, that offer minimum one current measurement (card).

## Switchgear Wear Features

The sum of the accumulated interrupted currents.
A »SGwear Slow Switchgear« might indicate malfunction at an early stage.
The protective relay will calculate the »SG OPEN Capacity « continuously. 100\% means, that switchgear maintenance is mandatory now.

The protective relay will make a alarm decision based on the curve that the user provides.
The relay will monitor the frequency of ON/OFF cycles. The User can set thresholds for the maximum allowed sum of interrupt currents and the maximum allowed sum of interrupt currents per hour. By means of this alarm, excessive switchgear operations can be detected at an early stage.

## Slow Switchgear Alarm

An increase of the close or opening time of the switchgear is an indication for the maintenance need. If the measured time exceeds the time »t-Move OFF« or »t-Move $O N «$, the signal »SGwear Slow Switchgear« will be activated.

## Switchgear Wear Curve

In order to keep the switchgear in good working condition, the switchgear needs to be monitored. The switchgear health (operation life) depends above all on:

- The number of CLOSE/OPEN cycles.
- The amplitudes of the interrupting currents.
- The frequency that the switchgear operates (Operations per hour).

The User has to maintain the switchgear accordingly to the maintenance schedule that is to be provided by the manufacturer (switchgear operation statistics). By means of up to ten points that the user can replicate the switchgear wear curve within menu [Control/SG/SG[x]/SGW] . Each point has two settings: the interrupt current in kilo amperes and the allowed operation counts. No matter how many points are used, the operation counts the last point as zero. The protective relay will interpolate the allowed operations based on the switchgear wear curve. When the interrupted current is greater than the interrupt current at the last point, the protective relay will assume zero operation counts.

## Breaker Maintenance Curve for a typical 25 kV Breaker



Global Protection Parameters of the Breaker Wear Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT Winding Side | Measuring values will be used from this winding side | $\begin{aligned} & \text { W1, } \\ & \text { W2 } \end{aligned}$ | W1 | [Control <br> /SG <br> /SG[1] <br> /SG Wear] |
| Operations Alarm | Service Alarm, too many Operations | 1-100000 | 9999 | [Control /SG /SG[1] /SG Wear] |
| Isum Intr Alarm | Alarm, the Sum (Limit) of interrupting currents has been exceeded. | 0.00-2000.00kA | 100.00kA | [Control /SG /SG[1] /SG Wear] |
| Isum Intr ph Alm | Alarm, the per hour Sum (Limit) of interrupting currents has been exceeded. | 0.00-2000.00kA | 100.00 kA | [Control /SG /SG[1] /SG Wear] |
| SGwear Curve Fc | The Circuit Breaker (load-break switch) Wear Curve defines the maximum allowed CLOSE/OPEN cycles depending on the brake currents. If the circuit breaker maintenance curve is exceeded, an alarm will be issued. The breaker maintenance curve is to be taken from the technical data sheet of the breaker manufactor. By means of the available points this curve is to be replicated. | inactive, active | inactive | [Control /SG /SG[1] /SG Wear] |
| WearLevel Alarm | Threshold for the Alarm <br> Only available if:SGwear Curve Fc = active | 0.00-100.00\% | 80.00\% | [Control /SG /SG[1] /SG Wear] |
| WearLevel Lockout | Threshold for the Lockout Level Only available if:SGwear Curve Fc = active | 0.00-100.00\% | 95.00\% | [Control /SG /SG[1] /SG Wear] |
| Current1 | Interrupted Current Level \#1 <br> Only available if:SGwear Curve Fc = active | 0.00-2000.00kA | 0.00kA | [Control /SG /SG[1] /SG Wear] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Count1 | Open Counts Allowed \#1 <br> Only available if:SGwear Curve Fc = active | 1-32000 | 10000 | [Control <br> /SG <br> /SG[1] <br> /SG Wear] |
| Current2 | Interrupted Current Level \#2 <br> Only available if:SGwear Curve Fc = active | 0.00-2000.00kA | 1.20kA | [Control /SG /SG[1] <br> /SG Wear] |
| Count2 | Open Counts Allowed \#2 <br> Only available if:SGwear Curve Fc = active | 1-32000 | 10000 | [Control ISG /SG[1] /SG Wear] |
| Current3 | Interrupted Current Level \#3 <br> Only available if:SGwear Curve Fc = active | 0.00-2000.00kA | 8.00kA | [Control <br> ISG <br> /SG[1] <br> ISG Wear] |
| Count3 | Open Counts Allowed \#3 <br> Only available if:SGwear Curve Fc = active | 1-32000 | 150 | [Control ISG /SG[1] /SG Wear] |
| Current4 | Interrupted Current Level \#4 <br> Only available if:SGwear Curve Fc = active | 0.00-2000.00kA | 20.00 kA | [Control ISG /SG[1] /SG Wear] |
| Count4 | Open Counts Allowed \#4 <br> Only available if:SGwear Curve Fc = active | 1-32000 | 12 | [Control ISG /SG[1] ISG Wear] |
| Current5 | Interrupted Current Level \#5 <br> Only available if:SGwear Curve Fc = active | 0.00-2000.00kA | 20.00 kA | [Control ISG /SG[1] /SG Wear] |
| Count5 | Open Counts Allowed \#5 <br> Only available if:SGwear Curve Fc = active | 1-32000 | 1 | [Control /SG /SG[1] /SG Wear] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Current6 | Interrupted Current Level \#6 <br> Only available if:SGwear Curve Fc = active | 0.00-2000.00kA | 20.00 kA | [Control <br> /SG <br> /SG[1] <br> /SG Wear] |
| Count6 | Open Counts Allowed \#6 <br> Only available if:SGwear Curve Fc = active | 1-32000 | 1 | [Control /SG /SG[1] <br> /SG Wear] |
| Current7 | Interrupted Current Level \#7 <br> Only available if:SGwear Curve Fc = active | 0.00-2000.00kA | 20.00 kA | [Control ISG /SG[1] /SG Wear] |
| Count7 | Open Counts Allowed \#7 <br> Only available if:SGwear Curve Fc = active | 1-32000 | 1 | [Control <br> ISG <br> /SG[1] <br> ISG Wear] |
| Current8 | Interrupted Current Level \#8 <br> Only available if:SGwear Curve Fc = active | 0.00-2000.00kA | 20.00 kA | [Control ISG /SG[1] /SG Wear] |
| Count8 | Open Counts Allowed \#8 <br> Only available if:SGwear Curve Fc = active | 1-32000 | 1 | [Control ISG /SG[1] /SG Wear] |
| Current9 | Interrupted Current Level \#9 <br> Only available if:SGwear Curve Fc = active | 0.00-2000.00kA | 20.00 kA | [Control ISG /SG[1] ISG Wear] |
| Count9 | Open Counts Allowed \#9 <br> Only available if:SGwear Curve Fc = active | 1-32000 | 1 | [Control ISG /SG[1] /SG Wear] |
| Current10 | Interrupted Current Level \#10 <br> Only available if:SGwear Curve Fc = active | 0.00-2000.00kA | 20.00 kA | [Control /SG /SG[1] /SG Wear] |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Count10 | Open Counts Allowed \#10 | $1-32000$ | 1 | [Control |
| Only available if:SGwear Curve Fc = active |  |  | ISG |  |
| ISG[1] |  |  |  |  |
| ISG Wear] |  |  |  |  |

## Breaker Wear Signals (Output States)

| Signal | Description |
| :--- | :--- |
| Operations Alarm | Signal: Service Alarm, too many Operations |
| Isum Intr trip: IL1 | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL1 |
| Isum Intr trip: IL2 | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL2 |
| Isum Intr trip: IL3 | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL3 |
| Isum Intr trip | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded in at <br> least one phase. |
| Res TripCmd Cr | Signal: Resetting of the Counter: total number of trip commands |
| Res Sum trip | Signal: Reset summation of the tripping currents |
| WearLevel Alarm | Signal: Threshold for the Alarm |
| WearLevel Lockout | Signal: Threshold for the Lockout Level |
| Res SGwear Curve | Signal: Reset of the Circuit Breaker (load-break switch) Wear maintenance curve. |
| Isum Intr ph Alm | Signal: Alarm, the per hour Sum (Limit) of interrupting currents has been exceeded. |
| Res Isum Intr ph Alm | Signal: Reset of the Alarm, "the per hour Sum (Limit) of interrupting currents has been <br> exceeded". |

## Breaker Wear Counter Values

| Value | Description | Default | Size | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| TripCmd Cr | Counter: Total number of trips of the switchgear <br> (circuit breaker, load break switch...). Resettable <br> with Total or All. | 0 | $0-200000$ | [Operation <br> /Count and RevData <br> /Control |
| /SG[1]] |  |  |  |  |


| Value | Description | Default | Size | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Sum trip IL1 | Summation of the tripping currents phase | 0.00A | 0.00-1000.00A | [Operation <br> /Count and RevData <br> /Control <br> /SG[1]] |
| Sum trip IL2 | Summation of the tripping currents phase | 0.00A | 0.00-1000.00A | [Operation <br> /Count and RevData /Control /SG[1]] |
| Sum trip IL3 | Summation of the tripping currents phase | 0.00A | 0.00-1000.00A | [Operation <br> /Count and RevData <br> /Control <br> /SG[1]] |
| Isum Intr per hour | Sum per hour of interrupting currents. | 0.00kA | 0.00-1000.00kA | [Operation <br> /Count and RevData /Control /SG[1]] |
| SG OPEN capacity | Used capacity. 100\% means, that the switchgear is to be maintenanced. | 0.0\% | 0.0-100.0\% | [Operation <br> /Count and RevData <br> /Control <br> /SG[1]] |

## Direct Commands of the Breaker Wear Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Res TripCmd Cr | Resetting of the Counter: total number of trip commands | inactive, active | inactive | [Operation /Reset] |
| $\bigotimes$ |  |  |  |  |
| Res Sum trip | Reset summation of the tripping currents | inactive, active | inactive | [Operation /Reset] |
| $\otimes$ |  |  |  |  |
| Res Isum Intr per hour | Reset of the Sum per hour of interrupting currents. | inactive, active | inactive | [Operation /Reset] |
| $\otimes$ |  |  |  |  |
| Res CB OPEN capacity | Resetting of the CB OPEN capacity. 100\% means, that the circuit breaker is to be maintenanced. | inactive, active | inactive | [Operation /Reset] |
| $\otimes$ |  |  |  |  |

## Control Parameters

CtrI

## Direct Commands of the Control Module

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Switching Authority | Switching Authority | None, <br> Local, <br> Remote, <br> Local and Remote | Local | [Control |
| /General settings] |  |  |  |  |
| NonInterl | DC for Non-Interlocking | inactive, | inactive | [Control |
| active |  | General settings] |  |  |

Global Protection Parameters of the Control Module
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Res NonIL } & \text { Resetmode Non-Interlocking } & \begin{array}{l}\text { single Operation, } \\
\text { timeout, } \\
\text { permanent }\end{array}
$$ \& single Operation \& [Control <br>

/General settings]\end{array}\right]\)| Timeout NonIL |
| :--- |
| Timeout Non-Interlocking |
| NonlL Assign |
| Only available if: Res NonIL<>permanent |
| Assignment Non-Interlocking |

## Control Moduel Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| Nonlnterl-I | Non-Interlocking | [Control |
|  |  | /General settings] |

## Signals of the Control Module

| Signal | Description |
| :--- | :--- |
| Local | Switching Authority: Local |
| Remote | Switching Authority: Remote |
| NonInterl | Non-Interlocking is active |
| SG Indeterm | Minimum one Switchgear is moving (Position cannot be determined). |
| SG Disturb | Minimum one Switchgear is disturbed. |

## Synchronization inputs

| Parameter | Description |
| :---: | :---: |
| --- | No assignment |
| DI Slot X1.DI 1 | Signal: Digital Input |
| DI Slot X1.DI 2 | Signal: Digital Input |
| DI Slot X1.DI 3 | Signal: Digital Input |
| DI Slot X1.DI 4 | Signal: Digital Input |
| DI Slot X1.DI 5 | Signal: Digital Input |
| DI Slot X1.DI 6 | Signal: Digital Input |
| DI Slot X1.DI 7 | Signal: Digital Input |
| DI Slot X1.DI 8 | Signal: Digital Input |
| DI Slot X6.DI 1 | Signal: Digital Input |
| DI Slot X6.DI 2 | Signal: Digital Input |
| DI Slot X6.DI 3 | Signal: Digital Input |
| DI Slot X6.DI 4 | Signal: Digital Input |
| DI Slot X6.DI 5 | Signal: Digital Input |
| DI Slot X6.DI 6 | Signal: Digital Input |
| DI Slot X6.DI 7 | Signal: Digital Input |
| DI Slot X6.DI 8 | Signal: Digital Input |
| Logics.LE1.Gate Out | Signal: Output of the logic gate |
| Logics.LE1.Timer Out | Signal: Timer Output |
| Logics.LE1.Out | Signal: Latched Output (Q) |
| Logics.LE1.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE2.Gate Out | Signal: Output of the logic gate |
| Logics.LE2.Timer Out | Signal: Timer Output |
| Logics.LE2.Out | Signal: Latched Output (Q) |
| Logics.LE2.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE3.Gate Out | Signal: Output of the logic gate |
| Logics.LE3.Timer Out | Signal: Timer Output |
| Logics.LE3.Out | Signal: Latched Output (Q) |
| Logics.LE3.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE4.Gate Out | Signal: Output of the logic gate |
| Logics.LE4.Timer Out | Signal: Timer Output |
| Logics.LE4.Out | Signal: Latched Output (Q) |
| Logics.LE4.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE5.Gate Out | Signal: Output of the logic gate |
| Logics.LE5.Timer Out | Signal: Timer Output |
| Logics.LE5.Out | Signal: Latched Output (Q) |
| Logics.LE5.Out inverted | Signal: Negated Latched Output (Q NOT) |


| Logics.LE6.Gate Out | Signal: Output of the logic gate |
| :---: | :---: |
| Logics.LE6.Timer Out | Signal: Timer Output |
| Logics.LE6.Out | Signal: Latched Output (Q) |
| Logics.LE6.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE7.Gate Out | Signal: Output of the logic gate |
| Logics.LE7.Timer Out | Signal: Timer Output |
| Logics.LE7.Out | Signal: Latched Output (Q) |
| Logics.LE7.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE8.Gate Out | Signal: Output of the logic gate |
| Logics.LE8.Timer Out | Signal: Timer Output |
| Logics.LE8.Out | Signal: Latched Output (Q) |
| Logics.LE8.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE9.Gate Out | Signal: Output of the logic gate |
| Logics.LE9.Timer Out | Signal: Timer Output |
| Logics.LE9.Out | Signal: Latched Output (Q) |
| Logics.LE9.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE10.Gate Out | Signal: Output of the logic gate |
| Logics.LE10.Timer Out | Signal: Timer Output |
| Logics.LE10.Out | Signal: Latched Output (Q) |
| Logics.LE10.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE11.Gate Out | Signal: Output of the logic gate |
| Logics.LE11.Timer Out | Signal: Timer Output |
| Logics.LE11.Out | Signal: Latched Output (Q) |
| Logics.LE11.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE12.Gate Out | Signal: Output of the logic gate |
| Logics.LE12.Timer Out | Signal: Timer Output |
| Logics.LE12.Out | Signal: Latched Output (Q) |
| Logics.LE12.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE13.Gate Out | Signal: Output of the logic gate |
| Logics.LE13.Timer Out | Signal: Timer Output |
| Logics.LE13.Out | Signal: Latched Output (Q) |
| Logics.LE13.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE14.Gate Out | Signal: Output of the logic gate |
| Logics.LE14.Timer Out | Signal: Timer Output |
| Logics.LE14.Out | Signal: Latched Output (Q) |
| Logics.LE14.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE15.Gate Out | Signal: Output of the logic gate |
| Logics.LE15.Timer Out | Signal: Timer Output |
| Logics.LE15.Out | Signal: Latched Output (Q) |
| Logics.LE15.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE16.Gate Out | Signal: Output of the logic gate |


| Logics.LE16.Timer Out | Signal: Timer Output |
| :---: | :---: |
| Logics.LE16.Out | Signal: Latched Output (Q) |
| Logics.LE16.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE17.Gate Out | Signal: Output of the logic gate |
| Logics.LE17.Timer Out | Signal: Timer Output |
| Logics.LE17.Out | Signal: Latched Output (Q) |
| Logics.LE17.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE18.Gate Out | Signal: Output of the logic gate |
| Logics.LE18.Timer Out | Signal: Timer Output |
| Logics.LE18.Out | Signal: Latched Output (Q) |
| Logics.LE18.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE19.Gate Out | Signal: Output of the logic gate |
| Logics.LE19.Timer Out | Signal: Timer Output |
| Logics.LE19.Out | Signal: Latched Output (Q) |
| Logics.LE19.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE20.Gate Out | Signal: Output of the logic gate |
| Logics.LE20.Timer Out | Signal: Timer Output |
| Logics.LE20.Out | Signal: Latched Output (Q) |
| Logics.LE20.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE21.Gate Out | Signal: Output of the logic gate |
| Logics.LE21.Timer Out | Signal: Timer Output |
| Logics.LE21.Out | Signal: Latched Output (Q) |
| Logics.LE21.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE22.Gate Out | Signal: Output of the logic gate |
| Logics.LE22.Timer Out | Signal: Timer Output |
| Logics.LE22.Out | Signal: Latched Output (Q) |
| Logics.LE22.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE23.Gate Out | Signal: Output of the logic gate |
| Logics.LE23.Timer Out | Signal: Timer Output |
| Logics.LE23.Out | Signal: Latched Output (Q) |
| Logics.LE23.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE24.Gate Out | Signal: Output of the logic gate |
| Logics.LE24.Timer Out | Signal: Timer Output |
| Logics.LE24.Out | Signal: Latched Output (Q) |
| Logics.LE24.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE25.Gate Out | Signal: Output of the logic gate |
| Logics.LE25.Timer Out | Signal: Timer Output |
| Logics.LE25.Out | Signal: Latched Output (Q) |
| Logics.LE25.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE26.Gate Out | Signal: Output of the logic gate |
| Logics.LE26.Timer Out | Signal: Timer Output |


| Logics.LE26.Out | Signal: Latched Output (Q) |
| :---: | :---: |
| Logics.LE26.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE27.Gate Out | Signal: Output of the logic gate |
| Logics.LE27.Timer Out | Signal: Timer Output |
| Logics.LE27.Out | Signal: Latched Output (Q) |
| Logics.LE27.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE28.Gate Out | Signal: Output of the logic gate |
| Logics.LE28.Timer Out | Signal: Timer Output |
| Logics.LE28.Out | Signal: Latched Output (Q) |
| Logics.LE28.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE29.Gate Out | Signal: Output of the logic gate |
| Logics.LE29.Timer Out | Signal: Timer Output |
| Logics.LE29.Out | Signal: Latched Output (Q) |
| Logics.LE29.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE30.Gate Out | Signal: Output of the logic gate |
| Logics.LE30.Timer Out | Signal: Timer Output |
| Logics.LE30.Out | Signal: Latched Output (Q) |
| Logics.LE30.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE31.Gate Out | Signal: Output of the logic gate |
| Logics.LE31.Timer Out | Signal: Timer Output |
| Logics.LE31.Out | Signal: Latched Output (Q) |
| Logics.LE31.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE32.Gate Out | Signal: Output of the logic gate |
| Logics.LE32.Timer Out | Signal: Timer Output |
| Logics.LE32.Out | Signal: Latched Output (Q) |
| Logics.LE32.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE33.Gate Out | Signal: Output of the logic gate |
| Logics.LE33.Timer Out | Signal: Timer Output |
| Logics.LE33.Out | Signal: Latched Output (Q) |
| Logics.LE33.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE34.Gate Out | Signal: Output of the logic gate |
| Logics.LE34.Timer Out | Signal: Timer Output |
| Logics.LE34.Out | Signal: Latched Output (Q) |
| Logics.LE34.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE35.Gate Out | Signal: Output of the logic gate |
| Logics.LE35.Timer Out | Signal: Timer Output |
| Logics.LE35.Out | Signal: Latched Output (Q) |
| Logics.LE35.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE36.Gate Out | Signal: Output of the logic gate |
| Logics.LE36.Timer Out | Signal: Timer Output |
| Logics.LE36.Out | Signal: Latched Output (Q) |


| Logics.LE36.Out inverted | Signal: Negated Latched Output (Q NOT) |
| :---: | :---: |
| Logics.LE37.Gate Out | Signal: Output of the logic gate |
| Logics.LE37.Timer Out | Signal: Timer Output |
| Logics.LE37.Out | Signal: Latched Output (Q) |
| Logics.LE37.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE38.Gate Out | Signal: Output of the logic gate |
| Logics.LE38.Timer Out | Signal: Timer Output |
| Logics.LE38.Out | Signal: Latched Output (Q) |
| Logics.LE38.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE39.Gate Out | Signal: Output of the logic gate |
| Logics.LE39.Timer Out | Signal: Timer Output |
| Logics.LE39.Out | Signal: Latched Output (Q) |
| Logics.LE39.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE40.Gate Out | Signal: Output of the logic gate |
| Logics.LE40.Timer Out | Signal: Timer Output |
| Logics.LE40.Out | Signal: Latched Output (Q) |
| Logics.LE40.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE41.Gate Out | Signal: Output of the logic gate |
| Logics.LE41.Timer Out | Signal: Timer Output |
| Logics.LE41.Out | Signal: Latched Output (Q) |
| Logics.LE41.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE42.Gate Out | Signal: Output of the logic gate |
| Logics.LE42.Timer Out | Signal: Timer Output |
| Logics.LE42.Out | Signal: Latched Output (Q) |
| Logics.LE42.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE43.Gate Out | Signal: Output of the logic gate |
| Logics.LE43.Timer Out | Signal: Timer Output |
| Logics.LE43.Out | Signal: Latched Output (Q) |
| Logics.LE43.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE44.Gate Out | Signal: Output of the logic gate |
| Logics.LE44.Timer Out | Signal: Timer Output |
| Logics.LE44.Out | Signal: Latched Output (Q) |
| Logics.LE44.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE45.Gate Out | Signal: Output of the logic gate |
| Logics.LE45.Timer Out | Signal: Timer Output |
| Logics.LE45.Out | Signal: Latched Output (Q) |
| Logics.LE45.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE46.Gate Out | Signal: Output of the logic gate |
| Logics.LE46.Timer Out | Signal: Timer Output |
| Logics.LE46.Out | Signal: Latched Output (Q) |
| Logics.LE46.Out inverted | Signal: Negated Latched Output (Q NOT) |


| Logics.LE47.Gate Out | Signal: Output of the logic gate |
| :---: | :---: |
| Logics.LE47.Timer Out | Signal: Timer Output |
| Logics.LE47.Out | Signal: Latched Output (Q) |
| Logics.LE47.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE48.Gate Out | Signal: Output of the logic gate |
| Logics.LE48.Timer Out | Signal: Timer Output |
| Logics.LE48.Out | Signal: Latched Output (Q) |
| Logics.LE48.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE49.Gate Out | Signal: Output of the logic gate |
| Logics.LE49.Timer Out | Signal: Timer Output |
| Logics.LE49.Out | Signal: Latched Output (Q) |
| Logics.LE49.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE50.Gate Out | Signal: Output of the logic gate |
| Logics.LE50.Timer Out | Signal: Timer Output |
| Logics.LE50.Out | Signal: Latched Output (Q) |
| Logics.LE50.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE51.Gate Out | Signal: Output of the logic gate |
| Logics.LE51.Timer Out | Signal: Timer Output |
| Logics.LE51.Out | Signal: Latched Output (Q) |
| Logics.LE51.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE52.Gate Out | Signal: Output of the logic gate |
| Logics.LE52.Timer Out | Signal: Timer Output |
| Logics.LE52.Out | Signal: Latched Output (Q) |
| Logics.LE52.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE53.Gate Out | Signal: Output of the logic gate |
| Logics.LE53.Timer Out | Signal: Timer Output |
| Logics.LE53.Out | Signal: Latched Output (Q) |
| Logics.LE53.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE54.Gate Out | Signal: Output of the logic gate |
| Logics.LE54.Timer Out | Signal: Timer Output |
| Logics.LE54.Out | Signal: Latched Output (Q) |
| Logics.LE54.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE55.Gate Out | Signal: Output of the logic gate |
| Logics.LE55.Timer Out | Signal: Timer Output |
| Logics.LE55.Out | Signal: Latched Output (Q) |
| Logics.LE55.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE56.Gate Out | Signal: Output of the logic gate |
| Logics.LE56.Timer Out | Signal: Timer Output |
| Logics.LE56.Out | Signal: Latched Output (Q) |
| Logics.LE56.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE57.Gate Out | Signal: Output of the logic gate |


| Logics.LE57.Timer Out | Signal: Timer Output |
| :---: | :---: |
| Logics.LE57.Out | Signal: Latched Output (Q) |
| Logics.LE57.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE58.Gate Out | Signal: Output of the logic gate |
| Logics.LE58.Timer Out | Signal: Timer Output |
| Logics.LE58.Out | Signal: Latched Output (Q) |
| Logics.LE58.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE59.Gate Out | Signal: Output of the logic gate |
| Logics.LE59.Timer Out | Signal: Timer Output |
| Logics.LE59.Out | Signal: Latched Output (Q) |
| Logics.LE59.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE60.Gate Out | Signal: Output of the logic gate |
| Logics.LE60.Timer Out | Signal: Timer Output |
| Logics.LE60.Out | Signal: Latched Output (Q) |
| Logics.LE60.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE61.Gate Out | Signal: Output of the logic gate |
| Logics.LE61.Timer Out | Signal: Timer Output |
| Logics.LE61.Out | Signal: Latched Output (Q) |
| Logics.LE61.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE62.Gate Out | Signal: Output of the logic gate |
| Logics.LE62.Timer Out | Signal: Timer Output |
| Logics.LE62.Out | Signal: Latched Output (Q) |
| Logics.LE62.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE63.Gate Out | Signal: Output of the logic gate |
| Logics.LE63.Timer Out | Signal: Timer Output |
| Logics.LE63.Out | Signal: Latched Output (Q) |
| Logics.LE63.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE64.Gate Out | Signal: Output of the logic gate |
| Logics.LE64.Timer Out | Signal: Timer Output |
| Logics.LE64.Out | Signal: Latched Output (Q) |
| Logics.LE64.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE65.Gate Out | Signal: Output of the logic gate |
| Logics.LE65.Timer Out | Signal: Timer Output |
| Logics.LE65.Out | Signal: Latched Output (Q) |
| Logics.LE65.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE66.Gate Out | Signal: Output of the logic gate |
| Logics.LE66.Timer Out | Signal: Timer Output |
| Logics.LE66.Out | Signal: Latched Output (Q) |
| Logics.LE66.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE67.Gate Out | Signal: Output of the logic gate |
| Logics.LE67.Timer Out | Signal: Timer Output |


| Logics.LE67.Out | Signal: Latched Output (Q) |
| :---: | :---: |
| Logics.LE67.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE68.Gate Out | Signal: Output of the logic gate |
| Logics.LE68.Timer Out | Signal: Timer Output |
| Logics.LE68.Out | Signal: Latched Output (Q) |
| Logics.LE68.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE69.Gate Out | Signal: Output of the logic gate |
| Logics.LE69.Timer Out | Signal: Timer Output |
| Logics.LE69.Out | Signal: Latched Output (Q) |
| Logics.LE69.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE70.Gate Out | Signal: Output of the logic gate |
| Logics.LE70.Timer Out | Signal: Timer Output |
| Logics.LE70.Out | Signal: Latched Output (Q) |
| Logics.LE70.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE71.Gate Out | Signal: Output of the logic gate |
| Logics.LE71.Timer Out | Signal: Timer Output |
| Logics.LE71.Out | Signal: Latched Output (Q) |
| Logics.LE71.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE72.Gate Out | Signal: Output of the logic gate |
| Logics.LE72.Timer Out | Signal: Timer Output |
| Logics.LE72.Out | Signal: Latched Output (Q) |
| Logics.LE72.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE73.Gate Out | Signal: Output of the logic gate |
| Logics.LE73.Timer Out | Signal: Timer Output |
| Logics.LE73.Out | Signal: Latched Output (Q) |
| Logics.LE73.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE74.Gate Out | Signal: Output of the logic gate |
| Logics.LE74.Timer Out | Signal: Timer Output |
| Logics.LE74.Out | Signal: Latched Output (Q) |
| Logics.LE74.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE75.Gate Out | Signal: Output of the logic gate |
| Logics.LE75.Timer Out | Signal: Timer Output |
| Logics.LE75.Out | Signal: Latched Output (Q) |
| Logics.LE75.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE76.Gate Out | Signal: Output of the logic gate |
| Logics.LE76.Timer Out | Signal: Timer Output |
| Logics.LE76.Out | Signal: Latched Output (Q) |
| Logics.LE76.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE77.Gate Out | Signal: Output of the logic gate |
| Logics.LE77.Timer Out | Signal: Timer Output |
| Logics.LE77.Out | Signal: Latched Output (Q) |


| Logics.LE77.Out inverted | Signal: Negated Latched Output (Q NOT) |
| :--- | :--- |
| Logics.LE78.Gate Out | Signal: Output of the logic gate |
| Logics.LE78.Timer Out | Signal: Timer Output |
| Logics.LE78.Out | Signal: Latched Output (Q) |
| Logics.LE78.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE79.Gate Out | Signal: Output of the logic gate |
| Logics.LE79.Timer Out | Signal: Timer Output |
| Logics.LE79.Out | Signal: Latched Output (Q) |
| Logics.LE79.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE80.Gate Out | Signal: Output of the logic gate |
| Logics.LE80.Timer Out | Signal: Timer Output |
| Logics.LE80.Out | Signal: Latched Output (Q) |
| Logics.LE80.Out inverted | Signal: Negated Latched Output (Q NOT) |

## Assignable Trip Commands (Trip Manager)

| Name | Description |
| :--- | :--- |
| $-\because-$ | No assignment |
| Id.TripCmd | Signal: Trip Command |
| IdH.TripCmd | Signal: Trip Command |
| IdG[1].TripCmd | Signal: Trip Command |
| IdGH[1].TripCmd | Signal: Trip Command |
| IdG[2].TripCmd | Signal: Trip Command |
| IdGH[2].TripCmd | Signal: Trip Command |
| I[1].TripCmd | Signal: Trip Command |
| I[2].TripCmd | Signal: Trip Command |
| I[3].TripCmd | Signal: Trip Command |
| I[4].TripCmd | Signal: Trip Command |
| I[5].TripCmd | Signal: Trip Command |
| I[6].TripCmd | Signal: Trip Command |
| IG[1].TripCmd | Signal: Trip Command |
| IG[2].TripCmd | Signal: Trip Command |
| IG[3].TripCmd | Signal: Trip Command |
| IG[4].TripCmd | Signal: Trip Command |
| ThR.TripCmd | Signal: Trip Command |
| I2>[1].TripCmd | Signal: Trip Command |
| I2>[2].TripCmd | Signal: Trip Command |
| ExP[1].TripCmd | Signal: Trip Command |
| ExP[2].TripCmd | Signal: Trip Command |
| ExP[3].TripCmd | Signal: Trip Command |
| ExP[4].TripCmd | Signal: Trip Command |
| Ext Sudd Press.TripCmd | Signal: Trip Command |
| Ex Oil Temp.TripCmd | Signal: Trip Command |
| Ext Temp Superv[1].TripCmd | Signal: Trip Command |
| Ext Temp Superv[2].TripCmd | Signal: Trip Command |
| Ext Temp Superv[3].TripCmd | Signal: Trip Command |
| RTD.TripCmd | Signal |

## Controlled Circuit Breaker

SG[1],SG[2]

Direct Commands of a Controlled Circuit Breaker

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Manipulate Position | WARNING! Fake Position - Manual Position Manipulation | inactive, <br> Pos OFF, <br> Pos ON | inactive | [Control ISG /SG[1] <br> /General settings] |
| Res SGwear SI SG | Resetting the slow Switchgear Alarm | inactive, active | inactive | [Operation /Reset] |
| Ack TripCmd | Acknowledge Trip Command | inactive, active | inactive | [Operation IAcknowledge] |

## Global Protection Parameters of a Controlled Circuit Breaker

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Aux ON | The CB is in ON-position if the state of the assigned signal is true (52a). | 1..n, DI-LogicList | SG[1]: DI Slot X1.DI 1 <br> SG[2]: DI Slot X1.DI 3 | [Control <br> /SG <br> /SG[1] <br> /Pos Indicatrs Wirng] |
| Aux OFF | The CB is in OFF-position if the state of the assigned signal is true (52b). | 1..n, DI-LogicList | SG[1]: DI Slot X1.DI 2 <br> SG[2]: DI Slot X1.DI 4 | [Control <br> /SG <br> /SG[1] <br> /Pos Indicatrs Wirng] |
| Ready | Circuit breaker is ready for operation if the state of the assigned signal is true. This digital input can be used by some protective elements (if they are available within the device) like Auto Reclosure (AR), e.g. as a trigger signal. | 1..n, DI-LogicList | -.- | [Control <br> /SG <br> /SG[1] <br> /Pos Indicatrs Wirng] |
| Removed | The withdrawable circuit breaker is Removed Dependency | 1..n, DI-LogicList | -.- | [Control <br> /SG <br> /SG[1] <br> /Pos Indicatrs Wirng] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Interl ON1 | Interlocking of the ON command | 1..n, Assignment List | -.- | [Control <br> /SG <br> /SG[1] <br> /Interlockings] |
| Interl ON2 | Interlocking of the ON command | 1..n, Assignment List | $\because-$ | [Control /SG /SG[1] <br> /Interlockings] |
| Interl ON3 | Interlocking of the ON command | 1..n, Assignment List | -- | [Control /SG /SG[1] <br> /Interlockings] |
| Interl OFF1 | Interlocking of the OFF command | 1..n, Assignment List | -- | [Control /SG /SG[1] <br> /Interlockings] |
| Interl OFF2 | Interlocking of the OFF command | 1..n, Assignment List | -.- | [Control /SG /SG[1] /Interlockings] |
| Interl OFF3 | Interlocking of the OFF command | 1..n, Assignment List | -.- | [Control ISG /SG[1] <br> /Interlockings] |
| SCmd ON | Switching ON Command, e.g. the state of the Logics or the state of the digital input | 1..n, DI-LogicList | -- | [Control ISG /SG[1] <br> /Ex ON/OFF Cmd] |
| SCmd OFF | Switching OFF Command, e.g. the state of the Logics or the state of the digital input | 1..n, DI-LogicList | $\because-$ | [Control /SG /SG[1] /Ex ON/OFF Cmd] |
| t-TripCmd | Minimum hold time of the OFF-command (circuit breaker, load break switch) | 0-300.00s | 0.2s | [Control /SG /SG[1] <br> /Trip Manager] |

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Latched } & \begin{array}{l}\text { Defines whether the Binary Output Relay will be } \\
\text { Latched when it picks up. }\end{array} & \begin{array}{l}\text { inactive, } \\
\text { active }\end{array} & \text { inactive } & \text { [Control } \\
\text { ISG }\end{array}
$$\right] \begin{array}{l}ISG[1] <br>

/Trip Manager]\end{array}\right]\)| [Control |
| :--- |
| ISG |

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Off Cmd8 } & \begin{array}{l}\text { Off Command to the Circuit Breaker if the state of the } \\
\text { assigned signal becomes true. }\end{array} & \text { 1..n, Trip Cmds } & -. & \text { [Control } \\
\text { ISG }\end{array}
$$\right] \begin{array}{l}ISG[1] <br>

/Trip Manager]\end{array}\right]\)| [Control |
| :--- |
| ISG |

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Off Cmd17 } & \begin{array}{l}\text { Off Command to the Circuit Breaker if the state of the } \\
\text { assigned signal becomes true. }\end{array} & \text { 1..n, Trip Cmds } & -. & \text { [Control } \\
\text { ISG }\end{array}
$$\right] \begin{array}{l}ISG[1] <br>

/Trip Manager]\end{array}\right]\)| [Control |
| :--- |
| ISG |

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Off Cmd26 } & \begin{array}{l}\text { Off Command to the Circuit Breaker if the state of the } \\
\text { assigned signal becomes true. }\end{array} & \text { 1..n, Trip Cmds } & -. & \text { [Control } \\
\text { ISG }\end{array}
$$\right] \begin{array}{l}ISG[1] <br>

/Trip Manager]\end{array}\right]\)| [Control |
| :--- |
| ISG |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Off Cmd35 | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1..n, Trip Cmds | $\because-$ | [Control /SG /SG[1] <br> /Trip Manager] |
| Off Cmd36 | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1..n, Trip Cmds | -.- | [Control /SG /SG[1] <br> /Trip Manager] |
| Off Cmd37 | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1..n, Trip Cmds | -- | [Control /SG /SG[1] <br> /Trip Manager] |
| Off Cmd38 | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1..n, Trip Cmds | -- | [Control /SG /SG[1] <br> /Trip Manager] |
| Off Cmd39 | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1..n, Trip Cmds | -.- | [Control /SG /SG[1] <br> /Trip Manager] |
| Off Cmd40 | Off Command to the Circuit Breaker if the state of the assigned signal becomes true. | 1..n, Trip Cmds | -.- | [Control /SG /SG[1] <br> /Trip Manager] |
| Synchronism | Synchronism | 1..n, In-SyncList | -- | [Control ISG /SG[1] <br> /Synchron Switchg] |
| t-MaxSyncSuperv | Synchron-Run timer: Max. time allowed for synchronizing process after a close initiate. Only used for GENERATOR2SYSTEM working mode. | 0-3000.00s | 0.2s | [Control /SG /SG[1] <br> /Synchron Switchg] |
| ON incl Prot ON | The ON Command includes the ON Command issued by the Protection module. | inactive, active | active | [Control /SG /SG[1] <br> /General settings] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| OFF incl TripCmd | The OFF Command includes the OFF Command issued by the Protection module. | inactive, active | active | [Control <br> /SG <br> /SG[1] <br> /General settings] |
| t-Move ON | Time to move to the ON Position | 0.01-100.00s | 0.1 s | [Control /SG /SG[1] <br> /General settings] |
| t-Move OFF | Time to move to the OFF Position | 0.01-100.00s | 0.1 s | [Control <br> /SG <br> /SG[1] <br> /General settings] |
| t-Dwell | Dwell time | 0-100.00s | Os | [Control <br> ISG <br> /SG[1] <br> /General settings] |

## Controlled Circuit Breaker Input States

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Aux ON-I | Module Input State: Position indicator/check-back signal of the CB (52a) | [Control /SG /SG[1] <br> /Pos Indicatrs Wirng] |
| Aux OFF-I | Module input state: Position indicator/check-back signal of the CB (52b) | [Control <br> /SG <br> /SG[1] <br> /Pos Indicatrs Wirng] |
| Ready-I | Module input state: CB ready | [Control <br> /SG <br> /SG[1] <br> /Pos Indicatrs Wirng] |
| Sys-in-Sync-I | State of the module input: This signals has to become true within the synchronization time. If not, switching is unsuccessful. | [Control /SG /SG[1] <br> /Synchron Switchg] |
| Removed-I | State of the module input: The withdrawable circuit breaker is Removed | [Control /SG /SG[1] <br> /Pos Indicatrs Wirng] |
| Ack TripCmd-I | State of the module input: Acknowledgement Signal (only for automatic acknowledgement) Module input signal | [Control /SG /SG[1] <br> /Trip Manager] |
| Interl ON1-I | State of the module input: Interlocking of the ON command | [Control /SG /SG[1] <br> /Interlockings] |
| Interl ON2-I | State of the module input: Interlocking of the ON command | [Control /SG /SG[1] <br> /Interlockings] |
| Interl ON3-I | State of the module input: Interlocking of the ON command | [Control /SG /SG[1] <br> /Interlockings] |


| Name | Description | Assignment via |
| :---: | :---: | :---: |
| Interl OFF1-\| | State of the module input: Interlocking of the OFF command | [Control <br> ISG <br> /SG[1] <br> /Interlockings] |
| Interl OFF2-I | State of the module input: Interlocking of the OFF command | [Control <br> ISG <br> /SG[1] <br> /Interlockings] |
| Interl OFF3-I | State of the module input: Interlocking of the OFF command | [Control <br> ISG <br> /SG[1] <br> /Interlockings] |
| SCmd ON-I | State of the module input: Switching ON Command, e.g. the state of the Logics or the state of the digital input | [Control <br> /SG <br> /SG[1] <br> /Ex ON/OFF Cmd] |
| SCmd OFF-I | State of the module input: Switching OFF Command, e.g. the state of the Logics or the state of the digital input | $\begin{aligned} & \text { [Control } \\ & \text { ISG } \\ & \text { /SG[1] } \\ & \text { /Ex ON/OFF Cmd] } \end{aligned}$ |

## Signals of a Controlled Circuit Breaker

| Signal | Description |
| :--- | :--- |
| SI SingleContactlnd | Signal: The Position of the Switchgear is detected by one auxiliary contact (pole) only. Thus <br> indeterminate and disturbed Positions cannot be detected. |
| Pos not ON | Signal: Pos not ON |
| Pos ON | Signal: Circuit Breaker is in ON-Position |
| Pos OFF | Signal: Circuit Breaker is in OFF-Position |
| Pos Indeterm | Signal: Circuit Breaker is in Indeterminate Position |
| Pos Disturb | Signal: Circuit Breaker Disturbed - Undefined Breaker Position. The Position Indicators <br> contradict themselves. After expiring of a supervision timer this signal becomes true. |
| Pos | Signal: Circuit Breaker Position (0 = Indeterminate, 1 = OFF, 2 = ON, 3 = Disturbed) |
| Ready | Signal: Circuit breaker is ready for operation. |
| t-Dwell | Signal: Dwell time |
| Removed | Signal: The withdrawable circuit breaker is Removed |
| Interl ON | Signal: One or more IL_On inputs are active. |
| Interl OFF | Signal: One or more IL_Off inputs are active. |
| CES succesf | Signal: Command Execution Supervision: Switching command executed successfully. |
| CES Disturbed | Signal: Command Execution Supervision: Switching Command unsuccessful. Switchgear in <br> disturbed position. |
| Signal: ON Command issued to the switchgear. Depending on the setting the signal may |  |
| include the ON command of the Prot module. |  |
| CES Fail TripCmd | Signal: Command Execution Supervision: Command execution failed because trip command is <br> pending. |
| Position Ind manipul | Signal: Position Indicators faked |
| SGwear Slow SG | Signal: Alarm, the circuit breaker (load-break switch) becomes slower |
| Srot ON | Signal: Command Execution Supervision respectively Switching Direction Control: This signal |
| becomes true, if a switch command is issued even though the switchgear is already in the |  |
|  | Sequested position. Example: A switchgear that is already OFF should be switched OFF again |
| (doubly). The same applies to CLOSE commands. |  |


| Signal | Description |
| :--- | :--- |
| OFF Cmd | Signal: OFF Command issued to the switchgear. Depending on the setting the signal may <br> include the OFF command of the Prot module. |
| ON Cmd manual | Signal: ON Cmd manual |
| OFF Cmd manual | Signal: OFF Cmd manual |
| Sync ON request | Signal: Synchronous ON request |

## Control - Example: Switching of a Circuit Breaker

The following example shows how to switch a circuit breaker via the HMI at the device.


Change into the menu »Control« or alternatively push the »CTRL« button at the device front.

```
Control 
```


## Control Page

```
General settings
A \(\boldsymbol{\nabla}\)
```

Change to the control page by pushing the »right arrow« softkey.


Information only: On the control page the current switchgear positions is displayed. By means of the softkey »Mode« it can be switched to the menu »General Settings«. In this menu switching authority and interlockings can be set.

By means of the softkey »SG« it can be switched to the menu »SG«. In this menu specific settings for the switch gear can be done.

| $\star$ Remote | To execute a switching operation, change into the switching menu by pushing the <br> right arrow softkey button. |
| :--- | :--- | :--- |
| Mode |  |



Pushing the softkey »Mode«leads to the menu »General Settings«.


In this menu the switching authority can be changed.


Select between »Local« or »Local and Remote«.


Now it is possible to execute switching commands at the HMI.

|  | Push the »right arrow« softkey to get to the control page. |
| :--- | :--- |


| ${\hline \multirow{59}{}}{ } }$ | The cirs. <br> After pushing the softkey »CLOSE« a confirmation window appears. |
| :--- | :--- |


| Confirmation |  | When you are sure to proceed with the switching operation, press the softkey »YES«. |
| :---: | :---: | :---: |
| (?) | Bkr.CLOSE Are you sure? |  |
| no | yes |  |


| Local | The switching command will be given to the circuit breaker. The display shows the <br> intermediate position of the switchgear. |
| :--- | :--- |


| Local | It will be shown on the display when the switchgear reaches the new end position. <br> Further possible switching operations (OPEN) will be displayed by softkeys. |
| :--- | :--- |


| Warning <br> Bkr.OPEN <br> Movingine <br> elapsed |
| :---: | :--- |
| OK |$\quad$| Notice: For the case, the switchgear does not reach the new end position within the |
| :--- |
| set supervision time the following Warning appears on the display. |

## Protective Elements

## id - Phase Current Differential Protection [87TP]

Available elements:
Id

## Description

The protective device provides restrained phase differential protection function with User-configurable multiple slope percentage restrained characteristic that allows to compensate both the static error and the dynamic error. The static error accounts for transformer static magnetizing current and current measurement circuit calibration errors. The dynamic error may be caused by Tap Changing (OLTC) and by CT saturation caused by heavy fault currents.

In addition, the static tripping characteristic can be modified temporarily at the User's choice to prevent some nuisance tripping from the harmonic inrush during energization, over-excitation, or deep CT saturation. The harmonic inrush is evaluated through $2^{\text {nd }}, 4^{\text {th }}$ harmonics and $5^{\text {th }}$ harmonics transient is monitored through the CT saturation detector.

## Phase Differential Protection Applications

The phase differential protection can be used for two application scenarios:

## Transformer Phase Differential Protection - 87 TP

For this application, the phase differential protection will detect phase faults within the transformer windings. The differential zone is between the current transformers (CT) installed at both sides of the transformer.

The reference side for the phase differential protection is winding side 1 (W1).
The base (reference current) will be calculated as:

$$
I_{b}=I_{b, W l}=\frac{S_{N}}{\sqrt{3} * V_{\mathrm{LL}, \mathrm{~W} 1}}=\frac{\text { Rated }^{\text {Power }_{\text {Transformer }}}}{\sqrt{3} * \text { Rated Voltage }_{\text {Transformer }}}
$$

| Application Options | Required Settings |
| :--- | :--- | :--- |
| ANSI 87TP - |  |
| Transformer Differential Protection |  |

## Direction Definitions

The direction convention adopted here is as shown in the following drawing.

Protection Principle of the Current Differential Protection


Legend

| Symbol | Explanation |
| :--- | :--- |
| $S_{N}$ | Rated Power from Protected Object (e.g. Generator or Stepup Transformer) |
| $V_{\mathrm{LL}}$ | Rated Voltage from Protected Object (e.g. Generator) |
| $V_{\mathrm{LL}, \mathrm{W} 1}$ | Rated Voltage from Transformer side W1 ( primary) |
| $V_{\mathrm{LL}, \mathrm{W} 2}$ | Rated Voltage from Transformer side W2 (secondary) |
| $C T_{\text {pri,W1 }}$ | Primary Rated current of Current Transformer on Transformer side W1 |
| $C T_{\text {sec,W1 }}$ | Secondary Rated current of Current Transformer on Transformer side W1 |
| $C T_{\text {pri,W2 }}$ | Primary Rated current of Current Transformer on Transformer side W2 |
| $C T_{\text {sec,W2 }}$ | Secondary Rated current of Current Transformer on Transformer side W2 |
| $I_{b}$ | Base current (is depending on the applied context, in general, it is the Rated Current of <br> Protected Object, e.g. Generator or Transformer) |
| $I_{b, W 1}$ | Base current or Rated Current of Transformer primary side (W1) |
| $I_{b, W 2}$ | Base current or Rated Current of Transformer secondary side (W2) |
| $I_{\text {pri,W1 }} \quad I_{\text {pri,W2 }}$ | Uncompensated primary current phasors on corresponding winding side |
| $\overrightarrow{I_{W 1}}$ | $\overrightarrow{I_{W 2}}$ | | Uncompensated secondary current phasors on corresponding winding side |
| :--- |

## Tripping curve

The restrained percentage phase differential protection tripping characteristic can be expressed mathematically as:

$$
\left|\vec{I}_{d}\right| \geq\left|\overrightarrow{I_{\text {dmin }}}\right|+\underbrace{K_{1} *\left|\overrightarrow{I_{s}}\right|}_{I_{s}>I_{s}\left(\text { dummmm }^{2} \text { and } I_{d}<2 * I_{b}\right.}+\underbrace{K_{2} *\left|\overrightarrow{I_{s}}\right|}_{I_{s} \geqslant 2 * I_{b}}+d(H, m)
$$

Where
$\left|\vec{I}_{d}\right|=\left|\overrightarrow{I_{W 1}{ }^{\prime \prime \prime}}+\overrightarrow{I_{W 2}{ }^{\prime \prime}}\right| \quad$ is defined as fundamental differential current.
$\left|\overrightarrow{I_{s}}\right|=0.5 *\left|\overrightarrow{I_{W I}}{ }^{\prime \prime}-\overrightarrow{I_{W 2}}\right|$ is defined as fundamental restraining current, and it is also called the through current for normal load and external faults.
$\left|\overrightarrow{I_{\text {dmin }}}\right|$ is the minimum differential current scaled to the base current.
$K_{1} \quad$ and $\quad K_{2}$ are slope factors for two slope sections on the operating curve respectively.
$d(H, m)$ is the temporary restraining current, which is a configurable multiple of the base current $I_{b}$.
$\overline{I_{W I}{ }^{\prime \prime}}$ and $\overline{I_{W 2}{ }^{\prime \prime \prime}}$ are the corresponding compensated secondary current phasors, which are scaled from the uncompensated primary phase current phasors $\overline{I_{\text {pri,W1 }}}$ and $\overline{I_{\text {pri,W2 }}}$ flowing into the protected object.

Under normal conditions, the differential current should be below $\left|\overrightarrow{I_{d m i n}}\right|$. When an internal fault occurs, the different current will raise above the restraining current to trip. To establish a correct trip criterion, two currents flowing into the protected object must be matched by compensating their magnitudes and phases.


## Setting the Tripping Curve

$\left|\overrightarrow{I_{\text {dmin }}}\right|$ is the minimum differential current multiple scaled to the base current to get the restrained phase differential protection to trip, which should be set based on the static error (no load error, transformer magnetizing current, and measurement circuit noise). $K_{1}$ and $K_{2}$ are the restraining slopes that will be determined with the settings $I_{d}\left(\left|\overrightarrow{I_{s l}}\right|\right) \quad, \quad I_{d}\left(\left|\overrightarrow{I_{s l}}\right|\right)$, and $\quad I_{d}\left(\left|\overrightarrow{I_{s 2}}\right|\right)$ as follows:

$$
\begin{aligned}
& K_{1}=\left|I_{d}\left(\left|\vec{I}_{s l}\right|\right)-I_{d}\left(\left|\vec{I}_{s l}\right|\right)\right| / 2 \\
& K_{2}=\left|I_{d}\left(\left|\vec{I}_{s l}\right|\right)-I_{d}\left(\left|\vec{I}_{s l}\right|\right)\right| / 8
\end{aligned}
$$

All current settings are expressed as multiples of the base current (lb). The base current will be calculated internally from the power rating and voltage ratings of the protected object under the field parameter menu.

For generator or motor differential protection the base current is defined as:

$$
I_{b}=\frac{S_{N}}{\sqrt{3} * V_{\mathrm{LL}}}=\frac{{\text { Rated } \text { Power }_{\text {Generator }}}_{\sqrt{3} * \text { Rated Voltage }_{\text {Generator }}}}{\text { V }}
$$

For step-up transformers with two windings the two base currents for each winding are defined respectively as:

$$
I_{b, W 1}=\frac{S_{N}}{\sqrt{3} * V_{\mathrm{LL}, \mathrm{~W} 1}} \quad I_{b, W 2}=\frac{S_{N}}{\sqrt{3} * V_{\mathrm{LL}, \mathrm{~W} 2}}
$$

## NOT/CE For setting the tripping characteristics of the 87 Transformer Phase Differential Protection, the base current $I_{b}=I_{b, W 1}$ is to be used. <br> For the 87 Generator Phase Differential and Unit Phase Differential Protection, the base current $I_{b}$ from Generator is to be used.

The procedures to configure: $\quad I_{d}\left(\left|\vec{I}_{s 0}\right|\right) \quad, \quad I_{d}\left(\left|\overrightarrow{I_{s l}}\right|\right)$, and $\quad I_{d}\left(\left|\vec{I}_{s 2}\right|\right)$ :

1. Use $I_{d}\left(\left|\vec{I}_{s 0}\right|\right)$ as a minimum differential current to trip when the restraining current is zero;
2. Select the slope $K_{1}$ (usually around $15 \%-40 \%$ [typically $25 \%$ ];
3. Calculate set value $I_{d}\left(\left|\vec{I}_{s l}\right|\right)$ using $I_{d}\left(\left|\overrightarrow{I_{s d}}\right|\right)$ and $\quad K_{1}: \quad I_{d}\left(\left|\vec{I}_{s \mid}\right|\right)=I_{d}\left(\left|\overrightarrow{\mid}_{s 0}\right|\right)+2 * K_{1}$;
4. Select the slope $K_{2}$ (usually around $40 \%-90 \%$ [typically $60 \%$ ]);
5. Calculate set value $I_{d}\left(\left|\overrightarrow{I_{s 2}}\right|\right)$ using $I_{d}\left(\left|\overrightarrow{I_{s l} \mid}\right|\right)$ and $K_{2}: \quad I_{d}\left(\left|\vec{I}_{s 2}\right|\right)=I_{d}\left(\left|\vec{I}_{s l}\right|\right)+8 * K_{2}$;

## Phasor Compensation

Please note: This section applies only if a step up transformer is part of the protected differential zone.
Please note: The reference side for the phasor compensation is assigned fixed to current measuring card W1.
The phase current phasor compensations are performed automatically and involve amplitude and phase adjustments based on the system parameters, voltage ratings, tap position (assuming the tap changer is on the winding 1 side), winding connections and groundings, and the secondary winding phase shift ( n ) relative to the primary.
The compensated secondary current phaser on the transformer winding side W 2 with winding side W 1 as reference winding can be expressed as follows:
$\overrightarrow{I_{W 2}^{\prime}}=\frac{V_{\mathrm{LL}, \mathrm{W} 2}}{V_{\mathrm{LL}, \mathrm{W} 1} *(1+\text { Tap Changer })} * \frac{C T_{p r i, W 2}}{C T_{p r i, W 1}} * \overrightarrow{I_{W 2}}$ for magnitude compensation,
and

$$
\overrightarrow{I_{W 2}^{\prime \prime}}=T_{\text {Phase Shift }(n)} * \overrightarrow{I_{W 2}^{\prime}} \text { for angle compensation. }
$$

Note: $\quad T_{\text {Phase Shift }(n)}$ is a complex factor due to transformer vector group setting.

## CT Mismatch

Please note: This section applies only if a step up transformer is part of the protected differential zone.

