

High **PRO**TEG

MCDLV4

LEITUNGSDIFFERENTIALSCHUTZ

LEITUNGSDIFFERENTIALSCHUTZ

Version: 3.10

Originaldokument

Deutsch

HANDBUCH MCDLV4-3.10-DE-MAN

Build 62171

Revision B

© 2024 SEG Electronics GmbH. Alle Rechte vorbehalten.

SEG Electronics GmbH

Krefelder Weg 47 • D-47906 Kempen (Germany)

Telefon: +49 (0) 21 52 145 0

Internet: www.SEGelectronics.de

Vertrieb

Telefon: +49 (0) 21 52 145 331

Telefax: +49 (0) 21 52 145 354

E-Mail: sales@SEGelectronics.de

Service

Telefon: +49 (0) 21 52 145 600

Telefax: +49 (0) 21 52 145 354

E-Mail: support@SEGelectronics.de

SEG Electronics GmbH behält sich das Recht vor, jeden beliebigen Teil dieser Publikation zu jedem Zeitpunkt zu verändern.

Alle Informationen, die durch SEG Electronics GmbH bereitgestellt werden, wurden geprüft.

SEG Electronics GmbH übernimmt keinerlei Garantie.

Vollständige Informationen zu Standorten und Distributoren können über unsere Website eingesehen werden.

Inhaltsverzeichnis

1	Bestimmungsgemäße Verwendung, Sicherheitshinweise
1.1	Wichtige Definitionen
1.2	Bestimmungsgemäße Verwendung
1.3	Personensicherheit
1.4	Wichtige Hinweise
2	MCDLV4 - Leitungsdifferentialschutz24
2.1	Hinweise zum Handbuch
2.1.1	Symbole
2.1.1.1	Legende für Anschlussbilder
2.1.1.2	Symbole in Funktionsdiagrammen
2.2	Informationen zum Gerät
2.2.1	Bestellschlüssel
2.2.1.1	Übersicht über die Baugruppen
2.2.2	Navigation - Bedienung
2.2.2.1	Aufbau der Bedieneinheit
2.2.2.2	Softkeys – Übersicht
2.3	Module, Parameter, Meldungen, Werte
2.3.1	Konfiguration
2.3.1.1	Parametriersperre
2.3.2	Adaptive Parametersätze
2.3.3	Zustandsanzeige
2.3.4	Menüstruktur60
2.3.5	Projektierung des Gerätes
2.3.5.1	Projektierte Elemente
2.3.5.2	Definition
2.3.6	Feldparameter
2.3.7	Geräteparameter
2.3.8	Zurücksetzen von Zählern, Werten und Aufzeichnungen
2.4	Sicherheitsrelevante Einstellungen (Security)
2.4.1	Netzwerk-Sicherheit

	Passwörter	8
2.4.3	Verbindungspasswörter, Smart view-Zugriff	9
2.4.4	Berechtigungspasswörter	2
2.4.5	Passwörter – Bereiche	4
2.4.6	Rücksetzen auf Werkseinstellungen, Rücksetzen aller Passwörter	8
2.5	Quittierungen	0
2.6	Messwerte	5
2.7	Statistik	7
2.7.1	Konfiguration der Min-/Max-Werte	7
2.7.2	Konfiguration der Mittelwertberechnung	7
2.7.2.1	Konfiguration der auf Strom basierenden Mittelwerte*	7
2.7.2.2	Konfiguration der auf Spannung basierenden Mittelwerte*	8
2.7.2.3	Konfiguration der auf Leistung basierenden Mittelwerte*	9
2.8	Smart view	0
2.9	DataVisualizer	0
3	Hardware	2
3.1	Maßzeichnungen	2
3.2	MCDLV4 - Montage und Anschluss	6
3.2.1	Erdung	6
	•	
3.2.2	Übersicht über die Einbauplätze / Baugruppen	7
3.2.2 3.3		
	Übersicht über die Einbauplätze / Baugruppen	8
3.3	Übersicht über die Einbauplätze / Baugruppen 9 Slot X1 9	8 9
3.3 3.3.1	Übersicht über die Einbauplätze / Baugruppen 9 Slot X1 9 DI8-X Netzteil und Digitale Eingänge 9	8 9 3
3.3 3.3.1 3.4	Übersicht über die Einbauplätze / Baugruppen 9 Slot X1 9 DI8-X Netzteil und Digitale Eingänge 9 Slot X2 10	8 9 3
3.3 3.3.1 3.4 3.4.1	Übersicht über die Einbauplätze / Baugruppen 9 Slot X1 9 DI8-X Netzteil und Digitale Eingänge 9 Slot X2 10 K-6 X - Melderelaiskarte mit sechs Ausgangsrelais 10	8 9 3 4 6
3.3 3.3.1 3.4 3.4.1 3.5	Übersicht über die Einbauplätze / Baugruppen9Slot X19DI8-X Netzteil und Digitale Eingänge9Slot X210K-6 X - Melderelaiskarte mit sechs Ausgangsrelais10Slot X310	8 9 3 4 6 7
3.3 3.3.1 3.4 3.4.1 3.5 3.5.1	Übersicht über die Einbauplätze / Baugruppen9Slot X19DI8-X Netzteil und Digitale Eingänge9Slot X210K-6 X - Melderelaiskarte mit sechs Ausgangsrelais10Slot X310TI - Strommesseingänge und Erdstrommesseingang10	8 9 3 4 6 7 0
3.3 3.3.1 3.4 3.4.1 3.5 3.5.1 3.5.2	Übersicht über die Einbauplätze / Baugruppen9Slot X19DI8-X Netzteil und Digitale Eingänge9Slot X210K-6 X - Melderelaiskarte mit sechs Ausgangsrelais10Slot X310TI - Strommesseingänge und Erdstrommesseingang10TIs - Strommesseingänge und Empfindlicher Erdstrommesseingang11	8 9 3 4 6 7 0
3.3 3.3.1 3.4 3.4.1 3.5 3.5.1 3.5.2 3.5.3	Übersicht über die Einbauplätze / Baugruppen9Slot X19DI8-X Netzteil und Digitale Eingänge9Slot X210K-6 X - Melderelaiskarte mit sechs Ausgangsrelais10Slot X310TI - Strommesseingänge und Erdstrommesseingang10TIs - Strommesseingänge und Empfindlicher Erdstrommesseingang11Anforderungen an Stromwandler11	8 9 3 4 6 7 0 3 5
3.3 3.3.1 3.4 3.4.1 3.5 3.5.1 3.5.2 3.5.3 3.5.3.1	Übersicht über die Einbauplätze / Baugruppen9Slot X19DI8-X Netzteil und Digitale Eingänge9Slot X210K-6 X - Melderelaiskarte mit sechs Ausgangsrelais10Slot X310TI - Strommesseingänge und Erdstrommesseingang10TIs - Strommesseingänge und Empfindlicher Erdstrommesseingang11Anforderungen an Stromwandler11Betrachtungen zu Schutzfunktionen11	8 9 3 4 6 7 0 3 5 6

3.5.4.2	Stromwandler Anschlussbeispiele
3.5.4.3	Stromeingänge anschließen
3.6	Slot X4
3.6.1	TU - Spannungsmesseingänge
3.6.2	TU-OR5 - Spannungsmesskarte mit 5 Melderelais
3.6.3	Spannungswandler Anschlussbeispiele
3.6.4	Bestimmung der Verlagerungsspannung UX für unterschiedliche Anschlussvarianten
3.6.4.1	Berechnung aus den drei Leiter-Erde-Spannungen
3.6.4.2	Messung über die offene Dreieckswicklung
3.6.4.3	Messung am Sternpunkt (z. B. des Generators)
3.7	Slot X5
3.7.1	DI8-OR4 - Karte mit acht Digitalen Eingängen und 4 Ausgangsrelais 146
3.8	Slot X6
3.8.1	DI8 - Karte mit acht Digitalen Eingängen
3.9	Slot X100: Ethernet-Schnittstelle
3.9.1	Ethernet - RJ45
3.10	Slot X102
3.10.1	Schutzkommunikation über LWL
3.10.1.1	Schutzkommunikation mit normaler Reichweite
3.10.1.2	Schutzkommunikation mit erhöhter Reichweite
3.11	Slot X103: Datenkommunikation
3.11.1	RS485 (Modbus® RTU / IEC 60870-5-103 / DNP3 RTU)
3.11.2	Profibus DP/ Modbus® RTU / IEC 60870-5-103 über LWL
3.11.3	Profibus DP über D-SUB
3.11.4	Modbus® RTU / IEC 60870-5-103 über D-SUB
3.11.5	Ethernet / TCP/IP über LWL
3.12	Slot X104: IRIG-B00X und Selbstüberwachungskontakt
3.12.1	Selbstüberwachungskontakt (SK)/Life-Kontakt und IRIG-B00X
3.13	PC-Schnittstelle - X120
3.14	Rangierung der Eingänge, Ausgänge und LEDs
3.14.1	Leuchtanzeigen (LEDs)
3.14.2	Konfigurierung der Digitalen Eingänge

3.14.2.1	Rangieren Digitaler Eingänge	.74
3.14.2.2	Überprüfung der Zuordnung der Digitalen Eingänge	.75
3.14.3	Rangierung der Ausgangsrelais	.77
3.14.3.1	Selbstüberwachungs-/Systemkontakt	.79
4	Kommunikation - SCADA-Protokolle	80
4.1	SCADA-(Kommunikations-)Einstellungen	.80
4.2	TCP/IP-Einstellungen	.81
4.3	IEC 61850	.82
4.4	DNP3	.85
4.4.1	Anwendungsbeispiel – Setzen eines Ausgangsrelais	.88
4.4.2	Deadband-Werte beim DNP3-Protokoll	.88
4.5	Konfigurierbare Kommunikationsprotokolle	.93
4.5.1	IEC60870-5-103	94
4.5.2	IEC 60870-5-104	97
4.5.3	Modbus®	01
4.5.4	Profibus	06
4.5.5	Datenobjekte zuweisen mit dem SCADApter	07
4.6	Zeitsynchronisation	:09
4.6.1	SNTP	13
4.6.2	IRIG-B00X	15
4.7	SchutzKom – Schutzkommunikation	17
5	Schutzmodule	19
5.1	Modul: Schutz	19
5.1.1	Grundlagen eines Schutzmodules	21
5.1.2	Richtungserkennung	26
5.1.2.1	Richtungserkennung von Phasenfehlern	28
5.1.2.2	Erdfehler-Richtung	31
5.1.3	Blockaden	41
5.1.3.1	Funktionalität: Blockade des Auslösebefehls	43
5.1.3.2	Schutzfunktionen aktivieren, deaktivieren bzw. temporär blockieren	44
5.1.3.3	Phasenstromstufen aktivieren, deaktivieren bzw. temporär blockieren	45
5.1.3.4	Erdstromstufen aktivieren, deaktivieren bzw. temporär blockieren	46

5.1.3.5	Schutzmodule mit Messkreisüberwachung aktivieren, deaktivieren bzw. temporär blockieren	248
5.1.3.6	Phasenstrom-Differentialschutz und die Hochstromdifferentialstufe aktivieren, deaktivieren bzw. temporär blockieren	. 249
5.2	Netz- und Anlagenschutz	250
5.3	StW-SättigStab. – Stromwandlersättigungs-Stabilisierung für den Differentialschutz	251
5.3.1	Einstellhinweise	251
5.4	Id – Phasenstrom-Differentialschutz	253
5.4.1	ld – Funktionalität	260
5.4.2	Auslösekennlinie	. 262
5.4.2.1	Einstellen der Auslösekennlinie	. 265
5.4.3	Zeigeranpassungen	266
5.4.4	Stromwandler-Übersetzungsfehler	267
5.4.5	Phasen-/Schaltgruppen-Korrektur	. 268
5.4.6	Externer Fehler - Nullkomponenten-Kompensierung	. 269
5.4.7	Stabilisierung gegen Transiente	270
5.4.8	Schaltgruppen	. 272
5.4.9	Automatische Berechnung der Amplitudenanpassung, Schaltgruppenkorrektur und Nullkomponenten-Kompensierung	. 274
5.5	ldH - Unstabilisierte Hochstromdifferentialstufe	. 278
5.6	IdE – Erdstrom-Differentialschutz	280
5.6.1	Funktionalität	282
5.6.2	Anwendungen	. 282
5.6.3	Stabilisierung bei Stromwandlersättigung	. 283
5.7	IdEH – Erdhochstrom-Differentialschutz	284
5.8	Ausl-Trans – Transfer von Auslöse-Entscheiden	. 285
5.8.1	Beispiel: "Auslöse"-Mitnahme	. 287
5.9	Sig-Trans – Signal-Transfer über Schutzkommunikation	. 289
5.9.1	Beispiel: Schaltgeräte-Position übertragen	. 291
5.10	I – Überstromschutz	293
5.10.1	Kennlinien (Phasenstrom)	. 295
5.10.1.1	DEFT – Unabhängiger Überstromzeitschutz	298
5.10.1.2	AMZ-Kennlinien (Phasenstrom)	. 299

5.10.2	Funktionalität
5.10.3	51V - Spannungsabhängiger Überstromzeitschutz
5.10.4	I2> - Gegensystem-Überstrom [51Q]
5.10.5	Spannungsgesteuerter Überstromschutz [51C]
5.10.6	Inbetriebnahme: Überstromzeitschutz ungerichtet [50, 51]
5.10.7	Inbetriebnahme: Überstromzeitschutz gerichtet [67]
5.10.8	Inbetriebnahme: Spannungsabhängiger Überstromzeitschutz
5.10.9	Inbetriebnahme: Gegensystem-Überstromzeitschutz
5.11	IH2 - Inrush
5.11.1	Inbetriebnahme: Inrush
5.12	IE - Erdüberstromschutz
5.12.1	Kennlinien (Erdstrom)
5.12.1.1	DEFT - Unabhängiger Überstromzeitschutz
5.12.1.2	AMZ-Kennlinien (Erdstrom)
5.12.2	Richtungserkennung
5.12.3	Erdstrom - Funktionalität
5.12.4	Inbetriebnahme: Erdstrom ungerichtet [50N/G, 51N/G]
5.12.5	Inbetriebnahme: Erdstrom gerichtet [50N/G, 51N/G, 67N/G]
5.13	I2> und %I2/I1> - Schieflast [46]
5.13.1	Inbetriebnahme: Schieflastschutz
5.14	ThA - Thermisches Abbild [49]
5.14.1	Inbetriebnahme: Thermisches Abbild
5.15	U/f> - Übererregungsschutz [24]
5.15.1	Charakteristik/Kennlinie: INV A
5.15.2	Charakteristik/Kennlinie: INV B
5.15.3	Charakteristik/Kennlinie: INV C
5.16	FAS - Fehleraufschaltung
5.16.1	Inbetriebnahme des Fehleraufschaltung Moduls
5.17	KLA - Kalte Last Alarm
5.17.1	Inbetriebnahme des Kalte Last Alarm Moduls
5.18	AWE - Automatische Wiedereinschaltung [79]
5.18.1	Funktionen

5.18.1.1	AWE Zustände
5.18.2	AWE Zyklus (Schuss)
5.18.3	Ablaufdiagramme
5.18.4	Ablaufkoordinierung
5.19	U - Spannungsschutz [27,59]
5.19.1	Funktionalität und Auslöselogik
5.19.2	Inbetriebnahme: Überspannungsschutz [59]
5.19.3	Inbetriebnahme: Unterspannungsschutz [27]
5.20	UE/UX - Spannungsüberwachung (Verlagerungsspannungsschutz) [27A, 59A] 397
5.20.1	Inbetriebnahme: Verlagerungsspannungsschutz – gemessen [59N] 400
5.20.2	Inbetriebnahme: Verlagerungsspannungsschutz – berechnet [59N] 401
5.21	f - Frequenz [810/U, 78, 81R]
5.21.1	Betriebsarten "f<", "f>"
5.21.2	Betriebsart "df/dt"
5.21.3	Betriebsarten "f< und df/dt", "f> und df/dt"
5.21.4	Betriebsarten "f< und DF/DT", "f> und DF/DT"
5.21.5	Betriebsart "delta phi" - [ANSI 78V]
5.21.6	Inbetriebnahme: Frequenzschutz (Überfrequenz) [ANSI 810] 419
5.21.7	Inbetriebnahme: Frequenzschutz (Unterfrequenz) [ANSI 81U] 419
5.21.8	Inbetriebnahme: df/dt
5.21.9	Inbetriebnahme: f< und -df/dt
5.21.10	Inbetriebnahme: f> und df/dt
5.21.11	Inbetriebnahme: f< und DF/DT
5.21.12	Inbetriebnahme: f> und DF/DT
5.21.13	Inbetriebnahme: delta phi
5.22	U012 - Asymmetrie [47]
5.22.1	Inbetriebnahme des Asymmetrie-Moduls
5.23	Sync - Synchrocheck [25]
5.23.1	Transformator-Modus
5.24	Q->&U< - Blindleistungs-Unterspannungsschutz
5.25	Wiederzuschaltung
5.26	UFLA – Unterfrequenzabhängiger Lastabwurf

5.26.1	Applikationsbeispiele	446
5.26.2	Wirkleistungsrichtungserkennung	447
5.26.3	Parametrieren	448
5.26.4	Funktionalität des UFLA-Moduls	452
5.27	LVRT – Low Voltage Ride Through [27(t)]	453
5.28	LS - Mitnahme (Fern)	459
5.28.1	Inbetriebnahme: LS-Mitnahme	460
5.29	PQS - Leistung [32, 37]	461
5.29.1	Einstellhinweise	463
5.29.2	Inbetriebnahmebeispiele für das Leistungsschutz-Modul	464
5.29.3	PAV,E - Überwachung der vereinbarten Anschlussleistung	472
5.30	LF - Leistungsfaktor [55]	476
5.30.1	Inbetriebnahme des Leistungsfaktor-Moduls [55]	477
5.31	ExS - Externer Schutz	479
5.31.1	Inbetriebnahme: Externer Schutz	479
5.32	ExtTempÜb. – Externe Temperaturüberwachung	481
5.32.1	Inbetriebnahme: Externe Temperaturüberwachung	481
5.33	Ex Öl Temp Schutzmodul – Externe Öltemperaturüberwachung	483
5.33.1	Inbetriebnahme: Externe Öltemperaturüberwachung	483
5.34	Buchholz-Schutzmodul	484
5.34.1	Inbetriebnahme: Buchholz	484
5.35	Überwachung	486
5.35.1	LSV - Schalterversager [50BF*/62BF]	486
5.35.1.1	Prinzip – Generelle Verwendung	486
5.35.1.2	Funktionalität	489
5.35.1.3	Inbetriebnahmebeispiel: Überwachungsschema 50BF	489
5.35.2	AKÜ- Auslösekreisüberwachung [74TC]	491
5.35.2.1	Inbetriebnahme: Auslösekreisüberwachung [74TC]	492
5.35.3	StWÜ - Stromwandlerüberwachung [60L]	494
5.35.3.1	Inbetriebnahme: Stromwandlerfehlerüberwachung	495
5.35.4	SPÜ – Erweiterte Spannungswandlerüberwachung [60]	497
5.35.4.1	Erweiterte Spannungswandlerüberwachung durch Auswertung von Messgrößen	497

5.35.4.2	Spannungswandlerüberwachung durch Erkennung eines Automatenfalls (FF)	498
5.35.4.3	Inbetriebnahme: Erweiterte Spannungswandlerüberwachung	500
5.35.4.4	Inbetriebnahme: Spannungswandlerüberwachung (FF über DI)	501
5.35.5	Überwachung der Phasenfolge	502
6	Steuerung / Schaltgeräte-Manager	503
6.1	Schaltgerätesteuerung	504
6.1.1	Einstellungen im Schutzgerät	507
6.1.2	Schaltgerät	509
6.1.3	Unsichtbares Schaltgerät	510
6.1.4	Leistungsschalter	511
6.1.5	Leistungsschalter1	512
6.1.6	Trennschalter	513
6.1.7	Trenner-Erdungsschalter-Kombination	514
6.1.8	Erdungsschalter	515
6.1.9	Sicherungs-Lastschalter-Kombination	516
6.1.10	Lasttrennschalter	517
6.1.11	Sicherungs-Trennschalter-Kombination	518
6.1.12	Lastschalter	519
6.1.13	Lasttrennschalter	520
6.1.14	Dreistellungsschalter	521
6.1.15	Ausfahrbarer Leistungsschalter	523
6.1.16	Ausfahrbare Sicherungs-Lastschalter-Kombination	525
6.2	Konfiguration der Schaltgeräte	526
6.3	Schaltgeräte-Wartung	537
6.4	Steuerung - Beispiel: Schalten eines Leistungsschalters	540
7	System-Alarme	. 543
7.1	Bezugsmanagement (Mittelwerte)	543
7.2	Spitzenbezugswerte (Maximalwerte)	545
7.3	THD-Schutz	546
8	Rekorder	547
8 1	Störschreiber	548

8.2	Fehlerrekorder	. 552
8.2.1	Verhalten des Fehlerrekorders	. 552
8.2.2	Automatische Fehleranzeige (Pop-up) auf dem Display	. 555
8.2.3	Inhalt einer Fehleraufzeichnung	. 556
8.2.4	Verwendung des Fehlerrekorders über die Bedieneinheit des MCDLV4	. 557
8.3	Ereignisrekorder	. 558
8.4	Trendrekorder	. 559
9	Programmierbare Logik	. 560
10	Selbstüberwachung	566
10.1	Gerätestart	. 569
10.2	Meldungen der Selbstüberwachung	. 571
10.3	Syslog	. 572
10.4	Deaktiviertes Gerät "Device Stopped"	. 574
11	Inbetriebnahme	. 575
11.1	Inbetriebnahme – Schutzprüfung	. 576
11.2	Hinweise zur Außerbetriebnahme - Ausbau des Relais	. 577
11.3	Service und Inbetriebnahmeunterstützung	. 579
11.3.1	Allgemein	. 579
11.3.2	Lichtbogen-Reduktions-Modus	. 579
11.3.3	Sperren der Ausgangsrelais	. 581
11.3.4	Erzwungener Schaltzustand der Ausgangsrelais	. 582
11.3.5	Erzwingen eines Auslöse-Befehls	. 583
11.3.6	Abfallen des Selbstüberwachungskontaktes erzwingen	. 584
11.3.7	Fehlersimulator*	. 585
11.3.8	Besonderheiten beim Leitungsdifferentialschutz	. 589
12	Wartung und Instandhaltung	591
12.1	Regelmäßig durchzuführende Funktionsprüfungen	. 591
13	Technische Daten, Spezifikationen, Toleranzen	. 593
13.1	Technische Daten	. 593
13.1.1	Klimatische Umgebungsbedingungen	. 593

13.1.2	Verschmutzungsgrad und Schutzklasse	593
13.1.3	Schutzgrad EN 60529	593
13.1.4	Stückprüfung	593
13.1.5	Gehäuse	594
13.1.6	Strommessung	594
13.1.7	Leiter- und Verlagerungsspannungsmessung ("TU")	596
13.1.8	Frequenzmessung	598
13.1.9	Spannungsversorgung	598
13.1.10	Leistungsaufnahme	598
13.1.11	Anzeige (Display)	599
13.1.12	Leuchtanzeigen (LEDs)	599
13.1.13	Front-Schnittstelle USB	599
13.1.14	Echtzeituhr	599
13.1.15	Digitale Eingänge	599
13.1.16	Ausgangsrelais	600
13.1.17	Supervision Contact (SC)	601
13.1.18	Zeitsynchronisierung IRIG-B00X	602
13.1.19	RS485 *	602
13.1.20	LWL-Modul mit ST-Anschluss für die SCADA-Kommunikation *	603
13.1.21	Optisches Ethernet-Modul mit LC-Anschluss *	603
13.1.22	LWL-Modul für die Schutzkommunikation	604
13.1.22.1	LWL-Modul für die Schutzkommunikation mit ST-Anschluss (*)	604
13.1.22.2	LWL-Modul mit LC-Anschluss für die Schutzkommunikation mit erhöhter Reichweite (*)	606
13.1.23	Kommunikation mit Smart view	607
13.1.24	Meldungen der Selbstüberwachung	607
13.1.25	Bootphase	607
13.2	Einstellbereiche	608
13.3	Toleranzen	609
13.3.1	Toleranzen der Echtzeituhr	609
13.3.2	Toleranzen der Messwerterfassung	611
13.3.3	Toleranzen der Schutzstufen	613
13.3.3.1	Phasen-Überstromschutz	613

13.3.3.2	Erd-Überstromschutz	515
13.3.3.3	Richtungserkennung	517
13.3.3.4	Phasen-Differentialschutz	518
13.3.3.5	Erd-Differentialschutz	519
13.3.3.6	Thermische Schutzfunktionen	520
13.3.3.7	Strombezogene Schutzfunktionen	521
13.3.3.8	Spannungsbezogene Schutzfunktionen	522
13.3.3.9	Frequenzschutz	526
13.3.3.10	Leistungsschutzfunktionen	529
13.3.3.11	Weitere Schutz- und Überwachungsfunktionen	532
14	Anhang	35
14.1	Standards	535
14.1.1	Zertifizierungen	535
14.1.2	Allgemeine Vorschriften	536
14.1.3	Elektrische Prüfungen	537
14.1.4	Umweltprüfungen	540
14.1.5	Mechanische Prüfbeanspruchungen	542
14.2	Kompatibilität mit IEC 60870-5-103	544
14.2.1	Physikalische Schicht	544
14.2.2	Verbindungsschicht	544
14.2.3	Anwendungsschicht	544
14.2.3.1	Gemeinsame Adresse der ASDU	544
14.2.3.2	Auswahl von Norm-Informationsnummern in Überwachungsrichtung	545
14.2.3.3	Auswahl von Norm-Informationsnummern in Steuerungsrichtung	546
14.2.3.4	Verschiedenes	547
14.3	Kompatibilität mit IEC 60870-5-104	548
14.3.1	System oder Gerät	548
14.3.2	Netzkonfiguration	548
14.3.3	Physikalische Schicht	549
14.3.4	Verbindungsschicht	549
14.3.5	Anwendungsschicht	550
14.3.6	Grundlegende Anwendungsfunktionen	556

15	Stichwortverzeichnis	691
14.6.7	Version: 3.3	690
14.6.6	Version: 3.4	
14.6.5	Version: 3.4.a	686
14.6.4	Version: 3.6	
14.6.3	Version: 3.6.b	681
14.6.2	Version: 3.7	678
14.6.1	Version: 3.10	673
14.6	Änderungsübersicht	672
14.5	Liste der ANSI-Codes	. 669
14.4	Abkürzungen und Akronyme	. 662

1 Bestimmungsgemäße Verwendung, Sicherheitshinweise

1.1 Wichtige Definitionen

Folgende Arten von Hinweisen dienen der Sicherheit von Leib und Leben sowie der angemessenen Lebensdauer des Gerätes.

GEFAHR!

GEFAHR! zeigt eine gefährliche Situation an, die zu Tod oder schweren Verletzungen führen wird, wenn sie nicht vermieden wird.

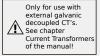
WARNUNG!

WARNUNG! zeigt eine gefährliche Situation an, die zu Tod oder schweren Verletzungen führen kann, wenn sie nicht vermieden wird.

VORSICHT!

VORSICHT! zeigt eine möglicherweise gefährliche Situation an, die zu mittelschweren oder leichten Verletzungen führen kann, wenn sie nicht vermieden wird.

HINWEIS!


HINWEIS! wird verwendet, um Informationen hervorzuheben, die nicht im Zusammenhang mit Verletzungen stehen.

Dieser Hinweistyp beinhaltet nützliche Tipps und Empfehlungen sowie Informationen für einen effizienten und störungsfreien Betrieb.

Auf dem Gehäuse des MCDLV4 angebrachte Sicherheitshinweise

Folgende Sicherheitshinweise sind Bestandteil des Anschlussplanes, der direkt auf dem Gehäuse des MCDLV4 angebracht ist:

GEFAHR!

Die Strommesseingänge dürfen nur mit Stromwandlern (mit galvanischer Trennung) verbunden werden.

Siehe

3.5.1 TI – Strommesseingänge und Erdstrommesseingang für Details und weitere wichtige Sicherheitshinweise.

WARNUNG!

Diese Ausführung des MCDLV4 ist mit einem empfindlichen Erdstrommesseingang ausgestattet. (Dieser ist mit einem Sternchen "*" gekennzeichnet.)

Der empfindliche Erdstromeingang hat abweichende Technische Daten. Wenn die Wandler falsch dimensioniert (überdimensioniert) sind, werden normale Betriebszustände u. U. nicht mehr erkannt und Toleranzen können nicht mehr eingehalten werden.

Siehe das Kapitel mit den Technischen Daten (→13.1 Technische Daten) und das Kapitel →3.5.1 TI – Strommesseingänge und Erdstrommesseingang für Details und weitere wichtige Sicherheitshinweise.

1.2 Bestimmungsgemäße Verwendung

VORSICHT!

Das MCDLV4 darf nicht betrieben werden, bevor es ordnungsgemäß konfiguriert und in Betrieb genommen wurde.

Lesen Sie das Handbuch!

Informationen zur Konfiguration der benötigten Schutzfunktionen finden Sie in den jeweiligen Unterkapiteln von ⇔5 Schutzmodule.

In diesem Zusammenhang wird auch auf das übergeordnete ⇔5.1 Modul: Schutz hingewiesen.

Informationen zur Inbetriebnahme finden Sie in →11 Inbetriebnahme und in den jeweiligen "Inbetriebnahme"-Abschnitten der Schutzfunktionsbeschreibungen.

WARNUNG!

ANWEISUNGEN BEFOLGEN

Bitte lesen Sie die vorliegende Bedienungsanleitung sowie alle weiteren Publikationen, die zum Arbeiten mit diesem Produkt (insbesondere für die Installation, den Betrieb oder die Wartung) hinzugezogen werden müssen. Beachten Sie hierbei alle Sicherheitsvorschriften sowie Warnhinweise. Sollten Sie den Hinweisen nicht folgen, kann dies Personenschäden oder/und Schäden am Produkt hervorrufen.

WARNUNG!

BESTIMMUNGSGEMÄßE VERWENDUNG

Jegliche unerlaubte Änderung oder Verwendung dieses Geräts, welche über die angegebenen mechanischen, elektrischen oder anderweitigen Betriebsgrenzen hinausgeht, kann Personenschäden oder/und Sachschäden (z. B. Schäden am Produkt) hervorrufen. Jegliche solche unerlaubte Änderung: (i) begründet "Missbrauch" und/oder "Fahrlässigkeit" im Sinne der Gewährleistung für das Produkt und schließt somit die Gewährleistung für die Deckung möglicher daraus folgender Schäden aus, und (ii) hebt Produktzertifizierungen oder -listungen auf.

Die hier beschriebenen programmierbaren Schutzgeräte sind für Schutz und ggf. Steuerung von energietechnischen Anlagen und Betriebsmitteln (die nicht durch (U/f)-Umrichter gespeist werden) konzipiert. Die Geräte sind für die Montage in der Niederspannungsnische von Mittelspannungsschaltfeldern oder in dezentralen Schutzschränken ausgelegt. Die Parametrierung und Programmierung des Geräts muss alle Anforderungen des Schutzkonzepts (der zu schützenden Betriebsmittel) erfüllen. Sie müssen sicherstellen, dass alle zu erwartenden fehlerhaften Betriebszustände vom Gerät korrekt erkannt und behandelt werden (z. B. durch Ausschalten des Leistungsschalters). Das Schutzkonzept muss über einen Reserve-Schutz verfügen (Backup). Bevor Sie das Gerät in Betrieb nehmen und nach jeder Veränderung der Programmierung/Parametrierung muss durch einen Test überprüft und schriftlich dokumentiert werden, dass die Programmierung und Parametrierung alle Anforderungen des Schutzkonzepts erfüllt.

Zur Überwachung der Funktion bzw. Funktionsbereitschaft des programmierbaren Schutzgeräts ist der Selbstüberwachungskontakt (Life-Kontakt) des Geräts mit der Schaltanlagenleittechnik zu verdrahten. Es ist wichtig, dass ein Ansprechen des Selbstüberwachungskontakts (Life-Kontakt) eine Alarmierung auslöst/anzeigt, die sofortiges Handeln veranlasst. Die Alarmierung indiziert, dass das Schutzgerät die Betriebsmittel nicht mehr schützt und das System unverzüglich überprüft werden muss.

Typische Anwendungen für diese Produktfamilie / Gerätelinie sind z.B.

- Abgangsschutz
- Netzschutz
- Maschinenschutz
- Generatorschutz
- Transformatorschutz

Jede darüber hinausgehende Verwendung gilt als nicht bestimmungsgemäß. Dies gilt insbesondere auch für den Einsatz als unvollständige Maschine. Für hieraus resultierende Schäden haftet der Hersteller nicht. Das Risiko hierfür trägt allein der Betreiber. Zur bestimmungsgemäßen Verwendung gehört auch die Einhaltung der von SEG vorgeschriebenen Technischen Daten und Toleranzen.

1.2 Bestimmungsgemäße Verwendung

WARNUNG!

Stellen Sie sicher, dass die Schutzeinstellungen für den Überstromzeitschutz nicht die technischen und thermischen Belastungsgrenzen des MCDLV4, der Stromwandler und der Anwendung überlasten!

Das MCDLV4 ermöglicht Einstellbereiche für den Überstromzeitschutz, die außerhalb der Belastungsgrenzen der Strom-Messeingänge liegen. Es ist beim MCDLV4 sogar möglich, alle Überstromzeitschutz-Module / -Stufen zu deaktivieren.

In beiden Fällen besteht natürlich das Risiko, dass im Betrieb eine Stromstärke jenseits der erlaubten Grenzen auftritt, ohne dass eine Schutzfunktion des MCDLV4 darauf reagiert.

Die Abhängigkeiten für die Belastung der Messeingänge sind komplex, insbesondere ist die Belastung abhängig von der Stromstärke und der Zeit (und zu einem gewissen Grade auch von der Umgebungstemperatur). Daher ist eine automatische Überwachung der Schutzeinstellungen auf mögliche Überlastung nicht mit akzeptablem Aufwand möglich.

Vergewissern Sie sich also unbedingt anhand der Technischen Daten (⇔13.1 Technische Daten), welche Belastungsgrenzen für die Strom-Messeingänge bestehen, und berücksichtigen Sie diese in Ihrem Schutzkonzept. Bei den Schutzeinstellungen müssen sowohl Anregungsschwellwert als auch die Auslöseverzögerung unter Berücksichtung dieser Belastungsgrenzen erfolgen.

Nichtbeachtung der Belastungsgrenzen kann zur Zerstörung des MCDLV4 führen, und dies wiederum kann zu erheblichen Schäden an Ihrer Anlage oder unter Umständen zu Tod oder Verletzung führen.

1.3 Personensicherheit

Nichtbeachtung der nachfolgenden Sicherheitshinweise kann zu Tod, Verletzung oder erheblichem Sachschaden führen.

GEFAHR!

Die elektrische Installation darf nur von fachkundigen Elektrikern ausgeführt werden.

Die nationalen und lokalen Sicherheitsbestimmungen müssen stets eingehalten werden.

GEFAHR!

An den Anschlüssen können gefährliche Spannungen auftreten, auch wenn die Hilfsspannung abgeschaltet ist.

Beim Öffnen des Gerätes können spannungsführende Teile freigelegt werden, die bei Berührung zu schweren Verletzungen führen können.

Das Gerät muss sorgfältig geerdet werden. Siehe →3.2.1 Erdung.

1.4 Wichtige Hinweise

HINWEIS!

Die Geräte werden gemäß dem vom Kunden angegebenen Bestellschlüssel produziert und geliefert.

Die Klemmenbelegung des Gerätes ergibt sich aus dem auf dem Gerät aufgebrachten Anschlussbild.

Ein separates Dokument, die "Wiring Diagrams" (nur auf englisch verfügbar), beinhaltet für alle bestellbaren Gerätevarianten die jeweilige Hardware-Bestückung.

VORSICHT!

Das gesamte elektronische Equipment ist empfindlich gegenüber elektrostatischen Entladungen; einige Bauteile und Komponenten mehr als andere. Um diese Bauteile und Komponenten vor elektrostatischer Zerstörung zu schützen müssen Sie spezielle Vorkehrungen treffen, um das Risiko zu minimieren und elektrostatische Aufladungen zu entladen:

Bitte befolgen Sie die beschriebenen Hinweise, sobald Sie mit diesem Gerät oder in dessen Nähe arbeiten:

- 1. Bevor Sie an diesem Gerät Wartungsarbeiten durchführen, entladen Sie bitte sämtliche elektrostatische Ladungen Ihres Körpers durch das Berühren eines geeigneten geerdeten Objekts aus Metall (Schaltschränke, geerdete Einrichtungen, etc.).
- 2. Vermeiden Sie elektrostatische Aufladungen Ihres Körpers, indem Sie auf synthetische Kleidung verzichten. Tragen Sie möglichst Baumwolle oder baumwollähnliche Kleidung, da diese Stoffe weniger zu elektrostatischen Aufladungen neigen als synthetische Stoffe.
- 3. Vermeiden Sie Plastik, Vinyl und Styropor (wie z.B. Plastiktassen, Tassenhalter, Zigarettenschachteln, Zellophan-Umhüllungen, Vinylbücher oder -ordner oder Plastikaschenbecher) in der näheren Umgebung des Gerätes, den Modulen und Ihrer Arbeitsumgebung.
- 4. Mit dem Öffnen des Gerätes erlischt die Gewährleistung! Entnehmen Sie keine Leiterplatten aus dem Gerätegehäuse, falls dies nicht unbedingt notwendig sein sollte.

Sollten Sie dennoch Leiterplatten aus dem Gerätegehäuse entnehmen müssen, folgen Sie den genannten Hinweisen:

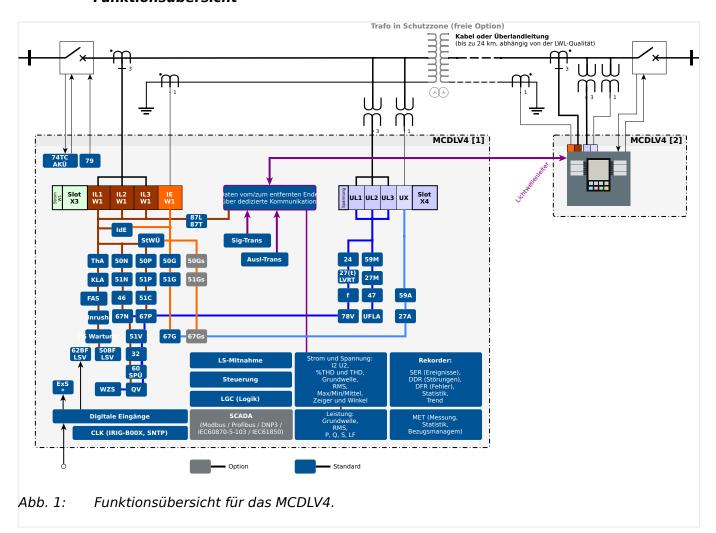
- Vergewissern Sie sich, dass das Gerät völlig spannungslos ist (alle Steckverbinder müssen abgezogen werden).
- Fassen Sie keine Bauteile auf der Leiterplatte an. Halten Sie die Leiterplatte an den Ecken.
- Berühren Sie keine Kontakte, Verbinder oder Komponenten mit leitfähigen Materialien oder Ihren Händen.
- Sollten Sie eine Leiterplatte tauschen müssen, belassen Sie die neue Leiterplatte in Ihrer anti-statischen Verpackung, bis Sie die neue Leiterplatte installieren können. Sofort nach dem Entfernen der alten Leiterplatte stecken Sie diese in den anti-statischen Behälter.

Dokumentation aktuell?

Dieses Dokument kann seit Erstellung dieser Kopie überarbeitet oder aktualisiert worden sein. Um sicherzustellen, dass Sie über die aktuelle Revision verfügen, sollten Sie auf dem Download-Bereich der *SEG* nachsehen:

• https://docs.SEGelectronics.de/mcdlv4-2

Prüfen Sie in diesem Download-Bereich, ob es eine neuere Version der Betriebsanleitung gibt oder ob ein *Errata-Sheet* (Änderungsdokument) vorliegt. (Die ID eines jeden Dokuments finden Sie auf der Titelseite.)


• Alternativ können Sie den QR-Code scannen, der sich auf jedem HighPROTEC-Gerät befindet. Dieser führt unmittelbar zu einem Download-Bereich mit allen relevanten Dokumenten in jeweils neuester Revision.

2 MCDLV4 - Leitungsdifferentialschutz

Das Leitungsdifferentialschutzgerät MCDLV4 ist dafür ausgelegt, paarweise eingesetzt zu werden, um Kabel und Leitungen mit bis zu 24 km Länge zu schützen. Es kann sogar ein Blocktransformator innerhalb der Schutzzone mit einbezogen werden. Ergänzend zum Differentialschutzpaket bietet das Gerät ein umfangreiches Komplettpaket an Schutzfunktionen, inkl. Erdstrom-Differentialschutz, Überstrom, Inrush, zahlreiche Überwachungsfunktionen und Steuerung von bis zu 6 Schaltgeräten.

Das intuitive Bedienkonzept mit Plausibilitätsprüfung sowie umfangreichen Inbetriebnahmefunktionen wie zum Beispiel dem integrierten Fehlersimulator ermöglichen eine sichere und zeitoptimierte Inbetriebnahme. Die Parametrier- und Analysesoftware *Smart view* ist durchgängig über die gesamte Gerätefamilie einsetzbar. Mit *Smart view* ist es sogar möglich, das MCDLV4 an der Gegenstelle über die Schutzkommunikation zu überwachen.

Funktionsübersicht

2.1 Hinweise zum Handbuch

Dieses Handbuch beschreibt in allgemeiner Form die Projektierung, Parametrierung, Montage, Inbetriebnahme, Bedienung und Wartung eines HighPROTEC-Gerätes.

