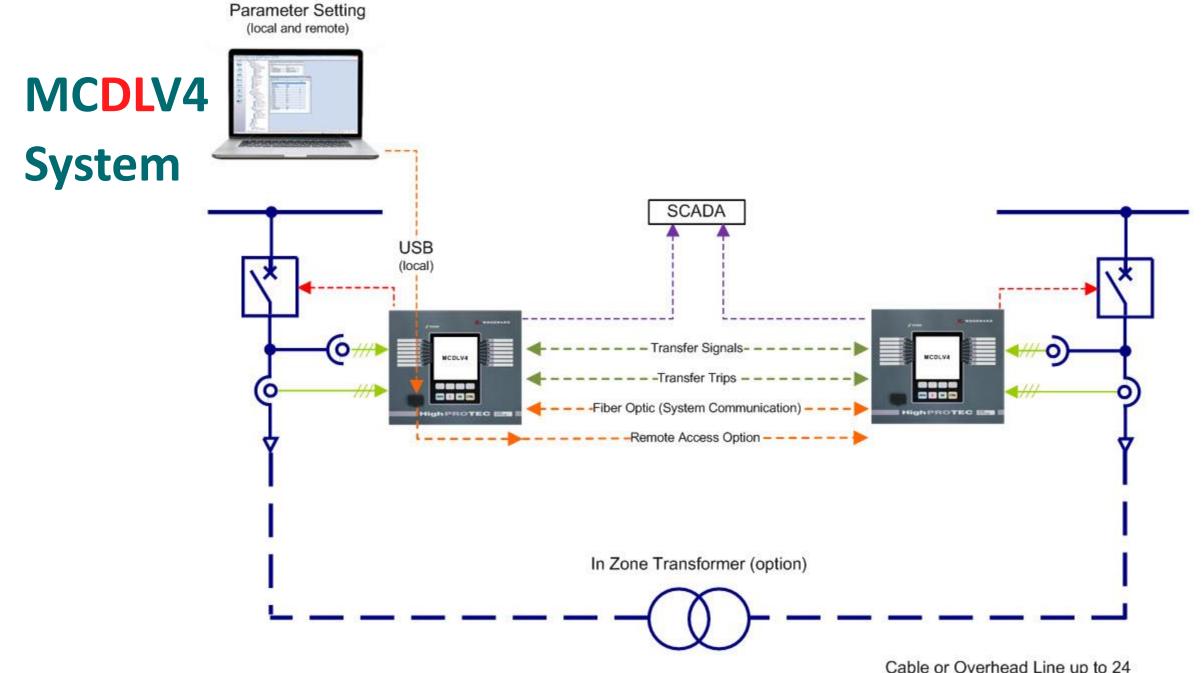


MCDLV4 Line Differential

MCDLV4 – A new HighPROTEC Family Member


MCDLV4 Naming

- MCDLV4
- MRU4
- MRI4
- MRA4
- MCA4
- MRM4
- MRMV4
- MRDT4
- MCDTV4
- MCDGV4

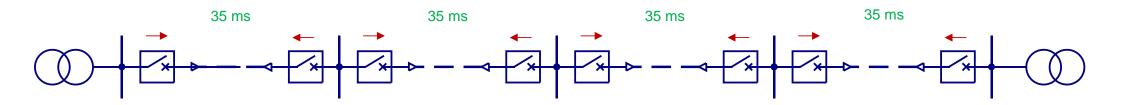
Legend:C=6 controllable devices (large display)G=GeneratorI=CurrentM=Multiple Protection Elements includedM=MotorT=TransformerA=FeederDG=Differential GeneratorDL=Differential Lines (and Cables)DT=Differential TransformerR=1 controllable device/2 for transf. (small display)V=incl. Voltage MeasurementU=Voltage and frequency device

MCDLV4 Benefits - Overview

- Minimizing cost of failures and outages
- Limiting thermal and mechanical damages
- Cost benefit: The MCDLV4 system covers up to six devices
- Less installation efforts by copperless* transfer signals and trips
- Unmanned parameter setting and monitoring of remote end

*copperless = Breaker states of remote end and trips are transferred via fiber optic. No need for additional copper wirings.