## NOTICE

None of the Amplitudes Matching factors must exceed a value of 10.

$$
k_{C T 1}=\frac{C T_{p r i, W 1}}{I b_{W 1}} \leqslant 10 \quad \text { and } \quad k_{C T 2}=\frac{C T_{p r i, W 2}}{I b_{W 2}} \leqslant 10
$$

The ratio between the maximum and second largest amplitudes matching factors must not exceed a value of 3 .

## Phase Compensation (ABC Phase System)

Please note: This section applies only if a step up transformer is part of the protected differential zone.

Note that the phase shift n is specified as a multiple of $-30^{\circ}$. A positive n means the secondary is lagging the primary side. The User must select carefully the right number based on the winding connections. The following table lists the typical transformer connection types and their corresponding phase shifts for $A B C$ phase sequence.

| vedrctap | Freosit | TransfimerCamscion Type | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $0^{\circ}$ | Yy0 |  |  |
|  |  | Dd0 |  |  |
|  |  | Dz0 |  |  |


| vedrccap | Freessit | Transtamer Canection Type | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $30^{\circ}$ | Yd1 |  |  |
|  |  | Dy1 |  |  |
|  |  | Yz1 |  |  |


| vedrcrap | Freessit | Trastame $\underset{\substack{\text { Ipamedo }}}{ }$ | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $60^{\circ}$ | Yy2 |  |  |
|  |  | Dd2 |  |  |
|  |  | Dz2 |  |  |


| vedrccap | Freesith | Thascamer comedion | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 3 | $90^{\circ}$ | Yd3 |  |  |
|  |  | Dy3 |  |  |
|  |  | Yz3 |  |  |


| vedrcrap | Freosit | Tasasamercamedion | Winding 1 Connection | Winding 2 Cornection |
| :---: | :---: | :---: | :---: | :---: |
| 4 | $120^{\circ}$ | Yy4 |  |  |
|  |  | Dd4 |  |  |
|  |  | Dz4 |  |  |


| vedrctap | Freessit |  | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 5 | $150^{\circ}$ | Yd5 |  |  |
|  |  | Dy5 |  |  |
|  |  | Yz5 |  |  |


| vedrcrap | Freoshit |  | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 6 | $180^{\circ}$ | Yy6 |  |  |
|  |  | Dd6 |  |  |
|  |  | Dz6 |  |  |


| vedrcrap | Freosint | Trascomercamedion | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 7 | $210^{\circ}$ | Yd7 |  |  |
|  |  | Dy7 |  |  |
|  |  | Yz7 |  |  |


| vedrccap | Freessit | Trastame $\underset{\substack{\text { Ipamedo }}}{ }$ | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 8 | $240^{\circ}$ | Yy8 |  |  |
|  |  | Dd8 |  |  |
|  |  | Dz8 |  |  |


| vedrcrap | Freessit | Trastame $\underset{\substack{\text { Ipamedo }}}{ }$ | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 9 | $270^{\circ}$ | Yd9 |  |  |
|  |  | Dy9 |  |  |
|  |  | Yz9 |  |  |


| vedrcrap | Freessit | Trascomercamedion | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 10 | $300^{\circ}$ | Yy10 |  |  |
|  |  | Dd10 |  |  |
|  |  | Dz10 |  |  |


| vedrctap | Freosint | Trascamercomedion | Winding 1 Connection | Winding 2 Connection |
| :---: | :---: | :---: | :---: | :---: |
| 11 | $330^{\circ}$ | Yd11 |  |  |
|  |  | Dy11 |  |  |
|  |  | Yz11 |  |  |

## Phase Compensation (ACB Phase System)

Please note: This section applies only if a step up transformer is part of the protected differential zone.

The phase shift n for the ACB phase sequence should be 12's complement to the corresponding transformer connection type. For instance, Dy5 for the ABC phase sequence will be Dy7 (12-5) for the ACB sequence, Dy11 becomes Dy1, and so on.

## Zero Sequence Removal

Please note: This section applies only if a step up transformer is part of the protected differential zone.

Zero sequence currents must be removed to prevent the phase differential protection from tripping on external ground faults. For ground faults, the zero sequence current exits only on the transformer winding side whose neutral is grounded, but not on the ungrounded winding side. The differential current due to different groundings on two winding sides results in maloperation of phase differential function if it is not compensated (removed) before. The protective device does not require the zero sequence currents to be removed externally and they will be automatical removed internally according to the system parameters »W1 Connection/Grounding« and »W2
Connection/Grounding«.

$$
\begin{aligned}
& \overrightarrow{I_{W 1}^{\prime \prime \prime}}=\overrightarrow{I_{W 1}}-\overrightarrow{I_{0, W 1}} \\
& \overrightarrow{I_{W 2}^{\prime \prime}}=\overrightarrow{I_{W 2}^{\prime \prime}}-\overrightarrow{I_{0, W 2}}
\end{aligned}
$$

## Retrofitting - External Compensation

Please note: This section applies only if a step up transformer is part of the protected differential zone.

## $\triangle$ CAUTION By using the external removal approach, just like many elctromechnical relay do, the relay will not see the zero sequence current which other protection functions, such as residual overcurrent, ground differential , etc.

For a retrofit project, if the User has CTs externally connected in such a way that the zero sequence currents are removed automatically, then the internal zero sequence currents compensation will not be needed. However, if the User prefers the external approach of zero sequence current removal, the User must be aware that the protective device is a multi-function, digital protection system and the phase differential function is one of them. By using the external removal approach, the relay will not see the zero sequence current on which other functions such as residual overcurrent functions, ground differential function, etc. are just based on. If the User is only interested in the phase differential function in this relay, great attention must be paid to the phase shift and CT ratios. Under normal or external fault conditions, the CT secondary currents from two windings should be equal in magnitude, i.e.:

$$
\begin{aligned}
& \left|\frac{C T_{S e c, W 1}}{C T_{P r i, W l} / \sqrt{3}} * \overline{I_{P r i, W 1}}\right|=\left|\frac{C T_{S e c, W 2}}{C T_{P r i, W 2}} * \overline{I_{P r i, W 2}}\right| \text { if the winding } 1 \text { CTs are delta-connected; or } \\
& \left|\frac{C T_{s e c, W 1}}{C T_{p r i, W 1}} * \overline{I_{P r i, W 1}}\right|=\left|\frac{C T_{\text {sec,W2}}}{C T_{p r i, W 2} / \sqrt{3}} * \overline{I_{P r i, W 2}}\right| \text { if the winding } 2 \text { CTs are delta-connected. }
\end{aligned}
$$

The User must provide the relay with the modified CT primary rating to accommodate the current's effective decrease due to the CT delta connection. The CT primary rating setting on the CT delta connected side should be divided by $\sqrt{3}$.

The phase shift n for the CT delta connected case should include the phase shift from transformer winding connections and additional phase shift from CT delta connection. There are only two methods for the CT delta connection:

```
-DAB (dy1); or
-DAC (dy11).
```

For instance, if the User has a Yd1 transformer and the neutral on the Y side is grounded, the User must have CTs on the $Y$ side connected as DAC (Dy11), then the User has total phase shift 1+11=12 (same as 0 in terms of phase shift). If the User has a Yd5 transformer and the neutral on the $Y$ side is grounded, the User must have CTs on the $Y$ side connected as DAB (Dy1), then the User has total phase shift 5+1=6.

| Transformer <br> Winding <br> Connection <br> Type | CT Delta <br> Connection <br> Type on Yor <br> y side <br> Dy1 | Total Phase Shift Multiple $n$ |
| :--- | :--- | :--- |
| DAC (Dy11) | $12(0)$ |  |
| Dy5 | DAB (Dy1) | 6 |
| Dy7 | DAC (Dy11) | $(18 \% 12)=6$ |
| Dy11 | DAB (Dy1) | $12(0)$ |
| Yd1 | DAB (Dy1) | 6 |
| Yd5 | DAC (Dy11) | $(18 \% 12)=6$ |
| Yd7 (0) |  | $12(0)$ |

Once a correct phase shift n is selected, the phase compensation calculations are done automatically using the corresponding phase shifting matrix listed in the table.

## Transient Restraining

The transient behavior can be evoked by:

1. Directly energizing the transformer (inrush effect);
2. Sympathetic inrush current sharing due to adjacent transformer energization; and/or
3. Saturation of the CT.

Temporarily restraining can be triggered by:

1. 2nd harmonic trigger is enabled and the percentage of the $2 n d$ harmonic exceeds its threshold;
2. 4th harmonic trigger is enabled and the percentage of the 4th harmonic exceeds its threshold;
3. 5th harmonic trigger is enabled and the percentage of the 5th harmonic exceeds its threshold; or
4. CT saturation trigger is enabled and saturation is detected.

## NOT C E By means of the »Block mode« (Cross Block), the User can specify if a harmonic signal or CT saturation within one phase temporarily causes restraining within this phase only or a cross block (3 phases).

## Temporarily Restraining (by monitoring of the harmonics)

The protective device also offers the temporary restraining feature for further securing phase percentage restrained differential protection against harmonics and other transients such as CT saturation. Separating the temporary restraining from the fundamental restraining can make the differential protection more sensitive to internal faults and more secure when harmonics or other transients occur. The temporary restraining, whenever effective, will essential add a constant $d(H, m)$ to the fundamental restraining. Graphically, the static tripping curve is temporarily raised by $d(H, m)$. The amount of the temporary restraining is configured as multiple of the base current
$I_{b}$. The 2nd, 4th, and 5th harmonics percentage relative to fundamental and CT saturation can trigger the temporary restraining. For each harmonic trigger function to be effective, it must be enabled and the percentage of the harmonic over fundamental must exceed its threshold.

Moreover, for the 2nd and 5th harmonics trigger functions, they can be configured independently as having different trigger levels for transient and stationary harmonics. The transient restraining will be effective for a specified t-Trans beginning with energization, which should be set according to the time duration expected for inrush (IH2) currents. For example, this can vary from around 1 second up to nearly 30 seconds for special applications like autotransformer banks.

The stationary harmonic restraining will take place after t-Trans for time as long as one of the stationary harmonic triggers is active.

## Temporarily Restraining (by CT saturation monitoring)

Beside the harmonic temporary restraining triggers, the protective device offers another trigger function - the Transients Monitor (Gradient Monitor). This monitor supervises the current transformer saturation. This monitor will be triggered by the behavior of the phase currents (their slopes, normalized derivative).

The normalized derivative is defined as:

$$
m=\frac{1}{\omega * I_{\text {peak }}} * \frac{d i}{d t}
$$

where $\quad I_{\text {peak }}$ is the peak value within a half cycle and $\omega$ is the system frequency.

For a pure sinusoidal waveform, the normalized derivative should be equal to 1 . Under CT saturation, m will be greater than 1. The setting CT Satur Sensitvn should be set properly to identify effectively CT saturation but not to generate a nuisance trigger.

When the CT saturation monitor is active, it will trigger the temporary restraining if $m$ exceeds an internal threshold. The temporary restraining, whenever effective, will essentially add a constant $d(H, m)$ to the fundamental restraining. Graphically, the static tripping curve is temporarily raised by $d(H, m)$ which the sensitivity of the differential protection function is reduced temporarily .

The internal threshold can be modified by means of the CT Saturation Sensitivn. The CT saturation monitor will behave more sensitively the lower the setting value is set.

Temporary Dynamic Rise of the Static Tripping Characteristic.


IS/b

## NOT/CE The following signals cannot become true if Id<ldmin:

87. Slope Blo
88. H2,H4,H5 Blo
89. Blo H2
90. Blo H4
91. Blo H5
92. Restraining

The signal restraining will become true if " 87 . Slope Blo" or "87. H2,H4,H5 Blo" is true.

## Example on Setting the Differential Function for Transformer Application

Setting the differential module will be described here with focus on the differential functionality. The protective device asks for nearly all type-plate data of the transformer to allow for optimal adjustment of the differential function without the need of an auxiliary transformer and other tools like CT tapping (especially that known from non-digital relays in the past).

This results in the fact that the relay takes automatically these numeric values into account:
-CT ratio and its deviation from full load amperage at each winding of the transformer;
-Transformer ratio with respect to amplitude and transformer vector-group; and
-Ratio change by tap changer displacement.
All this is compensated internally for by numeric means.
SN:
Nominal, rated capacity of the transformer - basis for calculating the full load amperage of the transformer.

## Example

78 MVA
Pri V:
Rated voltage of the transformer regarding winding 1.

## Example

118 kV

Sec V:
Rated voltage of the transformer regarding winding 2.

## Example <br> 14.4 kV

By means of these three settings, the following full load amperage lb is calculated, which is defined as the full load amperage for the maximum allowed apparent power of the transformer. There is one full load amperage for each winding, but differential protection results are always displayed in relation to lb of the winding 1.

## Example:

$$
I b=I b_{W l}=I_{F L A, W l}=\frac{78000000 V A}{\sqrt{3} * 118000 \mathrm{~V}}=381 \mathrm{~A}
$$

$\mathrm{lb}=$ Full load current (FLA related to the transformer primary side)

## Connection Groups

W1 Connection/Grounding
This is the setting for the connection scheme of the winding W1 and its grounding condition.

| Allowed Settings | Default (example) |
| :--- | :--- |
| Y, D, Z, YN, ZN | Y |

W2 Connection/Grounding
This is the setting for the connection scheme of the winding W2 and its grounding condition.

| Allowed Settings | Default (example) |
| :--- | :--- |
| $y, d, z, y n, z n$ | $y$ |

The combination of W1 Connection/Grounding and W2 Winding/Grounding allows for all possible physical connection schemes of stepup transformers. The N or n can be set whenever the neutral of the transformer is connected to ground and the grid on that side of the winding is grounded.

Phase Shift:
Phase shift in multiples of $0 . . .11^{*}(-30)$ degree that the secondary voltage lags the primary voltage.

```
Default (example)
```

0 (0 degrees )

Please refer to the Phase Compensation section for a number of typical, preferred transformer types.

For ( $\mathrm{Y}, \mathrm{y}, \mathrm{Z}, \mathrm{z}$ ) connections, the neutral can be connected to ground or not connected to ground. In general, there is a distinction between odd $(1,3,5, \ldots, 11)$ and even $(0,2,4, \ldots, 10)$ connection numbers. Together with the connection scheme ( $\mathrm{y}, \mathrm{d}$, or z ) and the treatment of the neutral of the transformer, the following definitions are taken.

- The three-phase symmetrical system I1 is rotated counter-clockwise when transferring from winding 1 to winding 2 (applies for ABC phase sequence).
- The three-phase symmetrical system I2 is rotated clockwise when transferring from winding 1 to winding 2. (applies for ABC phase sequence).
- The connection of the transformer to a negative rotating system (ACB) is taken into account according to the parameter.
- The transformation of the zero sequence system 10 depends on the connection of the windings:
- Only (Y, y, Z, z) - connections provide for an external available neutral point;
- Only when this neutral point is connected to ground (this is indicated by an appended „ n " in the winding group setting (example Dyn)), and at least another ground connection is available
on the grid to which the winding is connected (a zero sequence - respectively ground current can flow); and
- Only when both windings of the transformer allow for ground current flowing, the zero sequence current can be transformed from one side of the transformer to the other without any phase shift.
- Odd connection groups are created by Dy, Yd, Yz, Zy schemes.
- Even connection groups are created by Yy, Zd, Dz, Dd.
- The primary values of winding 1 are reference values when displaying or evaluating relative values.

The transformer ratio can be modified by a tap changer.
Tap Changer:
The tap changer changes the transformer voltage ratio $k_{\text {Tap }}$.

$$
k_{\text {Tap }}=\frac{V_{\mathrm{LL}, \mathrm{~W} 1}(1+\text { Tap Changer })}{V_{\mathrm{LL}, \mathrm{~W} 2}}
$$

Principally, the following calculations need to be executed before calculating differential values and restraining values of the transformer differential protection:

- Rotating the measured values of winding 2 to the reference winding 1 count-clockwise with an angle of rotation number ( $0,1, \ldots . .11$ ) * 30 degrees;
- Adjustment of measured values for winding 2 with respect to CT ratio mismatch;
- Adjustment of measured values for winding 2 with respect to winding connection ( $\mathrm{y}, \mathrm{d}, \mathrm{z}$ ); and
- Adjustment of measured values for winding 1 and winding 2 according to neutral connection and ground treatment (zero sequence current elimination).


## Automatic Calculations: Amplitudes, Vector Groups, and Zero Sequence Removal

The calculations performed can be done by matrix calculations. Three steps have to be completed.

1. Adjust the amplitude according to all transformation ratios (Stepup transformer and CTs).
2. Adjust the vector group angle by rotating the three-phase system accordingly.
3. Remove the zero sequence current where necessary (this being valid for winding 1 and winding 2 ).
4. Amplitude Adjustment:

$$
\overrightarrow{I_{W 2}^{\prime}}=\overrightarrow{I_{W 2}} * k_{r} \quad k_{r}=\frac{C T_{p r i, W 2}}{I_{B, W 2}} * \frac{I_{b, W 1}}{C T_{p r i, W 1}}=\frac{C T_{p r i, W 2}}{C T_{p r i, W 1}} * \frac{V_{\mathrm{LL}, \mathrm{~W} 2}}{V_{\mathrm{LL}, \mathrm{~W} 1} *(1+\text { Tap Changer })}
$$

2. Vector Group Adjustment:

The vector group adjustment is calculated using the following formulas and transformation matrices:

$$
\overrightarrow{I_{W 2}^{\prime \prime}}=\left[T_{\text {PhaseShift }}\right] * \overrightarrow{I_{W 2}^{\prime}} \quad\left[T_{\text {PhaseShift }}\right] \rightarrow\left[T_{0,1,2 \ldots 11}\right]
$$

| Even Connection Groups | Odd Connection Groups |
| :---: | :---: |
| $T_{0}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ | $T_{1}=\frac{1}{\sqrt{3}} *\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1\end{array}\right]$ |
| $T_{2}=\left[\begin{array}{rrr}0 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0\end{array}\right]$ | $T_{3}=\frac{1}{\sqrt{3}} *\left[\begin{array}{rrr}0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right]$ |
| $T_{4}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ | $T_{5}=\frac{1}{\sqrt{3}} *\left[\begin{array}{rrr}-1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1\end{array}\right]$ |
| $T_{6}=\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ | $T_{7}=\frac{1}{\sqrt{3}} *\left[\begin{array}{rrr}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1\end{array}\right]$ |
| $T_{8}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ | $T_{9}=\frac{1}{\sqrt{3}} *\left[\begin{array}{rrr}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right]$ |
| $T_{10}=\left[\begin{array}{rrr}0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right]$ | $T_{11}=\frac{1}{\sqrt{3}} *\left[\begin{array}{rrr}1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$ |

3. Zero sequence removal (elimination of the ground current if this can only flow through one winding at the external asymmetrical faults and will not be transformed to the other winding).

Zero sequence removal will be calculated for the primary winding system, if the W1con value is set to YN or ZN .
A zero sequence current can only flow:

1. If the neutral is connected to ground; and
2. The grid on the primary side is grounded as well.

$$
\overrightarrow{I_{W 1}^{\prime \prime \prime}}=\overrightarrow{I_{W 1}}-\overrightarrow{I_{0, W 1}}
$$

For the secondary winding system:
Zero sequence removal will be calculated for the secondary winding system, if the W2con value is set to yn or zn .
A zero sequence current can only flow:

1. If the vector group is odd;
2. If the neutral is connected to ground; and
3. The grid on the secondary side is grounded as well

$$
\overrightarrow{I_{W 2}^{\prime \prime \prime}}=\overrightarrow{I_{W 2}^{\prime \prime}}-\overrightarrow{I_{0, W 2}{ }^{\prime \prime}}
$$

After setting the values for the percentage restrained characteristic curve, the settings for harmonic and transient restraining have to be defined. Both the harmonic and transient restraining settings depend on many parameters:
-Transformer type;
-Transformer material;

- Operational parameter of the grid; and
-Time of energizing relative to the sinusoidal phase.

Therefor it is very difficult to give "one for all" settings in this area and to find a compromise between making a differential relay extremely fast and extremely reliable in its trip decisions.

Beginning with the static characteristic curve, typical slopes of $25 \%$ and $50 \%$ for both sections are recommended. They will be obtained by the following settings:

Id(ISO)
Default (example)
0.3

Id(IS1)
Default (example)
1.0

Id(IS2)

## Default (example)

4.0

In case of harmonic or transient restraint, the curve will be added by a static offset $\mathrm{d}(\mathrm{H}, \mathrm{m})$
To be able to withstand magnetizing inrush currents of typical values, the following value of $d(H, m)=8$ is recommended.
$\mathrm{d}(\mathrm{H}, \mathrm{m})$

| Default (example) |
| :--- | :--- |
| 8 |

In case that harmonic restraint threshold is reached, this value will be added to the characteristic curve.
It is important to estimate the necessary harmonic threshold to obtain stability against magnetizing inrush, CT saturation, and over-excitation. The harmonics seen under different operational conditions like magnetizing inrush and CT saturation depend on many different parameters.

Magnetizing inrush:
Basically, harmonics can be observed and monitored. Due to this fact, the $2^{\text {nd }}$ and $4^{\text {th }}$ harmonic are monitored. Inrush currents depend on the time of energizing, the remnant magnetizing compared to phase of sinusoidal curve, the voltage (low voltage energizing produce less harmonic), the core material and the core geometry among others. It is recommended generally to set the harmonic restraint as active.

Stab H2
$\square$
inactive

Stab H4

| Default (example) |
| :--- |
| inactive |

To operate very stably under stationary circumstances, it can be distinguished between a stationary value of harmonic thresholds and a transient harmonic threshold directly after energizing. This transient period is always started if the differential as well the restraining current is below $5 \%$ of the base current $I_{b}$. The following values are recommended for typical cases:

H2 Sta

| Default (example) |
| :--- |
| $30 \%$ |

H2 Tra

| Default (example) |
| :--- |
| $15 \%$ |

H4 Sta

| Default (example) |
| :--- |
| $30 \%$ |

For CT saturation, the $5^{\text {th }}$ harmonic is one typical criteria. This feature also should be activated as long as CT saturation is expected due to CT dimensioning and operational current values under external faults. It has to be noted that CT saturation can only be monitored as long as there is a critical rest of the current transformed to the secondary side of the CT. For severe CT saturation, the CT can be nearly short circuited, as seen from the primary side, so that nearly no measurable current can be monitored or analyzed.

Stab H5

| Default (example) |
| :--- |
| inactive |

H5 Sta

| Default (example) |
| :--- | :--- |
| $30 \%$ |

H5 Tra
Default (example)
15\%

The so-called transient time period directly after energizing strongly depends on the above mentioned influencing parameter. Time spans from nearly zero to more than 15 seconds are known for special auto-transformer banks. A typical setting of 2 s is recommended for commonly used transformers.
t-Trans
Default (example)
1 s

All harmonic-generating events can occur to a different degree in one, two, or all three phases. That is why there is a choice provided to restrain only those phases with harmonic content or restrain all three phases, which is recommended for typical application, as long as knowledge of the grid and modes of operation do not prove another choice.

## Block mode

| Default (example) |
| :--- |
| active |

The Transient Monitor analyzes continuously the differential current signal. If it detects saturation $|m|>1$, it will decide whether the saturation is caused by internal or external faults.
-External Faults: the sign of differential current and of slope are equal (both "-" or both"+").
-Internal Faults: the sign of differential current and slope are different (one "-" and the other " + " or the other way round).

If the saturation is caused by an internal fault, there will be no raising/stabilizing of the tripping curve. If the saturation is caused by an external fault, the tripping curve will be raised by $\mathrm{d}(\mathrm{H}, \mathrm{m})$.


## CT Satur Monit

## Default (example)

active

The recommended value of the CT saturation monitor is $120 \%$.

CT Satur Sensitvn
Default (example)
100\%

## Device Planning Parameters of the Phase Current Differential Protection



Global Protection Parameters of the Phase Current Differential Protection

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /Diff-Prot /ld] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /Diff-Prot /Id] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /Diff-Prot /Id] |

## Setting Group Parameters of the Phase Current Differential Protection

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Function | Permanent activation or deactivation of module/stage. | inactive, | active | [Protection Para <br> active <br> /<1..4> <br> /Diff-Prot <br> /ld] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the <br> module/stage. This parameter is only effective if a <br> signal is assigned to the corresponding global <br> protection parameter. If the signal becomes true, those <br> modules/stages are blocked that are parameterized <br> "ExBlo Fc=active". | inactive, <br> active | inactive | [Protection Para <br> /<1..4> <br> /Diff-Prot <br> /Id] |

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \begin{array}{l}\text { Description }\end{array} & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Blo TripCmd } & \begin{array}{l}\text { Permanent blocking of the Trip Command of the } \\
\text { module/stage. }\end{array} & \begin{array}{l}\text { inactive, } \\
\text { active }\end{array}
$$ \& inactive \& [Protection Para <br>
/<1..4> <br>

/Diff-Prot\end{array}\right]\)| /Id] |
| :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| H2 Tra | Threshold (2nd harmonic - basic wave ratio) for temporary stabilisation of the differential protection function against transient 2nd harmonic. <br> Only available if: Stab H2 = active | 10-25\% | 10\% | [Protection Para \|<1..4> /Diff-Prot /ld] |
| Stab H4 | Restraining of differential protection function against stationary components of the 4th harmonic at the phase current. | inactive, active | inactive | [Protection Para \|<1..4> /Diff-Prot /ld] |
| H4 Sta | Threshold (4th harmonic - basic wave ratio) for restraining the differential protection function against stationary 4th harmonic. <br> Only available if: Stab H4 = active | 10-50\% | 20\% | [Protection Para \|<1..4> /Diff-Prot /ld] |
| Stab H5 | Stabilisation of differential protection function against stationary or transient components of the 5th harmonic at the phase current (e.g. transformer overexcitation). | inactive, active | inactive | [Protection Para \|<1..4> /Diff-Prot /ld] |
| H5 Sta | Threshold (5thd harmonic - basic wave ratio) for stabilising the differential protection function against stationary 5th harmonic. <br> Only available if: Stab H5 = active | 10-50\% | 30\% | [Protection Para \|<1..4> /Diff-Prot /ld] |
| H5 Tra | Threshold (5th harmonic - basic wave ratio) for temporary restraining of the differential protection function against transient 5th harmonic. <br> Only available if: Stab H5 = active | 10-25\% | 15\% | [Protection Para /<1..4> <br> /Diff-Prot <br> /Id] |
| t-Trans | Time of temporary stabilisation of the differential protection function when thresholds for „H2 Tra" and "H5 Tra" (transient harmonic) are exceeded. | 0.05-120.00s | 2s | [Protection Para \|<1..4> /Diff-Prot /ld] |
| Crossbl | Active $=$ Phase overlapping stabilisation of the differential protection function. Inactive = Phase selective stabilisation of the differential protection function. | inactive, active | inactive | [Protection Para \|<1..4> /Diff-Prot /ld] |
| CT Satur Monit | Current Transformer Saturation Supervision | inactive, active | active | [Protection Para \|<1..4> /Diff-Prot /ld] |

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { CT Satur Sensitvn } & \begin{array}{l}\text { Sensitiveness of the Current Transformer Satusation } \\
\text { Supervision. The higher the value, the lower the } \\
\text { sensitiveness. } \\
\text { Only available if: VRestraint }=\text { active }\end{array}
$$ \& 100-500 \% \& 100 \% \& [Protection Para <br>
K1..4> <br>

/Diff-Prot\end{array}\right]\)| /Id] |
| :--- |

## Phase Current Differential Protection Module Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | /Global Prot Para |
| /Diff-Prot |  |  |
| ExBlo2-I | Module input state: External blocking2 |  |
|  |  | [Protection Para |
|  |  | /Global Prot Para |
|  |  | /Diff-Prot |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | [Protection Para |
|  |  | IGlobal Prot Para |

## Phase Current Differential Protection Module Signals (Output States)

| Signal | Description |
| :---: | :---: |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm L1 | Signal: Alarm System Phase L1 |
| Alarm L2 | Signal: Alarm System Phase L2 |
| Alarm L3 | Signal: Alarm System L3 |
| Alarm | Signal: Alarm |
| Trip L1 | Signal: Trip System Phase L1 |
| Trip L2 | Signal: Trip System Phase L2 |
| Trip L3 | Signal: Trip System Phase L3 |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |
| Blo H2 | Signal: Blocked by Harmonic:2 |
| Blo H4 | Signal: Blocked by Harmonic:4 |
| Blo H5 | Signal: Blocked by Harmonic:5 |
| H2,H4,H5 Blo | Signal: Blocked by Harmonics (Inhibit) |
| Slope Blo | Signal: Differential protection was blocked by current transformer saturation. The tripping characteristic was lifted because of current transformer saturation. |
| Transient | Signal: Temporary stabilization of the differential protection afterwards the transformer is being engergized. |
| Restraining | Signal: Restraining of the differential protection by means of rising the tripping curve. |
| Slope Blo: L1 | Slope Blo: L1 |
| Slope Blo: L2 | Slope Blo: L2 |
| Slope Blo: L3 | Slope Blo: L3 |
| Restraining: L1 | Restraining: L1 |
| Restraining: L2 | Restraining: L2 |
| Restraining: L3 | Restraining: L3 |
| IH2 Blo L1 | Signal:Phase L1: Blocking of the Phase Differential Protection because of second Harmonic. |
| IH2 Blo L2 | Signal:Phase L2: Blocking of the Phase Differential Protection because of second Harmonic. |
| IH2 Blo L3 | Signal:Phase L3: Blocking of the Phase Differential Protection because of second Harmonic. |
| IH4 Blo L1 | Signal:Phase L1: Blocking of the Phase Differential Protection because of fourth Harmonic. |
| IH4 Blo L2 | Signal:Phase L2: Blocking of the Phase Differential Protection because of fourth Harmonic. |
| IH4 Blo L3 | Signal:Phase L3: Blocking of the Phase Differential Protection because of fourth Harmonic. |
| IH5 Blo L1 | Signal:Phase L1: Blocking of the Phase Differential Protection because of fifth Harmonic. |
| IH5 Blo L2 | Signal:Phase L2: Blocking of the Phase Differential Protection because of fifth Harmonic. |
| IH5 Blo L3 | Signal:Phase L3: Blocking of the Phase Differential Protection because of fifth Harmonic. |

## Phase Current Differential Protection Module Values

| Value | Description | Menu path |
| :--- | :--- | :--- |
| Id L1 H2 | Measured value (calculated): Differential Current Phase L1 <br> Harmonic:2 | [Operation <br> IMeasured Values <br> Ild] |
| Id L2 H2 | Measured value (calculated): Differential Current Phase L2 <br> Harmonic:2 | [Operation <br> IMeasured Values <br> Id |
| Id L3 H2 | Measured value (calculated): Differential Current Phase L3 <br> Harmonic:2 | [Operation <br> IMeasured Values |
| Id L1 H4 | Measured value (calculated): Differential Current Phase L1 <br> Harmonic:4 | IId] |
| Id L2 H4 | Measured value (calculated): Differential Current Phase L2 <br> Harmonic:4 | IMeasured Values <br> Ild] |
| Id L3 H5 | [Operation <br> Id L2 |  |
| Id L3 H4 H5 | Measured Values <br> Harmonic:5 |  |
|  | Measured value (calculated): Differential Current Phase L3 <br> Harmonic:4 <br> Harmonic:5 | Id] |

## Phase Current Differential Protection Module Statistics

| Value | Description | Menu path |
| :---: | :---: | :---: |
| Id L1H2max | Maximum Value Id L1H2 | [Operation <br> /Statistics <br> /Max <br> /Id] |
| Id L2H2max | Maximum Value Id L2H2 | [Operation <br> /Statistics <br> /Max <br> /ld] |
| Id L3H2max | Maximum Value Id L3H2 | [Operation <br> /Statistics <br> /Max <br> /Id] |
| Id L1H4max | Maximum Value Id L1H4 | [Operation <br> /Statistics <br> /Max <br> /ld] |
| Id L2H4max | Maximum Value Id L2H4 | [Operation <br> /Statistics <br> /Max <br> /Id] |
| Id L3H4max | Maximum Value Id L3H4 | [Operation <br> /Statistics <br> /Max <br> /Id] |
| Id L1H5max | Maximum Value Id L1H5 | [Operation <br> /Statistics <br> /Max <br> /Id] |
| Id L2H5max | Maximum Value Id L2H5 | [Operation <br> /Statistics <br> /Max <br> /Id] |
| Id L3H5max | Maximum Value Id L3H5 | [Operation <br> /Statistics <br> /Max <br> /ld] |

## Unrestrained High-set Differential Current Protection IdH

Elements:
IdH

Irrespective of the set static tripping characteristic and restraining factors $\mathrm{d}[\mathrm{H}, \mathrm{m}]$, a pickup value for a max. differential current IdH can be adjusted and results in undelayed tripping when exceeded. This protection step is referred to as high-set differential step IdH and only trips on faults within the protection zone.

Unrestrained High-set Differential Protection Step IdH


IS/lb

## Device Planning Parameters of the Unrestrained High-set Differential Current Protection Module

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, <br> use | use | [Device planning] |
| Q |  |  |  |  |

## Global Protection Parameters of the Unrestrained High-set Differential Current Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -- | [Protection Para /Global Prot Para /Diff-Prot /ldH] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /Diff-Prot /ldH] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /Diff-Prot /IdH] |

## Setting Group Parameters of the Unrestrained High-set Differential Current Protection Module

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Function } & \text { Permanent activation or deactivation of module/stage. } & \text { inactive, } \\
\text { active } & \text { active } & \begin{array}{l}\text { [Protection Para } \\
\text { /<1..4> }\end{array}
$$ <br>
/Diff-Prot <br>

/ldH]\end{array}\right]\)| [Protection Para |
| :--- |
| ExBlo Fc |

## Unrestrained High-set Differential Current Protection Module Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | /Global Prot Para |
|  |  | /Diff-Prot |
| IldH] |  |  |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para |
|  |  | /Global Prot Para |
|  |  | /Diff-Prot |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | [Protection Para |
|  |  | IGlobal Prot Para |

Signals of the Unrestrained High-set Differential Current Protection Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm L1 | Signal: Alarm System Phase L1 |
| Alarm L2 | Signal: Alarm System Phase L2 |
| Alarm L3 | Signal: Alarm System L3 |
| Alarm | Signal: Alarm |
| Trip L1 | Signal: Trip System Phase L1 |
| Trip L2 | Signal: Trip System Phase L2 |
| Trip L3 | Signal: Trip System Phase L3 |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |

## IdG - Ground Current Differential Protection [87TN, 64REF]

Available elements:
IdG[1].IdG[2]
The ground differential protective element can be used to provide:

- Sensitive detection of internal ground faults on the wye-side windings of transformers.
- Sensitive ground fault detection for solidly or low -impedance grounded generators.


## Description

This protection principle is based on a restricted ground fault scheme that only can be used in systems with an earthed neutral. The ground differential current is the vector sum of the measured earth current and the calculated zero sequence current from three measured phase currents. Similarly to the phase restrained differential protection, the ground restraining current is the vector difference of the measured earth current and the calculated zero sequence current from three measured phase currents. The trip characteristic is very much similar to the phase restrained differential protection and it does not have the temporary restraining.

Protection Principle of Ground Current Differential Protection connected on wye-side winding of a transformer
IL1 <

A. WARNING

The trip commands generated by the protective function restricted ground fault IdG have to be assigned within the Breaker Manager.

NOTICE
Please be aware that the protective function Restricted Ground Fault IdG solely can be applied to the winding end which builds the earthed neutral point.

## Application Example (D-y-Transformer) ANSI 87TN



## Proper Use

To be used if the start-point side of a transformer schould be protected against ground differential faults within the transformer.

## Required type of current transformers and current transformer locations

- Phase current transformers at the mains site of the transformer.
- Ground current transformer at the neutral site of the transformer.

Name of the Element that is to be used
IdG[2]

## Wiring of the current transformers

- Phase current transformers to be connected to X4.IL1, X4.IL2, X4.IL3

■ Ring core or ground current transformer to be connected to X4.IG

## Calulated Reference Current

$$
I_{b}=I_{b, W 2}=\frac{S_{N}}{\sqrt{3} * V_{\mathrm{LL}, \mathrm{~W} 2}} \quad=\frac{\text { Rated Power }_{\text {Transformer }}}{\sqrt{3} * \text { Rated Voltage }} \text { Transformer }(P h-P h)
$$

## Requrired Settings

Activate the Protective Element within the Device Planning.
Where? Within [Device Planning] Set „IdG[2].Mode=use"

Set the Field Parameters of the Transformer.
Where? Within [Field ParalTransformer]
Set the Differential Protection Parameters.
Where? Within [Protection ParalSet [x][Diff-Prot]

## Application Example (Y-y-Transformer) ANSI 87TN



Protected Zone



## Proper Use

To be used if the start-point sides of a Y-y-transformer schould be protected against ground differential faults within the transformer on both winding sides.

Required type of current transformers on both sides and current transformer locations

- Phase current transformers at the mains site of the transformer.
- Ground current transformer at the neutral site of the transformer.

Name of the Element that is to be used

- IdG[1] on winding side 1

■ IdG[2] on winding side 2

## Wiring of the current transformers

■ Phase current transformers on winding side 1 are to be connected to X3.IL1, X3.IL2, X3.IL3

- Phase current transformers on winding side 2 are to be connected to X4.IL1, X4.IL2, X4.IL3
- Ring core or ground current transformer on winding side 1 are to be connected to X3.IG
- Ring core or ground current transformer on winding side 2 are to be connected to X4.IG


## Calulated Reference Current Winding Side W1

$$
I_{b}=I_{b, W I}=\frac{S_{N}}{\sqrt{3} * V_{\mathrm{LL}, \mathrm{~W} 1}}=\frac{\text { Rated Power }_{\text {Transformer }}}{\sqrt{3} * \text { Rated Voltage }_{\text {Transformer }}(P h-P h)}
$$

## Calulated Reference Current Winding Side W2

$$
I_{b}=I_{b, W 2}=\frac{S_{N}}{\sqrt{3} * V_{\mathrm{LL}, \mathrm{~W} 2}}=\frac{\text { Rated }^{\text {Power }_{\text {Transformer }}}}{\sqrt{3} * \text { Rated Voltage }_{\text {Transformer }}(P h-P h)}
$$

Requrired Settings

Activate the Protective Element within the Device Planning.
Where? Within [Device Planning] Set „IdG[1].Mode=use" Set „IdG[2].Mode=use"

Set the Field Parameters of the Transformer.
Where? Within [Field ParalTransformer]
Set the Differential Protection Parameters.
Where? Within [Protection ParalSet [x]\Diff-Prot]

Device Planning Parameters of the Restricted Ground Fault Protection

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | do not use | [Device planning] |  |  |
| Q |  |  |  |  |

Global Protection Parameters of the Restricted Ground Fault Protection

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT Winding Side | Measuring values will be used from this winding side | W1, W2 | $\begin{aligned} & \text { IdG[1]: W1 } \\ & \text { IdG[2]: W2 } \end{aligned}$ | [Protection Para /Global Prot Para /Diff-Prot /IdG[1]] |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /Diff-Prot /IdG[1]] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -- | [Protection Para /Global Prot Para /Diff-Prot /IdG[1]] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /Diff-Prot /IdG[1]] |

## Setting Group Parameters of the Restricted Ground Fault Protection

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para <<1..4> /Diff-Prot /IdG[1]] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para \|<1..4> <br> /Diff-Prot <br> /IdG[1]] |
| Blo TripCmd | Permanent blocking of the Trip Command of the module/stage. | inactive, active | inactive | [Protection Para <br> <<1..4> <br> /Diff-Prot <br> /IdG[1]] |
| ExBlo TripCmd Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo TripCmd Fc=active". | inactive, active | inactive | [Protection Para /<1..4> <br> /Diff-Prot <br> /IdG[1]] |
| Idg min | Constant minimum pickup current (differential current). | 0.05-1.001b | 0.05lb | [Protection Para \|<1..4> <br> /Diff-Prot <br> /IdG[1]] |
| $\operatorname{ldg}\left(\mathrm{l} \mathrm{~s}^{2}\right)$ | Starting point of the static tripping characteristic when Is $=0$ | 0.00-1.00lb | 0.11 b | [Protection Para \|<1..4> <br> /Diff-Prot <br> /IdG[1]] |
| $\operatorname{Idg}(\mid \mathrm{s} 1)$ | Breaking point of the static tripping characteristic when $\mathrm{ls}=2 \mathrm{x} \mathrm{ln}$ | 0.2-2.01b | 0.21b | [Protection Para < $1 . .4>$ <br> /Diff-Prot <br> /IdG[1]] |
| Idg(Is2) | Value of the static tripping characteristic when Is $=10 \mathrm{x}$ lb | 1.0-8.01b | 2.01 b | [Protection Para <br> <<1..4> <br> /Diff-Prot <br> /IdG[1]] |

## Restricted Ground Fault Protection Module Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | /Global Prot Para |
|  |  | /Diff-Prot |
| ExBlo2-I | IdG[1]] |  |
|  |  | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | /Diff-Prot |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command state: External blocking2 | [Protection Para |
|  |  | IGlobal Prot Para |

## Restricted Ground Fault Protection Module Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm | Signal: Alarm |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |

## IdGh - High Set Restricted Ground Fault Protection IdGH

Elements
IdGH[1],IdGH[2]
Similar to the unrestrained phase differential protection, unrestrained ground differential protection functions are provided for a high ground differential current.


## Device Planning Parameters of the High Set Restricted Ground Fault Protection Module

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Options \& Default \& Menu path <br>
\hline Mode \& Mode \& do not use, <br>

use\end{array}\right)\) do not use | [Device planning] |
| :--- | :--- |

Global Protection Parameters of the High Set Restricted Ground Fault Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT Winding Side | Measuring values will be used from this winding side | W1, W2 | $\begin{aligned} & \text { IdGH[1]: W1 } \\ & \text { IdGH[2]: W2 } \end{aligned}$ | [Protection Para <br> /Global Prot Para <br> /Diff-Prot <br> /IdGH[1]] |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -- | [Protection Para /Global Prot Para /Diff-Prot /IdGH[1]] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /Diff-Prot /IdGH[1]] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -- | [Protection Para /Global Prot Para /Diff-Prot /IdGH[1]] |

## Setting Group Parameters of the High Set Restricted Ground Fault Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para <1..4> /Diff-Prot /ldGH[1]] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para <1..4> <br> /Diff-Prot <br> /ldGH[1]] |
| Blo TripCmd | Permanent blocking of the Trip Command of the module/stage. | inactive, active | inactive | [Protection Para <br> \|<1..4> <br> /Diff-Prot <br> /ldGH[1]] |
| ExBlo TripCmd Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo TripCmd Fc=active". | inactive, active | inactive | [Protection Para <1..4> <br> /Diff-Prot <br> /ldGH[1]] |
| \| Idg>> | Highset Differential Current Protection/Unstabilized high-phase restricted earth fault: Pickup value of the earth differential current based on the rated current. | 2.00-20.001b | 2.00 lb | [Protection Para /<1..4> <br> /Diff-Prot <br> /ldGH[1]] |

High Set Restricted Ground Fault Protection Module Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | /Diff-Prot |
| IldGH[1]] |  |  |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | /Diff-Prot |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | [Protection Para |
|  |  | IGlobal Prot Para |

## High Set Restricted Ground Fault Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm | Signal: Alarm |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |

## I - Overcurrent Protection [50, 51,51Q, 51V*]

Available stages:
[1[1], |[2], |[3], |[4], |[5], |[6]

## AWARNING <br> If you are using inrush blockings the tripping delay of the current protection functions must be at least 30 ms or more in order to prevent faulty trippings.

## NOT/CE All overcurrent protective elements are identically structured.

## NOT/CE This module offers Adaptive Parameter Sets. <br> Parameters can be modified within parameter sets dynamically by means of Adaptive Parameter Sets. <br> Please refer to chapter Parameter / Adaptive Parameter Sets.

The following table shows the application options of the Overcurrent Protection element
$\left.\begin{array}{|l|l|l|}\hline \text { Applications of the I-Protection Module } & \text { Setting in } & \text { Option } \\ \hline \begin{array}{l}\text { ANSI } 50 \text { - Overcurrent protection, non- } \\ \text { directional }\end{array} & \text { Device Planning menu } & \begin{array}{l}\text { Measuring Mode: } \\ \text { Fundamental/TrueRMS/negative } \\ \text { phase sequence current (I2) }\end{array} \\ \hline \begin{array}{l}\text { ANSI 51 - Short circuit protection, non- } \\ \text { directional }\end{array} & \text { Device Planning menu } & \begin{array}{l}\text { Measuring Mode: } \\ \text { Fundamental/TrueRMS/negative } \\ \text { phase sequence current (I2) }\end{array} \\ \hline \begin{array}{l}\text { ANSI 51V - Voltage restraint overcurrent } \\ \text { protection* }\end{array} & \begin{array}{l}\text { Parameter Set: } \\ \text { VRestraint = active }\end{array} & \begin{array}{l}\text { Measuring Mode: } \\ \text { Fundamental/TrueRMS/negative } \\ \text { phase sequence current (I2) }\end{array} \\ \hline \begin{array}{l}\text { ANSI 51Q Negative Phase Sequence } \\ \text { Overcurrent Protection }\end{array} & \begin{array}{l}\text { Parameter Set: } \\ \text { Measuring Method =I2 } \\ \text { (Negative Sequence } \\ \text { Current) }\end{array} & \text { Phase to Phase/Phase to Neutral }\end{array}\right\}$

[^6]
## Measuring Mode

For all protection elements it can be determined, whether the measurement is done on basis of the »Fundamenta/« or if »TrueRMS« measurement is used.
Alternatively the »Measuring Mode« can be set to $» 12 \pi$. In this case the negative phase sequence current will be measured. This is to detect unbalanced faults.

## Voltage restraint overcurrent protection 51V*

When the Parameter »VRestraint« is set to active the overcurrent protection element works voltage restraint. That means, the overcurrent pickup threshold will be lowered during voltage drops. This results in a more sensitive overcurrent protection. For the voltage threshold »VRestraint max« additionally the »Measuring Channel« can be determined.
*=available only for devices that offer voltage measurement.

## Measuring Channel

With the parameter »Measuring Channe/« it can be determined, whether the »Phase to Phase« voltage or the »Phase to Neutra/« voltage is measured.

For each element the following characteristics are available:

```
\square DEFT (UMZ)
- NINV (IEC/AMZ)
\square VINV (IEC/AMZ)
\square LINV (IEC/AMZ)
\square EINV (IEC/AMZ)
M MINV (ANSI/AMZ)
\square VINV (ANSI/AMZ)
\square EINV (ANSI/AMZ)
\square Thermal Flat
\square IT
| I2T
|4T
```


## Explanation:

```
t = Tripping delay
t-char = Time multiplier/tripping characteristic factor. The setting range depends
on the selected tripping curve.
I= Fault current
|> = If the pickup value is exceeded, the module/element starts to time out to trip .
```


## DEFT



IEC NINV


## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

Reset
$t=\left|\frac{0.14}{\left(\frac{1}{1>}\right)^{2}-1}\right| * t-c h a r[s]$

Trip

$$
t=\frac{0.14}{\left(\frac{1}{1>}\right)^{0.02}-1} * t-c h a r[s]
$$


x * |> (multiples of pickup)

## IEC VINV

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous .

$$
\begin{gathered}
\text { Reset } \\
t=\left|\frac{13.5}{\left(\frac{1}{1>}\right)^{2}-1}\right|^{* t-c h a r ~[s] ~} \quad \mathrm{t}=\frac{13.5}{\left(\frac{1}{1>}\right)-1} * t-\text { char }[\mathrm{s}]
\end{gathered}
$$


x * l> (multiples of pickup)

## IEC LINV



## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

$$
\begin{gathered}
\text { Reset } \\
t=\left|\frac{120}{\left(\frac{1}{1>}\right)^{2}-1}\right| * t-c h a r[s]
\end{gathered} \quad t=\frac{120}{\left(\frac{1}{1>}\right)-1}{ }^{* t-c h a r ~[s]} \text { Trip }
$$


t-char
$x^{*}$ I> (multiples of pickup)

## IEC EINV

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

$$
\begin{gathered}
\text { Reset } \quad \text { Trip } \\
t=\left|\frac{80}{\left(\frac{1}{1>}\right)^{2}-1}\right|^{* t-c h a r ~[s]}=\frac{80}{\left(\frac{1}{1>}\right)^{2}-1} * t-c h a r[s]
\end{gathered}
$$


t-char
x * $1>$ (multiples of pickup)

## ANSI MINV



## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

## Reset

Trip



> x * l> (multiples of pickup)

## ANSI VINV

$\triangle$

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.


x * I> (multiples of pickup)

## ANSI EINV

$\triangle$

## Notice!

Various reset modes are available. Resetting via characteristic, delayed and instantaneous.

## Reset

$t=\left|\frac{29.1}{\left(\frac{1}{1>}\right)^{2}-1}\right| * t-c h a r[s]$

Trip
$t=\left(\frac{28.2}{\left(\frac{1}{1>}\right)^{2}-1}+0.1217\right) * t-\operatorname{char}[s]$

x * l> (multiples of pickup)

## Therm Flat



## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

$$
\begin{aligned}
& \left.\left.\quad \frac{5^{*} 3^{2}}{\text { Reset }}\right|^{*} \frac{1}{\ln }\right)\left.^{0}\right|^{2} \text {-char }[s] \quad \mathrm{t}={\frac{55^{* 1}{ }^{2}}{\left(\frac{1}{\ln }\right)^{0}}{ }^{* t-c h a r ~[s]}}_{\mathrm{t}=45^{*} \mathrm{t} \text {-char }[\mathrm{s}]}
\end{aligned}
$$


x * $\ln$ (multiples of the nominal current)

## IT <br> $\triangle$

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

Reset
$t=\left|\frac{5^{*} 3^{2}}{\left(\frac{1}{\ln }\right)^{0}}\right|^{* t-c h a r}[\mathrm{~s}] \quad \mathrm{t}={\frac{5 * 3^{1}}{\left(\frac{1}{\ln }\right)^{1}}}^{* t-c h a r[s]}$

x * In (multiples of the nominal current)

## I2T

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

$$
\left.\begin{array}{c}
\text { Reset } \\
t=\left|\frac{5^{*} 3^{2}}{\left(\frac{1}{\ln }\right)^{0}}\right| * t-\operatorname{char}[\mathrm{s}]
\end{array} \mathrm{t}=\frac{5^{*} 3^{2}}{\left(\frac{1}{\ln }\right)^{2}}{ }^{* t-c h a r ~[s]}\right]
$$

t [s]


## $14 T$



## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

## Reset

$t=\left|\frac{5^{*} 3^{2}}{\left(\frac{1}{\ln }\right)^{0}}\right| * t-\operatorname{char}[\mathrm{s}] \quad \mathrm{t}={\frac{5 * 3^{4}}{\left(\frac{1}{\ln }\right)^{4}}}^{* t-c h a r[s]}$

x * In (multiples of the nominal current)

The following block diagram applies to devices without voltage measurement (without 51V)


The following block diagram applies to devices that offer a voltage measurement card (with 51V)


## Device Planning Parameters of the I Module

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, <br> non directional | I[1]: non <br> directional <br> I[2]: do not use <br> I[3]: do not use <br> I[4]: do not use | [Device planning] |

Global Protection Parameters of the I Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT Winding Side | Measuring values will be used from this winding side | W1, W2 | W1 | [Protection Para <br> /Global Prot Para <br> II-Prot <br> I[1]] |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -- | [Protection Para /Global Prot Para /I-Prot /I[1]] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para <br> /Global Prot Para <br> II-Prot <br> /[1]] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para II-Prot /I[1]] |
| Ex rev Interl | External blocking of the module by external reverse interlocking, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para II-Prot /I[1]] |
| AdaptSet 1 | Assignment Adaptive Parameter 1 | AdaptSet | -- | [Protection Para /Global Prot Para II-Prot /[1]] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| AdaptSet 2 | Assignment Adaptive Parameter 2 | AdaptSet | --- | [Protection Para <br> /Global Prot Para <br> II-Prot <br> I[1]] |
| AdaptSet 3 | Assignment Adaptive Parameter 3 | AdaptSet | --- | [Protection Para <br> /Global Prot Para <br> /I-Prot <br> /I[1]] |
| AdaptSet 4 | Assignment Adaptive Parameter 4 | AdaptSet | -.- | [Protection Para <br> /Global Prot Para <br> II-Prot <br> I[1]] |

## Setting Group Parameters of the I Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | I[1]: active <br> \|[2]: inactive <br> [[3]: inactive <br> [4]: inactive <br> I[5]: inactive <br> I[6]: inactive | [Protection Para <br> <<1..4> <br> II-Prot <br> /I[1]] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para <br> <<1..4> <br> II-Prot <br> /I[1]] |
| Ex rev Interl Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "Ex rev Interl Fc = active". | inactive, active | inactive | [Protection Para <br> <<1..4> <br> II-Prot <br> /I[1]] |
| Blo TripCmd | Permanent blocking of the Trip Command of the module/stage. | inactive, active | inactive | [Protection Para <1..4> II-Prot I[1]] |
| ExBlo TripCmd Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo TripCmd Fc=active". | inactive, active | inactive | [Protection Para <<1..4> <br> II-Prot <br> /I[1]] |
| Measuring method | Measuring method: fundamental or rms or 3rd harmonic (only generator protection relays) | Fundamental, <br> True RMS, I2 | Fundamental | [Protection Para <1..4> II-Prot I[1]] |
| \|> | If the pickup value is exceeded, the module/element starts to time out to trip. <br> Only available if: Characteristic $=$ DEFT Or <br> Characteristic $=$ INV Minimum of the setting range If: <br> VRestraint = active Minimum of the setting range If: <br> VRestraint = inactive | 0.02-40.00In | 1.00In | [Protection Para <1..4> II-Prot /[1]] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Char | Characteristic | DEFT, IEC NINV, IEC VINV, IEC EINV, IEC LINV, ANSI MINV, ANSI VINV, ANSI EINV, Therm Flat, IT, I2T, $14 T$ | DEFT | [Protection Para <1..4> <br> II-Prot <br> /[1]] |
| t | Tripping delay <br> Only available if: Characteristic $=$ DEFT | 0.00-300.00s | 1.00s | [Protection Para <1..4> <br> II-Prot <br> /[1]] |
| t-char | Time multiplier/tripping characteristic factor. The setting range depends on the selected tripping curve. <br> Only available if: Characteristic $=$ INV Or Characteristic = Therm Flat Or Characteristic $=$ IT Or Characteristic $=$ I2T Or Characteristic $=14 \mathrm{~T}$ | 0.02-20.00 | 1 | [Protection Para <br> <1..4> <br> II-Prot <br> /[1]] |
| Reset Mode | Reset Mode <br> Only available if: Characteristic $=$ INV Or Characteristic <br> = Therm Flat Or Characteristic = IT Or Characteristic = <br> 12 T Or Characteristic $=14 \mathrm{~T}$ | instantaneous, t-delay, calculated | instantaneous | [Protection Para <br> <1..4> <br> II-Prot <br> /[1]] |
| t-reset | Reset time for intermittent phase failures (INV characteristics only) <br> Available if:Reset Mode = t-delay | 0.00-60.00s | Os | [Protection Para <1..4> <br> II-Prot <br> /[1]] |
| IH2 Blo | Blocking the trip command, if an inrush is detected. | inactive, active | inactive | [Protection Para <br> <1..4> <br> II-Prot <br> /[1]] |

## I Module Input States

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para /Global Prot Para II-Prot /[1]] |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para /Global Prot Para II-Prot /I[1]] |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | [Protection Para /Global Prot Para II-Prot /I[1]] |
| Ex rev Interl-I | Module input state: External reverse interlocking | [Protection Para /Global Prot Para II-Prot /I[1]] |
| AdaptSet1-I | Module input state: Adaptive Parameter1 | [Protection Para <br> /Global Prot Para <br> II-Prot <br> /I[1]] |
| AdaptSet2-I | Module input state: Adaptive Parameter2 | [Protection Para /Global Prot Para II-Prot /I[1]] |
| AdaptSet3-I | Module input state: Adaptive Parameter3 | [Protection Para /Global Prot Para II-Prot /I[1]] |
| AdaptSet4-I | Module input state: Adaptive Parameter4 | [Protection Para /Global Prot Para II-Prot /I[1]] |

## I Module Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Ex rev Interl | Signal: External reverse Interlocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| IH2 Blo | Signal: Blocking the trip command by an inrush |
| Alarm L1 | Signal: Alarm L1 |
| Alarm L2 | Signal: Alarm L2 |
| Alarm L3 | Signal: Alarm L3 |
| Alarm | Signal: Alarm |
| Trip L1 | Signal: General Trip Phase L1 |
| Trip L2 | Signal: General Trip Phase L2 |
| Trip L3 | Signal: General Trip Phase L3 |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |
| Active AdaptSet | Active Adaptive Parameter |
| DefaultSet | Signal: Default Parameter Set |
| AdaptSet 1 | Signal: Adaptive Parameter 1 |
| AdaptSet 2 | Signal: Adaptive Parameter 2 |
| AdaptSet 3 | Signal: Adaptive Parameter 3 |
| AdaptSet 4 | Signal: Adaptive Parameter 4 |

## Commissioning: Overcurrent Protection, non-directional [50, 51]

Object to be tested

- Signals to be measured for each current protection element, the threshold values, total tripping time (recommended), or alternatively tripping delays and the fallback ratios; each time $3 x$ single-phase and $1 x$ three-phase.