Dieses Handbuch dient als Arbeitsgrundlage für:

- Schutzingenieure / -innen,
- Inbetriebsetzer / -innen,
- Personen, die mit dem Einstellen, Prüfen und Warten von Schutz- und Steuerungseinrichtungen vertraut sind sowie
- geschultes Betriebspersonal von elektrischen Anlagen und Kraftwerken.

Es werden alle sich aus dem Typenschlüssel ergebenden Funktionen beschrieben. Sollten Funktionen, Parameter oder Ein-/Ausgänge beschrieben werden, die mit dem vorliegenden Gerät nicht übereinstimmen, so sind diese als gegenstandslos zu betrachten.

Alle Angaben und Hinweise erfolgen auf Grundlage unserer Erfahrung, Erkenntnisse und nach bestem Wissen. Dieses Handbuch beschreibt die Geräte in ihrer maximalen Ausbaustufe.

Die in diesem Benutzerhandbuch enthaltenen technischen Informationen und Daten entsprechen dem Stand bei Drucklegung. Technische Änderungen im Rahmen der Weiterentwicklung behalten wir uns vor, ohne dieses Handbuch zu ändern und ohne vorherige Ankündigung. Aus den Angaben und Beschreibungen dieses Handbuches können daher keine Ansprüche abgeleitet werden.

Die textlichen und zeichnerischen Darstellungen sowie die Formeln entsprechen nicht in jedem Fall dem Lieferumfang. Die Zeichnungen und Grafiken entsprechen keinem festen Maßstab. Für Schäden und Betriebsstörungen, die durch Bedienungsfehler, Nichtbeachten dieses Handbuches entstehen, übernehmen wir keine Haftung.

Ohne schriftliche Genehmigung von SEG darf kein Teil dieses Handbuches reproduziert oder in irgendeiner Form an andere weitergegeben werden.

Dieses Benutzerhandbuch gehört zum Lieferumfang des Gerätes. Bei Weitergabe des Gerätes an Dritte (Verkauf) ist dieses Handbuch mit zu übergeben.

Jegliche Arbeiten am Gerät dürfen nur von fachkundigem Personal ausgeführt werden, das insbesondere mit allen vor Ort gültigen Sicherheitsbestimmungen und allen erforderlichen Arbeiten im Umgang mit elektronischen Schutzgeräten und Starkstromanlagen – durch entsprechende Nachweise – vertraut ist.

Haftungs- und Gewährleistungsinformationen

Für Schäden, die durch Umbauten und Veränderungen am Gerät oder kundenseitige Projektierung, Parametrierung und Einstellungen entstehen, übernimmt *SEG* keinerlei Haftung.

Die Gewährleistung erlischt, sobald das Gerät durch andere als von *SEG* hierzu befugte Personen geöffnet wird.

Gewährleistungs- und Haftungsbedingungen der allgemeinen Geschäftsbedingungen von SEG werden durch vorstehende Hinweise nicht erweitert.

Wichtige Kapitel in diesem Handbuch

- Sicherheit zuerst! Machen Sie sich mit den wichtigsten Sicherheitshinweisen vertraut, und wie deren Gestaltung in diesem Dokument aussieht:
 →1
 Bestimmungsgemäße Verwendung, Sicherheitshinweise. Außerdem gibt es allgemeine Hinweise zum Lieferumfang (→2.2 Informationen zum Gerät) sowie zu den Konventionen und Symbolen, die in diesem Dokument üblich sind (→2.1.1 Symbole).
- Eine allgemeine Übersicht der prinzipiell mit dem MCDLV4 verfügbaren Schutzfunktionen gibt es als Diagrammdarstellung hier: →"Funktionsübersicht". Die Verfügbarkeit einiger Schutzfunktionen hängt allerdings von der jeweiligen Bestellvariante ab. Hier gibt es eine Tabelle aller Bestelloptionen: →2.2.1 Bestellschlüssel
- Das MCDLV4 verwendet ein modulares Konzept für alle Einstellungen, Messwerte und Meldungen. Obwohl dieses Konzept, basierend auf Modulen und Parametern, einfach und logisch aufgebaut ist, empfehlen wir prinzipiell, sich damit vertraut zu machen:

 →2.3 Module, Parameter, Meldungen, Werte
- Smart view ist die Bedien-, Parametrier- und Analyse-Software für alle HighPROTEC-Schutzgeräte (und darüber hinaus für etliche weitere Schutzgeräte-Serien von SEG). Smart view kann auf jedem aktuellen Windows-PC installiert werden. Man kann den PC mit dem MCDLV4 verbinden, um dann mit Smart view Einstellungen vorzunehmen oder Daten (Mess- und statistische Werte, Störfallaufzeichnungen, etc.) vom MCDLV4 zu empfangen. Ein paar einführende Worte gibt es hier: →2.8 Smart view; für eine ausführliche Beschreibung sei allerdings auf das Smart view-Handbuch (separates Dokument) verwiesen.
- Die Hardware-Aspekte (z. B. Maßdiagramme und Bauteile) werden hier beschrieben:
 →3 Hardware
- Es müssen eventuell einige sicherheitsrelevante Einstellungen vorgenommen werden, weil das MCDLV4 grundsätzliche ohne weitgehende Zugriffsbeschränkungen und mit recht einfachem Standard-Passwort geliefert wird. Wenn es darum geht, das MCDLV4 an die jeweils verlangten Sicherheitsstandards und Berechtigungen anzupassen, verweisen wir auf die Abhandlungen in dem Kapitel →2.4 Sicherheitsrelevante Einstellungen (Security).
- Einige wichtige Einstellungen betreffen das MCDLV4 selbst:

 2.3.7 Geräteparameter
- Das MCDLV4 macht etliche Messdaten verfügbar und hält statistische Werte aktuell:
 ⇒2.6 Messwerte und ⇒2.7 Statistik beschreiben, was man hierzu wissen sollte.
- Die verschiedenen Kommunikationsprotokolle, die im MCDLV4 für die Kommunikation zur Leitstelle zur Verfügung stehen, sind hier beschrieben:
 →4 Kommunikation – SCADA-Protokolle.
- Das MCDLV4 kann bis zu 6 Schaltgeräte steuern. Im Allgemeinen wird man mindestens eines verwenden, um hierüber einen Leistungsschalter zu steuern, der im Falle eines Schutz-Aus abschaltet. →6 Steuerung / Schaltgeräte-Manager beschreibt die Steuerfunktionalität.
- Die einzelnen Schutzfunktionen sind in →5 Schutzmodule beschrieben, wobei jeder Schutzfunktion ein eigenes Unterkapitel gewidmet ist. Es gibt allerdings auch eine übergreifende allgemeine Schutzfunktion, die mit allen spezifischen Schutzfunktionen zusammenwirkt: →5.1 Modul: Schutz. Außerdem sollte man nicht nur wissen, wie eine Schutzfunktion aktiviert werden kann, sondern auch, welche Blockademöglichkeiten (z. B. für Testzwecke) es gibt: →5.1.3 Blockaden

- Das MCDLV4 zeichnet etliche Arten von Ereignissen in seinem internen Speicher auf.
 Hier wird beschrieben, welche Arten es gibt und welche Information enthalten ist: →8
 Rekorder
- Es gibt im MCDLV4 die Möglichkeiten, logische Gleichungen zu programmieren, um Funktionalitäten zu erhalten, die nicht von vorneherein fest verdrahtet sind: →9 Programmierbare Logik
- Zusätzlich zu den Schutzfunktionen gibt es im MCDLV4 mehrere Überwachungsfunktionen. Etwas vereinfacht kann man sagen, der Unterschied zwischen einer Schutz- und einer Überwachungsfunktion ist, dass letztere kein Aus-Kommando generiert, aber sehr wohl ein Alarmsignal gibt, falls eine bestimmte Situation eintritt. Dieses Alarmsignal kann in der Gerätekonfiguration benutzt werden, um Schutzfunktionen zu blockieren oder LEDs oder Ausgangsrelais anzusteuern: →5.35 Überwachung
- Allgemeine Aspekte der Inbetriebnahme finden sich hier: MCDLV4:
 —11
 Inbetriebnahme. Schutzspezifische Hinweise zur Inbetriebnahme befinden sich allerdings, jeweils als Unterkapitel, in den Kapiteln zu den einzelnen Schutzfunktionen.
- Technische Daten, Toleranzen, und anzuwendende Richtlinien: →13.1 Technische Daten
- Das letzte Kapitel dieses Dokumentes ist der Index. Hier gibt es eine Besonderheit: Unter dem Anfangs-"Buchstaben", der aussieht wie ein Zahnrad: "⊕", werden die nummerierten Signale aufgeführt, die in den verschiedenen Logikdiagrammen "generiert" werden (siehe ⇔2.1.1 Symbole).

Weitergehende Dokumentation zum MCDLV4

- MCDLV4 Referenzhandbuch (MCDLV4-3.10-DE-REF): Alle Einstellungen, Meldungen und Werte, die mit dem MCDLV4 zur Verfügung stehen, werden hier mitsamt Menüpfaden, Vorgabewerten und Einstellbereichen aufgeführt.
- HighPROTEC Quick Start Guide (HPT-3.10-DE-QSG): Schritt-für-Schritt-Erklärungen der Menüstruktur, Funktionalität der Tasten und typischer Bedienvorgänge.
- HighPROTEC Troubleshooting Guide (HPT-3.10-DE-TSG): Eine Referenz aller geräteinternen (Warn- oder Fehler-)Meldungen, die das MCDLV4 unter Umständen ausgeben kann. (Siehe auch →10.2 Meldungen der Selbstüberwachung.)
 - Im Troubleshooting-Guide sollte man auch nachschlagen, wenn nach der Startphase (→13.1.25 Bootphase) die »System«-LED nicht konstant grün leuchtet.
- Wiring Diagrams (HPT-3.10-EN-WDG) [nur auf Englisch]: Für jede Bestellvariante wird hier, sortiert nach Typschlüssel, das jeweilige Anschlussdiagramm in Form einer Rückansicht mit den jeweiligen Bauteilen und Anschlussklemmen aufgeführt.
- Smart view-Handbuch (SMARTV-x.xx-DE-MAN): Die ausführliche Beschreibung der Einstell- und Analysesoftware *Smart view*.
- DataVisualizer-Handbuch (DATVIS-x.xx-DE-MAN): Beschreibung der Software DataVisualizer zum Analysieren von Störschrieben und Aufzeichnungen des Event-Rekorders.
- Page-Editor-Handbuch (PAGEED-x.xx-DE-MAN): Beschreibung der Software *Page Editor* zum Erstellen individueller Abzweigsteuerbilder.
- SCADApter-Handbuch (SCADAP-x.xx-DE-MAN): Beschreibung der Software *SCADApter* zum Erstellen individueller Datenpunkt-Tabellen für SCADA-Protokolle.

SCADA-Dokumentation:

- MCDLV4-3.10-DE-DNP3-DeviceProfile DNP3-Profile [nur auf Englisch]
- ${}^{\circ} \ \mathsf{MCDLV4-3.10-DE-Modbus-Datapoints} \mathsf{Modbus-Datenpunktliste}$
- MCDLV4-3.10-DE-Profibus-Datapoints Profibus-Datenpunktliste
- MCDLV4-3.10-DE-IEC61850-Mics IEC 61850 Model Implementation Conformance Statement (MICS) – [nur auf Englisch]
- MCDLV4-3.10-DE-IEC61850-Pics IEC 61850 Protocol Implementation Conformance Statement (PICS) – [nur auf Englisch]
- MCDLV4-3.10-DE-IEC61850-Pixit IEC 61850 Protocol Implementation Extra Information for Testing (PIXIT) – [nur auf Englisch]
- MCDLV4-3.10-DE-IEC61850-Tics IEC 61850 Tissue Implementation Conformance Statement (TICS) – [nur auf Englisch]

2.1.1 Symbole

Anschlussbild auf dem Gehäuse des Gerätes

Auf dem Gehäuse des MCDLV4 ist ein Anschlussbild angebracht. Dieses Diagramm zeigt sämtliche Anschlüsse für diese Gerätevariante.

Eine Tabelle aller Symbole, die in diesem Diagramm verwendet werden können, befindet sich hier: →2.1.1.1 Legende für Anschlussbilder

Zählpfeilsystem

- Es kommt immer entweder das Verbraucherzählpfeilsystem (d. h. Energie wird zugeführt) oder das Erzeugerzählpfeilsystem (d. h. Energie wird generiert) zur Anwendung.
- Alle HighPROTEC-Schutzgeräte, mit Ausnahme der Generatorschutzgeräte, wenden ausschließlich das **Verbraucherzählpfeilsystem** an.

Generatorschutzgeräte wenden ausschließlich das Erzeugerzählpfeilsystems an.

- Dies gilt für alle Richtungsentscheide und Phasenwinkel. Phasenwinkel sind definiert als Winkel zwischen Stromvektor und Spannungsvektor.
- Strom- und Spannungsvektoren sind in Richtung des Zählpfeiles positiv zu zählen.

Typographische Konventionen

- »Parameter werden kursiv gestellt und durch Französische Anführungszeichen umschlossen.«
- »MELDUNGEN werden durch Französische Anführungszeichen und Kapitälchen gekennzeichnet.«
- [Pfade werden durch eckige Klammern gekennzeichnet.]
- Software- und Gerätenamen werden kursiv dargestellt.
- Modul- und Instanznamen werden kursiv unterstrichen dargestellt.
- »Tasten, Modi und Menüeinträge werden durch Französische Anführungszeichen umschlossen.«
- 123 Signalreferenzen in Funktionsdiagrammen

Nummerierte Signale in Funktionsdiagrammen

Die durch eingekreiste Zahlen gekennzeichneten Signale bezeichnen Verbindungen von einem Funktionsdiagramm zu einem anderen. Falls sich somit ein solches nummeriertes Signal irgendwo "auf der linken Seite" eines Diagramms befindet, wird man nachschlagen wollen, in welchem anderen Diagramm dieses Signal generiert wurde.

Deswegen werden alle nummerierten Signale, die "auf einer rechten Seite" (d. h. als Ausgangssignal) eines Diagramms vorkommen, als Teil des Index-Kapitels aufgeführt.

2.1.1.1 Legende für Anschlussbilder

In dieser Legende sind Bezeichnungen verschiedener Gerätetypen (z.B. Trafoschutz, Motorschutz, Generatorschutz, usw.) aufgeführt. Es kann daher vorkommen, dass einige Bezeichnungen nicht auf dem Anschlussbild ihres Gerätes vorkommen.

FE Anschluss Funktionserde (siehe →3.2.1 Erdung)

Phasenstrommesseingang L3

Hilfsspg. Stromversorgung / Hilfsspannung

IL1 Phasenstrommesseingang L1

IL2 Phasenstrommesseingang L2

IE Erdstrommesseingang

IL1 W1 ... Phasenstrommesseingang L1...L3, Wicklungsseite 1

IL3 W1

IL3

IL1 W2 ... Phasenstrommesseingang L1...L3, Wicklungsseite 2

IL3 W2

IE W1, IE W2 Erdstrommesseingang, Wicklungsseite 1/2

UL1 Phasenspannung U1

UL2 Phasenspannung U2

UL3 Phasenspannung U3

UL12 Außenleiterspannung U12

UL23 Außenleiterspannung U23

UL31 Außenleiterspannung U31

UX Vierter Spannungsmesseingang zur Erfassung der Verlagerungsspannung

oder für Synchrocheck

K Ausgangsrelais-Kontakt

NO / NC Ausgangskontakt Schließer / Öffner

DI Digitaler Eingang

COM Masseanschluss der digitalen Eingänge

Out+, Analogausgang + (0/4...20 mA oder 0...10 V)

AnAusg

In-, AnEing Analogeingang (0/4...20 mA oder 0...10 V)

n.c. Nicht angeschlossen

DO NOT USE Nicht verwenden

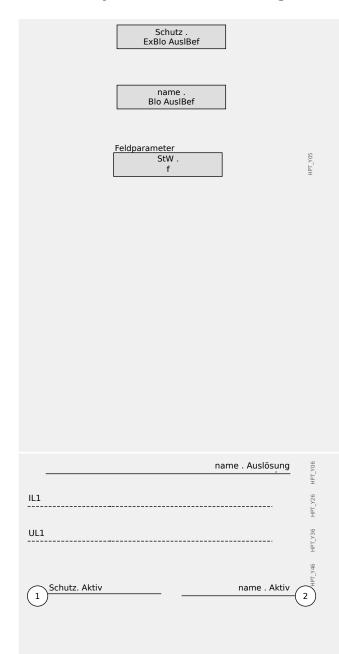
SK Selbstüberwachungskontakt

GND Masse

HF Anschluss Kabelabschirmung

Schirmung

LWL Anschluss für Lichtwellenleiter


Only for use with external galvanic decoupled CT's. See chapter Current Transformers of the manual!

Nur für die Verwendung mit galvanisch getrennten Stromwandlern. (Siehe ⇔3.5.1 TI – Strommesseingänge und Erdstrommesseingang.)

Achtung: Messeingang für empfindliche Erdstrommessung. (Siehe ⇔3.5.2 Tls – Strommesseingänge und Empfindlicher Erdstrommesseingang.)

2.1.1.2 Symbole in Funktionsdiagrammen

Einstellwerte

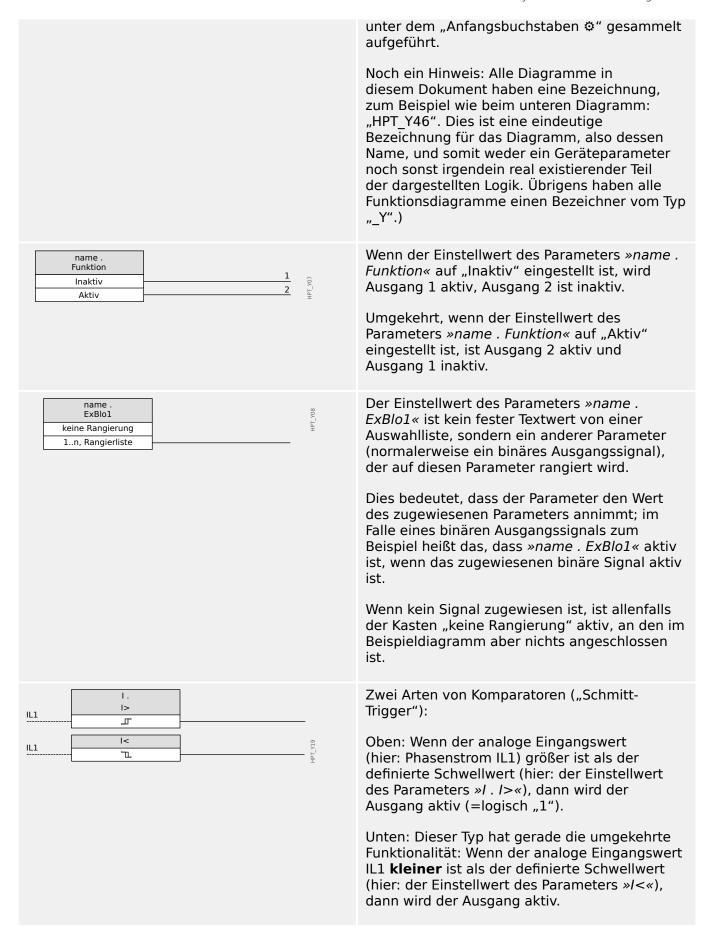
Der obere Kasten im Diagramm links ist das generelle Symbol für einen Einstellwert in einem Funktionsdiagramm. Der Einstellparameter wird durch den Modulnamen und den Parameternamen (mit einem Punkt "" dazwischen) bezeichnet.

Zweites Beispiel, der Kasten in der Mitte: Auf Grund der großen Modularisierung aller HighPROTEC-Schutzgeräte ist die dargestellte Logik manchmal in gleicher Weise für verschiedene Module gültig. In solchen Fällen wird im Diagramm ein symbolischer Name für das Modul, zum Beispiel: "name", verwendet. Im Kopfteil des Diagramms wird die jeweilige Bedeutung von "name" definiert.

In manchen Fällen wird auch der Menüpfad oder zumindest dessen oberste Menüebene angegeben, um den Parameter klar zu definieren, sodass der Anwender diesen schnell auffinden kann. Im dritten Kasten ist der Parameter als Feldparameter markiert, d. h. man findet in im Menüzweig [Feldparameter]).

Eingangs- und Ausgangssignale

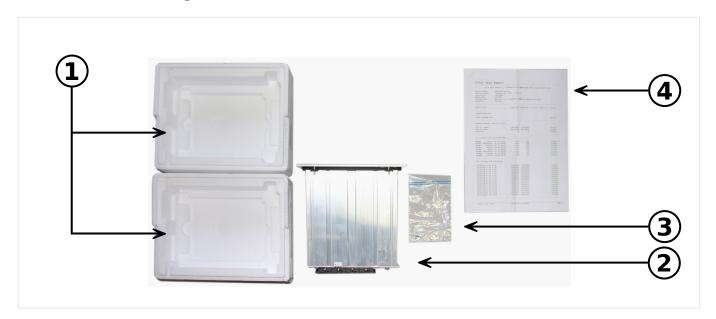
Ein binäres Ausgangssignal ist ganz oben im Diagramm links dargestellt.


Eine gestrichelte Linie symbolisiert ein analoges Signal (z. B. einen Messwert).

Unten links: Ein nummeriertes Eingangssignal. Die eingekreiste Nummer hat keinerlei technische Funktion, es gibt diese Linien für Eingangssignale also auch ohne Nummer.

Manche Nummern stehen auch für generische Signale, wenn dies dem besseren Verständnis der Schutzfunktionen dient. Zum Beispiel hat jede Schutzfunktion ein Signal »Auslösung« für die Auslösung, und in den Diagrammen ist dies mit der immer gleichen Nummer versehen, unabhängig von der konkreten Schutzfunktion.

Eine Nummer kommt im Allgemeinen in mehreren Funktionsdiagrammen vor, und dann lässt sich anhand der Nummer das jeweilige Signal identifizieren und nachverfolgen.


Für dieses Nachverfolgen ist es natürlich besonders interessant, dasjenige Diagramm zu finden, in dem dieses Signal "auf der rechten Seite" vorkommt, d. h. generiert wird. Daher werden diese Nummern im Index-Kapitel

t-Ein Verz t-Aus Verz ton toff	НРТ_ҮОА	Zeitstufe mit Ein- und Ausschaltverzögerung: Wenn der Eingang aktiv wird, wird der Ausgang nach Ablauf der Zeit t _{on} (=Einstellwert von »t-Ein Verz«) aktiv. Wenn der Eingang wieder inaktiv wird, wird der Ausgang erst nach Ablauf der anderen Zeitangabe t _{off} (=Einstellwert von »t-Aus Verz«) inaktiv.
name . Zeitdauer Auslösung t	HPT_YX0	Haltezeit: Dies ist ein Impuls, der vom Eingangssignal angestoßen wird, und in diesem Beispiel ist die Impulsdauer über den angegebenen Parameter einstellbar.
&=1	HPT_YX1	Die üblichen elementaren logischen Operatoren, von links nach rechts: UND, ODER, eXklusiv-ODER (XOR). Im Beispiel ist der zweite Eingang des XOR negiert.
a — S 1 c a b c d 0 0 unverändert 0 1 0 1 0 1 1 0 1 0 1	HPT_YX2	RS-Flip-Flop mit Rücksetz-Priorität.
—>+ —>R	HPT_YX3	Flankengesteuerter Zähler.
\biggreen \b	HPT_YX4	Bandpass-Filter (links: IH1, rechts: IH2).
	HPT_YX5	Flanken-gesteuerter Block: Ausgang ist aktiv bei positiver (negativer) Flanke am Eingang.

2.2 Informationen zum Gerät

Lieferumfang

Der Lieferumfang umfasst:

(1)	Verpackung
(2)	Schutzgerät
(3)	Befestigungsmaterial
(4)	Prüfbericht

Bitte kontrollieren Sie die Lieferung auf Vollständigkeit (Lieferschein).

Stellen Sie sicher, dass das Typenschild, Anschlussbild, Typenschlüssel und Gerätebeschreibung übereinstimmen.

Ggf. nehmen Sie bitte mit unserem Service Kontakt auf (Adresse siehe Rückseite dieses Handbuchs).

Download-Bereich

Alle Technische Dokumentation (Handbuch, Referenz-Handbuch, etc.) sowie die Installationsdatei für die Windows-Anwendungen (Smart view, DataVisualizer, Page Editor, SCADApter) lässt sich direkt (und kostenlos) von unserem Download-Bereich https://docs.SEGelectronics.de/mcdlv4-2 herunterladen.

Diese Download-Adresse ist auch als QR-Code auf dem Gehäuse des Gerätes angebracht.

Produkt-DVD

Eine Produkt-DVD mit der Technischen Dokumentation (Handbuch, Referenz-Handbuch, etc.) sowie der Installationsdatei für die Windows-Anwendungen (Smart view, DataVisualizer, Page Editor, SCADApter) kann separat bestellt werden, sodass sie bei Bedarf Anwendern zur Verfügung steht, zum Beispiel wenn das Schutzgerät in einem Bereich in Betrieb genommen werden soll, der nicht mit dem Internet verbunden ist.

Lagerung

Die Geräte dürfen nicht im Freien gelagert werden. Die Lagerräume müssen gut belüftet und trocken sein (siehe Technische Daten, $\hookrightarrow 13.1$ Technische Daten).

Batterie

Die Batterie dient der Pufferung der Echtzeituhr bei nicht vorhandener Hilfsspannungsversorgung des Schutzgerätes.

Da während des normalen Betriebes des MCDLV4 keine Ladung entnommen wird, sollte ein Austausch unter typischen Anwendungsbedingungen während der Lebensdauer des MCDLV4 nicht erforderlich sein. Sollte dennoch einmal ein Austausch nötig sein, muss das MCDLV4 als Service-Fall an SEG eingeschickt werden.

Entfernen der Batterie nach der Lebensdauer des MCDLV4

Die Batterie muss ausgelötet oder an den Kontakten abgekniffen werden.

Weitergehende Informationen entnehmen Sie bitte dem Sicherheitsdatenblatt des Batterieherstellers (Panasonic, Batterietyp BR2032 – https://industrial.panasonic.com/). Siehe auch → "Entsorgung" weiter unten.

Entsorgung

Dieses Schutzgerät enthält eine Batterie und ist daher gemäß der EU-Richtlinie 2006/66/EG mit folgendem Symbol gekennzeichnet:

Batterien können die Umwelt schädigen. Beschädigte oder unbrauchbare Batterien müssen in einem hierfür geeigneten speziellen Behälter gesammelt und fachgerecht entsorgt werden.

Bei der Entsorgung von elektrischen Geräten und Batterien müssen lokale Bestimmungen und Gesetze unbedingt beachtet werden.

2.2.1 Bestellschlüssel

Leitungsdifferentialschutz				MCDLV4	-2						
Span- nungs- messung	Digitale Ein- gänge	Melde- aus- gänge	Gehäuse	Display							
0 - 800 V	8	6+1	B2	LCD, 128 x 128 Pixel		A					
0 - 800 V	16	12+1	B2	LCD, 128 x 128 Pixel		D					
0 - 300 V	24	19+1	B2	LCD, 128 x 128 Pixel		E					
Hardware	variante										
Phasenstro	m 5 A/1 A, Er	dstrom 5 A/1	Α.				0				
Phasenstro	m 5 A/1 A, er	npfindliche E	rdstrommess	sung 5 A/1 A			1				
Gehäuse und Einbaulage											
Gehäuse geeignet für Schalttafel-Türeinbau											
Gehäuse ge	eeignet für 19	9"-Rack / Bau	ıgruppenträg	er				В			
Wirkschnittstelle (dedizierte Kommunikation) (*)											
LC-Stecker, Monomode (bis zu 24 km), Multimode (bis zu 4 km)											
ST-Stecker, BFOC2.5, Multimode (bis zu 2 km)											
Leittechnikprotokolle (**)											
Without protocol						A					
RS485 / Klemmen						В					
Ethernet 100MB / RJ45 Modbus TCP, IEC 60870-5-104, DNP3.0 TCP/UDP						С					
Lichtwellenleiter, ST-Stecker RxD TxD On the state of t						D					
RS485 / D-SUB Profibus-DP							Е				

Leitungsdifferentialschutz	MCDLV4 -2	
Lichtwellenleiter, ST-Stecker RXD TXD O O O O O O O O O O O O O	Modbus RTU, IEC 60870-5-103, DNP3.0 RTU	F
RS485 / D-SUB	Modbus RTU, IEC 60870-5-103, DNP3.0 RTU	G
Ethernet 100MB / RJ45	IEC 61850, Modbus TCP, IEC 60870-5-104, DNP3.0 TCP/UDP	Н
RS485 / Klemmen 1 2 3 4 5 6	Modbus RTU, IEC 60870-5-103, DNP3.0 RTU	I
+ Ethernet 100MB / RJ45	Modbus TCP, IEC 60870-5-104, DNP3.0 TCP/UDP	
Optisches Ethernet 100MB, LC-Duplex-Stecker RXD TXD O O	IEC 61850, Modbus TCP, IEC 60870-5-104, DNP3.0 TCP/UDP	K
Optisches Ethernet 100MB, LC-Duplex-Stecker RXD TXD	Modbus TCP, IEC 60870-5-104, DNP3.0 TCP/UDP	L
RS485 / Klemmen 1 2 3 4 5 6	Modbus RTU, IEC 60870-5-103, DNP3.0 RTU	Т
+ Ethernet 100MB / RJ45	IEC 61850, Modbus TCP, IEC 60870-5-104, DNP3.0 TCP/UDP	
Schutzlackoption		
Ohne		A
Schutzlack		В

Leitungsdifferentialschutz

MCDLV4

-2

Verfügbare Menüsprachen

Englisch (USA) / Deutsch / Spanisch / Russisch / Polnisch / Portugiesisch (BR) / Französisch / Rumänisch

Weitere Funktionen

Mit Steuerfunktionen für 6 Schaltgeräte und Logik mit bis zu 80 Logikgleichungen.

IRIG-B-Schnittstelle für die Zeitsynchronisierung.

(*) Bei der Wirkschnittstelle ist Folgendes zu beachten:

HINWEIS!

Es gibt zwei Typen der Schutzkommunikation, siehe den Bestellschlüssel und die Technischen Daten:

- Typschlüssel MCDLV4-2xxx1xx, ST-Anschluss, 820 nm multi mode, normale Reichweite,
- Typschlüssel MCDLV4-2xxx**0**xx, LC-Anschluss, 1310 nm mono mode, erhöhte Reichweite.

Es muss beachtet werden, dass diese zwei Typen nicht *miteinander* verbunden werden können, weil sie für die Schutzkommunikation zwei verschiedene (proprietäre) Kommunikationsprotokolle verwenden, die nicht miteinander kompatibel sind. Da diese Inkompatibilität software-bedingt ist, lässt sie sich nicht durch Hardware-Maßnahmen (etwa Einfügen eines optischen Konverters) beheben.

Sie müssen also sicherstellen, dass die beiden miteinander zu verbindenden MCDLV4 entweder beide eine ST-Schutzkommunikations-Schnittstelle oder beide eine LC-Schutzkommunikations-Schnittstelle aufweisen!

(Die zwei Ausführungen von LC-Modulen sind – mit Ausnahme unterschiedlicher Sendeund Empfangsstärken – miteinander kompatibel.)

(**) Bei der Leittechnik-(SCADA-)Kommunikation ist zu beachten:

HINWEIS!

Unabhängig von der bestellten Kommunikationsoption ist immer nur ein SCADA-Kommunikationsprotokoll nutzbar.

Die "+1" bei den Melde-ausgängen bedeutet: 1 Wechsler als Selbstüberwachungskontakt, die übrigen Ausgangsrelais sind frei konfigurierbar.

Die "MCDLV4 Wiring Diagrams" (separates Dokument) zeigen für jede bestellbare Gerätevariante die Hardware-Bestückung.

Die Parametrier- und Störschriebanalysesoftware Smart view ist im Lieferumfang von HighPROTEC-Geräten enthalten.

2 MCDLV4 - Leitungsdifferentialschutz

2.2.1 Bestellschlüssel

Smart view kann entweder über den fronseitigen USB-Anschluss oder über das Ethernet Interface (RJ45, sofern vorhanden) mit dem MCDLV4 verbunden werden.

2.2.1.1 Übersicht über die Baugruppen

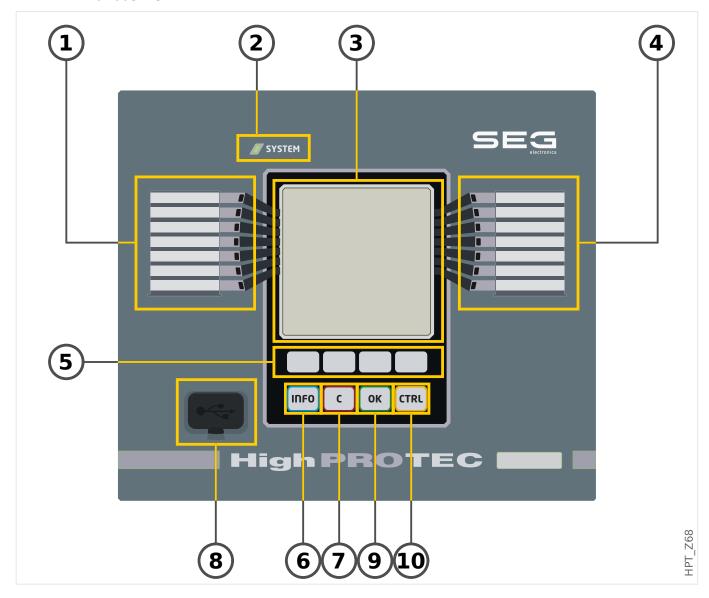
Die Varianten sind prinzipiell folgendermaßen ausgestattet:

Bestell- schlüssel	Slot X1	Slot X2	Slot X3	Slot X4	Slot X5	Slot X6
MCDLV4-2 A	DI-8 X1	OR6	TI / TIs	TU	_	_
MCDLV4-2 D	DI-8 X1	OR6		TU	OR6	DI8
MCDLV4-2 E	DI-8 X1	OR6		TU-OR5	DI8-OR4	DI8-OR4

Slot X3:

• MCDLV4-2x0...: TI

• MCDLV4-2x1...: TIS


Slot X4:

- Die Spannungswandlerkarte mit zusätzlichen Ausgangsrelais ("TU-OR5") deckt den Spannungsbereich 0 300 V ab.
- Die Spannungswandlerkarte "TU" deckt den Spannungsbereich 0 800 V (für UL: 0 – 600 V) ab.

(Details siehe Technische Daten, →13.1 Technische Daten.)

2.2.2 Navigation - Bedienung

Die folgende Abbildung gilt für Geräte mit "B2"-Gehäuse und großem Display, insbesondere für das MCDLV4:

2.2.2.1 Aufbau der Bedieneinheit

(1) LEDs Gruppe A (links)

Meldungen informieren Sie über Betriebszustände, Anlagendaten oder sonstige Gerätedaten. Darüber hinaus liefern sie Informationen über Störfälle und die Funktion des Gerätes sowie sonstige Anlagen- und Gerätezustände.

Meldesignale können den LEDs frei aus der »Rangierliste« zugeordnet werden. (Die verfügbaren Meldungen sind im Referenzhandbuch aufgeführt.)

(2) LED »System OK«

Die »System OK«-LED leuchtet konstant grün, wenn – nach der Startphase, ⇔13.1.25 Bootphase – die Schutzfunktionen arbeiten. In jedem anderen Fall schlagen Sie bitte im Troubleshooting Guide nach.

(3) Display

Über das Display können Sie Betriebsdaten auslesen und Parameter anzeigen lassen bzw. editieren.

(4) LEDs Gruppe B (rechts)

Meldungen informieren Sie über Betriebszustände, Anlagendaten oder sonstige Gerätedaten. Darüber hinaus liefern sie Informationen über Störfälle und die Funktion des Gerätes sowie sonstige Anlagen- und Gerätezustände.

Meldesignale können den LEDs frei aus der »Rangierliste« zugeordnet werden. (Die verfügbaren Meldungen sind im Referenzhandbuch aufgeführt.)

(5) Softkeys

Die Funktion der »SOFTKEYS« ist kontextabhängig. In der untersten Zeile des Displays wird die jeweilige Funktion durch Symbole dargestellt. Mögliche Funktionen: \hookrightarrow 2.2.2.2 Softkeys – Übersicht

(6) »INFO«-Taste (Meldungen)

Einsehen der aktuellen LED-Rangierung. Die Direktwahltaste kann jederzeit betätigt werden.

Um das LED Menü (oder Untermenü) zu verlassen, drücken sie den Softkey »links« einbzw. zweimal.

(7) »C«-Taste

Zum Verwerfen von Parameteränderungen und zum Quittieren von Meldungen (inkl. LED-Test). Während eines Kaltstarts: Rücksetzen von Passwörtern und / oder Parametern.

Weitere Informationen zum Verwerfen von Parameteränderungen (während der Gerätekonfiguration): ⇔2.3 Module, Parameter, Meldungen, Werte

Speziell zum manuellen Quittieren inkl. LED-Test: →"Manuelle Quittierung am Bedienfeld"

Rücksetz-Dialog während eines Kaltstarts: →2.4.6 Rücksetzen auf Werkseinstellungen, Rücksetzen aller Passwörter

(8) USB-Schnittstelle (Smart view-Verbindung)

Über die USB-Schnittstelle wird die Verbindung zur Bediensoftware Smart view hergestellt.

(9) »OK«-Taste

Durch Betätigen der »OK«-Taste werden Parameteränderungen zwischengespeichert. Wird die »OK«-Taste zum zweiten Mal betätigt, werden die Parameteränderungen endgültig gespeichert.

(10) »CTRL«-Taste

Direktzugang zur Seite mit dem Abzweigsteuerbild (Single-Line, siehe ↔ "Abzweigsteuerbild (Single Line)").

2.2.2.2 Softkeys - Übersicht

Die folgenden Symbole zeigen die jeweilige Funktion eines Softkeys an:

Softkey	Bedeutung
	Über den Softkey »auf« gelangt man zum vorherigen Menüpunkt oder kann einen Parameter herauf/aufwärts scrollen.
	Über den Softkey »ab« wechselt man zum nächsten Menüpunkt/einen Parameter runter/abwärts scrollen.
•	Über den Softkey »links« gelangt man eine Stufe zurück. Sie verlassen das Untermenü und gelangen auf die vorherige Seite des Menübaums.
	Mittels des Softkey »rechts« gelangt man in das angewählte Untermenü.
1	Mittels Softkey »Listenanfang« springt man an den Anfang einer Liste.
₽	Mittels Softkey »Listenende« springt man an das Ende einer Liste.
+	Durch den Softkey »+« wird (während des Änderns eines numerischen Parameters) die angewählte Ziffer inkrementiert. (Dauerdruck: schnell)
_	Durch den Softkey »-« wird (während des Änderns eines numerischen Parameters) die angewählte Ziffer dekrementiert. (Dauerdruck: schnell)
\leftarrow	Durch den Softkey »Ziffer links« navigiert man eine Ziffer nach links.
\rightarrow	Durch den Softkey »Ziffer rechts« navigiert man eine Ziffer nach rechts.
P	Mit dem »Schraubenschlüssel«-Symbol können Sie den angewählten Parameter ändern (d. h. es wird der Änderungsmodus aufgerufen).
0	Mit dem »Schlüssel«-Symbol wird, nach Abfrage des erforderlichen Passwortes, der Änderungsmodus aufgerufen.
X	Mit dem Softkey »Löschen« werden die angewählten Daten gelöscht.
*	Mit dem Softkey »Schnell vorwärts« kann in Listen schnell gescrollt werden.
	Mit dem Softkey »Schnell rückwärts« kann in Listen schnell gescrollt werden.

2.3 Module, Parameter, Meldungen, Werte

Das MCDLV4 ist ein digitales Schutzgerät, das etliche unterschiedliche Daten in seinem internen Speicher hält. Einige dieser Daten können vom Anwender eingestellt werden, um die Funktionalität an die jeweilige Anwendung anzupassen, andere Werte werden hingegen während der Laufzeit vom Gerät zur Verfügung gestellt, sind somit (aus Sicht des Anwenders) nicht einstellbar.

Parametrieren und Projektieren können Sie:

- · Direkt am Gerät
- Mittels der Bediensoftware Smart view

Module

Man kann sich die Firmware des MCDLV4 vorstellen als unterteilt in verschiedene Funktionsblöcke. Im Rahmen dieser Technischen Dokumentation ist die Rede von "Modulen" (oder zuweilen auch von "Funktionen"). Zum Beispiel ist jede Schutzfunktion ein eigenes Modul. Es ist allerdings ein grundlegendes Konzept des MCDLV4, dieses Prinzip konsequent umzusetzen: Zum Beispiel ist die Statistik von Messwerten in Form eines eigenen Moduls (nämlich des Moduls »Statistik«) umgesetzt, jedes Kommunikationsprotokoll ist ein eigens Modul, die Steuerfunktionalität ist ein Modul (namens »Strg«), es gibt auch ein generelles (allen Schutzfunktionen übergeordnetes) »Schutz«-Modul, das mit allen spezialisierten Schutzmodulen interagiert.

Es ist wichtig zu wissen, dass jeder Parameter, jedes Signal und jeder Wert immer Teil eines Moduls ist. (Das gilt immer, also auch dann, wenn zwecks besserer Übersichtlichkeit bei der Darstellung auf dem Display kein Modulname mit angezeigt wird.)