The 2 golden Rules of Protection


Legend:

Fast = The longer the tripping decision/delay takes (e.g. in time grading) the larger the potential damage. Selective = Minimize dark-time, shut off only what is really needed in order to eliminate the failure.

MCDLV4 – Differential versus Time Grading

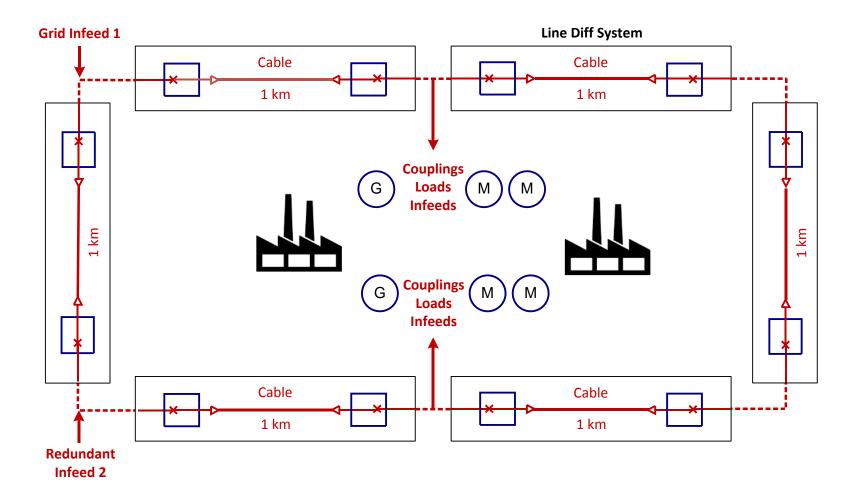
Line Differential protection (fast and selective)

Time graded directional overcurrent protection (selective but slow)

Forward Direction>>>

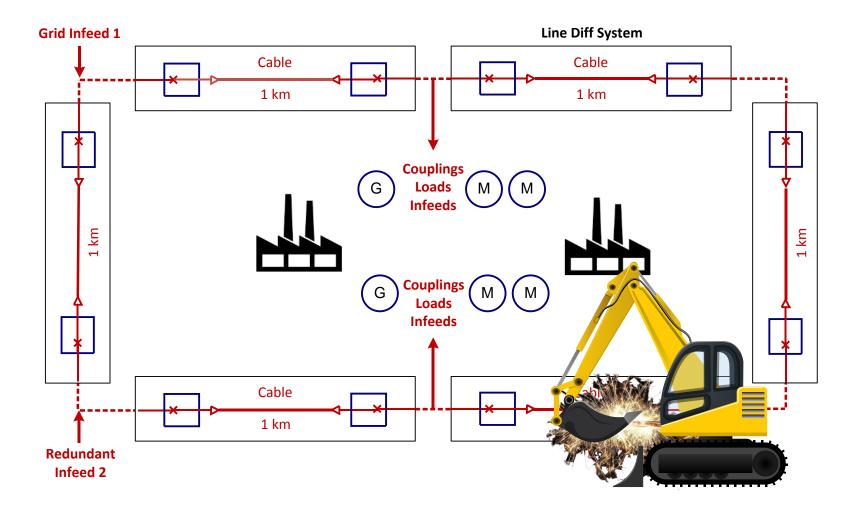
<<<Backward Direction

1000 ms (= 35+965 ms) 700 ms (= 35+665 ms) 400 ms (= 35+365 ms) 100 ms (= 35+65 ms) 700 ms (= 35+665 ms) 100 ms (= 35+65 ms) 700 ms (= 35+665 ms) 100 ms (= 35+965 ms) 100 ms (= 3