## NOTICE

Especially in Holmgreen connections, wiring errors can easily happen, and these are then detected safely. Measuring the total tripping time can ensure that the secondary wiring is o.k. (from the terminal on, up to the trip coil of the CB).

## NOTICE

It is recommended to measure the total tripping time instead of the tripping delay. The tripping delay should be specified by the customer. The total tripping time is measured at the position signalling contact of the $C B$ (not at the relay output!).

Total tripping time $=$ tripping delay (please refer to the tolerances of the protection stages) + CB operating time (about 50 ms )

Please take the CB operating times from the technical data specified in the relevant documentation provided by the CB manufacturer.

## Necessary means

- Current source
- May be: ampere meters
- Timer


## Procedure

Testing the threshold values (3x single-phase and 1 x three-phase)
Each time feed a current which is about $3-5 \%$ above the threshold value for activation/tripping. Then check the threshold values.

Testing the total tripping delay (recommendation)
Measure the total tripping times at the auxiliary contacts of the CB (CB tripping).

Testing the tripping delay (measuring at the relay output)
Measure the tripping times at the relay output.

Testing the fallback ratio
Reduce the current to $97 \%$ below the trip value and check the fallback ratio.

## Successful test result

The measured total tripping delays or individual tripping delays, threshold values and fallback ratios correspond with those values, specified in the adjustment list. Permissible deviations/tolerances can be found under Technical Data.

## 51V - Voltage Restraint Overcurrent*

*=available only for devices that offer voltage measurement.

For activating this function, the parameter »VRestraint« has to be set to active in the parameter set of the corresponding overcurrent element $\mathrm{I}[\mathrm{x}]$. The $\underline{51 \mathrm{~V}}$ protection function restrains operation which reduces pickup levels. This allows the User to lower the pickup value of the 51 V protection function with the corresponding phase input voltage (phase-to-phase or phase-to-ground, depending on the setting of »Measuring Channe/« within the current protection module). When the minimum fault phase current is close to the load current, it may make the phase time overcurrent protection coordination difficult. In this case, an undervoltage function may be used to alleviate this situation. When the voltage is low, the phase time overcurrent pickup threshold may be set low accordingly, so that the phase time overcurrent protection may achieve adequate sensitivity and better coordination. The device uses a simple linear model to determine the effective pickup by characterizing the relationship between the voltage and the phase time overcurrent pickup threshold.

Once the voltage restraint protection function is activated, the effective phase time overcurrent pickup threshold will be the calculated Pickup\% times the phase time overcurrent pickup setting. The effective pickup threshold must be within the setting range allowed and, if it is less, the minimum pickup value will be used.


That means:
Vmin $=0.25^{*}$ Vmax;
-Pickup\%min $=25 \%$;
-Pickup\% $=25 \%$, if $V<=V m i n ;$
-Pickup\% = 1/Vmax ${ }^{*}(\mathrm{~V}-\mathrm{Vmin})+25 \%$, if $\mathrm{Vmin}<\mathrm{V}<\mathrm{Vmax}$;
-Pickup\% $=100 \%$, if $V>=$ Vmax;

The tripping curves (characteristic) will not be influenced by the voltage restraint function.
If the voltage transformer supervision is activated, the voltage restraint overcurrent protection element is blocked in case of m.c.b. trip to avoid false trippings.

Definition of Vn:
Vn is dependent on the »Measuring Channe/« setting in the current protection modules.

In case that this parameter is set to "Phase to Phase":
$V n=M a i n V T \sec$

In case that this parameter is set to "Phase to Neutral":
$V n=\frac{\text { MainVTsec }}{\sqrt{3}}$

If the parameter »VT con« within the field parameters is set to »Phase to Phase» the setting »Phase to Neutral« in the current modules is effectless.

## Commissioning: Overcurrent Protection, Non-directional [ANSI 51V]*

*=available only for devices that offer voltage measurement.

## Object to be tested:

Signals to be measured for Voltage Restraint protection function: the threshold values, total tripping time (recommended), or alternatively tripping delays and the dropout ratios; each time $3 \times$ single-phase and $1 \times$ threephase.

## NOT/CE It is recommended to measure the total tripping time instead of the tripping time. The tripping delay should be specified by the customer. The total tripping time is measured at the position signaling contacts of the CBs (not at the relay output!). <br> $$
\begin{aligned} \text { Total tripping time: }= & \text { tripping delay (please refer to the tolerances of the } \\ & \text { protection stages) }+C B \text { operating time (about } 50 \mathrm{~ms} \text { ) } \end{aligned}
$$ <br> <br> Total tripping time: = tripping delay (please refer to the tolerances of the <br> <br> Total tripping time: = tripping delay (please refer to the tolerances of the protection stages) +CB operating time (about 50 ms )

 protection stages) +CB operating time (about 50 ms )}Please take the CB switching times from the technical data, specified in the relevant documentation, provided by the CB manufacturer.

[^7]
## Procedure:

Testing the threshold values (3x single-phase and 1 x three-phase)
Feed \%Pickup voltage. For each test performed, feed a current that is about 3-5\% above the threshold value for activation/tripping. Then check if the pickup values are \%Pickup of the value according to the standard overcurrent protection.

## Testing the total tripping delay (recommendation)

Measure the total tripping times at the auxiliary contacts of the breakers (breaker tripping).

Testing the tripping delay (measuring at the relay output contact)
Measure the tripping times at the relay output contact.

Testing the dropout ratio
Reduce the current to $97 \%$ below the trip value and check the dropout ratio.
Successful test result
The measured total tripping delays or individual tripping delays, threshold values, and dropout ratios correspond with those values specified in the adjustment list. Permissible deviations/tolerances can be found under Technical Data.

## I2> - Negative-Sequence Overcurrent [51Q]

For activating this function, the parameter »Measuring Mode« has to be set to » 12 « in the parameter set of the corresponding overcurrent element $\mathrm{I}[\mathrm{x}]$.

The negative-sequence overcurrent protection function ( $\underline{I 2>}$ ) is to be seen as an equivalent to the phase overcurrent protection with the exception that it uses negative-sequence current (I2>) as measured quantities instead of the three phase currents used by phase overcurrent protection function. The negative-sequence current used by $\underline{I 2>}$ is derived from the following well-known symmetrical component transformation:

$$
I_{2}=\frac{1}{3}\left(I_{L 1}+a^{2} I_{L 2}+a I_{L 3}\right)
$$

The pickup set value of a $\underline{I 2>}$ protection function should be set in accordance of the negative-sequence current occurrence in the protected object.

Besides that, the negative-sequence overcurrent protection function ( $\underline{I 2>}$ ) uses the same setting parameters as the phase overcurrent protection function, like trip and reset characteristics from both IEC/ANSI standards, time multiplier, etc.

The negative-sequence overcurrent protection function ( $\underline{I 2>}$ ) can be used for line, generator, transformer and motor protection to protect the system from unbalanced faults. Because the $\underline{I 2>}$ protection function operates on the negative-sequence current component which is normally absent during load conditions, the $\underline{I 2>}$ can, therefore, be set more sensitive than the phase overcurrent protection functions. On the other hand, coordination of negativesequence overcurrent protection function in a radial system does not mean automatically very long fault clearing time for the furthest upstream protection devices, because the tripping time of concerned negative-sequence overcurrent protection function needs only be coordinate with the next downstream device with the negativesequence overcurrent protection function. This makes the $\underline{I 2>}$ in many cases as an advantageous protection concept in addition to the phase overcurrent protection function.

## NOTICE <br> At the moment of breaker closure, negative-sequence current might be the result of transients.

I[1]...[n]: Measuring method $=(12>)$
name $=1[1] \ldots[n]$
$4 \frac{\text { Please Refer To Diagram: Blockings }}{}{ }^{* \star}$


## Commissioning: Negative Sequence Overcurrent

## Object to be tested

Signals to be measured for each current protection function: the threshold values, total tripping time (recommended), or alternatively tripping delays and the dropout ratios.

## NOT/CE It is recommended to measure the total tripping time instead of the tripping time. The tripping delay should be specified by the customer. The total tripping time is measured at the position signalling contacts of the CBs (not at the relay output!). <br> Total tripping time: = tripping delay (please refer to the tolerances of the protection stages) + CB operating time (about 50 ms )

Please take the CB switching times from the technical data, specified in the relevant documentation, provided by the CB manufacturer.

Necessary means:

- Current source
- Current meters
- Timer

Procedure:

## Testing the threshold values

In order to get a negative-sequence current, please change the phase sequence at the terminals of the current source (in case of $A B C$ sequence to $A C B$ - in case of a $A C B$ sequence to $A B C$ ).

For each test performed, feed a current that is about $3-5 \%$ above the threshold value for activation/tripping. Then check the threshold values.

Testing the total tripping delay (recommendation)
Measure the total tripping times at the auxiliary contacts of the breakers (breaker tripping).

Testing the tripping delay (measuring at the relay output contact)
Measure the tripping times at the relay output contact.

Testing the dropout ratio
Reduce the current to $97 \%$ below the trip value and check the dropout ratio.

## Successful test result

The measured total tripping delays or individual tripping delays, threshold values, and dropout ratios correspond with those values specified in the adjustment list. Permissible deviations/tolerances can be found under Technical Data.

## Voltage Controlled Overcurrent Protection [51C]*

*=available only for devices that offer voltage measurement.

When a sort circuit is near the generator, the voltage might drop down. By means of Adaptive Parameters (Please refer to chapter Parameter) the tripping times or tripping characteristics can be modified by the output signal of a voltage element (depending on a threshold). The device might change a load curve to a fault curve (taking influence on tripping time, trip curves and reset modes).

Please proceed as follows:

■ Read and understand the section „Adaptive Parameters" within the chapter Parameter.

- Do the device planning and set all required parameters for the Undervoltage element.

D Do the device planning and set all required parameters for the Overcurrent element.

- Set the Adaptive Parameters within the Overcurrent element in the relevant parameter sets (e.g. Curve multiplier, curve type...).
- Assign the Undervoltage alarm (pickup) within the Global Parameters as an activation signal for the corresponding Adaptive Parameter set of the overcurrent element that should be modified.
- Check the functionality by a commissioning test.


## IH2 - Inrush

Available elements:
IH2[1], $\mathrm{IH} 2[2]$
The inrush module can prevent false trips caused by switching actions of saturated inductive loads. The ratio of the $2^{\text {nd }}$ harmonic to the $1^{\text {st }}$ harmonic is taken into account.


NOT/CE Do not use the Inrush element in combination with undelayed/instantaneous overcurrent protection (in order to prevent faulty tripping).

Device Planning Parameters of the Inrush Module
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Options } & \text { Default } & \text { Menu path } \\ \hline \text { Mode } & \text { Mode } & \text { do not use, } \\ \text { use } & \mathrm{IH} 2[1]: \text { use } & \text { [Device planning] } \\ \text { [H2[2]: do not use }\end{array}\right]$

## Global Protection Parameters of the Inrush module

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { CT Winding Side } & \text { Measuring values will be used from this winding side } & \begin{array}{l}\text { IH2[1]: W1 } \\
\text { IH2[2]: W2 }\end{array} & \begin{array}{l}\text { IH2[1]: W1 } \\
\text { IH2[2]: W2 }\end{array} & \begin{array}{l}\text { [Protection Para } \\
\text { IGlobal Prot Para } \\
\text { I-Prot }\end{array}
$$ <br>

IH2[1]]\end{array}\right]\)| [Protection Para |
| :--- |
| ExBlo1 |

## Setting Group Parameters of the Inrush Module

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Function | Permanent activation or deactivation of module/stage. | inactive, | inactive | [Protection Para <br> I<1..4> <br> active |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the <br> module/stage. This parameter is only effective if a <br> signal is assigned to the corresponding global <br> protection parameter. If the signal becomes true, those <br> modules/stages are blocked that are parameterized <br> "ExBlo Fc=active". | inactive, |  |  |
| active | IH2[1]] |  |  |  |

## Inrush Module Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | I-Prot |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | I-Prot |
|  |  | /IH2[1]] |

## Inrush Module Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo L1 | Signal: Blocked L1 |
| Blo L2 | Signal: Blocked L2 |
| Blo L3 | Signal: Blocked L3 |
| Blo IG meas | Signal: Blocking of the ground (earth) protection module (measured ground current) |
| Blo IG calc | Signal: Blocking of the ground (earth) protection module (calculated ground current) |
| 3-ph Blo | Signal: Inrush was detected in at least one phase - trip command blocked. |

## Commissioning: Inrush

## NOT/CE Dependent on the parameterized inrush-blocking-mode (»1-ph Blo or 3-ph Blo巛), the test procedure is different.

For mode » 1-ph-Blo« the test has to be carried out first for each individual phase and then for all three phases together.

For mode » 3 -ph-Blo« the test is a three-phase one.

Object to be tested
Test of inrush blocking.

Necessary means

- three-phase current source with adjustable frequency
- three-phase current source (for the first harmonic)

Procedure (dependent on the parameterized blocking mode)

- Feed the current to the secondary side with nominal frequency.
$\square$ Feed abruptly current to the secondary side with double nominal frequency. The amplitude must exceed the preset ratio/threshold »/H2/IN«.
■ Ascertain that the signal »Inrush Alarm« is generated now.


## Successful test results

The signal »Inrush Alarm« is generated and the event recorder indicates the blocking of the current protection stage.

## IG> - Earth Fault [50N/G, 51N/G]

Available elements:
IG[1] ,IG[2],IG[3],IG[4]

## WARNING

If you are using inrush blockings the tripping delay of the earth current protection functions must be at least 30 ms or more in order to prevent faulty trippings.

## NOT/CE All earth current elements are identically structured.

## NOT/CE This module offers Adaptive Parameter Sets. <br> Parameters can be modified within parameter sets dynamically by means of Adaptive Parameter Sets. <br> Please refer to chapter Parameter / Adaptive Parameter Sets.

The following table shows the application options of the earth overcurrent protection element

| Applications of the IE-Protection Module | Setting in | Option |
| :--- | :--- | :--- |
| ANSI 50N/G - Earth overcurrent protection, <br> non directional | Device Planning menu <br> Setting: non directional | Measuring Mode: <br> Fundamental/TrueRMS |
| ANSI 51N/G - Earth short circuit protection, <br> non directional | Device Planning menu <br> Setting: non directional | Measuring Mode: <br> Fundamental/TrueRMS |

## Measuring Mode

For all protection elements it can be determined, whether the measurement is done on basis of the »Fundamenta/« or if »TrueRMS« measurement is used.

For each element the following characteristics are available:

```
\squareDEFT
| NINV (IEC)
\square VINV (IEC)
\square LINV (IEC)
\square EINV (IEC)
- MINV (ANSI)
\square VINV (ANSI)
\square EINV (ANSI)
\square RXIDG
Thermal Flat
\square IT
\square I2T
- 14T
```


## Explanation:

$\mathrm{t}=$ Tripping delay
t-char = Time multiplier/tripping characteristic factor. The setting range depends on the selected tripping curve
IG = Fault current

IG> = If the pickup value is exceeded, the module/element starts to time out to trip .

The directional decision depends on the layout of the mains star-point or the angle between residual voltage and ground current. The residual voltage can be measured via suitable transformers (da-dn winding - formerly: e-n) or can be calculated, provided the VTs are in star-connection.

The earth current can be measured either directly via a cable-type transformer or detected by a Holmgreen connection. The earth current can alternatively be calculated from the phase currents; but this is only possible if the phase currents are not ascertained by a V-connection.

The device can optionally be procured with a sensitive earth current measuring input (in preparation).

## DEFT



## IEC NINV

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

Reset
$t=\left|\frac{0.14}{\left(\frac{\mathrm{IG}}{\mathrm{IG}>}\right)^{2}-1}\right| * \mathrm{t}$-char [s]

x * IG> (multiples of pickup)

## IEC VINV

$\triangle$

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

Reset $t=\left|\frac{13.5}{\left(\frac{\mathrm{IG}}{\mathrm{IG}>}\right)^{2}-1}\right| * t-$ char [s]

Trip

$$
\mathrm{t}=\frac{13.5}{\left(\frac{\mathrm{IG}}{\mathrm{IG}>}\right)-1} * \mathrm{t} \text {-char }[\mathrm{s}]
$$


x * IG> (multiples of pickup)

## IEC LINV

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

> Reset $\mathrm{t}=\left|\frac{120}{\left(\frac{\mathrm{IG}}{\mathrm{IG}>}\right)^{2}-1}\right| * \mathrm{trip}$

t-char
x * IG> (multiples of pickup)

## IEC EINV

$\triangle$

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

Reset
$t=\left|\frac{80}{\left(\frac{\mathrm{IG}}{\mathrm{IG}>}\right)^{2}-1}\right|^{* t-c h a r}[\mathrm{~s}]$

$$
t=\frac{80}{\left(\frac{\mathrm{IG}}{\mathrm{IG}>}\right)^{2}-1} * t-\text { char }[\mathrm{s}]
$$


x * IG> (multiples of pickup)
t-char
t [s]

Trip

## ANSI MINV

$\triangle$

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

Reset
$t=\left|\frac{4.85}{\left(\frac{\mathrm{IG}}{\mathrm{I}>}\right)^{2}-1}\right| * t-$ char [s] $\quad t=\left(\frac{0.0515}{\left(\frac{\mathrm{IG}}{\mathrm{IG}>}\right)^{0.02}-1}+0.1140\right) * t-\operatorname{char}[\mathrm{s}]$

Trip
t-char
x *IG> (multiples of pickup)

## ANSI VINV



## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

## Reset

$t=\left|\frac{21.6}{\left(\frac{1 G}{1 G>}\right)^{2}-1}\right| * t-$ char [s]

## Trip

$t=\left(\frac{19.61}{\left(\frac{\mathrm{IG}}{\mathrm{IG}>}\right)^{2}-1}+0.491\right) * t-c h a r[s]$

x *IG> (multiples of pickup)

## ANSI EINV

$\triangle$

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

## Reset

$t=\left|\frac{29.1}{\left(\frac{I G}{I G>}\right)^{2}-1}\right| * t-\operatorname{char}[s] \quad t=\left(\frac{28.2}{\left(\frac{I G}{I G>}\right)^{2}-1}+0.1217\right) * t-c h a r[s]$

## Trip

$$
\mathrm{t}=\left(\frac{28.2}{\left(\frac{\mathrm{IG}}{\mathrm{IG}>}\right)^{2}-1}+0.1217\right) * \mathrm{t} \text {-char }[\mathrm{s}]
$$


x * IG> (multiples of pickup)

## RXIDG

## Trip

$$
\mathrm{t}=5.8-1.35 * \ln \left(\frac{\mathrm{IG}}{\mathrm{t} \text {-char }{ }^{\mathrm{I} \mathrm{G}>}}\right)
$$

[s]

t-char
x * IG> (multiples of pickup)

## Therm Flat

$\triangle$

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.
$\mathrm{t}=\left|\frac{5^{*} 1^{2}}{\left(\frac{\mathrm{IG}}{\mathrm{IGnom}}\right)^{0}}\right| * \mathrm{t}$-char $[\mathrm{s}]$
$\mathrm{t}=5{ }^{* t-c h a r}[\mathrm{~s}]$

x * In (multiples of the nominal current)

## IT

Notice!
Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

Reset
$t=\left|\frac{5^{*} 1^{2}}{\left(\frac{1 G}{1 G n o m}\right)^{0}}\right|{ }^{t}$ t-char [s]

## Trip

$$
\mathrm{t}={\frac{5^{*} 1^{1}}{\left(\frac{\mathrm{IG}}{\mathrm{IGnom}}\right)^{1}}}^{*} \mathrm{t} \text {-char }[\mathrm{s}]
$$



## I2T

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

Reset
$\mathrm{t}=\left|\frac{5^{*} 1^{2}}{\left(\frac{\mathrm{IG}}{\text { IGnom }}\right)^{0}}\right| * \mathrm{tt-char}[\mathrm{~s}]$

Trip
$\mathrm{t}=\frac{5^{*} 1^{2}}{\left(\frac{\mathrm{IG}}{\mathrm{Gnom}}\right)^{2}}{ }^{*}$ t-char [s]


## 14T

## Notice!

Various reset modes are available . Resetting via characteristic, delayed and instantaneous.

IG[1]...[n]
name $=I G[1] \ldots[n]$

name.IGH2 Blo




| name.IGH2 Blo |
| :---: |
| inactive |
| active |



3 Please Refer To Diagram: Trip blockings

## Device Planning Parameters of the Ground Fault Protection

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Options \& Default \& Menu path <br>
\hline Mode \& Mode \& \begin{array}{l}do not use, <br>

non directional\end{array} \& do not use\end{array}\right]\) [Device planning] | ( |
| :--- |

Global Protection Parameters of the Ground Fault Protection
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { CT Winding Side } & \text { Measuring values will be used from this winding side } & \begin{array}{l}\text { W1, } \\
\text { W2 }\end{array}
$$ \& W1 \& [Protection Para <br>
IGlobal Prot Para <br>

Il-Prot\end{array}\right]\)| IG[1]] |
| :--- |
| ExBlo1 |
|  |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| AdaptSet 3 | Assignment Adaptive Parameter 3 | AdaptSet | $\because \cdot$ | [Protection Para /Global Prot Para II-Prot /IG[1]] |
| AdaptSet 4 | Assignment Adaptive Parameter 4 | AdaptSet | $\therefore-$ | [Protection Para /Global Prot Para II-Prot /IG[1]] |

## Setting Group Parameters of the Ground Fault Protection

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para <br> <<1..4> <br> II-Prot <br> /IG[1]] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para <br> <<1..4> <br> II-Prot <br> /IG[1]] |
| Ex rev Interl Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "Ex rev Interl Fc = active". | inactive, active | inactive | [Protection Para <br> <<1..4> <br> II-Prot <br> /IG[1]] |
| Blo TripCmd | Permanent blocking of the Trip Command of the module/stage. | inactive, active | inactive | [Protection Para $\mid<1 . .4>$ <br> II-Prot /IG[1]] |
| ExBlo TripCmd Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo TripCmd Fc=active". | inactive, active | inactive | [Protection Para <br> <<1..4> <br> II-Prot <br> /IG[1]] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| IG Source | Selection if measured or calculated ground current should be used. | sensitive measurement, <br> measured, <br> calculated, <br> measured (W2), <br> sensitive measurement (W2) | calculated | [Protection Para /<1..4> /I-Prot /IG[1]] |
| Measuring method | Measuring method: fundamental or rms or 3rd harmonic (only generator protection relays) | Fundamental, True RMS | Fundamental | [Protection Para <br> \|<1..4> <br> /I-Prot <br> /IG[1]] |
| Meas Circuit Superv | Activates the use of the measuring circuit supervision. In this case the module will be blocked if a measuring circuit supervision module (e.g. LOP, VTS) signals a disturbed measuring circuit (e.g. caused by a fuse failure). <br> Only available if "VX Source" ist set to "calculated". | inactive | inactive | [Protection Para <br> \|<1..4> <br> /I-Prot <br> /IG[1]] |
| IG> | If the pickup value is exceeded, the module/stage will be started. | 0.02-20.001n | 0.02ln | [Protection Para <br> \|<1..4> <br> II-Prot <br> /IG[1]] |
| IGs> | If the pickup value is exceeded, the module/stage will be started. | 0.002-2.000In | 0.02ln | [Protection Para \|<1..4> /I-Prot /IG[1]] |
| Char | Characteristic | DEFT, IEC NINV, IEC VINV, IEC EINV, IEC LINV, ANSI MINV, ANSI VINV, ANSI EINV, Therm Flat, IT, I2T, I4T, RXIDG | DEFT | [Protection Para \|<1..4> <br> /I-Prot <br> /IG[1]] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
|  | Tripping delay <br> Only available if: Characteristic $=$ DEFT | 0.00-300.00s | 0.00s | [Protection Para <1..4> II-Prot /IG[1]] |
| t-char | Time multiplier/tripping characteristic factor. The setting range depends on the selected tripping curve. <br> Only available if: Characteristic $=$ INV Or Characteristic = Therm Flat Or Characteristic = IT Or Characteristic = I2T Or Characteristic $=14 \mathrm{TOr}$ Characteristic $=$ RXIDG | 0.02-20.00 | 1 | [Protection Para <<1..4> <br> II-Prot <br> /IG[1]] |
| Reset Mode | Reset Mode <br> Only available if: Characteristic $=$ INV Or Characteristic <br> = Therm Flat Or Characteristic $=$ IT Or Characteristic $=$ <br> I2T Or Characteristic $=14 \mathrm{TOr}$ Characteristic $=$ RXIDG | instantaneous, <br> t-delay, <br> calculated | instantaneous | [Protection Para <1..4> <br> II-Prot <br> /IG[1]] |
| t-reset | Reset time for intermittent phase failures (INV characteristics only) <br> Only available if: Characteristic $=$ INV Or Characteristic = Therm Flat Or Characteristic $=$ IT Or Characteristic $=$ I2T Or Characteristic $=14 \mathrm{TOr}$ Characteristic $=$ RXIDG Only available if:Reset Mode = t-delay | 0.00-60.00s | 0.00s | [Protection Para <br> \|<1..4> <br> II-Prot <br> /IG[1]] |
| IH2 Blo | Blocking the trip command, if an inrush is detected. | inactive, active | inactive | [Protection Para <br> \|<1..4> <br> II-Prot <br> /IG[1]] |

## Ground Fault Protection Input States

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para /Global Prot Para II-Prot /IG[1]] |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para /Global Prot Para II-Prot /IG[1]] |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | [Protection Para /Global Prot Para II-Prot /IG[1]] |
| Ex rev Interl-I | Module input state: External reverse interlocking | [Protection Para /Global Prot Para II-Prot /IG[1]] |
| AdaptSet1-I | Module input state: Adaptive Parameter1 | [Protection Para /Global Prot Para II-Prot /IG[1]] |
| AdaptSet2-I | Module input state: Adaptive Parameter2 | [Protection Para /Global Prot Para II-Prot /IG[1]] |
| AdaptSet3-I | Module input state: Adaptive Parameter3 | [Protection Para /Global Prot Para II-Prot /IG[1]] |
| AdaptSet4-I | Module input state: Adaptive Parameter4 | [Protection Para /Global Prot Para Il-Prot /IG[1]] |

## Ground Fault Protection Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Ex rev Interl | Signal: External reverse Interlocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm | Signal: Alarm IG |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |
| IGH2 Blo | Signal: blocked by an inrush |
| Active AdaptSet | Active Adaptive Parameter |
| DefaultSet | Signal: Default Parameter Set |
| AdaptSet 1 | Signal: Adaptive Parameter 1 |
| AdaptSet 2 | Signal: Adaptive Parameter 2 |
| AdaptSet 3 | Signal: Adaptive Parameter 3 |
| AdaptSet 4 | Signal: Adaptive Parameter 4 |

## Commissioning: Ground Fault Protection - non-directional [50N/G, 51N/G]

Please test the non-directional earth overcurrent analog to the nondirectional phase overcurrent protection.

## I2> and \%|2/|1> - Unbalanced Load [46]

Elements:
| $2>$ [1], $12>$ [2]

The $\underline{I 2>}$ Current Unbalance element works similar to the V 012 Voltage Unbalance element. The positive and negative sequence currents are calculated from the 3-phase currents. The Threshold setting defines a minimum operating current magnitude of $I 2$ for the 46 function to operate, which insures that the relay has a solid basis for initiating a current unbalance trip. The » \%(I2/I1)" (option) setting is the unbalance trip pickup setting. It is defined by the ratio of negative sequence current to positive sequence current » \%(I2/I1)巛.

This function requires negative sequence current magnitude above the threshold setting and the percentage current unbalance above the » $\%(I 2 / / 1)$ « setting before allowing a current unbalance trip. Therefore, both the threshold and percent settings must be met for the specified Delay time setting before the relay initiates a trip for current unbalance.

## NOTICE All elements are identically structured.

Rating value $12>$ is the permitted continuous unbalanced load current. For both steps trip characteristics are provided, namely a definite time characteristic (DEFT) and an inverse characteristic (INV).

The characteristic of the inverse curve is as follows:

$$
\begin{aligned}
\mathrm{t}[\mathrm{~s}] \leq & \frac{\mathrm{K}^{*} \ln { }^{2}}{12^{2}-12>^{2}} \\
& \text { Legend: } \\
& \text { In }[\mathrm{A}]=\text { Nominal current } \\
& \mathrm{t}[\mathrm{~s}]=\text { Tripping delay } \\
& \mathrm{K}[\mathrm{~s}]=\text { Indicates the thermal load capability of the engine while running with } 100 \% \text { unbalanced } \\
& \text { load current. }
\end{aligned}
$$

I2> $[A]=$ The Threshold setting defines a minimum operating current magnitude of 12 for the 46 function to operate, which ensures that the relay has a solid basis for initiating a current unbalance trip. This is a supervisory function and not a trip level.
$12[A]=$ Measured value (calculated): Unbalanced load current

In the equation shown above the heating-up process is assumed by integration of the counter system current I 2 . When $\mathrm{I} 2>$ is undershoot, the built-up heat amount will be reduced in line with the adjusted cooling-down constant "tau-cool".

$$
\text { Theta(t) }=\text { Theta }_{0} * \mathbf{e}^{-\frac{\mathrm{t}}{\mathrm{~T}-\operatorname{cool}}}
$$

```
Legend:
t = Tripping delay
T-cool = Cooling time constant
Theta(t) = Momentary heat (thermal) energy
Theta }\mp@subsup{0}{}{= Heat (thermal) energy before the cooling down has started
```

If the heat amount is not reduced when the permitted unbalanced load current is overshoot again, the remaining heat amount will cause an earlier tripping.
46[1]...[n]
name $=46[1] \ldots[n]$


Device Planning Parameters of the Current Unbalance Module

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | do not use | [Device planning] |  |  |
| Q |  |  |  |  |

Global Protection Parameters of the Current Unbalance Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT Winding Side | Measuring values will be used from this winding side | W1, W2 | W1 | [Protection Para <br> /Global Prot Para <br> II-Prot <br> /I2>[1]] |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para <br> /Global Prot Para <br> II-Prot <br> /I2>[1]] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para <br> /Global Prot Para <br> II-Prot <br> /I2>[1]] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para <br> /Global Prot Para <br> II-Prot <br> /I2>[1]] |
| CurrentBase | Base Current Selection (based on Device Rating (1A/5A)/Protected Object Rating). | Device Rating, <br> Protected Object Rating | Device Rating | [Protection Para <br> /Global Prot Para <br> II-Prot <br> /I2>[1]] |

## Setting Group Parameters of the Current Unbalance Module

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Function } & \begin{array}{l}\text { Permanent activation or deactivation of module/stage. }\end{array} & \begin{array}{l}\text { inactive, } \\
\text { active }\end{array}
$$ \& inactive \& [Protection Para <br>

I<1..4>\end{array}\right]\)| I-Prot |
| :--- |
| ExBlo Fc |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Char | Characteristic | $\begin{aligned} & \text { DEFT, } \\ & \text { INV } \end{aligned}$ | DEFT | [Protection Para <<1..4> <br> II-Prot <br> / $2>$ [1]] |
|  | Tripping delay <br> Only available if: Characteristic $=$ DEFT | 0.00-300.00s | 0.00s | [Protection Para <<1..4> <br> II-Prot <br> /I2>[1]] |
| K | This setting is the negative sequence capability constant. This value is normally provided by the generator manufacturer. <br> Only available if: Characteristic $=\operatorname{INV}$ | 1.00-200.00s | 10.0s | [Protection Para <br> <<1..4> <br> II-Prot <br> /I2>[1]] |
| T-Cool | If the unbalanced load current falls below the pickup value, the cooling-off time is taken into account. If the unbalanced load exceeds the pickup value again, than the saved heat within the electrical equipment will lead to an accelerated trip. <br> Only available if: Characteristic $=$ INV | 0.0-60000.0s | 0.0s | [Protection Para <<1..4> <br> II-Prot <br> /I2>[1]] |

## Current Unbalance Module Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | Il-Prot |
| ExBlo2-I | Module input state: External blocking2 | IProtection Para |
|  |  | IGlobal Prot Para |
|  |  | I-Prot |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | Il2>[1]] |
|  |  | IProtection Para |
|  |  | I-Probal Prot Para |

## Current Unbalance Module Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm | Signal: Alarm Negative Sequence |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |

## Commissioning: Current Unbalance Module

## Object to be tested:

Test of the unbalanced load protection function.

## Necessary means:

- Three-phase current source with adjustable current unbalance; and
- Timer.


## Procedure:

Check the phase sequence:

- Ensure that the phase sequence is the same as that set in the field parameters.
- Feed-in a three-phase nominal current.

■ Change to the »Measuring Values« menu.

■ Check the measuring value for the unbalanced current $» / 2 «$. The measuring value displayed for $» / 2 «$ should be zero (within the physical measuring accuracy).

## NOT/CE If the displayed magnitude for 12 is the same as that for the symmetrical nominal currents fed to the relay, it implies that the phase sequence of the currents seen by the relay is reversed.

- Now turn-off phase L1.

■ Again check the measuring value of the unbalanced current » 12 « in the »Measuring Values« menu. The measuring value of the asymmetrical current » 12 «should now be $33 \%$.

- Turn-on phase L1, but turn-off phase L2.
- Once again check the measuring value of the asymmetrical current I 2 in the »Measuring Values« menu. The measuring value of the asymmetrical current »/2«should be again $33 \%$.
- Turn-on phase L2, but turn-off phase L3.
- Again check the measuring value of asymmetrical current »/2« in the »Measuring Values« menu. The measuring value of the asymmetrical current »/2« should still be $33 \%$.

Testing the trip delay:

- Apply a symmetrical three-phase current system (nominal currents).
- Switch off IL1 (the threshold value » Threshold« for»/2« must be below 33\%).

Measure the tripping time

The present current unbalance »/2« corresponds with $1 / 3$ of the existing phase current displayed.

## Testing the threshold values

■ Configure minimum » \%/2/l1« setting (2\%) and an arbitrary threshold value » Threshold« (I2).

■ For testing the threshold value, a current has to be fed to phase A which is lower than three times the adjusted threshold value »Threshold« (I2).

■ Feeding only phase A results in » \%/2/l1 = $100 \%$ «, so the first condition » $\% / 2 / / 1>=2 \%$ « is always fulfilled.

- Now increase the phase L1 current until the relay is activated.

Testing the dropout ratio of the threshold values

Having tripped the relay in the previous test, now decrease the phase A current. The dropout ratio must not be higher than 0.97 times the threshold value.

## Testing \%/2/I1

■ Configure minimum threshold value »Threshold« (I2) (0.01 x In) and set »\%/2/I1« greater or equal to 10\%.

- Apply a symmetrical three-phase current system (nominal currents). The measuring value of » \%/2/l1 «should be 0\%.

■ Now increase the phase L1 current. With this configuration, the threshold value » Threshold« (12) should be reached before the value » \%/2/I1 « reaches the set » \%/2/l1 « ratio threshold.

Continue increasing the phase 1 current until the relay is activated.

## Testing the dropout ratio of \%/2/l1

Having tripped the relay in the previous test, now decrease the phase L1 current. The dropout of » \%/2//1 « has to be $1 \%$ below the »\%/2/l1 «setting.

## Successful test result:

The measured trip delays, threshold values, and dropout ratios are within the permitted deviations/tolerances, specified under Technical Data.

## ThR-Protection Module: Thermal Replica [49]

## ThR

The maximal permissible thermal loading capacity, and consequently the tripping delay of a component, depends on the amount of the flowing current at a specific time, the »previously existing load (current) « as well as on a constant specified by the component.

The thermal overload protection is in compliance with IEC255-8 (VDE 435 T301). A complete thermal replica function is implemented in the device as Homogeneous-Body Replica of the equipment to be protected and by taking the previously existing load into account. The protection function is of one step design, provided with a warning limit.

For this the device calculates the thermal load of the equipment by using the existing measured values and the parameter settings. When knowing the thermal constants, the temperature of the equipment can be established (simulated).

The general tripping times of the overload protection can be gathered from the following equation according to IEC 255-8:

$$
t=\mathrm{t}-\mathrm{warm} \ln \left(\frac{I^{2}-I p^{2}}{I^{2}-\left(K^{*} \mid \mathrm{l}\right)^{2}}\right)
$$

Legend:

```
t= Tripping delay
T-warm = Warming-up time constant
T-cool = Cooling time constant
lb = Base current: Maximum permissible thermal continuous current.
K = Overload Factor: The maximum thermal limit is defined as k* B, the product of the overload factor and the base current .
I = measured current (x In)
lp = Preload Current
```

ThR
name $=$ ThR


## Direct Commands of the Thermal Overload Module

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Reset | Reset the Thermal Replica | inactive, | inactive | [Operation |
| IReset] |  |  |  |  |

Device Planning Parameters of the Thermal Overload Module

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | do not use | [Device planning] |  |  |
|  |  |  |  |  |

Global Protection Parameters of the Thermal Overload Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT Winding Side | Measuring values will be used from this winding side | W1, <br> W2 | W1 | [Protection Para <br> /Global Prot Para <br> /I-Prot <br> /ThR] |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para <br> /Global Prot Para <br> /I-Prot <br> /ThR] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para <br> /Global Prot Para <br> /I-Prot <br> /ThR] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -- | [Protection Para <br> /Global Prot Para <br> /I-Prot <br> /ThR] |

Setting Group Parameters of the Thermal Overload Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para <br> <<1..4> <br> /I-Prot <br> /ThR] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para <<1..4> <br> /I-Prot <br> /ThR] |
| Blo TripCmd | Permanent blocking of the Trip Command of the module/stage. | inactive, active | inactive | [Protection Para \|<1..4> <br> /I-Prot <br> /ThR] |
| ExBlo TripCmd Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo TripCmd Fc=active". | inactive, active | inactive | [Protection Para /<1..4> <br> /I-Prot <br> /ThR] |
| lb | Base current: Maximum permissible thermal continuous current. | 0.01-4.00ln | 1.00In | [Protection Para <br> \|<1..4> <br> /I-Prot <br> /ThR] |
| K | Overload Factor: The maximum thermal limit is defined as $\mathrm{k}^{*} \mid \mathrm{B}$, the product of the overload factor and the base current. | 0.80-1.20 | 1.00 | [Protection Para \|<1..4> <br> /I-Prot <br> /ThR] |
| Alarm Theta | Pickup value | 50-100\% | 80\% | [Protection Para \|<1..4> /I-Prot /ThR] |
| T-warm | Warming-up time constant | 1-60000s | 10s | [Protection Para <br> \|<1..4> <br> /I-Prot <br> /ThR] |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| T-cool | Cooling time constant | $1-60000 \mathrm{~s}$ | 10s | [Protection Para |
| K |  |  |  | /L..4> <br> II-Prot <br> IThR] |

## Thermal Overload Module Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | I-Prot |
| ExBlo2-I | ModuR] |  |
|  |  | [Protection Para |
|  |  | Input state: External blocking2 |
|  |  | I-Prot |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |  |

## Signals of the Thermal Overload Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm | Signal: Alarm Thermal Overload |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |
| Res Thermal Cap | Signal: Resetting Thermal Replica |

## Thermal Overload Module Values

| Value | Description | Menu path |
| :--- | :--- | :--- |
| Thermal Cap Used | Measured value: Thermal Capacity Used | [Operation <br> /Measured Values <br> /ThR] |
| Time To Trip | Measured value (calculated/measured): Remaining time until the <br> thermal overload module will trip | [Operation <br> IMeasured Values <br> IThR] |

## Thermal Overload Module Statistics

| Value | Description | Menu path |
| :--- | :--- | :--- |
| Thermal Cap max | Thermal Capacity maximum value | [Operation |
|  |  | IStatistics |
|  |  | IMax |

## Commissioning: Thermal Replica

Object to be tested
Protective function $T h R$
Necessary means

- Three-phase current source
- Timer


## Procedure

Calculate the tripping time for the current to be constantly impressed by using the formula for the thermal image.

## NOT/CE The parameter of the temperature rise of the component $» \tau_{w}$ " has to be known to guarantee an optimal protection.

$$
t=T-w a r m \ln \left(\frac{l^{2}-l p^{2}}{l^{2}-\left(K^{*} \mid b\right)^{2}}\right)
$$

Legend:

```
t = Tripping delay
T-warm = Warming-up time constant
T-cool = Cooling time constant
lb = Base current: Maximum permissible thermal continuous current.
K = Overload Factor:The maximum thermal limit is defined as k* }\textrm{B}\mathrm{ , the product of the overload factor and the base current .
I = measured current (x ln)
lp = Preload Current
```

Testing the threshold values
Apply the current you have based your mathematical calculation on.

## Testing the trip delay

## NOT/CE The thermal capacity should be zero before the test is started. See »Measuring Values«.

For testing the trip delay, a timer is to be connected to the contact of the associated trip relay.
Apply the current you have based your mathematical calculation on. The timer is started as soon as the current is applied and it is stopped when the relay trips.

## Successful test result

The calculated tripping time and the fallback ratio comply with the measured values. For permissible deviations/tolerances, please see Technical Data.

## SOTF - Switch Onto Fault

SOTF
In case a faulty line is energized (e.g.: when an earthing switch is in the ON-Position), an instantaneous trip is required. The SOTF module is provided to generate a permissive signal for other protection functions such as overcurrents to accelerate their trips (via adaptive parameters). The SOTF condition is recognized according to the User's operation mode that can be based on:

- The breaker state (CB Pos);
- No current flowing (l<);
- Breaker state and no current flowing( CB Pos and I<);
- Breaker switched on manually (CB manually On); and/or
- An external trigger (Ex SOTF).

This protection module can initiate a high speed trip of the overcurrent protection modules.

This module issues a signal only (the module is not armed and does not issue a trip command).

In order to influence the trip settings of the overcurrent protection in case of switching onto a fault, the User has to assign the signal "SOTF.enabled" onto an Adaptive Parameter Set. Please refer to Parameter / Adaptive Parameter Sets sections. Within the Adaptive Parameter Set, the User has to modify the trip characteristic of the overcurrent protection according to the User's needs.

[^8]SOTF
name = SOTF


*Applies only for devices with Auto Reclosure
*This signal is the output of the switchgear that is assigned to this protective element. This applies to protective devices that offer control functionality.

## Device Planning Parameters of the Switch Onto Fault Module

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Options \& Default \& Menu path <br>
\hline Mode \& Mode \& do not use, <br>

use\end{array}\right)\) do not use | [Device planning] |
| :--- | :--- |

Global Protection Parameters of the Switch Onto Fault Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT Winding Side | Measuring values will be used from this winding side | W1, <br> W2 | W1 | [Protection Para /Global Prot Para /SOTF] |
| Mode | Mode | CB Pos, K , CB Pos And I , CB manual ON, Ext SOTF | CB Pos | [Protection Para /Global Prot Para /SOTF] |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para <br> /Global Prot Para ISOTF] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /SOTF] |
| Ex rev Interl | External blocking of the module by external reverse interlocking, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -- | [Protection Para /Global Prot Para /SOTF] |
| Assigned SG | Assigned Switchgear <br> Only available if: Mode = CB Pos Or CB Pos And K | SG[1], <br> SG[2] | SG[1] | [Protection Para /Global Prot Para /SOTF] |
| Ext SOTF | External Switch Onto Fault <br> Only available if: Mode = Ext SOTF | 1..n, DI-LogicList | -.- | [Protection Para /Global Prot Para /SOTF] |

## Setting Group Parameters of the Switch Onto Fault Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para /<1..4> /SOTF] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, <br> active | inactive | [Protection Para <1..4> /SOTF] |
| Ex rev Interl Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "Ex rev Interl Fc = active". | inactive, active | inactive | [Protection Para \|<1..4> [SOTF] |
| k | The CB is in the OFF Position, if the measured current is less than this parameter. | 0.01-1.00In | 0.01 ln | [Protection Para <1..4> /SOTF] |
| t-enable | While this timer is running, and while the module is not blocked, the Switch Onto Fault Module is effective (SOTF is armed). | 0.10-10.00s | 2s | [Protection Para $\mid<1 . .4>$ [/SOTF] |

## Switch Onto Fault Module Input States

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| ExBlo1-I | Module input state: External blocking | [Protection Para /Global Prot Para /SOTF] |
| ExBlo2-I | Module input state: External blocking | [Protection Para /Global Prot Para /SOTF] |
| Ex rev Interl-I | Module input state: External reverse interlocking | [Protection Para /Global Prot Para /SOTF] |
| Ext SOTF-I | Module input state: External Switch Onto Fault Alarm | [Protection Para /Global Prot Para /SOTF] |

## Signals of the Switch Onto Fault Module (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Ex rev Interl | Signal: External reverse Interlocking |
| enabled | Signal: Switch Onto Fault enabled. This Signal can be used to modify Overcurrent Protection <br> Settings. |
| K | Signal: No Load Current. |

## Commissioning: Switch Onto Fault

## Object to be tested

Testing the module Switch Onto Fault according to the parameterized operating mode:

- The breaker state (CB Pos);
- No current flowing (l<);
- Breaker state and no current flowing( CB Pos and I<);
- Breaker switched on manually (CB manually On); and/or
- An external trigger (Ex SOTF).

Necessary means:

- Three-phase current source (If the Enable-Mode depends on current);
- Ampere meters (May be needed if the Enable-Mode depends on current); and
- Timer.


## Test Example for Mode CB manual ON

## NOTICE

Mode I<: In order to test the effectiveness: Initially do not feed any current. Start the timer and feed with an abrupt change current that is distinctly greater than the l -threshold to the measuring inputs of the relay.

Mode I< and Bkr state: Simultaneous switch on the breaker manually and feed with an abrupt change current that is distinctly greater than the l<-threshold.

Mode Bkr state: The breaker has to be in the OFF Position. The signal "SOTF.ENABLED" $=0$ is untrue. If the breaker is switched on, the signal „SOTF.ENABLED"=1 becomes true as long as the timer t-enabled is running.

- The Circuit Breaker has to be in the OFF Position. There must be no load current.

■ The Status Display of the device shows the signal "SOTF.Enabled"=1.

Testing

- Switch the Circuit Breaker manually ON and start the timer at the same time.
- After the hold time $t$-enable is expired the state of the signal has to change to "SOTF.Enabled"=0.
- Write down the measured time.


## Successful test result

The measured total tripping delays or individual tripping delays, threshold values and fallback ratios correspond with those values, specified in the adjustment list. Permissible deviations/tolerances can be found under Technical Data.

# CLPU - Cold Load Pickup 

Available Elements:
CLPU

When the electric load is freshly started or restarted after a prolonged outage, the load current tends to have a temporary surge that could be several times the normal load current in magnitude due to motor starting. This phenomena is called cold load inrush. If the overcurrent pickup threshold is set according to the maximum possible load inrush, the overcurrent protection may be insensitive to some faults, thus making whole protection systems coordination difficult or even impossible. On the other hand, the overcurrent protection could trip on load inrush if it is set based on the fault current studies. The CLPU module is provided to generate a temporary blocking/desensitizing signal to prevent overcurrent protections from unwanted tripping. The cold load pickup function detects a warm-to-cold load transition according to the four selectable cold load detection modes:

- CB POS (Breaker state);
- I< (Undercurrent);
- CB POS AND I< (Breaker state and undercurrent); and
- CB POS OR I< (Breaker state OR undercurrent).

After a warm-to-cold load transition has been detected, a specified load-off timer will be started. This User-settable load-off timer is used in some cases to make sure that the load is really "cold" enough. After the load-off timer times out, the CLPU function issues an "enable" signal »CLPU.ENABLED« that can be used to block some sensitive protection elements like instantaneous overcurrent elements, current unbalance, or power protection elements at User's choice. Using this enable signal, some time inverse overcurrent elements may also be desensitized at the User's choice by means of activating adaptive settings of the corresponding overcurrent elements.

When a cold load condition is finished (a cold-to-warm load condition is detected) due to, for example, breaker closing or load current injection, a load inrush detector will be initiated that supervises the coming and going of the load inrush current process. A load inrush is detected if the coming load current exceeds a User-specified inrush current threshold. This load inrush is considered as finished if the load current is decreased to $90 \%$ of the inrush current threshold. After the inrush current is diminished, a settle timer starts. The cold load pickup enable signal can only be reset after the settle timer times out. Another max-Block timer, which is started parallel with the load inrush detector after a cold load condition is finished, may also terminate the CLPU enable signal if a load inrush condition is prolonged abnormally.

The cold load pickup function can be blocked manually by external or internal signal at the User's choice. For the devices with Auto-Reclosing function, the $C L P U$ function will be blocked automatically if auto-reclosure is initiated ( $A R$ is running).

This module issues a signal only (it is not armed).
In order to influence the tripping settings of the overcurrent protection, the User has to assign the signal "CLPU.ENABLED" to an adaptive parameter set. Please refer to the Parameter / Adaptive Parameter Sets section. Within the adaptive parameter set, the User has to modify the tripping characteristic of the overcurrent protection according to the needs.

NOT/CE Please be aware of the meaning of the two delay timers.
t load Off (Pickup Delay): After this time expires, the load is no longer diversified.
t Max Block (Release Delay): After the starting condition is fulfilled (e.g.: breaker switched on manually), the "CLPU.enabled" signal will be issued for this time. That means for the duration of this time, the tripping thresholds of the overcurrent protection can be desensitized by means of adaptive parameters (please refer to the Parameters section). This timer will be stopped if the current falls below 0.9 times of the threshold of the load inrush detector and remains below 0.9 times of the threshold for the duration of the settle time.

This Notice applies to protective devices that offer control functionality only! This protective element requires, that a switchgear (circuit breaker is assigned to it. It is allowed only to assign switchgears (circuit breaker) to this protective element, whose measuring transformers provide measuring data to the protective device.
CLPU

$2 \frac{\text { Please Refer To Diagram. Bite locking signa is) }}{\text { (Stage is not deadivated and no at }}$

$* *$ This signal is the output of the switchgear that is assigned to this protective
element. This applies to protective devices that offer control functionality.

## Example Mode: Breaker Position



## Device Planning Parameters of the Cold Load Pickup Module

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Options \& Default \& Menu path <br>
\hline Mode \& Mode \& do not use, <br>

use\end{array}\right)\) do not use | [Device planning] |
| :--- | :--- |

Global Protection Parameter of the Cold Load Pickup Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT Winding Side | Measuring values will be used from this winding side | $\begin{aligned} & \text { W1, } \\ & \text { W2 } \end{aligned}$ | W1 | [Protection Para <br> /Global Prot Para /CLPU] |
| Mode | Mode | CB Pos, <br> K , <br> CB Pos Or l<, <br> CB Pos And I< | CB Pos | [Protection Para /Global Prot Para /CLPU] |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /CLPU] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /CLPU] |
| Ex rev Interl | External blocking of the module by external reverse interlocking, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | $\because-$ | [Protection Para /Global Prot Para /CLPU] |
| CB Pos Detect | Criterion by which the Circuit Breaker Switch Position is to be detected. <br> Only available if: CLPU.Mode $=1<$ | SG[1].Pos, <br> SG[2].Pos | SG[1].Pos | [Protection Para /Global Prot Para /CLPU] |

## Set Parameters of the Cold Load Pickup Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para $\mid<1.4>$ <br> /CLPU] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para \|<1..4> <br> /CLPU] |
| Ex rev Interl Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "Ex rev Interl Fc = active". | inactive, active | inactive | [Protection Para \|<1..4> <br> /CLPU] |
| t-Load Off | Select the outage time required for a load to be considered cold. If the Pickup Timer (Delay) has run out, a Cold Load Signal will be issued. | 0.00-7200.00s | 1.00s | [Protection Para $\mid<1.4>$ <br> /CLPU] |
| t-Max Block | Select the amount of time for the cold load inrush. If the Release Time (Delay) has run out, a Warm Load Signal will be issued. | 0.00-300.00s | 1.00s | [Protection Para \|<1..4> <br> /CLPU] |
| K | The CB is in the OFF Position, if the measured current is less than this parameter. | 0.01-1.00In | 0.01In | [Protection Para \|<1..4> <br> /CLPU] |
| Threshold | Set the load current inrush threshold. | 0.10-4.00ln | 1.2ln | [Protection Para \|<1..4> <br> /CLPU] |
| Settle Time | Select the time for the cold load inrush | 0.00-300.00s | 1.00s | [Protection Para \|<1..4> <br> /CLPU] |

## States of the Inputs of the Cold Load Pickup Module

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking | [Protection Para |
|  |  | IGlobal Prot Para |
|  | Module input state: External blocking | [Protection Para |
| ExBlo2-I |  | IGlobal Prot Para |
|  | Module input state: External reverse interlocking | ICLPU] |
| Ex rev Interl-I |  | IGlobal Prot Para |
|  |  | ICLPU] |

## Signals of the Cold Load Pickup Module (States of the Outputs)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Ex rev Interl | Signal: External reverse Interlocking |
| enabled | Signal: Cold Load enabled |
| detected | Signal: Cold Load detected |
| K | Signal: No Load Current. |
| Load Inrush | Signal: Load Inrush |
| Settle Time | Signal: Settle Time |

## Commissioning of the Cold Load Pickup Module

## Object to be tested:

Testing the Cold Load Pickup module according to the configured operating mode:

- $1<$ (No current);
-Bkr state (Breaker position);
-I< (No Current) and Bkr state (Breaker position); and
$\bullet$ • $<$ (No Current) or Bkr state (Breaker position).


## Necessary means:

-Three-phase current source (if the Enable Mode depends on current);
-Ampere meters (may be needed if the Enable Mode depends on current); and

- Timer.

Test Example for Mode Bkr State (Breaker Position)
$N O T / C E \quad$ Mode $I<:$ In order to test the tripping delay, start the timer and feed with an abrupt change current that is distinctly less than the $1<-$ threshold. Measure the tripping delay. In order to measure the drop-out ratio, feed a current with an abrupt change that is distinctly above the $1<$-threshold.