Module können miteinander wechselwirken bzw. "zusammenarbeiten", entweder, weil dies in der Firmware so implementiert ist, oder weil der Anwender im Rahmen der Konfiguration ein Signal eines Moduls auf einen "Moduleingang", d. h. auf einen Parameter (eines eventuell anderen Moduls) rangiert hat. Ein Beispiel für eine feste Implementierung ist, dass das Aus-Signal einer jeden Schutzfunktion immer auch das General-Aus des »Schutz«-Moduls bewirkt, und umgekehrt, wenn das »Schutz«-Aus blockiert ist, dann wird das Aus aller Schutzfunktionen blockiert.

Einige Module stehen in mehreren Instanzen zur Verfügung, die unabhängig voneinander aktiviert und konfiguriert werden. Dies ermöglicht, zu einer Schutzfunktion mehrere Schutzstufen in Betrieb zu nehmen. Es gibt allerdings einen grundlegenden Unterschied beim MCDLV4: Die Funktionalität aller Instanzen (eines bestimmten Moduls) ist immer identisch (abgesehen natürlich von Unterschieden auf Grund verschiedener Einstellwerte).

Es besteht die folgende Namenskonvention: Wenn mehrere Instanzen eines Moduls namens »Modul« existieren, dann werden diese als »Modul[1]«, »Modul[2]«, usw. bezeichnet (bzw. als Kurzform in Erklärungstexten: »Modul[x]«).

Datentypen von Parametern, Meldungen und Werten

Einstellungen (auch als Parameter bezeichnet)

• Parameter stellen einen Datentyp dar, der vom Anwender eingestellt werden kann, damit das Geräteverhalten der jeweiligen Anwendung angepasst werden kann.

Anwender der Betriebssoftware *Smart view* können alle Einstellungen in einer Datei speichern. Dies ist eine Datei mit einem Namen der Form *.HptPara, die dann

zu jedem (späteren) Zeitpunkte wieder geladen und an ein anderes MCDLV4-Gerät übermittelt werden kann. (Details sind im *Smart view*-Handbuch beschrieben.)

(Anmerkung: Es gibt einige wenige Ausnahmen, nämlich Parameter, die nur geräteintern gespeichert und niemals in einer *.HptPara-Datei gespeichert werden. Dies ist der Fall für Einstellungen, bei denen eine direkte Übertragung auf ein anderes Gerät nicht wünschenswert ist; die TCP/IP-Einstellungen sind ein Beispiel hierfür.)

Es gibt verschiedene Arten Parameter, je nach dem Datentyp, für den sie vorgesehen sind. Der Anwender braucht sich hierüber allerdings keine eingehenden Gedanken zu machen; es ist natürlich von Vorteil zu wissen, dass es numerische Parameter gibt (z. B. Überstrom-Schwellwerte) neben Parametern, die einfach eine bestimmte Option aus einer Auswahlliste speichern. Solche Optionen können entweder ein Festwert sein (z. B. die Wahl des Kommunikationsprotokolls), oder es kann ein Signal sein (sodass zur Laufzeit der wirksame Parameterwert dem Zustand des zugewiesenen Signals entspricht).

 Einige Parameter sind in ihren Eigenschaften (z. B. hinsichtlich Verfügbarkeit oder dem konkret einstellbaren Wertebereich) vom Einstellwert bestimmter anderer Parameter abhängig. Zum Beispiel ist der Zweck aller Parameter im Menü [Projektierung / Projektierte Elemente], Funktionen zu aktivieren oder deaktivieren (siehe auch →2.3.5 Projektierung des Gerätes). Deswegen ist die Verfügbarkeit (und Sichtbarkeit) aller Parameter einer bestimmten Schutzfunktion abhängig von dem Einstellwert des zugehörigen Projektierungsparameters.

Wie gesagt, kann auch der Vorgabewert oder der Einstellbereich eines Parameters von einem anderen Parameter abhängen. (Zum Beispiel hängt der Einstellbereich einiger Schutzeinstellungen vom Stromwandlerverhältnis ab.)

Einige Parameter existieren nur genau einmal (pro Modul); sie heißen "Globale Parameter".

• Man findet sie normalerweise im Menüzweig [Globale Schutzpara].

.

Satzparameter befinden sich in je einmal in einem der vier Menüzweige [Satz 1] ... [Satz 4]: Es handelt sich also um Parameter mit einer "vierfachen Existenz": Der Anwender konfiguriert also (bis zu) vier Einstellwerte, deren jeder genau einem "Parametersatz" (Satz 1 bis Satz 4) zugehört. Zu jeder Zeit ist immer genau einer dieser vier Parametersätze aktiv, wodurch dann die Einstellwerte dieses aktiven Parametersatzes aktiv eingesetzt werden. (Dies ist schutzübergreifend, das heißt, ein Umschalten auf einen anderen Parametersatz wechselt zeitgleich die Werte für alle Schutzfunktionen.)

Adaptive Parametersätze erlauben, bestimmte Parameterwerte dynamisch innerhalb einer Schutzfunktion zu variieren: Der Wert eines Paremeters wird als abhängig von dem Zustande ("Wahr" / "Unwahr") eines bestimmten Signals konfiguriert. Bis zu vier solcher Umschaltsignale können definiert werden, sodass für den Adaptiven Parameter (zusammen mit dem Grundwert) bis zu fünf alternative Werte (pro Parametersatz, also letztlich insgesamt bis zu 20) zur Anwendung kommen können. Welcher dieser Werte tatsächlich aktiv ist, hängt dann von dem Zustande der definierten Umschaltsignale zur Laufzeit ab.

• Im Gegensatz zu einfachen Satzparametern sind Adaptive Parameter "lokal", d. h. sie beeinflussen nur das Verhalten derjenigen Schutzfunktion, für die sie jeweils konfiguriert wurden.

Es ist allerdings anzumerken, dass Adaptive Parametersätze nicht für alle Schutzfunktionen verfügbar sind.

Da einige Anwender vielleicht nicht von Haus aus mit dem Konzept Adaptiver Parameter vertraut sind, gibt es noch eine ausführliche Beschreibung: ⇔2.3.2 Adaptive Parametersätze.

Direktkommandos

 Direktkommandos sind Teil des Menübaumes, wie Parameter, jedoch dienen sie nicht der Konfiguration, sondern werden sofort und unmittelbar ausgeführt. Naturgemäß werden Direktkommandos NICHT in einer *.HptPara-Datei mit abgespeichert.

Typische Beispiele sind die Direktkommandos zum Rücksetzen von Zählern.

Auf dem Gerätedisplay (sowie in den Parameterlisten von Smart view) werden Direktkommandos durch ein spezielles "Taster-Symbol o" gekennzeichnet, sodass der Anwender Direktkommandos unmittelbar als solche erkennen kann.

Meldungen (auch als Signale bezeichnet)

• *Meldungen* sind Teil des Menübaumes. Sie können über den Menüzweig [Betrieb / Zustandsanzeige] eingesehen werden.

Meldungen stellen Daten dar, die vom MCDLV4 zur Laufzeit eingetragen und aktuell gehalten werden, es handelt sich beispielsweise um Ergebnisse der Entscheidungen von Schutzfunktionen oder die Zustände Digitaler Eingänge.

- Einige *Meldungen* geben den Zustand angeschlossener Geräte an (z. B. Stellungsmeldungen angeschlossener Schaltgeräte).
- Einige *Meldungen* geben den Zustand des Netzes oder des zu schützenden Objektes an (z. B. Meldungen erkannter Fehler).
- Einige *Meldungen* informieren über vom Gerät getroffene Entscheidungen (z. B.: Aus-Befehl).
- Viele Meldungen können auf bestimmte Parameter rangiert werden. Dadurch hängt die Funktionalität des Parameters von dem jeweiligen Zustande der Meldung zur Laufzeit ab. Zum Beispiel verfügt jede Schutzfunktion über Blockadeparameter. (Siehe auch →5.1.3 Blockaden.) Wenn eine Meldung einem Blockadeparameter zugewiesen wurde, wird die betreffende Schutzfunktion, zu der der Blockadeparameter gehört, blockiert, sobald der Laufzeitzustand der rangierten Meldung "Wahr" wird.
- In gleicher Weise können Meldungen auch auf die LEDs des MCDLV4 rangiert werden, sodas diese leuchten, sobald die rangierte Meldung "Wahr" wird. (Siehe auch ⇔3.14.1 Leuchtanzeigen (LEDs).)

Eingangszustände (eines Moduleinganges)

• Eingangszustände sind Teil des Menübaumes und spezielle Signale. Zu jedem Parameter, auf den ein Signal rangiert werden kann, gehört ein spezieller Eingangszustand. Zur Laufzeit spiegelt dieser Eingangszustand den aktuellen Zustand des rangierten Signals wider. Auf diese Weise können die Abhängigkeiten im Verhalten einer Schutzfunktionen analysiert werden.

Es besteht die folgende Namenskonvention: Wenn ein Parameter, auf den ein Signal rangiert werden kann, den Parameternamen »Name« hat, hat der zugehörige Eingangszustand immer den Namen »Name-E«.

Zähler, Werte

- Werte enthalten mehr oder weniger veränderliche Daten, werden also vom MCDLV4 zur Laufzeit immer auf aktuellen Stand gehalten.
- Den interessantesten *Werte-*Typ stellen sicherlich die *Messwerte* dar (z. B. Strom- und/oder Spannungsmesswerte oder die Netzfrequenz); im Rahmen dieser Dokumentation wird der Begriff *Messwerte* allerdings auch verwendet, wenn die Werte durch Berechnung aus gemessenen Werten abgeleitet werden, z. B. Leistungsdaten, die aus Strom und Spannung errechnet werden). Natürlich hängen die für das Schutzgerät verfügbaren Messwerte von der Funktionsausstattung des Schutzgerätes ab.

• Statistische Werte stellen einen speziellen Typ "berechneter Messwerte" dar, nämlich Maximum-, Minimum- oder Mittelwerte; solche Daten helfen, den zeitlichen Verlauf einer elektrischen Größe zu analysieren. Zu den meisten Statistischen Werten gibt es ein passendes Direktkommando, das die jeweilige Statistik zurücksetzt.

Siehe →2.7 Statistik für Informationen über Statistische Werte.

• Ein weiterer wichtiger Datentyp sind die Zähler. Während Messwerte typischerweise über Fließkommazahlen dargestellt werden (meist zusammen mit einer Maßeinheit), stellt ein Zähler einen ganzzahligen Wert dar. Zu den meisten Zählern gibt es ein passendes Direktkommando, das den jeweiligen Zählerstand auf 0 zurücksetzt.

2.3.1 Konfiguration

Parametrieren am HMI

Jedem Parameter ist eine Zugriffsberechtigungen zugeordnet. Nur wenn Sie über eine ausreichende Zugriffsberechtigung verfügen, können die Parameter editiert und gespeichert werden. Siehe $\hookrightarrow 2.4.4$ Berechtigungspasswörter für eine ausführliche Beschreibung von Zugriffsberechtigungen.

Die für die Änderung von Einstellungen erforderlichen Zugriffsberechtigungen können vorab durch einen gezielten Wechsel des Levels innerhalb des Zugriffsrechtemenüs oder kontextabhängig erteilt werden. Im Folgenden wird zunächst die Variante mit gezieltem Anwählen von Zugriffsberechtigungen (Wechsel in einen Level) und danach die kontextabhängige Option beschrieben.

Option 1: Gezielte Anwahl einer Zugriffsberechtigung:

Wechseln Sie in das Menü [Geräteparameter / Security / Zugriffsberechtigungen].

Wählen Sie bzw. Navigieren Sie die gewünschte Zugriffsberechtigung (Level) an. Geben Sie das erforderliche Passwort ein. Nach der Eingabe des korrekten Passworts verfügen Sie nun über die entsprechenden Zugriffsberechtigungen. Zum Parametrieren gehen Sie nun wie folgt vor:

Navigieren Sie zu einem Parameter, der geändert werden soll. Wenn der gewünschte Parameter angewählt ist, dann sollte nun unten rechts im Display ein "Schraubenschlüsselsymbol" sichtbar sein:

Dieses Symbol zeigt an, dass der Parameter nun editiert werden kann, da die erforderliche Berechtigung vorliegt. Betätigen Sie nun den Softkey »Schraubenschlüssel«, um den Parameter zu editieren. Ändern Sie den Parameter.

Sie können nun:

- Die Änderung speichern und vom System übernehmen lassen, oder
- weitere Parameter verändern und erst danach die geänderten Parameter abschließend speichern und vom Gerät dauerhaft übernehmen lassen.

Parameteränderung sofort speichern

• Um den geänderten Parameter sofort zu speichern und vom Gerät übernehmen zu lassen, drücken Sie die »OK«-Taste. Bestätigen Sie die Parameteränderung (Parameteränderung speichern?) durch Betätigen des »Ja«-Softkeys oder verwerfen Sie sie durch »Nein«.

Weitere Parameter ändern und erst dann speichern

• Navigieren Sie zu weiteren Parametern und ändern Sie diese.

HINWEIS!

Durch ein Sternsymbol vor den veränderten Parametern wird angezeigt, dass die Änderungen nur zwischengespeichert, aber noch nicht abschließend gespeichert bzw. vom Gerät übernommen sind.

Zur Steigerung der Übersichtlichkeit, insbesondere bei komplexen Parameteränderungen, wird auch auf jeder weiteren Menüebene oberhalb der zwischengespeicherten Parameter durch das Sternsymbol der Parameteränderungswunsch angezeigt (Sternchenspur). Dadurch kann von der Hauptmenüebene aus jederzeit kontrolliert bzw. verfolgt werden, wo noch nicht abschließend gespeicherte Parameteränderungen vorgenommen wurden.

Über die Sternchenspur zu den zwischengespeicherten Parameteränderungen hinaus wird oben links im Gerätedisplay ein globales Parameteränderungs-Sternsymbol eingeblendet. Somit ist von jedem Punkt des Menübaums aus sofort erkennbar, dass es vom Gerät noch nicht übernommene Parameteränderungen gibt.

Um die abschließende Speicherung aller Parameteränderungen einzuleiten, betätigen Sie die »OK«-Taste. Bestätigen Sie die Parameteränderung durch Betätigen des »Ja«-Softkeys oder verwerfen Sie sie durch den Softkey »Nein«.

HINWEIS!

Wenn anstelle des Schraubenschlüsselsymbols ein Schlüsselsymbol angezeigt wird,

, dann wird hierdurch angezeigt, dass keine ausreichende Berechtigung vorliegt. Für Änderungen an diesem Parameter benötigen Sie das entsprechende Passwort.

HINWEIS!

Plausibilitätsüberprüfung: Zum Vermeiden von offensichtlichen Fehlparametrierungen überwacht das Gerät kontinuierlich alle zwischengespeicherten Parameteränderungen. Erkennt das Gerät eine Implausibilität, so wird diese durch ein Fragezeichen vor dem betreffenden Parameter angezeigt.

Zur Steigerung der Übersichtlichkeit, insbesondere bei komplexen Parameteränderungen, wird auch auf jeder weiteren Menüebene oberhalb der zwischengespeicherten Parameter durch das Fragezeichensymbol die Implausibilität angezeigt (Plausibilitätsspur). Dadurch kann von der Hauptmenüebene aus jederzeit kontrolliert bzw. verfolgt werden, wo Implausibilitäten abgespeichert werden sollen.

Über die Fragezeichenspur zu den zwischengespeicherten implausiblen Parameteränderungen hinaus wird oben links im Gerätedisplay ein globales Implausibilitätssymbol/Fragezeichen eingeblendet. Somit ist von jedem Punkt des Menübaums aus sofort erkennbar, dass das Gerät Implausibilitäten erkannt hat.

Ein Fragezeichen/Implausibilitätssymbol überschreibt stets eine Sternchen/Parameteränderungsanzeige.

Erkennt das Gerät eine Implausibilität, verweigert es das Speichern und Übernehmen der Parameter

Option 2: Kontextabhängige Zugriffsberechtigung

Navigieren Sie zu einem Parameter, der geändert werden soll. Wenn der gewünschte Parameter angewählt ist, ist unten rechts im Display ein "Schlüsselsymbol" sichtbar.

Dieses Symbol zeigt an, dass Sie sich entweder noch im »Nur lesen-Lv0«-Level (→2.4.4 Berechtigungspasswörter) befinden oder dass der Level, in dem Sie sich befinden, keine ausreichende Berechtigung für die gewünschte Parameteränderung darstellt.

Betätigen Sie diesen SOFTKEY und geben ein Passwort ein, dass die erforderliche Berechtigung erteilt. (Auf dieser Seite wird Ihnen auch ein Hinweis gegeben, welches Passwort/Zugriffsberechtigung für eine Änderung dieses Parameters erforderlich ist.)

Ändern Sie den Parameter.

Sie können nun:

- Die Änderung speichern und vom System übernehmen lassen, oder
- weitere Parameter verändern und erst danach die geänderten Parameter abschließend speichern und vom Gerät dauerhaft übernehmen lassen.

Parameteränderung sofort speichern:

• Um den geänderten Parameter sofort zu speichern und vom Gerät übernehmen zu lassen, drücken Sie die »OK«-Taste. Bestätigen Sie die Parameteränderung (Parameteränderung speichern?) durch Betätigen des »Ja«-Softkeys oder verwerfen Sie sie durch »Nein«.

Weitere Parameter ändern und erst dann speichern:

• Navigieren Sie zu weiteren Parametern und ändern Sie diese.

HINWEIS!

Durch ein Sternsymbol vor den veränderten Parametern wird angezeigt, dass die Änderungen nur zwischengespeichert, aber noch nicht abschließend gespeichert bzw. vom Gerät übernommen sind.

Zur Steigerung der Übersichtlichkeit, insbesondere bei komplexen Parameteränderungen, wird auch auf jeder weiteren Menüebene oberhalb der zwischengespeicherten Parameter durch das Sternsymbol der Parameteränderungswunsch angezeigt (Sternchenspur). Dadurch kann von der Hauptmenüebene aus jederzeit kontrolliert bzw. verfolgt werden, wo noch nicht abschließend gespeicherte Parameteränderungen vorgenommen wurden.

Über die Sternchenspur zu den zwischengespeicherten Parameteränderungen hinaus wird oben links im Gerätedisplay ein globales Parameteränderungs-Sternsymbol eingeblendet. Somit ist von jedem Punkt des Menübaums aus sofort erkennbar, dass es vom Gerät noch nicht übernommene Parameteränderungen gibt.

Um die abschließende Speicherung aller Parameteränderungen einzuleiten, betätigen Sie die »OK«-Taste. Bestätigen Sie die Parameteränderung durch Betätigen des »Ja«-Softkeys oder verwerfen Sie sie durch den Softkey »Nein«.

HINWEIS!

Plausibilitätsüberprüfung: Zur Vermeiden von offensichtlichen Fehlparametrierungen überwacht das Gerät kontinuierlich alle zwischengespeicherten Parameteränderungen. Erkennt das Gerät eine Implausibilität, so wird diese durch ein Fragezeichen vor dem betreffenden Parameter angezeigt.

Zur Steigerung der Übersichtlichkeit, insbesondere bei komplexen Parameteränderungen, wird auch auf jeder weiteren Menüebene oberhalb der zwischengespeicherten Parameter durch das Fragezeichensymbol die Implausibilität angezeigt (Plausibilitätsspur). Dadurch kann von der Hauptmenüebene aus jederzeit kontrolliert bzw. verfolgt werden, wo Implausibilitäten abgespeichert werden sollen.

Über die Fragezeichenspur zu den zwischengespeicherten implausiblen Parameteränderungen hinaus wird oben links im Gerätedisplay ein globales Implausibilitätssymbol/Fragezeichen eingeblendet. Somit ist von jedem Punkt des Menübaums aus sofort erkennbar, dass das Gerät Implausibilitäten erkannt hat.

Ein Fragezeichen/Implausibilitätssymbol überschreibt stets eine Sternchen/ Parameteränderungsanzeige.

Erkennt das Gerät eine Implausibilität, verweigert es das Speichern und Übernehmen der Parameter.

HINWEIS!

Es ist möglich für die Erteilung von Zugriffsberechtigungen Passwörter höherer Zugangsbereiche zu verwenden. So kann z.B. das Administratorpasswort verwendet werden um die Zugriffsberechtigung für einen Schutzparameter zu erlangen. Es ist wichtig, dabei zu wissen, dass der Zugriffslevel des Parameters, der geändert werden soll, festlegt, welche Zugriffsberechtigung nach erfolgreicher Passworteingabe erlangt wird. Das bedeutet in dem oben erwähnten Beispiel. Wird das Administratorpasswort verwendet, um einen Parameter ändern zu können, für den das "Schutz-Lv2" Passwort erforderlich ist, dann wird mit der Eingabe des Adminstratorkennworts in den "Schutz-Lv2"-Level gewechselt.

Die Zugriffsberechtigung eines jeden Parameters bestimmt den Level, in dem sich das Gerät nach erfolgreicher Passworteingabe befindet. Dies gilt insbesondere auch, wenn höherwertige Passwörter verwendet werden.

Parametersätze

Die Einstellung [Schutzparameter / Satz-Umschaltung] »Satz-Umschaltung« ermöglicht die folgenden Methoden zur Umschaltung auf einen bestimmten Parametersatz:

- Einer der vier Parametersätze kann explizit aktiviert werden (Einstellung "PS1" ... "PS4").
- Parametersatz-Umschaltung über ein rangiertes Signal (Einstellung "PSU via Eingsfkt", wobei zusätzlich die gewünschten Aktivierungssignale eingestellt werden müssen:

Wenn zum Beispiel ein bestimmtes Signal den Parametersatz PS2 aktivieren soll, muss dieses Signal dem Parameter [Schutzparameter / Satz-Umschaltung] »PS2: aktiviert durch« zugewiesen werden.

• Die Umschaltung kann auch über die Leittechnik erfolgen (Einstellung "PSU via Leittech".

Option	Parametersatzumschaltung
Manuelle Vorgabe	Umschaltung, wenn über den Parameter »Satz-Umschaltung« ein anderer Parametersatz ausgewählt wird.
Via Eingangsfunktion (z.B. Digitaler Eingang)	Auf einen anderen Parametersatz wird dann umgeschaltet, wenn die Aktivierung eindeutig ist, das heißt, wenn eines und nur genau eines der vier Aktivierungssignale aktiv ist. Beispiel:
	beispiel.
	Das Signal DI3 ist dem Parameter »PS3: aktiviert durch« zugeordnet. DI3 ist aktiv.
	Das Signal DI4 ist dem Parameter »PS4: aktiviert durch« zugeordnet. DI4 ist inaktiv "0".
	Nun soll von Parametersatz 3 auf Parametersatz 4 umgeschaltet werden. Dazu muss zunächst DI3 inaktiv werden, und danach muss DI4 aktiv sein.
	Wenn später DI4 wieder inaktiv wird, bleibt Parametersatz 4 aktiv, bis ein eindeutiger Umschaltbefehl anliegt, also wenn z.B. DI3 aktiv wird und alle anderen drei Aktivierungssignale inaktiv sind.
Via Leittechnik	Umschaltung, wenn ein eindeutiger Leittechnikbefehl (SCADA- Kommando) vorliegt. Andernfalls erfolgt keine Änderung.

HINWEIS!

Parametersatzumschaltung: Wenn auf einen anderen Parametersatz umgeschaltet wird, werden für alle Schutzfunktionen die Speicherinhalte (z. B. Zeitstufen) zurückgesetzt.

Ändern der Konfiguration: Wenn Änderungen an den Einstellungen von Schutzparametern vorgenommen werden (Projektierung, Globale Parameter oder Satz-Parameter aus mehr als einem Parametersatz), wird der Schutz für eine kurze Zeit vollständig deaktiviert. Das bedeutet, dass für kurze Zeit alle Schutzfunktionen inaktiv sind und dann mit den neuen Einstellungen neu gestartet werden. Auf diese Weise ist gewährleistet, dass das Geräteverhalten in jeder Hinsicht mit den neuen Einstellungen konsistent ist.

Eine **Ausnahme** hiervon besteht, wenn die Änderungen der Konfiguration in nur einem einzigen Parametersatz erfolgen. Dann werden alle Schutzfunktionen nur zurückgesetzt (genauso wie bei einer Parametersatzumschaltung, siehe oben).

Automatische Parametriersperre während eines Schaltvorganges

Als Maßnahme, um Konsistenz und Sicherheit der Einstellungen zu gewährleisten, werden grundsätzlich alle Änderungen von Einstellungen während eines Schaltvorganges abgewiesen.

Wenn der Anwender versucht, Parameter zu ändern, während die Überwachungs-/ Schaltzeiten für ein Schaltgerät laufen oder während Stellungsmeldekontakte einen Schaltvorgang signalisieren (siehe ⇔6.2 Konfiguration der Schaltgeräte), wird die Parameteränderung abgewiesen, wobei die Meldung "Bitte warten System verriegelt" auf dem Display erscheint (bzw. eine vergleichbare Meldung von *Smart* view angezeigt wird).

2.3.1.1 Parametriersperre

Mit Hilfe der Parametriersperre kann das Gerät gegen Parameteränderungen verriegelt werden, solange das rangierte Signal wahr (aktiv) ist.

Die Parametriersperre kann aktiviert werden über [Feldparameter / Allg Einstellungen] »Param-Verriegelung«.

Bypass der Parametriersperre

Wenn die Parametriersperre durch ein Signal aufrecht erhalten wird, dessen Zustand nicht geändert werden kann oder darf (wenn sich der Anwender sozusagen ausgesperrt hat, z. B. weil das Signal immer wahr ist), kann diese Parameterverriegelung temporär aufgehoben werden.

Die Parametriersperre kann temporär über folgendes Direktkommando aufgehoben werden: [Feldparameter / Allg Einstellungen] »Param Verrieg Bypass«

Das Schutzgerät wird wie folgt in die Parametriersperre zurückfallen:

- Direkt nach dem Speichern der Parameteränderung, oder
- Circa 10 Minuten nach dem Aktivieren der Parametriersperre.

2.3.2 Adaptive Parametersätze

Adaptive Parametersätze ermöglichen, den aktiven Wert eines Einstellparameters temporär, in Abhängigkeit eines anderen Parameters, zu ändern.

HINWEIS!

Adaptive Parametersätze stehen nur für einige bestimmte Schutzmodule zur Verfügung (derzeit im Wesentlichen die Überstromschutzmodule).

Aus praktischer Sicht gibt es einen wesentlichen Unterschied zwischen Adaptiven Parametersätzen und den gewöhnlichen Parametersätzen (siehe ↔ "Datentypen von Parametern, Meldungen und Werten"): Wechselt man auf einen anderen (gewöhnlichen) Parametersatz, ändert dies mit sofortiger Wirkung das Verhalten aller Schutzfunktionen. Auch wenn dies gewünscht ist, bedeutet das natürlich einen entsprechend hohen Aufwand für die Inbetriebnahmeprüfungen. Dieser Aufwand kann unnötig hoch erscheinen, wenn letztlich das Verhalten nur einer bestimmten Schutzfunktion flexibel sein soll.

Im Gegensatz hierzu sind Adaptive Parametersätze "lokal", d. h. sie wirken nur innerhalb derjenigen Schutzfunktion, für die sie aktiviert wurden.

Für ein konkretes Beispiel beginnen wir, indem wir ein Signal, zum Beispiel »U[1] . Alarm «, auf einen der folgenden Parameter rangieren: [Schutzparameter / Globale Schutzpara / I-Schutz / "Modul"] »AdaptSatz 1«, ..., »AdaptSatz 4«.

("Modul" sei hierbei der Name eines Schutzmoduls, das Adaptive Parametersätze unterstützt, zum Beispiel: [I[1]]).

Die vier Parameter für die Zuweisung sind immer "Globale Parameter" (d. h. man findet sie im Menüzweig [Schutzparameter / Globale Schutzpara]). Machen wir also als konkretes Beispiel die folgende Zuweisung: » $AdaptSatz\ 1$ « = "U[1] . Alarm". (Siehe auch das obere Dialogfenster "①" in dem folgenden Diagramm.)

Auf Grund dieser Zuweisung wird in *Smart view* das Dialogfenster für die "Satz-Parameter", zum Beispiel für den Menüzweig [Schutzparameter / Satz 1 / I-Schutz / I[1]], um eine neue Spalte erweitert ("②" in dem folgenden Diagramm).

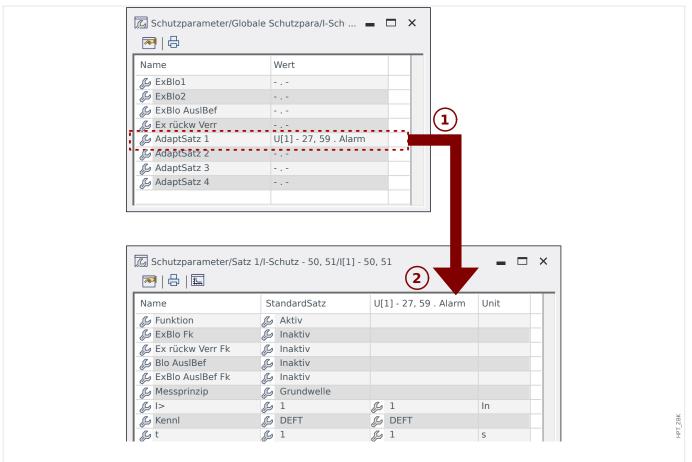


Abb. 2: Eine Zuweisung zu einem Parameter mit Adaptiven Parametersätzen fügt den Satz-Parametern alternative Werte hinzu.

Durch diese Zuweisung eines Adaptiven Parametersatzes bekommen die meisten Satz-Parameter einen neuen, alternativen Einstellwert. Zunächst ist dieser gleich demjenigen für den "StandardSatz", kann aber in üblicher Weise (durch Doppelklick) angepasst werden.

Die Grundidee ist einfach die, dass der alternative »AdaptSatz 1«-Wert aktiv eingesetzt wird, sobald das zugewiesene Signal "U[1] . Alarm" den Zustand "wahr" annimmt.

Da es vier gewöhnliche Parametersätze gibt und jeder einzelne den "StandardSatz" und bis zu vier Adaptive Parametersätze haben kann, folgt, dass Einstell-Parameter, die Adaptive Parametersätze unterstützen, bis zu 20 unterschiedliche Einstellwerte haben können.

HINWEIS!

Adaptive Parameter fallen automatisch zurück, wenn die Rangierung, die sie aktiviert hat, zurückfällt.

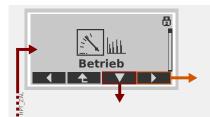
Falls zu einem Zeitpunkt mehrere Rangierungen gleichzeitig aktiv sind, gilt Folgendes:

Der Adaptive Satz 1 ist dominant gegenüber dem Adaptiven Satz 2. Der Adaptive Satz 2 ist dominant gegenüber dem Adaptiven Satz 3. Der Adaptive Satz 3 ist dominant gegenüber dem Adaptiven Satz 4.

Anwendungsbeispiele für Adaptive Parametersätze

- AWE: Automatische Wiedereinschaltung mit zwei 2 Einschaltversuchen
 - 1. Einschaltversuch mit DEFT-Kurve und normaler Empfindlichkeit

- 2. Einschaltversuch mit INV-Kurve und erhöhter Empfindlichkeit
- KLA: Kalte-Last-Alarm
 - Motorstart mit reduzierter Empfindlichkeit für den Überstromzeitschutz
- FAS: Fehleraufschaltung
 - Die Zeitstufe des Überstromzeitschutzes auf eine kurze Zeitdauer abändern
- ANSI 51C: Spannungsabhängiger Überstromschutz
 - Generator, Motor, Reduzierte Empfindlichkeit für den Überstromzeitschutz


2.3.3 Zustandsanzeige

In der Zustandsanzeige innerhalb des Menüs »Betrieb« können Sie den aktuellen Zustand aller Signale einsehen. Das bedeutet, Sie können für jedes einzelne Signal einsehen ob das Signal momentan aktiv oder inaktiv ist. Die Zustandsanzeige kann sortiert nach Schutzstufen/Modulen aufgerufen werden.

Zustand der Meldung/Moduleingang ist	Der Zustand wird am Panel angezeigt als
"Inaktiv" / Unwahr / »0«	
"Aktiv" / Wahr / »1«	

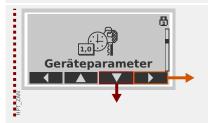
2.3.4 Menüstruktur

Die oberste Ebene des Menübaumes besteht aus den folgenden Einträgen. Mit Softkey ▶ kann man einen Menüzweig betreten. Mit den Softkeys ▲ und ▼ navigiert man zum vorherigen bzw. nächsten Eintrag.

Betrieb

Hier finden Sie Laufzeitdaten.

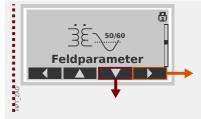
- Messwerte
- Statistik
- Zustandsanzeige
- · Zähler und RevDaten
- Fehlerrekorder, Ereignisrekorder, Störschreiber
- Selbstüberwachung
- Quittierung, Reset (zurücksetzen)



Projektierung

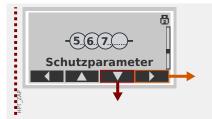
Für eine Inbetriebnahme wird dies die erste Anlaufstelle sein:

Hier werden die benötigten Funktionen aktiviert bzw. die nicht benötigten Funktionen deaktiviert.


Wählen Sie hier außerdem (gegebenenfalls) das Protokoll aus, das das Schutzgerät für die Kommunikation mit der Leitstelle verwenden soll.

Geräteparameter

Dieser Menüzweig umfasst alle Einstellungen, die sich direkt auf das Schutzgerät selbst beziehen, zum Beispiel:


- Digitale Ein- und Ausgänge
- LEDs
- Einstellungen für die "Rekorder" (geräteinternen Protokollfunktionen)
- Kommunikationseinstellungen

Feldparameter

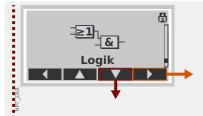
Üblicherweise die zweite Anlaufstelle bei der Inbetriebnahme: Hier werden bestimmte Feldeigenschaften eingestellt, zum Beispiel:

- Nennfrequenz, -spannung, -strom
- Übersetzungsverhältnisse der Strom- / Spannungswandler
- Wicklungsart / Erdung (Leiter-Erd, Leiter-Leiter)

Schutzparameter

Alle Schutzeinstellungen sind hier zu finden.

Für jede Schutzfunktion sind die Einstellungen in die folgenden Parameterarten untergliedert:


- Globale Schutzparameter
- Satz 1 ... Satz 4
- Satz-Umschaltung (Parametersatzumschaltung)

Steuerung


Einstellungen für Schaltgeräte.

- Alle HighPROTEC-Schutzgeräte, deren Gerätenamen mit "MR…" beginnen, können 1 Schaltgerät steuern. (Ausnahme: 2 beim MRDT4.)
- Alle HighPROTEC-Schutzgeräte, deren Gerätenamen mit "MC…" beginnen, können bis zu 6 Schaltgeräte steuern.

Logik

- Bis zu 80 Logikgleichungen
- 4 Logikgatter
- 4 Eingänge, 4 Ausgänge pro Gleichung
- Zeitstufen und Speicherfunktionen

Service

Dieser Menüzweig enthält hauptsächlich verschiedene Testfunktionen. Zum Beispiel:

- Ausgangsrelais erzwingen / sperren
- Analogeingänge und -ausgänge erzwingen / sperren
- Den internen Signal- / Fehlersimulator einsetzen
- · Das Schutzgerät neustarten

2.3.5 Projektierung des Gerätes

2.3.5.1 Projektierte Elemente

Projektieren des Geräts bedeutet, dass Sie den Funktionsumfang einstellen, das heißt, es werden diejenigen Funktionen aktiviert, die für die jeweilige Anwendung benötigt werden, bzw. die nicht benötigten Funktionen deaktiviert. Dies geschieht grundsätzlich immer über die Parameter im Menü [Projektierung / Projektierte Elemente]; dort gibt es zu jeder Funktion, die sich aktivieren bzw. deaktivieren lässt, einen Parameter, der auf "-" oder "verwenden" eingestellt werden kann.

Wenn Sie z. B. die Spannungsschutzfunktion deaktivieren, werden alle zu dieser Funktion gehörenden Menüzweige nicht mehr erscheinen. Alle Ereignisse, Meldungen etc. werden mit deaktiviert. Dadurch wird der Menübaum übersichtlich.

WARNUNG!

Durch das Projektieren der Schutzfunktionalität verändern Sie die Gerätefunktionalität.

Deaktivieren Sie z. B. die Richtungserkennung der Überstromschutzfunktionen, dann löst das Gerät auch tatsächlich nicht mehr gerichtet, sondern nur noch ungerichtet aus. Deaktivieren Sie die Spannungsschutzfunktion, wird die Spannung nicht mehr auf Überbzw. Unterspannung überwacht.

Für alle sich aus Fehlprojektierungen ergebenden Personen- und Sachschäden übernimmt der Hersteller keinerlei Haftung!

SEG bietet die Projektierung auch als Dienstleistung an.

WARNUNG!

Wenn ein Modul über die Projektierung deaktiviert wird, werden alle Parameter dieses Moduls auf Werkseinstellungen zurückgesetzt.

Wird dieses Modul anschließend über die Projektierung erneut aktiviert, sind folglich alle Parameter (erneut) auf die benötigten Werte einzustellen.

2.3.5.2 Definition

Für die meisten Schutzfunktionen kann festgelegt werden, ob diese im Fehlerfall ein Auslösesignal, das zur Öffnung des Leistungsschalters führt, ausgeben sollen, oder, ob lediglich ein Alarmsignal ausgegeben werden soll, ohne auszulösen. Diese Einstellung erfolgt über das Menü [Projektierung / Definition].

Für weitere Details siehe ⇔5.1.1 Grundlagen eines Schutzmodules.

2.3.6 Feldparameter

Feldparameter heißen alle diejenigen Einstellungen, die durch die Primärtechnik und die Netzbetriebsweise vorgegeben werden. Dies sind z. B. Frequenz, Primärund Sekundärwerte.

Alle Feldparameter sind über den Menüzweig [Feldparameter] erreichbar.

Siehe das *Referenzhandbuch* für detaillierte Tabellen aller Einstellungen, die mit dem MCDLV4 verfügbar sind.

2.3.7 Geräteparameter

Datum und Uhrzeit

Im Menü [Geräteparameter / Zeit] »Datum/Uhrzeit« können Sie das Datum und die Uhrzeit einstellen (inklusive Untermenü für Einstellungen für Zeitzone und Winterzeit).

Version

Im Menü [Geräteparameter / Version] finden Sie Informationen zur Softwareund Geräteversion.

Darstellung von ANSI-Codes

Über [Geräteparameter / Bedieneinheit] »Zeige ANSI-Nummern« kann die zusätzliche Darstellung von ANSI-Codes auf dem Gerätedisplay aktiviert werden.

Smart view hat allerdings einen eigenen Menüpunkt hierfür, der unabhängig ist von der Darstellung auf dem Gerätedisplay. (Siehe Smart view-Handbuch.)

2.3.8 Zurücksetzen von Zählern, Werten und Aufzeichnungen

Manuelles Rücksetzen

Im Menü [Betrieb / Reset] stehen folgende Möglichkeiten zur Verfügung:

- · Zähler zurücksetzen,
- Aufzeichnungen löschen (z.B. Störschriebe) sowie
- spezielle Resets (z.B. Reset der Statistik, Reset des Thermischen Abbilds...)

HINWEIS!

Alle Rücksetz-Befehle sind in dem separaten Dokument "MCDLV4 Referenzhandbuch" aufgeführt und beschrieben.

2.4 Sicherheitsrelevante Einstellungen (Security)

Allgemeines

VORSICHT!

Alle Sicherheitseinstellungen müssen durch den Benutzer des MCDLV4 erfolgen! Passen Sie spätestens im Rahmen der Inbetriebnahme der Anlage die Sicherheitseinstellungen den jeweiligen Vorschriften und Erfordernissen an!

Das MCDLV4 wird in einem maximal "offenen" Zustand ausgeliefert, das heißt, alle Zugriffsbeschränkungen sind weitgehend deaktiviert. Auf diese Weise werden Parametrierung und Inbetriebnahme nicht unnötig behindert. Wenn das MCDLV4 dann tatsächlich in Betrieb ist, ist es im Allgemeinen sinnvoll, den Zugriff auf geeignete Weise einzuschränken. Hierzu gehören vor allem folgende Aspekte:

Ab Werk ist der Zugriff von *Smart view* auf das MCDLV4 über den USB-Anschluss ohne Passwortschutz erlaubt, der TCP/IP-Zugriff über das Netzwerk jedoch unterbunden. (Siehe

→2.4.3 Verbindungspasswörter, Smart view-Zugriff.) Aus Sicherheitsgründen ist es jedoch ratsam, diese Einstellungen spätestens nach Inbetriebnahme der Anlage zu überarbeiten.

VORSICHT!

Aus Sicherheitsgründen wird dringend empfohlen, die Standard-Passwörter (→"Standard-Passwörter") abhängig vom jeweils geforderten Sicherheitsniveau abzuändern (siehe →"Ändern von Passwörtern"), zum Beispiel indem unterschiedliche Passwörter für die verschiedenen Level festgelegt werden. Hierdurch können Sie unterschiedliche Personengruppen mit jeweils angepassten Berechtigungen versehen.

Übersicht über sicherheitsrelevante Einstellungen

Der Menüpfad [Betrieb / Security] führt Informationen über verschiedene Einstellungen zum Thema IT-Sicherheit auf, insbesondere:

- Für die Verbindungspasswörter (siehe ↔ "Verbindungspasswörter für Verbindung mit Smart view") wird angezeigt, ob diese auf einen anwenderspezifischen Wert eingestellt wurden oder noch in der Werkseinstellung sind.
- Es wird angezeigt, inwiefern der Zugang über Smart view möglich ist (siehe →"Zugriff über Smart view").
- Die eingestellte Schalthoheit wird angezeigt (siehe → "Schalthoheit").
- Es wird angezeigt, inwiefern das Rücksetzen auf Werkseinstellungen möglich ist (siehe →2.4.6 Rücksetzen auf Werkseinstellungen, Rücksetzen aller Passwörter).