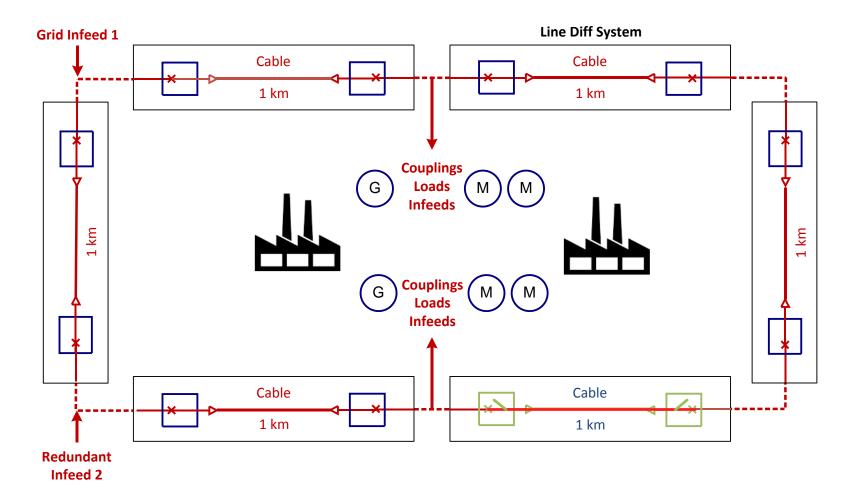


Just another boring day in a large industrial facility...

- Where data in a data center could get lost...
- Where transactions in a bank could be interrupted in the middle of transaction...
- Where a hospital could get dark...
- Where plastics could get solidified in tubes
- Where liquid glas could get solidified in industrial process tubes
- Where bacteriums could die in a waste water station
- Where...you think electrical power supply is sure as sunrise...



When Outage is not an Option – Industrial Rings



When Outage is not an Option – Industrial Rings

When Outage is not an Option – All Lights are still on...

Thank you MCDLV4

Alternatives to excavators

- Poor quality cables (water treeing) https://www.youtube.com/watch?v=cygycewb7-q
- Leakage in oil filled cables
 https://www.youtube.com/watch?v=YpLNpeJXQYU
- Flying animals birds in overhead lines https://www.youtube.com/watch?v=tN9vZcAN0co
- Climbing animals on pole towers https://www.youtube.com/watch?v=egWkCcJJZ8M
- Creeping animals Snake/Mouse creeping into In-Zone Transformer

https://www.youtube.com/watch?v=iAedKPBAXRk

- Icicle on overhead lines https://www.youtube.com/watch?v=HFmrFdssFTo
- Swinging lines in the wind, swinging tree comes to close to a line

https://www.youtube.com/watch?v=mllzqSLK9iU

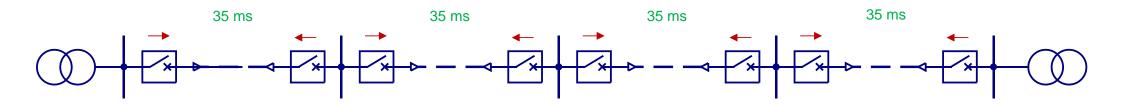
- Poor Quality Power Poles breaking under snow https://www.youtube.com/watch?v=jfKeGHqrip8
- Roots / trees growing into a line https://
- Not knowing what they are doing