Mode I < and Bkr state: Combine the abrupt change (switching the current ON and OFF) with the manual switching ON and OFF of the breaker.

Mode I< or Bkr state: Initially carry out the test with an abrupt changing current that is switched ON and OFF (above and below the l<-threshold). Measure the tripping times. Finally, carry out the test by manually switching the breaker ON and OFF.
-The breaker has to be in the OFF position. There must not be any load current.
-The Status Display of the device shows the signal "CLPU.Enabled"=1.
-The Status Display of the device shows the signal "CLPU. $1<$ " $=1$.
-Testing the tripping delay and the resetting ratio:

- Switch the breaker manually ON and simultaneously start the timer.
-After the the »t Max Block (Release Delay)« timer has expired, the signal "CPLU.Enabled "=0 has to become untrue.
-Write down the measured time.
-Manually switch the breaker OFF and simultaneously start the timer.
-After the »t load Off" timer has expired, the signal "CPLU.Enabled "=1 has to become true.
-Write down the measured time.

Successful test result:
The measured total tripping delays or individual tripping delays, threshold values, and drop-out ratios correspond with those values specified in the adjustment list. Permissible deviations/tolerances can be found in the Technical Data section.

## ExP - External Protection

Available stages:
ExP[1],ExP[2], ExP[3], ExP[4]

## NOT/CE All 4 stages of the external protection EXP[1]]..[4] are identically structured.

By using the module External Protection the following can be incorporated into the device function: trip commands, alarms and blockades of external protection facilities. Devices which are not provided with a communication interface can be connected to the control system as well.
ExP[1]...[n]
name $=\operatorname{ExP}[1] \ldots[n]$
=lf no signal is assigned to the alarm input

3 Please Refer To Diagam: Trip blockings

## Device Planning Parameters of the Module External Protection

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Options \& Default \& Menu path <br>
\hline Mode \& Mode \& do not use, <br>

use\end{array}\right)\) do not use | [Device planning] |
| :--- | :--- |

Global Protection Parameters of the Module External Protection

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -- | [Protection Para /Global Prot Para /ExP /ExP[1]] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /ExP /ExP[1]] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /ExP /ExP[1]] |
| Alarm | Assignment for External Alarm | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /ExP /ExP[1]] |
| Trip | External trip of the CB if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /ExP <br> /ExP[1]] |

## Setting Group Parameters of the Module External Protection

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para <br> /<1..4> <br> /ExP <br> /ExP[1]] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para <1..4> /ExP /ExP[1]] |
| Blo TripCmd | Permanent blocking of the Trip Command of the module/stage. | inactive, active | inactive | [Protection Para <1..4> /ExP /ExP[1]] |
| ExBlo TripCmd Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo TripCmd Fc=active". | inactive, active | inactive | [Protection Para <br> /<1..4> <br> /ExP <br> /ExP[1]] |

## Module External Protection Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | IExP |
| ExBlo2-I | Module input state: External blocking2 |  |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | IExP |
| Alarm-I | IExP[1]] |  |
|  |  | IGlobal Prot Para |
|  |  | IExP |
| Trip-I |  | IExP[1]] |

## Module External Protection Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm | Signal: Alarm |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |

## Commissioning: External Protection

Object to be tested
Test of the module External Protection

Necessary means

- Depending on the application

Procedure
Simulate the functionality of the External Protection (Alarm, Trip, Blockings...) by (de-)energizing of the digital inputs.

Successful test result
All external alarms, external trips and external blockings are correctly recognized and processed by the device.

## Ext Temp Superv Protection Module - External Temperature Supervision

Elements:
Ext Temp Superv[1],Ext Temp Superv[2] ,Ext Temp Superv[3]

## NOT/CE All elements of the external protection Ext Temp Superv are identically structured.

By using the Ext Temp Superv module, the following can be incorporated into the device function: trip commands, alarms (pickups), and blockages of digital external temperature protection.

Since the Ext Temp Superv module is functionally identical to the Ext. Protection module, it is the User's responsibility to select the proper assignments for the settings Alarm (Pickup) and Trip for reflecting the purpose of this module.
Ext Temp Superv[1]]...[n]
name = Ext Temp Superv [1]...[n]
*=If no signal is assigned to the alarm input
Ext Temp Supen. Trip-I
Ext Temp Supen.Alarm-1



## Device Planning Parameters of the External Temperature Supervision Module

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Options \& Default \& Menu path <br>
\hline Mode \& Mode \& do not use, <br>

use\end{array}\right)\) do not use | [Device planning] |
| :--- | :--- |

Global Protection Parameters of the External Temperature Supervision Module
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { ExBlo1 } & \begin{array}{l}\text { External blocking of the module, if blocking is activated } \\
\text { (allowed) within a parameter set and if the state of the } \\
\text { assigned signal is true. }\end{array} & \begin{array}{l}\text { 1..n, Assignment } \\
\text { List }\end{array} & -.- & \begin{array}{l}\text { [Protection Para } \\
\text { /Global Prot Para } \\
\text { ITemp-Prot }\end{array}
$$ <br>
/Ext Temp <br>

Superv[1]]\end{array}\right]\)| [Protection Para |
| :--- |
| ExBlo2 |

## Setting Group Parameters of the External Temperature Supervision Module

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Function | Permanent activation or deactivation of module/stage. | inactive, <br> active | inactive | [Protection Para <br> K1..4> <br> /Temp-Prot <br> /Ext Temp <br> Superv[1]] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the <br> module/stage. This parameter is only effective if a <br> signal is assigned to the corresponding global <br> protection parameter. If the signal becomes true, those <br> modules/stages are blocked that are parameterized <br> "ExBlo Fc=active". | inactive, |  |  |
| active |  |  |  |  |

## External Temperature Supervision Module Input States

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para <br> /Global Prot Para <br> /Temp-Prot <br> /Ext Temp Superv[1]] |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para <br> /Global Prot Para <br> /Temp-Prot <br> /Ext Temp Superv[1]] |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | [Protection Para /Global Prot Para /Temp-Prot /Ext Temp Superv[1]] |
| Alarm-I | Module input state: Alarm | [Protection Para <br> /Global Prot Para <br> /Temp-Prot <br> /Ext Temp Superv[1]] |
| Trip-I | Module input state: Trip | [Protection Para /Global Prot Para /Temp-Prot /Ext Temp Superv[1]] |

## External Temperature Supervision Module Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm | Signal: Alarm |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |

## Commissioning: External Temperature Supervision

Object to be tested:
Test of the External Temperature Supervision module.

## Necessary means:

Dependent on the application.
Procedure:
Simulate the functionality of the External Temperature Supervision (pickup, trip, blockings) by (de-)energizing of the digital inputs.

Successful test result:
All external pickups, external trips, and external blockings are correctly recognized and processed by the device.

## Ext Oil Temp Protection Module - External Oil Temperature Protection

Available elements:
Ex Oil Temp

By using the Ext Oil Temp module, the following can be incorporated into the device function: trip commands, alarms (pickups), and blockages of digital external temperature facilities.

Since the Ext Oil Temp module is functionally identical to the Ext. Protection module, it is the User's responsibility to select the proper assignments for the settings Alarm (Pickup) and Trip for reflecting the purpose of this module.
Ex Oil Temp[1]....[n]
name $=$ Ex Oil Temp[1]..[n]
*=If no signal is assigned to the alarm input
Ex Oil Temp. Trip-1


Device Planning Parameters of the External Oil Temperature Protection Module

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | do not use | [Device planning] |  |  |
| Q |  |  |  |  |

Global Protection Parameters of the External Oil Temperature Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para <br> /Global Prot Para <br> /Temp-Prot <br> /Ex Oil Temp] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para <br> /Global Prot Para <br> /Temp-Prot <br> /Ex Oil Temp] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para <br> /Global Prot Para <br> /Temp-Prot <br> /Ex Oil Temp] |
| Alarm | Assignment for External Alarm | 1..n, Assignment List | --- | [Protection Para <br> /Global Prot Para <br> /Temp-Prot <br> /Ex Oil Temp] |
| Trip | External trip of the CB if the state of the assigned signal is true. | 1..n, Assignment List | -- | [Protection Para <br> /Global Prot Para <br> /Temp-Prot <br> /Ex Oil Temp] |

## Setting Group Parameters of the External Oil Temperature Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para <1..4> /Temp-Prot /Ex Oil Temp] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /Ex Oil Temp] |
| Blo TripCmd | Permanent blocking of the Trip Command of the module/stage. | inactive, active | inactive | [Protection Para <<1..4> /Temp-Prot /Ex Oil Temp] |
| ExBlo TripCmd Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo TripCmd Fc=active". | inactive, active | inactive | [Protection Para \|<1..4> <br> /Temp-Prot <br> /Ex Oil Temp] |

## External Oil Temperature Protection Module Input States

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para /Global Prot Para /Temp-Prot /Ex Oil Temp] |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para /Global Prot Para /Temp-Prot /Ex Oil Temp] |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | [Protection Para /Global Prot Para /Temp-Prot /Ex Oil Temp] |
| Alarm-I | Module input state: Alarm | [Protection Para /Global Prot Para /Temp-Prot /Ex Oil Temp] |
| Trip-I | Module input state: Trip | [Protection Para /Global Prot Para /Temp-Prot /Ex Oil Temp] |

## External Oil Temperature Protection Module Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm | Signal: Alarm |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |

## Commissioning: External Protection

Object to be tested:
Test of the External Oil Temperature Protection module.

## Necessary means.

Dependent on the application.
Procedure:
Simulate the functionality of the External Oil Temperature Protection (pickup, trip, blockings) by (de-)energizing of the digital inputs.

Successful test result:
All external pickups, external trips, and external blockings are correctly recognized and processed by the device.

## Sudden Pressure Protection Module - Sudden Pressure Protection

## Available elements:

Ext Sudd Press

## Principle - General Use

Most large size transformers ( 5000 KVA or above) are recommended to be equipped with a sudden pressure relay (Buchholz) that detects rapid change in oil or gas pressure within the tank as result of internal arcing. The sudden pressure relay can detect internal faults such as turn to turn faults that other protection functions such as differential and overcurrents may not be sensitive enough to sense. The sudden pressure relay is usually equipped with output contacts that can be directly used for tripping and alarming, but it does not have recording and communication capabilities built in.

A sudden pressure protection module is provided in the protective device to take the output signals from the conventional sudden pressure relay and to form more secure and intelligent transformer protections. Through this module, the events of sudden pressure relay operations can be recorded and communicated to the control center (SCADA).
Ext Sudd Press
name $=$ Ext Sudd Press
*=If no signal is assigned to the alarm input
Ext Sudd Press. Trip-I

| Ext Sudd Press. Alarm-1 |
| :---: |
| Ext Sudd Press.Alarm 14 |
| Ext Sudd Press.Trip 15 |
| Ext Sudd Press. TripCmd |

Device Planning Parameters of the Sudden Pressure Protection Module

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | do not use | [Device planning] |  |  |
| U |  |  |  |  |

Global Protection Parameters of the Sudden Pressure Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /Ext Sudd Press] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /Ext Sudd Press] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /Ext Sudd Press] |
| Alarm | Assignment for External Alarm | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /Ext Sudd Press] |
| Trip | External trip of the CB if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /Ext Sudd Press] |

## Setting Group Parameters of the Sudden Pressure Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para <1..4> <br> /Ext Sudd Press] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para \|<1..4> <br> /Ext Sudd Press] |
| Blo TripCmd | Permanent blocking of the Trip Command of the module/stage. | inactive, active | inactive | [Protection Para \|<1..4> <br> /Ext Sudd Press] |
| ExBlo TripCmd Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo TripCmd Fc=active". | inactive, active | inactive | [Protection Para \|<1..4> <br> /Ext Sudd Press] |

## Sudden Pressure Protection Module Input States

| Name | Description | Assignment via |
| :---: | :---: | :---: |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para /Global Prot Para /Ext Sudd Press] |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para /Global Prot Para /Ext Sudd Press] |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | [Protection Para /Global Prot Para /Ext Sudd Press] |
| Alarm-I | Module input state: Alarm | [Protection Para /Global Prot Para /Ext Sudd Press] |
| Trip-I | Module input state: Trip | [Protection Para /Global Prot Para /Ext Sudd Press] |

## Sudden Pressure Protection Module Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm | Signal: Alarm |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |

## Commissioning: Sudden Pressure Protection

Object to be tested:
Test of the Sudden Pressure Protection module.

## Necessary means:

Dependent on the application.
Procedure:
Simulate the functionality of the Sudden Protection Relay.
Successful test result:
All external pickups, external trips, and external blockings are correctly recognized and processed by the device.

## RTD Protection Module

Elements:
RTD

## General - Principle Use

## NOT/CE The Resistance-based Temperature Detector (RTD) Protection Module uses temperature data that are provided by a Universal Resistance-based Temperature Detector (URTD) module (please refer to the URTD Module section).

## NOT/CE $\quad \begin{aligned} & \text { If voting trip is required, please map the output used for tripping purposes: } \\ & \text { "RTD. Voting Trip Grp 1" or "RTD }\end{aligned}$ "RTD. Voting Trip Grp 1" or "RTD.Voting Trip Grp 2"

The protective device provides tripping and alarming functions based on the direct temperature measurements read from the URTD device that has 11 temperature sensor channels. Each channel will have one trip function without an intended delay and one alarm function with a delay.
-The "trip" function has only a threshold setting.
-Each individual »Alarm Function« will have a threshold setting range, and can be individually enabled or disabled. Since the temperature cannot change instantaneously (which is a way that temperature differs from current), the "delay" is essentially built in to the function due to the fact that the temperature will take some time to increase from room temperature to the "trip threshold" level.
-The dropout ratio for both trip and alarm is 0.99 .
-
The temperature rise is limited by the RTD driver.
The entire function can be turned off or on, or individual channels can be turned off or on.

## Voting

Additionally, RTD voting schemes are available and User programmable. The Voting feature must be activated and configured within the following menu, [Protection ParalSet[x]\Temp-Prot/ RTDIVote[x]]. Here, the setting »Function« has to be set to »Active«.

Once activated, the number of channels that will be used by the voting feature is selected. This is set by way of the parameter » Voting[x]«. This parameter defines how many of the selected channels must be over its threshold level in order to get a voting trip. Each individual channel must be selected or deselected by setting to either » Yes« or »No«. When selecting » Yes«, the channel will be used in the voting process. Note that in order to be selected, each channel must also be active and the RTD module itself has to be active.

If for example, Vote[x] is set to » $3 巛$, and all channels are set to » $Y e s «$, and if any three of the selected channels exceed their individual threshold settings, a Vote trip will occur.

Please note that the voting trip will be issued as a RTD trip only, if the parameter » TripCmd Selection« is set to » Voting trip" within the Global Protection Parameters of the RTD module. The Trip has to be assigned then within the trip manager to the Breaker.

## Alarm, Timeout Alarm and Trip Principle for each RTD Sensor

The following diagram shows the general working principle (delayed alarm, undelayed trip) of each of the RTD sensors.
RTD


## Collective Alarm, Timeout Alarm and Trip Signals

The RTD sensors are assigned to four groups (depending on the ordered device). These four groups are ORconnected to the "AnyGroup". The AnyGroup generates an alarm, an timeout alarm and a trip signal if any of the sensors mounted into this issues the corresponding signal.
RTD.Any Group


## Trips of the Voting Groups

In order to use voting groups the user has to determine the sensors that should belong to a voting group and how many of them have to trip in order to generate a voting trip of the corresponding group.


## Collective Timeout Alarm Signal

All RTD sensor timeout alarms and all group timeouts are OR-connected.
RTD.Timeout Alarm
All timeout alarms are OR connected to a collective alarm.


## Collective Trip Signal

By means of the trip command selection»TripCmdSelection« the user determines if the RTD element should use for the final trip signal the OR-connected default RTD trips or if the RTD element should use the OR-connected voting trips.


Device Planning Parameters of the RTD Temperature Protection Module

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | do not use | [Device planning] |  |  |
| Q |  |  |  |  |

Global Protection Parameters of the RTD Temperature Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /Temp-Prot /RTD] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -- | [Protection Para /Global Prot Para /Temp-Prot /RTD] |
| ExBlo TripCmd | External blocking of the Trip Command of the module/the stage, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | --- | [Protection Para /Global Prot Para /Temp-Prot /RTD] |
| TripCmd Selection | This parameter determines if the final trip of the RTD module is issued by the default way or by the voting groups. | Trip, <br> Voting Trip | Trip | [Protection Para /Global Prot Para /Temp-Prot /RTD] |

## Setting Group Parameters of the RTD Temperature Protection Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para <<1..4> /Temp-Prot /RTD /General settings] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para <<1..4> /Temp-Prot /RTD /General settings] |
| Blo TripCmd | Permanent blocking of the Trip Command of the module/stage. | inactive, active | inactive | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /General settings] |
| ExBlo TripCmd Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo TripCmd Fc=active". | inactive, active | inactive | [Protection Para <br> /<1..4> <br> /Temp-Prot <br> /RTD <br> /General settings] |
| W1L1 Alarm Function | Winding1 Phase L1 Alarm Function | inactive, active | active | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L1] |
| W1L1 Trip Function | Winding1 Phase L1 Trip Function | inactive, active | active | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L1] |
| W1L1 Alarm | Winding1 Phase L1 Threshold for Temperature Alarm <br> Only available if: Device planning: Alarm Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L1] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| W1L1 t-Delay | Winding1 Phase L1 If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function = use | 0-360min | 1 min | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L1] |
| W1L1 Trip | Winding1 Phase L1 Threshold for Temperature Trip <br> Only available if: Device planning: Trip Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L1] |
| W1L2 Alarm Function | Winding1 Phase L2 Alarm Function | inactive, active | active | [Protection Para <<1..4> /Temp-Prot /RTD /W1L2] |
| W1L2 Trip Function | Winding1 Phase L2 Trip Function | inactive, active | active | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L2] |
| W1L2 Alarm | Winding1 Phase L2 Threshold for Temperature Alarm Only available if: Device planning: Alarm Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para <<1..4> /Temp-Prot /RTD /W1L2] |
| W1L2 t-Delay | Winding1 Phase L2 If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function = use | 0-360min | 1 min | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L2] |
| W1L2 Trip | Winding1 Phase L2 Threshold for Temperature Trip <br> Only available if: Device planning: Trip Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L2] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| W1L3 Alarm Function | Winding1 Phase L3 Alarm Function | inactive, active | active | [Protection Para \|<1..4> /Temp-Prot /RTD /W1L3] |
| W1L3 Trip Function | Winding1 Phase L3 Trip Function | inactive, active | active | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L3] |
| W1L3 Alarm | Winding1 Phase L3 Threshold for Temperature Alarm Only available if: Device planning: Alarm Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L3] |
| W1L3 t-Delay | Winding1 Phase L3 If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function = use | 0-360min | 1 min | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L3] |
| W1L3 Trip | Winding1 Phase L3 Threshold for Temperature Trip Only available if: Device planning: Trip Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> /W1L3] |
| W2L1 Alarm Function | Winding2 Phase L1 Alarm Function | inactive, active | active | [Protection Para /<1..4> <br> /Temp-Prot <br> /RTD <br> /W2L1] |
| W2L1 Trip Function | Winding2 Phase L1 Trip Function | inactive, active | active | [Protection Para <1..4> <br> /Temp-Prot <br> /RTD <br> N2L1] |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| W2L1 Alarm | Winding2 Phase L1 Threshold for Temperature Alarm <br> Only available if: Device planning: Alarm Function $=$ <br> use | $0-200^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para <br> /<1..4> <br> /Temp-Prot |
| W2L1 t-Delay | Winding2 Phase L1 If this time is expired a <br> Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function $=$ <br> use |  |  | RTD |
| /W2L1] |  |  |  |  |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| W2L2 Trip | Winding2 Phase L2 Threshold for Temperature Trip <br> Only available if: Device planning: Trip Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /W2L2] |
| W2L3 Alarm Function | Winding2 Phase L3 Alarm Function | inactive, active | active | [Protection Para <<1..4> /Temp-Prot /RTD /W2L3] |
| W2L3 Trip Function | Winding2 Phase L3 Trip Function | inactive, active | active | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /W2L3] |
| W2L3 Alarm | Winding2 Phase L3 Threshold for Temperature Alarm <br> Only available if: Device planning: Alarm Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para <<1..4> /Temp-Prot /RTD /W2L3] |
| W2L3 t-Delay | Winding2 Phase L3 If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function = use | 0-360min | 1 min | [Protection Para <<1..4> /Temp-Prot /RTD /W2L3] |
| W2L3 Trip | Winding2 Phase L3 Threshold for Temperature Trip <br> Only available if: Device planning: Trip Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | [Protection Para <<1..4> /Temp-Prot /RTD /W2L3] |
| Amb1 Alarm Function | Ambient Alarm Function | inactive, active | active | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /Amb 1] |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Amb1 Trip Function | Ambient Trip Function | inactive, |  |  |
| active | active | [Protection Para <br> /<1..4> <br> /Temp-Prot <br> /RTD |  |  |
| Amb1 Alarm | Ambient Threshold for Temperature Alarm <br> Only available if: Device planning: Alarm Function = <br> use |  |  |  |
| IAmb 1] |  |  |  |  |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Amb2 t-Delay | Ambient If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function = use | 0-360min | 1 min | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> IAmb 2] |
| Amb2 Trip | Ambient Threshold for Temperature Trip <br> Only available if: Device planning: Trip Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> IAmb 2] |
| Aux1Alarm Function | Auxiliary Alarm Function | inactive, active | active | [Protection Para <br> \|<1..4> <br> /Temp-Prot <br> /RTD <br> IAux 1] |
| Aux1Trip Function | Auxiliary Trip Function | inactive, active | active | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> IAux 1] |
| Aux1 Alarm | Auxiliary Threshold for Temperature Alarm <br> Only available if: Device planning: Alarm Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> IAux 1] |
| Aux1 t-Delay | Auxiliary If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function = use | 0-360min | 1 min | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> IAux 1] |
| Aux1 Trip | Auxiliary Threshold for Temperature Trip <br> Only available if: Device planning: Trip Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> IAux 1] |

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \begin{array}{l}\text { Aux2 Alarm } \\
\text { Function }\end{array}
$$ \& Auxiliary Alarm Function \& inactive, <br>
active \& active \& [Protection Para <br>
/<1..4> <br>
/Temp-Prot <br>

/RTD\end{array}\right]\)| IRux 2] |
| :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Aux3 Alarm | Auxiliary Threshold for Temperature Alarm <br> Only available if: Device planning: Alarm Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> IAux 3] |
| Aux3 t-Delay | Auxiliary If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function = use | 0-360min | 1 min | [Protection Para \|<1..4> <br> /Temp-Prot <br> IRTD <br> IAux 3] |
| Aux3 Trip | Auxiliary Threshold for Temperature Trip <br> Only available if: Device planning: Trip Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /Aux 3] |
| Aux4 Alarm Function | Auxiliary Alarm Function | inactive, <br> active | active | [Protection Para \|<1..4> /Temp-Prot /RTD /Aux 4] |
| Aux4 Trip Function | Auxiliary Trip Function | inactive, active | active | [Protection Para \|<1..4> /Temp-Prot /RTD IAux 4] |
| Aux4 Alarm | Auxiliary Threshold for Temperature Alarm <br> Only available if: Device planning: Alarm Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para <<1..4> /Temp-Prot IRTD IAux 4] |
| Aux4 t-Delay | Auxiliary If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function= use | 0-360min | 1 min | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> IAux 4] |

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Setting range \& Default \& Menu path <br>
\hline Aux4 Trip \& Auxiliary Threshold for Temperature Trip \& 0-200^{\circ} \mathrm{C} \& 100^{\circ} \mathrm{C} \& <br>
\hline Only available if: Device planning: Trip Function = use \& \& \& [Protection Para <br>
/<1..4> <br>
/Temp-Prot <br>

/RTD\end{array}\right]\)| /Aux 4] |
| :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Windg W2 Trip Function | Winding W2 Trip Function | inactive, active | inactive | [Protection Para /<1..4> <br> /Temp-Prot <br> /RTD <br> /Windg W2 Group] |
| Windg W2 Alarm | Winding W2 Threshold for Temperature Alarm <br> Only available if: Device planning: Alarm Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para /<1..4> <br> /Temp-Prot <br> /RTD <br> /Windg W2 Group] |
| Windg W2 t-Delay | Winding W2 If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function = use | 0-360min | 1 min | [Protection Para \|<1..4> /Temp-Prot /RTD /Windg W2 Group] |
| Windg W2 Trip | Winding W2 Threshold for Temperature Trip <br> Only available if: Device planning: Trip Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> /Windg W2 Group] |
| Amb Alarm Function | Ambient Alarm Function | inactive, active | inactive | [Protection Para \|<1..4> /Temp-Prot /RTD /Amb Group] |
| Amb Trip Function | Ambient Trip Function | inactive, <br> active | inactive | [Protection Para /<1..4> /Temp-Prot /RTD /Amb Group] |
| Amb Alarm | Ambient Threshold for Temperature Alarm <br> Only available if: Device planning: Alarm Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para <<1..4> /Temp-Prot /RTD <br> /Amb Group] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Amb t-Delay | Ambient If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function = use | 0-360min | 1 min | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> /Amb Group] |
| Amb Trip | Ambient Threshold for Temperature Trip <br> Only available if: Device planning: Trip Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> /Amb Group] |
| Aux Alarm Function | Auxiliary Alarm Function | inactive, active | inactive | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /Aux Group] |
| Aux Trip Function | Auxiliary Trip Function | inactive, active | inactive | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /Aux Group] |
| Aux Alarm | Auxiliary Threshold for Temperature Alarm <br> Only available if: Device planning: Alarm Function = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> /Aux Group] |
| Aux t-Delay | Auxiliary If this time is expired a Temperature Alarm will be generated. <br> Only available if: Device planning: Alarm Function = use | 0-360min | 1 min | [Protection Para /<1..4> <br> /Temp-Prot <br> /RTD <br> /Aux Group] |
| Aux Trip | Auxiliary Threshold for Temperature Trip <br> Only available if: Device planning: Aux = use | 0-200 ${ }^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> /Aux Group] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> /Voting1] |
| Voting 1 | Voting: This parameter defines how many of the selected channels must be over its threshold level for getting a voting trip | 1-12 | 1 | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> /Voting1] |
| W1L1 | Winding1 Phase L1 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para <<1..4> /Temp-Prot /RTD /Voting1] |
| W1L2 | Winding1 Phase L2 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /Voting1] |
| W1L3 | Winding1 Phase L3 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> Noting1] |
| W2L1 | Winding2 Phase L1 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> /Voting1] |
| W2L2 | Winding2 Phase L2 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> Noting1] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| W2L3 | Winding2 Phase L3 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para <1..4> <br> /Temp-Prot <br> /RTD <br> Noting1] |
| Amb 1 | Ambient 1 | no, yes | no | [Protection Para <1..4> <br> /Temp-Prot <br> /RTD <br> Noting1] |
| Amb 2 | Ambient 2 | no, yes | no | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> /Voting1] |
| Aux 1 | Auxiliary 1 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> Noting1] |
| $\text { Aux } 2$ | Auxiliary 2 | no, yes | no | [Protection Para /<1..4> <br> /Temp-Prot <br> /RTD <br> /Voting1] |
| Aux 3 | Auxiliary 3 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para /<1..4> <br> /Temp-Prot <br> /RTD <br> /Voting1] |
| Aux 4 | Auxiliary 4 | no, yes | no | [Protection Para /<1..4> <br> /Temp-Prot <br> /RTD <br> /Voting1] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> Noting2] |
| Voting 2 | Voting: This parameter defines how many of the selected channels must be over its threshold level for getting a voting trip | 1-12 | 1 | [Protection Para \|<1..4> <br> /Temp-Prot <br> /RTD <br> Noting2] |
| W1L1 | Winding1 Phase L1 | no, yes | no | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> Noting2] |
| W1L2 | Winding1 Phase L2 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para <<1..4> /Temp-Prot /RTD Noting2] |
| W1L3 | Winding1 Phase L3 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> Noting2] |
| W2L1 | Winding2 Phase L1 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> Noting2] |
| W2L2 | Winding2 Phase L2 | $\begin{aligned} & \text { no, } \\ & \text { yes } \end{aligned}$ | no | [Protection Para /<1..4> /Temp-Prot /RTD Noting2] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| W2L3 | Winding2 Phase L3 | no, yes | no | [Protection Para <br> <<1..4> <br> /Temp-Prot <br> /RTD <br> Noting2] |
| Amb 1 | Ambient 1 | no, yes | no | [Protection Para /<1..4> /Temp-Prot /RTD Noting2] |
| Amb 2 | Ambient 2 | no, yes | no | [Protection Para <<1..4> /Temp-Prot /RTD Noting2] |
| Aux 1 | Auxiliary 1 | no, yes | no | [Protection Para <<1..4> /Temp-Prot /RTD Noting2] |
| Aux 2 | Auxiliary 2 | no, yes | no | [Protection Para <<1..4> <br> /Temp-Prot <br> /RTD <br> Noting2] |
| Aux 3 | Auxiliary 3 | no, yes | no | [Protection Para <<1..4> /Temp-Prot /RTD Noting2] |
| Aux 4 | Auxiliary 4 | no, yes | no | [Protection Para <<1..4> /Temp-Prot /RTD Noting2] |

## RTD Temperature Protection Module Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | /Global Prot Para |
|  |  | ITemp-Prot |
| ExBTD] |  |  |
|  | Module input state: External blocking2 | [Protection Para |
|  |  | /Global Prot Para |
|  |  | ITemp-Prot |
| ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command | IProtection Para |
|  |  | IGlobal Prot Para |

## RTD Temperature Protection Module Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Blo TripCmd | Signal: Trip Command blocked |
| ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Alarm | Alarm RTD Temperature Protection |
| Trip | Signal: Trip |
| TripCmd | Signal: Trip Command |
| W1L1 Trip | Winding1 Phase L1 Signal: Trip |
| W1L1 Alarm | Winding1 Phase L1 Alarm RTD Temperature Protection |
| W1L1 Timeout Alarm | Winding1 Phase L1 Timeout Alarm |
| W1L1 Invalid | Winding1 Phase L1 Signal: Invalid Temperature Measurement Value (e.g caused by an <br> defective or interrupted RTD Measurement) |
| W1L2 Trip | Winding1 Phase L2 Signal: Trip |
| W1L2 Alarm | Winding1 Phase L2 Alarm RTD Temperature Protection |
| W1L2 Timeout Alarm | Winding1 Phase L2 Timeout Alarm |
| W1L2 Invalid | Winding1 Phase L2 Signal: Invalid Temperature Measurement Value (e.g caused by an <br> defective or interrupted RTD Measurement) |
| W1L3 Trip | Winding1 Phase L3 Signal: Trip |
| W1L3 Alarm | Winding1 Phase L3 Alarm RTD Temperature Protection |
| W1L3 Timeout Alarm | Winding1 Phase L3 Timeout Alarm |


| Signal | Description |
| :---: | :---: |
| W1L3 Invalid | Winding1 Phase L3 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| W2L1 Trip | Winding2 Phase L1 Signal: Trip |
| W2L1 Alarm | Winding2 Phase L1 Alarm RTD Temperature Protection |
| W2L1 Timeout Alarm | Winding2 Phase L1 Timeout Alarm |
| W2L1 Invalid | Winding2 Phase L1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| W2L2 Trip | Winding2 Phase L2 Signal: Trip |
| W2L2 Alarm | Winding2 Phase L2 Alarm RTD Temperature Protection |
| W2L2 Timeout Alarm | Winding2 Phase L2 Timeout Alarm |
| W2L2 Invalid | Winding2 Phase L2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| W2L3 Trip | Winding2 Phase L3 Signal: Trip |
| W2L3 Alarm | Winding2 Phase L3 Alarm RTD Temperature Protection |
| W2L3 Timeout Alarm | Winding2 Phase L3 Timeout Alarm |
| W2L3 Invalid | Winding2 Phase L3 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| Amb 1 Trip | Ambient 1 Signal: Trip |
| Amb 1 Alarm | Ambient 1 Alarm RTD Temperature Protection |
| Amb 1 Timeout Alarm | Ambient 1 Timeout Alarm |
| Amb 1 Invalid | Ambient 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| Amb 2 Trip | Ambient 2 Signal: Trip |
| Amb 2 Alarm | Ambient 2 Alarm RTD Temperature Protection |
| Amb 2 Timeout Alarm | Ambient 2 Timeout Alarm |
| Amb 2 Invalid | Ambient 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| Aux 1 Trip | Auxiliary 1 Signal: Trip |
| Aux 1 Alarm | Auxiliary 1 Alarm RTD Temperature Protection |
| Aux 1 Timeout Alarm | Auxiliary 1 Timeout Alarm |
| Aux 1 Invalid | Auxiliary 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| Aux 2 Trip | Auxiliary 2 Signal: Trip |
| Aux 2 Alarm | Auxiliary 2 Alarm RTD Temperature Protection |
| Aux 2 Timeout Alarm | Auxiliary 2 Timeout Alarm |
| Aux 2 Invalid | Auxiliary 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| Aux 3 Trip | Auxiliary 3 Signal: Trip |
| Aux 3 Alarm | Auxiliary 3 Alarm RTD Temperature Protection |
| Aux 3 Timeout Alarm | Auxiliary 3 Timeout Alarm |
| Aux 3 Invalid | Auxiliary 4 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| Aux4 Trip | Auxiliary 4 Signal: Trip |


| Signal | Description |
| :--- | :--- |
| Aux4 Alarm | Auxiliary 4 Alarm RTD Temperature Protection |
| Aux4 Timeout Alarm | Auxiliary 4 Timeout Alarm |
| Aux4 Invalid | Auxiliary 4 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or <br> interrupted RTD Measurement) |
| Trip WD W1 Group | Trip all Windings of group W1 |
| Alarm WD W1 Group | Alarm all Windings of group W1 |
| TimeoutAlmWDW1Grp | Timeout Alarm of group W1 |
| Windg W1 Group Invalid | Winding W1 Group Signal: Invalid Temperature Measurement Value (e.g caused by an <br> defective or interrupted RTD Measurement) |
| Trip WD W2 Group | Trip all Windings of group W2 |
| Alarm WD W2 Group | Alarm all Windings of group W2 |
| TimeoutAlmWDW2Grp | Timeout Alarm of group W2 |
| Windg W2 Group Invalid | Winding W2 Group Signal: Invalid Temperature Measurement Value (e.g caused by an <br> defective or interrupted RTD Measurement) |
| Trip Amb Group | Trip all Windings of group Ambient |
| Alarm Amb Group | Alarm all Windings of group Ambient |
| TimeoutAlmAmbGrp | Timeout Alarm of group Ambient |
| Amb Group Invalid | Ambient Group Signal: Invalid Temperature Measurement Value (e.g caused by an defective <br> or interrupted RTD Measurement) |
| Trip Any Group | Trip Any Group |
| Alarm Any Group | Alarm Any Group |
| TimeoutAlmAnyGrp | Timeout Alarm Any Group |
| Trip Group 1 | Trip Group 1 |
| Trip Group 2 | Trip Group 2 |
| Timeout Alarm | Trip Auxiliary Group |
| Trip Aux Group | Alarm Auxiliary Group |
| Alarm Aux Group | Auxeout Alarm Auxiliary Group |
|  |  |

## RTD Temperature Protection Module Counter Values

| Value | Description | Default | Size | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Hottest WD W1 | Hottest winding on side W1 | $0^{\circ} \mathrm{C}$ | $0-200^{\circ} \mathrm{C}$ | [Operation <br> /Measured Values <br> /URTD] |
| Hottest WD W2 | Hottest winding on side W2 | $0^{\circ} \mathrm{C}$ | $0-200^{\circ} \mathrm{C}$ | [Operation <br> /Measured Values <br> /URTD] |
| Hottest Amb | Hottest Ambient Temperature | $0^{\circ} \mathrm{C}$ | $0-200^{\circ} \mathrm{C}$ | [Operation <br> /Measured Values <br> /URTD] |
| Hottest Aux Temp | Hottest Auxiliary temperature in degrees C. | $0^{\circ} \mathrm{C}$ | $0-200^{\circ} \mathrm{C}$ | [Operation <br> /Measured Values <br> /URTD] |

## URTDII Module Interface*

*=Availability on request
URTD

## Principle - General Use

The optional Universal Resistance-based Temperature Detector II (URTDII) Module provides temperature data to the protective device from up to 12 RTDs embedded in the motor, generator, transformer, or cable connector and driven equipment. The temperature data will be shown as measured values and statistics in the Operating Data menu. In addition, each channel will be monitored. The measured data provided by the URTDII Module can also be used for temperature protection (please refer to the Temperature Protection section).

The URTDII conveys multiplexed temperature data back to the relay via a single optical fiber. The URTDII may be mounted remotely from the protective device. The fiber optic connector is located on the X102 terminal of the protective device.

Consider the benefit of mounting the URTDII module away from the protective device and as close to the protected equipment as possible. The big bundle of RTD wires to the protected equipment becomes much shorter. The URTDII may be placed up to $400 \mathrm{ft}(121.9 \mathrm{~m})$ from the protective device with the optical fiber connection. Note that the URTDII will require a power supply connection at its remote location.

Connect a suitable source to the power terminals J10A-1 and J10A-2 on the URTDII module.

| Style | Power Supply |
| :--- | :--- |
| URTDII-01 | $48-240$ V AC |
|  | $48-250$ VC |
| URTDII-02 | $24-48$ V DC |

## URTDII Module Fiber Optic Connection to the Protective Device



The figure above shows the fiber optic connections between the URTDII Module and the protective device. The protective device supports the optical fiber connection.

Preassembled plastic optical fibers with connectors can be ordered from any distributor of optical fiber products. In addition, these same distributors offer long rolls of cable with connectors that can be installed in the field. Some distributors will make custom lengths to order.

## NOTICE <br> Surplus length of a pre-cut fiber does not cause a problems. Simply coil and tie the excess fiber at a convenient point. Avoid high tie pressure. Bending radius of the fiber should be greater than 2 in . $(50.8 \mathrm{~mm})$.

The fiber termination at the URTDII simply snaps into or out of the connector. To connect the fiber termination at the protective device, push the plug of the fiber optic onto the device interface then turn it until it "snaps".

CAUTION The protective device as well as the URTDII have various power supply options. Make certain that the power supply is acceptable for both units before connecting the same power supply to both devices.

## NOTICE <br> Consult the URTDII Module Instruction Leaflet for complete instructions.

Three URTD terminals are provided for each RTD input.
The three terminals for any unused RTD input channel should be wired together. For example, if MW5 and MW6 are unused, MW5 terminals $\mathrm{J} 2-15, \mathrm{~J} 2-16$, and $\mathrm{J} 2-17$ should be wired together and MW6 terminals $\mathrm{J} 2-19$, J2-20, J221 should be separately wired together.


See the figure above for wiring of RTDs to the URTD inputs. Use three-conductor shielded cable. Note the connection rules in the figure. When making connections to a two-lead RTD, connect two of the cable conductors to one of the RTD leads as shown. Make this connection as close to the protected object as possible. Connect the third cable conductor to the remaining RTD lead.

Connect the shield / drain wire to the Shield terminal as shown in the figure. The RTD cable shield should be connected only at the URTD end, and insulated at the RTD end. The RTD's themselves must not be grounded at the object to be protected.

Remember to set the URTDII module DIP switches according to the types of RTDs in each of the channels.

## Direct Commands of the URTD Module

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Service <br> /Test (Prot inhibit) /URTD] |
| Force W1 L1 | Force Measured Value: Winding Temperature | 0-392 | 0 | [Service <br> /Test (Prot inhibit) /URTD] |
| Force W1 L2 | Force Measured Value: Winding Temperature | 0-392 | 0 | [Service <br> /Test (Prot inhibit) /URTD] |
| Force W1 L2 | Force Measured Value: Winding Temperature | 0-392 | 0 | [Service <br> /Test (Prot inhibit) /URTD] |
| Force W2 L1 | Force Measured Value: Winding Temperature | 0-392 | 0 | [Service <br> /Test (Prot inhibit) /URTD] |
| Force W2 L2 | Force Measured Value: Winding Temperature | 0-392 | 0 | [Service <br> /Test (Prot inhibit) /URTD] |
| Force W2 L2 | Force Measured Value: Winding Temperature | 0-392 | 0 | [Service <br> /Test (Prot inhibit) <br> /URTD] |
| Force Amb1 | Force Measured Value: Ambient Temperature | 0-392 | 0 | [Service <br> /Test (Prot inhibit) /URTD] |
| Force Amb2 | Force Measured Value: Ambient Temperature | 0-392 | 0 | [Service <br> /Test (Prot inhibit) /URTD] |
| Force Aux1 | Force Measured Value: Auxiliary Temperature | 0-392 | 0 | [Service <br> /Test (Prot inhibit) /URTD] |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Force Aux2 | Force Measured Value: Auxiliary Temperature | $0-392$ | 0 | [Service <br> /Test (Prot inhibit) <br> /URTD] |
| Force Aux3 | Force Measured Value: Auxiliary Temperature | $0-392$ | 0 | [Service <br> /Test (Prot inhibit) <br> /URTD] |
| Force Aux4 | Force Measured Value: Auxiliary Temperature | $0-392$ | 0 | [Service |
| ITest (Prot inhibit) |  |  |  |  |
| /URTD] |  |  |  |  |

Global Protection Parameters of the URTD Module
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { Force Mode } & \begin{array}{l}\text { By means of this function the normal Output Relay } \\
\text { States can be overwritten (forced) in case that the } \\
\text { Relay is not in a disarmed state. The relays can be set } \\
\text { from normal operation (relay works according to the } \\
\text { assigned signals) to "force energized" or "force de- } \\
\text { energized" state. }\end{array} & \begin{array}{l}\text { permanent, } \\
\text { timeout }\end{array}
$$ \& permanent \& [Service <br>
/Test (Prot inhibit) <br>

/URTD]\end{array}\right\}\)| [Service |
| :--- |
| /Test (Prot inhibit) |
| /URTD] |

## URTD Signals (Output States)

| Signal | Description |
| :--- | :--- |
| W1L1 Superv | Signal: Supervision Channel Winding1 Phase L1 |
| W1L2 Superv | Signal: Supervision Channel Winding1 Phase L2 |
| W1L3 Superv | Signal: Supervision Channel Winding1 Phase L3 |
| W2L1 Superv | Signal: Supervision Channel Winding2 Phase L1 |
| W2L2 Superv | Signal: Supervision Channel Winding2 Phase L2 |
| W2L3 Superv | Signal: Supervision Channel Winding2 Phase L3 |
| Amb1 Superv | Signal: Supervision Channel Ambient1 |
| Amb2 Superv | Signal: Supervision Channel Ambient2 |
| Aux1 Superv | Signal: Supervision Channel Auxiliary1 |
| Aux2 Superv | Signal: Supervision Channel Auxiliary2 |
| Aux3 Superv | Signal: Supervision Channel Auxiliary3 |
| Aux4 Superv | Signal: Supervision Channel Auxiliary4 |
| Superv | Signal: URTD Supervision Channel |
| active | Signal: URTD active |
| Outs forced | Signal: The State of at least one Relay Output has been set by force. That means that the <br> state of at least one Relay is forced and hence does not show the state of the assigned <br> signals. |

## URTD Module Statistics

| Value | Description | Menu path |
| :---: | :---: | :---: |
| W1 L1 max | Measured Value: Winding Temperature Maximum Value | [Operation <br> /Statistics <br> /Max <br> /URTD] |
| W1 L2 max | Measured Value: Winding Temperature Maximum Value | [Operation <br> /Statistics <br> /Max <br> /URTD] |
| W1 L2 max | Measured Value: Winding Temperature Maximum Value | [Operation <br> /Statistics <br> /Max <br> /URTD] |
| W2 L1 max | Measured Value: Winding Temperature Maximum Value | [Operation <br> /Statistics <br> /Max <br> /URTD] |
| W2 L2 max | Measured Value: Winding Temperature Maximum Value | [Operation <br> IStatistics <br> /Max <br> /URTD] |
| W2 L2 max | Measured Value: Winding Temperature Maximum Value | [Operation <br> /Statistics <br> /Max <br> /URTD] |
| Amb1 max | Measured Value: Ambient Temperature Maximum Value | [Operation <br> /Statistics <br> /Max <br> /URTD] |
| Amb2 max | Measured Value: Ambient Temperature Maximum Value | [Operation <br> /Statistics <br> /Max <br> /URTD] |
| Aux1 max | Measured Value: Auxiliary Temperature Maximum Value | [Operation <br> /Statistics <br> /Max <br> /URTD] |


| Value | Description | Menu path |
| :--- | :--- | :--- |
| Aux2 max | Measured Value: Auxiliary Temperature Maximum Value | [Operation |
|  |  | IStatistics <br> IMax <br> IURTD |
| Aux3 max | Measured Value: Auxiliary Temperature Maximum Value | [Operation |
|  |  | IStatistics <br> IMax <br> IURTD |
| Aux4 max | Measured Value: Auxiliary Temperature Maximum Value | [Operation |
|  |  | IStatistics |

## URTD Measured Values

\(\left.\begin{array}{|l|l|l|}\hline Value \& Description \& Menu path <br>
\hline W1 L1 \& Measured Value: Winding Temperature \& [Operation <br>
/Measured Values <br>

IURTD]\end{array}\right]\)| [Operation |
| :--- |
| W1 L2 |

\(\left.\begin{array}{|l|l|l|}\hline Value \& Description \& Menu path <br>
\hline Amb2 \& Measured Value: Ambient Temperature \& [Operation <br>
/Measured Values <br>

IURTD]\end{array}\right]\)| [Operation |
| :--- |
| /Measured Values |
| Aux1 |

## Supervision

## CBF- Circuit Breaker Failure [50BF*/62BF]

*=only available in protective relays that offer current measurement.
Available elements:
CBF[1],CBF[2]

## Principle - General Use

The breaker failure (BF) protection is used to provide backup protection in the event that a breaker fails to operate properly during fault clearing. This signal is to be used to trip the upstream breaker (e.g. infeed of a busbar) either via an output relay or via Communication (SCADA). Depending on the ordered device and type there are different/multiple schemes available to detect a breaker failure.

## Start/Trigger of the CBF Timer

A supervision timer»t-CBF« will be started, once the $C B F$ module is triggered. Even if the Trigger signal drops again, this timer will continue to run. If the timer runs down/elapses (is not stopped), the module will issue a trip afterwards. This trip signal is to be used to trip the upstream breaker (backup).

## Stopping the CBF

The timer will be stopped if the opening of the breaker is detected. Depending on the supervision scheme the timer will be stopped if the current falls below the current threshold or if the position signals indicate the open position of the breaker or a combination of both. The $\underline{C B F}$ module will remain within the state rejected until the trigger signal drops (falls back).

## Detecting a Breaker Failure

Depending on the supervision scheme, the Circuit Breaker Failure signal (Trip) will be set if either:

- the current doesn't fall below the threshold or
- the position signals indicate that the breaker is in the closed position or
- both.


## Reject state of the CBFmodule

The $\underline{C B F}$ module will switch into the rejected state if the circuit breaker failure triggers are still active while the open position of the breaker has been detected successfully.

## Readiness for Operation

The CBF module will switch back into the Stand-by if the trigger signals drop (fall back).

## Locking

A locking signal will be issued simultaneously with the CBF-Signal (Trip). The locking signal is permanent. This signal has to be acknowledged at the HMI.

## NOT/CE Note on devices that offer Wide Frequency Range measurement:

The supervision scheme 50BF will be blocked as soon as the frequency differs more than $5 \%$ from the nominal frequency. As long as the frequency differs more than 5\% from the nominal frequency the supervision scheme "50BF and CB Pos" will work according to the "CB Pos" scheme.

## Supervision Schemes

Up to three supvervision schemes are available depending on the ordered device type and variant in order to detect a circuit breaker failure.

## 50BF*

A supervision timer will be started as soon as the CBFmodule is triggered by a trip signal. A breaker failure will be detected and a signal will be issued if the measured current does not fall below a set threshold while this timer runs down.

This supervision scheme is available within protective relays that offer current measurement.

## CB Pos

A supervision timer will be started as soon as the $\underline{C B F}$ module is triggered by a trip signal. A breaker failure will be detected and a signal will be issued if the evaluation of the position indicators of the circuit breaker does not indicate that the breaker has been switched off sucessfully while this timer runs down.

This supervision scheme is available within all protective relays. This scheme is recommended if breaker failures have to be detected while there is no or not much load flow (small currents). This might e.g. be the case if overvoltage or overfrequency is supervisioned for a Gen-Set that is running in Stand-by.

## 50 BF and CB Pos*

A supervision timer will be started as soon as the CBF module is triggered by a trip signal. A breaker failure will be detected and a signal will be issued if the measured current does not fall below a set threshold and if simultaneously the evaluation of the position indicators of the circuit breaker does not indicate that the breaker has been switched off sucessfully while this timer runs down.

This scheme is recommended if breaker failures have to be double checked. This scheme will issue a trip command to the upstream breaker even if position indicators indicate misleadingly (faulty) that the breaker has been opened or if the current measurement indicates misleadingly (faulty) that the breaker is now in the open position.
*=only available in protective relays that offer current measurement.

## Trigger Modes

There are three trigger modes for the $\underline{C B F}$ module available. In addition to that, there are three assignable trigger inputs available that might trigger the $\underline{C B F}$ module even if they are not assigned within the breaker manager onto the breaker that is to be monitored.
-All Trips: All trip signals that are assigned to this breaker (within the trip manager) will start the CBF module (please refer also to section „Trigger signals of the Circuit Breaker Failure").

- Current Trips: All current trips that are assigned to this breaker (within the trip manager) will start the CBF module (please refer also to section „Trigger signals of the Circuit Breaker Failure").
-External Trips: All external trips that are assigned to this breaker (within the trip manager) will start the CBF module (please refer also to section „Trigger signals of the Circuit Breaker Failure").
-In addition, the User can also select none (e.g.: if the User intends to use one of the three additional assignable trigger inputs).


## NOTICE

Those trips can exclusively start the breaker failures that are assigned within the trip manager to the breaker that is to be supervised. In contrast to that the additional three triggers 1-3 will trigger the CBFmodule even if they are not assigned onto the breaker within the corresponding breaker manager.

## NOTICE

Select the winding side (Breaker, Winding) from which the measured currents should be taken in case this protective device provides more than one current measurement card.

## NOTICE <br> This Notice applies to protective devices that offer control functionality only! This protective element requires, that a switchgear (circuit breaker) is assigned to it. It is allowed only to assign switchgears (circuit breaker) to this protective element, whose measuring transformers provide measuring data to the protective device.

## Breaker Failure Lockout

The signal of the Circuit Breaker Failure is latched. This signal can be used to block the breaker against a switching on attempt.

## Tabular Summary

|  | Supervision Schemes <br> Where? Within [Protection ParalGlobal Prot ParalSupervision\CBF] |  |  |
| :---: | :---: | :---: | :---: |
|  | CB Pos ${ }^{2)}$ | 50BF ${ }^{3)}$ | CBPos und 50BF ${ }^{4}$ |
| Which breaker is to be monitored? <br> Where to select? <br> Within [Protection ParalGlobal Prot ParalSupervisionlCBF] | Selection of the breaker that is to be monitored. <br> (In case that more than one breaker is available) | Selection of the breaker that is to be monitored. <br> (In case that more than one breaker is available) | Selection ot the breaker that is to be monitored. (In case that more than one breaker is available) |
| Trigger Modi <br> (Who starts the CBF-timer?) <br> Where to set? <br> Within [Protection ParalGlobal Prot ParalSupervisionlCBF] | All Trips ${ }^{5}$ ) <br> or <br> All Current Trips ${ }^{5}$ <br> or <br> External Trips ${ }^{5)}$ <br> ...and the breaker is in the closed position and the CBF module is within the stand-by state. | All Trips ${ }^{5}$ <br> or <br> All Current Trips ${ }^{5}$ <br> or <br> External Trips ${ }^{5}$ <br> ...and the CBF module is within the stand-by state. | All Trips ${ }^{5}$ <br> or <br> All Current Trips ${ }^{5)}$ <br> or <br> External Trips ${ }^{5}$ <br> ...and the breaker is in the closed position and the CBF module is within the stand-by state. |
| Who stops the CBF-Timer? <br> Once the timer has been stopped the CBF module will switch into the state "Rejected". The module will switch back into the state "Stand-by" if the trigger signals are dropped. | Position indicators indicate that the switchgear (breaker) is in the open position. | Current is fallen below the l<-threshold ${ }^{11}$. | Position indicators indicate that the switchgear (breaker) is in the open position and current is fallen below the <-threshold ${ }^{11}$. |
| A Breaker Failure will be detected <br> ...and a trip signal to the upstream breaker will be issued? | When the CBF-Timer has run down (elapsed). | When the CBF-Timer has run down (elapsed). | When the CBF-Timer has run down (elapsed). |
| When does the trip signal to the upstream breaker drops (falls back)? | If the position indicators indicate that the switchgear (breaker) is in the open position and if the trigger signals are dropped (fallen back) | If the current is fallen below the I< and if the trigger signals are dropped (fallen back) | If the position indicators indicate that the switchgear (breaker) is in the open position and if the current is fallen below the I < and if the trigger signals are dropped (fallen back) |

${ }^{1)}$ It is recommended to set the I < threshold to a value that is slightly below the fault current that is expectable. By means of that it is possible to shorten the CBF supervision timer and hence reduce thermal and mechanical damage of the electrical equipment in case of a breaker failure. The lower the threshold, the longer the time that is needed to detect, that the breaker is in the open position, especially if there are transients/harmonics.

Note: Tripping delay of the $\underline{C B F}$ module = Minimum delay time (tripping time) of the backup protection!
2), 3), 4)

| Available in all devices with the <br> corresponding software | Availalble in all devices that <br> offer current measurement | Availalble in all devices that <br> offer current measurement |
| :---: | :---: | :---: |

5) 

Only if the signals are assigned onto the breaker within the breaker manager.

Circuit Breaker Failure Protection for devices that offer current measurement
CBF

*The Breaker Failure will be triggered only by those trip signals that are assigned onto the the breaker within theTrip Manager.

Circuit Breaker Failure Protection for devices that offer voltage measurement only
CBF

*The Breaker Failure will be triggered only by those trip signals that are assigned onto the the breaker within theTrip Manager.

## Device Planning Parameters of the CBF

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | do not use | [Device planning] |  |  |
| U |  |  |  |  |

Global Protection Parameters of the CBF

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Scheme | Scheme | 50BF, <br> CB Pos, <br> 50BF and CB Pos | 50BF | [Protection Para /Global Prot Para /Supervision /CBF[1]] |
| CT Winding Side | Measuring values will be used from this winding side Only available if: Scheme50BF = Or Scheme = 50BF and CB Pos | W1, <br> W2 | CBF[1]: W1 CBF[2]: W2 | [Protection Para /Global Prot Para /Supervision /CBF[1]] |
| CB | Selection of the Circuit Breaker to be monitored. |  | CBF[1]: $\operatorname{SG[1].}$ CBF[2]: SG[2]. | [Protection Para /Global Prot Para /Supervision /CBF[1]] |
| ExBlo1 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /Supervision /CBF[1]] |
| ExBlo2 | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | -.- | [Protection Para /Global Prot Para /Supervision /CBF[1]] |
| Trigger | Determining the trigger mode for the Breaker Failure. | All Trips, <br> External Trips, <br> Current Trips | All Trips | [Protection Para /Global Prot Para /Supervision /CBF[1]] |
| Trigger1 | Trigger that will start the CBF | Trigger | --- | [Protection Para /Global Prot Para /Supervision /CBF[1]] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Trigger2 | Trigger that will start the CBF | Trigger | -.- | [Protection Para <br> /Global Prot Para <br> /Supervision <br> /CBF[1]] |
| Trigger3 | Trigger that will start the CBF | Trigger | -.- | [Protection Para <br> /Global Prot Para <br> /Supervision <br> /CBF[1]] |

## Direct Commands of the CBF

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Res Lockout | Reset Lockout | inactive, | inactive | [Operation |
| active |  |  | /Reset] |  |

## Setting Group Parameters of the CBF

NOT/CE In order to prevent a faulty activation of the BF Module, the pickup (alarm) time must be greater than the sum of:

- Operating time of the protective relay
- +The close-open time of the breaker (please refer to the technical data of the manufacturer of the breaker);
- +Drop off time (current- or position indicators)
- +Security margin.