(Eine vollständige Liste aller Einträge, die auf dieser Seite zu sehen sind, findet man im Kapitel "Security" im "MCDLV4 Referenzhandbuch".)

Wenn also IT-Sicherheit für Ihre jeweilige Anwendung ein wichtiges Thema darstellt, ist es empfehlenswert, die Einträge auf dieser Seite im Rahmen der Inbetriebnahme zu prüfen, aber natürlich ohne sich blind darauf zu verlassen: Wenn zum Beispiel jemand das USB-Verbindungspasswort einfach auf "1" eingestellt hat, wird auf dieser Security-Übersichtsseite der Eintrag »Passw. für USB-Verb.« = "vom Anwender def." angezeigt, aber die Sicherheitsstufe, die ein solches Passwort darstellt, ist zumindest fragwürdig.

Sicherheitsrelevante Meldungen

Es gibt einen speziellen Selbstüberwachungsrekorder, der Meldungen der Selbstüberwachung sammelt. Hier werden geräteinterne Ereignisse gesammelt, insbesondere auch sicherheitsrelevante Meldungen (z. B. wenn ein falsches Passwort eingegeben wurde). Es ist daher empfehlenswert, die Einträge von Zeit zu Zeit zu sichten.

Eine Einschränkung dieser Meldungen auf die sicherheitsrelevanten Meldungen ist (zusätzlich) über den Menüpunkt [Betrieb / Selbstüberwachung / Meldungen] erreichbar.

2.4.1 Netzwerk-Sicherheit

SCADA-Kommunikation

Es sei darauf hingewiesen, dass die Verwendung von SCADA-Protokollen immer ein gewisses Sicherheitsrisiko mit sich bringt. Genauere Informationen sind der einschlägigen Fachliteratur zu entnehmen.

Schutz des Firmen-Netzwerks (Intranet)

Befindet sich das MCDLV4 über eine Ethernet-Schnittstelle in einem Netzwerk, so obliegt es grundsätzlich dem Anwender, geeignete Sicherheitsmaßnahmen zum Schutz seines Firmen-Netzwerks einzurichten. Insbesondere muss sichergestellt werden, dass ein Zugriff auf das MCDLV4 von außen (d. h. aus dem Internet) nicht möglich ist. Bitte informieren Sie sich über geeignete Maßnahmen (Firewalls, VPN-Zugriffe etc.)!

2.4.2 Passwörter

Arten von Passwörtern

Es gibt zwei Arten von Passwörtern:

- Verbindungspasswörter werden abgefragt, wenn das MCDLV4 mit der Bediensoftware Smart view verbunden werden soll. (Siehe

 2.4.3 Verbindungspasswörter, Smart view-Zugriff.)
- Berechtigungspasswörter werden bei allen Änderungen von Einstellungen abgefragt. (Siehe ⇔2.4.4 Berechtigungspasswörter.)

Anmerkung: **Verbindungspasswörter** wurden mit HighPROTEC-Version **3.6** neu eingeführt. Hintergrund ist, dass ab Version 3.6 alle Verbindungen zwischen MCDLV4 und *Smart view* unter Verwendung aktueller kryptographischer Algorithmen verschlüsselt sind. (Siehe \hookrightarrow "Smart view-Verbindungen".)

HINWEIS!

Die eingestellten Passwörter werden im MCDLV4 permanent gespeichert, sodass sie auch ein Firmware-Upgrade "überleben".

Standard-Passwörter

Ab Werk sind **alle** (Kommunikations- und Berechtigungs-)Passwörter auf Standardwerte eingestellt, die keinen wirklichen Schutz vor unberechtigtem Zugriff darstellen:

- Die Verbindungspasswörter sind ab Werk auf einen Leertext gesetzt (d. h. werden nicht abgefragt).
- Alle Berechtigungspasswörter sind auf den Standardwert »1234« eingestellt.

Zeitstrafe für falsche Passworteingaben

Die Eingabe falscher Passwörter (Verbindungspasswörter oder Berechtigungspasswörter, unabhängig ob am HMI oder über Smart view) stößt eine "Zeitstrafe" an: Das MCDLV4 blockiert erneute Passworteingaben für eine immer größer werdende Zeitdauer, bis schließlich ein korrektes Passwort eingegeben wurde. Ein spezieller Info-Dialog informiert den Anwender über diese "Zeitstrafe". Dieser Sicherheitsaspekt betrifft

nur die Passworteingabe (d. h. den Softkey einer solchen "Strafzeit" immer noch möglich, am Gerät andere, "passwort-freie" Aktivitäten durchzuführen.

Passwort vergessen

Durch einen Kaltstart mit gedrückt gehaltener »C«-Taste kann ein Rücksetz-Menü aufgerufen werden (sofern dies nicht explizit deaktiviert wurde). Hier können alle Passwörter auf die Werkseinstellung (siehe →"Standard-Passwörter") zurückgesetzt werden.

Detaillierte Informationen zu diesem Rücksetz-Menü befinden sich hier: →2.4.6 Rücksetzen auf Werkseinstellungen, Rücksetzen aller Passwörter.

2.4.3 Verbindungspasswörter, Smart view-Zugriff

Smart view-Verbindungen

Einer der Grundgedanken von *»IT-Security«* besteht darin, unbefugte Personen daran zu hindern, Informationen zu belauschen, die zwischen dem Anwender und dem MCDLV4 ausgetauscht werden.

Deswegen sind alle Verbindungen zwischen MCDLV4 und *Smart view* unter Verwendung aktueller kryptographischer Algorithmen verschlüsselt.

SEG liefert ab Werk jede Installation von *Smart view* (ab Version 4.70) sowie jedes einzelne HighPROTEC (seit Version 3.6) mit kryptographischen Zertifikaten aus. Diese werden im Rahmen des Verbindungsaufbaus ausgetauscht und von den Kommunikationsteilnehmern (MCDLV4 und *Smart view*) geprüft, um sicherzustellen, dass die Verbindung nicht von unberechtigter Seite gekapert wurde.

Die zusätzliche Sicherheit in Verbindung mit diesen Verschlüsselungstechniken sind ab Werk verfügbar, der Anwender muss nichts einrichten oder konfigurieren.

VORSICHT!

Aus technischen Gründen ist bei *Smart view-*Verbindung über Modbus Tunnel weder eine Verschlüsselung noch ein Austausch von Zertifikaten möglich. Diese Verbindungs-Einstellung ist daher standardmäßig deaktiviert.

Darüber hinaus ist es ausdrücklich empfohlen ein Passwort zu verwenden. Dieses sollte nicht leer sein und sich vom Standard-Passwort unterscheiden.

Zugriff über Smart view

Ein weiterer Grundgedanke von »IT-Security« besteht darin, unbefugten Personen den Zugriff auf die eigenen Systeme, inklusive Schutzgerät MCDLV4, zu verwehren. Bei dem MCDLV4 ist der Zugriff einerseits direkt über das Bedienfeld und andererseits über die Bediensoftware Smart view möglich.

Da eine unbefugte Person für den Zugriff auf das Bedienfeld direkt vor Ort sein muss, kann man das Risiko im Allgemeinen als eher gering einschätzen. Eine größere Gefahr stellt somit der Zugriff über *Smart view* dar, insbesondere dann, wenn sich das MCDLV4 in einem Ethernet- / TCP/IP-Netzwerk befindet.

- Optional und unabhängig hiervon kann auch der *Smart view-*Zugriff über die USB-Schnittstelle verhindert werden. Hierzu dient der Einstellparameter [Geräteparameter / Security / Kommunikation] »*Smart view über USB*«. Die Werksvorgabe ist, dass diese Zugriffsart aktiv ist.
- Außerdem und unabhängig hiervon kann auch der Smart view-Zugriff über Ethernet verhindert werden. Hierzu dient der Einstellparameter [Geräteparameter / Security / Kommunikation] »Smart view über Eth«. Die Werksvorgabe ist, dass diese Zugriffsart aktiv ist.
- Eine weitere Option ist der Zugriff von *Smart view* via Modbus Tunnel. Dies geschieht über die Einstellung [Geräteparameter / Security / Kommunikation] »*Smart view über Modbus*«. In der Werkseinstellung ist diese Funktion **nicht** aktiv, da keine Verschlüsselung möglich ist.
- Bei Leitungsdifferentialschutzgeräten gibt es zusätzlich noch die Möglichkeit, den Smart view-Fernzugriff von der Gegenstelle aus über die Schutzkommunikation zu deaktivieren. Hierzu dient der Einstellparameter [Geräteparameter / Security /

Kommunikation] »Sm.view ü. SchutzKom«. Die Werksvorgabe ist, dass diese Zugriffsart aktiv ist.

HINWEIS!

Wenn *Smart view* verwendet wird, um den *Smart view*-Zugriff auszuschalten, wird automatisch die laufende Sitzung beendet.

Verbindungspasswörter für Verbindung mit Smart view

Es gibt zwei Verbindungspasswörter. Zu Beginn eines Verbindungsaufbaus erfragt *Smart view* das jeweilige Passwort, und die Verbindung wird nur nach korrekter Eingabe aufgebaut. (Die Passwortabfrage entfällt nur, falls für das jeweilige Passwort ein Leertext definiert ist.)

- **USB-Verbindung** Das "Passwort für Direktverbindungen" wird für Verbindungen mit *Smart view* über die frontseitige USB-Schnittstelle abgefragt. (Die Werksvorgabe ist allerdings ein leeres Passwort.)
- **Fernzugriff Netzverbindung** Das "Passwort für Fernzugriff-Netzverbindungen" wird für Verbindungen mit *Smart view* über Ethernet abgefragt. (Die Werksvorgabe ist allerdings ein leeres Passwort, wobei allerdings diese Zugriffsart ab Werk deaktiviert ist, siehe ⇔"Zugriff über Smart view".)

Das "Passwort für Fernzugriff-Netzverbindungen" gilt auch für den Zugriff von *Smart view* auf ein fernes Differentialschutzgerät über die Schutzkommunikation.

Die Verbindungspasswörter können unter Verwendung von *Smart view* geändert werden, indem man den Menüzweig [Geräteparameter / Security / Passwort] aufruft und in der Liste das zu ändernde Passwort doppelklickt.

Es ist wichtig zu wissen, dass die Verbindungspasswörter sich von den Berechtigungspasswörtern (siehe ↔"Passworteingabe am Gerät") wie folgt unterscheiden:

- Verbindungspasswörter werden grundsätzlich nur über Smart view eingegeben und können auch nur hierüber geändert werden (d. h. nicht über das Bedienfeld des MCDLV4).
 - (Trotzdem werden Passwörter vom MCDLV4 gespeichert, nicht von *Smart view*. Dies ermöglicht, dass jedes einzelne HighPROTEC-Gerät ein individuelles Verbindungspasswort zugewiesen bekommen kann.)
- Im Gegensatz zu den Berechtigungspasswörtern (→,Ändern von Passwörtern") sind Verbindungspasswörter nicht auf maximal 8 Ziffern (jeweils aus 1, 2, 3, 4) eingeschränkt. (Die Länge kann 64 Zeichen und mehr betragen.) Tatsächlich kann ein Verbindungspasswort aus einer beliebigen Abfolge druckbarer Unicode-Zeichen inkl. dem Leerzeichen bestehen.

WARNUNG!

Ab Werk sind **alle** (Kommunikations- und Berechtigungs-)Passwörter auf Standardwerte eingestellt (siehe → "Standard-Passwörter"), die keinen echten Schutz darstellen.

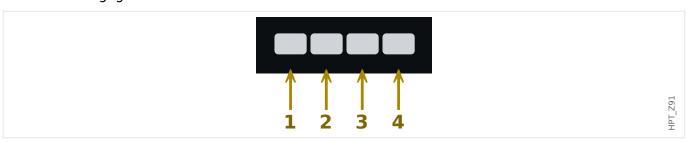
Aus Sicherheitsgründen wird dringend empfohlen, diese Standard-Passwörter auf individuelle Werte zu setzen, die den jeweiligen Sicherheitsrichtlinien genügen. (Siehe ⇔"Ändern von Passwörtern".)

2.4.3 Verbindungspasswörter, Smart view-Zugriff

Je nach Firmenpolitik und Sicherheitsvorschriften besteht prinzipiell auch die Möglichkeit, für jedes der beiden Verbindungspasswörter ein leeres Passwort zu setzen. Dies bewirkt, dass die Passwortabfrage hierfür entfällt, die Zugangsbeschränkung ist aufgehoben. Zumindest für das "Netzpasswort" ist dies aus unserer Sicht allerdings nicht empfehlenswert.

2.4.4 Berechtigungspasswörter

Berechtigungspasswörter werden bei allen Änderungen von Einstellungen abgefragt, unabhängig davon, ob die Änderungen mittels *Smart view* oder direkt am Gerät über die Bedieneinheit ("HMI") durchgeführt wird.


Jeder Einstellparameter ist mit einem bestimmten Sicherheitsniveau – dem Zugriffsbereichen (bzw. einer Zugriffsberechtigung) – verbunden. Siehe →2.4.5 Passwörter – Bereiche für eine Beschreibung der existierenden Zugriffsbereiche.

Immer wenn ein Anwender eine Einstellung ändern möchte, muss er für den zugehörigen Bereich das Passwort eingeben. (Der Zugriffsbereich wird daraufhin für eine bestimmte Zeit geöffnet, sodass weitere Änderungen an Einstellungen desselben Bereiches ohne erneute Passworteingabe vorgenommen werden können.)

Passworteingabe am Gerät

Bei bestehender *Smart view-*Verbindung werden die Passwörter natürlich von *Smart view* abgefragt und folglich über die PC-Tastatur eingegeben.

Bei Arbeiten direkt am HMI des MCDLV4 können Berechtigungspasswörter über die Softkeys eingegeben werden.

Beispiel: Für das Passwort (**3244**) drücken Sie nacheinander: Softkey $3 \rightarrow$ Softkey $4 \rightarrow$ Softkey Softkey $4 \rightarrow$ Softkey Softkey

Die *Verbindungspasswörter* werden grundsätzlich über *Smart view* abgefragt, d. h. können nur an der PC-Tastatur eingegeben werden (→2.4.3 Verbindungspasswörter, Smart view-Zugriff).

Ändern von Passwörtern

Berechtigungspasswörter können im Gerät im Menü [Geräteparameter / Security / Passwort] geändert werden.

HINWEIS!

Ein *Berechtigungspasswort* darf nur maximal 8 Ziffern lang sein und darf nur aus einer Kombination der Zahlen 1, 2, 3, und 4 bestehen. Alle anderen Zeichen und Tasten werden nicht akzeptiert.

Quittierungen ohne Passwort-Eingabe

Für allgemeine Informationen über Quittierungen siehe →2.5 Quittierungen. Informationen über Zugriffsberechtigungen / Bereiche befinden sich in →2.4.5 Passwörter – Bereiche.

Ab HighPROTEC-Version 3.6 können die LEDs einfach dadurch quittiert werden, dass die »C«-Taste für ca. 1 Sekunde gedrückt wird. Siehe → "Manuelle Quittierung am Bedienfeld" für Details.

Deaktivieren von Passwörtern während der Inbetriebnahme

Es ist möglich, für die Inbetriebnahme vorübergehend Passwörter zu deaktivieren. Dies ist ausdrücklich und ausschließlich für Inbetriebnahmezwecke zulässig. Dazu kann für die entsprechende Zugriffsberechtigung(-en) ein leeres Passwort verwendet werden. Alle Zugriffsberechtigungen, die mit einem leeren Passwort versehen werden gelten als dauerhaft erteilt. Dies bedeutet, dass alle durch diese Berechtigung geschützten Parameter und Einstellungen jederzeit geändert werden können.

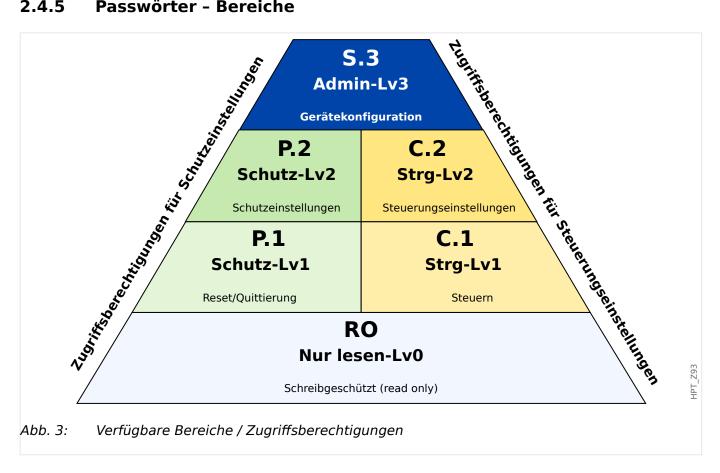
VORSICHT!

Stellen Sie sicher, dass nach der Inbetriebnahme alle Passwörter wieder aktiviert werden. Das bedeutet, dass alle Zugriffsbereiche durch hinreichend sichere Passwörter geschützt werden.

SEG haftet grundsätzlich nicht für Schäden, die aus der Deaktivierung des Passwortschutzes resultieren.

Allgemeine Grundsätze

Stellen Sie sicher, dass für alle Zugriffsberechtigungen hinreichend sichere Passwörter vergeben werden, die nur den autorisierten Personen bekannt sind. Die ab Werk voreingestellten Passwörter stellen **keinen** Schutz gegen unbefugten Zugriff dar.


Ein Schlosssymbol oben rechts im Gerätedisplay zeigt an, ob momentan Zugriffberechtigungen bestehen. Das bedeutet, in der Betriebsart "Nur lesen-Lv0" wird in der oberen rechten Ecke des Gerätedisplays ein geschlossenes Schlosssymbol angezeigt. Sobald Zugriffsberechtigungen oberhalb des "Nur lesen-Lv0"-Levels bestehen, wird oben rechts im Gerätedisplay ein geöffnetes Schloss-Symbol dargestellt.

Während der Parametrierung ist die »C«-Taste für das Verwerfen der Parameteränderungen reserviert. Daher ist es nicht möglich, während der Parametrierung Quittierungen vorzunehmen.

Das Quittiermenü ist nicht zugänglich, solange Parameteränderungen noch nicht vom Gerät übernommen wurden. Nicht übernommene Parameteränderungen werden durch ein Sternsymbol oben links im Display angezeigt.

Passwörter sind den Geräten fest zugeordnet. Durch das Kopieren der Geräteparameter werden keine Passwörter überschrieben. Wenn Sie z. B. offline eine Parameterdatei erstellen oder eine Parameterdatei von einem Gerät zu einem anderen übertragen, werden dadurch keine bestehenden Gerätepasswörter überschrieben.

2.4.5 Passwörter - Bereiche

Die Zugriffberechtigungen sind in Form von zwei hierarchischen Strängen, angelegt. Das Administratorpasswort verschafft Zugang zu allen Parametern und Einstellwerten.

Grundzustand: kein Passwort, keine Änderung von Parametern:

Kurzbe- zeichnung im Referenz- handbuch	Bezeichnung des Zugriffsbereichs (Panel / Smart view)	Zugang zu:
"RO"	Nur lesen-Lv0	Der Level 0 ermöglicht nur lesenden Zugriff auf die Einstellungen und Parameter des Geräts.

HINWEIS!

Nach einer Zeit der Inaktivität (diese Zeit ist zwischen 20-3600 Sekunden parametrierbar) fällt das Gerät automatisch in den Level »Nur lesen-Lv0« zurück. Alle nicht gespeicherten Parameteränderungen werden verworfen.

Normalerweise gesperrte (Panel-Symbol "—") Bereiche, die durch Passwort-Eingabe entsperrt werden (Panel-Symbol "—"):

Die folgende Tabelle zeigt alle Zugriffsbereiche, die mit jeweils einem eigenen Passwort entsperrt werden müssen. (Man beachte allerdings, dass nach einem Reset auf Werkseinstellungen alle Passwörter gleich dem Standardpasswort sind, siehe → "Rücksetzen aller Passwörter".)

Kurzbe- zeichnung im Referenz- handbuch	Bezeichnung des Zugriffsbereichs (Panel / Smart view)	Zugang zu:
"P.1"	Schutz-Lv1	Dieser Zugriffsbereich gibt den Zugang zu den Reset- und Quittierungsmöglichkeiten frei. Zusätzlich ermöglicht es das Absetzen von manuellen Triggern.
" P.2 "	Schutz-Lv2	Dieser Zugriffsbereich gibt den Zugang zu den Reset- und Quittierungsmöglichkeiten frei. Darüber hinaus ermöglicht es die Änderung von Schutzeinstellungen und das Konfigurieren des Auslöse-Managers.
"C.1"	Strg-Lv1	Dieser Zugriffsbereich gibt den Zugang für das Schalten von Schaltgeräten frei.
"C.2"	Strg-Lv2	Dieser Zugriffsbereich gibt den Zugang für das Schalten von Schaltgeräten frei. Darüber hinaus ermöglicht es die Änderung von Schaltgeräteparametern (Schalthoheit, Verriegelungen, allgemeine Schaltgeräteeinstellungen, LS Wartung).
"S.3"	Admin-Lv3	Dieser Zugriffsbereich verschafft universellen Zugang zu allen Geräteeinstellungen (Gerätekonfiguration). Diese umfassen auch die Projektierung, Geräteparameter (z.B. Datum und Uhrzeit), Feldparameter, Serviceparameter und die Logik.

Anzeige freigeschalteter Zugriffsberechtigungen

Im Menü [Geräteparameter / Zugriffsberechtigungen] kann eingesehen werden, welche Zugriffsberechtigungen freigeschaltet sind. Hier besteht auch die Möglichkeit, eine bestimmte Zugriffsberechtigung freizuschalten.

Im alläglichen Gebrauch des MCDLV4 dürfte allerdings die gängigste Art der Freischaltung nicht über dieses Menü laufen, sondern so aussehen, dass einfach der Menüpfad eines zu ändernden Parameters aufgesucht und die Änderung eingegeben wird; bevor dann die Änderung angenommen wird, fragt das MCDLV4 den Benutzer nach dem entsprechenden Passwort, nach dessen Eingabe der zugehörige Bereich freigeschaltet wird.

Sobald eine Zugriffsberechtigung oberhalb der Zugriffberechtigung »Nur lesen-Lv0« besteht, wird dies durch ein geöffnetes Schloss-Symbol in der oberen rechten Ecke des Gerätedisplays angezeigt.

Wenn die Zugriffsberechtigung explizit rückgesetzt werden soll (anstatt auf das Ablaufen der *»tmax Bearb/Berechtigung«-*Zeitstufe zu warten), ist der Modus *»Nur lesen-Lv0«* auszuwählen.

Freischalten von Zugriffsberechtigungen am Gerät:

Im Menü [Geräteparameter / Zugriffsberechtigungen] können Zugriffsberechtigung am Gerät freigeschaltet oder zurückgegeben werden. Nach dem Freischalten können alle Parameteränderungen und Aktivitäten, die dieser (oder einer niedrigeren) Zugriffsberechtigung zugeordnet sind, ohne weitere Passwort-Eingabe erfolgen. Die Zugriffsberechtigungen bestehen allerdings nur für die Bedienung am Gerät; der Zugriff über *Smart view* ist separat freizuschalten.

Wird am Gerät für eine bestimmte Zeit, die über [Geräteparameter / Bedieneinheit / Security] »tmax Bearb/Berechtigung« eingestellt werden kann, keine Taste gedrückt, wird die Zugriffsberechtigung automatisch auf »Nur lesen-Lv0« zurückgesetzt und alle nicht gespeicherten Parameteränderungen werden verworfen.

VORSICHT!

Lassen Sie das Gerät nicht unbeaufsichtigt, während noch Zugriffsberechtigungen bestehen (geöffnetes Schloss-Symbol auf dem Gerätedisplay). Setzen Sie vielmehr die Zugriffsberechtigungen auf »Nur lesen-Lv0« zurück.

Freischalten von Zugriffsberechtigungen über Smart view:

Nachdem durch Eingabe eines Passwortes Zugriffsberechtigungen auf das Gerät freigeschaltet wurden, können alle Parameteränderungen und Aktivitäten, die dieser (oder einer niedrigeren) Zugriffsberechtigung zugeordnet sind, ohne weitere Passwort-Eingabe erfolgen. Die Zugriffsberechtigungen bestehen allerdings nur für diese eine Instanz von Smart view; der Zugriff über das Bedienfeld des Gerätes oder über andere Instanzen von Smart view ist separat freizuschalten.

Nach Ablauf einer (von *Smart view* vorgegebenen) fest definierten Zeit werden die Zugriffsberechtigungen automatisch rückgesetzt.

VORSICHT!

Lassen Sie das Gerät nicht unbeaufsichtigt, während noch Zugriffsberechtigungen von *Smart view* bestehen. Sperren Sie den angeschlossenen PC während Ihrer Abwesenheit oder setzen Sie zumindest die Zugriffsberechtigungen zurück. Dies geschieht durch einen Doppelklick auf das Schloss-Symbol in der Statuszeile am unteren Rande des *Smart view-*Fensters (oder alternativ unter [Gerät / Rücksetzen auf Parameter "Nur Lesen"-Status]).

2.4.6 Rücksetzen auf Werkseinstellungen, Rücksetzen aller Passwörter

Es steht ein allgemeiner Rücksetz-Dialog zur Verfügung, der folgende Optionen anbietet:

- Reset to factory defaults Rücksetzen des Gerätes auf die Werkseinstellung.
- Reset all passwords Rücksetzen aller Passwörter.

Dieser Dialog steht nur am Gerät selbst zur Verfügung (d. h. **nicht** über *Smart view*).

Halten Sie während eines Kaltstarts die »C«-Taste gedrückt, bis der Rücksetz-Dialog erscheint.

HINWEIS!

Aus technischen Gründen steht dieser Rücksetz-Dialog nur **auf Englisch** zur Verfügung (unabhängig von der Sprache, die das Gerät nach vollendetem Kaltstart verwendet).

Außerdem sollte beachtet werden, dass der Dialog möglicherweise gar nicht erscheint, weil er absichtlich deaktiviert wurde (siehe unten), oder dass die Option zum Rücksetzen aller Passwörter deaktiviert wurde.

Rücksetzen auf Werkseinstellung

WARNUNG!

Alle Parametereinstellungen werden zurückgesetzt. Alle Aufzeichnungen werden gelöscht und Statistikwerte und Zähler werden zurückgesetzt.

Ausnahme: Der Betriebsstundenzähler behält seinen aktuellen Wert.

O

- **1.** > Wählen Sie den Menüpunkt »Reset to factory default« ("auf Werkseinstellung rücksetzen") aus dem allgemeinen Rücksetz-Dialog (siehe oben).
 - ► Es erscheint eine Rückfrage: »Reset device to factory defaults and reboot?«
- **2.** ⊳ Bestätigen Sie diese Rückfrage mit *»Yes«* ("ja").
 - ▶ Der Rücksetzvorgang wird durchgeführt, und das Gerät startet mit Werkseinstellungen.

Rücksetzen aller Passwörter

Aus Sicherheitsgründen kann diese Option vom Rücksetz-Dialog entfernt werden (siehe unten).

 \Diamond

- **1.** ▷ Wählen Sie den Menüpunkt »Reset all passwords« ("Rücksetzen aller Passwörter") aus dem allgemeinen Rücksetz-Dialog (siehe oben).
 - ► Es erscheint eine Rückfrage: »Reset all passwords?«
- **2.** ▷ Bestätigen Sie diese Rückfrage mit »Yes« ("ja").

Das Gerät startet mit den standardmäßig ab Werk vorgegebenen Passwörtern, siehe
→"Standard-Passwörter".

WARNUNG!

Die ab Werk vorgegebenen Passwörter (siehe ↔ "Standard-Passwörter") stellen keinen echten Schutz dar.

Aus Sicherheitsgründen wird dringend empfohlen, diese Standard-Passwörter auf individuelle Werte zu setzen, die den jeweiligen Sicherheitsrichtlinien genügen. (Siehe ⇔"Ändern von Passwörtern".)

Sicherheitseinstellungen

Der Rücksetz-Dialog kann auf Grund von Sicherheitserwägungen eingeschränkt oder ganz entfernt werden. Der Einstellparameter [Geräteparameter / Bedieneinheit / Security] »Konfig. Geräte-Reset« erlaubt auszuwählen, welche der Rücksetz-Optionen verfügbar sein sollen:

- "Fact.def.", "PW rst": Beide Optionen –»Reset to factory default« und »Reset all passwords« sind verfügbar.
- Nur: "Fact.defaults": Nur die Option »Reset to factory default« ist verfügbar.
- Reset deakt.: Der Rücksetz-Dialog wird deaktiviert.

VORSICHT!

Wenn das Geräte-Passwort vergessen wurde und die Option zum Rücksetzen aller Passwörter entfernt wurde, besteht die einzige Möglichkeit, wieder Zugriff auf das MCDLV4 zu erlangen, darin, es auf Werkseinstellung zurückzusetzen. Wenn diese Option ebenfalls deaktiviert wurde, muss das MCDLV4 als Service-Fall an SEG eingeschickt werden.

2.5 Quittierungen

Der Begriff "Quittierung" bezeichnet das Zurücksetzen eines gehaltenen Zustandes, d. h. das Aufheben der Selbsthaltung.

Selbsthaltung kann (je nach Konfiguration) für die folgenden Arten von Objekten bzw. Zuständen vorliegen:

- LEDs
- Ausgangsrelais
- SCADA-Signale
- Anstehender Auslösebefehl

Es ist möglich, für einen bestimmten einzelnen Zustand die Selbsthaltung (über ein vordefiniertes externes Signal) zu quittieren. Man kann auch gehaltene Zustände kollektiv quittieren, z. B. alle LEDs auf einmal.

Folgende Arten von Quittierungen gibt es:

• Bei einer **Einzelquittierung** wird ein externes Signal auf einen Quittierparameter rangiert, der zu genau einem bestimmten Zustand (z. B. einer einzelnen LED) gehört.

Wenn das externe Signal aktiv wird, setzt es dann die Selbsthaltung dieser LED zurück. (Details siehe unten, ⇔"Einzelquittierungsmöglichkeiten für selbstgehaltene Signale".)

• Bei einer **Externen Quittierung** wird ein externes Signal auf einen Quittierparameter rangiert, der zu einer Gruppe von Zuständen (z. B. alle LEDs) gehört.

Wenn das externe Signal aktiv wird, setzt es die Selbsthaltung aller Gruppenmitglieder zurück (also z. B. alle LEDs auf einmal). (Details siehe unten,
→,Externe Quittierung".)

• Bei einer **Automatischen Quittierung** werden alle LEDs bei Kommen einer Schutzanregung oder eines *Generalalarms*, »Schutz . Alarm«, quittiert. (Diese Art der Quittierung ist auf LEDs beschränkt; es gibt keine automatische Quittierung für Ausgangsrelais, SCADA-Signale oder Auslöse-Befehle.)

(Details siehe unten, ⇔"Automatische Quittierung").

• Bei einer **kollektiven Quittierung** wird die Selbsthaltung einer Gruppe von Zuständen (z. B. alle LEDs) manuell (d. h. per Direktkommando) quittiert.

Für verschiedene Gruppe von Zuständen stehen zu diesem Zwecke jeweilige Direktkommandos zur Verfügung. (Details siehe unten, ↔ "Kollektive Quittierung (über Smart view oder am Bedienfeld)".)

• **Manuelle Quittierung** ist eine spezielle Form der kollektiven Quittierung, bei der die Selbsthaltung von Zuständen direkt am Bedienfeld des Gerätes durch einen Tastendruck auf die »C«-Taste quittiert wird.

(Details siehe unten, ←,,Manuelle Quittierung am Bedienfeld".)

HINWEIS!

Grundsätzlich kann eine Selbsthaltung immer nur dann quittiert werden, wenn das Signal, das zu dem gehaltenen Zustand geführt hatte, nicht mehr aktiv ist. Dies ist eine für alle Arten von Quittierung allgemein gültige Regel.

Eine weitere allgemeine Regel ist, dass bei der Einstellung [Geräteparameter / Quittierung] »Ex Quittierung« = "Inaktiv" nur noch die Manuelle Quittierung (\(\top_\mathbb{M}\)Manuelle Quittierung am Bedienfeld") direkt am Bedienfeld funktioniert. Alle anderen Arten von Quittierung, auch kollektive Quittierung mittels Smart view (\(\top_\mathbb{M}\)Kollektive Quittierung (\(\top\mathbb{M}\)Expressed (\(\top\mathbb{M}\)E

Außerdem: Die Selbsthaltung von Ausgangsrelais wird grundsätzlich immer erst dann zurückgesetzt, wenn die eingestellte Zeit »t-Aus Verz« abgelaufen ist.

Einzelquittierungsmöglichkeiten für selbstgehaltene Signale

[Geräteparameter / LEDs / LEDs Gruppe A / LED 17] »Quittiersignal«					
[Geräteparameter / LEDs / LEDs Gruppe B / LED 17] »Quittiersignal«					
✓ Das rangierte Signal quittiert eine bestimmte einzelne LED.					
[Geräteparameter / Aus	gangsrelais / K Slot X x / k	(y] »Quittierung«			
	✓ Das rangierte Signal quittiert das Ausgangsrelais "y" am Slot "x".				
[Steuerung / SG / SG [x]	[Steuerung / SG / SG [x] / Ausl Manager] »Quit AuslBef«				
			✓ Das rangierte Signal quittiert den anstehenden Auslöse- befehl vom Schalt- gerät "SG [x]".		

Anmerkung: Das Gerätemenü zeigt nicht den abstrakten Modulnamen »SG [x]«. Stattdessen wird die Bezeichnung des Schaltgerätes angezeigt, die über die Steuer-Seite (das Abzweigsteuerbild) definiert ist. Das ist zum Beispiel eine Bezeichnung wie »QA1« . (Siehe \hookrightarrow "Abzweigsteuerbild (Single Line)".)

Externe Quittierung

Über die Einstellung [Geräteparameter / Quittierung] »Ex Quittierung« = "Inaktiv" kann die Externe Quittierung (inklusive Quittierung über die SCADA-Kommunikation, z.B. Modbus-Kommandos) verhindert werden.

[Geräteparameter / Quit	tierung] »Quit LED «				
✓ Das rangierte Signal quittiert alle LEDs.					
10 "1 10 "1					
[Geräteparameter / Quit	tierung] »Quit K«				
	✓ Das rangierte Signal quittiert alle Ausgangsrelais.				
[Geräteparameter / Quit	[Geräteparameter / Quittierung] »Quit Leittechnik«				
		✓ Das rangierte Signal quittiert gehaltene SCADA-Signale.			

Automatische Quittierung

Bei der automatischen Quittierung werden alle LEDs, für die diese Quittierungsmethode aktiviert wurde, beim Kommen einer Schutzanregung oder eines *Generalalarms*, »Schutz . Alarm«, quittiert.

Das erfordert allerdings, dass die automatische Quittierung in den Geräteeinstellungen individuell für jede LED, für die dieses Verhalten gewünscht ist, aktiviert wird.

[Geräteparameter / LEDs / LEDs Gruppe A / LED 1...7] »Selbsthaltung« = "aktiv, Quit. bei Alarm"

[Geräteparameter / LEDs / LEDs Gruppe B / LED 1...7] »Selbsthaltung« = "aktiv, Quit. bei Alarm"

Das Kommen einer Schutzanregung quittiert jede LED mit diesem Einstellwert.

Kollektive Quittierung (über Smart view oder am Bedienfeld)

Anmerkung: Wie schon weiter oben erwähnt, erfordert die Quittierung mittels *Smart view* die Einstellung [Geräteparameter / Quittierung] »Ex Quittierung« = "Aktiv".

Die folgenden Direktkommandos stehen für die Quittierung zur Verfügung:

[Betrieb / Quittierung] »SÜW . Quit System LED«			
✓ Ein eventuell anstehendes Warnsignal der System-LED quittieren.			

Anmerkung: Alle möglichen Warnsignale der System-LED lassen sich im *Troubleshooting Guide* nachschlagen.

[Betrieb / Quittierung] »	Sys . Quit LED«		
✓ Alle LEDs quittieren.			
[Betrieb / Quittierung] »	Sys . Quit K«		
	✓ Alle Ausgangsrelais quittieren.		
[Betrieb / Quittierung] »	Sys . Quit Leittechnik«		
		✓ Alle SCADA-Signale quittieren.	
[Betrieb / Quittierung] »	SG [x] . Quit AuslBef«		
			✓ Einen anstehenden Auslöse-Befehl vom Schaltgerät "SG [x]" quittieren.

Anmerkung: Das Gerätemenü zeigt nicht den abstrakten Modulnamen »SG [x]«. Stattdessen wird die Bezeichnung des Schaltgerätes angezeigt, die über die Steuer-Seite (das Abzweigsteuerbild) definiert ist. Das ist zum Beispiel eine Bezeichnung wie »QA1«. (Siehe ; Abzweigsteuerbild (Single Line)".)

[Betrieb / Quittierung] »Sys . Quit K LED SIt Ausl«				
✓ Alle LEDs werden quittiert,	✓ und außerdem alle Ausgangsrelais,	✓ und außerdem alle SCADA-Signale,	✓ und außerdem alle anstehenden Auslöse- Befehle.	

Am Bedienfeld des MCDLV4 kann der Menüzweig [Betrieb / Quittierung] auch einfach durch Betätigen der »C«-Taste erreicht werden, siehe den folgenden Abschnitt (→"Manuelle Quittierung am Bedienfeld").

Manuelle Quittierung am Bedienfeld

HINWEIS!

Im Parametriermodus kann nicht über die »C«-Taste am Panel manuell quittiert werden (da diese Taste im Parametriermodus eine andere Funktionalität hat).

Es ist allerdings weiterhin möglich, in das Menü [Betrieb / Quittierung] zu gelangen.

Es ist möglich, die System-LED, die rangierbaren LEDs, SCADA, Ausgangsrelais und / oder einen eventuell noch anstehenden Auslösebefehl manuell zu quittieren, indem die »C«-Taste am Panel gedrückt wird.

Es gibt zwei Quittierungsmethoden, je nachdem, wie lange die »C«-Taste gedrückt wird:

• Kurzer Tastendruck: Quittieren über einen manuellen Auswahl-Schritt: Nachdem die »C«-Taste (für kurze Zeit) gedrückt wurde, ist mittels der Softkeys auszuwählen,

was quittiert werden soll (LEDs, SCADA, Ausgangsrelais, Auslösebefehl, oder alles auf einmal). Betätigen Sie danach den Softkey »Schraubenschlüssel«.

• Langer Tastendruck: Sofortiges Quittieren: Objekte können einfach durch langes Drücken der »C«-Taste (ca. eine Sekunde lang) quittiert werden.

Die Objektkategorien, die durch langen Tastendruck quittierbar sein sollen, lassen sich konfigurieren, siehe unten.

Der Einstellungparameter [Geräteparameter / Quittierung] »Quit über »C«-Taste« legt fest, welche Objektkategorien durch einen "langen Tastendruck" auf die »C«-Taste quittiert werden sollen:

- "Nichts" Nur der "kurze Tastendruck" funktioniert, d. h. es sind immer die zu quittierenden Punkte explizit auszuwählen.
- "Quit LEDs o. Passw" Der "lange Tastendruck" quittiert alle LEDs, und zwar *ohne* dass eine Passwortabfrage erfolgt. (Diese Option ist ab Werk voreingestellt.)
- "Quit LEDs" Der "lange Tastendruck" quittiert alle LEDs (nur das Passwort wird noch abgefragt, siehe unten).
- "Quit LEDs, Relais" Der "lange Tastendruck" quittiert alle LEDs und Ausgangsrelais (nur das Passwort wird noch abgefragt, siehe unten).
- "Quit alles" Der "lange Tastendruck" quittiert alle quittierbaren Elemente (nur das Passwort wird noch abgefragt, siehe unten):
 - Alle LEDs, und
 - alle Ausgangsrelais, und
 - · alle gehaltenen SCADA-Meldungen, und
 - einen anstehenden Aus-Befehl.

Wenn die LEDs quittiert werden, wird immer auch ein LED-Test durchgeführt: Alle LEDs blinken (je einmal für 1 Sekunde) rot und danach grün auf.

HINWEIS!

Für alle (manuellen und kollektiven) Quittiermöglichkeiten (außer "Nichts" sowie "Quit LEDs o. Passw") ist zu beachten, dass man nach dem Passwort gefragt wird.

Wenn es gewünscht wird, dass Ausgangsrelais, SCADA-Meldungen bzw. Aus-Befehl jederzeit ohne die Eingabe eines Passworts quittiert werden können, so ist dies über ein leeres Passwort für den Level »Schutz-Lv1« möglich. Natürlich kann dies ein potentielles Sicherheitsrisiko darstellen, insofern sollte diese Möglichkeit sorgfältig überdacht werden. Für allgemeine Informationen über Passwörter und weitere sicherheitsrelevante Einstellungen, siehe →2.4 Sicherheitsrelevante Einstellungen (Security).

2.6 Messwerte

Auslesen von Messwerten

Im Menü [Betrieb / Messwerte] können Sie neben den gemessenen auch errechnete Messwerte einsehen. Die Messwerte sind geordnet nach »Standardmesswerten« und spezifischen Messwerten (je nach Gerätetyp).

Messwertdarstellung

Im Menü [Geräteparameter / Messwertdarstellung] kann die Darstellung der Messwerte verändert werden.