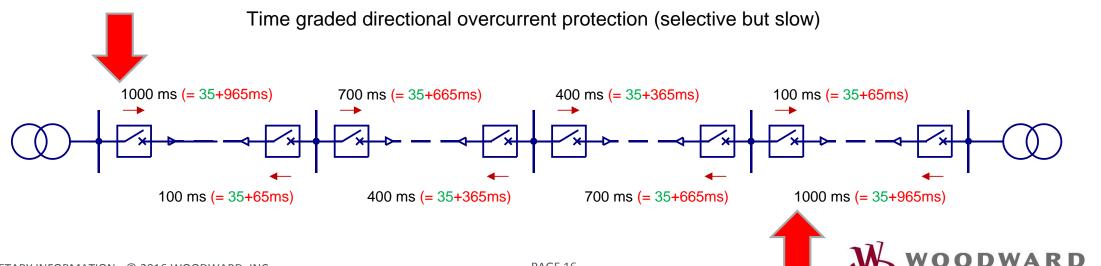
https://www.youtube.com/watch?v=xbsGOI7QPsw

https://www.youtube.com/watch?v=GL1yX2nuh_8 https://www.youtube.com/watch?v=GpGAGIXwL24

MCDLV4 - Minimizing cost of failures and outages

- Selectivity of protection is independent of tripping times and values.
 - Too many substations in between? Getting in trouble with tripping time coordination? The Line Differential system detects failures independent of tripping coordination times. No damaging delays due to tripping coordination.
 - Differential protection is the most selective (intrinsic) protection. No uncertainties like in distance protection (overlapping zones). Differential protection clearly indicates which cable or overhead line (zone) is faulty.


MCDLV4 - Limiting thermal and mechanical damages


- Fast tripping
 - Tripping independent of time grading, current grading or timecurrent grading.
 - Tripping signals in approx. 35 ms possible. Less thermal stress to electrical equipment in case of failures.

What if you need to extend the grid (wait>1s)?

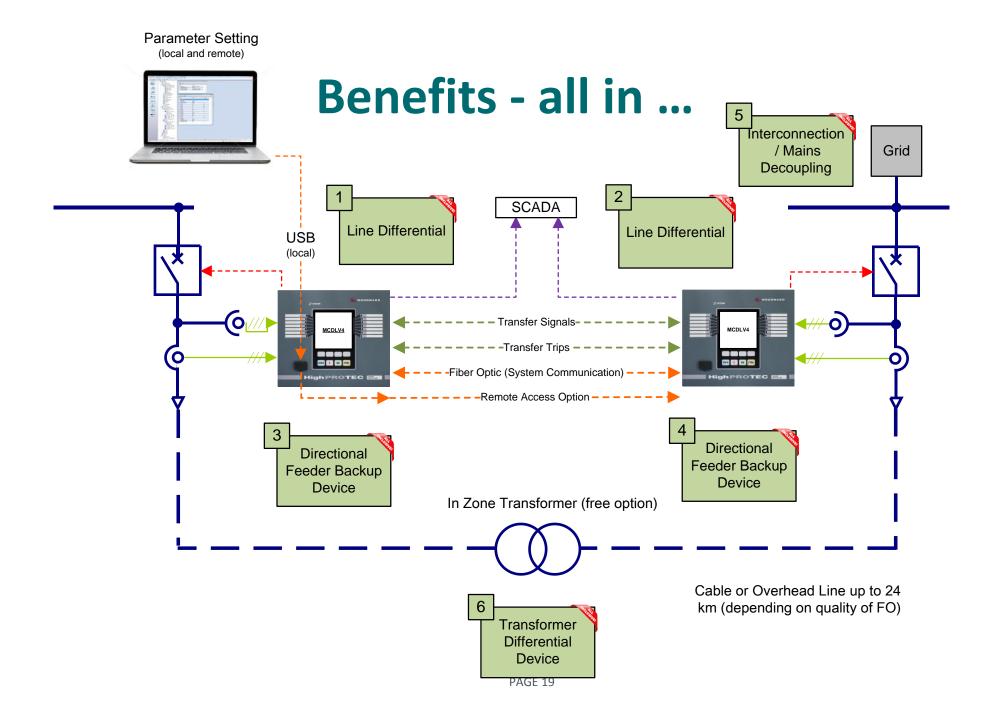
Line Differential protection (fast and selective)