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para /<1..4> /Supervision /CBF[1]] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para <<1..4> <br> /Supervision <br> /CBF[1]] |
| I-CBF > | Breaker Failure Alarm will be initiated if this threshold is still exceeded after the timer has expired ( 50 BF ). <br> Only available if: Scheme50BF = Or Scheme = 50BF and CB Pos | 0.02-4.00ln | 0.02ln | [Protection Para <<1..4> <br> /Supervision /CBF[1]] |
| $\mathrm{t} \text {-CBF }$ | If the delay time is expired, an CBF alarm is given out. | 0.00-10.00s | 0.20s | [Protection Para <<1..4> <br> /Supervision <br> /CBF[1]] |

## CBF Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | ISupervision |
| ICBF[1]] |  |  |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para |
|  |  | IGlobal Prot Para |
| Trigger1-I | Module Input: Trigger that will start the CBF | ICBF[1]] |
|  |  | [Protection Para |
|  | Module Input: Trigger that will start the CBF | IGlobal Prot Para |
| Trigger2-I |  | ISupervision |
|  |  | ICBF[1]] |
| Trigger3-I | Module Input: Trigger that will start the CBF | IGlobal Prot Para |
|  |  | ISupervision |
|  |  | ICBF[1]] |

## CBF Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Waiting for Trigger | Waiting for Trigger |
| running | Signal: CBF-Module started |
| Alarm | Signal: Circuit Breaker Failure |
| Lockout | Signal: Lockout |
| Res Lockout | Signal: Reset Lockout |

## Trigger signals of the Circuit Breaker Failure

These trips will start the CBFmodule if »All trips« have been selected as the trigger event.

| Name | Description |
| :---: | :---: |
| --- | No assignment |
| Id. TripCmd | Signal: Trip Command |
| IdH.TripCmd | Signal: Trip Command |
| IdG[1].TripCmd | Signal: Trip Command |
| IdGH[1].TripCmd | Signal: Trip Command |
| IdG[2].TripCmd | Signal: Trip Command |
| IdGH[2].TripCmd | Signal: Trip Command |
| 1[1].TripCmd | Signal: Trip Command |
| I[2].TripCmd | Signal: Trip Command |
| I[3].TripCmd | Signal: Trip Command |
| I[4].TripCmd | Signal: Trip Command |
| I[5].TripCmd | Signal: Trip Command |
| I[6].TripCmd | Signal: Trip Command |
| IG[1].TripCmd | Signal: Trip Command |
| IG[2].TripCmd | Signal: Trip Command |
| IG[3].TripCmd | Signal: Trip Command |
| IG[4].TripCmd | Signal: Trip Command |
| ThR.TripCmd | Signal: Trip Command |
| 12>[1].TripCmd | Signal: Trip Command |
| 12>[2].TripCmd | Signal: Trip Command |
| ExP[1].TripCmd | Signal: Trip Command |
| ExP[2].TripCmd | Signal: Trip Command |
| ExP[3].TripCmd | Signal: Trip Command |
| ExP[4].TripCmd | Signal: Trip Command |
| Ext Sudd Press.TripCmd | Signal: Trip Command |
| Ex Oil Temp.TripCmd | Signal: Trip Command |
| Ext Temp Superv[1].TripCmd | Signal: Trip Command |
| Ext Temp Superv[2].TripCmd | Signal: Trip Command |
| Ext Temp Superv[3].TripCmd | Signal: Trip Command |
| RTD.TripCmd | Signal: Trip Command |
| DI Slot X1.DI 1 | Signal: Digital Input |
| DI Slot X1.DI 2 | Signal: Digital Input |
| DI Slot X1.DI 3 | Signal: Digital Input |
| DI Slot X1.DI 4 | Signal: Digital Input |
| DI Slot X1.DI 5 | Signal: Digital Input |


| Name | Description |
| :---: | :---: |
| DI Slot X1.DI 6 | Signal: Digital Input |
| DI Slot X1.DI 7 | Signal: Digital Input |
| DI Slot X1.DI 8 | Signal: Digital Input |
| DI Slot X6.DI 1 | Signal: Digital Input |
| DI Slot X6.DI 2 | Signal: Digital Input |
| DI Slot X6.DI 3 | Signal: Digital Input |
| DI Slot X6.DI 4 | Signal: Digital Input |
| DI Slot X6.DI 5 | Signal: Digital Input |
| DI Slot X6.DI 6 | Signal: Digital Input |
| DI Slot X6.DI 7 | Signal: Digital Input |
| DI Slot X6.DI 8 | Signal: Digital Input |
| Logics.LE1.Gate Out | Signal: Output of the logic gate |
| Logics.LE1.Timer Out | Signal: Timer Output |
| Logics.LE1.Out | Signal: Latched Output (Q) |
| Logics.LE1.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE2.Gate Out | Signal: Output of the logic gate |
| Logics.LE2.Timer Out | Signal: Timer Output |
| Logics.LE2.Out | Signal: Latched Output (Q) |
| Logics.LE2.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE3.Gate Out | Signal: Output of the logic gate |
| Logics.LE3.Timer Out | Signal: Timer Output |
| Logics.LE3.Out | Signal: Latched Output (Q) |
| Logics.LE3.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE4.Gate Out | Signal: Output of the logic gate |
| Logics.LE4.Timer Out | Signal: Timer Output |
| Logics.LE4.Out | Signal: Latched Output (Q) |
| Logics.LE4.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE5.Gate Out | Signal: Output of the logic gate |
| Logics.LE5.Timer Out | Signal: Timer Output |
| Logics.LE5.Out | Signal: Latched Output (Q) |
| Logics.LE5.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE6.Gate Out | Signal: Output of the logic gate |
| Logics.LE6.Timer Out | Signal: Timer Output |
| Logics.LE6.Out | Signal: Latched Output (Q) |
| Logics.LE6.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE7.Gate Out | Signal: Output of the logic gate |
| Logics.LE7.Timer Out | Signal: Timer Output |
| Logics.LE7.Out | Signal: Latched Output (Q) |
| Logics.LE7.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE8.Gate Out | Signal: Output of the logic gate |


| Name | Description |
| :---: | :---: |
| Logics.LE8.Timer Out | Signal: Timer Output |
| Logics.LE8.Out | Signal: Latched Output (Q) |
| Logics.LE8.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE9.Gate Out | Signal: Output of the logic gate |
| Logics.LE9.Timer Out | Signal: Timer Output |
| Logics.LE9.Out | Signal: Latched Output (Q) |
| Logics.LE9.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE10.Gate Out | Signal: Output of the logic gate |
| Logics.LE10.Timer Out | Signal: Timer Output |
| Logics.LE10.Out | Signal: Latched Output (Q) |
| Logics.LE10.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE11.Gate Out | Signal: Output of the logic gate |
| Logics.LE11.Timer Out | Signal: Timer Output |
| Logics.LE11.Out | Signal: Latched Output (Q) |
| Logics.LE11.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE12.Gate Out | Signal: Output of the logic gate |
| Logics.LE12.Timer Out | Signal: Timer Output |
| Logics.LE12.Out | Signal: Latched Output (Q) |
| Logics.LE12.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE13.Gate Out | Signal: Output of the logic gate |
| Logics.LE13.Timer Out | Signal: Timer Output |
| Logics.LE13.Out | Signal: Latched Output (Q) |
| Logics.LE13.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE14.Gate Out | Signal: Output of the logic gate |
| Logics.LE14.Timer Out | Signal: Timer Output |
| Logics.LE14.Out | Signal: Latched Output (Q) |
| Logics.LE14.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE15.Gate Out | Signal: Output of the logic gate |
| Logics.LE15.Timer Out | Signal: Timer Output |
| Logics.LE15.Out | Signal: Latched Output (Q) |
| Logics.LE15.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE16.Gate Out | Signal: Output of the logic gate |
| Logics.LE16.Timer Out | Signal: Timer Output |
| Logics.LE16.Out | Signal: Latched Output (Q) |
| Logics.LE16.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE17.Gate Out | Signal: Output of the logic gate |
| Logics.LE17.Timer Out | Signal: Timer Output |
| Logics.LE17.Out | Signal: Latched Output (Q) |
| Logics.LE17.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE18.Gate Out | Signal: Output of the logic gate |


| Name | Description |
| :---: | :---: |
| Logics.LE18.Timer Out | Signal: Timer Output |
| Logics.LE18.Out | Signal: Latched Output (Q) |
| Logics.LE18.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE19.Gate Out | Signal: Output of the logic gate |
| Logics.LE19.Timer Out | Signal: Timer Output |
| Logics.LE19.Out | Signal: Latched Output (Q) |
| Logics.LE19.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE20.Gate Out | Signal: Output of the logic gate |
| Logics.LE20.Timer Out | Signal: Timer Output |
| Logics.LE20.Out | Signal: Latched Output (Q) |
| Logics.LE20.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE21.Gate Out | Signal: Output of the logic gate |
| Logics.LE21.Timer Out | Signal: Timer Output |
| Logics.LE21.Out | Signal: Latched Output (Q) |
| Logics.LE21.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE22.Gate Out | Signal: Output of the logic gate |
| Logics.LE22.Timer Out | Signal: Timer Output |
| Logics.LE22.Out | Signal: Latched Output (Q) |
| Logics.LE22.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE23.Gate Out | Signal: Output of the logic gate |
| Logics.LE23.Timer Out | Signal: Timer Output |
| Logics.LE23.Out | Signal: Latched Output (Q) |
| Logics.LE23.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE24.Gate Out | Signal: Output of the logic gate |
| Logics.LE24.Timer Out | Signal: Timer Output |
| Logics.LE24.Out | Signal: Latched Output (Q) |
| Logics.LE24.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE25.Gate Out | Signal: Output of the logic gate |
| Logics.LE25.Timer Out | Signal: Timer Output |
| Logics.LE25.Out | Signal: Latched Output (Q) |
| Logics.LE25.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE26.Gate Out | Signal: Output of the logic gate |
| Logics.LE26.Timer Out | Signal: Timer Output |
| Logics.LE26.Out | Signal: Latched Output (Q) |
| Logics.LE26.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE27.Gate Out | Signal: Output of the logic gate |
| Logics.LE27.Timer Out | Signal: Timer Output |
| Logics.LE27.Out | Signal: Latched Output (Q) |
| Logics.LE27.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE28.Gate Out | Signal: Output of the logic gate |


| Name | Description |
| :---: | :---: |
| Logics.LE28.Timer Out | Signal: Timer Output |
| Logics.LE28.Out | Signal: Latched Output (Q) |
| Logics.LE28.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE29.Gate Out | Signal: Output of the logic gate |
| Logics.LE29.Timer Out | Signal: Timer Output |
| Logics.LE29.Out | Signal: Latched Output (Q) |
| Logics.LE29.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE30.Gate Out | Signal: Output of the logic gate |
| Logics.LE30.Timer Out | Signal: Timer Output |
| Logics.LE30.Out | Signal: Latched Output (Q) |
| Logics.LE30.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE31.Gate Out | Signal: Output of the logic gate |
| Logics.LE31.Timer Out | Signal: Timer Output |
| Logics.LE31.Out | Signal: Latched Output (Q) |
| Logics.LE31.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE32.Gate Out | Signal: Output of the logic gate |
| Logics.LE32.Timer Out | Signal: Timer Output |
| Logics.LE32.Out | Signal: Latched Output (Q) |
| Logics.LE32.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE33.Gate Out | Signal: Output of the logic gate |
| Logics.LE33.Timer Out | Signal: Timer Output |
| Logics.LE33.Out | Signal: Latched Output (Q) |
| Logics.LE33.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE34.Gate Out | Signal: Output of the logic gate |
| Logics.LE34.Timer Out | Signal: Timer Output |
| Logics.LE34.Out | Signal: Latched Output (Q) |
| Logics.LE34.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE35.Gate Out | Signal: Output of the logic gate |
| Logics.LE35.Timer Out | Signal: Timer Output |
| Logics.LE35.Out | Signal: Latched Output (Q) |
| Logics.LE35.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE36.Gate Out | Signal: Output of the logic gate |
| Logics.LE36.Timer Out | Signal: Timer Output |
| Logics.LE36.Out | Signal: Latched Output (Q) |
| Logics.LE36.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE37.Gate Out | Signal: Output of the logic gate |
| Logics.LE37.Timer Out | Signal: Timer Output |
| Logics.LE37.Out | Signal: Latched Output (Q) |
| Logics.LE37.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE38.Gate Out | Signal: Output of the logic gate |


| Name | Description |
| :---: | :---: |
| Logics.LE38.Timer Out | Signal: Timer Output |
| Logics.LE38.Out | Signal: Latched Output (Q) |
| Logics.LE38.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE39.Gate Out | Signal: Output of the logic gate |
| Logics.LE39.Timer Out | Signal: Timer Output |
| Logics.LE39.Out | Signal: Latched Output (Q) |
| Logics.LE39.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE40.Gate Out | Signal: Output of the logic gate |
| Logics.LE40.Timer Out | Signal: Timer Output |
| Logics.LE40.Out | Signal: Latched Output (Q) |
| Logics.LE40.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE41.Gate Out | Signal: Output of the logic gate |
| Logics.LE41.Timer Out | Signal: Timer Output |
| Logics.LE41.Out | Signal: Latched Output (Q) |
| Logics.LE41.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE42.Gate Out | Signal: Output of the logic gate |
| Logics.LE42.Timer Out | Signal: Timer Output |
| Logics.LE42.Out | Signal: Latched Output (Q) |
| Logics.LE42.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE43.Gate Out | Signal: Output of the logic gate |
| Logics.LE43.Timer Out | Signal: Timer Output |
| Logics.LE43.Out | Signal: Latched Output (Q) |
| Logics.LE43.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE44.Gate Out | Signal: Output of the logic gate |
| Logics.LE44.Timer Out | Signal: Timer Output |
| Logics.LE44.Out | Signal: Latched Output (Q) |
| Logics.LE44.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE45.Gate Out | Signal: Output of the logic gate |
| Logics.LE45.Timer Out | Signal: Timer Output |
| Logics.LE45.Out | Signal: Latched Output (Q) |
| Logics.LE45.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE46.Gate Out | Signal: Output of the logic gate |
| Logics.LE46. Timer Out | Signal: Timer Output |
| Logics.LE46.Out | Signal: Latched Output (Q) |
| Logics.LE46.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE47.Gate Out | Signal: Output of the logic gate |
| Logics.LE47.Timer Out | Signal: Timer Output |
| Logics.LE47.Out | Signal: Latched Output (Q) |
| Logics.LE47.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE48.Gate Out | Signal: Output of the logic gate |


| Name | Description |
| :---: | :---: |
| Logics.LE48.Timer Out | Signal: Timer Output |
| Logics.LE48.Out | Signal: Latched Output (Q) |
| Logics.LE48.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE49.Gate Out | Signal: Output of the logic gate |
| Logics.LE49.Timer Out | Signal: Timer Output |
| Logics.LE49.Out | Signal: Latched Output (Q) |
| Logics.LE49.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE50.Gate Out | Signal: Output of the logic gate |
| Logics.LE50.Timer Out | Signal: Timer Output |
| Logics.LE50.Out | Signal: Latched Output (Q) |
| Logics.LE50.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE51.Gate Out | Signal: Output of the logic gate |
| Logics.LE51.Timer Out | Signal: Timer Output |
| Logics.LE51.Out | Signal: Latched Output (Q) |
| Logics.LE51.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE52.Gate Out | Signal: Output of the logic gate |
| Logics.LE52.Timer Out | Signal: Timer Output |
| Logics.LE52.Out | Signal: Latched Output (Q) |
| Logics.LE52.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE53.Gate Out | Signal: Output of the logic gate |
| Logics.LE53.Timer Out | Signal: Timer Output |
| Logics.LE53.Out | Signal: Latched Output (Q) |
| Logics.LE53.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE54.Gate Out | Signal: Output of the logic gate |
| Logics.LE54.Timer Out | Signal: Timer Output |
| Logics.LE54.Out | Signal: Latched Output (Q) |
| Logics.LE54.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE55.Gate Out | Signal: Output of the logic gate |
| Logics.LE55.Timer Out | Signal: Timer Output |
| Logics.LE55.Out | Signal: Latched Output (Q) |
| Logics.LE55.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE56.Gate Out | Signal: Output of the logic gate |
| Logics.LE56.Timer Out | Signal: Timer Output |
| Logics.LE56.Out | Signal: Latched Output (Q) |
| Logics.LE56.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE57.Gate Out | Signal: Output of the logic gate |
| Logics.LE57.Timer Out | Signal: Timer Output |
| Logics.LE57.Out | Signal: Latched Output (Q) |
| Logics.LE57.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE58.Gate Out | Signal: Output of the logic gate |


| Name | Description |
| :---: | :---: |
| Logics.LE58.Timer Out | Signal: Timer Output |
| Logics.LE58.Out | Signal: Latched Output (Q) |
| Logics.LE58.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE59.Gate Out | Signal: Output of the logic gate |
| Logics.LE59.Timer Out | Signal: Timer Output |
| Logics.LE59.Out | Signal: Latched Output (Q) |
| Logics.LE59.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE60.Gate Out | Signal: Output of the logic gate |
| Logics.LE60.Timer Out | Signal: Timer Output |
| Logics.LE60.Out | Signal: Latched Output (Q) |
| Logics.LE60.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE61.Gate Out | Signal: Output of the logic gate |
| Logics.LE61.Timer Out | Signal: Timer Output |
| Logics.LE61.Out | Signal: Latched Output (Q) |
| Logics.LE61.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE62.Gate Out | Signal: Output of the logic gate |
| Logics.LE62.Timer Out | Signal: Timer Output |
| Logics.LE62.Out | Signal: Latched Output (Q) |
| Logics.LE62.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE63.Gate Out | Signal: Output of the logic gate |
| Logics.LE63.Timer Out | Signal: Timer Output |
| Logics.LE63.Out | Signal: Latched Output (Q) |
| Logics.LE63.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE64.Gate Out | Signal: Output of the logic gate |
| Logics.LE64.Timer Out | Signal: Timer Output |
| Logics.LE64.Out | Signal: Latched Output (Q) |
| Logics.LE64.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE65.Gate Out | Signal: Output of the logic gate |
| Logics.LE65.Timer Out | Signal: Timer Output |
| Logics.LE65.Out | Signal: Latched Output (Q) |
| Logics.LE65.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE66.Gate Out | Signal: Output of the logic gate |
| Logics.LE66.Timer Out | Signal: Timer Output |
| Logics.LE66.Out | Signal: Latched Output (Q) |
| Logics.LE66.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE67.Gate Out | Signal: Output of the logic gate |
| Logics.LE67.Timer Out | Signal: Timer Output |
| Logics.LE67.Out | Signal: Latched Output (Q) |
| Logics.LE67.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE68.Gate Out | Signal: Output of the logic gate |


| Name | Description |
| :---: | :---: |
| Logics.LE68.Timer Out | Signal: Timer Output |
| Logics.LE68.Out | Signal: Latched Output (Q) |
| Logics.LE68.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE69.Gate Out | Signal: Output of the logic gate |
| Logics.LE69.Timer Out | Signal: Timer Output |
| Logics.LE69.Out | Signal: Latched Output (Q) |
| Logics.LE69.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE70.Gate Out | Signal: Output of the logic gate |
| Logics.LE70.Timer Out | Signal: Timer Output |
| Logics.LE70.Out | Signal: Latched Output (Q) |
| Logics.LE70.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE71.Gate Out | Signal: Output of the logic gate |
| Logics.LE71.Timer Out | Signal: Timer Output |
| Logics.LE71.Out | Signal: Latched Output (Q) |
| Logics.LE71.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE72.Gate Out | Signal: Output of the logic gate |
| Logics.LE72.Timer Out | Signal: Timer Output |
| Logics.LE72.Out | Signal: Latched Output (Q) |
| Logics.LE72.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE73.Gate Out | Signal: Output of the logic gate |
| Logics.LE73.Timer Out | Signal: Timer Output |
| Logics.LE73.Out | Signal: Latched Output (Q) |
| Logics.LE73.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE74.Gate Out | Signal: Output of the logic gate |
| Logics.LE74.Timer Out | Signal: Timer Output |
| Logics.LE74.Out | Signal: Latched Output (Q) |
| Logics.LE74.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE75.Gate Out | Signal: Output of the logic gate |
| Logics.LE75.Timer Out | Signal: Timer Output |
| Logics.LE75.Out | Signal: Latched Output (Q) |
| Logics.LE75.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE76.Gate Out | Signal: Output of the logic gate |
| Logics.LE76.Timer Out | Signal: Timer Output |
| Logics.LE76.Out | Signal: Latched Output (Q) |
| Logics.LE76.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE77.Gate Out | Signal: Output of the logic gate |
| Logics.LE77.Timer Out | Signal: Timer Output |
| Logics.LE77.Out | Signal: Latched Output (Q) |
| Logics.LE77.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE78.Gate Out | Signal: Output of the logic gate |


| Name | Description |
| :--- | :--- |
| Logics.LE78.Timer Out | Signal: Timer Output |
| Logics.LE78.Out | Signal: Latched Output (Q) |
| Logics.LE78.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE79.Gate Out | Signal: Output of the logic gate |
| Logics.LE79.Timer Out | Signal: Timer Output |
| Logics.LE79.Out | Signal: Latched Output (Q) |
| Logics.LE79.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE80.Gate Out | Signal: Output of the logic gate |
| Logics.LE80.Timer Out | Signal: Timer Output |
| Logics.LE80.Out | Signal: Latched Output (Q) |
| Logics.LE80.Out inverted | Signal: Negated Latched Output (Q NOT) |

These trips will start the BF module if »All current" functions have been selected as the trigger event.

| Name | Description |
| :--- | :--- |
| --- | No assignment |
| Id.TripCmd | Signal: Trip Command |
| IdH.TripCmd | Signal: Trip Command |
| IdG[1].TripCmd | Signal: Trip Command |
| IdGH[1].TripCmd | Signal: Trip Command |
| IdG[2].TripCmd | Signal: Trip Command |
| IdGH[2].TripCmd | Signal: Trip Command |
| I[1].TripCmd | Signal: Trip Command |
| I[2].TripCmd | Signal: Trip Command |
| I[3].TripCmd | Signal: Trip Command |
| I[4].TripCmd | Signal: Trip Command |
| I[5].TripCmd | Signal: Trip Command |
| I[6].TripCmd | Signal: Trip Command |
| IG[1].TripCmd | Signal: Trip Command |
| IG[2].TripCmd | Signal: Trip Command |
| IG[3].TripCmd | Signal: Trip Command |
| IG[4].TripCmd | Signal: Trip Command |
| ThR.TripCmd | Signal: Trip Command |
| I2>[1].TripCmd | Signal: Trip Command |
| I2>[2].TripCmd | Signal: Trip Command |

These trips will start the BF module if »External trips« have been selected as the trigger event.

| Name | Description |
| :--- | :--- |
| .-- | No assignment |
| ExP[1].TripCmd | Signal: Trip Command |
| ExP[2].TripCmd | Signal: Trip Command |
| ExP[3].TripCmd | Signal: Trip Command |
| ExP[4].TripCmd | Signal: Trip Command |
| Ext Sudd Press.TripCmd | Signal: Trip Command |
| Ex Oil Temp.TripCmd | Signal: Trip Command |
| Ext Temp Superv[1].TripCmd | Signal: Trip Command |
| Ext Temp Superv[2].TripCmd | Signal: Trip Command |
| Ext Temp Superv[3].TripCmd | Signal: Trip Command |

## Commissioning Example: Supervision Scheme 50BF

## Object to Be Tested:

Test of the breaker failure protection (Supervision Scheme 50BF).

Necessary Means:

- Current source;
- Ammeter; and
- Timer.


## NOT/CE When testing, the applied test current must always be higher than the tripping threshold »-CBF/. If the test current falls below the threshold while the breaker is in the "Off" position, no pickup will be generated.

Procedure (Single-Phase):
For testing the tripping time of the CBF protection, a test current has to be higher than the threshold value of one of the current protection modules that are assigned to trigger the CBF protection. The CBF trip delay can be measured from the time when one of the triggering inputs becomes active to the time when the CBF protection trip is asserted.

To avoid wiring errors, checked to make sure the breaker in the upstream system switches off.

The time, measured by the timer, should be in line with the specified tolerances.

Successful Test Result:
The actual times measured comply with the setpoint times. The breaker in the higher-level section switches off.

## TCS - Trip Circuit Supervision [74TC]

Available elements:
TCS[1],TCS[2]
The trip circuit monitoring is used for monitoring if the trip circuit is ready for operations. The monitoring can be fulfilled in two ways. The first assumes only »Aux On (52a) « is used in the trip circuit. The second assumes that, in addition to »Aux On (52a), »Aux Off(52b)« is also used for the circuit monitoring.

With »Aux On (52a), only in the trip circuit, the monitoring is only effective when the breaker is closed while if both »Aux On (52a), and »Aux Off(52b)« are used, the trip circuit will be monitored all time as long as the control power is on.

Note that the digital inputs used for this purpose must be configured properly based on the trip circuit control voltage. If the trip circuit is detected broken, an alarm will be issued with a specified delay, which must be longer than the time when a trip contact is closed to the time when the breaker status is clearly recognized by the relay.

## NOTICE <br> In Slot 1 has 2 digital inputs, each of which has a separate root (contact separation) for the trip circuit supervision.

## NOT/CE This Notice applies to protective devices that offer control functionality only! This protective element requires, that a switchgear (circuit breaker is assigned to it.

In this case, the trip circuit supply voltage serves also as supply voltage for the digital inputs and so the supply voltage failure of a trip circuit can be detected directly.

In order to identify a conductor failure in the trip circuit on the supply line or in the trip coil, the off-coil has to be looped-in to the supervision circuit.

The time delay is to be set in a way that switching actions cannot cause false trips in this module.

Connection example: Trip circuit supervision with two CB auxiliary contacts.
$\stackrel{8}{2}$

*This signal is the output of the switchgear that is assigned to this
protective element. This applies to protective devices that offer

Connection example: Trip circuit supervision with one CB auxiliary contact (Aux On (52a)) only.
②

*This signal is the output of the switchgear that is assigned to this
protective element. This applies to protective devices that offer
control functionality.

## Device Planning Parameters of the Trip Circuit Supervision

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | do not use | [Device planning] |  |  |
| Q |  |  |  |  |

Global Protection Parameters of the Trip Circuit Supervision
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { CB Pos Detect } & \begin{array}{l}\text { Criterion by which the Circuit Breaker Switch Position is } \\
\text { to be detected. }\end{array} & \begin{array}{l}--, \\
\text { SG[1].Pos, } \\
\text { SG[2].Pos }\end{array} & \begin{array}{l}\text { TCS[1]: } \\
\text { SG[1].Pos } \\
\text { TCS[2]: } \\
\text { SG[2].Pos }\end{array} & \begin{array}{l}\text { [Protection Para } \\
\text { /Global Prot Para } \\
\text { ISupervision }\end{array}
$$ <br>

/TCS[1]]\end{array}\right]\)| [Protection Para |
| :--- |
| Mode |

## List of Digital Inputs

| Name | Description |
| :--- | :--- |
| .-- | No assignment |
| DI Slot X1.DI 1 | Signal: Digital Input |
| DI Slot X1.DI 2 | Signal: Digital Input |
| DI Slot X1.DI 3 | Signal: Digital Input |
| DI Slot X1.DI 4 | Signal: Digital Input |
| DI Slot X1.DI 5 | Signal: Digital Input |
| DI Slot X1.DI 6 | Signal: Digital Input |
| DI Slot X1.DI 7 | Signal: Digital Input |
| DI Slot X1.DI 8 | Signal: Digital Input |
| DI Slot X6.DI 1 | Signal: Digital Input |
| DI Slot X6.DI 2 | Signal: Digital Input |
| DI Slot X6.DI 3 | Signal: Digital Input |
| DI Slot X6.DI 4 | Signal: Digital Input |
| DI Slot X6.DI 5 | Signal: Digital Input |
| DI Slot X6.DI 6 | Signal: Digital Input |
| DI Slot X6.DI 7 | Signal: Digital Input |
| DI Slot X6.DI 8 |  |

## Setting Group Parameters of the Trip Circuit Supervision

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para /<1..4> <br> /Supervision <br> /TCS[1]] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para <<1..4> <br> /Supervision /TCS[1]] |
| t-TCS | Tripping delay time of the Trip Circuit Supervision | 0.10-10.00s | 0.2s | [Protection Para <<1..4> /Supervision /TCS[1]] |

## Trip Circuit Supervision Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| Aux ON-I | Module Input State: Position indicator/check-back signal of the <br> CB (52a) | [Protection Para <br> IGlobal Prot Para <br> ISupervision |
| Aux OFF-I | Module input state: Position indicator/check-back signal of the <br> CB (52b) | IProtection Para |
|  |  | IGlobal Prot Para |
| ExBlo1-I | Module input state: External blocking1 | ISCS[1]] |
|  |  | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | ISupervision |

## Trip Circuit Supervision Signals (Output States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Alarm | Signal: Alarm Trip Circuit Supervision |
| Not Possible | Not possible because no state indicator assigned to the breaker. |

## Commissioning: Trip Circuit Supervision [74TC]

NOT / CE For CBs that trip by means of little energy (e.g. via an optocoupler), it has to be ensured that the current applied by the digital inputs will not cause false tripping of the CB.

Object to be tested
Test of the trip circuit supervision.

Procedure, part 1
Simulate failure of the control voltage in the power circuits.

Successful test result, part 1
After expiry of »t-TCS« the trip circuit supervision $\underline{T C S}$ of the device should signal an alarm.

Procedure, part 2
Simulate a broken cable in the CB control circuit.

Successful test result, part 2
After expiry of »t-TCS« the trip circuit supervision $\underline{T C S}$ of the device should signal an alarm.

## CTS - Current Transformer Supervision [60L]

Available elements:
CTS[1],CTS[2]
Wire breaks and failures within measuring circuits cause current transformer failures.
The module »CTS« can detect a failure of the CT if the calculated earth current does not match the measured one. If an adjustable threshold value (Difference of measured and calculated earth current) is exceeded, a CT failure can be assumed. This is signaled through a message/alarm.
The precondition is that the conductor currents are measured by the device and the earth current, for instance, by a ring core type current transformer.

The measuring principles of the circuit supervision are based on comparing the measured and the calculated residual currents:
In an ideal case these are:

$$
(\overrightarrow{I L} 1+I \vec{L} 2+I \vec{L} 3)+K I * \overrightarrow{I G}=3 * I_{0}+K I * \overrightarrow{I G}=0
$$

KI represents a correction factor which takes the different transformation ratio of the phase- and earth current transformers into account. The device automatically calculates this factor from the rated field parameters, i.e. the relation between the rated primary and secondary current values of the phase- and earth current transformers.

For compensating the current proportional ratio error of the measuring circuits, the dynamic correction factor Kd can be used. As a function of the measured max. current this factor is considering the linear rising measuring error. The limiting value of the CT supervision is calculated as follows:
$\Delta I=$ deviation $I$ (rated value)
$\mathrm{Kd}=$ correction factor
Imax = current maximum
Limiting value $=\Delta l+K d x$ Imax

Precondition for identifying an error

$$
3 * \vec{I}_{0}+K I * \overrightarrow{I G} \geqslant \text { Delta } I+K d * \operatorname{Imax}
$$

The evaluation method of the circuit supervision by using factor Kd can be graphically represented as follows:


## CAUTION

If the current is measured in two phases only (for instant only IL1/IL3) or if there is no separate earth current measuring (e.g. normally via a cable-type CT), the supervision function should be deactivated.


## Device Planning Parameters of the Current Transformer Supervision

\(\left.\begin{array}{|l|l|l|l|l|}\hline Parameter \& Description \& Options \& Default \& Menu path <br>
\hline Mode \& Mode \& do not use, <br>

use\end{array}\right)\) do not use | [Device planning] |  |
| :--- | :--- |
| Q |  |

Global Protection Parameter of the Current Transformer Supervision

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| CT Winding Side | Measuring values will be used from this winding side | CTS[1]: W1 <br> CTS[2]: W2 | CTS[1]: W1 <br> CTS[2]: W2 | [Protection Para <br> /Global Prot Para <br> ISupervision <br> ICTS[1]] |
| ExBlo1 | External blocking of the module, if blocking is activated <br> (allowed) within a parameter set and if the state of the <br> assigned signal is true. | 1..n, Assignment <br> List | .-- | [Protection Para <br> /Global Prot Para <br> ISupervision |
| ExBlo2 | External blocking of the module, if blocking is activated <br> (allowed) within a parameter set and if the state of the <br> assigned signal is true. | 1..n, Assignment <br> List | .-- | [Protection Para <br> /Global Prot Para <br> ISupervision |
| ICTS[1]] |  |  |  |  |

## Setting Group Parameters of the Current Transformer Supervision

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| Function | Permanent activation or deactivation of module/stage. | inactive, active | inactive | [Protection Para \|<1..4> /Supervision /CTS[1]] |
| ExBlo Fc | Activate (allow) or inactivate (disallow) blocking of the module/stage. This parameter is only effective if a signal is assigned to the corresponding global protection parameter. If the signal becomes true, those modules/stages are blocked that are parameterized "ExBlo Fc=active". | inactive, active | inactive | [Protection Para <<1..4> /Supervision /CTS[1]] |
| $\Delta 1$ $\otimes$ | In order to prevent faulty tripping of phase selective protection functions that use the current as tripping criterion. If the difference of the measured earth current and the calculated value 10 is higher than the pick up value $\Delta I$, an alarm event is generated after expiring of the excitation time. In such a case, a fuse failure, a broken wire or a faulty measuring circuit can be assumed. | 0.10-1.00ln | 0.50ln | [Protection Para <<1..4> /Supervision /CTS[1]] |
| Alarm delay | Alarm delay | 0.1-9999.0s | 1.0s | [Protection Para <<1..4> /Supervision /CTS[1]] |
| Kd | Dynamic correction factor for the evaluation of the difference between calculated and measured earth current. This correction factor allows transformer faults, caused by higher currents, to be compensated. | 0.00-0.99 | 0.00 | [Protection Para <<1..4> /Supervision /CTS[1]] |

## Current Transformer Supervision Input States

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| ExBlo1-I | Module input state: External blocking1 | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | ISupervision |
|  |  | CTS[1]] |
| ExBlo2-I | Module input state: External blocking2 | [Protection Para |
|  |  | IGlobal Prot Para |
|  |  | ISupervision |
|  |  | CTS[1]] |

## Current Transformer Supervision Signals (Outputs States)

| Signal | Description |
| :--- | :--- |
| active | Signal: active |
| ExBlo | Signal: External Blocking |
| Alarm | Signal: Alarm Current Transformer Measuring Circuit Supervision |

## Commissioning: Current Transformer Failure Supervision

## NOT/CE Precondition: <br> 1. Measurement of all three phase currents (are applied to the measuring inputs of the device). <br> 2. The earth current is detected via a cable-type transformer (not in Holmgreen connection).

Object to be tested
Check of the CT supervision (by comparing the calculated with the measured earth current).

Necessary means

- Three-phase current source

Procedure, part 1

- Set the limiting value of the CTS to »delta $I=0.1^{*} / n «$.
- Feed a three-phase, symmetrical current system (approx. nominal current) to the secondary side.
- Disconnect the current of one phase from one of the measuring inputs (the symmetrical feeding at secondary side has to be maintained).
■ Make sure that the signal »CTS.ALARM« is generated now.

Successful test result, part 1

- The signal »CTS.ALARM« is generated.

Procedure, part 2

- Feed a three-phase, symmetrical current system (approx. nominal current) to the secondary side.
- Feed a current that is higher than the threshold value for the measuring circuit supervision to the earth current measuring input.
- Ascertain that the signal »CTS.AlARm« is generated now.

Successful test result, part 2
The signal »CTS.AlARM« is generated.

## Self Supervision

## SSV

The protection devices are supervised by various check routines during normal operation and during the start-up phase on faulty operation.

The protection devices are carrying out various self supervision tests.

| Self Supervision within the devices |  |  |
| :--- | :--- | :--- |
| Supervision of... | Supervised by... | Action on detected issue... |
| Start phase | The duration (permitted time) of the <br> boot phase is monitored. | The device will be rebooted. <br> => The device will be taken out of <br> service after three unsuccessful start <br> attempts. |
| Supervision of the duration of a <br> protection cycle (Software cycle) | The maximum permitted time for a <br> protection cycle is monitored by a <br> timing analysis. | The self-supervision contact will be <br> deenergized if the permitted time for <br> a protection cycle is exceeded (first <br> threshold). |
| Monitoring of the communication <br> between Main and Digital Signal <br> Processor (DSP) | The cyclic measured value <br> processing of the DSP is monitored <br> by the main processor. | The protection device will be <br> rebooted, if the protection cycle <br> exceeds the second threshold. |
| failure is detected. |  |  |
| The self-supervision contact will be |  |  |
| deenergized. |  |  |

## Self Supervision within the devices

$\left.\begin{array}{|l|l|l|}\hline \text { Parameter Setting (Device) } & \begin{array}{l}\text { Protecting the parameter setting by } \\ \text { plausibility checks. }\end{array} & \begin{array}{l}\text { Implausibilities within the parameter } \\ \text { configuration can be detected by } \\ \text { means of plausibility checks. }\end{array} \\ \text { Detected implausibilities are } \\ \text { highlighted by a question mark } \\ \text { symbol. Please refer to chapter } \\ \text { parameter setting for detailed } \\ \text { information. }\end{array}\right\}$

## Device Start (Reboot)

The device starts up if:

- it is connected to the supply voltage,
- the User initiates (intentionally) a restart of the device,
- the device is set back to factory defaults,
- the internal self-supervision of the device detects a fatal error.

The reason for a device start/reboot is shown numerically within menu <Operation/ Status display/ Sys/ Restart> (please refer to the table below). The reason will also be logged within the event recorder (Event: Sys.Restart).

The table below explains the numbers indicating the reason of the restart.

## Device Start-up Codes

| 1. | Normal Start-up <br> Start-up after clean disconnection of the supply voltage. |
| :--- | :--- |
| 2. | Reboot by the Operator <br> Device reboot triggered by the operator via HMI or Smart view. |
| 3. | Reboot by means of Super Reset <br> Automatic reboot when setting the device back to factory defaults. |
| 4. | -- (outdated) |
| 5. | Unknown Error Source <br> Reboot due to unknown error source. |
| 6. | Forced Reboot (initiated by the main processor) <br> The main processor identified invalid conditions or data. |
| 7. | Exceeded Time Limit of the Protection Cycle <br> Unexpected interruption of the Protection Cycle. |
| 8. | Forced Reboot (initiated by the digital signal processor) <br> The digital signal processor identified invalid conditions or data. |
| 9. | Exceeded Time Limit of the Measured Value Processing <br> Unexpected interruption of the cyclic measured value processing. |
| 10. | Sags of the Supply Voltage <br> Reboot after short-term sag or outage of the supply voltage. |
| 11. | Illegal Memory Access <br> Reboot after illegal memory access. |
| 12. |  |

## Device taken out of Service „Device Stopped"

The protection device will be taken out of service, if there is an undefined state that cannot be escaped after three reboots.
In this state the system LED will be illuminated red or red flashing. The display will show the message „Device Stopped" followed by a 6-digit error code, e.g. E01487.

In addition to the recorders, messages and display information that can be accessed by the user, there may exist additional error information accessible by the Service Staff. These offer further failure analysis and diagnosis opportunities to the Service Staff.

## NOT/CE In such a case please contact the Woodward Service Staff and provide them the error code.

For further information on trouble shooting please refer to the separately provided "Trouble Shooting Guide".

Signals (Output States) of the Self Supvervision

| Signal | Description |
| :--- | :--- |
| System Error | Signal: Device Failure |
| SelfSuperVision Contact | Signal: SelfSuperVision Contact |

Values of the Self Supvervision

| Value | Description | Menu path |
| :--- | :--- | :--- |
| Last Failure | Last Failure | [Operation |
|  |  | ISelf Supervision |
|  |  | /System Error] |

Counter Values of the Self Supvervision

| Value | Description | Menu path |
| :--- | :--- | :--- |
| Resets by Device | Resets initiated by the device | [Operation |
|  |  | ISelf Supervision |
| Cr No of free sockets | Counter for network diagnosis. Number of free sockets. | ISystem Error] |
|  |  | [Operation |
|  |  | ISelf Supervision |

## Programmable Logic

Available Elements (Equations):
Logics

## General Description

The Protective Relay includes programmable Logic Equations for programming output relays, blocking of protective functions and custom logic functions in the relay.

The logic provides control of the output relays based on the state of the inputs that can be choosen from the assignment list (protective function pickups, protective function states, breaker states, system alarms, and module inputs). The user can use the outputs signals of a Logic Equation as inputs in higher equations (e.g. the output signal of Logic Equation 10 might be used as an input of Logic Equation 11).

## Principle Overview



## Detailed Overview - Overall Logic diagram



## Available Gates (Operators)

Within the Logic Equation, the following Gates can be used:

## Gate



NAND

OR

NOR

## Input Signals

The user can assign up to 4 Input signals (from the assignment list) to the inputs of the gate.

As an option, each of the 4 input signals can be inverted (negated)

## Timer Gate (On Delay and Off Delay)

The output of the gate can be delayed. The user has the option to set an On and an Off delay.

## Latching

The logic equations issues two signals. An unlatched and a latched signal. The latched output is also available as an inverted output.
In order to reset the latched signal the user has to assign a reset signal from the assignment list. The reset signal can also optionally be inverted. The latching works based on reset priority. That means, the reset input is dominant.

## Cascading Logical Outputs

The device will evaluate output states of the Logic Equations starting from Logic Equation 1 up to the Logic Equation with the highest number. This evaluation (device) cycle will be continuously repeated.

## Cascading Logic Equations in an ascending sequence

Cascading in an ascending sequence means that the user uses the output signal of "Logic Equation n " as input of "Logic Equation $\mathbf{n + 1}$ ". If the state of "Logic Equation $\mathbf{n}$ " changes, the state of the output of "Logic Equation $\mathbf{n + 1 "}$ will be updated within the same cycle.

## Cascading Logic Equations in a descending sequence

Cascading in a descending sequence means that the user uses the output signal of "Logic Equation $\mathrm{n}+1$ " as input of "Logic Equation n". If the output of "Logic Equation $\mathrm{n}+1$ " changes, this change of the feed back signal at the input of "Logic Equation n " will be delayed for one cycle.

Cascading in Ascending Order


Cascading in Descending Order


## Programmable Logic at the Panel

! WARNING WARNING improper use of Logic Equations might result in personal injury or damage the electrical equipment.

Don't use Logic Equations unless that you can ensure the safe functionality.

How to configure a Logic Equation?

- Call up menu [Logics/LE [x]]:

■ Set the Input Signals (where necessary, invert them).

■ If required, configure the timer (»On delay« and»Off delay«).

- If the latched output signal is used assign a reset signal to the reset input.

■ Within the »status display«, the user can check the status of the logical inputs and outputs of the Logic Equation.

In case that Logic Equations should be cascaded the user has to be aware of timing delays (cycles) in case of descending sequences (Please refer to section: Cascading Logical Outputs).

By means the Status Display [Operation/Status Display] the logical states can be verified.]

## Device Planning Parameters of the Programmable Logic

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| No of Equations: | Number of required Logic Equations: | 0, | 20 | [Device planning] |
|  |  | 5, |  |  |
|  |  | 10, |  |  |
|  |  | 20, |  |  |

Global Protection Parameter of the Programmable Logic
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { LE1.Gate } & \text { Logic gate } & \begin{array}{l}\text { AND, } \\
\text { OR, } \\
\text { NAND, }\end{array}
$$ \& AND <br>
Nogics <br>

/LE 1]\end{array}\right]\)| NOR |
| :--- | :--- | :--- |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| LE1.t-Off Delay | Switch Off Delay | 0.00-36000.00s | 0.00s | [Logics /LE 1] |
| $\otimes$ |  |  |  |  |
| LE1.Reset Latched | Reset Signal for the Latching | 1..n, Assignment List | -- | [Logics /LE 1] |
| $\otimes$ |  |  |  |  |
| LE1.Inverting Reset | Inverting Reset Signal for the Latching | inactive, active | inactive | [Logics <br> /LE 1] |
| $\otimes$ |  |  |  |  |
| LE1.Inverting Set | Inverting the Setting Signal for the Latching | inactive, active | inactive | [Logics /LE 1] |
| $\otimes$ |  |  |  |  |

## Programmable Logic Inputs

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| LE1.Gate In1-I | State of the module input: Assignment of the Input Signal | Logics <br> ILE 1] |
| LE1.Gate In2-I | State of the module input: Assignment of the Input Signal | [Logics |
| ILE 1] |  |  |

## Programmable Logic Outputs

| Signal | Description |
| :--- | :--- |
| LE1.Gate Out | Signal: Output of the logic gate |
| LE1.Timer Out | Signal: Timer Output |
| LE1.Out | Signal: Latched Output (Q) |
| LE1.Out inverted | Signal: Negated Latched Output (Q NOT) |

## Commissioning

Before starting work on an opened switchboard it is imperative that the complete switchboard is dead and the following 5 safety regulations are always met: ,

## 4 DANGER

Safety precautions:

- Disconnect from the power supply
- Secure against reconnection
- Verify if the equipment is dead
- Connect to ground and short-circuit all phases
- Cover or safeguard all live adjacent parts

! DANGER
The secondary circuit of a current transformer must never be opened during operation. The prevailing high voltages are dangerous to life.

## A WARNING

Even when the auxiliary voltage is switched off, it is likely that there are still hazardous voltages at the component connections.
All locally applicable national and international installation and safety regulations for working at electrical power installations must always to be followed (e.g. VDE, EN, DIN, IEC).
! WARNING Prior to the initial voltage connection, the following must be guaranteed:

- Correct grounding of the device
- That all signal circuits are tested
- That all control circuits are tested
- Transformer wiring is checked
- Correct rating of the CTs
- Correct burden of the CTs
- That the operational conditions are in line with the Technical Data
- Correct rating of the transformer protection
- Function of the transformer fuses
- Correct wiring of all digital inputs
- Polarity and capacity of the supply voltage
- Correct wiring of the analogue inputs and outputs

[^9]
## Commissioning/Protection Test

1. WARNING Putting into operation/Protection test must be carried out by authorized and qualified personnel. Before the device is put into operation the related documentation has to be read and understood.
2. WARNING With any test of the protection functions the following has to be checked:

- Is activation/tripping saved in the event recorder?
- Is tripping saved in the fault recorder?
- Is tripping saved in the disturbance recorder?
- Are all signals/messages correctly generated?
- Do all general parameterized blocking functions work properly?
- Do all temporary parameterized (via DI) blocking functions work properly?
- To enable checks on all LEDs and relay functions, these have to be provided with the relevant alarm and tripping functions of the respective protection functions/elements. This has to be tested in practical operation.

Check of all temporary blockings (via digital inputs):

- In order to avoid malfunctions, all blockings related to tripping/nontripping of protection function have to be tested. The test can be very complex and should therefore be performed by the same people who set up the protection concept.

Check of all general trip blockings:

- All general trip blockings have to be tested.

NOT/CE Prior to the initial operation of the protection device all tripping times and values shown in the adjustment list have to be confirmed by a secondary test

Any description of functions, parameters, inputs or outputs that does not match the device in hand, can be ignored.

## Putting out of Operation - Plug out the Relay

4. WARNING

Warning! Dismounting the relay will lead to a loss of the protection functionality. Ensure that there is a back-up protection. If you are not aware of the consequences of dismounting the device - stop! Don't start.

A WARNING Inform SCADA before you start.
Switch-off the power supply.
Ensure, that the cabinet is dead and that there are no voltages that could lead to personal injury.

Plug-out the terminals at the rear-side of the device. Do not pull any cable - pull on the plugs! If it is stuck use for example a screw driver.

Fasten the cables and terminals in the cabinet by means of cable clips to ensure that no accidental electrical connections are caused.

Hold the device at the front-side while opening the mounting nuts.
Remove the device carefully out of the cabinet.
In case no other device is to be mounted or replaced cover/close the cut-out in the front-door.

Close the cabinet.

## Service and Commissioning Support

Within the service menu various functions support maintenance and commissioning of the device.

## General

Within the menu [Service/General], the user can initiate a reboot of the device.

## Forcing the Relay Output Contacts

NOT/CE $\quad \begin{aligned} & \text { The parameters, their defaults and setting ranges have to be taken from Relay } \\ & \text { Output Contacts section. }\end{aligned}$

## Principle - General Use

## ! DANGER

The User MUST ENSURE that the relay output contacts operate normally after the maintenance is completed. If the relay output contacts do not operate normally, the protective device WILL NOT provide protection.

For commissioning purposes or for maintenance, relay output contacts can be set by force.
Within this mode [Service/Test Mode/Force OR/BO Slot $\mathrm{X}(2 / 5)$ ], relay output contacts can be set by force:

- Permanent; or

■ Via timeout.

If they are set with a timeout, they will only keep their "Force Position" as long as this timer runs. If the timer expires, the relay will operate normally. If they are set as Permanent, they will keep the "Force Position" continuously.

There are two options available:
■ Forcing a single relay »Force ORx«; and

- Forcing an entire group of relay output contacts »Force all Outs«.

Forcing an entire group takes precedence over forcing a single relay output contact!
NOT/CE A relay output contact will NOT follow a force command as long as it is disarmed at the same time.

## NOT/CE A relay output contact will follow a force command:

- If it is not disarmed; and
- If the Direct Command is applied to the relay(s).

Keep in mind, that the forcing of all relay output contacts (of the same assembly group) takes precedence over the force command of a single relay output contact.

## Disarming the Relay Output Contacts

NOT/CE $\quad \begin{aligned} & \text { The parameters, their defaults, and setting ranges have to be taken from the } \\ & \text { Relay Output Contacts section. }\end{aligned}$

## Principle - General Use

Within this mode [Service/Test Mode/DISARMED], entire groups of relay output contacts can be disabled. By means of this test mode, contact outputs switching actions of the relay output contacts are prevented. If the relay output contacts are disarmed, maintenance actions can be carried out without the risk of taking entire processes offline.

The User MUST ENSURE that the relay output contacts are ARMED AGAIN after the maintenance is complete. If they are not armed, the protective device WILL NOT provide protection.

## NOT/CE Zone Interlocking Output and the Supervision Contact cannot be disarmed.

Within this mode [Service/Test Mode/DISARMED] entire groups of relay output contacts can be disarmed:

■ Permanent; or
■ Via timeout.

If they are set with a timeout, they will only keep their "Disarm Position" as long as this timer runs. If the timer expires, the relay output contacts will operate normally. If they are set Permanent, they will keep the "Disarm State" continuously.

## NOT/CE A relay output contact will NOT be disarmed as long as:

- It's latched (and not yet reset).
- As long as a running t-OFF-delay timer is not yet expired (hold time of a relay output contact).
- The Disarm Control is not set to active.
- The Direct Command is not applied.


## NOTICE

A relay output contact will be disarmed if it's not latched and

- There is no running t-OFF-delay timer (hold time of a relay output contact) and
- The DISARM Control is set to active and
- The Direct Command Disarm is applied.


## Forcing RTDs*

* = Availability depends on ordered device.


## NOT/CE The parameters, their defaults, and setting ranges have to be taken from RTD/UTRD section.

## Principle - General Use

## ! DANGER The User MUST ENSURE that the RTDs operate normally after the maintenance is completed. If the RTDs do not operate normally, the protective device WILL NOT provide protection.

For commissioning purposes or for maintenance, RTD temperatures can be set by force.
Within this mode [Service/Test Mode/URTD], RTD temperatures can be set by force:

- Permanent; or

■ Via timeout.

If they are set with a timeout, they will keep their "Forced Temperature" only as long as this timer runs. If the timer expires, the RTD will operate normally. If they are set as »Permanentu, they will keep the "Forced Temperature" continuously. This menu will show the measured values of the RTDs until the User activates the force mode by calling up the »Function«. As soon as the force mode is activated, the shown values will be frozen as long as this mode is active. Now the User can force RTD values. As soon as the force mode is deactivated, measured values will be shown again.

## Forcing Analog Outputs*

* = Availability depends on ordered device.


## NOT/CE The parameters, their defaults, and setting ranges have to be taken from Analog Output section.

## Principle - General Use

# ! DANGER The User MUST ENSURE that the Analog Outputs operate normally after maintenance is completed. Do not use this mode if forced Analog Outputs cause issues in external processes. 

For commissioning purposes or for maintenance, Analog Outputs can be set by force.
Within this mode [Service/Test Mode/Analog Output(x)], Analog Outputs can be set by force:

- Permanent; or
- Via timeout.

If they are set with a timeout, they will only keep their "Forced Value" as long as this timer runs. If the timer expires, the Analog Output will operate normally. If they are set as »Permanent«, they will keep the "Forced Value" continuously. This menu will show the current value that is assigned onto the Analog Output until the User activates the force mode by calling up the »Function«. As soon as the force mode is activated, the shown values will be frozen as long as this mode is active. Now the User can force Analog Output values. As soon as the force mode is deactivated, measured values will be shown again.

## Forcing Analog Inputs*

* = Availability depends on ordered device.


## NOT/CE The parameters, their defaults, and setting ranges have to be taken from Analog Inputs section.

## Principle - General Use

## ! DANGER The User MUST ENSURE that the Analog Inputs operate normally after maintenance is completed.

For commissioning purposes or for maintenance, Analog Inputs can be set by force.
Within this mode [Service/Test Mode (Prot inhibit)/WARNING! Cont?/Analog Inputs], Analog Inputs can be set by force:

- Permanent; or
$\square$ Via timeout.

If they are set with a timeout, they will only keep their "Forced Value" as long as this timer runs. If the timer expires, the Analog Input will operate normally. If they are set as »Permanent", they will keep the "Forced Value" continuously. This menu will show the current value that is fed to the Analog Input until the User activates the force mode by calling up the »Function«. As soon as the force mode is activated, the shown value will be frozen as long as this mode is active. Now the User can force the Analog Input value. As soon as the force mode is deactivated, measured value will be shown again.

## Failure Simulator (Sequencer)*

Available Elements:
Sgen

* = Availability depends on ordered device.

For commissioning support and in order to analyze failures, the protective device offers the option to simulate measuring quantities. The simulation menu can be found within the [Service/Test Mode/Sgen] menu. The simulation cycle consists of three states:

- Pre-failure;
- Failure; and
- Post-failure State (Phase).