Skalierung der Messwerte

Sie können mit Hilfe des Parameters [Geräteparameter / Messwertdarstellung / Allg Einstellungen] »Skalierung« festlegen, wie die Messgrößen im Gerätedisplay und in Smart view dargestellt werden sollen:

- · Bezogene Größen
- Primärgrößen
- Sekundärgrößen

Leistungseinheiten (nur bei Geräten mit Leistungsmessung)

Sie können mit Hilfe des Parameters [Geräteparameter / Messwertdarstellung / Allg Einstellungen] »Leistungseinheiten« festlegen, wie die Messgrößen im Gerätedisplay und in Smart view dargestellt werden sollen:

- Leistung-Auto-Skalg Das Präfix wird in Abhängigkeit der SpW und StW Primärwerte automatisch gewählt (k, M, G).
- kW/kVAr/kVA Präfix in k (kW, kVAr or kVA)
- MW/MVAr/MVA Präfix in M (MW, MVAr or MVA)
- GW/GVAr/GVA Präfix in G (GW, GVAr or GVA)

Energieeinheiten (nur bei Geräten mit Energiemessung)

Sie können mit Hilfe des Parameters [Geräteparameter / Messwertdarstellung / Allg Einstellungen] »Energieeinheiten« festlegen, wie die Messgrößen im Gerätedisplay und in Smart view dargestellt werden sollen:

- Energie-Auto-Skalg Das Präfix wird in Abhängigkeit der SpW und StW Primärwerte automatisch gewählt (k, M, G).
- kWh/kVArh/kVAh Präfix in k (kWh, kVArh or kVAh)
- MWh/MVArh/MVAh Präfix in M (MWh, MVArh or MVAh)
- GWh/GVArh/GVAh Präfix in G (GWh, GVArh or GVAh)

Bei einem Überlauf des Zählers wird beginnt die Zählung erneut bei null. Ein entsprechendes Signal/Meldung indiziert den Überlauf.

	Zählerüberlauf bei:
Energie-Auto-Skalg	Hängt ab von den Einstellungen der Strom- und Spannungswandler
• kWh/kVArh/kVAh	999 999,99
MWh/MVArh/MVAh	999 999,99
GWh/GVArh/GVAh	999 999,99

Nullschwellen (Freigaben)

Damit sehr kleine Messwerte die z.B. durch Rauschen verursacht werden, in der Anzeige nicht um den Wert Null schwanken, kann für diese eine Freigabeschwelle (Nullschwelle) festgelegt werden. Fällt ein Messwert unterhalb diese Schwelle, so wird der gemessene Wert am Gerätedisplay und in der PC-Software zu Null angezeigt (gekürzt). Dieser Parameter hat keine Auswirkungen auf Werte, die in Rekordern aufgezeichnet werden.

Phasenwinkel

Phasenwinkel der Strom- und Spannungsphasen werden aus den Grundschwingungszeigern berechnet und beziehen sich immer auf einen Referenzzeiger.

In der Regel wird als Referenzzeiger der erste Spannungskanal verwendet, also entweder UL1 oder UL12, je nachdem welche direkt gemessen wird. (Siehe auch den Einstellparameter [Feldparameter / SpW] »SpW Anschluss«.)

Wird die Amplitude der Referenz zu klein, wird der nächstmögliche Kanal als Referenz benutzt (also z. B. UL2 bzw. UL23) u.s.w.

Sind alle drei Phasenspannungen zu klein geworden oder hat das Gerät keine Spannungsmessung, wird als Referenz der erste Strommesseingang der ersten Strommesskarte (Slot X3, IL1) verwendet. Ist auch diese Stromstärke zu klein, geht es weiter mit IL2, dann IL3, danach mit den Strommesseingängen der zweiten Strommesskarte (sofern vorhanden). Und so weiter.

Die Referenzgröße hat definitionsgemäß grundsätzlich den Winkel 0°.

2.7 Statistik

Im Menü [Betrieb / Statistik] finden Sie die Minimal-, Maximal- und Durchschnittswerte der gemessenen und errechneten Messgrößen.

2.7.1 Konfiguration der Min-/Max-Werte

Die Berechnung der Min-/Max Werte wird mit jedem der folgenden Ereignisse neu gestartet:

- Nach jedem Reset (Min-/Max),
- · mit jedem Neustart des Geräts,
- nach jeder Umkonfigurierung.

Minimal und Maximalwerte (Schleppzeiger) rücksetzen

Menü [Geräteparameter / Statistik / Min / Max]

»ResFk Min« - Rücksetzen aller Minimalwerte.

»ResFk Max« - Rücksetzen aller Maximalwerte.

Diesen beiden Parametern kann je ein Signal, z. B. ein digitaler Eingang, zugeordnet werden.

Die Minimal- und Maximalwerte werden mit der positiven Flanke des jeweils zugeordneten Signals zurückgesetzt.

Minimalwerte einsehen

Im Menü [Betrieb / Statistik / Min]

Maximalwerte einsehen

Im Menü [Betrieb / Statistik / Max]

2.7.2 Konfiguration der Mittelwertberechnung

2.7.2.1 Konfiguration der auf Strom basierenden Mittelwerte*

*=Verfügbarkeit hängt von der bestellten Gerätevariante ab.

Einstellungen für das Zeitintervall zur Berechnung der Mittelwerte und Schleppzeiger

[Geräteparameter / Statistik / Bezugsmanagem / Strom Bezmanag] »Fenster I Bezug« =

- "gleitend": Mittelung über gleitendes Fenster.
- "fest": Mittlung startet mit jedem Zeitintervall erneut.

Startoptionen für die auf Strom basierenden Mittelwerte (Demand) und Schleppzeiger

[Geräteparameter / Statistik / Bezugsmanagem / Strom Bezmanag] »Start I Bezug durch: « =

- "Dauer": gleitendes oder festes Zeitintervall. Die Intervalllänge ist über den Parameter »Dauer I Bezug« eingestellbar.
- "StartFkt": Die Mittelwerte werden zwischen zwei positiven Flanken desjenigen Signals errechnet, welches auf den Parameter *»Start I Bezug Fk«* rangiert ist.

Rücksetzen der auf Strom basierenden Mittelwerte (Demand) und Schleppzeiger

Sofortiges Rücksetzen über das folgende Direktkommando:

[Betrieb / Reset] »ResFk I Bezug« - Rücksetzen der Mittelwerte.

Alternativ ist es auch möglich, ein Rücksetz-Signal (z.B. einen Digitalen Eingang) auf den folgenden Parameter zu rangieren: [Geräteparameter / Statistik / Bezugsmanagem / Strom Bezmanag] »ResFk I Bezug«

Die Mittelwerte werden dann mit der positiven Flanke des zugeordneten Signals zurückgesetzt.

Auf Strom basierende Mittelwerte (Demand) und Schleppzeiger einsehen

Im Menü [Betrieb / Statistik / Bezugsmanagem]

Ausschaltbefehl / -option zur Begrenzung des mittleren Strombezugs

2.7.2.2 Konfiguration der auf Spannung basierenden Mittelwerte*

*=Verfügbarkeit hängt von der bestellten Gerätevariante ab.

Einstellungen für das Zeitintervall zur Berechnung der Mittelwerte

[Geräteparameter / Statistik / Umit] »Fenster Umit« =

- "gleitend": Mittelung über gleitendes Fenster.
- "fest": Mittlung startet mit jedem Zeitintervall erneut.

Startoptionen für die auf Spannung basierenden Mittelwerte

[Geräteparameter / Statistik / Umit] »Start Umit durch:« =

- "Dauer": gleitendes oder festes Zeitintervall. Die Intervalllänge ist über den Parameter »Dauer Umit« eingestellbar.
- "StartFkt": Die Mittelwerte werden zwischen zwei positiven Flanken desjenigen Signals errechnet, welches auf den Parameter »Start Umit Fk« rangiert ist.

Rücksetzen der auf Spannung basierenden Mittelwerte

Sofortiges Rücksetzen über das folgende Direktkommando:

[Betrieb / Reset] »ResFk Umit« - Rücksetzen der Mittelwerte.

Alternativ ist es auch möglich, ein Rücksetz-Signal (z. B. einen Digitalen Eingang) auf den folgenden Parameter zu rangieren: [Geräteparameter / Statistik / Umit] »ResFk Umit«

Die Mittelwerte werden dann mit der positiven Flanke des zugeordneten Signals zurückgesetzt.

Auf Spannung basierende Mittelwerte einsehen

Im Menü [Betrieb / Statistik]

2.7.2.3 Konfiguration der auf Leistung basierenden Mittelwerte*

*=Verfügbarkeit hängt von der bestellten Gerätevariante ab.

Einstellungen für das Zeitintervall zur Berechnung der Mittelwerte und Schleppzeiger

[Geräteparameter / Statistik / Bezugsmanagem / Leistung Bzm] »Fenster P Bezug« =

- "gleitend": Mittelung über gleitendes Fenster.
- "fest": Mittlung startet mit jedem Zeitintervall erneut.

Startoptionen für die auf Leistung basierenden Mittelwerte (Demand) und Schleppzeiger

[Geräteparameter / Statistik / Bezugsmanagem / Leistung Bzm] »Start P Bezug durch: « =

- "Dauer": gleitendes oder festes Zeitintervall. Die Intervalllänge ist über den Parameter »Dauer P Bezug« eingestellbar.
- "StartFkt": Die Mittelwerte werden zwischen zwei positiven Flanken desjenigen Signals errechnet, welches auf den Parameter »Start P Bezug Fk« rangiert ist.

Rücksetzen der auf Leistung basierenden Mittelwerte (Demand) und Schleppzeiger

Sofortiges Rücksetzen über das folgende Direktkommando:

[Betrieb / Reset] »ResFk P Bezug« - Rücksetzen der Mittelwerte.

Alternativ ist es auch möglich, ein Rücksetz-Signal (z. B. einen Digitalen Eingang) auf den folgenden Parameter zu rangieren: [Geräteparameter / Statistik / Bezugsmanagem / Leistung Bzm] »ResFk P Bezug«

Die Mittelwerte werden dann mit der positiven Flanke des zugeordneten Signals zurückgesetzt.

Auf Leistung basierende Mittelwerte (Demand) und Schleppzeiger einsehen

Im Menü [Betrieb / Statistik / Bezugsmanagem]

Ausschaltbefehl / -option zur Begrenzung des mittleren Strombezugs

Siehe →7 System-Alarme.

2.8 Smart view

Smart view ist eine Parametrier- und Auswertesoftware. Diese Software wird in einem eigenen Handbuch beschrieben.

- Menügeführte Parametrierung mit Plausibilitätskontrollen
- Offline-Konfiguration
- Auslesen und Auswerten statistischer Werte und Messwerte
- Inbetriebnahmeunterstützung
- Zustandsanzeige des Gerätes
- Fehleranalysen über Ereignis- und Fehlerrekorder

Wenn das MCDLV4 von Grund auf neu konfiguriert werden soll, ist dringend empfohlen, dies nicht über das Bedienfeld des Gerätes, sondern mittels Smart view zu tun. Es wäre viel zu mühsam, eine größere Anzahl Parameteränderungen über das Bedienfeld durchzuführen.

Das Verbindungs-Kabel zwischen PC und MCDLV4 muss ein USB-Kabel mit einem Stecker vom Typ "Mini-B" auf der MCDLV4-Seite sein. (Siehe auch ⇔3.13 PC-Schnittstelle – X120.)

Es kann alternativ auch eine Verbindung über Ethernet (TCP/IP) hergestellt werden, sofern die jeweilige Netzwerk-Topologie dies zulässt und das MCDLV4 mit einer Ethernet-Schnittstelle bestellt wurde ($\hookrightarrow \mathbb{R}$, $\hookrightarrow 2.2.1$ Bestellschlüssel) und die grundsätzlich erforderlichen TCP/IP-Einstellungen (IP-Adresse, Subnetzmaske, Gateway) schon zuvor (am Bedienfeld) vorgenommen wurden.

Sichere Kommunikation

Aus Gründen der IT-Sicherheit ist es möglich, die Verbindungsmöglichkeiten zwischen Smart view und dem MCDLV4 einzuschränken oder ganz zu unterbinden. Außerdem wird eine Verbindung grundsätzlich nur nach Eingabe eines speziellen Verbindungspasswortes aufgebaut. Details hierzu sind im Kapitel "Sicherheitsrelevante Einstellungen", →2.4.3 Verbindungspasswörter, Smart view-Zugriff, beschrieben.

VORSICHT!

Aus technischen Gründen ist bei *Smart view-*Verbindung über Modbus Tunnel weder eine Verschlüsselung noch ein Austausch von Zertifikaten möglich. Diese Verbindungs-Einstellung ist daher standardmäßig deaktiviert.

Darüber hinaus ist es ausdrücklich empfohlen ein Passwort zu verwenden. Dieses sollte nicht leer sein und sich vom Standard-Passwort unterscheiden.

2.9 DataVisualizer

- Der *DataVisualizer* ist eine Störschrieb- und Event-Analyse-Software. Sie wird automatisch mit *Smart view* installiert. Sie kann ebenfalls als Comtrade-File-Viewer verwendet werden.
- Öffnen und analysieren von Störschrieben.

- Individuelle Anpassbarkeit der Darstellung der Kanäle in Bezug auf zeitliche Zusammenhänge und Zoom.
- Analyse von Sample Point zu Sample Point und Zuordnung der angezeigten Kanäle zur aufgezeichneten internen Relaislogik.
- Speichern von Fenstereinstellungen (Snapshots) für den Druck und das Reporting/ Dokumentation.
- Öffnen von standardisierten COMTRADE-Dateien anderer Hersteller Intelligenter Elektronischer Geräte (IEDs). Konvertieren von downgeloadeten Störschrieben in das COMTRADE-Format mit Hilfe der Export-Funktion.

3 Hardware

3.1 Maßzeichnungen

Drei-Seiten-Ansicht - 19-Zoll-Variante

HINWEIS!

Je nach verwendeter Leittechnikanbindung verändert sich der benötigte Bauraum (Tiefe). Wird z. B. ein D-Sub-Stecker verwendet, so ist dieser der Tiefenabmessung hinzuzurechnen.

HINWEIS!

Die in diesem Abschnitt gezeigte 3-Seiten-Ansicht ist exklusiv gültig für 19" Geräte.

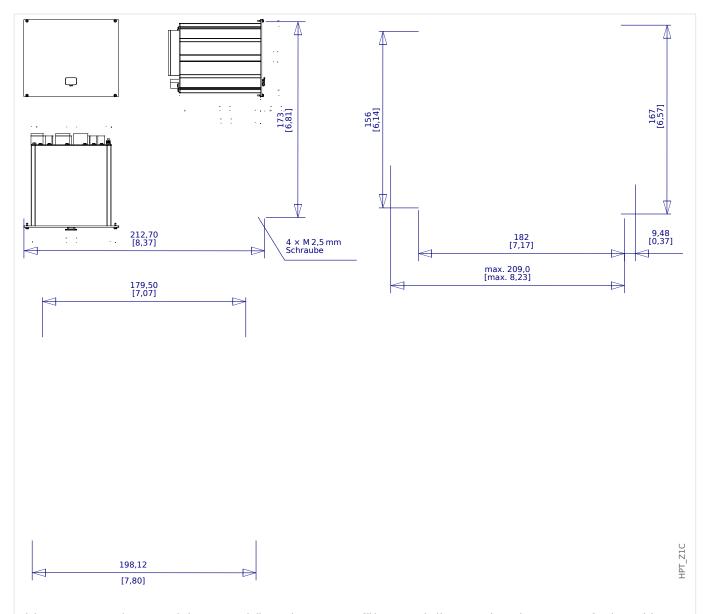


Abb. 4: 3-Seiten-Ansicht B2-Gehäuse in 19"-Ausführung. (Alle Angaben in mm, Maße in eckigen Klammern in Zoll.)

Drei-Seiten-Ansicht - Türeinbau

HINWEIS!

Je nach verwendeter Leittechnikanbindung verändert sich der benötigte Bauraum (Tiefe). Wird z. B. ein D-Sub-Stecker verwendet, so ist dieser der Tiefenabmessung hinzuzurechnen.

HINWEIS!

Die in diesem Abschnitt gezeigte 3-Seiten-Ansicht ist exklusiv gültig für Geräte mit 8-Tasten auf der Gerätefront. (INFO-Taste, C-Taste, OK-Taste, CTRL-Taste und 4 Softkeys).

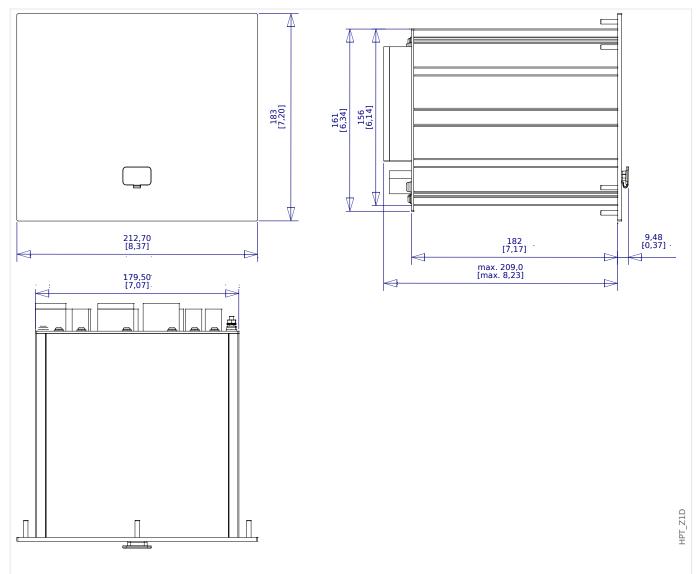
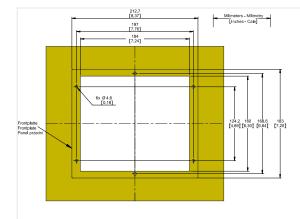


Abb. 5: 3-Seiten-Ansicht B2-Gehäuse. (Alle Angaben in mm, Maße in eckigen Klammern in Zoll.)

Montagebild (8-Tasten-Ausführung)

WARNUNG!



Auch bei ausgeschalteter Hilfsspannung können an den Geräteanschlüssen gefährliche Spannungen auftreten.

HINWEIS!

Das in diesem Abschnitt gezeigtet Montagebild ist exklusiv gültig für Geräte mit 8-Tasten auf der Gerätefront. (INFO-Taste, C-Taste, OK-Taste, CTRL-Taste und 4 Softkeys).

1DT 711

Abb. 6: B2-Gehäuse-Türausschnitt (8-Tasten). (Alle Angaben in mm, Maße in eckigen Klammern in Zoll.)

VORSICHT!

Falsche bzw. zu hohe Anzugsdrehmomente können zu leichten Körperverletzungen oder zur dauerhaften Beschädigung des Geräts führen. Überprüfen Sie das max. zulässige Drehmoment der M4-Schrauben mit einem Drehmomentschlüssel (1,7 Nm [15 in·lb]).

3.2 MCDLV4 - Montage und Anschluss

3.2.1 Erdung

WARNUNG!

Das Gehäuse ist sorgfältig zu erden. Schließen Sie die Erdung für das Gehäuse an die mit dem Erdungszeichen gekennzeichnete Schraube auf der Geräterückseite an (Schutzerde, 4 – 6 mm² [AWG 11–9], Anzugsmoment: 1,7 Nm [15 lb•in]).

Zusätzlich muss an Klemme Nr. 1 der Netzteilkarte (X1) eine weitere Erdung angeschlossen werden (Funktionserde, min. 2,5 mm² [≤ AWG 13], Anzugsmoment 0,56 – 0,79 Nm [5–7 lb•in], Anschlussbild siehe Abschnitt "Slot X1: Netzteilkarte mit Digitalen Eingängen" im Kapitel "Montage und Anschluss").

Die Anschlusskabel für Schutz- und Funktionserde sind möglichst kurz bzw. induktionsarm auszuführen, außerdem sind eventuell vorhandene lokale Anschlussrichtlinien zu beachten.

VORSICHT!

Die Geräte sind empfindlich gegen elektrostatische Entladung.

3.2.2 Übersicht über die Einbauplätze / Baugruppen

HINWEIS!

Die Geräte sind abhängig vom Bestellschlüssel unterschiedlich bestückt.

In jedem Slot (Einschub) kann eine Baugruppe platziert sein. Eine tabellarische Übersicht findet man im Kapitel ⇔2.2.1.1 Übersicht über die Baugruppen.

Der konkrete Einbauort einer jeden Baugruppe ist dem Anschlussbild auf der Oberseite Ihres Geräts zu entnehmen.

Außerdem zeigen die "MCDLV4 Wiring Diagrams" (separates Dokument) für alle bestellbaren Gerätevarianten die jeweilige Hardware-Bestückung.

Im Folgenden wird die Klemmenbelegung der einzelnen Baugruppen dokumentiert.

Frontseite

An der Frontseite des MCDLV4 befindet sich der USB-Anschluss, über den sich eine Verbindung mit der Parametrier-Software Smart view einrichten lässt.

Slot X120

Rückseite

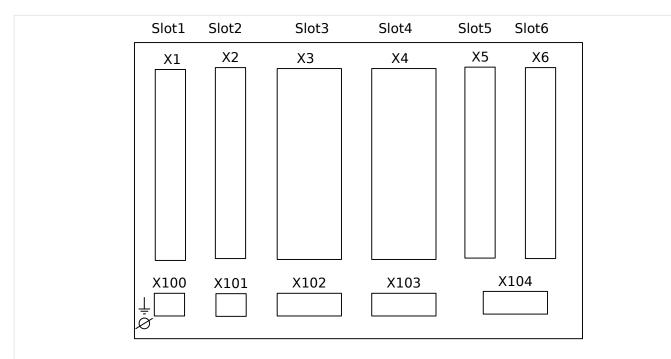
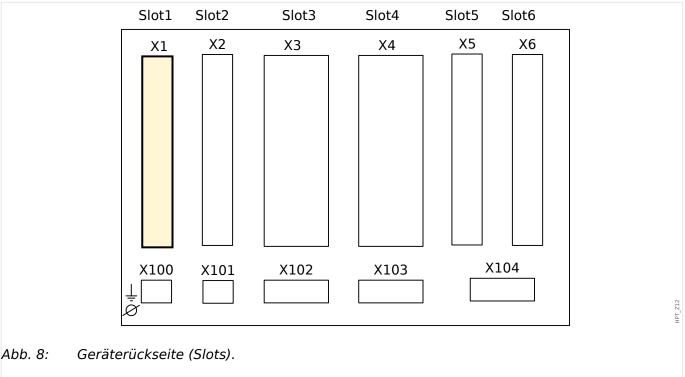



Abb. 7: B2-Gehäuse, prinzipielle Rückansicht.

Slot X1	Slot X2	Slot X3	Slot X4	Slot X5	Slot X6
Slot X100		Slot X102	Slot X103	Slot X104	

3.3 Slot X1

• Netzteilkarte mit Digitalen Eingängen

Der genaue Typ der verbauten Netzteilkarte und die Anzahl der darauf befindlichen Digitalen Eingänge ergibt sich aus dem Bestellschlüssel. Die unterschiedlichen Varianten haben einen unterschiedlichen Funktionsumfang.

Verfügbare Baugruppen für diesen Slot:

• DI-8 X1: Diese Baugruppe umfasst ein Weitbereichsnetzteil und zwei nicht gruppierte Digitale Eingänge sowie sechs gruppierte (gewurzelte) Eingänge.

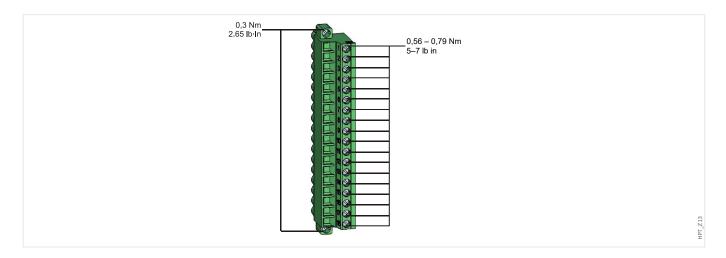
HINWEIS!

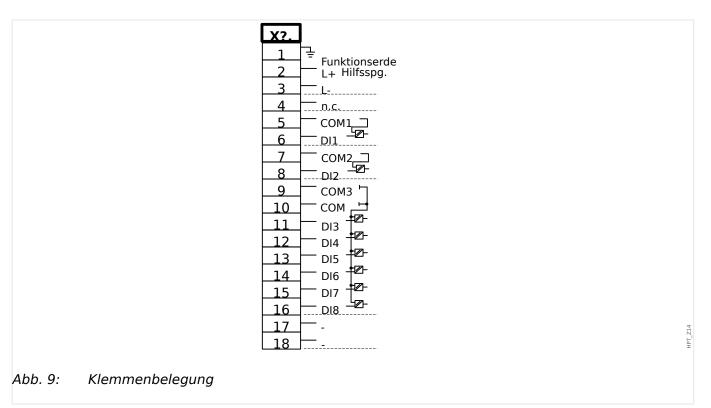
Die verfügbaren Kombinationen können dem Bestellschlüssel entnommen werden.

3.3.1 DI8-X Netzteil und Digitale Eingänge

WARNUNG!

Zusätzlich zur Gehäuseerdung (Schutzerde, siehe ⇔3.2.1 Erdung) muss an der Klemme Nr. 1 der Netzteilkarte X1 (Klemmenbelegung siehe unten, "⇔Abb. 9") eine weitere Erdung (Funktionserde, min. 2,5 mm², Anzugsmoment 0,56 – 0,79 Nm [5–7 lb•in]) angeschlossen werden.


Die Anschlusskabel für Schutz- und Funktionserde sind möglichst kurz bzw. induktionsarm auszuführen, außerdem sind eventuell vorhandene lokale Anschlussrichtlinien zu beachten.


WARNUNG!

Stellen Sie die korrekten Anzugsmomente sicher (siehe Diagramm).

Anschlussquerschnitt: min. 0,25 mm² ... max. 2,5 mm² mit oder ohne Aderendhülse.

Funktionserde L+ Hilfsspg. COM1 DI1 5 COM2 DI2 5 ∞ COM3 F сомз 🛏 DI3 -DI4 12 DI5 · 13 DI6 14 DI7 +121-15 DI8 42-16 17 \oslash Abb. 10: Elektromechanische Zuordnung

Diese Baugruppe beinhaltet:

- Ein Weitbereichsnetzteil
- 6 digitale Eingänge gewurzelt

- 2 digitale Eingänge ungewurzelt
- Anschluss für *Funktionserde* diese **muss** angeschlossen werden, siehe Warnhinweis oben.

Hilfsspannungsversorgung

- Der Hilfsspannungseingang (Weitbereichsnetzteil) ist verpolungssicher. Das Gerät kann sowohl mit Wechsel- als auch mit Gleichspannung versorgt werden.
- Der zulässige Spannungsbereich ist: 24 ... 270 VDC / 48 ... 230 VAC (-20 / +10%)
- Im Weitbereichsnetzteil ist eine Sicherung, 6,3 A träge, fest verbaut.

(Diese Sicherung kann nicht vom Anwender ausgetauscht werden, ist aber für den sicheren Betrieb erforderlich.)

Außerdem muss die Versorgungsspannung extern wie folgt abgesichert werden:

- 2,5 A träge G-Sicherung 5x20 mm nach IEC 60127
- 3,5 A träge G-Sicherung 6,3x32 mm nach UL 248-14

Digitale Eingänge

Diese Baugruppe verfügt über 8 digitale Eingänge.

Die Rangierung der digitalen Eingänge ist in ⇔3.14.2 Konfigurierung der Digitalen Eingänge beschrieben.

Die verfügbaren Rangierungen entnehmen Sie bitte dem "MCDLV4 Referenzhandbuch" (MCDLV4-3.10-DE-REF, separates Dokument).

VORSICHT!

Wenn Gleichspannung für die Digitalen Eingänge verwendet wird, dann muss der »Minuspol« an die COM-Klemme (Wurzel) angeschlossen werden (COM1, COM2, COM3 – siehe Klemmenbezeichnung).

VORSICHT!

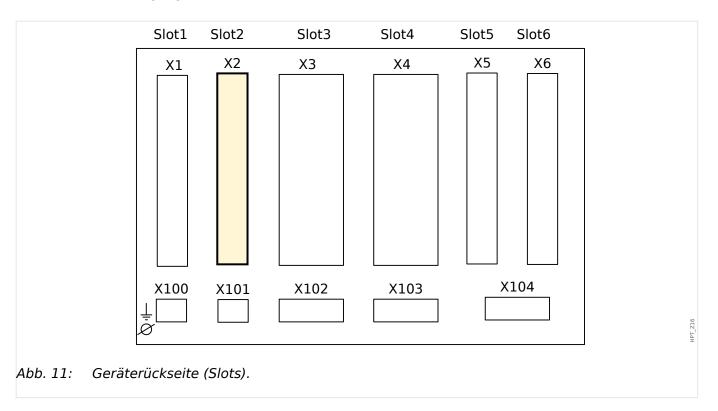
Parametrieren Sie den richtigen Spannungseingangsbereich für jede digitale Eingangsgruppe. Falsche Schaltschwellen können zu Fehlfunktionen/falschen Signallaufzeiten führen.

Die digitalen Eingänge verfügen über verschiedene Schaltschwellen, einstellbar über den Parameter [Geräteparameter / Digitale Eingänge / DI Slot Xx / Gruppe y] »Nennspannung«.

Für jede Gruppe lassen sich folgende Schaltschwellen festlegen:

- "24 VDC"
- "48 VDC"
- "60 VDC"
- "110 VDC"

3 Hardware


3.3.1 DI8-X Netzteil und Digitale Eingänge

- "230 VDC"
- "110 VAC"
- "230 VAC"

Wird an den digitalen Eingang eine Spannung größer 80% der parametrierten Schaltschwelle gelegt, so wird die Zustandsänderung erkannt (physikalische "1"). Wenn die Spannung unter 40% der parametrierten Schaltschwelle zurückfällt wird eine physikalische "0" erkannt.

3.4 Slot X2

• Ausgangsrelais

Der genaue Typ der verbauten Karte ergibt sich aus dem Bestellschlüssel. Die unterschiedlichen Varianten haben einen unterschiedlichen Funktionsumfang.

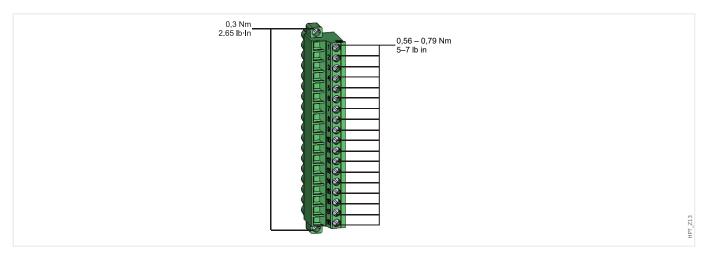
Verfügbare Baugruppen für diesen Slot:

• OR6: Melderelaiskarte mit sechs Ausgangsrelais.

Die Kontakte aller Ausgangsrelais sind Wechsler.

HINWEIS!

Die verfügbaren Kombinationen können dem Bestellschlüssel entnommen werden.


3.4.1 K-6 X - Melderelaiskarte mit sechs Ausgangsrelais

WARNUNG!

Stellen Sie die korrekten Anzugsmomente sicher (siehe Diagramm).

Anschlussquerschnitt: min. 0,25 mm² ... max. 2,5 mm² mit oder ohne Aderendhülse.

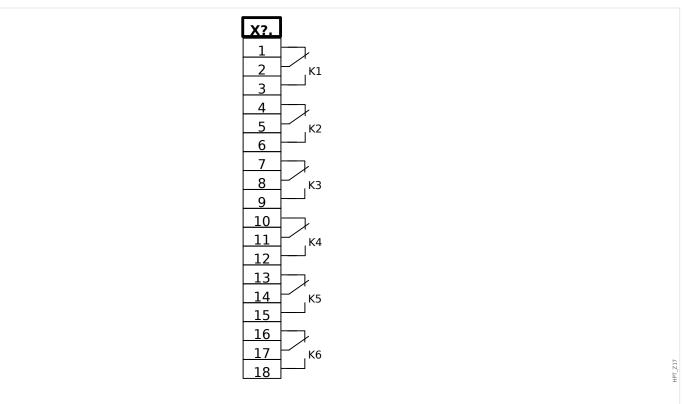
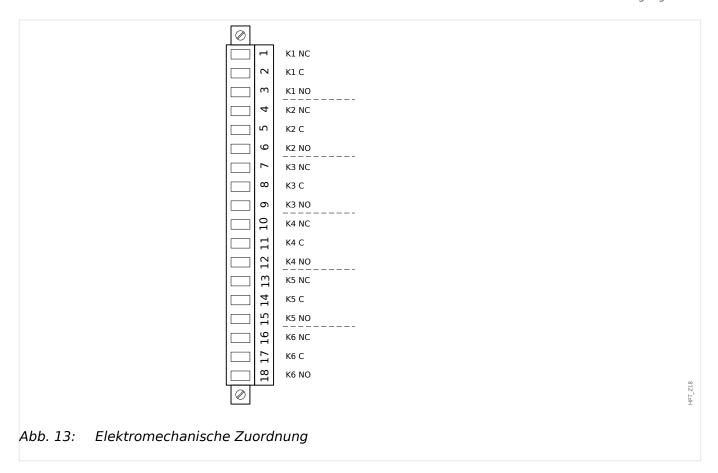
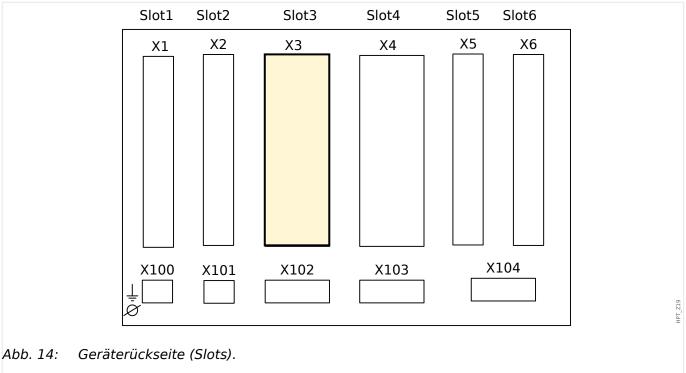



Abb. 12: Klemmenbelegung

Ausgangsrelais

Die Ausgangsrelais sind potenzialfreie Kontakte. Die Rangierung der Ausgangsrelais ist in

→3.14.3 Rangierung der Ausgangsrelais beschrieben. Die rangierbaren Signale entnehmen Sie bitte dem "MCDLV4 Referenzhandbuch" (MCDLV4-3.10-DE-REF, separates Dokument).


VORSICHT!

Beachten Sie die Strombelastbarkeit der Ausgangsrelais. Siehe Technische Daten (→13.1 Technische Daten).

3.5 Slot X3

• StW - Stromwandler-Messeingänge

Verfügbare Baugruppen für diesen Slot:

- TI: Strommesseingänge und Erdstrommesseingang.
- Tls: Strommesseingänge und Empfindlicher Erdstrommesseingang (Verfügbarkeit je nach Typschlüssel). Der empfindliche Erdstromeingang hat abweichende Technische Daten (siehe

 13.1 Technische Daten).

3.5.1 TI - Strommesseingänge und Erdstrommesseingang

Diese Messkarte verfügt über 4 Strommesseingänge. Drei für die Messung der Phasenströme und einen für die Messung des Erdstroms. Jeder Strommesseingang verfügt sowohl über einen 1 A als auch einen 5 A Messeingang.

An den Erdstrommesseingang kann ein Kabelumbauwandler angeschlossen werden. Alternativ kann der Summenstrompfad der Phasenstromwandler an diesen Eingang angeschlossen werden (Holmgreenschaltung).

GEFAHR!

Stromwandler müssen auf der Sekundärseite geerdet werden.

GEFAHR!

Es treten lebensgefährliche Spannungen bei Unterbrechungen in den Stromwandler-Sekundärkreisen auf. Die Sekundäranschlüsse der Stromwandler müssen kurzgeschlossen werden, bevor die Stromleitungen zum Gerät unterbrochen werden.

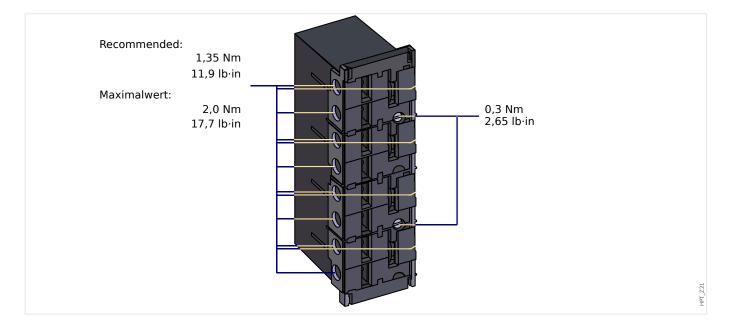
GEFAHR!

Die Strommesseingänge dürfen nur mit Stromwandlern (mit galvanischer Trennung) verbunden werden.

WARNUNG!

- Vertauschen Sie keine Eingänge (1 A / 5 A).
- Stellen Sie sicher, dass die Übersetzungsverhältnisse und die Leistung der Stromwandler richtig dimensioniert sind. Wenn die Wandler falsch dimensioniert (überdimensioniert) sind, werden normale Betriebszustände u. U. nicht mehr erkannt und Toleranzen können nicht mehr eingehalten werden.
- Überbürdungen können zur Zerstörung der Messeingänge oder Signalverfälschung führen. Überbürdung bedeutet, dass im Kurzschlussfall die Strombelastbarkeit der Messeingänge überschritten werden kann.

WARNUNG!



Verwenden Sie einen Drehmomentschlüssel, um die korrekten Anzugsmomente zu gewährleisten:

- Schrauben für die Befestigung des Stromeingangssteckers:
 - Anzugsmoment: 0,3 Nm
- Schrauben für die Stromwandleranschlüsse:
 - empfohlenes Anzugsmoment: 1,35 Nm
 - maximal erlaubtes Anzugsmoment: 2,0 Nm

Anschlussquerschnitt:

- 1 x oder 2 x 2,5 mm² (2 x AWG 14) mit Aderendhülse, oder:
- 1 x oder 2 x 4,0 mm² (2 x AWG 12) mit Ringkabelschuh oder Kabelschuh, oder:
- 1 x oder 2 x 6 mm² (2 x AWG 10) mit Ringkabelschuh oder Kabelschuh.

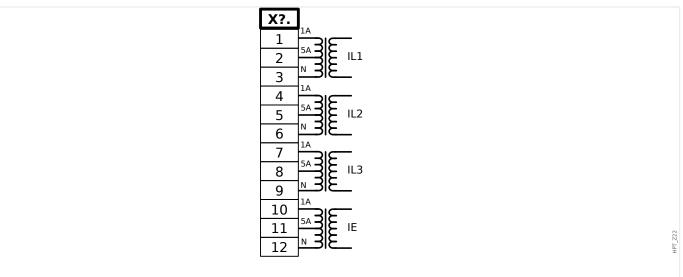
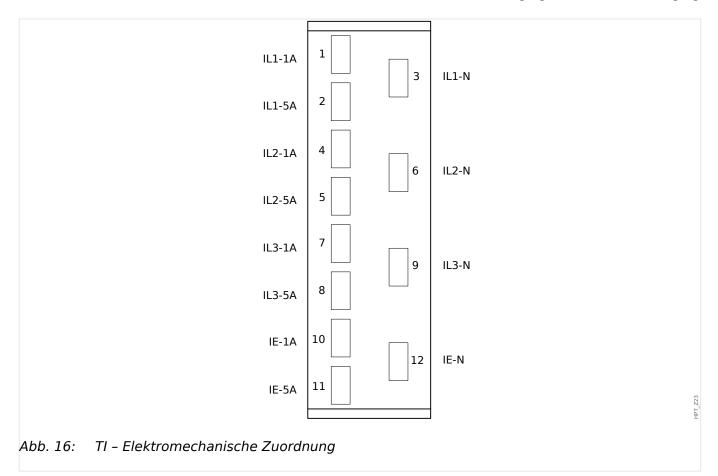



Abb. 15: TI - Klemmenbelegung

3.5.2 Tls - Strommesseingänge und Empfindlicher Erdstrommesseingang

Diese Messkarte verfügt über 4 Strommesseingänge. Drei für die Messung der Phasenströme und einen für die Messung des Erdstroms. Der empfindliche Erdstromeingang hat abweichende technische Daten. (Siehe ⇔13.1 Technische Daten.)

An den Erdstrommesseingang kann ein Kabelumbauwandler angeschlossen werden. Alternativ kann der Summenstrompfad der Phasenstromwandler an diesen Eingang angeschlossen werden (Holmgreenschaltung).

GEFAHR!

Stromwandler müssen auf der Sekundärseite geerdet werden.

GEFAHR!

Es treten lebensgefährliche Spannungen bei Unterbrechungen in den Stromwandler-Sekundärkreisen auf. Die Sekundäranschlüsse der Stromwandler müssen kurzgeschlossen werden, bevor die Stromleitungen zum Gerät unterbrochen werden.

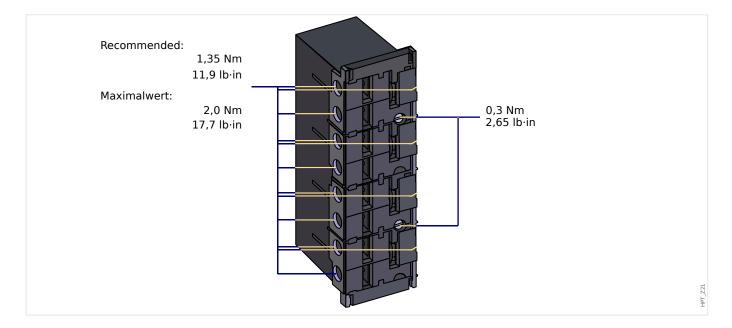
GEFAHR!

Die Strommesseingänge dürfen nur mit Stromwandlern (mit galvanischer Trennung) verbunden werden.

WARNUNG!