Always Innovating for a Better Future

Cost benefit: The MCDLV4 system covers up to six devices

How to get a price reduction from 13195 Euros to 4980 Euros?*

*Prices might be object to change


Cost benefit: The MCDLV4 system covers up to six devices

- A MCDLV4 system makes up to six devices redundant at no extra charge*
 - 2 Cable and Line Differential Devices
- + 4980 Euros (+options)
- 2 Directional Feeder Devices (Backup)
- In Zone-Transformer Differential Device
- Interconnection Device

- + 3750 Euros (+options)
- + 2680 Euros (+options)
- + 1785 Euros (+options)
- = 4980 Euros (+options)

• *Prices might be object to change

Further Cost Savings...

Take a look at total cost, total cost is more than just the devices*...

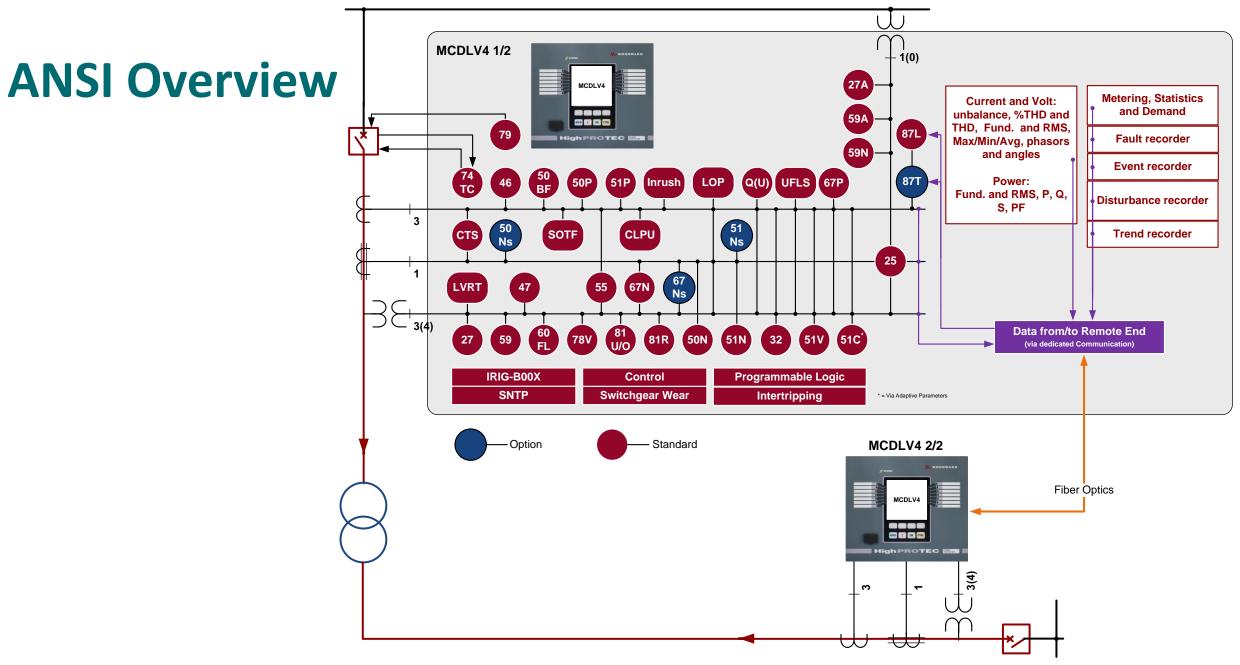
- Parameter Setting Software License
- Disturbance Evaluation Software
- Protection Packages Upgrade Fees