Within the [Service/Test Mode/Sgen/Configuration/Times] sub-menu, the duration of each phase can be set. In addition; the measuring quantities to be simulated can be determined (e.g.: voltages, currents, and the corresponding angles) for each phase (and ground). The simulation will be terminated, if a phase current exceeds 0.1 times $\ln$. A simulation can be restarted, five seconds after the current has fallen below 0.1 times In .

## ! DANGER <br> Setting the device into the simulation mode means taking the protective device out of operation for the duration of the simulation. Do not use this feature during operation of the device if the User cannot guarantee that there is a running and properly working backup protection.

Sgen


The energy counters will be stopped while the failure simulator is running.

The simulation voltages are always phase to neutral voltages, irrespectively of the mains voltage transformers' connection method (Phase-to-phase / Wey / Open Delta).

## Application Options of the Fault Simulator**:

| Stop Options | Cold Simulation (Option 1) | Hot Simulation (Option 2) |
| :--- | :--- | :--- |
| Do not stop | $\begin{array}{l}\text { Simulation without tripping the } \\ \text { breaker: } \\ \text { Blocking protective Trips to the } \\ \text { Breaker. That means verifying if } \\ \text { the protective device generates a } \\ \text { trip without energizing the trip coil } \\ \text { of the breaker (similar to disarm } \\ \text { the output relay). }\end{array}$ | $\begin{array}{l}\text { Simulation is authorized to trip } \\ \text { the breaker: } \\ \text { How To?: } \\ \text { Call up [Service/Test } \\ \text { Mode/Sgen /Process] }\end{array}$ |
| TripCmd Mode = With TripCmd |  |  |$]$| How To?: Call up [Service/Test Mode/Sgen |
| :--- |
| /Process] |
| Ex Force Post = no assignment |
| Press/Call up Start Simulation. |

${ }^{* *}$ Please note: Due to internal dependencies, the frequency of the simulation module is $0.16 \%$ greater than the rated one.

Device Planning Parameters of the Failure Simulator

| Parameter | Description | Options | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Mode | Mode | do not use, |  |  |
| use | use | [Device planning] |  |  |
| une |  |  |  |  |

Global Protection Parameter of the Failure Simulator

| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| PreFault | Pre Fault Duration | 0.00-300.00s | 0.0s | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /Times] |
| FaultSimulation | Duration of Fault Simulation | 0.00-10800.00s | 0.0s | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /Times] |
| PostFault | PostFault | 0.00-300.00s | 0.0s | [Service <br> /Test (Prot inhibit) <br> ISgen <br> /Configuration <br> /Times] |
| TripCmd Mode | Trip Command Mode | No TripCmd, With TripCmd | No TripCmd | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Process] |
| Ex Start Simulation | External Start of Fault Simulation (Using the test parameters) | 1..n, Assignment List | -.- | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Process] |
| ExBlo | External blocking of the module, if blocking is activated (allowed) within a parameter set and if the state of the assigned signal is true. | 1..n, Assignment List | SG[1].Pos ON | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Process] |
| Ex ForcePost | Force Post state. Abort simulation. | 1..n, Assignment List | -.- | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Process] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT W1.IL1 | Current Fundamental Magnitude in Pre State: phase L1 | 0.00-40.00In | 0.01n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W1] |
| CT W1.IL2 | Current Fundamental Magnitude in Pre State: phase L2 | 0.00-40.00In | 0.01n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W1] |
| CT W1.IL3 | Current Fundamental Magnitude in Pre State: phase L3 | 0.00-40.00In | 0.01n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W1] |
| CT W1.IG meas | Current Fundamental Magnitude in Pre State: IG | 0.00-25.00In | 0.01n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W1] |
| CT W1.phi IL1 | Start Position respectively Start Angle of the Current Phasor during Pre-Phase:phase L1 | $-360-360^{\circ}$ | $0^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W1] |
| CT W1.phi IL2 | Start Position respectively Start Angle of the Current Phasor during Pre-Phase:phase L2 | $-360-360^{\circ}$ | $240^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W1] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT W1.phi IL3 | Start Position respectively Start Angle of the Current Phasor during Pre-Phase:phase L3 | -360-360 ${ }^{\circ}$ | $120^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W1] |
| CT W1.phi IG meas | Start Position respectively Start Angle of the Current Phasor during Pre-Phase: IG | $-360-360^{\circ}$ | $0^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W1] |
| CT W1.IL1 | Current Fundamental Magnitude in Fault State: phase L1 | 0.00-40.001n | 0.01 n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /FaultSimulation <br> /CT W1] |
| CT W1.IL2 | Current Fundamental Magnitude in Fault State: phase L2 | 0.00-40.001n | 0.01 n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /FaultSimulation <br> /CT W1] |
| CT W1.IL3 | Current Fundamental Magnitude in Fault State: phase L3 | 0.00-40.001n | 0.01 n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /FaultSimulation <br> /CT W1] |
| CT W1.IG meas | Current Fundamental Magnitude in Fault State: IG | 0.00-25.001n | 0.01n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /FaultSimulation <br> /CT W1] |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| CT W1.phi IL1 | Start Position respectively Start Angle of the Current <br> Phasor during Fault-Phase:phase L1 | $-360-360^{\circ}$ | $0^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> ISgen |
| CT W1.phi IL2 | Start Position respectively Start Angle of the Current <br> Phasor during Fault-Phase:phase L2 | $-360-360^{\circ}$ | $240^{\circ}$ | /Configuration <br> /FaultSimulation |
| ICT W1] |  |  |  |  |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT W1.IL3 | Current Fundamental Magnitude during Post phase: phase L3 | 0.00-40.00In | 0.01n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PostFault <br> /CT W1] |
| CT W1.IG meas | Current Fundamental Magnitude during Post phase: IG | 0.00-25.00In | 0.01n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PostFault <br> /CT W1] |
| CT W1.phi IL1 | Start Position respectively Start Angle of the Current Phasor during Post phase: phase L1 | $-360-360^{\circ}$ | $0^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PostFault <br> /CT W1] |
| CT W1.phi IL2 | Start Position respectively Start Angle of the Current Phasor during Post phase: phase L2 | $-360-360^{\circ}$ | $240^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PostFault <br> /CT W1] |
| CT W1.phi IL3 | Start Position respectively Start Angle of the Current Phasor during Post phase: phase L3 | $-360-360^{\circ}$ | $120^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PostFault <br> /CT W1] |
| CT W1.phi IG meas | Start Position respectively Start Angle of the Current Phasor during Post phase: IG | $-360-360^{\circ}$ | $0^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PostFault <br> /CT W1] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT W2.IL1 | Current Fundamental Magnitude in Pre State: phase L1 | 0.00-40.00In | 0.01 n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W2] |
| CT W2.IL2 | Current Fundamental Magnitude in Pre State: phase L2 | 0.00-40.001n | 0.01n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W2] |
| CT W2.IL3 | Current Fundamental Magnitude in Pre State: phase L3 | 0.00-40.001n | $0.01 n$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W2] |
| CT W2.IG meas | Current Fundamental Magnitude in Pre State: IG | 0.00-25.00In | $0.01 n$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W2] |
| CT W2.phi IL1 | Start Position respectively Start Angle of the Current Phasor during Pre-Phase:phase L1 | $-360-360^{\circ}$ | $0^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W2] |
| CT W2.phi IL2 | Start Position respectively Start Angle of the Current Phasor during Pre-Phase:phase L2 | $-360-360^{\circ}$ | $240^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W2] |


| Parameter | Description | Setting range | Default | Menu path |
| :---: | :---: | :---: | :---: | :---: |
| CT W2.phi IL3 | Start Position respectively Start Angle of the Current Phasor during Pre-Phase:phase L3 | -360-360 ${ }^{\circ}$ | $120^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W2] |
| CT W2.phi IG meas | Start Position respectively Start Angle of the Current Phasor during Pre-Phase: IG | $-360-360^{\circ}$ | $0^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /PreFault <br> /CT W2] |
| CT W2.IL1 | Current Fundamental Magnitude in Fault State: phase L1 | 0.00-40.00In | 0.01n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /FaultSimulation <br> /CT W2] |
| CT W2.IL2 | Current Fundamental Magnitude in Fault State: phase L2 | 0.00-40.00In | 0.01n | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /FaultSimulation <br> /CT W2] |
| CT W2.IL3 | Current Fundamental Magnitude in Fault State: phase L3 | 0.00-40.00In | 0.0 ln | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /FaultSimulation <br> /CT W2] |
| CT W2.IG meas | Current Fundamental Magnitude in Fault State: IG | 0.00-25.00In | 0.0 ln | [Service <br> /Test (Prot inhibit) <br> /Sgen <br> /Configuration <br> /FaultSimulation <br> /CT W2] |


| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| CT W2.phi IL1 | Start Position respectively Start Angle of the Current <br> Phasor during Fault-Phase:phase L1 | $-360-360^{\circ}$ | $0^{\circ}$ | [Service <br> /Test (Prot inhibit) <br> ISgen |
| CT W2.phi IL2 | Start Position respectively Start Angle of the Current <br> Phasor during Fault-Phase:phase L2 | $-360-360^{\circ}$ | $240^{\circ}$ | /Configuration <br> /FaultSimulation |
| ICT W2] |  |  |  |  |

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Parameter } & \text { Description } & \text { Setting range } & \text { Default } & \text { Menu path } \\
\hline \text { CT W2.IL3 } & \begin{array}{l}\text { Current Fundamental Magnitude during Post phase: } \\
\text { phase L3 }\end{array} & 0.00-40.00 \mathrm{In} & 0.0 \mathrm{In} & \text { [Service } \\
\text { /Test (Prot inhibit) } \\
\text { /Sgen }\end{array}
$$\right] \begin{array}{l}/Configuration <br>

/PostFault\end{array}\right]\)| /CT W2] |
| :--- |

## States of the Inputs of the Failure Simulator

| Name | Description | Assignment via |
| :--- | :--- | :--- |
| Ex Start Simulation-I | State of the module input:External Start of Fault Simulation <br> (Using the test parameters) | [Service |
|  |  | /Test (Prot inhibit) |
| ExBlo | Module input state: External blocking | /Process] |
| Ex ForcePost-I | State of the module input:Force Post state. Abort simulation. | [Service |
|  |  | [Service |
|  |  | /Test (Prot inhibit) |

## Signals of the Failure Simulator (States of the Outputs)

| Signal | Description |
| :--- | :--- |
| Running | Signal; Measuring value simulation is running |
| State | Signal: Wave generation states: 0=Off, 1=PreFault, 2=Fault, 3=PostFault, 4=InitReset |

## Direct Commands of the Failure Simulator

| Parameter | Description | Setting range | Default | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| Start Simulation | Start Fault Simulation (Using the test parameters) | inactive, | inactive | [Service |
| active |  | ITest (Prot inhibit) <br> ISgen <br> /Process] |  |  |
| Stop Simulation | Stopp Fault Simulation (Using the test parameters) | inactive, | inactive | [Service |
| active |  | /Test (Prot inhibit) <br> ISgen <br> /Process] |  |  |

## Failure Simulator Values

| Value | Description | Default | Size | Menu path |
| :--- | :--- | :--- | :--- | :--- |
| State | Wave generation states: 0=Off, 1=PreFault, <br> 2=Fault, 3=PostFault, 4=InitReset | Off | Off, | [Service |
| PreFault, | /Test (Prot inhibit) |  |  |  |
|  |  |  | FaultSimulation, | /Sgen |
| PostFault, | /State] |  |  |  |
| Init Res |  |  |  |  |

## Technical Data

NOT / CE E $\quad \begin{aligned} & \text { Use Copper conductors only, } 75^{\circ} \mathrm{C} . \\ & \text { Conductor size AWG } 14\left[2.5 \mathrm{~mm}^{2}\right] .\end{aligned}$

## Climatic Environmental Conditions

| Storage Temperature: | Operating Temperature: |
| :--- | :--- |
| $-30^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ | $-20^{\circ} \mathrm{C}$ up to $+60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |

Permissible Humidity at Ann. Average: Permissible Installation Altitude:
$<75 \%$ rel. (on 56d up to $95 \%$ rel.)
<2000 m ( 6561.67 ft ) above sea level
If 4000 m ( 13123.35 ft ) altitude apply a changed classification of
the operating and test voltages may be necessary.

## Degree of Protection EN 60529

HMI front panel with seal
HMI front panel without seal
Rear side terminals

IP54
IP50
IP20

## Routine Test

Insulation test acc. to IEC60255-5:
Aux. voltage supply, digital inputs, current measuring inputs, signal relay outputs:
Voltage measuring inputs:
3.0 kV (eff) / 50 Hz

All wire-bound communication interfaces: 1.5 kV DC

## Housing

Housing B2: height/-width
(7 Pushbottons/Door Mounting)

Housing B2: height/-width
(8 Pushbottons/Door Mounting)

Housing B2: height/-width (7 and 8 Pushbottons/19")

Housing depth (incl. terminals):
Material, housing:
Material, front panel:
Mounting position:

Weight:

173 mm (6.811")/ 212.7 mm (8.374")
$183 \mathrm{~mm}(7.205$ ")/ 212.7 mm (8.374")

173 mm (6.811" / 4U)/ 212.7 mm (8.374" / 42 HP)

208 mm (8.189")
Aluminum extruded section
Aluminum/Foil front
Horizontal ( $\pm 45^{\circ}$ around the X -axis are allowed)
approx. $4.7 \mathrm{~kg}(10.36 \mathrm{lb})$

## Current and Earth Current Measurement

Plug-in Connectors with Integrated Short-Circuiter
(Conventional Current Inputs)

${ }^{1)}$ only in completion with sensitive earth measuring (see ordering information)

## Voltage Supply

Aux. Voltage:

$$
24 \mathrm{~V}-270 \text { V DC/48-230 V AC (-20/+10\%) } \approx
$$

Buffer time in case of supply failure: $\quad>=50 \mathrm{~ms}$ at minimal aux. voltage. The device will shut down if the buffer time is expired.
Note: communication could be interrupted
Max. permissible making current:
18 A peak value for $<0.25 \mathrm{~ms}$
12 A peak value for $<1 \mathrm{~ms}$
The voltage supply must be protected by a fuse of:
2,5 A time-lag miniature fuse $5 \times 20 \mathrm{~mm}$ (approx. $1 / 5^{\prime \prime} \times 0.8^{\prime \prime}$ ) according to IEC 60127
3,5 A time-lag miniature fuse $6,3 \times 32 \mathrm{~mm}$ (approx. $1 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}$ ) according to UL 248-14

## Power Consumption

Power supply range:
24-270 V DC:
48-230 V AC
(for frequencies of $50-60 \mathrm{~Hz}$ ):

Power consumption
in idle mode
8 W 13 W
8W / 16 VA

Max. power consumption

13 W / 21 VA

## Display

Display type:
Resolution graphics display:

LED-Type:
Number of LEDs, Housing B2:

Front Interface RS232

## Real Time Clock

Running reserve of the real time clock: 1 year min.

## Digital Inputs

Max. input voltage:
Input current:

Reaction time

Fallback Time:
Shorted inputs
Open inputs

300 V DC/259 V AC
DC < 4 mA
AC <16 mA
<20 ms
$<30 \mathrm{~ms}$
$<90 \mathrm{~ms}$

(Safe state of the digital inputs)

4 Switching thresholds:
Un = 24 V DC, 48 V DC, 60 V DC, 110 V AC/DC, 230 V AC/DC

Un = 24 V DC:
Switching threshold 1 ON: min. 19.2 V DC
Switching threshold 1 OFF:
max. 9.6 V DC
Un $=48$ V/60V DC:
Switching threshold 2 ON:
Switching threshold 2 OFF:
Min. 42.6 V DC
max. 21.3 V DC
Un = 110 V AC/DC:
Switching threshold 3 ON:
Switching threshold 3 OFF:
min. 88.0 V DC/88.0 V AC
max. 44.0 V DC/44.0 V AC
Un $=230 \mathrm{~V}$ AC/DC:
Switching threshold 4 ON:
Switching threshold 4 OFF
min. 184 V DC/184 V AC
max. 92 V DC/92 V AC
Terminals:
Screw-type terminals

## Binary Output Relays

Continuous current:
Max. Switch-on current:

Max. breaking current:

Max. switching voltage:
Switching capacity:
Contact type:
Terminals:

5 A AC/DC
25 A AC/DC for 4 s
$48 \mathrm{~W}(\mathrm{VA})$ at $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$
30 A / 230 Vac according to ANSI IEEE Std C37.90-2005
30 A / 250 Vdc according to ANSI IEEE Std C37.90-2005
5 A AC up to 240 V AC
4 A AC at 230 V and $\cos \phi=0,4$
5 A DC up to 30 V (resistive)
0.3 A DC at 250 V (resistive)
$0,1 \mathrm{~A} D C$ at 220 V and $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$
250 V AC/250 V DC
3000 VA
1 changeover contact or normally open or normally closed
Screw-type terminals

## Supervision Contact (SC)

Continuous current::
Max. Switch-on current:
Max. breaking current:

Max. switching voltage:
Switching capacity:
Contact type:
Terminals:

5 A AC/DC
15 A AC/DC for 4 s
5 A AC up to 250 V AC
5 A DC up to 30 V (resistive)
0.25 A DC at 250 V (resistive)

250 V AC/250 V DC
1250 VA
1 changeover contact
Screw-type terminals

## Time Synchronization IRIG

Nominal input voltage:
Connection:

5 V
Screw-type terminals (twisted pair)

Slave
9-pole D-Sub socket
(external terminating resistors/in D-Sub) or 6 screw-clamping terminals RM 3.5 mm ( 138 MIL ) (terminating resistors internal)

In case that the RS485 interface is realized via terminals, the communication cable has to be shielded.

## Fibre Optic*

| Master/Slave: | Slave |
| :--- | :--- |
| Connection: | ST-Plug |
| Wavelength | 820 nm |

## Optical Fast Ethernet*

| Connection: | LC-Plug |
| :--- | :--- |
| Wavelength: | 1300 nm |
| Fiber: | $62.5 / 125$ or $50 / 125 \mu \mathrm{~m}$ multimode |

## URTD-Interface*

Connection: Versatile Link
*availability depends on device

## Boot phase

After switching on the power supply the protection will be available in approximately 32 seconds. After approximately 80 seconds the boot phase is completed ( HMI and Communication initialized).

## Servicing and Maintenance

Within the scope of servicing and maintenance following checks of the unit hardware have to be conducted:

| Component | Step | Interval/How often? |
| :---: | :---: | :---: |
| Output Relays | Please check the Output Relays via Test menu Force/Disarm (please see chapter Service) | Each 1-4 years, according to ambience conditions. |
| Digital Inputs | Please supply a voltage to the Digital Inputs and control if the appropriate status signal appears. | Each 1-4 years, according to ambience conditions. |
| Current plugs and Current measurements | Please supply testing current to the Current measurement inputs and control the displayed measure values from the unit. | Each 1-4 years, according to ambience conditions. |
| Voltage plugs and Voltage measurements | Please supply testing current to the Voltage measurement inputs and control the displayed measure values from the unit. | Each 1-4 years, according to ambience conditions. |
| Analog Inputs | Please feed analog signals into the measurement inputs and check if the displayed measure values match. | Each 1-4 years, according to ambience conditions. |
| Analog Outputs | Please check the Analog Outputs via Test menu Force/Disarm (please see chapter Service) | Each 1-4 years, according to ambience conditions. |
| Battery | Readout the clock of the unit. <br> Switch of the unit de-energized for a short moment (>20s). <br> Reset the unit. <br> Please check if the clock ran onwards correctly. | Generally after 10 years at the earliest. <br> Exchange by manufacturer. <br> Advice, the battery serves as buffering of the clock (real time clock). <br> There's no impact of the functionality of the unit if the battery breaks down in addition to the buffering of the clock while the unit is in de-energized condition. |
| Self-monitoring contact | Switch of the auxiliary supply of the unit. <br> The Selt-monitoring contact has to dropout now. <br> Please switch on the auxiliary supply again. | Each 1-4 years, according to ambience conditions. |
| Mechanical mounting of the unit of the cabinet door | Check the torque related to the specification of the Installation chapter. | With each maintenance or yearly. |
| Torque of all cable connections | Check the torque related to the specification of the Installation chapter which describes the hardware modules. | With each maintenance or yearly. |

We recommend to excecute an protection test after each 4 years period. This period can be extended to 6 years if a function test is excecuted latest each 3 years.

## Standards

## Approvals

■ UL- File No.: E217753
■ CSA File No.: 251990**
■ CEI 0-16* (Tested by EuroTest Laboratori S.r.I, Italy)*

- BDEW Certified (FGW TR3/ FGW TR8/ Q-U-Schutz)**

■ KEMA***

- EAC
* = applies to MRU4
** = applies to MCA4
*** $=$ applies to (MRDT4, MCA4, MRA4, MRI4, MRU4)


## Design Standards

| Generic standard | EN 61000-6-2 , 2005 <br> Product standard <br> EN 61000-6-3, 2006 <br>  <br> IEC 60255-1; 2009 <br> EN 50255-27, 2013 <br> UL 508 (Industrial Control Equipment), 2005 <br> CSA C22.2 No. 14-95 (Industrial Control Equipment), 1995 <br> ANSI C37.90, 2005 |
| :--- | :--- |

## High Voltage Tests

High frequency interference test

IEC 60255-22-1
IEEE C37.90.1
IEC 61000-4-18
class 3

Insulation voltage test
IEC 60255-27 (10.5.3.2)
IEC 60255-5
EN 50178

Impulse voltage test
IEC 60255-27 (10.5.3.1)
IEC 60255-5

Insulation resistance test
IEC 60255-27 (10.5.3.3)
EN 50178

All circuits to other circuits and exposed 2.5 kV (eff.) $/ 50 \mathrm{~Hz}, 1 \mathrm{~min}$. conductive parts

Except interfaces
and Voltage measuring input
3 kV (eff.)/50 Hz , 1 min .
Within one circuit $\quad 1 \mathrm{kV}, 2 \mathrm{~s}$

Circuit to earth
$2.5 \mathrm{kV}, 2 \mathrm{~s}$

Circuit to circuit
$2.5 \mathrm{kV}, 2 \mathrm{~s}$
$1,5 \mathrm{kV}$ DC , 1 min .
$5 \mathrm{kV} / 0.5 \mathrm{~J}, 1.2 / 50 \mu \mathrm{~s}$

| Within one circuit | 500 V DC , 5s |
| :--- | :--- |
| Circuit to circuit | 500 V DC , 5 s |

500V DC , 5s

## EMC Immunity Tests

| Fast transient disturbance immunity test (Burst) |  |  |
| :---: | :---: | :---: |
| IEC 60255-22-4 | Power supply, mains inputs | $\pm 4 \mathrm{kV}, 2.5 \mathrm{kHz}$ |
| IEC 61000-4-4 |  |  |
| class 4 | Other in- and outputs | $\pm 2 \mathrm{kV}, 5 \mathrm{kHz}$ |
| Surge immunity test (Surge) |  |  |
| IEC 60255-22-5 | Within one circuit | 2 kV |
| IEC 61000-4-5 |  |  |
| class 4 | Circuit to earth | 4 kV |
| class 3 | Communication cables to earth | 2 kV |
| Electrical discharge immunity test (ESD) |  |  |
| IEC 60255-22-2 IEC 61000-4-2 class 3 | Air discharge | 8 kV |
|  | Contact discharge | 6 kV |
| Radiated radio-frequency electromagnetic field immunity test |  |  |
| IEC 60255-22-3 | $26 \mathrm{MHz}-80 \mathrm{MHz}$ | $10 \mathrm{~V} / \mathrm{m}$ |
| IEC 61000-4-3 | $80 \mathrm{MHz}-1 \mathrm{GHz}$ | $35 \mathrm{~V} / \mathrm{m}$ |
|  | $1 \mathrm{GHz}-3 \mathrm{GHz}$ | $10 \mathrm{~V} / \mathrm{m}$ |
| Immunity to conducted disturbances induced by radio frequency fields |  |  |
| IEC 61000-4-6 class 3 | $150 \mathrm{kHz}-80 \mathrm{MHz}$ | 10 V |
| Power frequency magnetic field immunity test |  |  |
| IEC 61000-4-8 | continues | $30 \mathrm{~A} / \mathrm{m}$ |
| class 4 | 3 sec | 300 A/m |

## EMC Emission Tests

## Radio interference suppression test

| IEC/CISPR22 | $150 \mathrm{kHz}-30 \mathrm{MHz}$ | Limit value class B |
| :--- | :--- | :--- |
| IEC60255-26 |  |  |
| DIN EN 55022 |  |  |

Radio interference radiation test
IEC/CISPR22
$30 \mathrm{MHz}-1 \mathrm{GHz}$
Limit value class B
IEC60255-25
DIN EN 55022

## Environmental Tests

## Classification: <br> IEC 60068-1

IEC 60721-3-1
IEC 60721-3-2
IEC 60721-3-3

Test Ad: Cold
IEC 60068-2-1
st Bd: Dry Heat
IEC 60068-2-2

Climatic 20/060/56
classification

Classification of ambient conditions (Storage)
Classification of ambient conditions (Transportation) Classification of ambient conditions (Stationary use at weather protected locations)

1K5/1B1/1C1L/1S1/1M2 but min. $-30^{\circ} \mathrm{C}$ 2K2/2B1/2C1/2S1/2M2 but min. $-30^{\circ} \mathrm{C}$ 3K6/3B1/3C1/3S1/3M2 but min. $-20^{\circ} \mathrm{C} /$ max $+60^{\circ} \mathrm{C}$

| Temperature | $-20^{\circ} \mathrm{C}$ |
| :--- | :--- |
| test duration | 16 h |

Test Db: Damp Heat (cyclic)
IEC 60068-2-30

| Temperature | $60^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Relative humidity | $95 \%$ |
| Cycles $(12+12$-hour $)$ | 2 |

## Environmental Tests

Test Cab: Damp Heat (permanent)

| IEC $60255(6.12 .3 .6)$ | Temperature | $60^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |
| IEC 60068-2-78 | Relative humidity | $95 \%$ |
|  | test duration | 56 days |

Test Nb:Temperature Change

| IEC 60255 (6.12.3.5) | Temperature |
| :--- | :--- |
| IEC 60068-2-14 | cycle |

test duration

Test BD: Dry Heat Transport and storage test
IEC 60255 (6.12.3.3) Temperature $70^{\circ} \mathrm{C}$
IEC 60068-2-2 test duration
16 h

Test AB: Cold Transport and storage test
IEC 60255-1 (6.12.3.4) Temperature $-30^{\circ} \mathrm{C}$
IEC 60068-2-1 test duration 16 h

## Mechanical Tests

Test Fc: Vibration response test

| IEC 60068-2-6 | $(10 \mathrm{~Hz}-59 \mathrm{~Hz})$ | 0.035 mm |
| :--- | :--- | :--- |
| IEC 60255-21-1 | Displacement |  |
| class 1 | $(59 \mathrm{~Hz}-150 \mathrm{~Hz})$ | $0,5 \mathrm{gn}$ |
|  | Acceleration |  |
|  | Number of cycles in each axis | 1 |

Test Fc: Vibration endurance test

| IEC $60068-2-6$ | $(10 \mathrm{~Hz}-150 \mathrm{~Hz})$ | 1.0 gn |
| :--- | :--- | :--- |
| IEC $60255-21-1$ | Acceleration |  |
| class 1 | Number of cycles in each axis | 20 |

Test Ea: Shock tests
IEC 60068-2-27 Shock response test
IEC 60255-21-2
class 1
Shock resistance test
$5 \mathrm{gn}, 11 \mathrm{~ms}, 3$ impulses in each direction
$15 \mathrm{gn}, 11 \mathrm{~ms}, 3$ impulses in each direction

Test Eb: Shockendurance test
IEC 60068-2-29 Shock endurance tes
IEC 60255-21-2
class 1

Test Fe: Earthquake test
IEC 60068-3-3
IEC 60255-21-3
class 2

Single axis earthquake vibration test
$1-9 \mathrm{~Hz}$ horizontal: 7.5 mm , $1-9 \mathrm{~Hz}$ vertical $: 3.5 \mathrm{~mm}$, 1 sweep per axis
$9-35 \mathrm{~Hz}$ horizontal: 2 gn ,
$9-35 \mathrm{~Hz}$ vertical : 1 gn , 1 sweep per axis

## General Lists

## Assignment List

The »ASSIGNMENT LIST« below summarizes all module outputs (signals) and inputs (e.g. states of the assignments).

| Name | Description |
| :---: | :---: |
| --- | No assignment |
| Prot.available | Signal: Protection is available |
| Prot.active | Signal: active |
| Prot.ExBlo | Signal: External Blocking |
| Prot.Blo TripCmd | Signal: Trip Command blocked |
| Prot.ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Prot.Alarm L1 | Signal: General-Alarm L1 |
| Prot.Alarm L2 | Signal: General-Alarm L2 |
| Prot.Alarm L3 | Signal: General-Alarm L3 |
| Prot.Alarm G | Signal: General-Alarm - Earth fault |
| Prot.Alarm | Signal: General Alarm |
| Prot.Trip L1 | Signal: General Trip L1 |
| Prot.Trip L2 | Signal: General Trip L2 |
| Prot.Trip L3 | Signal: General Trip L3 |
| Prot.Trip G | Signal: General Trip Ground fault |
| Prot.Trip | Signal: General Trip |
| Prot.Res Fault a Mains No | Signal: Resetting of fault number and number of grid faults. |
| Prot.ExBlo1-I | Module input state: External blocking1 |
| Prot.ExBlo2-I | Module input state: External blocking2 |
| Prot.ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| Ctrl.Local | Switching Authority: Local |
| Ctrl.Remote | Switching Authority: Remote |
| Ctrl.Nonlnterl | Non-Interlocking is active |
| Ctrl.SG Indeterm | Minimum one Switchgear is moving (Position cannot be determined). |
| Ctrl.SG Disturb | Minimum one Switchgear is disturbed. |
| Ctrl.Nonlnterl-I | Non-Interlocking |
| SG[1].SI SingleContactInd | Signal: The Position of the Switchgear is detected by one auxiliary contact (pole) only. Thus indeterminate and disturbed Positions cannot be detected. |
| SG[1].Pos not ON | Signal: Pos not ON |
| SG[1].Pos ON | Signal: Circuit Breaker is in ON-Position |
| SG[1].Pos OFF | Signal: Circuit Breaker is in OFF-Position |
| SG[1].Pos Indeterm | Signal: Circuit Breaker is in Indeterminate Position |
| SG[1].Pos Disturb | Signal: Circuit Breaker Disturbed - Undefined Breaker Position. The Position Indicators contradict themselves. After expiring of a supervision timer this signal becomes true. |
| SG[1].Ready | Signal: Circuit breaker is ready for operation. |


| Name | Description |
| :---: | :---: |
| SG[1].t-Dwell | Signal: Dwell time |
| SG[1].Removed | Signal: The withdrawable circuit breaker is Removed |
| SG[1].Interl ON | Signal: One or more IL_On inputs are active. |
| SG[1].Interl OFF | Signal: One or more IL_Off inputs are active. |
| SG[1].CES succesf | Signal: Command Execution Supervision: Switching command executed successfully. |
| SG[1].CES Disturbed | Signal: Command Execution Supervision: Switching Command unsuccessful. Switchgear in disturbed position. |
| SG[1].CES Fail TripCmd | Signal: Command Execution Supervision: Command execution failed because trip command is pending. |
| SG[1].CES SwitchDir | Signal: Command Execution Supervision respectively Switching Direction Control: This signal becomes true, if a switch command is issued even though the switchgear is already in the requested position. Example: A switchgear that is already OFF should be switched OFF again (doubly). The same applies to CLOSE commands. |
| SG[1].CES ON d OFF | Signal: Command Execution Supervision: On Command during a pending OFF Command. |
| SG[1].CES SG not ready | Signal: Command Execution Supervision: Switchgear not ready |
| SG[1].CES Fiel Interl | Signal: Command Execution Supervision: Switching Command not executed because of field interlocking. |
| SG[1].CES SyncTimeout | Signal: Command Execution Supervision: Switching Command not executed. No Synchronization signal while t-sync was running. |
| SG[1].CES SG removed | Signal: Command Execution Supervision: Switching Command unsuccessful, Switchgear removed. |
| SG[1].Prot ON | Signal: ON Command issued by the Prot module |
| SG[1].TripCmd | Signal: Trip Command |
| SG[1].Ack TripCmd | Signal: Acknowledge Trip Command |
| SG[1].ON incl Prot ON | Signal: The ON Command includes the ON Command issued by the Protection module. |
| SG[1].OFF incl TripCmd | Signal: The OFF Command includes the OFF Command issued by the Protection module. |
| SG[1].Position Ind manipul | Signal: Position Indicators faked |
| SG[1].SGwear Slow SG | Signal: Alarm, the circuit breaker (load-break switch) becomes slower |
| SG[1].Res SGwear SI SG | Signal: Resetting the slow Switchgear Alarm |
| SG[1].ON Cmd | Signal: ON Command issued to the switchgear. Depending on the setting the signal may include the ON command of the Prot module. |
| SG[1].OFF Cmd | Signal: OFF Command issued to the switchgear. Depending on the setting the signal may include the OFF command of the Prot module. |
| SG[1].ON Cmd manual | Signal: ON Cmd manual |
| SG[1].OFF Cmd manual | Signal: OFF Cmd manual |
| SG[1].Sync ON request | Signal: Synchronous ON request |
| SG[1].Aux ON-I | Module Input State: Position indicator/check-back signal of the CB (52a) |
| SG[1].Aux OFF-I | Module input state: Position indicator/check-back signal of the CB (52b) |
| SG[1].Ready-I | Module input state: CB ready |
| SG[1].Sys-in-Sync-I | State of the module input: This signals has to become true within the synchronization time. If not, switching is unsuccessful. |
| SG[1].Removed-I | State of the module input: The withdrawable circuit breaker is Removed |
| SG[1].Ack TripCmd-I | State of the module input: Acknowledgement Signal (only for automatic acknowledgement) Module input signal |
| SG[1].Interl ON1-I | State of the module input: Interlocking of the ON command |
| SG[1].Interl ON2-I | State of the module input: Interlocking of the ON command |


| Name | Description |
| :--- | :--- |
| SG[1].Interl ON3-I | State of the module input: Interlocking of the ON command |
| SG[1].Interl OFF1-I | State of the module input: Interlocking of the OFF command |
| SG[1].Interl OFF2-I | State of the module input: Interlocking of the OFF command |
| SG[1].Interl OFF3-I | State of the module input: Interlocking of the OFF command |
| SG[1].SCmd ON-I | State of the module input: Switching ON Command, e.g. the state of the Logics or the state of the digital <br> input |
| SG[1].SCmd OFF-I | State of the module input: Switching OFF Command, e.g. the state of the Logics or the state of the digital <br> input |
| SG[1].Operations Alarm | Signal: Service Alarm, too many Operations |
| SG[1].Isum Intr trip: IL1 | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL1 |
| SG[1].Isum Intr trip: IL2 | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL2 |
| SG[1].Isum Intr trip: IL3 | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL3 |
| SG[1].Isum Intr trip | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded in at least one <br> phase. |
| SG[1].Res TripCmd Cr | Signal: Resetting of the Counter: total number of trip commands |
| SG[1].Res Sum trip | Signal: Reset summation of the tripping currents |
| SG[1].WearLevel Alarm | Signal: Threshold for the Alarm |
| SG[1].WearLevel Lockout | Signal: Threshold for the Lockout Level |
| SG[2].CES ON d OFF | Signal: Command Execution Supervision: On Command during a pending OFF Command. |
| Example: A switchgear that is already OFF should be switched OFF again (doubly). The same applies to |  |
| CLOSE commands. |  |


| Name | Description |
| :--- | :--- |
| SG[2].CES SG not ready | Signal: Command Execution Supervision: Switchgear not ready |
| SG[2].CES Fiel Interl | Signal: Command Execution Supervision: Switching Command not executed because of field interlocking. |
| SG[2].CES SyncTimeout | Signal: Command Execution Supervision: Switching Command not executed. No Synchronization signal <br> while t-sync was running. |
| SG[2].CES SG removed | Signal: Command Execution Supervision: Switching Command unsuccessful, Switchgear removed. |
| SG[2].Prot ON | Signal: ON Command issued by the Prot module |
| SG[2].TripCmd | Signal: Trip Command |
| SG[2].Ack TripCmd | Signal: Acknowledge Trip Command |
| SG[2].ON incl Prot ON | Signal: The ON Command includes the ON Command issued by the Protection module. |
| SG[2].OFF incl TripCmd | Signal: The OFF Command includes the OFF Command issued by the Protection module. |
| SG[2].Position Ind manipul | Signal: Position Indicators faked |
| SG[2].SGwear Slow SG | Signal: Alarm, the circuit breaker (load-break switch) becomes slower |
| SG[2].Res SGwear SI SG | Signal: Resetting the slow Switchgear Alarm |
| SG[2].ON Cmd | Signal: ON Command issued to the switchgear. Depending on the setting the signal may include the ON <br> command of the Prot module. |
| SG[2].OFF Cmd | Signal: OFF Command issued to the switchgear. Depending on the setting the signal may include the OFF <br> command of the Prot module. |
| SG[2].Operations Alarm | Signal: Service Alarm, too many Operations |
| SG[2].Isum Intr trip: IL1 | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL1 |
| SG[2].Isum Intr trip: IL2 | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded: IL2 |
| SG[2].Isum Intr trip: IL3 | Station of the interrupting (tripping) currents exceeded: IL3 |
| input |  |


| Name | Description |
| :---: | :---: |
| SG[2].Isum Intr trip | Signal: Maximum permissible Summation of the interrupting (tripping) currents exceeded in at least one phase. |
| SG[2].Res TripCmd Cr | Signal: Resetting of the Counter: total number of trip commands |
| SG[2].Res Sum trip | Signal: Reset summation of the tripping currents |
| SG[2].WearLevel Alarm | Signal: Threshold for the Alarm |
| SG[2].WearLevel Lockout | Signal: Threshold for the Lockout Level |
| SG[2].Res SGwear Curve | Signal: Reset of the Circuit Breaker (load-break switch) Wear maintenance curve. |
| SG[2]. Isum Intr ph Alm | Signal: Alarm, the per hour Sum (Limit) of interrupting currents has been exceeded. |
| SG[2].Res Isum Intr ph Alm | Signal: Reset of the Alarm, "the per hour Sum (Limit) of interrupting currents has been exceeded". |
| Id.active | Signal: active |
| Id.ExBlo | Signal: External Blocking |
| Id.Blo TripCmd | Signal: Trip Command blocked |
| Id.ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Id.Alarm L1 | Signal: Alarm System Phase L1 |
| Id.Alarm L2 | Signal: Alarm System Phase L2 |
| Id.Alarm L3 | Signal: Alarm System L3 |
| Id.Alarm | Signal: Alarm |
| Id. Trip L1 | Signal: Trip System Phase L1 |
| Id. Trip L2 | Signal: Trip System Phase L2 |
| Id.Trip L3 | Signal: Trip System Phase L3 |
| Id.Trip | Signal: Trip |
| Id. TripCmd | Signal: Trip Command |
| Id.Blo H2 | Signal: Blocked by Harmonic:2 |
| Id. Blo H4 | Signal: Blocked by Harmonic:4 |
| Id. Blo H 5 | Signal: Blocked by Harmonic:5 |
| Id. $\mathrm{H} 2, \mathrm{H} 4, \mathrm{H} 5 \mathrm{Blo}$ | Signal: Blocked by Harmonics (Inhibit) |
| Id.Slope Blo | Signal: Differential protection was blocked by current transformer saturation. The tripping characteristic was lifted because of current transformer saturation. |
| Id. Transient | Signal: Temporary stabilization of the differential protection afterwards the transformer is being engergized. |
| Id.Restraining | Signal: Restraining of the differential protection by means of rising the tripping curve. |
| Id.Slope Blo: L1 | Slope Blo: L1 |
| Id.Slope Blo: L2 | Slope Blo: L2 |
| Id.Slope Blo: L3 | Slope Blo: L3 |
| Id.Restraining: L1 | Restraining: L1 |
| Id.Restraining: L2 | Restraining: L2 |
| Id.Restraining: L3 | Restraining: L3 |
| Id.IH2 Blo L1 | Signal:Phase L1: Blocking of the Phase Differential Protection because of second Harmonic. |
| Id.IH2 Blo L2 | Signal:Phase L2: Blocking of the Phase Differential Protection because of second Harmonic. |
| Id.IH2 Blo L3 | Signal:Phase L3: Blocking of the Phase Differential Protection because of second Harmonic. |
| Id.IH4 Blo L1 | Signal:Phase L1: Blocking of the Phase Differential Protection because of fourth Harmonic. |

General Lists

| Name | Description |
| :---: | :---: |
| Id.IH4 Blo L2 | Signal:Phase L2: Blocking of the Phase Differential Protection because of fourth Harmonic. |
| Id.IH4 Blo L3 | Signal:Phase L3: Blocking of the Phase Differential Protection because of fourth Harmonic. |
| Id.IH5 Blo L1 | Signal:Phase L1: Blocking of the Phase Differential Protection because of fifth Harmonic. |
| Id.IH5 Blo L2 | Signal:Phase L2: Blocking of the Phase Differential Protection because of fifth Harmonic. |
| Id.IH5 Blo L3 | Signal:Phase L3: Blocking of the Phase Differential Protection because of fifth Harmonic. |
| Id.ExBlo1-I | Module input state: External blocking1 |
| Id.ExBlo2-I | Module input state: External blocking2 |
| Id.ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IdH.active | Signal: active |
| IdH.ExBlo | Signal: External Blocking |
| IdH.Blo TripCmd | Signal: Trip Command blocked |
| IdH.ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| IdH.Alarm L1 | Signal: Alarm System Phase L1 |
| IdH.Alarm L2 | Signal: Alarm System Phase L2 |
| IdH.Alarm L3 | Signal: Alarm System L3 |
| IdH.Alarm | Signal: Alarm |
| IdH. Trip L1 | Signal: Trip System Phase L1 |
| IdH. Trip L2 | Signal: Trip System Phase L2 |
| IdH. Trip L3 | Signal: Trip System Phase L3 |
| IdH.Trip | Signal: Trip |
| IdH.TripCmd | Signal: Trip Command |
| IdH.ExBlo1-I | Module input state: External blocking1 |
| IdH.ExBlo2-I | Module input state: External blocking2 |
| IdH.ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IdG[1].active | Signal: active |
| IdG[1].ExBlo | Signal: External Blocking |
| IdG[1].Blo TripCmd | Signal: Trip Command blocked |
| IdG[1].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| IdG[1].Alarm | Signal: Alarm |
| IdG[1].Trip | Signal: Trip |
| IdG[1].TripCmd | Signal: Trip Command |
| IdG[1].ExBlo1-I | Module input state: External blocking1 |
| IdG[1].ExBlo2-I | Module input state: External blocking2 |
| IdG[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IdGH[1].active | Signal: active |
| IdGH[1].ExBlo | Signal: External Blocking |
| IdGH[1].Blo TripCmd | Signal: Trip Command blocked |
| IdGH[1].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| IdGH[1].Alarm | Signal: Alarm |
| IdGH[1].Trip | Signal: Trip |


| Name | Description |
| :---: | :---: |
| IdGH[1].TripCmd | Signal: Trip Command |
| IdGH[1].ExBlo1-I | Module input state: External blocking1 |
| IdGH[1].ExBlo2-I | Module input state: External blocking2 |
| IdGH[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IdG[2].active | Signal: active |
| IdG[2].ExBlo | Signal: External Blocking |
| IdG[2].Blo TripCmd | Signal: Trip Command blocked |
| IdG[2].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| IdG[2].Alarm | Signal: Alarm |
| IdG[2]. Trip | Signal: Trip |
| IdG[2].TripCmd | Signal: Trip Command |
| IdG[2].ExBlo1-I | Module input state: External blocking1 |
| IdG[2].ExBlo2-I | Module input state: External blocking2 |
| IdG[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IdGH[2].active | Signal: active |
| IdGH[2].ExBlo | Signal: External Blocking |
| IdGH[2].Blo TripCmd | Signal: Trip Command blocked |
| IdGH[2].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| IdGH[2].Alarm | Signal: Alarm |
| IdGH[2].Trip | Signal: Trip |
| IdGH[2].TripCmd | Signal: Trip Command |
| IdGH[2].ExBlo1-I | Module input state: External blocking1 |
| IdGH[2].ExBlo2-I | Module input state: External blocking2 |
| IdGH[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| [[1].active | Signal: active |
| [[1].ExBlo | Signal: External Blocking |
| I[1].Ex rev Interl | Signal: External reverse Interlocking |
| [[1].Blo TripCmd | Signal: Trip Command blocked |
| I[1].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| I[1].IH2 Blo | Signal: Blocking the trip command by an inrush |
| I[1].Alarm L1 | Signal: Alarm L1 |
| I[1].Alarm L2 | Signal: Alarm L2 |
| I[1].Alarm L3 | Signal: Alarm L3 |
| I[1].Alarm | Signal: Alarm |
| I[1].Trip L1 | Signal: General Trip Phase L1 |
| I[1].Trip L2 | Signal: General Trip Phase L2 |
| I[1].Trip L3 | Signal: General Trip Phase L3 |
| I[1].Trip | Signal: Trip |
| [[1].TripCmd | Signal: Trip Command |
| [[1].DefaultSet | Signal: Default Parameter Set |

General Lists

| Name | Description |
| :---: | :---: |
| [[1].AdaptSet 1 | Signal: Adaptive Parameter 1 |
| [[1].AdaptSet 2 | Signal: Adaptive Parameter 2 |
| [[1].AdaptSet 3 | Signal: Adaptive Parameter 3 |
| [[1].AdaptSet 4 | Signal: Adaptive Parameter 4 |
| I[1].ExBlo1-I | Module input state: External blocking1 |
| [ 1 ].ExBlo2-I | Module input state: External blocking2 |
| [[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I[1].Ex rev Interl-I | Module input state: External reverse interlocking |
| I[1].AdaptSet1-I | Module input state: Adaptive Parameter1 |
| I[1].AdaptSet2-I | Module input state: Adaptive Parameter2 |
| I[1].AdaptSet3-I | Module input state: Adaptive Parameter3 |
| I[1].AdaptSet4-I | Module input state: Adaptive Parameter4 |
| [[2].active | Signal: active |
| [[2].ExBlo | Signal: External Blocking |
| [[2].Ex rev Interl | Signal: External reverse Interlocking |
| I[2].Blo TripCmd | Signal: Trip Command blocked |
| [[2].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| I[2].IH2 Blo | Signal: Blocking the trip command by an inrush |
| [ [2].Alarm L1 | Signal: Alarm L1 |
| I[2].Alarm L2 | Signal: Alarm L2 |
| I[2].Alarm L3 | Signal: Alarm L3 |
| [[2].Alarm | Signal: Alarm |
| I[2].Trip L1 | Signal: General Trip Phase L1 |
| I[2].Trip L2 | Signal: General Trip Phase L2 |
| I[2].Trip L3 | Signal: General Trip Phase L3 |
| 1[2]. Trip | Signal: Trip |
| 1[2].TripCmd | Signal: Trip Command |
| I[2].DefaultSet | Signal: Default Parameter Set |
| I[2].AdaptSet 1 | Signal: Adaptive Parameter 1 |
| I[2].AdaptSet 2 | Signal: Adaptive Parameter 2 |
| I[2].AdaptSet 3 | Signal: Adaptive Parameter 3 |
| [[2].AdaptSet 4 | Signal: Adaptive Parameter 4 |
| I[2].ExBlo1-I | Module input state: External blocking1 |
| I[2].ExBlo2-I | Module input state: External blocking2 |
| I[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I[2].Ex rev Interl-I | Module input state: External reverse interlocking |
| [[2].AdaptSet1-\| | Module input state: Adaptive Parameter1 |
| [[2].AdaptSet2-I | Module input state: Adaptive Parameter2 |
| [[2].AdaptSet3-I | Module input state: Adaptive Parameter3 |
| [[2].AdaptSet4-I | Module input state: Adaptive Parameter4 |


| Name | Description |
| :---: | :---: |
| [[3].active | Signal: active |
| [[3].ExBlo | Signal: External Blocking |
| I[3].Ex rev Interl | Signal: External reverse Interlocking |
| I[3].Blo TripCmd | Signal: Trip Command blocked |
| I[3].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| I[3].IH2 Blo | Signal: Blocking the trip command by an inrush |
| [[3].Alarm L1 | Signal: Alarm L1 |
| I[3].Alarm L2 | Signal: Alarm L2 |
| I[3].Alarm L3 | Signal: Alarm L3 |
| [[3].Alarm | Signal: Alarm |
| I[3].Trip L1 | Signal: General Trip Phase L1 |
| I[3].Trip L2 | Signal: General Trip Phase L2 |
| I[3]. Trip L3 | Signal: General Trip Phase L3 |
| I[3]. Trip | Signal: Trip |
| [[3].TripCmd | Signal: Trip Command |
| [[3].DefaultSet | Signal: Default Parameter Set |
| 1[3].AdaptSet 1 | Signal: Adaptive Parameter 1 |
| [[3].AdaptSet 2 | Signal: Adaptive Parameter 2 |
| [[3].AdaptSet 3 | Signal: Adaptive Parameter 3 |
| I[3].AdaptSet 4 | Signal: Adaptive Parameter 4 |
| [[3].ExBlo1-I | Module input state: External blocking1 |
| I[3].ExBlo2-I | Module input state: External blocking2 |
| I[3].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I[3].Ex rev Interl-I | Module input state: External reverse interlocking |
| [[3].AdaptSet1-\| | Module input state: Adaptive Parameter1 |
| [[3].AdaptSet2-I | Module input state: Adaptive Parameter2 |
| [[3].AdaptSet3-I | Module input state: Adaptive Parameter3 |
| [[3].AdaptSet4-I | Module input state: Adaptive Parameter4 |
| I[4].active | Signal: active |
| 1[4].ExBlo | Signal: External Blocking |
| I[4].Ex rev Interl | Signal: External reverse Interlocking |
| I[4].Blo TripCmd | Signal: Trip Command blocked |
| I[4].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| I[4].IH2 Blo | Signal: Blocking the trip command by an inrush |
| I[4].Alarm L1 | Signal: Alarm L1 |
| I[4].Alarm L2 | Signal: Alarm L2 |
| I[4].Alarm L3 | Signal: Alarm L3 |
| 1[4].Alarm | Signal: Alarm |
| I[4].Trip L1 | Signal: General Trip Phase L1 |
| I[4].Trip L2 | Signal: General Trip Phase L2 |


| Name | Description |
| :---: | :---: |
| 1[4].Trip L3 | Signal: General Trip Phase L3 |
| I[4].Trip | Signal: Trip |
| I[4].TripCmd | Signal: Trip Command |
| [[4].DefaultSet | Signal: Default Parameter Set |
| [[4].AdaptSet 1 | Signal: Adaptive Parameter 1 |
| [[4].AdaptSet 2 | Signal: Adaptive Parameter 2 |
| [[4].AdaptSet 3 | Signal: Adaptive Parameter 3 |
| [[4].AdaptSet 4 | Signal: Adaptive Parameter 4 |
| I[4].ExBlo1-I | Module input state: External blocking1 |
| I[4].ExBlo2-I | Module input state: External blocking2 |
| [[4].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I[4].Ex rev Interl-I | Module input state: External reverse interlocking |
| I[4].AdaptSet1-I | Module input state: Adaptive Parameter1 |
| I[4].AdaptSet2-I | Module input state: Adaptive Parameter2 |
| I[4].AdaptSet3-I | Module input state: Adaptive Parameter3 |
| I[4].AdaptSet4-I | Module input state: Adaptive Parameter4 |
| [[5].active | Signal: active |
| [[5].ExBlo | Signal: External Blocking |
| [[5].Ex rev Interl | Signal: External reverse Interlocking |
| I[5].Blo TripCmd | Signal: Trip Command blocked |
| I[5].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| I[5].IH2 Blo | Signal: Blocking the trip command by an inrush |
| [[5].Alarm L1 | Signal: Alarm L1 |
| [[5].Alarm L2 | Signal: Alarm L2 |
| [[5].Alarm L3 | Signal: Alarm L3 |
| [[5].Alarm | Signal: Alarm |
| I[5].Trip L1 | Signal: General Trip Phase L1 |
| I[5].Trip L2 | Signal: General Trip Phase L2 |
| I[5]. Trip L3 | Signal: General Trip Phase L3 |
| I[5]. Trip | Signal: Trip |
| [[5].TripCmd | Signal: Trip Command |
| [[5].DefaultSet | Signal: Default Parameter Set |
| [[5].AdaptSet 1 | Signal: Adaptive Parameter 1 |
| [[5].AdaptSet 2 | Signal: Adaptive Parameter 2 |
| [[5].AdaptSet 3 | Signal: Adaptive Parameter 3 |
| [[5].AdaptSet 4 | Signal: Adaptive Parameter 4 |
| I[5].ExBlo1-I | Module input state: External blocking1 |
| I[5].ExBlo2-I | Module input state: External blocking2 |
| I[5].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| [[5].Ex rev Interl-I | Module input state: External reverse interlocking |


| Name | Description |
| :---: | :---: |
| [[5].AdaptSet1-\| | Module input state: Adaptive Parameter1 |
| [[5].AdaptSet2-I | Module input state: Adaptive Parameter2 |
| [[5].AdaptSet3-I | Module input state: Adaptive Parameter3 |
| [[5].AdaptSet4-\| | Module input state: Adaptive Parameter4 |
| I[6].active | Signal: active |
| I[6].ExBlo | Signal: External Blocking |
| I[6].Ex rev Interl | Signal: External reverse Interlocking |
| I[6].Blo TripCmd | Signal: Trip Command blocked |
| I[6].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| I[6].IH2 Blo | Signal: Blocking the trip command by an inrush |
| I[6].Alarm L1 | Signal: Alarm L1 |
| I[6].Alarm L2 | Signal: Alarm L2 |
| I[6].Alarm L3 | Signal: Alarm L3 |
| I[6].Alarm | Signal: Alarm |
| I[6].Trip L1 | Signal: General Trip Phase L1 |
| I[6].Trip L2 | Signal: General Trip Phase L2 |
| I[6].Trip L3 | Signal: General Trip Phase L3 |
| I[6].Trip | Signal: Trip |
| I[6].TripCmd | Signal: Trip Command |
| I[6].DefaultSet | Signal: Default Parameter Set |
| I[6].AdaptSet 1 | Signal: Adaptive Parameter 1 |
| I[6].AdaptSet 2 | Signal: Adaptive Parameter 2 |
| I[6].AdaptSet 3 | Signal: Adaptive Parameter 3 |
| I[6].AdaptSet 4 | Signal: Adaptive Parameter 4 |
| I[6].ExBlo1-I | Module input state: External blocking1 |
| I[6].ExBlo2-I | Module input state: External blocking2 |
| I[6].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| I[6].Ex rev Interl-I | Module input state: External reverse interlocking |
| I[6].AdaptSet1-I | Module input state: Adaptive Parameter1 |
| I[6].AdaptSet2-I | Module input state: Adaptive Parameter2 |
| I[6].AdaptSet3-I | Module input state: Adaptive Parameter3 |
| I[6].AdaptSet4-I | Module input state: Adaptive Parameter4 |
| IG[1].active | Signal: active |
| IG[1].ExBlo | Signal: External Blocking |
| IG[1].Ex rev Interl | Signal: External reverse Interlocking |
| IG[1].Blo TripCmd | Signal: Trip Command blocked |
| IG[1].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| IG[1].Alarm | Signal: Alarm IG |
| IG[1].Trip | Signal: Trip |
| IG[1].TripCmd | Signal: Trip Command |


| Name | Description |
| :---: | :---: |
| IG[1].IGH2 Blo | Signal: blocked by an inrush |
| IG[1].DefaultSet | Signal: Default Parameter Set |
| IG[1].AdaptSet 1 | Signal: Adaptive Parameter 1 |
| IG[1].AdaptSet 2 | Signal: Adaptive Parameter 2 |
| IG[1].AdaptSet 3 | Signal: Adaptive Parameter 3 |
| IG[1].AdaptSet 4 | Signal: Adaptive Parameter 4 |
| IG[1].ExBlo1-I | Module input state: External blocking1 |
| IG[1].ExBlo2-I | Module input state: External blocking2 |
| IG[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IG[1].Ex rev Interl-I | Module input state: External reverse interlocking |
| IG[1].AdaptSet1-I | Module input state: Adaptive Parameter1 |
| IG[1].AdaptSet2-I | Module input state: Adaptive Parameter2 |
| IG[1].AdaptSet3-I | Module input state: Adaptive Parameter3 |
| IG[1].AdaptSet4-I | Module input state: Adaptive Parameter4 |
| IG[2].active | Signal: active |
| IG[2].ExBlo | Signal: External Blocking |
| IG[2].Ex rev Interl | Signal: External reverse Interlocking |
| IG[2].Blo TripCmd | Signal: Trip Command blocked |
| IG[2].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| IG[2].Alarm | Signal: Alarm IG |
| IG[2]. Trip | Signal: Trip |
| IG[2].TripCmd | Signal: Trip Command |
| IG[2].IGH2 Blo | Signal: blocked by an inrush |
| IG[2].DefaultSet | Signal: Default Parameter Set |
| IG[2].AdaptSet 1 | Signal: Adaptive Parameter 1 |
| IG[2].AdaptSet 2 | Signal: Adaptive Parameter 2 |
| IG[2].AdaptSet 3 | Signal: Adaptive Parameter 3 |
| IG[2].AdaptSet 4 | Signal: Adaptive Parameter 4 |
| IG[2].ExBlo1-I | Module input state: External blocking1 |
| IG[2].ExBlo2-I | Module input state: External blocking2 |
| IG[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IG[2].Ex rev Interl-I | Module input state: External reverse interlocking |
| IG[2].AdaptSet1-I | Module input state: Adaptive Parameter1 |
| IG[2].AdaptSet2-I | Module input state: Adaptive Parameter2 |
| IG[2].AdaptSet3-I | Module input state: Adaptive Parameter3 |
| IG[2].AdaptSet4-I | Module input state: Adaptive Parameter4 |
| IG[3].active | Signal: active |
| IG[3].ExBlo | Signal: External Blocking |
| IG[3].Ex rev Interl | Signal: External reverse Interlocking |
| IG[3].Blo TripCmd | Signal: Trip Command blocked |


| Name | Description |
| :---: | :---: |
| IG[3].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| IG[3].Alarm | Signal: Alarm IG |
| IG[3].Trip | Signal: Trip |
| IG[3].TripCmd | Signal: Trip Command |
| IG[3].IGH2 Blo | Signal: blocked by an inrush |
| IG[3].DefaultSet | Signal: Default Parameter Set |
| IG[3].AdaptSet 1 | Signal: Adaptive Parameter 1 |
| IG[3].AdaptSet 2 | Signal: Adaptive Parameter 2 |
| IG[3].AdaptSet 3 | Signal: Adaptive Parameter 3 |
| IG[3].AdaptSet 4 | Signal: Adaptive Parameter 4 |
| IG[3].ExBlo1-I | Module input state: External blocking1 |
| IG[3].ExBlo2-I | Module input state: External blocking2 |
| IG[3].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IG[3].Ex rev Interl-I | Module input state: External reverse interlocking |
| IG[3].AdaptSet1-I | Module input state: Adaptive Parameter1 |
| IG[3].AdaptSet2-I | Module input state: Adaptive Parameter2 |
| IG[3].AdaptSet3-I | Module input state: Adaptive Parameter3 |
| IG[3].AdaptSet4-I | Module input state: Adaptive Parameter4 |
| IG[4].active | Signal: active |
| IG[4].ExBlo | Signal: External Blocking |
| IG[4].Ex rev Interl | Signal: External reverse Interlocking |
| IG[4].Blo TripCmd | Signal: Trip Command blocked |
| IG[4].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| IG[4].Alarm | Signal: Alarm IG |
| IG[4].Trip | Signal: Trip |
| IG[4].TripCmd | Signal: Trip Command |
| IG[4].IGH2 Blo | Signal: blocked by an inrush |
| IG[4].DefaultSet | Signal: Default Parameter Set |
| IG[4].AdaptSet 1 | Signal: Adaptive Parameter 1 |
| IG[4].AdaptSet 2 | Signal: Adaptive Parameter 2 |
| IG[4].AdaptSet 3 | Signal: Adaptive Parameter 3 |
| IG[4].AdaptSet 4 | Signal: Adaptive Parameter 4 |
| IG[4].ExBlo1-I | Module input state: External blocking1 |
| IG[4].ExBlo2-I | Module input state: External blocking2 |
| IG[4].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IG[4].Ex rev Interl-I | Module input state: External reverse interlocking |
| IG[4].AdaptSet1-I | Module input state: Adaptive Parameter1 |
| IG[4].AdaptSet2-I | Module input state: Adaptive Parameter2 |
| IG[4].AdaptSet3-I | Module input state: Adaptive Parameter3 |
| IG[4].AdaptSet4-I | Module input state: Adaptive Parameter4 |