- Vertauschen Sie keine Eingänge (1 A / 5 A).
- Stellen Sie sicher, dass die Übersetzungsverhältnisse und die Leistung der Stromwandler richtig dimensioniert sind. Wenn die Wandler falsch dimensioniert (überdimensioniert) sind, werden normale Betriebszustände u. U. nicht mehr erkannt und Toleranzen können nicht mehr eingehalten werden.
- Überbürdungen können zur Zerstörung der Messeingänge oder Signalverfälschung führen. Überbürdung bedeutet, dass im Kurzschlussfall die Strombelastbarkeit der Messeingänge überschritten werden kann.

WARNUNG!



Verwenden Sie einen Drehmomentschlüssel, um die korrekten Anzugsmomente zu gewährleisten:

- Schrauben für die Befestigung des Stromeingangssteckers:
 - Anzugsmoment: 0,3 Nm
- Schrauben für die Stromwandleranschlüsse:
 - empfohlenes Anzugsmoment: 1,35 Nm
 - maximal erlaubtes Anzugsmoment: 2,0 Nm

Anschlussquerschnitt:

- 1 x oder 2 x 2,5 mm² (2 x AWG 14) mit Aderendhülse, oder:
- 1 x oder 2 x 4,0 mm² (2 x AWG 12) mit Ringkabelschuh oder Kabelschuh, oder:
- 1 x oder 2 x 6 mm² (2 x AWG 10) mit Ringkabelschuh oder Kabelschuh.

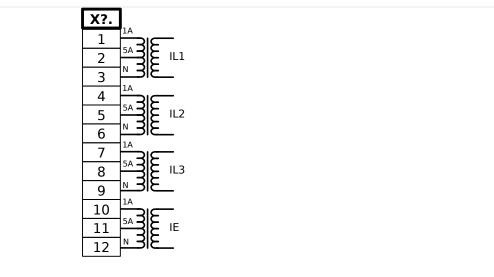
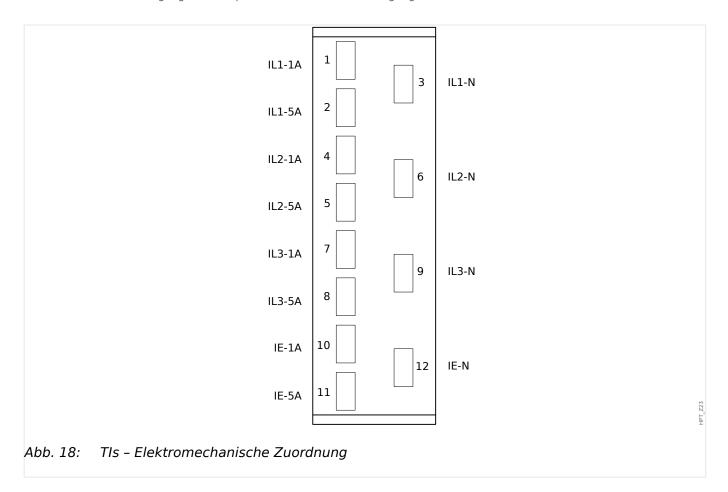



Abb. 17: Tls - Klemmenbelegung

3.5.3 Anforderungen an Stromwandler

WARNUNG!

Zusätzlich zu den Erörterungen in diesem Kapitel und den genannten Anforderungen sind grundsätzlich immer alle anwendbaren nationalen und internationalen Richtlinien und Vorschriften zu beachten.

Symbole

Die folgende Tabelle führt alle in diesem Kapitel verwendeten Symbole auf.

K _{ssc}	Nennfaktor für den symmetrischen Kurzschlussstrom
K _{td}	Transienter Dimensionierungsfaktor unter Berücksichtigung eines Gleichstromanteiles für den Fehlerstrom
K	Gesamtdimensionierungsfaktor
I _{psc}	Maximaler symmetrischer Kurzschlussstrom auf der Primärseite für die betrachtete Schutzfunktion
I _{pr}	Nennstrom des Stromwandlers auf der Primärseite
I _{sr}	Nennstrom des Stromwandlers auf der Sekundärseite
R _{ct}	Wicklungswiderstand des Stromwandlers auf der Sekundärseite
R _b	Resistive Nennlast
R′ _b	Auf der Sekundärseite des Stromwandlers angeschlossene Last
S _{nom,ct}	Nennscheinleistung des Stromwandlers
ALF	Fehlergrenzfaktor (Accuracy limit factor)
ALF′	Effektiver Fehlergrenzfaktor bei Berücksichtigung der angeschlossenen Last
E _k	Nennkniepunktspannung
Us	Klemmspannung auf der Sekundärseite
$U_{s,t,max}$	Maximale Klemmspannung auf der Sekundärseite

Bei der Dimensionierung von Stromwandlern müssen transiente Effekte wie der Gleichstromanteil des Fehlerstromes berücksichtigt werden. Dabei betrachtet man für die Stromwandleranforderungen den symmetrischen Anteil des Kurzschlussstromes und dessen Gleichstromanteil getrennt.

Die Rechnung beginnt mit K_{SSC} für den maximalen symmetrischen Kurzschlussstrom auf der Primärseite des Stromwandlers.

Über den transienten Dimensionierungsfaktor K_{td} schätzt man den Gleichstromanteil ab.

Der Gleichstromanteil sowie K_{td} hängen beide von der Schutzfunktion ab und können wie folgt ermittelt werden:

Überstromschutz

I _{psc}	Maximalwert aller eingestellten Schwellwerte I _{>} in allen aktiven Überstromschutz-Instanzen »I[n]« (als Primärwert)
K _{ssc}	Maximum von 20 und $I_{>}$ / I_{pr}
K _{td}	1

Differentialschutz

I _{psc}	Maximaler symmetrischer Kurzschlussstrom auf der Primärseite für einen externen Fehler
K _{ssc}	I _{psc} / I _{pr}
K _{td}	Leitung / Kabel: 2Generator: 4Transformator: 4

VORSICHT!

Es wird empfohlen, möglichst denselben Stromwandlertyp (nur 1 A oder nur 5 A) für beide Seiten zu verwenden.

Ansonsten – mit unterschiedlichen Stromwandlertypen – kann das MCDLV4 unter Umständen fälschlicherweise (auf Grund unterschiedlicher Übersetzungsverhältnisse) einen Differentialstrom messen, sodass es zu Fehlauslösungen des Differentialschutzes kommen kann.

Für die meisten Klassen von Stromwandlern ist es notwendig sicherzustellen, dass die Bedingungen in der folgenden Tabelle erfüllt sind. In diese Formeln geht der Gesamtdimensionierungsfaktor ein:

$$K = K_{ssc} \cdot K_{td}$$

Stromwandler- klasse	Bedingung
P, PR	$K \leq ALF'$, wobei: $ALF' = ALF \cdot \frac{R_{ct} + R_b}{R_{ct} + R'_b}$
PX, PXR	$E_k \ge \frac{K}{1,2} \cdot I_{\rm sr} \cdot (R_{\rm ct} + R_b')$
IEEE / ANSI C- class	$U_s \geq K \cdot I_{\rm sr} \cdot \left(R_{\rm ct} + R_b'\right)$ Es müssen Stromwandler mit der zu ${\rm U_S}$ nächsthöheren Spannung eingesetzt werden.

Stromwandler- klasse	Bedingung
TPX, TPY, TPZ	Es müssen Stromwandler mit dem Minimum der errechneten Werte von K_{SSC} und K_{td} eingesetzt werden.

Die Remanenz wird im Rahmen dieses Kapitels nicht berücksichtigt. Natürlich kann diese durchaus zu Problemen führen, speziell im Falle externer Fehler beim Differentialschutz. Um die Remanenz zu berücksichtigen, muss ein größerer Dimensionierungsfaktor gewählt werden, oder es müssen Anti-Remanenz-Typen wie PR, TPY and PXR als Stromwandler eingesetzt werden.

Falls der Fehlerstrom mit der Zeit ansteigt, kann es sein, dass der Stromwandler für die jeweiligen Schutzfunktionen unterdimensioniert ist. Bei der Planung einer neuen Anlage kann es daher sinnvoll sein, Stromwandler mit höherem Gesamtdimensionierungsfaktor als dem minimal erforderlichen einzuplanen, um eine gewisse Reserve zur Verfügung zu haben.

3.5.3.1 Betrachtungen zu Schutzfunktionen

Beispiel: Überstromschutz

Stromwandler:	$I_{pr} = 500 \text{ A}$
Überstromschwelle:	$I_{>} = 25 In$
Einstellung Nennstrom In:	»StW pri« = 500 A

Zunächst errechnet man K_{SSC} in Abhängigkeit von der Überstromschwelle und dem maximalen symmetrischen Kurzschlussstrom:

$$K_{\rm ssc} = \max(\frac{I_{\rm psc}}{I_{\rm pr}},\,20) = \max(\frac{25{\rm In}}{I_{\rm pr}},\,20) = \max(\frac{25{\rm StW~pri}}{I_{\rm pr}},\,20) = \max(\frac{25\cdot500~{\rm A}}{500~{\rm A}},\,20) = 25$$

Mit $K_{ssc} = 25$ und $K_{td} = 1$ (Überstromschutz) lässt sich der Gesamtdimensionierungsfaktor berechnen:

$$K = K_{SSC} \cdot K_{td} = 25 \cdot 1 = 25$$

 \hookrightarrow 3.5.3.2 Beispiel: Auswahl eines Stromwandlers in Abhängigkeit vom K-Faktor zeigt, wie in Abhängigkeit vom K-Faktor ein geeigneter Stromwandler-Typ ausgewählt wird.

Beispiel: Differentialschutz

Stromwandler, Seite A:	$I_{pr,A} = 250 \text{ A}$
Stromwandler, Seite B:	$I_{pr,B} = 250 \text{ A}$
Maximaler symmetrischer Kurzschlussstrom für einen externen Fehler:	$I_{psc} = 800 \text{ A}$

Zunächst errechnet man K_{SSC} für beide Seiten der Schutzzone:

$$K_{\text{ssc,A}} = \frac{I_{\text{psc}}}{I_{\text{pr,A}}} = \frac{800 \text{ A}}{250 \text{ A}} = 3.2$$

$$K_{\text{ssc,B}} = \frac{I_{\text{psc}}}{I_{\text{pr,B}}} = \frac{800 \text{ A}}{250 \text{ A}} = 3.2$$

Den transienten Dimensionierungsfaktor K_{td} schaut man nun in der Tabelle (weiter oben) \hookrightarrow "Differentialschutz") nach; für Generatordifferentialschutz, zum Beispiel:

$$K_{td} = 4$$

Die beiden Gesamtdimensionierungsfaktoren (für beide Seiten der Schutzzone) ergeben sich hieraus:

$$K_A = K_{SSC,A} \cdot K_{td} = 3,2 \cdot 4 = 12,8$$

$$K_{B} = K_{SSC,B} \cdot K_{td} = 3,2 \cdot 4 = 12,8$$

Auf beiden Seiten müssen die Stromwandler den jeweiligen Anforderungen genügen. $\hookrightarrow 3.5.3.2$ Beispiel: Auswahl eines Stromwandlers in Abhängigkeit vom K-Faktor zeigt, wie in Abhängigkeit vom K-Faktor ein geeigneter Stromwandler-Typ ausgewählt wird.

3.5.3.2 Beispiel: Auswahl eines Stromwandlers in Abhängigkeit vom K-Faktor

Stromwandler:	$I_{Sr} = 1 \text{ A}$
	$R_{ct} = 1.5 \Omega$
Angeschlossene Last:	$R'_b = 2.5 \Omega$
K _{SSC}	25
K _{td}	1
$K = K_{SSC} \cdot K_{td}$	25

P, PR

Wir prüfen, ob der Wandlertyp 5P20 5 VA für die Schutzanwendung mit den oben genannten Beispieldaten geeignet ist:

$$ALF = 20$$

Wir errechnen aus der Nennleistung die resistive Nennlast:

$$R_b = \frac{5 \text{ V A}}{\text{I}^2_{\text{sr}}} = \frac{5 \text{ V A}}{(1 \text{ A})^2} = 5 \Omega$$

Anschließend wird der effektive Fehlergrenzfaktor ALF' errechnet:

$${\rm ALF'} = {\rm ALF} \cdot \frac{R_{\rm ct} + R_b}{R_{\rm ct} + R_b'} = 20 \cdot \frac{1.5 \; \Omega + 5 \; \Omega}{1.5 \; \Omega + 2.5 \; \Omega} = 32.5 \geq K = 25$$

Der effektive Fehlergrenzfaktor ALF' ist größer als der K-Faktor. Somit ist der Stromwandler für die Schutzanwendung geeignet.

PX, PXR

Für den Wandlertyp PX / PXR wird die Kniepunktspannung E_k berechnet:

$$E_k \ge \frac{K}{1.2} \cdot I_{\rm sr} \cdot (R_{\rm ct} + R_b') = \frac{25}{1.2} \cdot 1 \text{ A} \cdot (1.5 \Omega + 2.5 \Omega) = 83.33 \text{ V}$$

Der Stromwandler ist geeignet, wenn die Kniepunktspannung E_k größer als 83,33 V ist.

IEEE, ANSI-C

Da Stromwandler vom Typ IEEE / ANSI-C durch die Angabe einer Spannung V_s gekennzeichnet werden, errechnen wir die erforderliche Minimalspannung:

$$V_s \ge K \cdot I_{\rm sr} \cdot (R_{\rm ct} + R_b') = 25 \cdot 1 \text{ A} \cdot (1.5 \Omega + 2.5 \Omega) = 100 \text{ V}$$

Der Stromwandler ist geeignet, wenn die Nennspannung mindestens 100 V beträgt.

TPX, TPY, TPZ

Für den Wandlertyp TPX sind außer K_{SSC} und K_{td} keine weiteren Berechnungen erforderlich.

Die auf der Sekundärseite angeschlossene Last R'_b sollte bekannt sein.

3.5.4 Stromwandler

Kontrollieren Sie die Einbaurichtung der Wandler.

GEFAHR!

Die Sekundärseiten von Messwandlern müssen geerdet sein.

GEFAHR!

Die Strommesseingänge dürfen nur mit Stromwandlern (mit galvanischer Trennung) verbunden werden.

WARNUNG!

Die Sekundärkreise von Stromwandlern müssen während des Betriebs stets niedrig bebürdet oder kurzgeschlossen sein.

HINWEIS!

Für alle Strom- und Spannungsmessaufgaben, sind entsprechende externe Strom- und Spannungswandler zu verwenden, die den erforderlichen Übersetzungsverhältnissen entsprechen. Die Wandler müssen über ausreichende Isolationsfestigkeit verfügen.

Alle Strommesseingänge können mit 1 A oder 5 A nominal betrieben werden. Stellen Sie die korrekte Belegung der Klemmen sicher.

VORSICHT!

Es wird empfohlen, möglichst denselben Stromwandlertyp (nur 1 A oder nur 5 A) für beide Seiten zu verwenden.

Ansonsten – mit unterschiedlichen Stromwandlertypen – kann das MCDLV4 unter Umständen fälschlicherweise (auf Grund unterschiedlicher Übersetzungsverhältnisse) einen Differentialstrom messen, sodass es zu Fehlauslösungen des Differentialschutzes kommen kann.

3.5.4.1 Empfindliche Erdstrommessung

Messeingänge für die empfindliche Erdstromerfassung sind bestimmungsgemäß für die Erfassung von sehr kleinen Erdschlussströmen ausgelegt, wie sie z.B. in Netzen mit isoliertem oder hochohmig geerdetem Sternpunkt auftreten können.

Der empfindliche Messbereich dieser Eingänge darf grundsätzlich nicht für die direkte Messung von sehr großen Strömen wie sie z.B. bei Erdkurzschlüssen in starr geerdeten Netzen auftreten können verwendet werden.

Ein solcher Messeingang darf nur dann zur Messung von Erdkurzschlüssen verwendet werden, wenn durch einen Zwischenwandler sichergestellt wird, dass die in den Technischen Daten angegebene Belastbarkeit der Stromesseingänge nicht überschritten wird.

3.5.4.2 Stromwandler Anschlussbeispiele

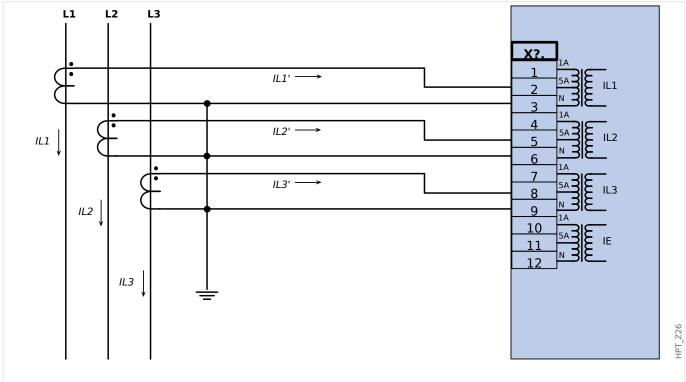


Abb. 19: Dreiphasiger Stromwandleranschluss; In sekundär = 5 A.

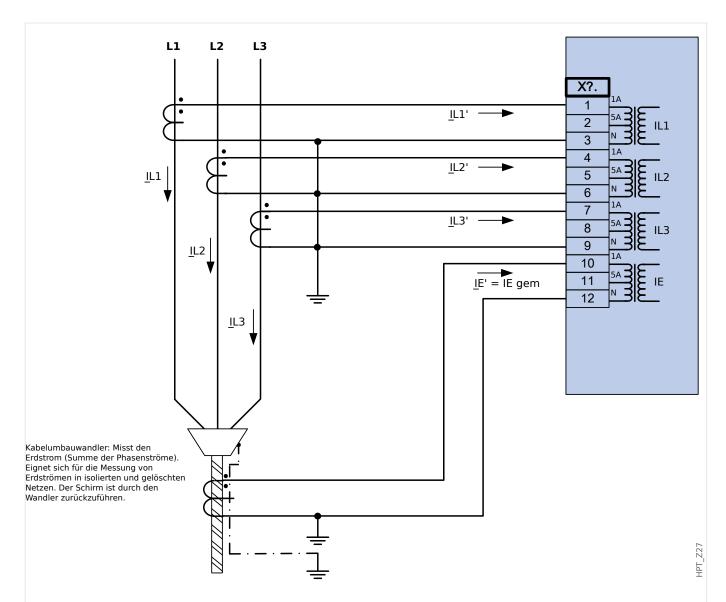


Abb. 20: Dreiphasiger Stromwandleranschluss; In sekundär = 1 A. Erdstromerfassung über Kabelumbauwandler; IEn sekundär = 1 A.

WARNUNG!

Die Schirmung am aufgetrennten Ende der Leitung muss durch den Kabelumbauwandler geführt und auf der Kabelseite geerdet werden.

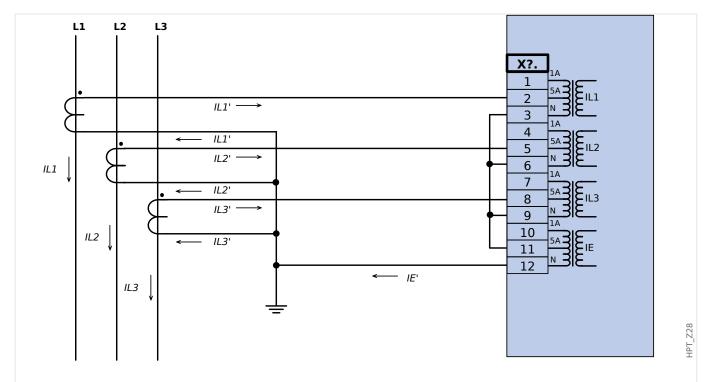


Abb. 21: Dreiphasiger Stromwandleranschluss; In sekundär = 5 A. Erdstromerfassung über Holmgreenschaltung IEn sekundär = 5 A.

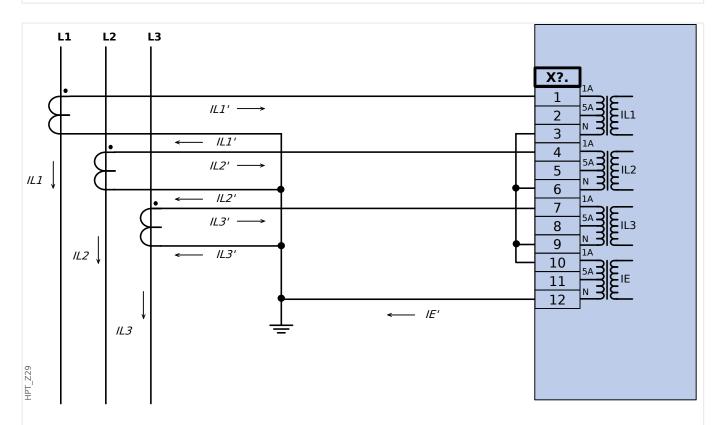


Abb. 22: Dreiphasiger Stromwandleranschluss; In sekundär = 1 A. Erdstromerfassung über Holmgreenschaltung IEn sekundär = 1 A.

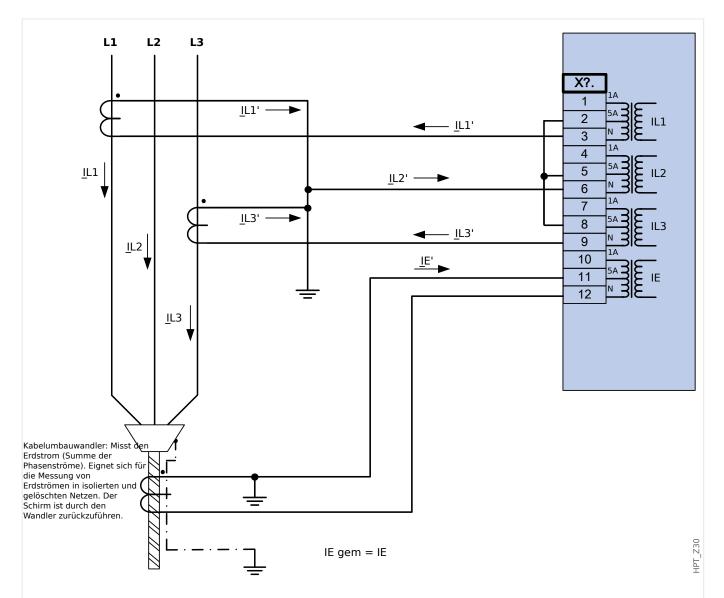


Abb. 23: Zweiphasiger Stromwandleranschluss in V-Schaltung; In sekundär = 5 A. Erdstromerfassung über Kabelumbauwandler; IEn sekundär = 5 A.

WARNUNG!

Die Schirmung am aufgetrennten Ende der Leitung muss durch den Kabelumbauwandler geführt und auf der Kabelseite geerdet werden.

- Bei dieser Anschlussart ist IE err nicht zu verwenden, sondern stattdessen IE gem.
- Der gemessene Strom IL2 ist bei unsymmetrischen Bedingungen nicht gültig.

Deswegen können unter Umständen Schutzfunktionen, die IL2 (oder von IL2 abgeleitete Größen , z. B. I1, I2) verwenden, fehlerhaft arbeiten.

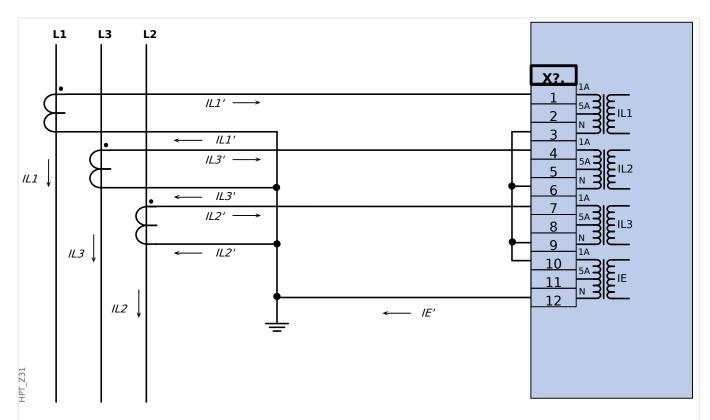


Abb. 24: Dreiphasiger Stromwandleranschluss; In sekundär = 1 A. Erdstromerfassung über Holmgreenschaltung IEn sekundär = 1 A.

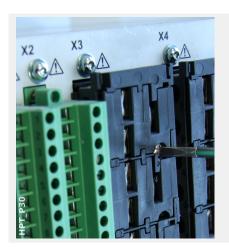
3.5.4.3 Stromeingänge anschließen

An die Strommesseingänge können prinzipiell sowohl Stiftkabelschuhe als auch Ringkabelschuhe angeschlossen werden.

VORSICHT!

Beachten Sie hierbei allerdings die jeweils gültigen Richtlinien und Vorschriften. Es sind unter Umständen in Ihrem Land nicht alle Verbindungstypen zulässig.

WARNUNG!



Verwenden Sie einen Drehmomentschlüssel, um die korrekten Anzugsmomente zu gewährleisten:

- Schrauben für die Befestigung des Stromeingangssteckers:
 - Anzugsmoment: 0,3 Nm
- Schrauben für die Stromwandleranschlüsse:
 - empfohlenes Anzugsmoment: 1,35 Nm
 - maximal erlaubtes Anzugsmoment: 2,0 Nm

Anschlussquerschnitt:

- 1 x oder 2 x 2,5 mm² (2 x AWG 14) mit Aderendhülse, oder:
- 1 x oder 2 x 4,0 mm² (2 x AWG 12) mit Ringkabelschuh oder Kabelschuh, oder:
- 1 x oder 2 x 6 mm² (2 x AWG 10) mit Ringkabelschuh oder Kabelschuh.

Unabhängig vom Anschlusstyp ist der erste Schritt immer, den Anschlussblock loszuschrauben und vom Schutzgerät zu entfernen.

Anmerkung: Die Messeingänge dieses Anschlussblocks sind kurzschließend.

Stiftkabelschuhe können nun in die jeweiligen Anschlussöffnungen eingeführt und verschraubt werden. Die Schrauben zum Befestigen des Kabelschuhs befinden sich seitlich.

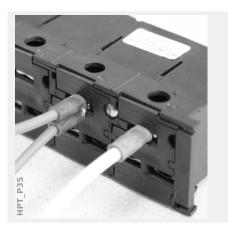
Beachten Sie das Anzugsmoment, →Abb.

Bei Ringelkabelschuhen ist ein Zwischenschritt erforderlich, weil die Verschraubungen komplett entfernt werden müssen.

Die Schrauben sind mit einem Plastikschieber abgedeckt, der sich einfach nach hinten wegschieben lässt. Die Verschraubungen liegen nun völlig frei.

Die Verschraubung besteht aus einer Schraube mit nichtverlierbar befestigtem Metallkontakt und lässt sich vollständig herausdrehen und entfernen.

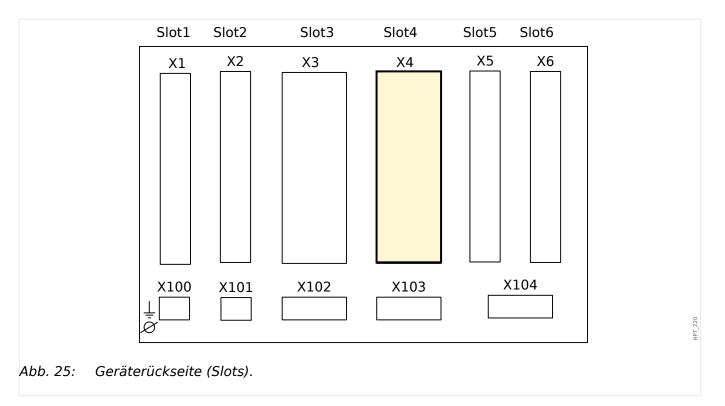
Anschließend führt man den Ringkabelschuh in die Öffnung und steckt die Verschraubung wieder zurück, und zwar so, dass die Schraube durch den Ring hindurch gesteckt wird.


Befestigen Sie die Schrauben wieder

Beachten Sie hierbei das Anzugsmoment, →Abb. .

Abschließend wird der Plastikschieber wieder zurück in die Ausgangsposition bewegt.

3 Hardware


3.5.4.3 Stromeingänge anschließen

Anmerkung: Sofern der Kabelquerschnitt in den Grenzen liegt, die in den Technischen Daten (⇔13.1 Technische Daten, ⇔Tab.) spezifiziert sind, passen auch zwei Ringe – Rücken an Rücken – in die Öffnung, siehe Bild. Dies ist nützlich für den Anschluss eines Sternpunktes.

3.6 Slot X4

 SpW – Spannungswandler-Messeingänge, je nach Bestellschlüssel auch mit Ausgangsrelais

Der genaue Typ der verbauten Karte und die Anzahl der darauf befindlichen Digitalen Eingänge ergibt sich aus dem Bestellschlüssel. Die unterschiedlichen Varianten haben einen unterschiedlichen Funktionsumfang.

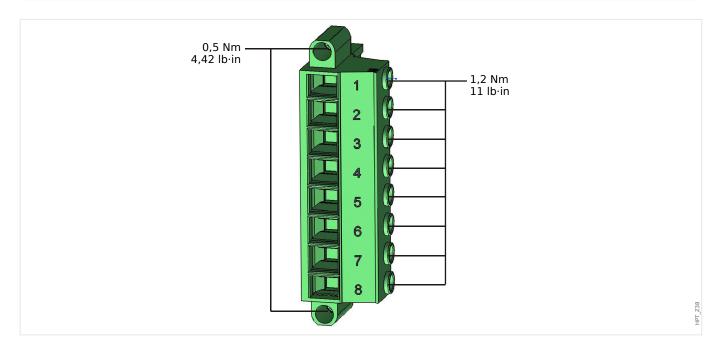
Verfügbare Baugruppen für diesen Slot:

- TU: Spannungsmesskarte.
- TU-OR5: Spannungsmesskarte mit 5 Melderelais.

Die Kontakte aller Ausgangsrelais sind Schließer (Normally Open, Form A).

HINWEIS!

Die verfügbaren Kombinationen können dem Bestellschlüssel entnommen werden.


TU - Spannungsmesseingänge 3.6.1

WARNUNG!

Stellen Sie die korrekten Anzugsmomente sicher (siehe Diagramm).

- Anschlussquerschnitt ohne Aderendhülse: min. 0,75 mm² ... max. 6,0 mm²
- Anschlussquerschnitt mit Aderendhülse (mit oder ohne Kunststoffhülse): min. 0,5 mm² ... max. 6,0 mm²

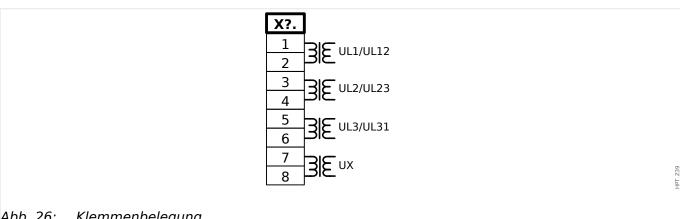
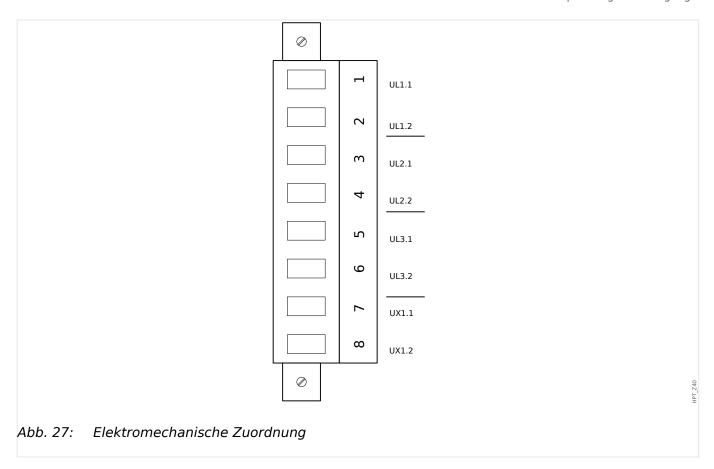



Abb. 26: Klemmenbelegung

Spannungsmesseingänge

Die Baugruppe "TU" verfügt über 4 Spannungsmesseingänge.

- Der Spannungsmessbereich ist **0 800 V**. (Unter UL: 0 600 V.)
- Drei Eingänge messen Leiterspannungen:
 - entweder Außenleiterspannungen (UL12, UL23, UL31),
 - oder Phasenspannungen (*UL1*, *UL2*, *UL3*)
- Der 4. Eingang dient der Erfassung der Verlagerungsspannung UX.

In den Feldparametern muss die korrekte Beschaltung der Spannungsmesseingänge parametriert werden:

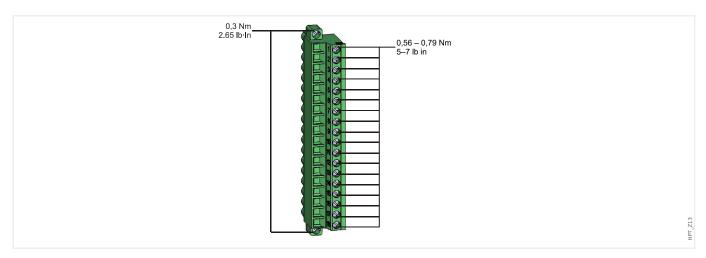
- Einstellung [Feldparameter / SpW] »SpW Anschluss« = "Leiter-Erde" Leiter-Erd (Stern)
- Einstellung [Feldparameter / SpW] »SpW Anschluss« = "Leiter-Leiter" Phase-Phase (Dreieck bzw. V-Schaltung)

VORSICHT!

Beachten Sie die Phasenfolge (Drehfeldrichtung) Ihrer Energieversorgungsanlage. Stellen Sie die richtige Verdrahtung der Spannungswandler und Messeingänge sicher.

Für die V-Schaltung ist der Parameter »SpW Anschluss« auf "Leiter-Leiter" zu stellen.

Siehe Technische Daten (→13.1 Technische Daten).


TU-OR5 - Spannungsmesskarte mit 5 Melderelais 3.6.2

WARNUNG!

Stellen Sie die korrekten Anzugsmomente sicher (siehe Diagramm).

Anschlussquerschnitt: min. 0,25 mm² ... max. 2,5 mm² mit oder ohne Aderendhülse.

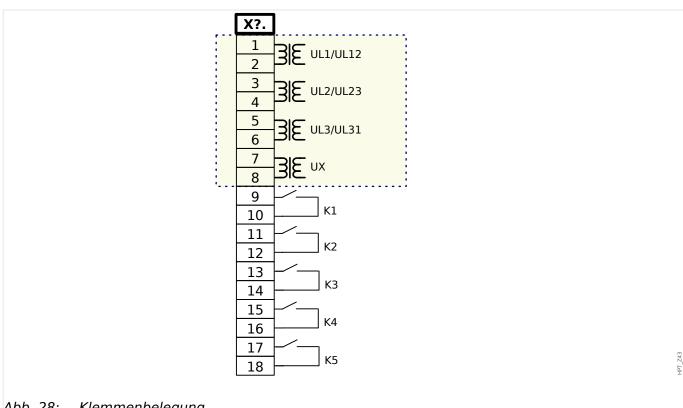
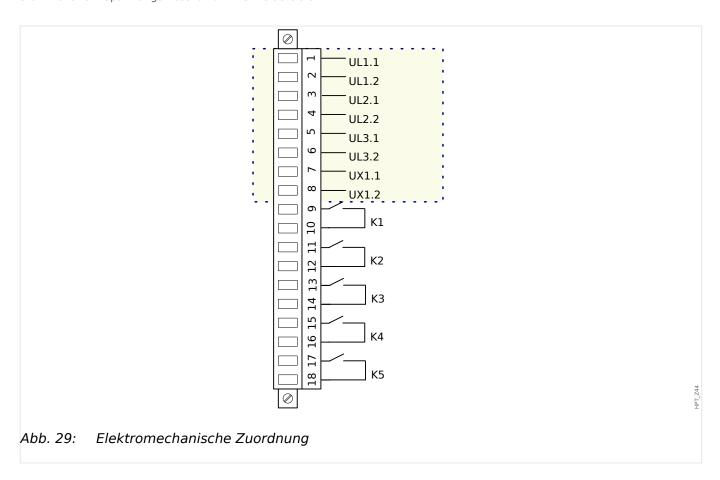



Abb. 28: Klemmenbelegung

Spannungsmesseingänge

Die Baugruppe "TU-OR5" verfügt über 4 Spannungsmesseingänge.

- Der Spannungsmessbereich ist **0 300 V** (für jeden Eingang).
- Drei Eingänge messen Leiterspannungen:
 - entweder Außenleiterspannungen (UL12, UL23, UL31),
 - oder Phasenspannungen (*UL1*, *UL2*, *UL3*)
- Der 4. Eingang dient der Erfassung der Verlagerungsspannung UX.

In den Feldparametern muss die korrekte Beschaltung der Spannungsmesseingänge parametriert werden:

- Einstellung [Feldparameter / SpW] »SpW Anschluss« = "Leiter-Erde" Leiter-Erd (Stern)
- Einstellung [Feldparameter / SpW] »SpW Anschluss« = "Leiter-Leiter" Phase-Phase (Dreieck bzw. V-Schaltung)

VORSICHT!

Beachten Sie die Phasenfolge (Drehfeldrichtung) Ihrer Energieversorgungsanlage. Stellen Sie die richtige Verdrahtung der Spannungswandler und Messeingänge sicher.

Für die V-Schaltung ist der Parameter »SpW Anschluss« auf "Leiter-Leiter" zu stellen.

Siehe Technische Daten (→13.1 Technische Daten).

Ausgangsrelais

Die Ausgangsrelais sind potenzialfreie Kontakte. Die Rangierung der Ausgangsrelais ist in
→3.14.3 Rangierung der Ausgangsrelais beschrieben. Die rangierbaren Signale entnehmen
Sie bitte dem "MCDLV4 Referenzhandbuch" (MCDLV4-3.10-DE-REF, separates Dokument).

VORSICHT!

Beachten Sie die Strombelastbarkeit der Ausgangsrelais. Siehe Technische Daten ($\hookrightarrow 13.1$ Technische Daten).

3.6.3 Spannungswandler Anschlussbeispiele

Kontrollieren Sie die Einbaurichtung der Wandler.

GEFAHR!

Die Sekundärseiten von Messwandlern müssen geerdet sein.

HINWEIS!

Für alle Strom- und Spannungsmessaufgaben, sind entsprechende externe Strom- und Spannungswandler zu verwenden, die den erforderlichen Übersetzungsverhältnissen entsprechen. Die Wandler müssen über ausreichende Isolationsfestigkeit verfügen.

Überprüfen der Spannungsmesswerte

Schließen Sie eine dreiphasige Messspannung in Höhe der Nennspannung an das Relais an.

HINWEIS!

Berücksichtigen Sie die Beschaltung der Messwandler (Sternschaltung/ Dreieckschaltung ...).

Beachten Sie die Technischen Daten der Spannungwandlermesseingänge.

Stellen Sie nun Spannungswerte mit der entsprechenden Nennfrequenz im Bereich der Nennspannung ein, die nicht zu einer Überspannungs- oder Unterspannungsauslösung führen.

Vergleichen Sie die im Gerätedisplay angezeigten Werte mit der Anzeige der Messgeräte. Die Abweichung muss mit den Technischen Daten übereinstimmen.

HINWEIS!

Bei Verwendung eines Effektivwert-Messgerätes können größere Abweichungen auftreten, wenn die eingespeiste Spannung stark oberwellenhaltig ist. Da das Gerät einen Filter besitzt, der die harmonischen Oberwellen filtert, wertet das Gerät nur die Grundschwingung aus (außer für thermische Schutzfunktionen). Ein effektivwertbildendes Messgerät dagegen misst auch die Oberwellen mit.

Anschlüsse der Spannungswandlermesseingänge

GEFAHR!

Falsche Verdrahtung der Spannungswandlermesseingänge: Es gibt drei mögliche Varianten von Karten mit Spannungsmesseingängen:

- "TU" Standard-Spannungsmesskarte, bei der die Spannungswandler an die **Klemmen 1-8** anzuschließen sind.
- "TU K4" Spannungsmesskarte mit zusätzlichen Ausgangsrelais; auch hier sind die Spannungswandler an die **Klemmen 1-8** anzuschließen.
- "TU DI8" Spannungsmesskarte mit zusätzlichen Digitalen Eingängen. Die Spannungswandler sind an die Klemmen 11-18 anzuschließen.

Die im Folgenden gezeigten Anschlussbeispiele zeigen stets die Standard-Spannungsmesskarte "TU"; unter Umständen ist jedoch in Ihrer Gerätevariante eine der beiden anderen Karten verbaut!

Folgen bei Nichtbeachtung: Zerstörung der Digitalen Eingänge. Das Gerät kann keine Spannungen messen. Das Gerät kann entsprechende Schutzfunktionen nicht mehr übernehmen.

Vermeidung der Gefahr: Das Anschlussbild auf der Geräteoberseite zeigt die korrekte Belegung der Spannungswandlereingänge. (Das Anschlussbild ist auch im separaten "Wiring Diagrams"-Dokument – DOK-WD-MCDLV4-2E – auf derjenigen Seite zu finden, die Ihren Typschlüssel wiedergibt.) Schließen Sie die Spannungswandler stets entsprechend dem Anschlussbild an!