- + 0 Euros
- + 0 Euros
- + 0 Euros
- = 0 Euros

• *Prices might be object to change

Less installation efforts

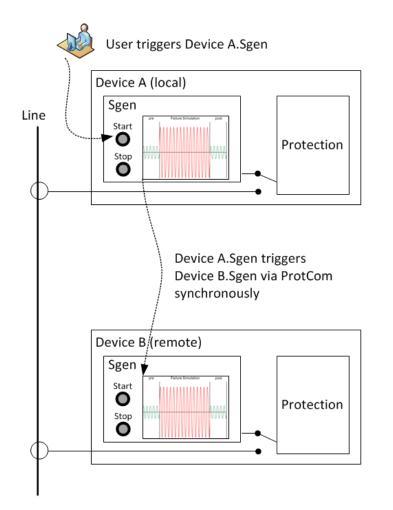
- Transfer signals and trips make costly long distance copper wirings obsolete.
 - Up to <u>16 digital states</u> can be transferred through the interdevices fiber optic communication cable. For all these signals a copper wiring in parallel (up to 24 km) to the fiber optic is obsolete (e.g. for control, breaker failure, status indication...).
 - Up to <u>4 trip signals</u> can be transferred through the interdevices fiber optic communication cable. For all these signals a copper wiring in parallel (up to 24 km) to the fiber optic is obsolete (e.g. for intertripping, indication,...).


Unmanned parameter setting and monitoring of remote end

- Remote parameter setting and monitoring
 - <u>Unmanned</u> remote end (up to 24 km distance) <u>parameter</u> <u>setting</u> is possible.
 - <u>Unmanned</u> substations (up to 24 km distance) at remote end can be <u>monitored</u>.
 - Failures and Disturbances at remote end in <u>unmanned</u> substations (up to 24 km distance) can be analyzed without physical presence.