General Lists

| Name | Description |
| :---: | :---: |
| ThR.active | Signal: active |
| ThR.ExBlo | Signal: External Blocking |
| ThR.Blo TripCmd | Signal: Trip Command blocked |
| ThR.ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| ThR.Alarm | Signal: Alarm Thermal Overload |
| ThR.Trip | Signal: Trip |
| ThR.TripCmd | Signal: Trip Command |
| ThR.Res Thermal Cap | Signal: Resetting Thermal Replica |
| ThR.ExBlo1-I | Module input state: External blocking1 |
| ThR.ExBlo2-I | Module input state: External blocking2 |
| ThR.ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| 12>[1].active | Signal: active |
| 12>[1].ExBlo | Signal: External Blocking |
| 12>[1].Blo TripCmd | Signal: Trip Command blocked |
| 12>[1].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| 12>[1].Alarm | Signal: Alarm Negative Sequence |
| 12>[1].Trip | Signal: Trip |
| 12>[1].TripCmd | Signal: Trip Command |
| I2>[1].ExBlo1-I | Module input state: External blocking1 |
| 12>[1].ExBlo2-I | Module input state: External blocking2 |
| I2>[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| $12>[2]$.active | Signal: active |
| 12>[2].ExBlo | Signal: External Blocking |
| 12>[2].Blo TripCmd | Signal: Trip Command blocked |
| 12>[2].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| 12>[2].Alarm | Signal: Alarm Negative Sequence |
| 12>[2]. Trip | Signal: Trip |
| 12>[2].TripCmd | Signal: Trip Command |
| 12>[2].ExBlo1-I | Module input state: External blocking1 |
| 12>[2].ExBlo2-I | Module input state: External blocking2 |
| I2>[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| IH2[1].active | Signal: active |
| IH2[1].ExBlo | Signal: External Blocking |
| IH2[1].Blo L1 | Signal: Blocked L1 |
| IH2[1].Blo L2 | Signal: Blocked L2 |
| IH2[1].Blo L3 | Signal: Blocked L3 |
| IH2[1].Blo IG meas | Signal: Blocking of the ground (earth) protection module (measured ground current) |
| IH2[1].Blo IG calc | Signal: Blocking of the ground (earth) protection module (calculated ground current) |
| IH2[1].3-ph Blo | Signal: Inrush was detected in at least one phase - trip command blocked. |
| IH2[1].ExBlo1-I | Module input state: External blocking1 |

General Lists

| Name | Description |
| :---: | :---: |
| IH2[1].ExBlo2-I | Module input state: External blocking2 |
| IH2[2].active | Signal: active |
| IH2[2].ExBlo | Signal: External Blocking |
| IH2[2].Blo L1 | Signal: Blocked L1 |
| IH2[2].Blo L2 | Signal: Blocked L2 |
| IH2[2].Blo L3 | Signal: Blocked L3 |
| IH2[2].Blo IG meas | Signal: Blocking of the ground (earth) protection module (measured ground current) |
| IH2[2].Blo IG calc | Signal: Blocking of the ground (earth) protection module (calculated ground current) |
| IH2[2].3-ph Blo | Signal: Inrush was detected in at least one phase - trip command blocked. |
| IH2[2].ExBlo1-I | Module input state: External blocking1 |
| IH2[2].ExBlo2-I | Module input state: External blocking2 |
| SOTF.active | Signal: active |
| SOTF.ExBlo | Signal: External Blocking |
| SOTF.Ex rev Interl | Signal: External reverse Interlocking |
| SOTF.enabled | Signal: Switch Onto Fault enabled. This Signal can be used to modify Overcurrent Protection Settings. |
| SOTF.K | Signal: No Load Current. |
| SOTF.ExBlo1-I | Module input state: External blocking |
| SOTF.ExBlo2-I | Module input state: External blocking |
| SOTF.Ex rev Interl-I | Module input state: External reverse interlocking |
| SOTF.Ext SOTF-I | Module input state: External Switch Onto Fault Alarm |
| CLPU.active | Signal: active |
| CLPU.ExBlo | Signal: External Blocking |
| CLPU.Ex rev Interl | Signal: External reverse Interlocking |
| CLPU.enabled | Signal: Cold Load enabled |
| CLPU.detected | Signal: Cold Load detected |
| CLPU.K | Signal: No Load Current. |
| CLPU.Load Inrush | Signal: Load Inrush |
| CLPU.Settle Time | Signal: Settle Time |
| CLPU.ExBlo1-I | Module input state: External blocking |
| CLPU.ExBlo2-I | Module input state: External blocking |
| CLPU.Ex rev Interl-I | Module input state: External reverse interlocking |
| ExP[1].active | Signal: active |
| ExP[1].ExBlo | Signal: External Blocking |
| ExP[1].Blo TripCmd | Signal: Trip Command blocked |
| ExP[1].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| ExP[1].Alarm | Signal: Alarm |
| ExP[1].Trip | Signal: Trip |
| ExP[1].TripCmd | Signal: Trip Command |
| ExP[1].ExBl01-I | Module input state: External blocking1 |
| ExP[1].ExBlo2-I | Module input state: External blocking2 |


| Name | Description |
| :---: | :---: |
| ExP[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| ExP[1].Alarm-I | Module input state: Alarm |
| ExP[1].Trip-I | Module input state: Trip |
| ExP[2].active | Signal: active |
| ExP[2].ExBlo | Signal: External Blocking |
| ExP[2].Blo TripCmd | Signal: Trip Command blocked |
| ExP[2].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| ExP[2].Alarm | Signal: Alarm |
| ExP[2].Trip | Signal: Trip |
| ExP[2].TripCmd | Signal: Trip Command |
| ExP[2].ExBlo1-I | Module input state: External blocking1 |
| ExP[2].ExBlo2-I | Module input state: External blocking2 |
| ExP[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| ExP[2].Alarm-I | Module input state: Alarm |
| ExP[2].Trip-I | Module input state: Trip |
| ExP[3].active | Signal: active |
| ExP[3].ExBlo | Signal: External Blocking |
| ExP[3].Blo TripCmd | Signal: Trip Command blocked |
| ExP[3].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| ExP[3].Alarm | Signal: Alarm |
| ExP[3].Trip | Signal: Trip |
| ExP[3].TripCmd | Signal: Trip Command |
| ExP[3].ExBlo1-I | Module input state: External blocking1 |
| ExP[3].ExBlo2-I | Module input state: External blocking2 |
| ExP[3].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| ExP[3].Alarm-I | Module input state: Alarm |
| ExP[3].Trip-I | Module input state: Trip |
| ExP[4].active | Signal: active |
| ExP[4].ExBlo | Signal: External Blocking |
| ExP[4].Blo TripCmd | Signal: Trip Command blocked |
| ExP[4].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| ExP[4].Alarm | Signal: Alarm |
| ExP[4].Trip | Signal: Trip |
| ExP[4].TripCmd | Signal: Trip Command |
| ExP[4].ExBlo1-I | Module input state: External blocking1 |
| ExP[4].ExBlo2-I | Module input state: External blocking2 |
| ExP[4].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| ExP[4].Alarm-I | Module input state: Alarm |
| ExP[4].Trip-I | Module input state: Trip |
| Ext Sudd Press.active | Signal: active |


| Name | Description |
| :---: | :---: |
| Ext Sudd Press.ExBlo | Signal: External Blocking |
| Ext Sudd Press.Blo TripCmd | Signal: Trip Command blocked |
| Ext Sudd Press.ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Ext Sudd Press.Alarm | Signal: Alarm |
| Ext Sudd Press.Trip | Signal: Trip |
| Ext Sudd Press.TripCmd | Signal: Trip Command |
| Ext Sudd Press.ExBlo1-I | Module input state: External blocking1 |
| Ext Sudd Press.ExBlo2-I | Module input state: External blocking2 |
| Ext Sudd Press.ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| Ext Sudd Press.Alarm-I | Module input state: Alarm |
| Ext Sudd Press. Trip-I | Module input state: Trip |
| Ex Oil Temp.active | Signal: active |
| Ex Oil Temp.ExBlo | Signal: External Blocking |
| Ex Oil Temp. Blo TripCmd | Signal: Trip Command blocked |
| Ex Oil Temp.ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Ex Oil Temp.Alarm | Signal: Alarm |
| Ex Oil Temp.Trip | Signal: Trip |
| Ex Oil Temp.TripCmd | Signal: Trip Command |
| Ex Oil Temp.ExBlo1-I | Module input state: External blocking1 |
| Ex Oil Temp.ExBlo2-I | Module input state: External blocking2 |
| Ex Oil Temp.ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| Ex Oil Temp.Alarm-I | Module input state: Alarm |
| Ex Oil Temp. Trip-I | Module input state: Trip |
| Ext Temp Superv[1].active | Signal: active |
| Ext Temp Superv[1].ExBlo | Signal: External Blocking |
| Ext Temp Superv[1].Blo TripCmd | Signal: Trip Command blocked |
| Ext Temp Superv[1].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Ext Temp Superv[1].Alarm | Signal: Alarm |
| Ext Temp Superv[1].Trip | Signal: Trip |
| Ext Temp Superv[1].TripCmd | Signal: Trip Command |
| Ext Temp Superv[1].ExBlo1-I | Module input state: External blocking1 |
| Ext Temp Superv[1].ExBlo2-I | Module input state: External blocking2 |
| Ext Temp Superv[1].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| Ext Temp Superv[1].Alarm-I | Module input state: Alarm |
| Ext Temp Superv[1].Trip-I | Module input state: Trip |
| Ext Temp Superv[2].active | Signal: active |


| Name | Description |
| :---: | :---: |
| Ext Temp Superv[2].ExBlo | Signal: External Blocking |
| Ext Temp Superv[2].Blo TripCmd | Signal: Trip Command blocked |
| Ext Temp Superv[2].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Ext Temp Superv[2].Alarm | Signal: Alarm |
| Ext Temp Superv[2]. Trip | Signal: Trip |
| Ext Temp Superv[2].TripCmd | Signal: Trip Command |
| Ext Temp Superv[2].ExBlo1-I | Module input state: External blocking1 |
| Ext Temp Superv[2].ExBlo2-I | Module input state: External blocking2 |
| Ext Temp Superv[2].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| Ext Temp Superv[2].Alarm-I | Module input state: Alarm |
| Ext Temp Superv[2].Trip-I | Module input state: Trip |
| Ext Temp Superv[3].active | Signal: active |
| Ext Temp Superv[3].ExBlo | Signal: External Blocking |
| Ext Temp Superv[3].Blo TripCmd | Signal: Trip Command blocked |
| Ext Temp Superv[3].ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| Ext Temp Superv[3].Alarm | Signal: Alarm |
| Ext Temp Superv[3]. Trip | Signal: Trip |
| Ext Temp Superv[3].TripCmd | Signal: Trip Command |
| Ext Temp Superv[3].ExBlo1-I | Module input state: External blocking1 |
| Ext Temp Superv[3].ExBlo2-I | Module input state: External blocking2 |
| Ext Temp Superv[3].ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| Ext Temp Superv[3].Alarm-I | Module input state: Alarm |
| Ext Temp Superv[3].Trip-I | Module input state: Trip |
| URTD.W1L1 Superv | Signal: Supervision Channel Winding1 Phase L1 |
| URTD.W1L2 Superv | Signal: Supervision Channel Winding1 Phase L2 |
| URTD.W1L3 Superv | Signal: Supervision Channel Winding1 Phase L3 |
| URTD.W2L1 Superv | Signal: Supervision Channel Winding2 Phase L1 |
| URTD.W2L2 Superv | Signal: Supervision Channel Winding2 Phase L2 |
| URTD.W2L3 Superv | Signal: Supervision Channel Winding2 Phase L3 |
| URTD.Amb1 Superv | Signal: Supervision Channel Ambient1 |
| URTD.Amb2 Superv | Signal: Supervision Channel Ambient2 |
| URTD.Aux1 Superv | Signal: Supervision Channel Auxiliary1 |
| URTD.Aux2 Superv | Signal: Supervision Channel Auxiliary2 |
| URTD.Aux3 Superv | Signal: Supervision Channel Auxiliary3 |
| URTD.Aux4 Superv | Signal: Supervision Channel Auxiliary 4 |
| URTD.Superv | Signal: URTD Supervision Channel |


| Name | Description |
| :--- | :--- |
| URTD.active | Signal: URTD active |
| URTD.Outs forced | Signal: The State of at least one Relay Output has been set by force. That means that the state of at least <br> one Relay is forced and hence does not show the state of the assigned signals. |
| RTD.active | Signal: active |
| RTD.ExBlo | Signal: External Blocking |
| RTD.Blo TripCmd | Signal: Trip Command blocked |
| RTD.ExBlo TripCmd | Signal: External Blocking of the Trip Command |
| RTD.Alarm | Alarm RTD Temperature Protection |
| RTD.Trip | Signal: Trip |
| RTD.TripCmd | Signal: Trip Command |
| RTD.W1L1 Trip | Winding1 Phase L1 Signal: Trip |
| RTD.W1L1 Alarm | Winding1 Phase L1 Alarm RTD Temperature Protection |
| RTD.W1L1 Timeout Alarm | Winding1 Phase L1 Timeout Alarm |
| RTD.W1L1 Invalid | Winding1 Phase L1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or <br> interrupted RTD Measurement) |
| RTD Alarm RTD Temperature Protection |  |
| RTD.W1L2 Trip | Winding1 Phase L2 Signal: Trip |
| interrupted RTD Measurement) |  |
| RTD.W1L2 Alarm | Wmbient 1 Signal: Trip |
| RTD.W1L2 Timeout Alarm | Winding1 Phase L2 Alarm RTD Temperature Protection |
| RTD.W2L3 1 Alarm | Winding2 Phase L2 Timeout Alarm |
| RTD.W1L2 Invalid | Winding1 Phase L2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or <br> interrupted RTD Measurement) |
| interrupted RTD Measurement) |  |


| Name | Description |
| :---: | :---: |
| RTD.Amb 1 Timeout Alarm | Ambient 1 Timeout Alarm |
| RTD.Amb 1 Invalid | Ambient 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| RTD.Amb 2 Trip | Ambient 2 Signal: Trip |
| RTD.Amb 2 Alarm | Ambient 2 Alarm RTD Temperature Protection |
| RTD.Amb 2 Timeout Alarm | Ambient 2 Timeout Alarm |
| RTD.Amb 2 Invalid | Ambient 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| RTD.Aux 1 Trip | Auxiliary 1 Signal: Trip |
| RTD.Aux 1 Alarm | Auxiliary 1 Alarm RTD Temperature Protection |
| RTD.Aux 1 Timeout Alarm | Auxiliary 1 Timeout Alarm |
| RTD.Aux 1 Invalid | Auxiliary 1 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| RTD.Aux 2 Trip | Auxiliary 2 Signal: Trip |
| RTD.Aux 2 Alarm | Auxiliary 2 Alarm RTD Temperature Protection |
| RTD.Aux 2 Timeout Alarm | Auxiliary 2 Timeout Alarm |
| RTD.Aux 2 Invalid | Auxiliary 2 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| RTD.Aux 3 Trip | Auxiliary 3 Signal: Trip |
| RTD.Aux 3 Alarm | Auxiliary 3 Alarm RTD Temperature Protection |
| RTD.Aux 3 Timeout Alarm | Auxiliary 3 Timeout Alarm |
| RTD.Aux 3 Invalid | Auxiliary 4 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| RTD.Aux4 Trip | Auxiliary 4 Signal: Trip |
| RTD.Aux4 Alarm | Auxiliary 4 Alarm RTD Temperature Protection |
| RTD.Aux4 Timeout Alarm | Auxiliary 4 Timeout Alarm |
| RTD.Aux4 Invalid | Auxiliary 4 Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| RTD.Trip WD W1 Group | Trip all Windings of group W1 |
| RTD.Alarm WD W1 Group | Alarm all Windings of group W1 |
| RTD.TimeoutAImWDW1Grp | Timeout Alarm of group W1 |
| RTD.Windg W1 Group Invalid | Winding W1 Group Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| RTD.Trip WD W2 Group | Trip all Windings of group W2 |
| RTD.Alarm WD W2 Group | Alarm all Windings of group W2 |
| RTD.TimeoutAlmWDW2Grp | Timeout Alarm of group W2 |
| RTD.Windg W2 Group Invalid | Winding W2 Group Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |
| RTD. Trip Amb Group | Trip all Windings of group Ambient |
| RTD.Alarm Amb Group | Alarm all Windings of group Ambient |
| RTD.TimeoutAlmAmbGrp | Timeout Alarm of group Ambient |
| RTD.Amb Group Invalid | Ambient Group Signal: Invalid Temperature Measurement Value (e.g caused by an defective or interrupted RTD Measurement) |


| Name | Description |
| :---: | :---: |
| RTD.Trip Any Group | Trip Any Group |
| RTD.Alarm Any Group | Alarm Any Group |
| RTD.TimeoutAlmAnyGrp | Timeout Alarm Any Group |
| RTD.Trip Group 1 | Trip Group 1 |
| RTD.Trip Group 2 | Trip Group 2 |
| RTD.Timeout Alarm | Alarm timeout expired |
| RTD.Trip Aux Group | Trip Auxiliary Group |
| RTD.Alarm Aux Group | Alarm Auxiliary Group |
| RTD.TimeoutAlmAuxGrp | Timeout Alarm Auxiliary Group |
| RTD.AuxGrpInvalid | Invalid Auxiliary Group |
| RTD.ExBlo1-I | Module input state: External blocking1 |
| RTD.ExBlo2-I | Module input state: External blocking2 |
| RTD.ExBlo TripCmd-I | Module input state: External Blocking of the Trip Command |
| CBF[1].active | Signal: active |
| CBF[1].ExBlo | Signal: External Blocking |
| CBF[1].Waiting for Trigger | Waiting for Trigger |
| CBF[1].running | Signal: CBF-Module started |
| CBF[1].Alarm | Signal: Circuit Breaker Failure |
| CBF[1].Lockout | Signal: Lockout |
| CBF[1].Res Lockout | Signal: Reset Lockout |
| CBF[1].ExBlo1-I | Module input state: External blocking1 |
| CBF[1].ExBlo2-I | Module input state: External blocking2 |
| CBF[1].Trigger1-I | Module Input: Trigger that will start the CBF |
| CBF[1].Trigger2-I | Module Input: Trigger that will start the CBF |
| CBF[1].Trigger3-I | Module Input: Trigger that will start the CBF |
| CBF[2].active | Signal: active |
| CBF[2].ExBlo | Signal: External Blocking |
| CBF[2].Waiting for Trigger | Waiting for Trigger |
| CBF[2].running | Signal: CBF-Module started |
| CBF[2].Alarm | Signal: Circuit Breaker Failure |
| CBF[2].Lockout | Signal: Lockout |
| CBF[2].Res Lockout | Signal: Reset Lockout |
| CBF[2].ExBlo1-I | Module input state: External blocking1 |
| CBF[2].ExBlo2-I | Module input state: External blocking2 |
| CBF[2].Trigger1-I | Module Input: Trigger that will start the CBF |
| CBF[2].Trigger2-I | Module Input: Trigger that will start the CBF |
| CBF[2].Trigger3-1 | Module Input: Trigger that will start the CBF |
| TCS[1].active | Signal: active |
| TCS[1].ExBlo | Signal: External Blocking |
| TCS[1].Alarm | Signal: Alarm Trip Circuit Supervision |


| Name | Description |
| :---: | :---: |
| TCS[1].Not Possible | Not possible because no state indicator assigned to the breaker. |
| TCS[1].Aux ON-I | Module Input State: Position indicator/check-back signal of the CB (52a) |
| TCS[1].Aux OFF-I | Module input state: Position indicator/check-back signal of the CB (52b) |
| TCS[1].ExBlo1-I | Module input state: External blocking1 |
| TCS[1].ExBlo2-I | Module input state: External blocking2 |
| TCS[2].active | Signal: active |
| TCS[2].ExBlo | Signal: External Blocking |
| TCS[2].Alarm | Signal: Alarm Trip Circuit Supervision |
| TCS[2].Not Possible | Not possible because no state indicator assigned to the breaker. |
| TCS[2].Aux ON-I | Module Input State: Position indicator/check-back signal of the CB (52a) |
| TCS[2].Aux OFF-I | Module input state: Position indicator/check-back signal of the CB (52b) |
| TCS[2].ExBlo1-I | Module input state: External blocking1 |
| TCS[2].ExBlo2-I | Module input state: External blocking2 |
| CTS[1].active | Signal: active |
| CTS[1].ExBlo | Signal: External Blocking |
| CTS[1].Alarm | Signal: Alarm Current Transformer Measuring Circuit Supervision |
| CTS[1].ExBlo1-I | Module input state: External blocking1 |
| CTS[1].ExBlo2-I | Module input state: External blocking2 |
| CTS[2].active | Signal: active |
| CTS[2].ExBlo | Signal: External Blocking |
| CTS[2].Alarm | Signal: Alarm Current Transformer Measuring Circuit Supervision |
| CTS[2].ExBl01-I | Module input state: External blocking1 |
| CTS[2].ExBlo2-I | Module input state: External blocking2 |
| SysA.active | Signal: active |
| SysA.ExBlo | Signal: External Blocking |
| SysA.Alm Current Demd | Signal: Alarm averaged demand current |
| SysA.Alarm I THD | Signal: Alarm Total Harmonic Distortion Current |
| SysA.Trip Current Demand | Signal: Trip averaged demand current |
| SysA.Trip I THD | Signal: Trip Total Harmonic Distortion Current |
| SysA.ExBlo-I | Module input state: External blocking |
| DI Slot X1.DI 1 | Signal: Digital Input |
| DI Slot X1.DI 2 | Signal: Digital Input |
| DI Slot X1.DI 3 | Signal: Digital Input |
| DI Slot X1.DI 4 | Signal: Digital Input |
| DI Slot X1.DI 5 | Signal: Digital Input |
| DI Slot X1.DI 6 | Signal: Digital Input |
| DI Slot X1.DI 7 | Signal: Digital Input |
| DI Slot X1.DI 8 | Signal: Digital Input |
| DI Slot X6.DI 1 | Signal: Digital Input |
| DI Slot X6.DI 2 | Signal: Digital Input |


| Name | Description |
| :---: | :---: |
| DI Slot X6.DI 3 | Signal: Digital Input |
| DI Slot X6.DI 4 | Signal: Digital Input |
| DI Slot X6.DI 5 | Signal: Digital Input |
| DI Slot X6.DI 6 | Signal: Digital Input |
| DI Slot X6.DI 7 | Signal: Digital Input |
| DI Slot X6.DI 8 | Signal: Digital Input |
| BO Slot X2.BO 1 | Signal: Binary Output Relay |
| BO Slot X2.BO 2 | Signal: Binary Output Relay |
| BO Slot X2.BO 3 | Signal: Binary Output Relay |
| BO Slot X2.BO 4 | Signal: Binary Output Relay |
| BO Slot X2.BO 5 | Signal: Binary Output Relay |
| BO Slot X2.BO 6 | Signal: Binary Output Relay |
| BO Slot X2.DISARMED! | Signal: CAUTION! RELAYS DISARMED in order to safely perform maintenance while eliminating the risk of taking an entire process off-line. (Note: The Self Supervision Contact cannot be disarmed). YOU MUST ENSURE that the relays are ARMED AGAIN after maintenance |
| BO Slot X2.Outs forced | Signal: The State of at least one Relay Output has been set by force. That means that the state of at least one Relay is forced and hence does not show the state of the assigned signals. |
| BO Slot X5.BO 1 | Signal: Binary Output Relay |
| BO Slot X5.BO 2 | Signal: Binary Output Relay |
| BO Slot X5.BO 3 | Signal: Binary Output Relay |
| BO Slot X5.BO 4 | Signal: Binary Output Relay |
| BO Slot X5.BO 5 | Signal: Binary Output Relay |
| BO Slot X5.BO 6 | Signal: Binary Output Relay |
| BO Slot X5.DISARMED! | Signal: CAUTION! RELAYS DISARMED in order to safely perform maintenance while eliminating the risk of taking an entire process off-line. (Note: The Self Supervision Contact cannot be disarmed). YOU MUST ENSURE that the relays are ARMED AGAIN after maintenance |
| BO Slot X5.Outs forced | Signal: The State of at least one Relay Output has been set by force. That means that the state of at least one Relay is forced and hence does not show the state of the assigned signals. |
| Event rec.Res all records | Signal: All records deleted |
| Disturb rec.recording | Signal: Recording |
| Disturb rec.memory full | Signal: Memory full |
| Disturb rec.Clear fail | Signal: Clear failure in memory |
| Disturb rec.Res all records | Signal: All records deleted |
| Disturb rec.Res rec | Signal: Delete record |
| Disturb rec.Man Trigger | Signal: Manual Trigger |
| Disturb rec.Start1-I | State of the module input:: Trigger event / start recording if: |
| Disturb rec.Start2-I | State of the module input:: Trigger event / start recording if: |
| Disturb rec.Start3-I | State of the module input:: Trigger event / start recording if: |
| Disturb rec.Start4-I | State of the module input:: Trigger event / start recording if: |
| Disturb rec.Start5-I | State of the module input:: Trigger event / start recording if: |
| Disturb rec.Start6-I | State of the module input:: Trigger event / start recording if: |
| Disturb rec.Start7-I | State of the module input:: Trigger event / start recording if: |


| Name | Description |
| :---: | :---: |
| Disturb rec.Start8-I | State of the module input:: Trigger event / start recording if: |
| Fault rec.Res rec | Signal: Delete record |
| Trend rec.Hand Reset | Hand Reset |
| SSV.System Error | Signal: Device Failure |
| SSV.SelfSuperVision Contact | Signal: SelfSuperVision Contact |
| Scada.SCADA connected | At least one SCADA System is connected to the device. |
| Scada.SCADA not connected | No SCADA System is connected to the device |
| DNP3.busy | This message is set if the protocol is started. It will be reset if the protocol is shut down. |
| DNP3.ready | The message will be set if the protocol is successfully started and ready for data exchange. |
| DNP3.active | The communication with the Master (Scada) is active. |
| DNP3.BinaryOutput0 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput1 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput2 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput3 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput4 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput5 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput6 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput7 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput8 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput9 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput10 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput11 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput12 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput13 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput14 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput15 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput16 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput17 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput18 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput19 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput20 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput21 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput22 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput23 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput24 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput25 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput26 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput27 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput28 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput29 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |


| Name | Description |
| :---: | :---: |
| DNP3.BinaryOutput30 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput31 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryInput0-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput1-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput2-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput3-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput4-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput5-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput6-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput7-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.BinaryInput8-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput9-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput10-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput11-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput12-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput13-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput14-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput15-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput16-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput17-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput18-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput19-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput20-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput21-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput22-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput23-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput24-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput25-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput26-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput27-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput28-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput29-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput30-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput31-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput32-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput33-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput34-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput35-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput36-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput37-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |


| Name | Description |
| :---: | :---: |
| DNP3.Binarylnput38-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput39-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput40-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput41-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput42-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput43-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput44-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput45-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput46-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput47-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput48-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput49-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput50-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput51-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput52-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput53-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput54-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput55-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput56-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput57-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput58-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput59-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput60-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput61-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput62-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| DNP3.Binarylnput63-I | Virtual Digital Input (DNP). This corresponds to a virtual binary output of the protective device. |
| Modbus.Transmission | Signal: SCADA active |
| Modbus.Scada Cmd 1 | Scada Command |
| Modbus.Scada Cmd 2 | Scada Command |
| Modbus.Scada Cmd 3 | Scada Command |
| Modbus.Scada Cmd 4 | Scada Command |
| Modbus.Scada Cmd 5 | Scada Command |
| Modbus.Scada Cmd 6 | Scada Command |
| Modbus.Scada Cmd 7 | Scada Command |
| Modbus.Scada Cmd 8 | Scada Command |
| Modbus.Scada Cmd 9 | Scada Command |
| Modbus.Scada Cmd 10 | Scada Command |
| Modbus.Scada Cmd 11 | Scada Command |
| Modbus.Scada Cmd 12 | Scada Command |
| Modbus.Scada Cmd 13 | Scada Command |


| Name | Description |
| :---: | :---: |
| Modbus.Scada Cmd 14 | Scada Command |
| Modbus.Scada Cmd 15 | Scada Command |
| Modbus.Scada Cmd 16 | Scada Command |
| Modbus.Config Bin Inp1-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp2-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp3-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp4-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp5-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp6-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp7-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp8-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp9-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp10-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp11-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp12-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp13-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp14-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp15-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp16-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp17-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp18-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp19-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp20-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp21-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp22-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp23-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp24-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp25-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp26-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp27-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp28-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp29-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp30-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp31-I | State of the module input: Config Bin Inp |
| Modbus.Config Bin Inp32-I | State of the module input: Config Bin Inp |
| IEC61850.MMS Client connected | At least one MMS client is connected to the device |
| IEC61850.All Goose Subscriber active | All Goose subscriber in the device are working |
| IEC61850.Virtlnp1 | Signal: Virtual Input (IEC61850 GGIO Ind) |


| Name | Description |
| :---: | :---: |
| IEC61850.Virtlnp2 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp3 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp4 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnn5 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnn6 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnn7 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp8 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp9 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.VirtInp10 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp11 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp12 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp13 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp14 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp15 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp16 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp17 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp18 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp19 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp20 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp21 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp22 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp23 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp24 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp25 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp26 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp27 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp28 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp29 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp30 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp31 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Virtlnp32 | Signal: Virtual Input (IEC61850 GGIO Ind) |
| IEC61850.Quality of GGIO In1 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In2 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In3 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In4 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In5 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In6 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO $\ln 7$ | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In8 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In9 | Self-Supervision of the GGIO Input |

General Lists

| Name | Description |
| :---: | :---: |
| IEC61850.Quality of GGIO $\ln 10$ | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In11 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In12 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In13 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In14 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In15 | Self-Supervision of the GGIO Input |
| $\begin{aligned} & \text { IEC61850.Quality of GGIO } \\ & \ln 16 \end{aligned}$ | Self-Supervision of the GGIO Input |
| $\begin{aligned} & \text { IEC61850.Quality of GGIO } \\ & \ln 17 \end{aligned}$ | Self-Supervision of the GGIO Input |
| $\begin{aligned} & \text { IEC61850.Quality of GGIO } \\ & \ln 18 \end{aligned}$ | Self-Supervision of the GGIO Input |
| $\begin{aligned} & \text { IEC61850.Quality of GGIO } \\ & \ln 19 \end{aligned}$ | Self-Supervision of the GGIO Input |
| $\begin{aligned} & \text { IEC61850.Quality of GGIO } \\ & \text { In20 } \end{aligned}$ | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In21 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In22 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In23 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In24 | Self-Supervision of the GGIO Input |
| $\begin{aligned} & \text { IEC61850.Quality of GGIO } \\ & \ln 25 \end{aligned}$ | Self-Supervision of the GGIO Input |
| $\begin{aligned} & \text { IEC61850.Quality of GGIO } \\ & \text { In26 } \end{aligned}$ | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In27 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In28 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In29 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In30 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In31 | Self-Supervision of the GGIO Input |
| IEC61850.Quality of GGIO In32 | Self-Supervision of the GGIO Input |
| IEC61850.SPCSO1 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |


| Name | Description |
| :---: | :---: |
| IEC61850.SPCSO2 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO3 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO4 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO5 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO6 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO7 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO8 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO9 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO10 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO11 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO12 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO13 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO14 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO15 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO16 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO17 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO18 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO19 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO20 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO21 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO22 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO23 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO24 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO25 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO26 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO27 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO28 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO29 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO30 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO31 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.SPCSO32 | Status bit that can be set by clients like e.g. SCADA (Single Point Controllable Status Output). |
| IEC61850.VirtOut1-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut2-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut3-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut4-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut5-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut6-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut7-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut8-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut9-I | Module input state: Binary state of the Virtual Output (GGIO) |


| Name | Description |
| :---: | :---: |
| IEC61850.VirtOut10-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut11-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut12-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut13-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut14-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut15-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut16-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut17-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut18-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut19-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut20-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut21-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut22-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut23-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut24-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut25-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut26-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut27-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut28-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut29-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut30-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut31-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC61850.VirtOut32-I | Module input state: Binary state of the Virtual Output (GGIO) |
| IEC 103.Scada Cmd 1 | Scada Command |
| IEC 103.Scada Cmd 2 | Scada Command |
| IEC 103.Scada Cmd 3 | Scada Command |
| IEC 103.Scada Cmd 4 | Scada Command |
| IEC 103.Scada Cmd 5 | Scada Command |
| IEC 103.Scada Cmd 6 | Scada Command |
| IEC 103.Scada Cmd 7 | Scada Command |
| IEC 103.Scada Cmd 8 | Scada Command |
| IEC 103.Scada Cmd 9 | Scada Command |
| IEC 103.Scada Cmd 10 | Scada Command |
| IEC 103.Transmission | Signal: SCADA active |
| IEC 103.Failure Event lost | Failure event lost |
| Profibus.Data OK | Data within the Input field are OK (Yes=1) |
| Profibus.SubModul Err | Assignable Signal, Failure in Sub-Module, Communication Failure. |
| Profibus.Connection active | Connection active |
| Profibus.Scada Cmd 1 | Scada Command |
| Profibus.Scada Cmd 2 | Scada Command |


| Name | Description |
| :---: | :---: |
| Profibus.Scada Cmd 3 | Scada Command |
| Profibus.Scada Cmd 4 | Scada Command |
| Profibus.Scada Cmd 5 | Scada Command |
| Profibus.Scada Cmd 6 | Scada Command |
| Profibus.Scada Cmd 7 | Scada Command |
| Profibus.Scada Cmd 8 | Scada Command |
| Profibus.Scada Cmd 9 | Scada Command |
| Profibus.Scada Cmd 10 | Scada Command |
| Profibus.Scada Cmd 11 | Scada Command |
| Profibus.Scada Cmd 12 | Scada Command |
| Profibus.Scada Cmd 13 | Scada Command |
| Profibus.Scada Cmd 14 | Scada Command |
| Profibus.Scada Cmd 15 | Scada Command |
| Profibus.Scada Cmd 16 | Scada Command |
| IRIG-B.IRIG-B active | Signal: If there is no valid IRIG-B signal for 60 sec , IRIG-B is regarded as inactive. |
| IRIG-B.High-Low Invert | Signal: The High and Low signals of the IRIG-B are inverted. This does NOT mean that the wiring is faulty If the wiring is faulty no IRIG-B signal will be detected. |
| IRIG-B.Control Signal1 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal2 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal3 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal4 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal5 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal6 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal7 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal8 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal9 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal10 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal11 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal12 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal13 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal14 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |


| Name | Description |
| :---: | :---: |
| IRIG-B.Control Signal15 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal16 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal17 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| IRIG-B.Control Signal18 | Signal: IRIG-B Control Signal. The external IRIG-B generator can set these signals. They can be used for further control procedures inside the device (e.g. logic funtions). |
| SNTP.SNTP active | Signal: If there is no valid SNTP signal for 120 sec , SNTP is regarded as inactive. |
| Statistics.ResFc all | Signal: Resetting of all Statistic values (Current Demand, Power Demand, Min, Max) |
| Statistics.ResFc I Demand | Signal: Resetting of Statistics - Current Demand (avg, peak avg) |
| Statistics.ResFc Max | Signal: Resetting of all Maximum values |
| Statistics.ResFc Min | Signal: Resetting of all Minimum values |
| Statistics.StartFc I Demand-I | State of the module input: Start of the Statistics of the Current Demand |
| Logics.LE1.Gate Out | Signal: Output of the logic gate |
| Logics.LE1.Timer Out | Signal: Timer Output |
| Logics.LE1.Out | Signal: Latched Output (Q) |
| Logics.LE1.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE1.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE1.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE1.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE1.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE1.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE2.Gate Out | Signal: Output of the logic gate |
| Logics.LE2.Timer Out | Signal: Timer Output |
| Logics.LE2.Out | Signal: Latched Output (Q) |
| Logics.LE2.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE2.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE2.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE2.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE2.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE2.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE3.Gate Out | Signal: Output of the logic gate |
| Logics.LE3.Timer Out | Signal: Timer Output |
| Logics.LE3.Out | Signal: Latched Output (Q) |
| Logics.LE3.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE3.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE3.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE3.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE3.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE3.Reset Latch-I | State of the module input: Reset Signal for the Latching |


| Name | Description |
| :---: | :---: |
| Logics.LE4.Gate Out | Signal: Output of the logic gate |
| Logics.LE4.Timer Out | Signal: Timer Output |
| Logics.LE4.Out | Signal: Latched Output (Q) |
| Logics.LE4.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE4.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE4.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE4.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE4.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE4.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE5.Gate Out | Signal: Output of the logic gate |
| Logics.LE5.Timer Out | Signal: Timer Output |
| Logics.LE5.Out | Signal: Latched Output (Q) |
| Logics.LE5.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE5.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE5.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE5.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE5.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE5.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE6.Gate Out | Signal: Output of the logic gate |
| Logics.LE6.Timer Out | Signal: Timer Output |
| Logics.LE6.Out | Signal: Latched Output (Q) |
| Logics.LE6.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE6.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE6.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE6.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE6.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE6.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE7.Gate Out | Signal: Output of the logic gate |
| Logics.LE7.Timer Out | Signal: Timer Output |
| Logics.LE7.Out | Signal: Latched Output (Q) |
| Logics.LE7.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE7.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE7.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE7.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE7.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE7.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE8.Gate Out | Signal: Output of the logic gate |
| Logics.LE8.Timer Out | Signal: Timer Output |
| Logics.LE8.Out | Signal: Latched Output (Q) |
| Logics.LE8.Out inverted | Signal: Negated Latched Output (Q NOT) |


| Name | Description |
| :---: | :---: |
| Logics.LE8.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE8.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE8.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE8.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE8.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE9.Gate Out | Signal: Output of the logic gate |
| Logics.LE9.Timer Out | Signal: Timer Output |
| Logics.LE9.Out | Signal: Latched Output (Q) |
| Logics.LE9.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE9.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE9.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE9.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE9.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE9.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE10.Gate Out | Signal: Output of the logic gate |
| Logics.LE10.Timer Out | Signal: Timer Output |
| Logics.LE10.Out | Signal: Latched Output (Q) |
| Logics.LE10.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE10.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE10.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE10.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE10.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE10.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE11.Gate Out | Signal: Output of the logic gate |
| Logics.LE11.Timer Out | Signal: Timer Output |
| Logics.LE11.Out | Signal: Latched Output (Q) |
| Logics.LE11.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE11.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE11.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE11.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE11.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE11.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE12.Gate Out | Signal: Output of the logic gate |
| Logics.LE12.Timer Out | Signal: Timer Output |
| Logics.LE12.Out | Signal: Latched Output (Q) |
| Logics.LE12.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE12.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE12.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE12.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE12.Gate In4-I | State of the module input: Assignment of the Input Signal |


| Name | Description |
| :---: | :---: |
| Logics.LE12.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE13.Gate Out | Signal: Output of the logic gate |
| Logics.LE13.Timer Out | Signal: Timer Output |
| Logics.LE13.Out | Signal: Latched Output (Q) |
| Logics.LE13.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE13.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE13.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE13.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE13.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE13.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE14.Gate Out | Signal: Output of the logic gate |
| Logics.LE14.Timer Out | Signal: Timer Output |
| Logics.LE14.Out | Signal: Latched Output (Q) |
| Logics.LE14.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE14.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE14.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE14.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE14.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE14.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE15.Gate Out | Signal: Output of the logic gate |
| Logics.LE15.Timer Out | Signal: Timer Output |
| Logics.LE15.Out | Signal: Latched Output (Q) |
| Logics.LE15.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE15.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE15.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE15.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE15.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE15.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE16.Gate Out | Signal: Output of the logic gate |
| Logics.LE16.Timer Out | Signal: Timer Output |
| Logics.LE16.Out | Signal: Latched Output (Q) |
| Logics.LE16.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE16.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE16.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE16.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE16.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE16.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE17.Gate Out | Signal: Output of the logic gate |
| Logics.LE17.Timer Out | Signal: Timer Output |
| Logics.LE17.Out | Signal: Latched Output (Q) |


| Name | Description |
| :---: | :---: |
| Logics.LE17.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE17.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE17.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE17.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE17.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE17.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE18.Gate Out | Signal: Output of the logic gate |
| Logics.LE18.Timer Out | Signal: Timer Output |
| Logics.LE18.Out | Signal: Latched Output (Q) |
| Logics.LE18.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE18.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE18.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE18.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE18.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE18.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE19.Gate Out | Signal: Output of the logic gate |
| Logics.LE19.Timer Out | Signal: Timer Output |
| Logics.LE19.Out | Signal: Latched Output (Q) |
| Logics.LE19.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE19.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE19.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE19.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE19.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE19.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE20.Gate Out | Signal: Output of the logic gate |
| Logics.LE20.Timer Out | Signal: Timer Output |
| Logics.LE20.Out | Signal: Latched Output (Q) |
| Logics.LE20.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE20.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE20.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE20.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE20.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE20.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE21.Gate Out | Signal: Output of the logic gate |
| Logics.LE21.Timer Out | Signal: Timer Output |
| Logics.LE21.Out | Signal: Latched Output (Q) |
| Logics.LE21.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE21.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE21.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE21.Gate In3-I | State of the module input: Assignment of the Input Signal |


| Name | Description |
| :---: | :---: |
| Logics.LE21.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE21.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE22.Gate Out | Signal: Output of the logic gate |
| Logics.LE22.Timer Out | Signal: Timer Output |
| Logics.LE22.Out | Signal: Latched Output (Q) |
| Logics.LE22.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE22.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE22.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE22.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE22.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE22.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE23.Gate Out | Signal: Output of the logic gate |
| Logics.LE23.Timer Out | Signal: Timer Output |
| Logics.LE23.Out | Signal: Latched Output (Q) |
| Logics.LE23.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE23.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE23.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE23.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE23.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE23.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE24.Gate Out | Signal: Output of the logic gate |
| Logics.LE24.Timer Out | Signal: Timer Output |
| Logics.LE24.Out | Signal: Latched Output (Q) |
| Logics.LE24.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE24.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE24.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE24.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE24.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE24.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE25.Gate Out | Signal: Output of the logic gate |
| Logics.LE25.Timer Out | Signal: Timer Output |
| Logics.LE25.Out | Signal: Latched Output (Q) |
| Logics.LE25.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE25.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE25.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE25.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE25.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE25.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE26.Gate Out | Signal: Output of the logic gate |
| Logics.LE26.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE26.Out | Signal: Latched Output (Q) |
| Logics.LE26.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE26.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE26.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE26.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE26.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE26.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE27.Gate Out | Signal: Output of the logic gate |
| Logics.LE27.Timer Out | Signal: Timer Output |
| Logics.LE27.Out | Signal: Latched Output (Q) |
| Logics.LE27.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE27.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE27.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE27.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE27.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE27.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE28.Gate Out | Signal: Output of the logic gate |
| Logics.LE28.Timer Out | Signal: Timer Output |
| Logics.LE28.Out | Signal: Latched Output (Q) |
| Logics.LE28.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE28.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE28.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE28.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE28.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE28.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE29.Gate Out | Signal: Output of the logic gate |
| Logics.LE29.Timer Out | Signal: Timer Output |
| Logics.LE29.Out | Signal: Latched Output (Q) |
| Logics.LE29.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE29.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE29.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE29.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE29.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE29.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE30.Gate Out | Signal: Output of the logic gate |
| Logics.LE30.Timer Out | Signal: Timer Output |
| Logics.LE30.Out | Signal: Latched Output (Q) |
| Logics.LE30.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE30.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE30.Gate In2-I | State of the module input: Assignment of the Input Signal |


| Name | Description |
| :---: | :---: |
| Logics.LE30.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE30.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE30.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE31.Gate Out | Signal: Output of the logic gate |
| Logics.LE31.Timer Out | Signal: Timer Output |
| Logics.LE31.Out | Signal: Latched Output (Q) |
| Logics.LE31.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE31.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE31.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE31.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE31.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE31.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE32.Gate Out | Signal: Output of the logic gate |
| Logics.LE32.Timer Out | Signal: Timer Output |
| Logics.LE32.Out | Signal: Latched Output (Q) |
| Logics.LE32.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE32.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE32.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE32.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE32.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE32.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE33.Gate Out | Signal: Output of the logic gate |
| Logics.LE33.Timer Out | Signal: Timer Output |
| Logics.LE33.Out | Signal: Latched Output (Q) |
| Logics.LE33.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE33.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE33.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE33.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE33.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE33.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE34.Gate Out | Signal: Output of the logic gate |
| Logics.LE34.Timer Out | Signal: Timer Output |
| Logics.LE34.Out | Signal: Latched Output (Q) |
| Logics.LE34.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE34.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE34.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE34.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE34.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE34.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE35.Gate Out | Signal: Output of the logic gate |


| Name | Description |
| :---: | :---: |
| Logics.LE35.Timer Out | Signal: Timer Output |
| Logics.LE35.Out | Signal: Latched Output (Q) |
| Logics.LE35.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE35.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE35.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE35.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE35.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE35.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE36.Gate Out | Signal: Output of the logic gate |
| Logics.LE36.Timer Out | Signal: Timer Output |
| Logics.LE36.Out | Signal: Latched Output (Q) |
| Logics.LE36.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE36.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE36.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE36.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE36.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE36.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE37.Gate Out | Signal: Output of the logic gate |
| Logics.LE37.Timer Out | Signal: Timer Output |
| Logics.LE37.Out | Signal: Latched Output (Q) |
| Logics.LE37.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE37.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE37.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE37.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE37.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE37.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE38.Gate Out | Signal: Output of the logic gate |
| Logics.LE38.Timer Out | Signal: Timer Output |
| Logics.LE38.Out | Signal: Latched Output (Q) |
| Logics.LE38.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE38.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE38.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE38.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE38.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE38.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE39.Gate Out | Signal: Output of the logic gate |
| Logics.LE39.Timer Out | Signal: Timer Output |
| Logics.LE39.Out | Signal: Latched Output (Q) |
| Logics.LE39.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE39.Gate In1-I | State of the module input: Assignment of the Input Signal |


| Name | Description |
| :---: | :---: |
| Logics.LE39.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE39.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE39.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE39.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE40.Gate Out | Signal: Output of the logic gate |
| Logics.LE40.Timer Out | Signal: Timer Output |
| Logics.LE40.Out | Signal: Latched Output (Q) |
| Logics.LE40.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE40.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE40.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE40.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE40.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE40.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE41.Gate Out | Signal: Output of the logic gate |
| Logics.LE41.Timer Out | Signal: Timer Output |
| Logics.LE41.Out | Signal: Latched Output (Q) |
| Logics.LE41.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE41.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE41.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE41.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE41.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE41.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE42.Gate Out | Signal: Output of the logic gate |
| Logics.LE42.Timer Out | Signal: Timer Output |
| Logics.LE42.Out | Signal: Latched Output (Q) |
| Logics.LE42.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE42.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE42.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE42.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE42.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE42.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE43.Gate Out | Signal: Output of the logic gate |
| Logics.LE43.Timer Out | Signal: Timer Output |
| Logics.LE43.Out | Signal: Latched Output (Q) |
| Logics.LE43.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE43.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE43.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE43.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE43.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE43.Reset Latch-I | State of the module input: Reset Signal for the Latching |


| Name | Description |
| :---: | :---: |
| Logics.LE44.Gate Out | Signal: Output of the logic gate |
| Logics.LE44.Timer Out | Signal: Timer Output |
| Logics.LE44.Out | Signal: Latched Output (Q) |
| Logics.LE44.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE44.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE44.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE44.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE44.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE44.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE45.Gate Out | Signal: Output of the logic gate |
| Logics.LE45.Timer Out | Signal: Timer Output |
| Logics.LE45.Out | Signal: Latched Output (Q) |
| Logics.LE45.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE45.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE45.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE45.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE45.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE45.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE46.Gate Out | Signal: Output of the logic gate |
| Logics.LE46.Timer Out | Signal: Timer Output |
| Logics.LE46.Out | Signal: Latched Output (Q) |
| Logics.LE46.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE46.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE46.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE46.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE46.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE46.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE47.Gate Out | Signal: Output of the logic gate |
| Logics.LE47.Timer Out | Signal: Timer Output |
| Logics.LE47.Out | Signal: Latched Output (Q) |
| Logics.LE47.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE47.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE47.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE47.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE47.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE47.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE48.Gate Out | Signal: Output of the logic gate |
| Logics.LE48.Timer Out | Signal: Timer Output |
| Logics.LE48.Out | Signal: Latched Output (Q) |
| Logics.LE48.Out inverted | Signal: Negated Latched Output (Q NOT) |


| Name | Description |
| :---: | :---: |
| Logics.LE48.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE48.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE48.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE48.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE48.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE49.Gate Out | Signal: Output of the logic gate |
| Logics.LE49.Timer Out | Signal: Timer Output |
| Logics.LE49.Out | Signal: Latched Output (Q) |
| Logics.LE49.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE49.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE49.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE49.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE49.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE49.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE50.Gate Out | Signal: Output of the logic gate |
| Logics.LE50.Timer Out | Signal: Timer Output |
| Logics.LE50.Out | Signal: Latched Output (Q) |
| Logics.LE50.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE50.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE50.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE50.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE50.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE50.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE51.Gate Out | Signal: Output of the logic gate |
| Logics.LE51.Timer Out | Signal: Timer Output |
| Logics.LE51.Out | Signal: Latched Output (Q) |
| Logics.LE51.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE51.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE51.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE51.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE51.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE51.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE52.Gate Out | Signal: Output of the logic gate |
| Logics.LE52.Timer Out | Signal: Timer Output |
| Logics.LE52.Out | Signal: Latched Output (Q) |
| Logics.LE52.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE52.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE52.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE52.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE52.Gate In4-I | State of the module input: Assignment of the Input Signal |