Anschlussbeispiele Spannungswandler

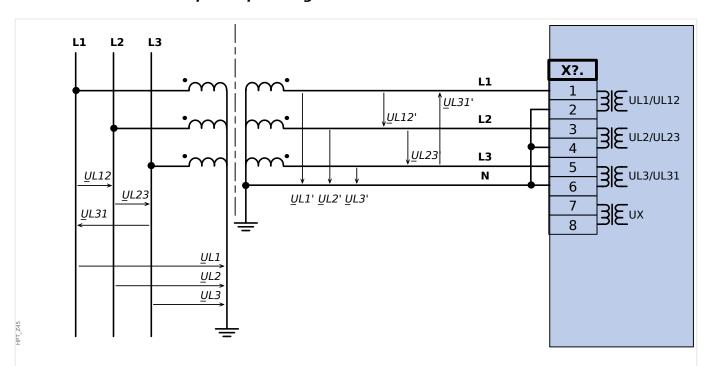


Abb. 30: Drei Spannungswandler mit Geräteanschluss in Sternschaltung

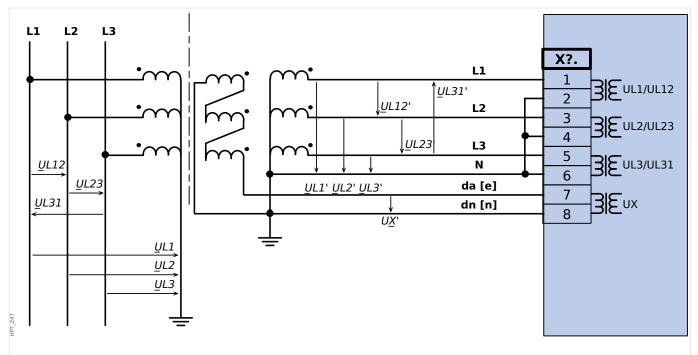


Abb. 31: Spannungswandler mit Geräteanschluss in offener Dreieckschaltung.

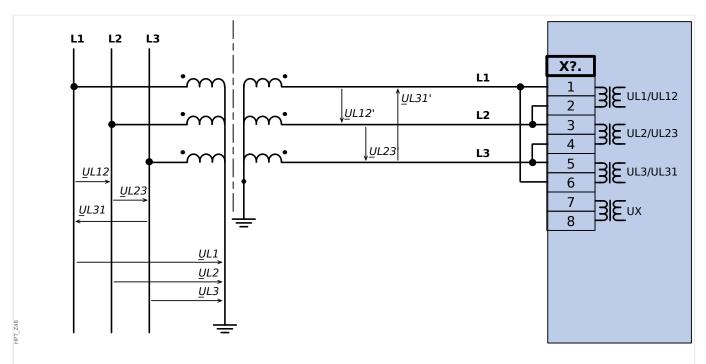
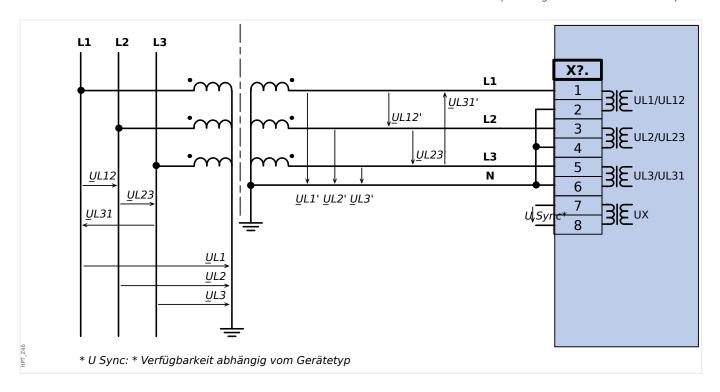



Abb. 32: Drei Spannungswandler mit Geräteanschluss in Dreieckschaltung

WARNUNG!

Berechnung der Verlagerungsspannung UE nicht möglich

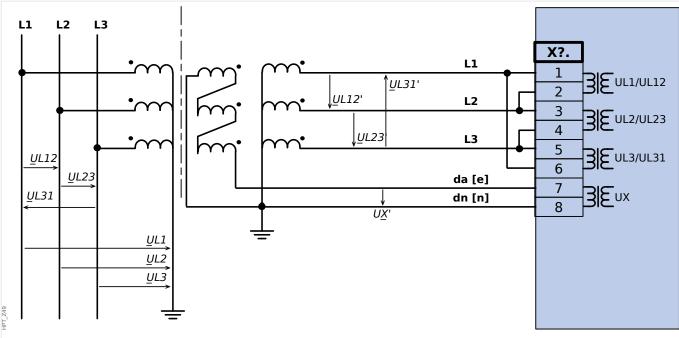
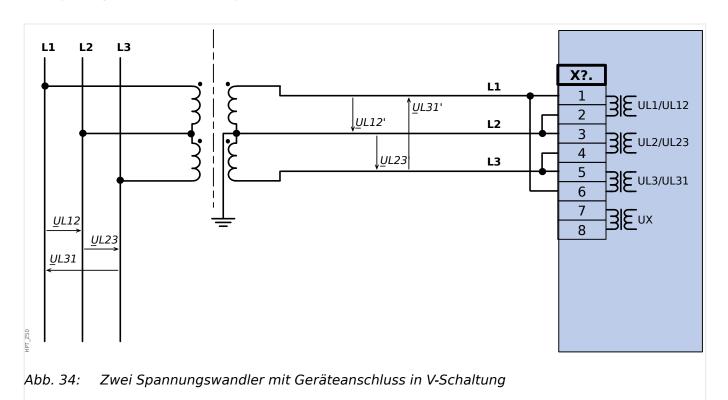
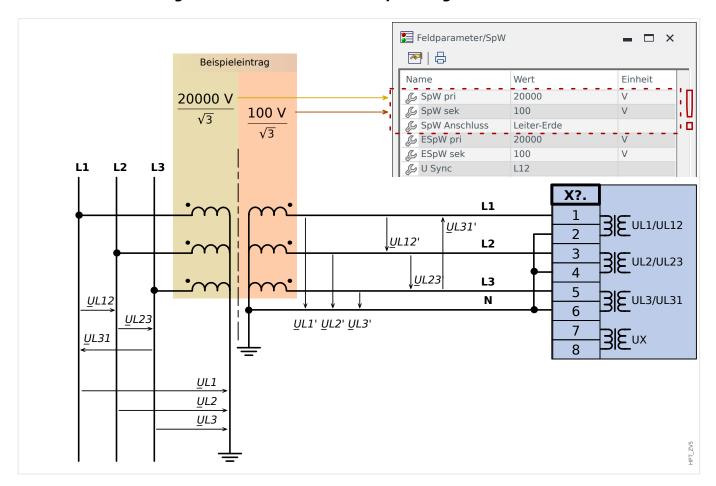



Abb. 33: Drei Spannungswandler mit Geräteanschluss in DreieckschaltungErfassung der Verlagerungsspannung UE mit offener Dreieckswicklung e-n



3.6.4 Bestimmung der Verlagerungsspannung UX für unterschiedliche Anschlussvarianten

Die Verlagerungsspannung lässt sich entweder aus den drei Leiter-Erde-Spannungen ermitteln oder über die offene Dreieckswicklung oder direkt am Sternpunkt (z. B. des Generators) messen.

Die Methode wird (über den Einstellparameter »UE[x] . UX Quelle«) in jeder Instanz des Verlagerungsspannungsschutzes »UE[x]« separat ausgewählt.

3.6.4.1 Berechnung aus den drei Leiter-Erde-Spannungen

Die Verlagerungsspannung wird bei folgender Einstellung aus den drei Leiter-Erde-Spannungen errechnet:

• »UE[x] . UX Quelle« = "berechnet"

HINWEIS!

Die Verlagerungsspannung kann nur dann berechnet werden, wenn an den Messeingängen des Geräts die Phasenspannungen in Sternschaltung anliegen.

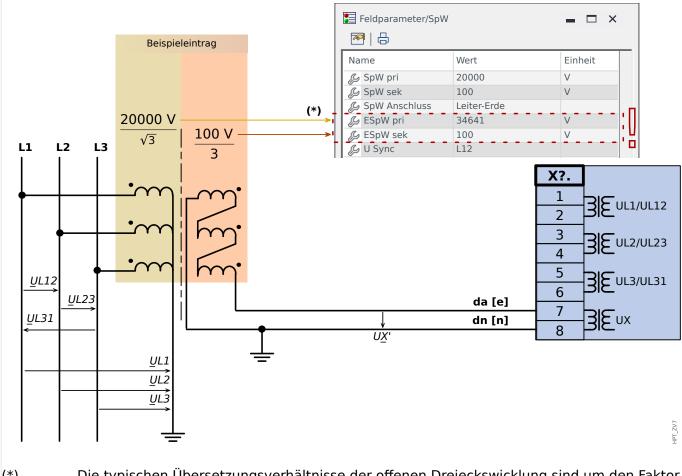
Werden statt der Leiter-Erde-Spannungen (Sternschaltung) die Leiter-Leiter-Spannungen gemessen (Dreieckschaltung), kann die Verlagerungsspannung nicht berechnet werden.

Übersetzungsverhältnis / Skalierung in Bezug auf Un

Die Schwellwerte der Spannungsschutzfunktionen werden in Einheiten der Nennspannung Un eingestellt, die sich durch die Einstellwerte »SpW . SpW sek« und »SpW . SpW pri« ergibt.

Beispiel: Für die Spannungswandlerdaten aus dem Diagramm (Sekundärspannung $100 \text{ V} / \sqrt{3}$) ergibt sich:

•
$$*UE[x] . UE> = 1,0 \cdot Un = 100 \text{ V}$$


Nullspannung bei einem satten einpoligen Erdschluss

•
$$UE \ err = \sqrt{3} \cdot Un$$

Beispiel: Für die Spannungswandlerdaten aus dem Diagramm (Sekundärspannung $100 \text{ V} / \sqrt{3}$) ergibt sich:

• *UE err* =
$$\sqrt{3}$$
 · Un = 173,21 V

3.6.4.2 Messung über die offene Dreieckswicklung

(*) Die typischen Übersetzungsverhältnisse der offenen Dreieckswicklung sind um den Faktor √3 kleiner als bei typischen Wandlern der Phasenspannung. Um diesen Unterschied auszugleichen und um eine korrekte Skalierung der primären Messwerte zu bekommen, muss bei der Verwendung der offenen Dreieckswicklung ein um den Faktor √3 größerer Primärwert eingestellt werden. Daher ist in dem hier abgebildeten Beispiel eines 20 kV-Wandlers einzustellen: »ESpW pri« = √3·20 kV = 34,64 kV

Nach korrektem Anschluss der Spannungsmesseingänge wird die Verlagerungsspannung bei folgender Einstellung gemessen:

• »UE[x] . UX Quelle« = "gemessen"

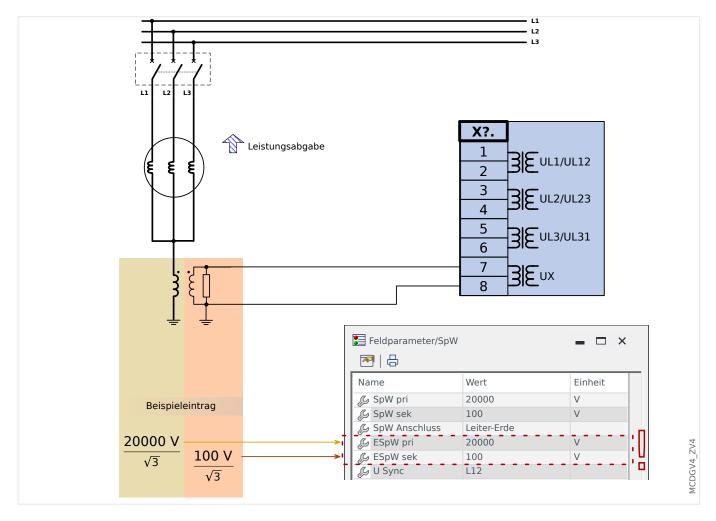
Die offene Dreieckswicklung wird üblicherweise so dimensioniert, dass bei einem satten Erdschluss die Effektivwerte der Nullspannung und der Leiter-Leiter-Spannung gleich sind.

Übersetzungsverhältnis / Skalierung in Bezug auf Un

Die Schwellwerte der Spannungsschutzfunktionen werden in Einheiten der Nennspannung Un eingestellt, die sich durch die Einstellwerte »SpW . ESpW sek« und »SpW . ESpW pri« ergibt.

Beispiel: Für die Spannungswandlerdaten aus dem Diagramm (Sekundärspannung = 100 V / 3) ergibt sich:

• $*UE[x] . UE> = 1.0 \cdot Un = 100 \text{ V}$


Nullspannung bei einem satten einpoligen Erdschluss

• $UX gem = 1,0 \cdot Un$

Beispiel: Für die Spannungswandlerdaten aus dem Diagramm (Sekundärspannung = 100 V / 3) ergibt sich:

• *UX gem* = 1,0·Un = 100 V

3.6.4.3 Messung am Sternpunkt (z. B. des Generators)

Nach korrektem Anschluss der Spannungsmesseingänge wird die Verlagerungsspannung bei folgender Einstellung gemessen:

• »UE[x] . UX Quelle« = "gemessen"

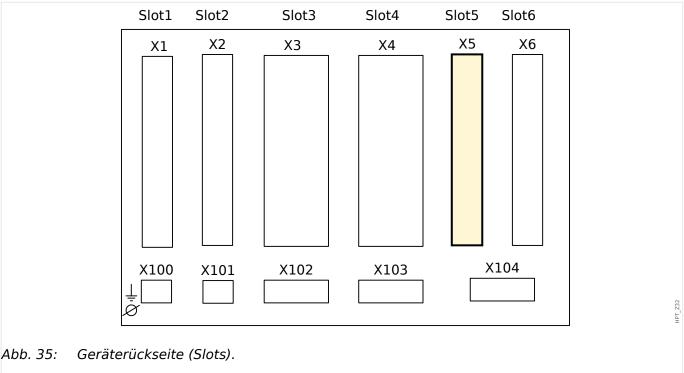
Übersetzungsverhältnis / Skalierung in Bezug auf Un

Die Schwellwerte der Spannungsschutzfunktionen werden in Einheiten der Nennspannung Un eingestellt, die sich durch die Einstellwerte »SpW . ESpW sek« und »SpW . ESpW pri« ergibt.

Beispiel: Für die Spannungswandlerdaten aus dem Diagramm (Sekundärspannung = $100 \text{ V} / \sqrt{3}$) ergibt sich:

• $*UE[x] . UE> = 1,0 \cdot Un = 100 \text{ V}$

Nullspannung bei einem satten einpoligen Erdschluss


• $UX \ gem = Un / \sqrt{3}$

Beispiel: Für die Spannungswandlerdaten aus dem Diagramm (Sekundärspannung 100 V / $\sqrt{3}$) ergibt sich:

•
$$UX \ gem = Un \ / \sqrt{3} = 57,74 \ V$$

3.7 Slot X5

• Multi-Input-Output-Karte

Der genaue Typ der verbauten Netzteilkarte und die Anzahl der darauf befindlichen Digitalen Eingänge ergibt sich aus dem Bestellschlüssel. Die unterschiedlichen Varianten haben einen unterschiedlichen Funktionsumfang.

Verfügbare Baugruppen für diesen Slot:

• OR6: Melderelaiskarte mit sechs Ausgangsrelais.

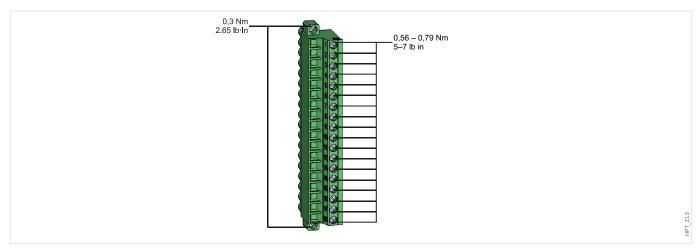
Die Kontakte aller Ausgangsrelais sind Wechsler.

• DI8-OR4: Karte mit acht Digitalen Eingängen und 4 Ausgangsrelais.

Die Kontakte aller Ausgangsrelais sind Schließer (Normally Open, Form A).

HINWEIS!

Die verfügbaren Kombinationen können dem Bestellschlüssel entnommen werden.


3.7.1 DI8-OR4 - Karte mit acht Digitalen Eingängen und 4 Ausgangsrelais

WARNUNG!

Stellen Sie die korrekten Anzugsmomente sicher (siehe Diagramm).

Anschlussquerschnitt: min. 0,25 mm² ... max. 2,5 mm² mit oder ohne Aderendhülse.

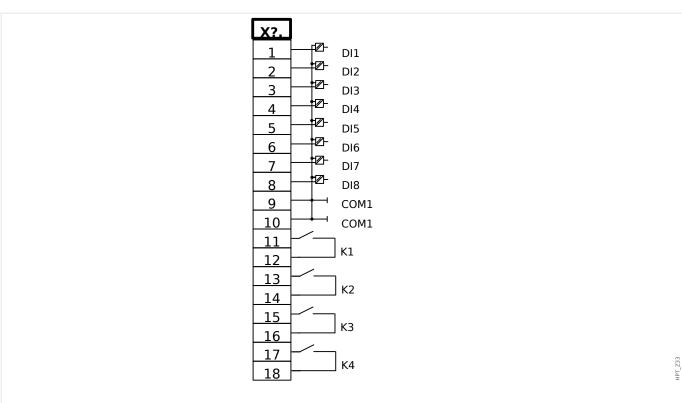
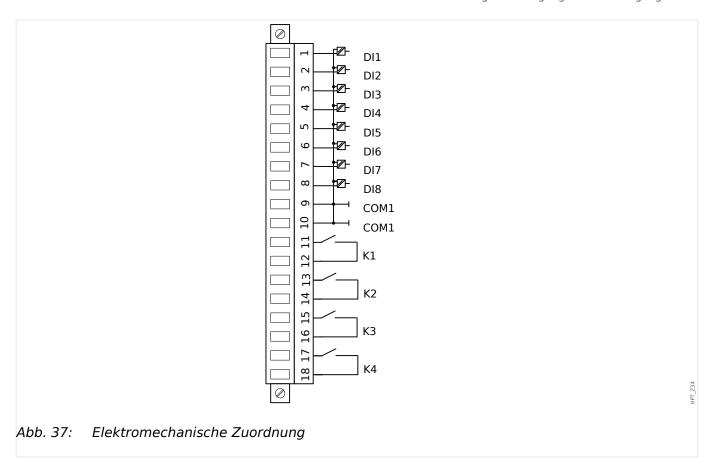



Abb. 36: Klemmenbelegung

Digitale Eingänge

Diese Baugruppe verfügt über 8 gewurzelte digitale Eingänge.

Die Rangierung der digitalen Eingänge ist in ⇔3.14.2 Konfigurierung der Digitalen Eingänge beschrieben.

Die verfügbaren Rangierungen entnehmen Sie bitte dem "MCDLV4 Referenzhandbuch" (MCDLV4-3.10-DE-REF, separates Dokument).

VORSICHT!

Wenn Gleichspannung für die Digitalen Eingänge verwendet wird, dann muss der »Minuspol« an die COM-Klemme (Wurzel) angeschlossen werden (COM1, COM2, COM3 – siehe Klemmenbezeichnung).

VORSICHT!

Parametrieren Sie den richtigen Spannungseingangsbereich für jede digitale Eingangsgruppe. Falsche Schaltschwellen können zu Fehlfunktionen/falschen Signallaufzeiten führen.

Die digitalen Eingänge verfügen über verschiedene Schaltschwellen, einstellbar über den Parameter [Geräteparameter / Digitale Eingänge / DI Slot Xx / Gruppe y] »Nennspannung«.

Für jede Gruppe lassen sich folgende Schaltschwellen festlegen:

• "24 VDC"

3.7.1 DI8-OR4 - Karte mit acht Digitalen Eingängen und 4 Ausgangsrelais

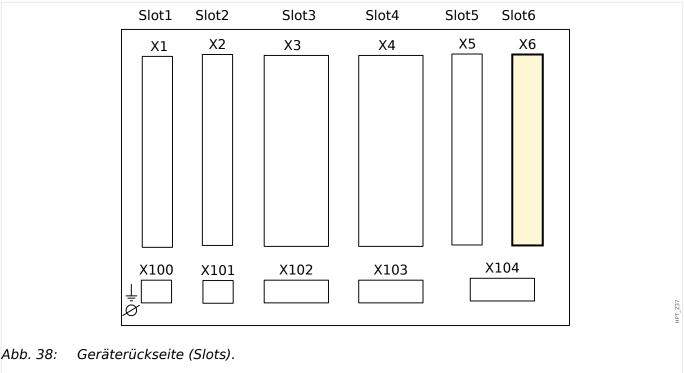
- "48 VDC"
- "60 VDC"
- "110 VDC"
- "230 VDC"
- "110 VAC"
- "230 VAC"

Wird an den digitalen Eingang eine Spannung größer 80% der parametrierten Schaltschwelle gelegt, so wird die Zustandsänderung erkannt (physikalische "1"). Wenn die Spannung unter 40% der parametrierten Schaltschwelle zurückfällt wird eine physikalische "0" erkannt.

Ausgangsrelais

Die Ausgangsrelais sind potenzialfreie Kontakte. Die Rangierung der Ausgangsrelais ist in

→3.14.3 Rangierung der Ausgangsrelais beschrieben. Die rangierbaren Signale entnehmen
Sie bitte dem "MCDLV4 Referenzhandbuch" (DOK-TD-MCDLV4, separates Dokument).


VORSICHT!

Beachten Sie die Strombelastbarkeit der Ausgangsrelais. Siehe Technische Daten (→13.1 Technische Daten).

3.8 Slot X6

• Multi-Input-Output-Karte

Der genaue Typ der verbauten Netzteilkarte und die Anzahl der darauf befindlichen Digitalen Eingänge ergibt sich aus dem Bestellschlüssel. Die unterschiedlichen Varianten haben einen unterschiedlichen Funktionsumfang.

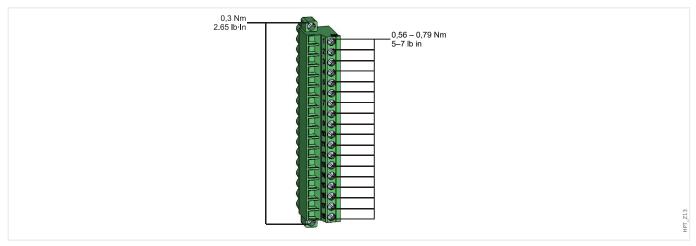
Verfügbare Baugruppen für diesen Slot:

- DI8: Karte mit acht Digitalen Eingängen.
- DI8-OR4: Karte mit acht Digitalen Eingängen und 4 Ausgangsrelais.

Die Kontakte aller Ausgangsrelais sind Schließer (Normally Open, Form A).

HINWEIS!

Die verfügbaren Kombinationen können dem Bestellschlüssel entnommen werden.


3.8.1 DI8 - Karte mit acht Digitalen Eingängen

WARNUNG!

Stellen Sie die korrekten Anzugsmomente sicher (siehe Diagramm).

Anschlussquerschnitt: min. 0,25 mm² ... max. 2,5 mm² mit oder ohne Aderendhülse.

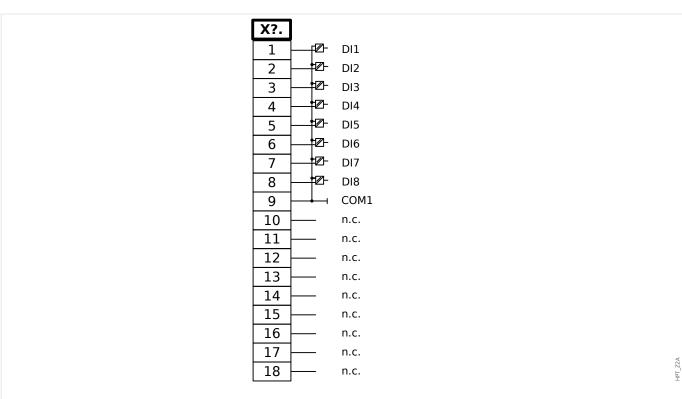
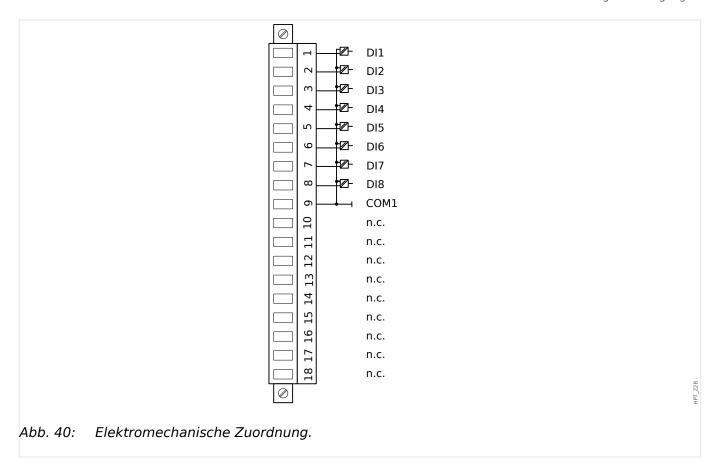



Abb. 39: Klemmenbelegung.

Digitale Eingänge

Diese Baugruppe verfügt über 8 gewurzelte digitale Eingänge.

Die Rangierung der digitalen Eingänge ist in →3.14.2 Konfigurierung der Digitalen Eingänge beschrieben.

Die verfügbaren Rangierungen entnehmen Sie bitte dem "MCDLV4 Referenzhandbuch" (MCDLV4-3.10-DE-REF, separates Dokument).

VORSICHT!

Wenn Gleichspannung für die Digitalen Eingänge verwendet wird, dann muss der »Minuspol« an die COM-Klemme (Wurzel) angeschlossen werden (COM1, COM2, COM3 – siehe Klemmenbezeichnung).

VORSICHT!

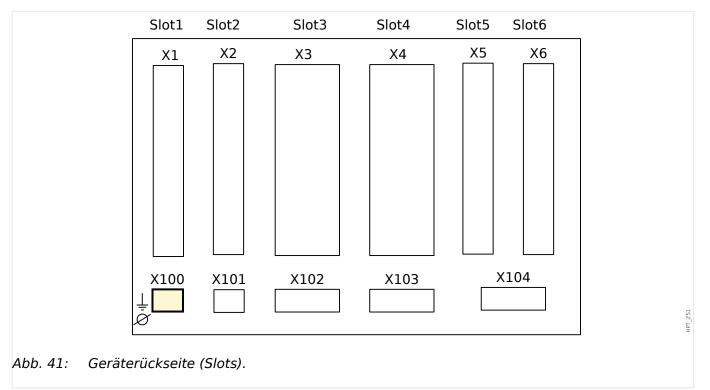
Parametrieren Sie den richtigen Spannungseingangsbereich für jede digitale Eingangsgruppe. Falsche Schaltschwellen können zu Fehlfunktionen/falschen Signallaufzeiten führen.

Die digitalen Eingänge verfügen über verschiedene Schaltschwellen, einstellbar über den Parameter [Geräteparameter / Digitale Eingänge / DI Slot Xx / Gruppe y] »Nennspannung«.

Für jede Gruppe lassen sich folgende Schaltschwellen festlegen:

• "24 VDC"

3 Hardware

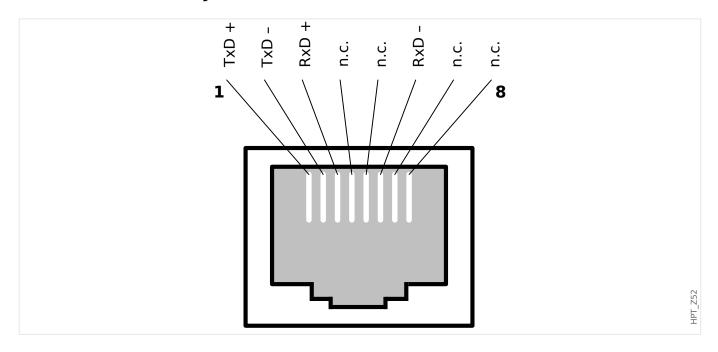

3.8.1 DI8 – Karte mit acht Digitalen Eingängen

- "48 VDC"
- "60 VDC"
- "110 VDC"
- "230 VDC"
- "110 VAC"
- "230 VAC"

Wird an den digitalen Eingang eine Spannung größer 80% der parametrierten Schaltschwelle gelegt, so wird die Zustandsänderung erkannt (physikalische "1"). Wenn die Spannung unter 40% der parametrierten Schaltschwelle zurückfällt wird eine physikalische "0" erkannt.

3.9 Slot X100: Ethernet-Schnittstelle

Schnittstelle ausgestattet ist.


Dem Bestellschlüssel kann entnommen werden, ob das Schutzgerät mit einer Ethernet-

HINWEIS!

Die verfügbaren Kombinationen können dem Bestellschlüssel entnommen werden.

3.9.1 Ethernet - RJ45

3.10 Slot X102

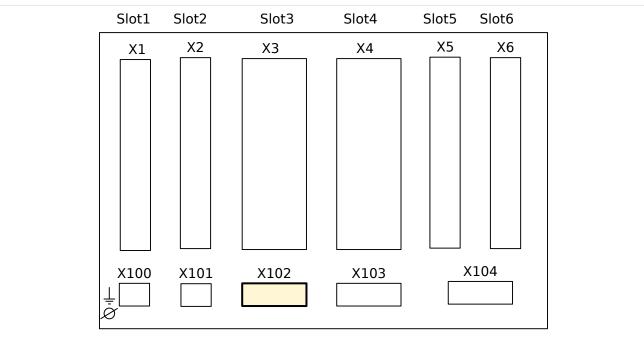


Abb. 42: Geräterückseite (Slots).

 In Slot X102 ist die LWL-Schnittstelle für die Schutzkommunikation (Modul »SchutzKom«) verbaut.

•

HINWEIS!

Es gibt zwei Typen der Schutzkommunikation, siehe den Bestellschlüssel und die Technischen Daten:

- Typschlüssel MCDLV4-2xxx**1**xx, ST-Anschluss, 820 nm multi mode, normale Reichweite,
- Typschlüssel MCDLV4-2xxx**0**xx, LC-Anschluss, 1310 nm mono mode, erhöhte Reichweite.

Es muss beachtet werden, dass diese zwei Typen nicht *miteinander* verbunden werden können, weil sie für die Schutzkommunikation zwei verschiedene (proprietäre) Kommunikationsprotokolle verwenden, die nicht miteinander kompatibel sind. Da diese Inkompatibilität software-bedingt ist, lässt sie sich nicht durch Hardware-Maßnahmen (etwa Einfügen eines optischen Konverters) beheben.

Sie müssen also sicherstellen, dass die beiden miteinander zu verbindenden MCDLV4 entweder beide eine ST-Schutzkommunikations-Schnittstelle oder beide eine LC-Schutzkommunikations-Schnittstelle aufweisen!

(Die zwei Ausführungen von LC-Modulen sind – mit Ausnahme unterschiedlicher Sendeund Empfangsstärken – miteinander kompatibel.)

3.10.1 Schutzkommunikation über LWL

HINWEIS!

Es gibt zwei Typen der Schutzkommunikation, siehe den Bestellschlüssel und die Technischen Daten:

- Typschlüssel MCDLV4-2xxx**1**xx, ST-Anschluss, 820 nm multi mode, normale Reichweite.
- Typschlüssel MCDLV4-2xxx0xx, LC-Anschluss, 1310 nm mono mode, erhöhte Reichweite.

Es muss beachtet werden, dass diese zwei Typen nicht *miteinander* verbunden werden können, weil sie für die Schutzkommunikation zwei verschiedene (proprietäre) Kommunikationsprotokolle verwenden, die nicht miteinander kompatibel sind. Da diese Inkompatibilität software-bedingt ist, lässt sie sich nicht durch Hardware-Maßnahmen (etwa Einfügen eines optischen Konverters) beheben.

Sie müssen also sicherstellen, dass die beiden miteinander zu verbindenden MCDLV4 entweder beide eine ST-Schutzkommunikations-Schnittstelle oder beide eine LC-Schutzkommunikations-Schnittstelle aufweisen!

(Die zwei Ausführungen von LC-Modulen sind – mit Ausnahme unterschiedlicher Sendeund Empfangsstärken – miteinander kompatibel.)

WARNUNG!

Blicken Sie niemals direkt in den Lichtstrahl, der vom LWL-Anschluss emittiert wird!

Eine Missachtung dieser Warnung kann ernste Augenverletzungen zur Folge haben.

3.10.1.1 Schutzkommunikation mit normaler Reichweite

Abb. 43: Lichtwellenleiter (LWL) mit ST-Anschluss *

3.10.1.2 Schutzkommunikation mit erhöhter Reichweite

RxD TxD

RxD TxD

Abb. 44: Lichtwellenleiter (LWL) mit LC-Anschluss für die Schutzkommunikation mit erhöhter Reichweite *

^{*} Verfügbarkeit hängt von der bestellten Geräteausstattung ab.

^{*} Verfügbarkeit hängt von der bestellten Geräteausstattung ab.

VORSICHT!

Nachdem der LC-Stecker (für die Schutzkommunikation mit erhöhter Reichweite) angeschlossen wurde, ist die Schutzkappe wieder zu befestigen.

Das Anzugsmoment beträgt 0,3 Nm.

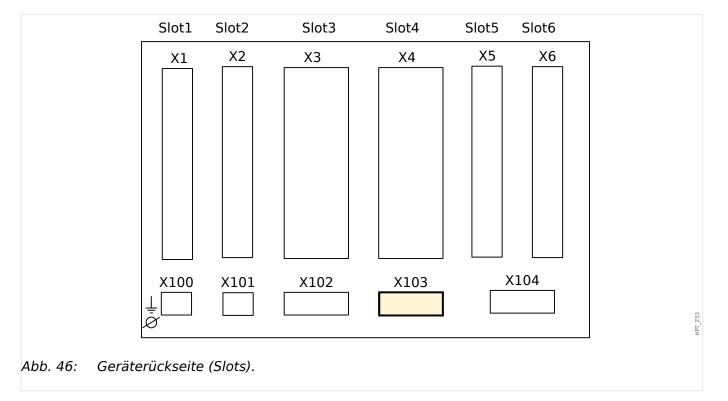
Ausbau des Kommunikationsmoduls

Abb. 45: Das eigentliche Kommunikationsmodul ist gesteckt und kann einfach herausgezogen werden.

Je nach Herstellungsjahr ist im MCDLV4 eines der folgenden Kommunikationsmodule verbaut:

- Avago AFCT-5765ATPZ (1310 nm)
- II-IV (Finisar) FTLF1323P1BTL (1310 nm)

Um zu prüfen, welches der beiden Typen verbaut ist, können Sie es einfach herausziehen (siehe Abbildung) und das Typenschild ablesen.


Die beiden Typen sind in jeder Hinsicht miteinander kompatibel, weisen allerdings unterschiedliche Sende- und Empfangsstärken auf. (Siehe auch die Technischen Daten.)

HINWEIS!

Speziell beim II-IV (Finisar) FTLF1323P1BTL kann es bei Verwendung mit *kurzen* Leitungslängen erforderlich sein, ein Dämpfungsglied in die Lichtwellenleiterverbindung einzufügen.

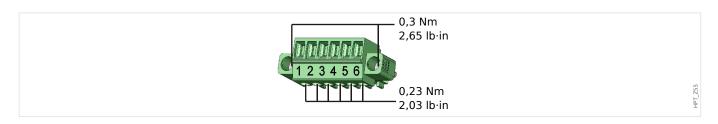
3.11 Slot X103: Datenkommunikation

Aus dem Bestellschlüssel ergibt sich, welche Datenkommunikationsschnittstelle in Slot **X103** verbaut ist. Der Funktionsumfang hängt davon ab, welche Schnittstelle verbaut ist.

Verfügbare Baugruppen auf diesem Slot:

- RS485-Klemmen für Modbus, DNP und IEC
- LWL-Schnittstelle für Profibus, Modbus, DNP und IEC
- D-SUB-Schnittstelle für Modbus, DNP und IEC
- D-SUB-Schnittstelle für Profibus
- LWL-Schnittstelle für Ethernet

HINWEIS!


Die verfügbaren Kombinationen können dem Bestellschlüssel entnommen werden.

3.11.1 RS485 (Modbus® RTU / IEC 60870-5-103 / DNP3 RTU)

WARNUNG!

Stellen Sie die korrekten Anzugsmomente sicher.

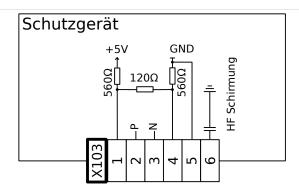


Abb. 47: Klemmenbelegung

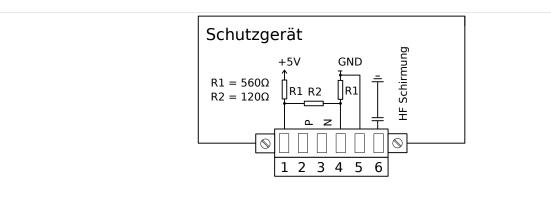
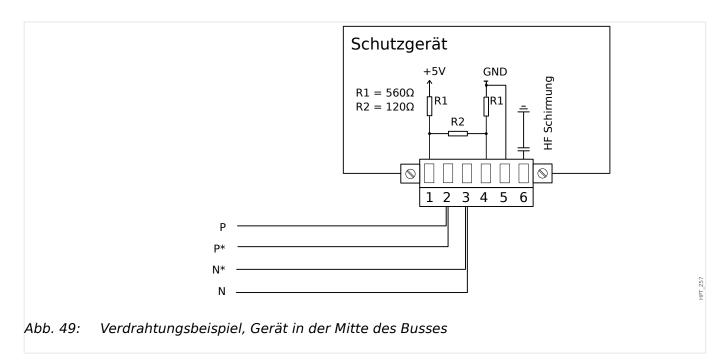


Abb. 48: Elektromechanische Zuordnung

Technische Daten zur RS485-Schnittstelle befinden sich in

→13.1.19 RS485 *.


Eine Übersicht der (Bestell-)Optionen bezüglich Kommunikationsprotokollen befindet sich in $\hookrightarrow \mathbb{R}$.

HINWEIS!

Das Modbus® / IEC 60870-5-103-Kommunikationskabel muss geschirmt sein. Der Schirm ist an der Erdungsschraube auf der Geräterückseite zu befestigen.

Die Kommunikation ist halbduplex.

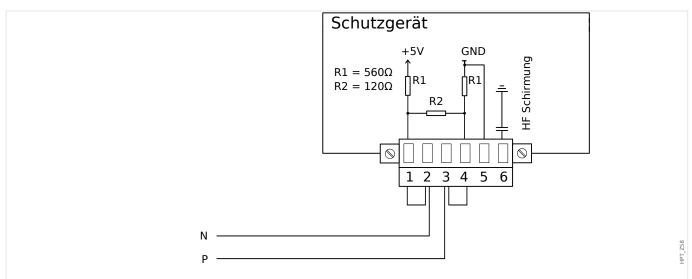


Abb. 50: Verdrahtungsbeispiel, Gerät am Ende des Busses. (Setzen von Brücken zum Aktivieren des integrierten Abschlusswiderstandes.)

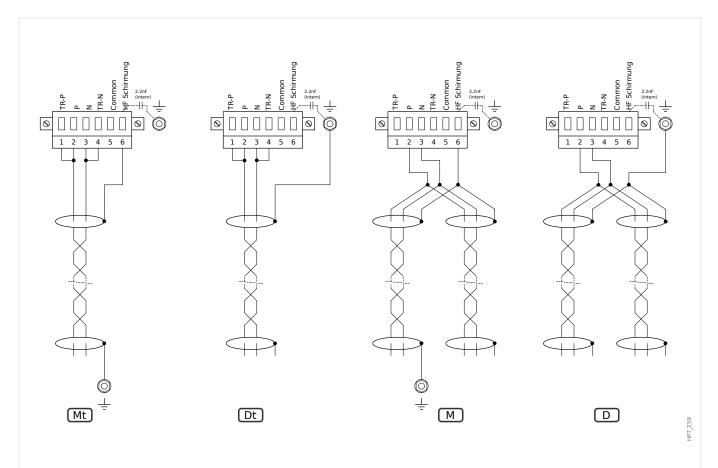


Abb. 51: Schirmungsoptionen (2-Draht + HF Schirmung)

- (Mt) Schirmung auf der Masterseite geerdet, Abschlusswiderstände verwendet.
- (Dt) Schirmung auf der Geräteseite geerdet, Abschlusswiderstände verwendet.
- (M) Schirmung auf der Masterseite geerdet, keine Abschlusswiderstände.
- (D) Schirmung auf der Geräteseite geerdet, keine Abschlusswiderstände.

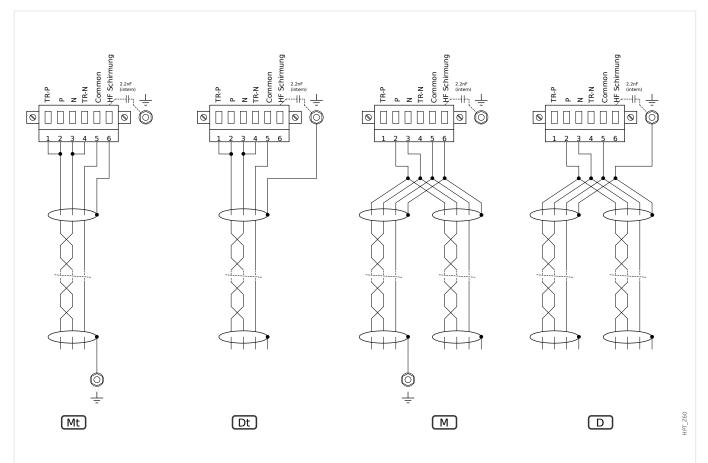


Abb. 52: Schirmungsoptionen (3-Draht + HF Schirmung)

- (Mt) Schirmung auf der Masterseite geerdet, Abschlusswiderstände verwendet.
- (Dt) Schirmung auf der Geräteseite geerdet, Abschlusswiderstände verwendet.
- (M) Schirmung auf der Masterseite geerdet, keine Abschlusswiderstände.
- (D) Schirmung auf der Geräteseite geerdet, keine Abschlusswiderstände.

3.11.2 Profibus DP/ Modbus® RTU / IEC 60870-5-103 über LWL

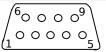
RXD TXD

O

O

ST-Anschluss

Abb. 53: Lichtwellenleiter - LWL, ST-Anschluss


WARNUNG!