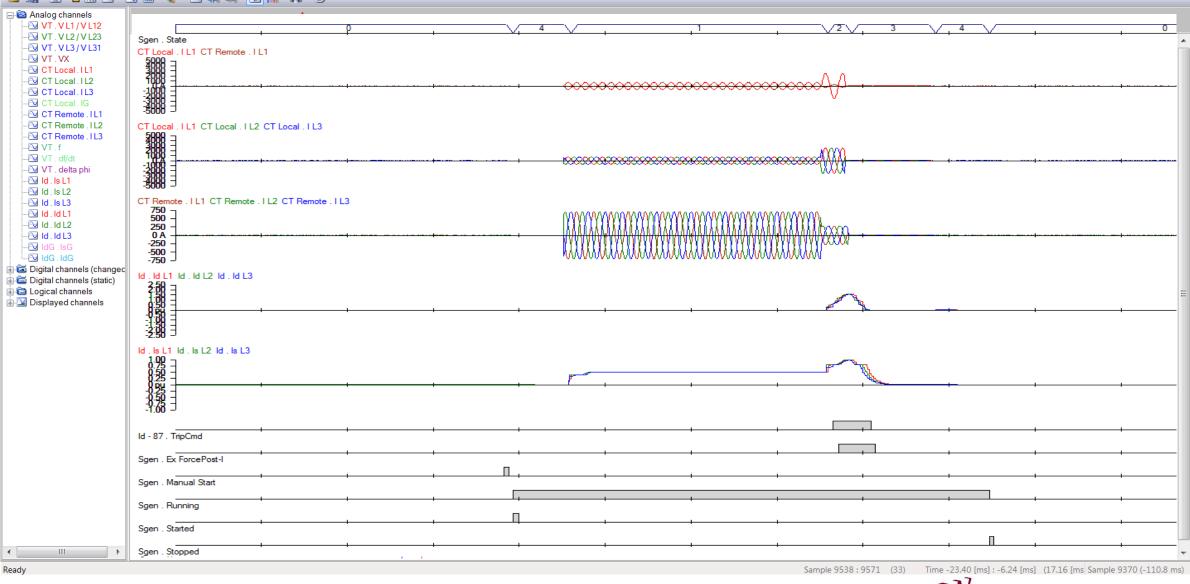
Order Code

Version 2 with	n USB, enhan	ced communication	on and user	options					
Voltage measuring	Digital Inputs	Binary output relays	Housing	Large display					
Х	8	7	B2	Х		Α			
Х	16	13	B2	Х		D			
X	24	20	B2	Х		E			
Hardware va		aund Current E M	1 4			0			
	-	ound Current 5 A/ sitive Ground Curr				0			
Housing and		Silve Ground Con	ient 5 Ayr A						
Door mountin	-						Α		
Door mountin							В	J	
Interdevice (
		o mode (up to 24		node (up t	o 4 km)			0	
Communicat		ulti mode (up to 2 l	KM)					1	J
		2							
Without proto			004004						
		103, DNP3.0 RTU 1		nais					
		JDP Ethernet 100	MB/RJ45						
Profibus-DP a									
Profibus-DP									
Modbus RTU, IEC60870-5-103, DNP3.0 RTU optic fiber/ST-connector									
Modbus RTU, IEC60870-5-103, DNP3.0 RTU <i>RS485/D-SUB</i>									
	-	IP3.0 TCP/UDP Eth							
		RTU, DNP3.0 RTU UDP Ethernet 100		inals					
IEC61850, Mo	dbus TCP, DN	IP3.0 TCP/UDP Op	otical Etherne	et 100MB/L	C duplex connecto	r			
Modbus TCP, [ONP3.0 TCP/	JDP Optical Ether	net 100MB/L	C duplex co	onnector				
Harsh Enviro	nment Opt	ion							
None									
Conformal Co	ating								
Available me		jes (in every devi	(0)						_



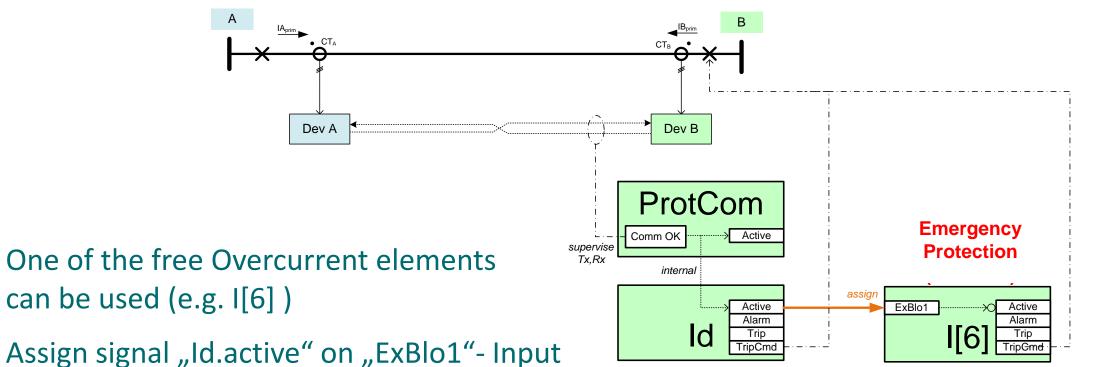
Appendix

Testing on a Desk (Integrated Sgen)


- Basic testing can be done via the integrated Failure Generator from one end.
- Sequence times have to be the same at both ends.
- Testing with In-Zone Transformer is also possible. Phase shift of transformer has to be set in Failure simulator

4	DevA_MCDLV4	_SN20655612	_2016120812154331	.1.HptDr -	DataVisualize
---	-------------	-------------	-------------------	------------	---------------

File View Preferences Help


📂 🛐 i 🚍 🍆 📰 🔜 i 🔪 🔳 i 😓 i 💷 🥋 🔍 i 🖶 🔔 i 🖨 i 🥝

PROPRIETARY INFORMATION - © 2016 WOODWARD, INC.

WOODWARD

Integrated Emergency Backup Option

 In case of device communication issues the Emergency Overcurrent Element will be released.

1.

2.