| Name | Description |
| :---: | :---: |
| Logics.LE52.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE53.Gate Out | Signal: Output of the logic gate |
| Logics.LE53.Timer Out | Signal: Timer Output |
| Logics.LE53.Out | Signal: Latched Output (Q) |
| Logics.LE53.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE53.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE53.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE53.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE53.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE53.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE54.Gate Out | Signal: Output of the logic gate |
| Logics.LE54.Timer Out | Signal: Timer Output |
| Logics.LE54.Out | Signal: Latched Output (Q) |
| Logics.LE54.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE54.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE54.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE54.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE54.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE54.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE55.Gate Out | Signal: Output of the logic gate |
| Logics.LE55.Timer Out | Signal: Timer Output |
| Logics.LE55.Out | Signal: Latched Output (Q) |
| Logics.LE55.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE55.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE55.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE55.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE55.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE55.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE56.Gate Out | Signal: Output of the logic gate |
| Logics.LE56.Timer Out | Signal: Timer Output |
| Logics.LE56.Out | Signal: Latched Output (Q) |
| Logics.LE56.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE56.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE56.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE56.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE56.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE56.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE57.Gate Out | Signal: Output of the logic gate |
| Logics.LE57.Timer Out | Signal: Timer Output |
| Logics.LE57.Out | Signal: Latched Output (Q) |


| Name | Description |
| :---: | :---: |
| Logics.LE57.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE57.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE57.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE57.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE57.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE57.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE58.Gate Out | Signal: Output of the logic gate |
| Logics.LE58.Timer Out | Signal: Timer Output |
| Logics.LE58.Out | Signal: Latched Output (Q) |
| Logics.LE58.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE58.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE58.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE58.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE58.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE58.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE59.Gate Out | Signal: Output of the logic gate |
| Logics.LE59.Timer Out | Signal: Timer Output |
| Logics.LE59.Out | Signal: Latched Output (Q) |
| Logics.LE59.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE59.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE59.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE59.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE59.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE59.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE60.Gate Out | Signal: Output of the logic gate |
| Logics.LE60.Timer Out | Signal: Timer Output |
| Logics.LE60.Out | Signal: Latched Output (Q) |
| Logics.LE60.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE60.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE60.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE60.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE60.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE60.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE61.Gate Out | Signal: Output of the logic gate |
| Logics.LE61.Timer Out | Signal: Timer Output |
| Logics.LE61.Out | Signal: Latched Output (Q) |
| Logics.LE61.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE61.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE61.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE61.Gate In3-I | State of the module input: Assignment of the Input Signal |


| Name | Description |
| :---: | :---: |
| Logics.LE61.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE61.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE62.Gate Out | Signal: Output of the logic gate |
| Logics.LE62.Timer Out | Signal: Timer Output |
| Logics.LE62.Out | Signal: Latched Output (Q) |
| Logics.LE62.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE62.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE62.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE62.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE62.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE62.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE63.Gate Out | Signal: Output of the logic gate |
| Logics.LE63.Timer Out | Signal: Timer Output |
| Logics.LE63.Out | Signal: Latched Output (Q) |
| Logics.LE63.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE63.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE63.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE63.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE63.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE63.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE64.Gate Out | Signal: Output of the logic gate |
| Logics.LE64.Timer Out | Signal: Timer Output |
| Logics.LE64.Out | Signal: Latched Output (Q) |
| Logics.LE64.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE64.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE64.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE64.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE64.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE64.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE65.Gate Out | Signal: Output of the logic gate |
| Logics.LE65.Timer Out | Signal: Timer Output |
| Logics.LE65.Out | Signal: Latched Output (Q) |
| Logics.LE65.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE65.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE65.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE65.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE65.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE65.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE66.Gate Out | Signal: Output of the logic gate |
| Logics.LE66.Timer Out | Signal: Timer Output |


| Name | Description |
| :---: | :---: |
| Logics.LE66.Out | Signal: Latched Output (Q) |
| Logics.LE66.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE66.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE66.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE66.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE66.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE66.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE67.Gate Out | Signal: Output of the logic gate |
| Logics.LE67.Timer Out | Signal: Timer Output |
| Logics.LE67.Out | Signal: Latched Output (Q) |
| Logics.LE67.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE67.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE67.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE67.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE67.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE67.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE68.Gate Out | Signal: Output of the logic gate |
| Logics.LE68.Timer Out | Signal: Timer Output |
| Logics.LE68.Out | Signal: Latched Output (Q) |
| Logics.LE68.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE68.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE68.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE68.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE68.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE68.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE69.Gate Out | Signal: Output of the logic gate |
| Logics.LE69.Timer Out | Signal: Timer Output |
| Logics.LE69.Out | Signal: Latched Output (Q) |
| Logics.LE69.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE69.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE69.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE69.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE69.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE69.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE70.Gate Out | Signal: Output of the logic gate |
| Logics.LE70.Timer Out | Signal: Timer Output |
| Logics.LE70.Out | Signal: Latched Output (Q) |
| Logics.LE70.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE70.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE70.Gate In2-I | State of the module input: Assignment of the Input Signal |


| Name | Description |
| :---: | :---: |
| Logics.LE70.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE70.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE70.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE71.Gate Out | Signal: Output of the logic gate |
| Logics.LE71.Timer Out | Signal: Timer Output |
| Logics.LE71.Out | Signal: Latched Output (Q) |
| Logics.LE71.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE71.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE71.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE71.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE71.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE71.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE72.Gate Out | Signal: Output of the logic gate |
| Logics.LE72.Timer Out | Signal: Timer Output |
| Logics.LE72.Out | Signal: Latched Output (Q) |
| Logics.LE72.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE72.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE72.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE72.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE72.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE72.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE73.Gate Out | Signal: Output of the logic gate |
| Logics.LE73.Timer Out | Signal: Timer Output |
| Logics.LE73.Out | Signal: Latched Output (Q) |
| Logics.LE73.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE73.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE73.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE73.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE73.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE73.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE74.Gate Out | Signal: Output of the logic gate |
| Logics.LE74.Timer Out | Signal: Timer Output |
| Logics.LE74.Out | Signal: Latched Output (Q) |
| Logics.LE74.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE74.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE74.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE74.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE74.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE74.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE75.Gate Out | Signal: Output of the logic gate |


| Name | Description |
| :---: | :---: |
| Logics.LE75.Timer Out | Signal: Timer Output |
| Logics.LE75.Out | Signal: Latched Output (Q) |
| Logics.LE75.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE75.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE75.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE75.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE75.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE75.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE76.Gate Out | Signal: Output of the logic gate |
| Logics.LE76.Timer Out | Signal: Timer Output |
| Logics.LE76.Out | Signal: Latched Output (Q) |
| Logics.LE76.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE76.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE76.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE76.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE76.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE76.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE77.Gate Out | Signal: Output of the logic gate |
| Logics.LE77.Timer Out | Signal: Timer Output |
| Logics.LE77.Out | Signal: Latched Output (Q) |
| Logics.LE77.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE77.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE77.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE77.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE77.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE77.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE78.Gate Out | Signal: Output of the logic gate |
| Logics.LE78.Timer Out | Signal: Timer Output |
| Logics.LE78.Out | Signal: Latched Output (Q) |
| Logics.LE78.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE78.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE78.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE78.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE78.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE78.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE79.Gate Out | Signal: Output of the logic gate |
| Logics.LE79.Timer Out | Signal: Timer Output |
| Logics.LE79.Out | Signal: Latched Output (Q) |
| Logics.LE79.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE79.Gate In1-I | State of the module input: Assignment of the Input Signal |


| Name | Description |
| :---: | :---: |
| Logics.LE79.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE79.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE79.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE79.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Logics.LE80.Gate Out | Signal: Output of the logic gate |
| Logics.LE80.Timer Out | Signal: Timer Output |
| Logics.LE80.Out | Signal: Latched Output (Q) |
| Logics.LE80.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE80.Gate In1-I | State of the module input: Assignment of the Input Signal |
| Logics.LE80.Gate In2-I | State of the module input: Assignment of the Input Signal |
| Logics.LE80.Gate In3-I | State of the module input: Assignment of the Input Signal |
| Logics.LE80.Gate In4-I | State of the module input: Assignment of the Input Signal |
| Logics.LE80.Reset Latch-I | State of the module input: Reset Signal for the Latching |
| Sgen.Running | Signal; Measuring value simulation is running |
| Sgen.Ex Start Simulation-I | State of the module input:External Start of Fault Simulation (Using the test parameters) |
| Sgen.ExBlo | Module input state: External blocking |
| Sgen.Ex ForcePost-I | State of the module input:Force Post state. Abort simulation. |
| Sys.PS 1 | Signal: Parameter Set 1 |
| Sys.PS 2 | Signal: Parameter Set 2 |
| Sys.PS 3 | Signal: Parameter Set 3 |
| Sys.PS 4 | Signal: Parameter Set 4 |
| Sys.PSS manual | Signal: Manual Switch over of a Parameter Set |
| Sys.PSS via Scada | Signal: Parameter Set Switch via Scada. Write into this output byte the integer of the parameter set that should become acitve (e.g. 4 => Switch onto parameter set 4). |
| Sys.PSS via Inp fct | Signal: Parameter Set Switch via input function |
| Sys.min 1 param changed | Signal: At least one parameter has been changed |
| Sys.Setting Lock Bypass | Signal: Short-period unlock of the Setting Lock |
| Sys.Ack LED | Signal: LEDs acknowledgement |
| Sys.Ack BO | Signal: Acknowledgement of the Binary Outputs |
| Sys.Ack Scada | Signal: Acknowledge Scada |
| Sys.Ack TripCmd | Signal: Reset Trip Command |
| Sys.Ack LED-HMI | Signal: LEDs acknowledgement :HMI |
| Sys.Ack BO-HMI | Signal: Acknowledgement of the Binary Outputs :HMI |
| Sys.Ack Scada-HMI | Signal: Acknowledge Scada :HMI |
| Sys.Ack TripCmd-HMI | Signal: Reset Trip Command :HMI |
| Sys.Ack LED-Sca | Signal: LEDs acknowledgement :SCADA |
| Sys.Ack BO-Sca | Signal: Acknowledgement of the Binary Outputs :SCADA |
| Sys.Ack Counter-Sca | Signal: Reset of all Counters :SCADA |
| Sys.Ack Scada-Sca | Signal: Acknowledge Scada :SCADA |
| Sys.Ack TripCmd-Sca | Signal: Reset Trip Command :SCADA |


| Name | Description |
| :--- | :--- |
| Sys.Res OperationsCr | Signal:: Res OperationsCr |
| Sys.Res AlarmCr | Signal:: Res AlarmCr |
| Sys.Res TripCmdCr | Signal:: Res TripCmdCr |
| Sys.Res TotalCr | Signal:: Res TotalCr |
| Sys.Ack LED-I | Module input state: LEDs acknowledgement by digital input |
| Sys.Ack BO-I | Module input state: Acknowledgement of the binary Output Relays |
| Sys.Ack Scada-I | Module input state: Acknowledge Scada via digital input. The replica that SCADA has got from the device <br> is to be reset. |
| Sys.PS1-I | State of the module input respectively of the signal, that should activate this Parameter Setting Group. |
| Sys.PS2-I | State of the module input respectively of the signal, that should activate this Parameter Setting Group. |
| Sys.PS3-I | State of the module input respectively of the signal, that should activate this Parameter Setting Group. |
| Sys.PS4-I | State of the module input respectively of the signal, that should activate this Parameter Setting Group. |
| Sys.Lock Settings-I | State of the module input: No parameters can be changed as long as this input is true. The parameter <br> settings are locked. |

## Signals of the Digital Inputs and Logic

The following list comprises the signals of the Digital Inputs and the Logic. This list is used in various protective elements.

| Name | Description |
| :---: | :---: |
| -.- | No assignment |
| DI Slot X1.DI 1 | Signal: Digital Input |
| DI Slot X1.DI 2 | Signal: Digital Input |
| DI Slot X1.DI 3 | Signal: Digital Input |
| DI Slot X1.DI 4 | Signal: Digital Input |
| DI Slot X1.DI 5 | Signal: Digital Input |
| DI Slot X1.DI 6 | Signal: Digital Input |
| DI Slot X1.DI 7 | Signal: Digital Input |
| DI Slot X1.DI 8 | Signal: Digital Input |
| DI Slot X6.DI 1 | Signal: Digital Input |
| DI Slot X6.DI 2 | Signal: Digital Input |
| DI Slot X6.DI 3 | Signal: Digital Input |
| DI Slot X6.DI 4 | Signal: Digital Input |
| DI Slot X6.DI 5 | Signal: Digital Input |
| DI Slot X6.DI 6 | Signal: Digital Input |
| DI Slot X6.DI 7 | Signal: Digital Input |
| DI Slot X6.DI 8 | Signal: Digital Input |
| DNP3.BinaryOutput0 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput1 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput2 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput3 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput4 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput5 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput6 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput7 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput8 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput9 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput10 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput11 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput12 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput13 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput14 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput15 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput16 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput17 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput18 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |


| Name | Description |
| :---: | :---: |
| DNP3.BinaryOutput19 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput20 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput21 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput22 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput23 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput24 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput25 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput26 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput27 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput28 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput29 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput30 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| DNP3.BinaryOutput31 | Virtual Digital Output (DNP). This corresponds to a virtual binary input of the protective device. |
| Logics.LE1.Gate Out | Signal: Output of the logic gate |
| Logics.LE1.Timer Out | Signal: Timer Output |
| Logics.LE1.Out | Signal: Latched Output (Q) |
| Logics.LE1.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE2.Gate Out | Signal: Output of the logic gate |
| Logics.LE2.Timer Out | Signal: Timer Output |
| Logics.LE2.Out | Signal: Latched Output (Q) |
| Logics.LE2.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE3.Gate Out | Signal: Output of the logic gate |
| Logics.LE3.Timer Out | Signal: Timer Output |
| Logics.LE3.Out | Signal: Latched Output (Q) |
| Logics.LE3.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE4.Gate Out | Signal: Output of the logic gate |
| Logics.LE4.Timer Out | Signal: Timer Output |
| Logics.LE4.Out | Signal: Latched Output (Q) |
| Logics.LE4.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE5.Gate Out | Signal: Output of the logic gate |
| Logics.LE5.Timer Out | Signal: Timer Output |
| Logics.LE5.Out | Signal: Latched Output (Q) |
| Logics.LE5.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE6.Gate Out | Signal: Output of the logic gate |
| Logics.LE6.Timer Out | Signal: Timer Output |
| Logics.LE6.Out | Signal: Latched Output (Q) |
| Logics.LE6.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE7.Gate Out | Signal: Output of the logic gate |
| Logics.LE7.Timer Out | Signal: Timer Output |
| Logics.LE7.Out | Signal: Latched Output (Q) |


| Name | Description |
| :---: | :---: |
| Logics.LE7.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE8.Gate Out | Signal: Output of the logic gate |
| Logics.LE8.Timer Out | Signal: Timer Output |
| Logics.LE8.Out | Signal: Latched Output (Q) |
| Logics.LE8.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE9.Gate Out | Signal: Output of the logic gate |
| Logics.LE9.Timer Out | Signal: Timer Output |
| Logics.LE9.Out | Signal: Latched Output (Q) |
| Logics.LE9.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE10.Gate Out | Signal: Output of the logic gate |
| Logics.LE10.Timer Out | Signal: Timer Output |
| Logics.LE10.Out | Signal: Latched Output (Q) |
| Logics.LE10.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE11.Gate Out | Signal: Output of the logic gate |
| Logics.LE11.Timer Out | Signal: Timer Output |
| Logics.LE11.Out | Signal: Latched Output (Q) |
| Logics.LE11.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE12.Gate Out | Signal: Output of the logic gate |
| Logics.LE12.Timer Out | Signal: Timer Output |
| Logics.LE12.Out | Signal: Latched Output (Q) |
| Logics.LE12.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE13.Gate Out | Signal: Output of the logic gate |
| Logics.LE13.Timer Out | Signal: Timer Output |
| Logics.LE13.Out | Signal: Latched Output (Q) |
| Logics.LE13.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE14.Gate Out | Signal: Output of the logic gate |
| Logics.LE14.Timer Out | Signal: Timer Output |
| Logics.LE14.Out | Signal: Latched Output (Q) |
| Logics.LE14.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE15.Gate Out | Signal: Output of the logic gate |
| Logics.LE15.Timer Out | Signal: Timer Output |
| Logics.LE15.Out | Signal: Latched Output (Q) |
| Logics.LE15.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE16.Gate Out | Signal: Output of the logic gate |
| Logics.LE16.Timer Out | Signal: Timer Output |
| Logics.LE16.Out | Signal: Latched Output (Q) |
| Logics.LE16.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE17.Gate Out | Signal: Output of the logic gate |
| Logics.LE17.Timer Out | Signal: Timer Output |
| Logics.LE17.Out | Signal: Latched Output (Q) |


| Name | Description |
| :---: | :---: |
| Logics.LE17.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE18.Gate Out | Signal: Output of the logic gate |
| Logics.LE18.Timer Out | Signal: Timer Output |
| Logics.LE18.Out | Signal: Latched Output (Q) |
| Logics.LE18.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE19.Gate Out | Signal: Output of the logic gate |
| Logics.LE19.Timer Out | Signal: Timer Output |
| Logics.LE19.Out | Signal: Latched Output (Q) |
| Logics.LE19.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE20.Gate Out | Signal: Output of the logic gate |
| Logics.LE20.Timer Out | Signal: Timer Output |
| Logics.LE20.Out | Signal: Latched Output (Q) |
| Logics.LE20.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE21.Gate Out | Signal: Output of the logic gate |
| Logics.LE21.Timer Out | Signal: Timer Output |
| Logics.LE21.Out | Signal: Latched Output (Q) |
| Logics.LE21.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE22.Gate Out | Signal: Output of the logic gate |
| Logics.LE22.Timer Out | Signal: Timer Output |
| Logics.LE22.Out | Signal: Latched Output (Q) |
| Logics.LE22.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE23.Gate Out | Signal: Output of the logic gate |
| Logics.LE23.Timer Out | Signal: Timer Output |
| Logics.LE23.Out | Signal: Latched Output (Q) |
| Logics.LE23.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE24.Gate Out | Signal: Output of the logic gate |
| Logics.LE24.Timer Out | Signal: Timer Output |
| Logics.LE24.Out | Signal: Latched Output (Q) |
| Logics.LE24.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE25.Gate Out | Signal: Output of the logic gate |
| Logics.LE25.Timer Out | Signal: Timer Output |
| Logics.LE25.Out | Signal: Latched Output (Q) |
| Logics.LE25.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE26.Gate Out | Signal: Output of the logic gate |
| Logics.LE26.Timer Out | Signal: Timer Output |
| Logics.LE26.Out | Signal: Latched Output (Q) |
| Logics.LE26.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE27.Gate Out | Signal: Output of the logic gate |
| Logics.LE27.Timer Out | Signal: Timer Output |
| Logics.LE27.Out | Signal: Latched Output (Q) |


| Name | Description |
| :---: | :---: |
| Logics.LE27.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE28.Gate Out | Signal: Output of the logic gate |
| Logics.LE28.Timer Out | Signal: Timer Output |
| Logics.LE28.Out | Signal: Latched Output (Q) |
| Logics.LE28.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE29.Gate Out | Signal: Output of the logic gate |
| Logics.LE29.Timer Out | Signal: Timer Output |
| Logics.LE29.Out | Signal: Latched Output (Q) |
| Logics.LE29.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE30.Gate Out | Signal: Output of the logic gate |
| Logics.LE30.Timer Out | Signal: Timer Output |
| Logics.LE30.Out | Signal: Latched Output (Q) |
| Logics.LE30.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE31.Gate Out | Signal: Output of the logic gate |
| Logics.LE31.Timer Out | Signal: Timer Output |
| Logics.LE31.Out | Signal: Latched Output (Q) |
| Logics.LE31.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE32.Gate Out | Signal: Output of the logic gate |
| Logics.LE32.Timer Out | Signal: Timer Output |
| Logics.LE32.Out | Signal: Latched Output (Q) |
| Logics.LE32.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE33.Gate Out | Signal: Output of the logic gate |
| Logics.LE33.Timer Out | Signal: Timer Output |
| Logics.LE33.Out | Signal: Latched Output (Q) |
| Logics.LE33.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE34.Gate Out | Signal: Output of the logic gate |
| Logics.LE34.Timer Out | Signal: Timer Output |
| Logics.LE34.Out | Signal: Latched Output (Q) |
| Logics.LE34.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE35.Gate Out | Signal: Output of the logic gate |
| Logics.LE35.Timer Out | Signal: Timer Output |
| Logics.LE35.Out | Signal: Latched Output (Q) |
| Logics.LE35.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE36.Gate Out | Signal: Output of the logic gate |
| Logics.LE36.Timer Out | Signal: Timer Output |
| Logics.LE36.Out | Signal: Latched Output (Q) |
| Logics.LE36.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE37.Gate Out | Signal: Output of the logic gate |
| Logics.LE37.Timer Out | Signal: Timer Output |
| Logics.LE37.Out | Signal: Latched Output (Q) |


| Name | Description |
| :---: | :---: |
| Logics.LE37.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE38.Gate Out | Signal: Output of the logic gate |
| Logics.LE38.Timer Out | Signal: Timer Output |
| Logics.LE38.Out | Signal: Latched Output (Q) |
| Logics.LE38.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE39.Gate Out | Signal: Output of the logic gate |
| Logics.LE39.Timer Out | Signal: Timer Output |
| Logics.LE39.Out | Signal: Latched Output (Q) |
| Logics.LE39.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE40.Gate Out | Signal: Output of the logic gate |
| Logics.LE40.Timer Out | Signal: Timer Output |
| Logics.LE40.Out | Signal: Latched Output (Q) |
| Logics.LE40.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE41.Gate Out | Signal: Output of the logic gate |
| Logics.LE41.Timer Out | Signal: Timer Output |
| Logics.LE41.Out | Signal: Latched Output (Q) |
| Logics.LE41.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE42.Gate Out | Signal: Output of the logic gate |
| Logics.LE42.Timer Out | Signal: Timer Output |
| Logics.LE42.Out | Signal: Latched Output (Q) |
| Logics.LE42.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE43.Gate Out | Signal: Output of the logic gate |
| Logics.LE43.Timer Out | Signal: Timer Output |
| Logics.LE43.Out | Signal: Latched Output (Q) |
| Logics.LE43.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE44.Gate Out | Signal: Output of the logic gate |
| Logics.LE44.Timer Out | Signal: Timer Output |
| Logics.LE44.Out | Signal: Latched Output (Q) |
| Logics.LE44.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE45.Gate Out | Signal: Output of the logic gate |
| Logics.LE45.Timer Out | Signal: Timer Output |
| Logics.LE45.Out | Signal: Latched Output (Q) |
| Logics.LE45.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE46.Gate Out | Signal: Output of the logic gate |
| Logics.LE46. Timer Out | Signal: Timer Output |
| Logics.LE46.Out | Signal: Latched Output (Q) |
| Logics.LE46.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE47.Gate Out | Signal: Output of the logic gate |
| Logics.LE47.Timer Out | Signal: Timer Output |
| Logics.LE47.Out | Signal: Latched Output (Q) |


| Name | Description |
| :---: | :---: |
| Logics.LE47.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE48.Gate Out | Signal: Output of the logic gate |
| Logics.LE48.Timer Out | Signal: Timer Output |
| Logics.LE48.Out | Signal: Latched Output (Q) |
| Logics.LE48.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE49.Gate Out | Signal: Output of the logic gate |
| Logics.LE49.Timer Out | Signal: Timer Output |
| Logics.LE49.Out | Signal: Latched Output (Q) |
| Logics.LE49.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE50.Gate Out | Signal: Output of the logic gate |
| Logics.LE50.Timer Out | Signal: Timer Output |
| Logics.LE50.Out | Signal: Latched Output (Q) |
| Logics.LE50.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE51.Gate Out | Signal: Output of the logic gate |
| Logics.LE51.Timer Out | Signal: Timer Output |
| Logics.LE51.Out | Signal: Latched Output (Q) |
| Logics.LE51.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE52.Gate Out | Signal: Output of the logic gate |
| Logics.LE52.Timer Out | Signal: Timer Output |
| Logics.LE52.Out | Signal: Latched Output (Q) |
| Logics.LE52.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE53.Gate Out | Signal: Output of the logic gate |
| Logics.LE53.Timer Out | Signal: Timer Output |
| Logics.LE53.Out | Signal: Latched Output (Q) |
| Logics.LE53.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE54.Gate Out | Signal: Output of the logic gate |
| Logics.LE54.Timer Out | Signal: Timer Output |
| Logics.LE54.Out | Signal: Latched Output (Q) |
| Logics.LE54.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE55.Gate Out | Signal: Output of the logic gate |
| Logics.LE55.Timer Out | Signal: Timer Output |
| Logics.LE55.Out | Signal: Latched Output (Q) |
| Logics.LE55.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE56.Gate Out | Signal: Output of the logic gate |
| Logics.LE56.Timer Out | Signal: Timer Output |
| Logics.LE56.Out | Signal: Latched Output (Q) |
| Logics.LE56.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE57.Gate Out | Signal: Output of the logic gate |
| Logics.LE57.Timer Out | Signal: Timer Output |
| Logics.LE57.Out | Signal: Latched Output (Q) |


| Name | Description |
| :---: | :---: |
| Logics.LE57.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE58.Gate Out | Signal: Output of the logic gate |
| Logics.LE58.Timer Out | Signal: Timer Output |
| Logics.LE58.Out | Signal: Latched Output (Q) |
| Logics.LE58.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE59.Gate Out | Signal: Output of the logic gate |
| Logics.LE59.Timer Out | Signal: Timer Output |
| Logics.LE59.Out | Signal: Latched Output (Q) |
| Logics.LE59.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE60.Gate Out | Signal: Output of the logic gate |
| Logics.LE60.Timer Out | Signal: Timer Output |
| Logics.LE60.Out | Signal: Latched Output (Q) |
| Logics.LE60.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE61.Gate Out | Signal: Output of the logic gate |
| Logics.LE61.Timer Out | Signal: Timer Output |
| Logics.LE61.Out | Signal: Latched Output (Q) |
| Logics.LE61.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE62.Gate Out | Signal: Output of the logic gate |
| Logics.LE62.Timer Out | Signal: Timer Output |
| Logics.LE62.Out | Signal: Latched Output (Q) |
| Logics.LE62.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE63.Gate Out | Signal: Output of the logic gate |
| Logics.LE63.Timer Out | Signal: Timer Output |
| Logics.LE63.Out | Signal: Latched Output (Q) |
| Logics.LE63.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE64.Gate Out | Signal: Output of the logic gate |
| Logics.LE64.Timer Out | Signal: Timer Output |
| Logics.LE64.Out | Signal: Latched Output (Q) |
| Logics.LE64.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE65.Gate Out | Signal: Output of the logic gate |
| Logics.LE65.Timer Out | Signal: Timer Output |
| Logics.LE65.Out | Signal: Latched Output (Q) |
| Logics.LE65.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE66.Gate Out | Signal: Output of the logic gate |
| Logics.LE66.Timer Out | Signal: Timer Output |
| Logics.LE66.Out | Signal: Latched Output (Q) |
| Logics.LE66.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE67.Gate Out | Signal: Output of the logic gate |
| Logics.LE67.Timer Out | Signal: Timer Output |
| Logics.LE67.Out | Signal: Latched Output (Q) |


| Name | Description |
| :---: | :---: |
| Logics.LE67.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE68.Gate Out | Signal: Output of the logic gate |
| Logics.LE68.Timer Out | Signal: Timer Output |
| Logics.LE68.Out | Signal: Latched Output (Q) |
| Logics.LE68.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE69.Gate Out | Signal: Output of the logic gate |
| Logics.LE69.Timer Out | Signal: Timer Output |
| Logics.LE69.Out | Signal: Latched Output (Q) |
| Logics.LE69.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE70.Gate Out | Signal: Output of the logic gate |
| Logics.LE70.Timer Out | Signal: Timer Output |
| Logics.LE70.Out | Signal: Latched Output (Q) |
| Logics.LE70.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE71.Gate Out | Signal: Output of the logic gate |
| Logics.LE71.Timer Out | Signal: Timer Output |
| Logics.LE71.Out | Signal: Latched Output (Q) |
| Logics.LE71.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE72.Gate Out | Signal: Output of the logic gate |
| Logics.LE72.Timer Out | Signal: Timer Output |
| Logics.LE72.Out | Signal: Latched Output (Q) |
| Logics.LE72.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE73.Gate Out | Signal: Output of the logic gate |
| Logics.LE73.Timer Out | Signal: Timer Output |
| Logics.LE73.Out | Signal: Latched Output (Q) |
| Logics.LE73.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE74.Gate Out | Signal: Output of the logic gate |
| Logics.LE74.Timer Out | Signal: Timer Output |
| Logics.LE74.Out | Signal: Latched Output (Q) |
| Logics.LE74.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE75.Gate Out | Signal: Output of the logic gate |
| Logics.LE75.Timer Out | Signal: Timer Output |
| Logics.LE75.Out | Signal: Latched Output (Q) |
| Logics.LE75.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE76.Gate Out | Signal: Output of the logic gate |
| Logics.LE76.Timer Out | Signal: Timer Output |
| Logics.LE76.Out | Signal: Latched Output (Q) |
| Logics.LE76.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE77.Gate Out | Signal: Output of the logic gate |
| Logics.LE77.Timer Out | Signal: Timer Output |
| Logics.LE77.Out | Signal: Latched Output (Q) |


| Name | Description |
| :--- | :--- |
| Logics.LE77.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE78.Gate Out | Signal: Output of the logic gate |
| Logics.LE78.Timer Out | Signal: Timer Output |
| Logics.LE78.Out | Signal: Latched Output (Q) |
| Logics.LE78.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE79.Gate Out | Signal: Output of the logic gate |
| Logics.LE79.Timer Out | Signal: Timer Output |
| Logics.LE79.Out | Signal: Latched Output (Q) |
| Logics.LE79.Out inverted | Signal: Negated Latched Output (Q NOT) |
| Logics.LE80.Gate Out | Signal: Output of the logic gate |
| Logics.LE80.Timer Out | Signal: Timer Output |
| Logics.LE80.Out | Signal: Latched Output (Q) |
| Logics.LE80.Out inverted | Signal: Negated Latched Output (Q NOT) |

## Abbreviations, and Acronyms

The following abbreviations and acronyms are used in this manual.

| ${ }^{\circ} \mathrm{C}$ | Degrees Celsius |
| :---: | :---: |
| ${ }^{\circ} \mathrm{F}$ | Degrees Fahrenheit |
| A | Ampere(s), Amp(s) |
| AC | Alternating current |
| Ack. | Acknowledge |
| AND | Logical gate (The output becomes true if all Input signals are true.) |
| ANSI | American National Standards Institute |
| avg. | Average |
| AWG | American wire gauge |
| BF | Circuit breaker failure |
| Bkr | Breaker |
| Blo | Blocking(s) |
| BO | Binary output relay |
| BO1 | 1st binary output relay |
| BO2 | 2nd binary output relay |
| BO3 | 3 rd binary output relay |
| calc | Calculated |
| CB | Circuit breaker |
| CBF | Module Circuit Breaker Failure protection |
| $C D$ | Compact disk |
| Char | Curve shape |
| CLPU | Cold Load Pickup Module |
| Cmd. | Command |
| CMN | Common input |
| COM | Common input |
| Comm | Communication |
| Cr . | Counter(s) |
| CSA | Canadian Standards Association |
| CT | Control transformer |
| Ctrl. | Control |
| CTS | Current Transformer Supervision |
| CTS | Current transformer supervision |
| d | Day |
| D-Sub-Plug | Communication interface |
| DC | Direct current |
| DEFT | Definite time characteristic (Tripping time does not depend on the height of the current.) |
| delta phi | Vector surge |
| df/dt | Rate-of-frequency-change |
| DI | Digital Input |
| Diagn Cr | Diagnosis counter(s) |
| Diagn. | Diagnosis |


| DIN | Deutsche Industrie Norm |
| :---: | :---: |
| dir | Directional |
| EINV | Extremely inverse tripping characteristic |
| EMC | Electromagnetic compatibility |
| EN | Europäische Norm |
| err. / Err. | Error |
| EVTcon | Parameter determines if the residual voltage is measured or calculated. |
| Ex | External |
| Ex Oil Temp | External Oil Temperature |
| ExBlo | External blocking(s) |
| ExP | External Protection - Module |
| ExP | External protection |
| Ext Sudd Press | Sudden Pressure |
| Ext Temp Superv | External Temperature Supervision |
| f | Frequency Protection Module |
| Fc | Function (Enable or disable functionality = allow or disallow.) |
| FIFO | First in first out |
| FIFO Principal | First in first out |
| fund | Fundamental (ground wave) |
| gn | Acceleration of the earth in vertical direction ( $9.81 \mathrm{~m} / \mathrm{s} 2$ ) |
| GND | Ground |
| h | Hour |
| HMI | Human machine interface (Front of the protective relay) |
| HTL | Manufacturer internal product designation |
| Hz | Hertz |
| I | Phase Overcurrent Stage |
| I | Fault current |
| 1 | Current |
| I-BF | Tripping threshold |
| 10 | Zero current (symmetrical components) |
| 11 | Positive sequence current (symmetrical components) |
| 12 | Negative sequence current (symmetrical components) |
| 12> | Unbalanced Load-Stage |
| 12T | Thermal Characteristic |
| 14 T | Thermal Characteristic |
| IA | Phase A current |
| IB | Phase B current |
| IC | Phase C current |
| IC's | Manufacturer internal product designation |
| Id | Differential Protection Module |
| IdG | Restricted Ground Fault Differential Protection Module |
| IdGH | Restricted Ground Fault Highset Protection Module |
| IdH | High-Set Differential Protection Module |
| IEC | International Electrotechnical Commission |
| IEC61850 | IEC61850 |


| IEEE | Institute of Electrical and Electronics Engineers |
| :---: | :---: |
| IG | Earth current protection - Stage |
| IG | Ground current |
| IG | Fault current |
| IGnom | Nominal ground current |
| IH1 | 1st harmonic |
| lH 2 | Module Inrush |
| IH2 | 2nd harmonic |
| in. | Inch |
| incl. | Include, including |
| InEn | Inadvertent Energization |
| Info. | Information |
| Interl. | Interlocking |
| Intertripping | Intertripping |
| INV | Inverse characteristic (The tripping time will be calculated depending on the height of the current) |
| IR | Calculated ground current |
| IRIG | Input for time synchronization (Clock) |
| IRIG-B | IRIG-B-Module |
| IT | Thermal Characteristic |
| IX | 4th measuring input of the current measuring assembly group (either ground or neutral current) |
| J | Joule |
| kg | Kilogram |
| kHz | Kilohertz |
| kV | Kilovolt(s) |
| kVdc or kVDC | Kilovolt(s) direct current |
| $1 / \mathrm{ln}$ | Ratio of current to nominal current. |
| L1 | Phase A |
| L2 | Phase B |
| L3 | Phase C |
| lb -in | Pound-inch |
| LED | Light emitting diode |
| LINV | Long time inverse tripping characteristic |
| LoE-Z1 | Loss of Excitation |
| LoE-Z2 | Loss of Excitation |
| Logics | Logic |
| LOP | Loss of Potential |
| LV | Low voltage |
| LVRT | Low Voltage Ride Through |
| m | Meter |
| mA | Milliampere(s), Milliamp(s) |
| man. | Manual |
| max. | Maximum |
| meas | Measured |
| min. | Minimum |


| min. | Minute |
| :---: | :---: |
| MINV | Moderately Inverse Tripping Characteristic |
| MK | Manufacturer Internal Product Designation Code |
| mm | Millimeter |
| MMU | Memory mapping unit |
| ms | Milli-second(s) |
| MV | Medium voltage |
| mVA | Milli volt amperes (Power) |
| N.C. | Not connected |
| N.O. | Normal open (Contact) |
| NINV | Normal inverse tripping characteristic |
| Nm | Newton-meter |
| No | Number |
| Nom. | Nominal |
| NT | Manufacturer internal product designation code |
| P | Reverse Active Power |
| Para. | Parameter |
| PC | Personal computer |
| PCB | Printed circuit board |
| PE | Protected Earth |
| PF | Power Factor - Module |
| Ph | Phase |
| PQS | Power Protection - Module |
| pri | Primary |
| PROT or Prot | Protection Module (Master Module) |
| PS1 | Parameter set 1 |
| PS2 | Parameter set 2 |
| PS3 | Parameter set 3 |
| PS4 | Parameter set 4 |
| PSet | Parameter set |
| PSS | Parameter set switch (Switching from one parameter set to another) |
| Q | Reverse Reactive Power |
| Q->\&V< | Undervoltage and Reactive Power Direction Protection |
| R | Reset |
| rec. | Record |
| rel | Relative |
| res | Reset |
| ResetFct | Reset function |
| RevData | Review data |
| RMS | Root mean square |
| Rst | Reset |
| RTD | Temperature Protection Module |
| s | Second |
| SC | Supervision contact |
| Sca | SCADA |


| SCADA | Communication module |
| :---: | :---: |
| sec | Second(s) |
| sec | Secondary |
| Sgen | Sine wave generator |
| Sig. | Signal |
| SNTP | SNTP-Module |
| SOTF | Switch Onto Fault - Module |
| StartFct | Start function |
| Sum | Summation |
| SW | Software |
| Sync | Synchrocheck |
| Sys. | System |
| t | Tripping delay |
| tort. | Time |
| Tcmd | Trip command |
| TCP/IP | Communication protocol |
| TCS | Trip circuit supervision |
| ThR | Thermal replica module |
| TI | Manufacturer internal product designation code |
| TripCmd | Trip command |
| txt | Text |
| UL | Underwriters Laboratories |
| UMZ | DEFT (definite time tripping characteristic) |
| USB | Universal serial bus |
| V | Voltage-stage |
| V | Volts |
| V/f> | Overexcitation |
| V012 | Symmetrical Components: Supervision of the Positive Phase Sequence or Negative Phase Sequence |
| Vac / V ac | Volts alternating current |
| $\mathrm{Vdc} / \mathrm{V}$ dc | Volts direct current |
| VDE | Verband Deutscher Elektrotechnik |
| VDEW | Verband der Elektrizitätswirtschaft |
| VE | Residual voltage |
| VG | Residual voltage-Stage |
| VINV | Very inverse tripping characteristic |
| VTS | Voltage transformer supervision |
| W | Watt(s) |
| WDC | Watch dog contact (supervision contact) |
| WWW | World wide web |
| XCT | 4th current measuring input (ground or neutral current) |
| XInv | Inverse characteristic |

## List of ANSI Codes

| ANSI | Functions |
| :---: | :---: |
| 14 | Underspeed |
| 23 | Temperature Protection |
| 24 | Overexcitation Protection (Volts per Hertz) |
| 25 | Synchronizing or Synchronism-check via $4^{\text {th }}$ measuring channel of voltage measurement card |
| 27 | Undervoltage Protection |
| 27(t) | Undervoltage (time dependent) Protection |
| 27A | Undervoltage Protection (Auxiliar) via $4^{\text {th }}$ measuring channel of voltage measurement card |
| 27N | Neutral Undervoltage via $4^{\text {th }}$ measuring channel of voltage measurement card |
| 27TN | Third Harmonic Neutral Undervoltage via $4^{\text {th }}$ measuring channel of voltage measurement card |
| 32 | Directional Power Protection |
| 32F | Forward Power Protection |
| 32R | Reverse Power Protection |
| 37 | Undercurrent / Under Power |
| 38 | Temperature Protection (optional via Interface/external Box) |
| 40 | Loss of Excitation / Loss of Field |
| 46 | Unbalanced Current Protection |
| 46G | Unbalanced Generator Current Protection |
| 47 | Unbalanced Voltage Protection |
| 48 | Incomplete Sequence (Start-up time Supervison) |
| 49 | Thermal Protection |
| 49M | Thermal Motor Protection |
| 49R | Thermal Rotor Protection |
| 49S | Thermal Stator Protection |
| 50BF | Breaker Failure |
| 50 | Overcurrent (instantaneous) |
| 50P | Phase Overcurrent (instantaneous) |
| 50N | Neutral Overcurrent (instantaneous) |
| 50 Ns | Sensitive Neutral Overcurrent (instantaneous) |
| 51 | Overcurrent |
| 51P | Phase Overcurrent |
| 51N | Neutral Overcurrent |
| 51 Ns | Sensitive Neutral Overcurrent |
| 51LR | Locked Rotor |
| 51LRS | Locked Rotor Start (during start sequence) |
| 51C | Voltage Controlled Overcurrent (via adaptive Parameters) |
| 51Q | Negative Phase Sequence Overcurrent (multiple trip characteristics) |
| 51 V | Voltage Restrained Overcurrent |
| 55 | Power Factor Protection |
| 56 | Field Application Relay |
| 59 | Overvoltage Protection |
| 59TN | Third Harmonic Neutral Overvoltage via $4^{\text {th }}$ measuring channel of voltage measurement card |
| 59A | Overvoltage Protection via 4th (Auxiliar) measuring channel of voltage measurement card |
| 59N | Neutral Overvoltage Protection |
| 60FL | Voltage Transformer Supervision |
| 60L | Current Transformer Supervision |
| 64R | Rotor Earth Fault Protection |
| 64REF | Restricted Ground Fault Protection |
| 66 | Starts per h (Start Inhibit) |
| 67 | Directional Overcurrent |


| ANSI | Functions |
| :--- | :--- |
| 67N | Directional Neutral Overcurrent |
| 67Ns | Sensitive Directional Neutral Overcurrent |
| 74 TC | Trip Circuit Supervision |
| 78 V | Vector Surge Protection |
| 79 | Auto Reclosure |
| 81 | Frequency Protection |
| 81U | Underfrequency Protection |
| 81O | Overfrequency Protection |
| 81R | ROCOF (df/dt) |
| 86 | Lock Out |
| 87B | Busbar Differential Protection |
| 87G | Generator Differential Protection |
| 87GP | Generator Phase Differential Protection |
| 87GN | Generator Ground Differential Protection |
| 87M | Motor Differential Protection |
| 87T | Transformer Differential Protection |
| 87TP | Transformer Phase Differential Protection |
| 87TN | Transformer Ground Differential Protection |
| 87U | Unit Differential Protection (protected zone includes generator and step-up transformer) |
| 87UP | Unit Phase Differential Protection (protected zone includes generator and step-up transformer) |

## Specifications

## Specifications of the Real Time Clock

Resolution:
Tolerance:

1 ms
$<1$ minute / month ( $+20^{\circ} \mathrm{C}$ [68 ${ }^{\circ} \mathrm{F}$ ])
$< \pm 1 \mathrm{~ms}$ if synchronized via IRIG-B

## Time Synchronisation Tolerances

The different protocols for time synchronisation vary in their accuracy:

| Used Protocol | Time drift over one month | Deviation to time generator |
| :--- | :--- | :--- |
| Without time synchronization | $<1$ min $\left(+20^{\circ} \mathrm{C}\right)$ | Time drifts |
| IRIG-B | Dependent on the time drift of <br> the time generator | $< \pm 1 \mathrm{~ms}$ |
| SNTP | Dependent on the time drift of <br> the time generator | $< \pm 1 \mathrm{~ms}$ |
| IEC60870-5-103 | Dependent on the time drift of <br> the time generator | $< \pm 1 \mathrm{~ms}$ |
| Modbus TCP | Dependent on the time drift of <br> the time generator | Dependent on the network load |
| Modbus RTU | Dependent on the time drift of <br> the time generator | $< \pm 1 \mathrm{~ms}$ |
| DNP3 | Dependent on the time drift of <br> the time generator | $< \pm 1 \mathrm{~ms}$ |

## Specifications of the Measured Value Acquisition <br> Phase and Ground Current Measuring

Frequency Range:
Accuracy:
Amplitude Error if I < In:
Amplitude Error if $\mathrm{I}>\mathrm{In}$ :
Amplitude Error if $\mathrm{I}>2$ In:
Harmonics:

Frequency Influence:
Temperature Influence:
$50 \mathrm{~Hz} / 60 \mathrm{~Hz} \pm 10 \%$
Class 0.5
$\pm 0.5 \%$ of the rated current
$\pm 0.5 \%$ of the measured current ${ }^{* 3}$
$\pm 1.0 \%$ of the measured current ${ }^{* 3)}$
Up to 20\% 3rd harmonic $\pm 2 \%$ Up to 20\% 5th harmonic $\pm 2 \%$
$< \pm 2 \% / \mathrm{Hz}$ in the range of $\pm 5 \mathrm{~Hz}$ of the configured nominal frequency
$< \pm 1 \%$ within the range of $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
${ }^{*} 3$ ) For earth current sensitive the precision does not depend on the nominal value but is referenced to 100 mA (with $\ln =1 \mathrm{~A}$ ) respectively. 500 mA (with $\mathrm{In}=5 \mathrm{~A}$ )

## Protection Elements Accuracy

$N \bigcirc T / C E \quad$ The tripping delay relates to the time between alarm and trip.
The accuracy of the operating time relates to the time between fault entry and the time when the protection element is picked-up.

Reference conditions for all Protection Elements: sine wave, at rated frequency, THD $<1 \%$ Measuring method: Fundamental

| Overcurrent Protection Elements: I[x] | Accuracy |
| :---: | :---: |
| \|> | $\pm 1.5 \%$ of the setting value or $\pm 1 \%$ In |
| Dropout Ratio | 97\% or 0.5\% In |
| t | $\begin{aligned} & \text { DEFT } \\ & \pm 1 \% \text { or } \pm 10 \mathrm{~ms} \end{aligned}$ |
| Operating Time <br> At testing current $>=2$ times pickup value | $<36 \mathrm{~ms}$ |
| Disengaging Time | <55ms |
| t-char | $\pm 5 \%$ (according to selected curve) |
| t-reset (Reset Mode = t-delay) | $\pm 1 \%$ or $\pm 10 \mathrm{~ms}$ |


| Overcurrent Protection Elements: <br> $\boldsymbol{I}[x]$ <br> with selected Measuring method $=\mathbf{I 2}$ <br> (Negative phase sequence current) | Accuracy |
| :--- | :--- |
| $>$ | $\pm 2 \%$ of the setting value or $\pm 1 \%$ In |
| Dropout Ratio | DEFT <br> $\pm 1 \%$ <br>  <br> t |
| Operating Time $\pm 10 \mathrm{~ms}$ <br> At testing current $>=2$ times pickup value | $<60 \mathrm{~ms}$ |
| Disengaging Time | $<45 \mathrm{~ms}$ |


| Ground Current Elements: <br> IG[x] | Accuracy ${ }^{* 3}$ ) |
| :--- | :--- |
| IG> | $\pm 1.5 \%$ of the setting value or $\pm 1 \%$ In |
| Dropout Ratio | $97 \%$ or $0.5 \%$ In |
| t | DEFT <br> $\pm 1 \%$ or $\pm 10 \mathrm{~ms}$ <br> Operating time <br> Starting from IG higher than $1.2 \times$ IG> |
| Disengaging Time | $<45 \mathrm{~ms}$ |
| t-char | $<55 \mathrm{~ms}$ |
| t-reset (Reset Mode $=$ t-delay) | $\pm 5 \%$ (according to selected curve) |

*3) For earth current sensitive the precision does not depend on the nominal value but is referenced to 100 mA (with $\ln =1 \mathrm{~A}$ ) respectively 500 mA (with In = 5 A)

| Phase Differential Protection: <br> Id | Accuracy |
| :--- | :--- |
| Id > | $\pm 3 \%$ of the setting value or 2\% In. |
| Operating time | $<40 \mathrm{~ms}$ |
| Id $>2 \times$ pickup <br> (step from zero to 200\% pickup of 87-Char) | 30 ms |
| Typically trip time | 18 ms |
| Shortest trip time |  |


| Unrestrained Phase Differential Protection: <br> IdH | Accuracy |
| :--- | :--- |
| Id >> | $\pm 3 \%$ of the setting value or 2\% In. |
| Operating time | $<30 \mathrm{~ms}$ |
| Id $>1.1 \times$ pickup: | 19 ms |
| Typically trip time | 13 ms |
| Shortest trip time |  |


| Ground Differential Protection: <br> IdG[x] | Accuracy |
| :--- | :--- |
| IdgG > | $\pm 3 \%$ of the setting value or 2\% In. |
| Operating time | $<40 \mathrm{~ms}$ |
| Idg $>2 \times$ pickup <br> (step from zero to 200\% pickup of 87G-Char) | 30 ms |
| Typally trip time | 18 ms |
| Shortest trip time |  |


| Unrestrained Ground Differential Protection: <br> IdGH[x] | Accuracy |
| :--- | :--- |
| IdG >> | $\pm 3 \%$ of the setting value or $2 \% \mathrm{In}$. |
| Operating time |  |
| Idg > 1.1 x pickup: | $<30 \mathrm{~ms}$ |
| Typically trip time | 19 ms |
| Shortest trip time | 13 ms |


| RTD Protection: <br> RTD/URTD |  |
| :--- | :--- |
| Trip Threshold | Accuracy |
| Alarm Threshold | $\pm 1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ |
| t-delay Alarm | $\pm 1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ |
| Reset Hysteresis | DEFT |
|  | $\pm 1 \%$ or $\pm 10 \mathrm{~ms}$ |


| Thermal Replica: <br> ThR | Accuracy |
| :--- | :--- |
| lb | $\pm 2 \%$ of the setting value or $1 \%$ In |
| Alarm ThR | $\pm 1.5 \%$ of the setting value |


| Inrush Supervision: <br> $\boldsymbol{I H} \mathbf{2}$ | Accuracy |
| :--- | :--- |
| $\mathrm{IH} 2 / \mathrm{IH} 1$ | $\pm 1 \% \mathrm{In}$ |
| Dropout Ratio | $5 \% \mathrm{IH} 2$ or $1 \% \mathrm{In}$ |
| Operating Time | $<30 \mathrm{~ms}{ }^{* 1)}$ |

[^10]| Current unbalance: $12>[x]$ | Accuracy ${ }^{* 1)}$ |
| :---: | :---: |
| 12> | $\pm 2 \%$ of the setting value or $1 \%$ In |
| Dropout Ratio | 97\% or 0.5\% x ln |
| \%(I2/I1) | $\pm 1 \%$ |
| t | $\begin{aligned} & \text { DEFT } \\ & \pm 1 \% \text { or } \pm 10 \mathrm{~ms} \end{aligned}$ |
| Operating Time | $<70 \mathrm{~ms}$ |
| Disengaging Time | $<50 \mathrm{~ms}$ |
| K | $\pm 5 \%$ INV |
| T-cool | $\pm 5 \%$ INV |

*1) Negative-sequence current 12 must be $\geq 0.01 \mathrm{x} \ln , \mathrm{I} 1$ must be $\geq 0.1 \mathrm{x} \ln$.

| Switch onto Fault: | Accuracy |
| :--- | :--- |
| SOTF |  |
| Operating time | $<35 \mathrm{~ms}$ |
| l | $\pm 1.5 \%$ of the setting value or1\% In |
| t-enable | $\pm 1 \%$ or $\pm 10 \mathrm{~ms}$ |


| Cold Load Pickup: <br> CLPU | Accuracy |
| :--- | :--- |
| Threshold | $\pm 1.5 \%$ of the setting value or1\% In |
| Operating time | $<35 \mathrm{~ms}$ |
| l< | $\pm 1.5 \%$ of the setting value or1\% In |
| t -Load OFF | $\pm 1 \%$ or $\pm 15 \mathrm{~ms}$ |
| t -Max Block | $\pm 1 \%$ or $\pm 15 \mathrm{~ms}$ |
| Settle Time | $\pm 1 \%$ or $\pm 15 \mathrm{~ms}$ |


| Circuit Breaker Failure Protection: <br> CBF | Accuracy |
| :--- | :--- |
| I-CBF | $\pm 1.5 \%$ of the setting value or1\% In |
| t-CBF | $\pm 1 \%$ or $\pm 10 \mathrm{~ms}$ |
| Operating Time <br> Starting from I Higher than $1.3 \times \mathrm{I}-\mathrm{CBF}>$ | $<40 \mathrm{~ms}$ |
| Disengaging Time | $<40 \mathrm{~ms}$ |


| Trip Circuit Supervision: | Accuracy |
| :--- | :--- |
| TCS | $\pm 1 \%$ or $\pm 10 \mathrm{~ms}$ |
| t -TCS |  |


| Current Transformer Supervision: <br> CTS | Accuracy |
| :--- | :--- |
| $\Delta \mathrm{l}$ | $\pm 2 \%$ of the setting value or $1.5 \%$ In |
| Dropout Ratio | $94 \%$ |
| Alarm delay | $\pm 1 \%$ or $\pm 10 \mathrm{~ms}$ |

We appreciate your comments about the content of our publications.
Please send comments to: kemp.doc@woodward.com
Please include the manual number from the front cover of this publication.

Woodward Kempen GmbH reserves the right to update any portion of this publication at any time. Information provided by Woodward Kempen GmbH is believed to be correct and reliable. However, Woodward Kempen GmbH assumes no responsibility unless otherwise expressly undertaken.

This is the original manual (source).
© Woodward Kempen GmbH , all rights reserved

W woodward

Woodward Kempen GmbH
Krefelder Weg 47 • D - 47906 Kempen (Germany)
Postfach 100755 (P.O.Box) • D - 47884 Kempen (Germany)
Phone: +49 (0) 21521451

Internet
www.woodward.com

## Sales

Phone: +49 (0) 2152145331 or +49 (0) 71178954510
Fax: +49 (0) 2152145354 or +49 (0) 71178954101
e-mail: SalesPGD_EUROPE@woodward.com

## Service

Phone: +49 (0) 2152145600 . Telefax: +49 (0) 2152145455
e-mail: SupportPGD_Europe@woodward.com


[^0]:    * Within every communication option only one communication protocol is usable.

    Smart view can be used in parallel via the Ethernet interface (RJ45).

[^1]:    Shield at bus master side
    connected to earth terminatio connected to earth termination

[^2]:    NOTICE
    If the device was not active within the parameter setting mode for a longer time (can be set between $20-3600$ seconds) it changes into »Read Only-Lv0《 mode automatically. This parameter (t-max-Edit) can be modified within menu [Device ParalHMI].

[^3]:    "This applies to devices that offer wide frequency range measurement only.

[^4]:    This applies to devices that offer wide frequency range measurement only.

[^5]:    A WARNING
    Caution: Trip commands that are not assigned within the Circuit Breaker Manager (CB Manager) are not issued to a circuit breaker.

    The CB Manager issues the trip commands to a circuit breaker.
    Assign within the Circuit Breaker Manager all trip commands that have to switch a circuit breaker.

[^6]:    *=available only for devices that offer voltage measurement.

[^7]:    Necessary means:

    ■ Current source;

    - Voltage Source;
    - Current and Voltage meters; and
    - Timer.

[^8]:    $N O T / C E \quad$ This Notice applies to protective devices that offer control functionality only! This protective element requires, that a switchgear (circuit breaker is assigned to it. It is allowed only to assign switchgears (circuit breaker) to this protective element, whose measuring transformers provide measuring data to the protective device.

[^9]:    NOTICE
    The permissible deviations of measuring values and device adjustment are dependent on the technical data/tolerances.

[^10]:    *1) Inrush supervision is possible, if the fundamental Harmonic $(\mathrm{IH} 1)>0.1 \mathrm{In}$ and $2^{\text {nd }}$ Harmonic $(\mathrm{IH} 2)>0.01 \mathrm{In}$.