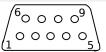
Blicken Sie niemals direkt in den Lichtstrahl, der vom LWL-Anschluss emittiert wird! Eine Missachtung dieser Warnung kann ernste Augenverletzungen zur Folge haben.

Die technischen Daten der Schnittstelle befinden sich in →13.1.20 LWL-Modul mit ST-Anschluss für die SCADA-Kommunikation *.

3.11.3 Profibus DP über D-SUB

HPT_Z62

D-SUB Belegung - Buchse


- 1: Erdung/Leitungsschirmung
- 3: RxD TxD P: High-Pegel
- 4: RTS-signal
- 5: DGND: Ground, neg. Potenzial der Versorgungsspannung
- 6: VP: pos. Potenzial der Versorgungsspannung
- 8: RxD TxD N: Low-Pegel

HINWEIS!

Das Kommunikationskabel muss geschirmt sein. Der Schirm ist an der Erdungsschraube auf der Geräterückseite zu befestigen.

3.11.4 Modbus® RTU / IEC 60870-5-103 über D-SUB

HPT_Z62

D-SUB Belegung - Buchse

- 1: Erdung/Leitungsschirmung
- 3: RxD TxD P: High-Pegel
- 4: RTS-signal
- 5: DGND: Ground, neg. Potenzial der Versorgungsspannung
- 6: VP: pos. Potenzial der Versorgungsspannung
- 8: RxD TxD N: Low-Pegel

HINWEIS!

Das Kommunikationskabel muss geschirmt sein.

3.11.5 Ethernet / TCP/IP über LWL

RXD TXD

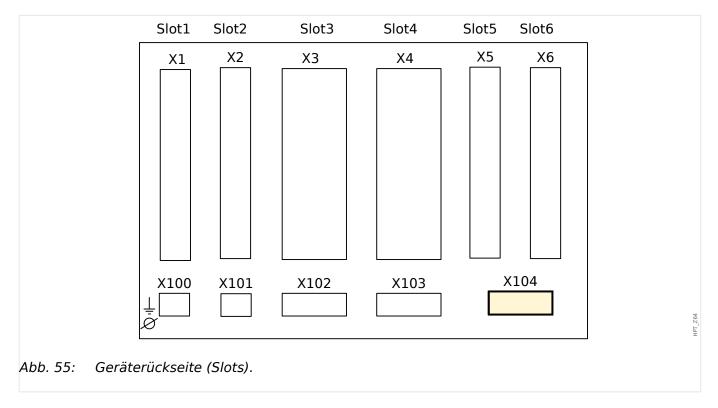
Abb. 54: Fibre Optics - FO, LC-Duplex-Anschluss.

VORSICHT!

Nachdem der LC-Stecker angeschlossen wurde, ist die Schutzkappe wieder zu befestigen.

Das Anzugsmoment beträgt 0,3 Nm.

WARNUNG!



Blicken Sie niemals direkt in den Lichtstrahl, der vom LWL-Anschluss emittiert wird!

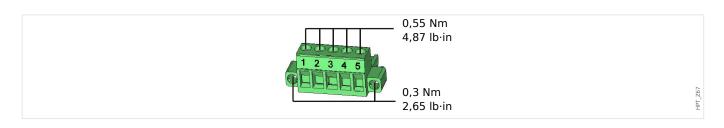
Eine Missachtung dieser Warnung kann ernste Augenverletzungen zur Folge haben.

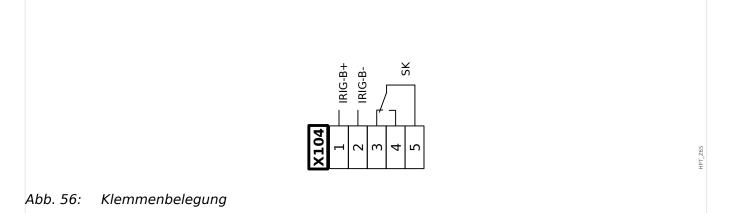
Die technischen Daten der Schnittstelle befinden sich in ⇔13.1.21 Optisches Ethernet-Modul mit LC-Anschluss *.

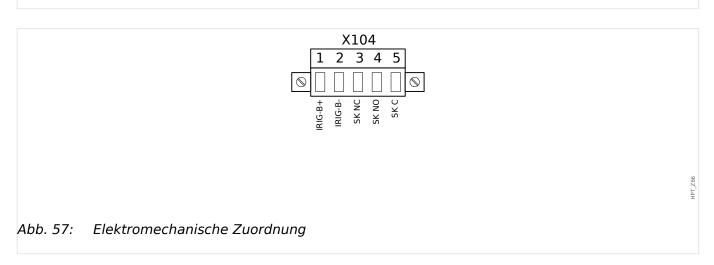
3.12 Slot X104: IRIG-B00X und Selbstüberwachungskontakt

Auf diesem Slot befinden sich die IRIG-B00X-Schnittstelle und der Selbstüberwachungskontakt.

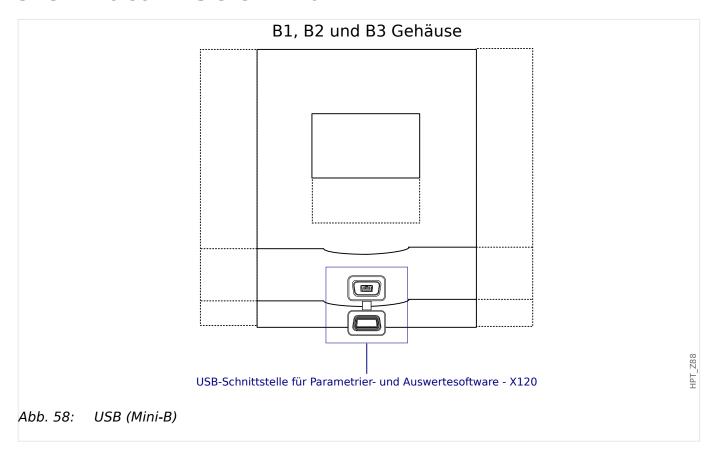
Verfügbare Baugruppen auf diesem Slot:


• IRIG-B00X und Selbstüberwachungskontakt


3.12.1 Selbstüberwachungskontakt (SK)/Life-Kontakt und IRIG-B00X


WARNUNG!

Stellen Sie die korrekten Anzugsmomente sicher.



Selbstüberwachungskontakt

Der Selbstüberwachungskontakt ("SK") kann nicht konfiguriert werden. Es handelt sich um einen Wechselkontakt, der abfällt, wenn das Gerät einen internen Fehler erkennt. Nach Aufschalten der Versorgungsspannung zieht der Kontakt nach Abschluss des Bootvorgangs (wenn der Schutz aktiv ist) an. Mit dem Anziehen des Selbstüberwachungskontakts wird auch die entsprechende LED aktiviert (siehe auch ⇔10 Selbstüberwachung).

3.13 PC-Schnittstelle - X120

3.14 Rangierung der Eingänge, Ausgänge und LEDs

3.14.1 Leuchtanzeigen (LEDs)

HINWEIS!

Drucken von LED-Beschriftungen für die Geräte-Front: Es steht eine PDF-Vorlage zum Erstellen von transparenten, selbstklebenden Aufklebern für die Beschriftung der LEDs mittels eines Laserdruckers zur Verfügung. (Empfehlung: AVERY Zweckform Art. Nr. 3482)

Es existieren zwei verschiedene Vorlagen "HPT-B1-Inserts.pdf" und "HPT-B2-Inserts.pdf" mit unterschiedlichen Größen für die Einschübe.

Die Vorlagen für die LED-Beschriftungen werden mit dem "DeviceDescriptionSetup" mitgeliefert oder können direkt auf unserer Internetseite abgerufen werden.

LED-Konfiguration

Die LEDs können in folgenden Menüzweigen parametriert werden: [Geräteparameter / LEDs / LEDs Gruppe A] (LEDs links vom Display) bzw. [Geräteparameter / LEDs / LEDs Gruppe B] (LEDs rechts vom Display).

VORSICHT!

Achten Sie beim Rangieren der LEDs darauf, dass es nicht zu funktionellen Überschneidungen durch Farben und Blinkcodes kommt.

HINWEIS!

In diesem Kapitel werden die LEDs links vom Display (Gruppe A) beschrieben.

Die in diesem Kapitel enthaltenen Informationen gelten analog, wenn Ihr Gerät noch über einen zweiten LED-Block (Gruppe B) rechts vom Display verfügt. Der einzige Unterschied liegt in den Menüpfaden "Gruppe A" bzw. "Gruppe B".

Abgesehen von der System-OK-LED, die nicht parametrierbar ist, können für jede LED die folgende Parameter eingestellt werden:

- »Rangierung der Meldungen«: Auf die Parameter [Geräteparameter / LEDs / LED x]
 »Rangierung 1« ... »Rangierung 5« kann jeweils ein Signal rangiert werden, wobei dann jedes dieser bis zu 5 Signale die "LED Nummer x" in definierter Weise aufleuchten bzw. blinken lässt.
- »Invertierung«: Die Parameter »Invertierung 1« ... »Invertierung 5«, sofern auf "Aktiv" eingestellt, invertieren das jeweilige rangierte Signal.

Wenn allerdings das zugehörige Aktivierungssignal **nicht** rangiert ist (d. h. »Rangierung n = -1), wird hierfür die Invertierung ignoriert, sodass die LED sich dann einfach wie bei einem digitalen (und nicht invertierten) "0"-Signal (Unwahr/Inaktiv) verhält.

• »Selbsthaltung«: Ist »Selbsthaltung« = "Aktiv" eingestellt, wird der durch die rangierten Signale bewirkte Zustand permanent gespeichert. (Siehe den Abschnitt "Selbsthaltung" weiter unten, →"Selbsthaltung".)

Ist hingegen die »Selbsthaltung« = "Inaktiv", nimmt die LED stets den aktuellen Zustand der rangierten Signale an.

- »Quittiersignal«: Diese Einstellung ist nur verfügbar, wenn »Selbsthaltung« =
 "Aktiv" ist. Das hier rangierte Signal setzt die Selbsthaltung der LED zurück.
 (Dies funktioniert allerdings nur, sofern alle auf »Rangierung n« rangierten Signale zurückgefallen sind.)
- »LED aktiv Farbe«: Farbe, in der die LED leuchtet, wenn mindestens eines der darauf rangierten Signale aktiv ist. Verfügbare Einstellwerte: "-" (Keine Rangierung), "grün", "rot", "rot bli", "grün bli".
- »LED inaktiv Farbe«: Farbe, in der die LED leuchtet, wenn **keines** der darauf rangierten Signale aktiv ist. (Die verfügbare Einstellwerte sind die gleichen wie für die aktive Farbe.)

»INFO« Taste

Über die »INFO«-Taste können jederzeit die auf eine LED rangierten Signale eingesehen werden.

LED-Übersichtsseite:

Wird die »INFO« Taste einmal gedrückt, gelangen Sie auf die »LED-Übersichtsseite« (für die linken LEDs).

Wird die »INFO« Taste ein zweites Mal gedrückt, gelangen Sie auf die »Übersichtsseite für die rechten LEDs« (wenn vorhanden).

Wird der Softkey "◄" (»links«) gedrückt, wird die jeweils vorherige Seite wieder aufgerufen, d. h. Sie verlassen die LED-Übersichtsseite.

Für jede LED zeigt die Übersichtsseite das jeweils erste zugeordnete Signal (bzw. "---", falls kein Signal rangiert ist).

Außerdem werden regelmäßig für kurze Zeit die verfügbaren Softkeys eingeblendet.

Wenn auf die LED mehrere Signale rangiert sind, wird dies durch drei Punkte "…" am rechten Rand gekennzeichnet. Die vollständige Liste aller Signale, die auf eine bestimmte LED rangiert sind, zeigt die »LED-Seite aller rangierten Signale«.

LED-Seite aller rangierten Signale, inklusive Mehrfachzuweisungen:

Benutzen Sie auf der Übersichtsseite die Softkeys "▲" (»auf«) und "▼" (»ab«), um eine LED auszuwählen.

Dann können Sie mit dem Softkey "▶" (»Rechts- / Eingabetaste«) auf die »LED-Seite aller rangierten Signale« wechseln.

Diese Seite zeigt alle rangierten Signale der gewählten LED sowie deren Status. Ein Pfeil zeigt auf die LED, deren Rangierungen gerade angezeigt werden.

Jede Zeile zeigt ein Signal an, das dieser LED zugeordnet ist, außerdem informiert eine (angekreuzte " \square " bzw. leere " \square ") Checkbox darüber, ob dieses Signal momentan wahr (aktiv) ist.

Über die Softkeys "▲" (»auf«) und "▼" (»ab«) können Sie zur jeweils nächsten / vorherigen LED wechseln.

Wird der Softkey "◄" (»links«) gedrückt, wird die jeweils vorherige Seite wieder aufgerufen, d. h. Sie gelangen zurück zur LED-Übersichtsseite.

Selbsthaltung

Wenn eine LED als selbsthaltend konfiguriert ist – »Selbsthaltung« = "Aktiv" –, dann wird sie den durch die rangierten Signale bewirkten Zustand grundsätzlich beibehalten, bis sie irgendwann quittiert wird. (Siehe "Quittiermöglichkeiten" weiter unten.)

Der Zustand einer LED in Selbsthaltung lässt sich nur zurücksetzen, nachdem alle darauf rangierten (Aktivierungs-)Signale zurückgefallen sind; dann gibt es die folgenden Rücksetzmöglichkeiten:

- Die LED wird quittiert, entweder durch den Anwender an der Bedieneinheit oder über die SCADA, siehe "Quittiermöglichkeiten" weiter unten.
- Das Ausgangsrelais wird durch dasjenige Signal quittiert (rückgesetzt), das auf den Parameter »Quittiersignal« rangiert wurde.
- Über die Einstellung »Selbsthaltung« = "Inaktiv" wird die Selbsthaltung nachträglich deaktiviert.
- Es ist gar kein (Aktivierungs-)Signal (mehr) rangiert, d. h. es werden (nachträglich) **alle** »Rangierung n« = "-" eingestellt.

Insbesondere sollte man wissen, dass der Zustand einer LED in Selbsthaltung **nicht** zurückgesetzt wird, wenn das MCDLV4 neu gestartet wird: Vielmehr wird die LED nach Ausfall und Wiederkehr der Versorgungsspannung wieder den "zuletzt gespeicherten Zustand" annehmen.

Quittiermöglichkeiten (Rücksetzmöglichkeiten)

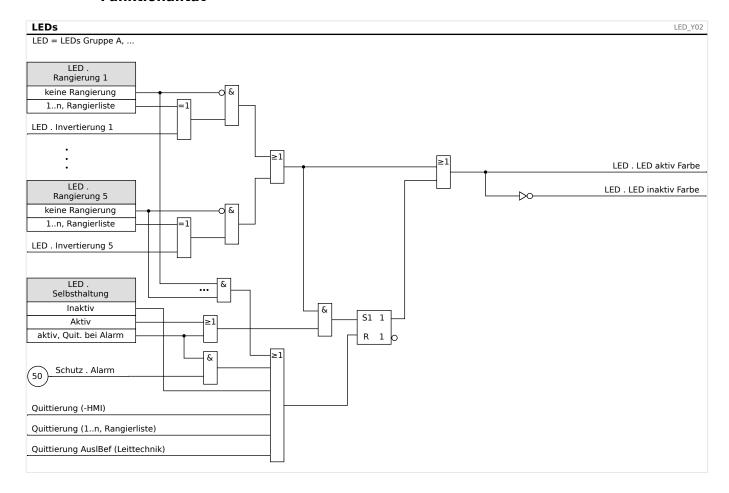
Das Rücksetzen des Zustandes einer LED in Selbsthaltung erfordert grundsätzlich immer eine Quittierung. Eine detallierte Beschreibung der Möglichkeiten findet sich hier:

→2.5 Quittierungen.)

LEDs können quittiert (d. h. zurückgesetzt) werden durch:

- Betätigen der »C«-Taste an der Bedieneinheit, siehe → "Manuelle Quittierung am Bedienfeld".
- Durch dasjenige Signal, das auf den Parameter »Quittiersignal« rangiert wurde.
- Alle LEDs können auf einmal quittiert werden, nämlich durch dasjenige Signal, das auf den Parameter [Geräteparameter / Quittierung] »Quit LED« rangiert wurde.
- Über die Leittechnik (SCADA) können alle LEDs auf einmal zurückgesetzt werden.
- Alle LEDs können auf einmal automatisch quittiert werden, nämlich im Falle eines Alarms von Seiten einer Schutzfunktion.

Die automatische Quittierung muss aktiviert werden über die Einstellung: [Geräteparameter / LEDs / LEDs Gruppe A / LED 1...n] »Selbsthaltung« = "aktiv, Quit. bei Alarm".


Anmerkung: Die beiden Optionen für das Rücksetzen aller LEDs auf einmal über Signal oder SCADA stehen nur mit der Einstellung [Geräteparameter / Quittierung] »Ex Quittierung« = "Aktiv" zur Verfügung.

Die letztgenannte Option für das automatische Rücksetzen durch eine Schutzanregung muss über die Einstellung [Geräteparameter / LEDs / LEDs Gruppe A / LED 1...n] »Selbsthaltung« = "aktiv, Quit. bei Alarm" aktiviert werden.

Siehe

2.5 Quittierungen für weitere Informationen.

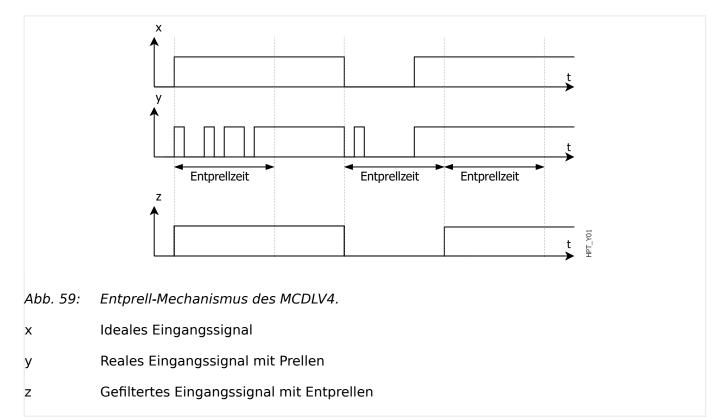
Funktionalität

Die System-OK-LED

Während des Bootvorganges blinkt die System-OK-LED grün. Nach Abschluss des Bootvorganges leuchtet die System OK LED dauerhaft grün. Dadurch wird signalisiert, dass der Schutz »aktiv« ist. Sie finden im Kapitel Selbstüberwachung und im *Troubleshooting Guide* weitere Informationen zu den Blinkcodes der System OK LED.

Die System-OK-LED ist nicht konfigurierbar.

3.14.2 Konfigurierung der Digitalen Eingänge

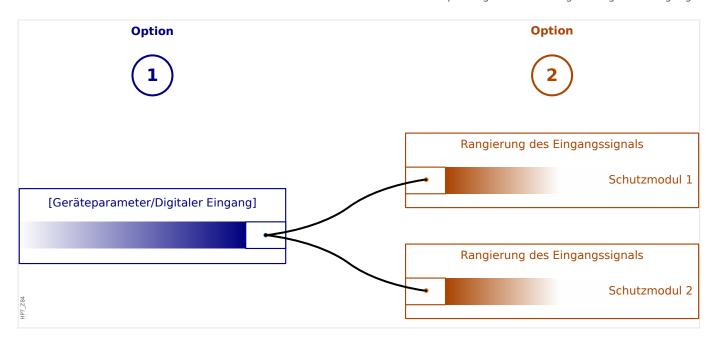

Die Status der digitalen Eingänge können im folgenden Menü überprüft werden: [Betrieb / Zustandsanzeige / Name der Baugruppe (z. B. "DI-8 X")]

Die digitalen Eingänge können konfiguriert werden unter: [Geräteparameter / Digitale Eingänge / Name der Baugruppe (z.B. "DI-8 X") / Gruppe X]

Für jeden digitalen Eingang sind folgende Parameter zu setzen:

• »Nennspannung« — Nennspannung (Schaltschwelle) des Digitalen Einganges.

- »Entprellzeit 1...n« Bei einem Zustandswechsel wird der Eingangswert unmittelbar übernommen und die Entprell-Zeitstufe gestartet. Während die Zeitstufe läuft, bleibt dieser Zustand stabil. Erst nach Ablauf der Entprellzeit wird ein weiterer Zustandswechsel übernommen und die Zeitstufe erneut gestartet.
- »Invertierung 1...n« Optionale Invertierung des Eingangssignals.


VORSICHT!

Zusätzlich, zu der über die Software einstellbaren Entprellzeit, gibt es zur Stabilisierung eine Hardware-bedingte Eingangsverzögerung von ~12ms. Diese muss für jede Zustandsänderung des Eingangs mitberücksichtigt werden.

3.14.2.1 Rangieren Digitaler Eingänge

Sie haben zwei Optionen um festzulegen wohin ein Digitaler Eingang wirken soll (zwei Optionen um Digitale Eingänge zu rangieren).

Option 1 - Einen Digitalen Eingang (einem/mehreren) Modulen zuweisen.

Hinzufügen einer Rangierung:

Sie können im Menü [Geräteparameter / Digitale Eingänge] einem Digitalen Eingang ein oder mehrere Ziele zuweisen auf die der Digitale Eingang wirken soll. Rufen Sie dazu den entsprechenden Digitalen Eingang auf (Pfeil rechts auf dem DI). Betätigen Sie den Softkey »Parametrieren/« . Wählen Sie »hinzufügen« und weisen Sie ein Ziel und ggf. weitere Ziele hinzu.

Löschen einer Rangierung:

Zum Löschen einer Rangierung an der Bedieneinheit wählen Sie wie oben beschrieben den Digitalen Eingang aus der bearbeitet werden soll.

Rufen Sie die Rangierungen auf (Pfeil rechts auf dem DI) und wählen Sie die Rangierung aus, die entfernt werden soll, d.h. diese muss mit dem Cursor markiert sein.

Durch den Softkey »Parametrieren« und Auswahl von »entfernen« kann die Rangierung an der Bedieneinheit nun nach Passworteingabe und Bestätigung entfernt werden.

Option 2 - Einem Moduleingang einen Digitalen Eingang zuweisen.

Gehen Sie in ein Modul. Weisen Sie nun dem Modul den Digitalen Eingang zu.

Beispiel: Ein Schutzmodul soll in Abhängigkeit des Zustands eines Digitalen Eingangs blockiert werden. Weisen Sie hierzu den gewünschten Digitalen Eingang einem Blockade-Parameter des Schutzmoduls (z. B. »ExBlo1«) zu.

3.14.2.2 Überprüfung der Zuordnung der Digitalen Eingänge

Um festzustellen, auf welche Ziele ein Digitaler Eingang bereits rangiert wurde gehen Sie wie folgt vor:

Wechseln Sie ins Menü [Geräteparameter / Digitale Eingänge].

Navigieren Sie den Digitalen Eingang an über den Sie mehr erfahren möchten.

3 Hardware

3.14.2.2 Überprüfung der Zuordnung der Digitalen Eingänge

Wenn ein Digitaler Eingang mehr als einmal verwendet wird (wenn er auf mehrere Ziele wirkt), dann wird das an der Bedieneinheit durch ein "…" hinter dem Digitalen Eingang indiziert. Rufen Sie diesen Digitalen Eingang durch »Pfeil rechts« auf, um die Liste der Ziele dieses Digitalen Eingangs einzusehen.

3.14.3 Rangierung der Ausgangsrelais

Über Melderelais können die Zustände der Modulausgänge bzw. Meldungen/ Schutzfunktionen (z. B. rückwärtige Verriegelung) weitergegeben werden. Die Melderelais sind potenzialfreie Wechselkontakte (können als Ruhe- oder Arbeitsstromkontakt genutzt werden). Jedem Melderelais können bis zu 7 Funktionen aus der »Rangierliste« zugeordnet werden.

Die Zustände der Melderelais werden in folgendem Menüpfad angezeigt: [Betrieb / Zustandsanzeige / Name der Baugruppe (z. B. K-3 X)]

Die Melderelais können in folgendem Menüpfad konfiguriert werden: [Geräteparameter / Ausgangsrelais / Name der Baugruppe (z. B. K-3 X)]

Für jedes Ausgangsrelais sind folgende Parameter zu setzen:

- »Rangierung der Meldungen«: Auf die Parameter »Rangierung 1« ... »Rangierung 7« kann jeweils ein Signal rangiert werden (ODER-Verknüpfung).
- »Invertierung«: Die Parameter »Invertierung 1« ... »Invertierung 7«, sofern auf "Aktiv" eingestellt, invertieren das jeweilige rangierte Signal.

Wenn allerdings das zugehörige Aktivierungssignal **nicht** rangiert ist (d. h. »Rangierung $n \ll = ,-$ ") wird hierfür die Invertierung ignoriert, sodass das Ausgangsrelais dann einfach wie bei einem digitalen (und nicht invertierten) "0"-Signal (Unwahr/Inaktiv) inaktiv bleibt.

• Der (Gesamt-)Zustand des Ausgangsrelais kann über die Einstellung »Invertierung« = "Aktiv" invertiert werden (Ruhe-/Arbeitsstromprinzip).

Wenn allerdings **gar kein** Aktivierungssignal rangiert ist (d. h. es sind **alle** *Rangierung n <= ,-" eingestellt) wird diese Gesamt-Invertierung ignoriert, sodass dann der (Gesamt-)Zustand des Ausgangsrelais einfach wie bei einem digitalen (und nicht invertierten) "0"-Signal (Unwahr/Inaktiv) ist.

- Über den Parameter »Arbeitsprinzip« wird festgelegt, ob das Ausgangsrelais im Arbeitsstrom- oder Ruhestromprinzip arbeitet.
- »Selbsthaltung«: Ist »Selbsthaltung« = "Aktiv" eingestellt,wird der durch die Meldungen »gesetzte« Zustand des Melderelais bzw. des Meldekontaktes permanent gespeichert. (Siehe den Abschnitt "Selbsthaltung" weiter unten, ↔ "Selbsthaltung".)

Ist hingegen die *»Selbsthaltung«* = "Inaktiv", nimmt das Melderelais bzw. der Meldekontakt nach Ablauf der Mindesthaltezeit den Zustand der auf sie rangierten Signale ein.

Das Melderelais kann erst quittiert werden, nachdem die Signale, die zum »Setzen« des Relais geführt haben, wieder zurückgefallen sind und nachdem die Mindesthaltezeit »t-Aus Verz« abgelaufen ist.

• *»t-Halte«*: Die Mindesthaltezeit gewährleistet bei einem Signalwechsel, dass das Relais mindestens für diese Zeit angezogen bzw. abgefallen bleibt.

HINWEIS!

Das System-Ok-Relais (Supervision Contact) kann nicht parametriert werden.

Selbsthaltung

Wenn ein Ausgangsrelais als selbsthaltend konfiguriert ist – »Selbsthaltung« = "Aktiv" –, dann wird es den jeweiligen Zustand grundsätzlich beibehalten, bis es irgendwann quittiert wird. (Siehe "Quittiermöglichkeiten" weiter unten.)

Ein Ausgangsrelais in gehaltenem Zustand lässt sich nur zurücksetzen, nachdem alle darauf rangierten (Aktivierungs-)Signale zurückgefallen sind; dann gibt es die folgenden Rücksetzmöglichkeiten:

- Das Ausgangsrelais wird quittiert, entweder durch den Anwender an der Bedieneinheit, oder über die SCADA, siehe "Quittiermöglichkeiten" weiter unten.
- Das Ausgangsrelais wird durch dasjenige Signal quittiert (rückgesetzt), das auf den Parameter »Quittierung« rangiert wurde.
- Über die Einstellung »Selbsthaltung« = "Inaktiv" wird die Selbsthaltung nachträglich deaktiviert.
- Es ist gar kein (Aktivierungs-)Signal (mehr) rangiert, d. h. es werden (nachträglich) **alle** »Rangierung n« = "-" eingestellt.

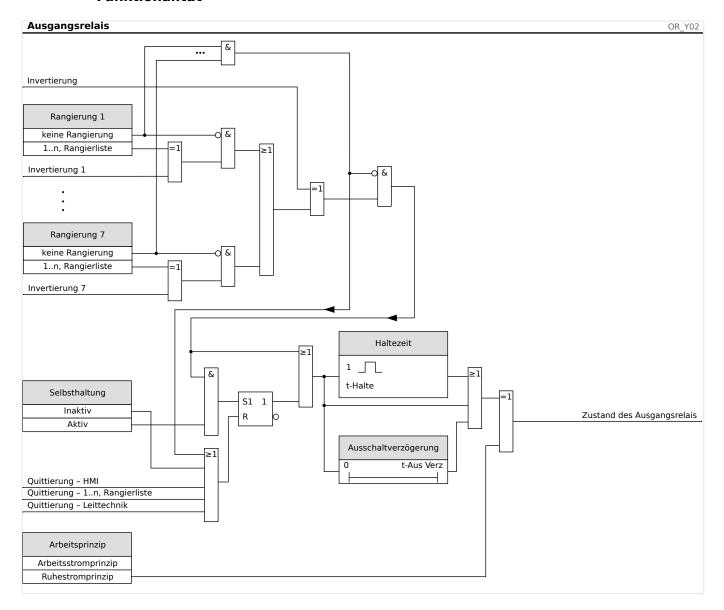
Insbesondere sollte man wissen, dass ein Ausgangsrelais in gehaltenem Zustand **nicht** zurückgesetzt wird, wenn das MCDLV4 neu gestartet wird: Vielmehr wird das Ausgangsrelais nach Ausfall und Wiederkehr der Versorgungsspannung wieder in die "zuletzt gespeicherte Position" zurückkehren.

Quittiermöglichkeiten

Das Rücksetzen der Position eines Ausgangsrelais in Selbsthaltung erfordert grundsätzlich immer eine Quittierung. Eine detallierte Beschreibung der Möglichkeiten findet sich hier:
→2.5 Quittierungen.)

Ausgangsrelais können durch die folgenden Maßnahmen guittiert werden:

- Betätigen der »C«-Taste an der Bedieneinheit.
- Durch dasjenige Signal, das auf den Parameter »Quittierung« rangiert wurde.
- Alle Ausgangsrelais können auf einmal quittiert werden, nämlich durch dasjenige Signal, das auf den Parameter [Geräteparameter / Quittierung] »Quit K« rangiert wurde.
- Über die Leittechnik (SCADA) können alle Ausgangsrelais auf einmal zurückgesetzt werden.


Anmerkung: Die letztgenannten beiden Optionen, über die alle Ausgangsrelais auf einmal zurückgesetzt werden, stehen nur mit der Einstellung [Geräteparameter / Quittierung] »Ex Quittierung« = "Aktiv" zur Verfügung.

WARNUNG!

Der Schaltzustand von Ausgangsrelais kann zu Testzwecken erzwungen oder gesperrt werden (Inbetriebnahmeunterstützung, siehe auch: →11.3.3 Sperren der Ausgangsrelais, →11.3.4 Erzwungener Schaltzustand der Ausgangsrelais).

Funktionalität

3.14.3.1 Selbstüberwachungs-/Systemkontakt

Das System-OK-Melderelais (SK) ist der Systemkontakt des MCDLV4.

Der Einbauort des System-OK-Melderelais (SK) ist abhängig von der Gehäusevariante. Siehe Anschlussbild des MCDLV4.

Das System-OK-Relais ist nicht parametrierbar. Der Selbstüberwachungskontakt ist ein Arbeitsstromkontakt. Er zieht an, wenn das Gerät keinen internen Fehler aufweist. Während das Gerät bootet, bleibt das System-OK-Relais (SK) abgefallen. Ist das System ordnungsgemäß hochgefahren, zieht das Relais an. Die System-OK-LED funktioniert analog dazu (siehe →10 Selbstüberwachung).

4 Kommunikation - SCADA-Protokolle

4.1 SCADA-(Kommunikations-)Einstellungen

Die verfügbaren SCADA-Protokolle hängen von der jeweils bestellten Hardware-Variante ab (siehe $\hookrightarrow 2.2.1$ Bestellschlüssel, $\hookrightarrow \mathbb{R}$).

Zunächst muss eingestellt werden, welches der verfügbaren Kommunikationsprotokolle eingesetzt werden soll. Dies geschieht, indem der Einstellparameter [Projektierung / Projektierte Elemente] »Protokoll« auf das gewünschte Protokoll eingestellt wird.

Anschließend müssen im Allgemeinen noch protokollspezifische Einstellungen vorgenommen werden.

4.2 TCP/IP-Einstellungen

HINWEIS!

Es kann nur dann eine TCP/IP-Verbindung zum Gerät hergestellt werden, wenn das Gerät über eine Ethernet-Schnittstelle verfügt (RJ45).

Wenden Sie sich zur Einrichtung der Netzwerkverbindung an Ihren IT-Administrator.

In Menü [Geräteparameter / TCP/IP / TCP/IP Konfig] werden die TCP/IP-Kommunikationseinstellungen gesetzt.

Es müssen die folgenden Einstellungen festgelegt werden:

• »TCP/IP« - Dieser Parameter kann auf "Aktiv" gesetzt werden. (Der Vorgabewert ist "Inaktiv", d. h. das Protokoll wird nicht eingesetzt.)

HINWEIS!

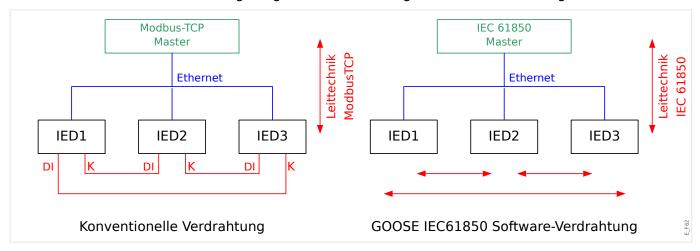
Die übrigen TCP/IP-Einstellungen – siehe unten – können erst getätigt werden, **nachdem** »TCP/IP« auf "Aktiv" gestellt wurde.

- »IP-Adresse« die IPv4-Adresse des MCDLV4.
- »Subnetzmaske« die Subnetzmaske, die den IP-Adressraum des lokalen Netzwerkes festlegt.
- »Standardgateway« das Gateway wird für alle Verbindungen kontaktiert, deren IP-Adressen außerhalb des lokalen Netzwerkes liegen (d. h. die Zieladressen liegen nicht in dem Bereich, der durch die Subnetzmaske definiert wird).

Die erstmalige Einstellung der TCP/IP-Parameter kann am Gerät oder über Smart view mit USB-Verbindung vorgenommen werden.

Weiterhin gibt es im Menü [Geräteparameter / TCP/IP / Erweiterte Einstellungen] noch einige spezielle Einstellungen, siehe Referenzhandbuch. Im Allgemeinen wird man diese auf dem jeweiligen Vorgabewert belassen können.

4.3 IEC 61850


Einleitung

Um die Wirkungsweise und Funktion einer Unterstation mit IEC 61850 Automatisierungs-Umgebung zu verstehen, ist es hilfreich, deren Inbetriebnahmeschritte mit denen einer konventionellen Unterstation in einer Modbus TCP Umgebung zu vergleichen.

In der konventionellen Unterstation kommunizieren die einzelnen Schutz- und Steuergeräte (IED = Intelligent Electronic Devices) mit der übergeordneten Leitstelle (Master) in vertikaler Richtung über SCADA. Die horizontale Kommunikation unter den Geräten erfolgt ausschließlich über die Verdrahtung von Ausgangsrelais (AR) und digitalen Eingängen (DI) untereinander.

In einer IEC 61850-Umgebung hingegen erfolgt die Kommunikation der Geräte untereinander digital (über Ethernet), mittels des Dienstes GOOSE (Generic Object Oriented Substation Event). Mit diesem Dienst werden Informationen über Ereignisse zwischen den Geräten übermittelt. Damit dieses funktioniert, muss jedes Gerät über die Funktionen und Eigenschaften der anderen Geräte Bescheid wissen. In jedem IEC 61850-fähigen Gerät ist eine Beschreibung der eigenen Funktionen und Kommunikationsfähigkeiten hinterlegt (Instantiated IED Description, IID).

Mit Hilfe einer Software (Substation Configuration Tool) zur Beschreibung der Struktur einer Anlage, Zuordnung der Geräte zur Primärtechnik usw. wird eine virtuelle Verdrahtung der Geräte untereinander und mit anderen Schaltgeräten der Unterstation durchgeführt. Es entsteht eine Konfigurationsbeschreibung der Unterstation (Station Configuration Description) in Form einer Datei (*.SCD). Diese Datei muss anschließend jedem einzelnen Gerät übermittelt werden. Damit sind die Geräte in der Lage autark untereinander zu kommunizieren, Verriegelungen zu berücksichtigen und Schalthandlungen auszuführen.

Inbetriebnahmeschritte für eine konventionelle Anlage mit Modbus TCP-Umgebung:

- · Geräte parametrieren
- Ethernet-Verdrahtung
- TCP/IP-Einstellungen in den Geräten vornehmen
- Verdrahtung gemäß Stromlaufplan durchführen

Inbetriebnahmeschritte für eine Anlage mit IEC 61850-Umgebung:

- · Geräte parametrieren
- Ethernet-Verdrahtung

• TCP/IP-Einstellungen in den Geräten vornehmen

IEC 61850-Konfiguration (Software-Verdrahtung) durchführen:

- IID-Datei für jedes Gerät exportieren
- Konfiguration der Unterstation (SCD-Datei erzeugen)
- SCD-Datei an jedes Gerät übermitteln

IEC 61850 Edition 1 bzw. Edition 2

Das MCDLV4 unterstützt (seit Version 3.10) sowohl Edition 1 als auch Edition 2 des SCADA-Protokolls IEC 61850. In Bezug auf Einstellparameter ist hierbei nichts zu beachten, insbesondere ist die Edition nicht explizit einzustellen, sondern das MCDLV4 verwendet automatisch die korrekte Edition in Abhängigkeit von der Leitstelle.

Es könnten allerdings einige Details zu beachten sein, vor allem in Netzwerk-Umgebungenin denen beide Editionen eingesetzt werden. Zum Beispiel unterstützt die Edition 1 des IEC 61850-Protokolls nicht die "Fixed Offset"-Syntax innerhalb eines GOOSE-Control-Blocks. Vergewissern Sie sich daher, dass die "Fixed Offset"-Syntax **nicht** verwendet wird, falls beide IEC 61850-Editionen in einer Leitstelle verwendet werden und GOOSE-Messages auch von den Edition 1-Geräten empfangen werden sollen.

Erzeugen / Exportieren einer gerätespezifischen IID-/ICD-Datei

In jedem HighPROTEC-Gerät, das IEC 61850 unterstützt, ist eine Beschreibung der eigenen Funktionen und Kommunikationsfähigkeiten in Form einer IID-/ICD-Datei hinterlegt (Instantiated IED Description, IED Capability Description). Diese Datei kann mittels Smart view exportiert und für die Konfiguration der Unterstation verwendet werden.

Siehe Kapitel "IEC 61850" im Smart view-Handbuch.

HINWEIS!

Der Inhalt der exportierten IID-Datei hängt von den jeweils aktiven Parameter-Einstellungen ab.

Außerdem ist zu beachten, dass sich die Dateistruktur geändert hat:

Beginnend mit Version 5.30 von *Smart view* enthält ein exportiertes ICD alle vom Gerät unterstützten Logical Nodes, wohingegen ein IID nur diejenigen Logical Nodes enthält, die im Gerät tatsächlich konfiguriert, also aktiv, sind.

In früheren Versionen von *Smart view* fehlte allerdings diese Unterscheidung, man konnte nur ein ICD exportieren, und dieses ICD enthielt dann nur die konfigurierten Logical Nodes, d. h. es hatte den Inhalt eines jetzigen IID.

Erzeugen / Exportieren einer beispielhaften .SCD-Datei

Smart view kann eine beispielhafte SCD-Datei mit der Beschreibung der Funktionen und Kommunikationsfähigkeiten des verbundenen HighPROTEC-Gerätes erzeugen.

Siehe Kapitel "IEC 61850" im Smart view-Handbuch.

Konfiguration der Unterstation, Erstellen der .SCD-Datei (Station Configuration Description)

Die Konfiguration der Unterstation, d. h. die Verknüpfung aller logischen Knoten (logical nodes) der Schutz-, Steuer- und Schaltgeräte erfolgt in der Regel mit einem "Substation

Configuration Tool". Dafür müssen die IID-Dateien aller in die IEC 61850-Umgebung eingebundenen Geräte zur Verfügung stehen. Das fertige Resultat der stationsweiten "Software-Verdrahtung" kann als SCD-Datei exportiert werden.

Geeignete Substation Configuration Tools (SCT) erhalten Sie beispielsweise bei folgenden Firmen:

- H&S, Hard- & Software Technologie GmbH & Co. KG, Dortmund (Germany) (www.hstech.de).
- Applied Systems Engineering Inc. (www.ase-systems.com)

Importieren der .SCD-Datei in das Gerät

Nachdem die Konfiguration der Unterstation abgeschlossen ist, muss die SCD-Datei jedem beteiligten Gerät übermittelt werden.

Siehe Kapitel "IEC 61850" im Smart view-Handbuch.

WARNUNG!

Bei Änderungen der Konfiguration einer Unterstation muss in der Regel eine neue SCD-Datei erstellt werden. Diese muss zwingend an alle Geräte mittels *MCDLV4* übermittelt werden. Wird diese Übermittlung vergessen, sind IEC 61850-Fehlfunktionen die Folge.

Sofern Geräte nach Abschluss der Unterstationskonfiguration umparametriert werden, hat das ggf. Änderungen in der dazugehörigen IID-Datei zur Folge – dies wiederum kann ein Update der SCD-Datei erforderlich machen.

IEC 61850 - Virtuelle Ausgänge

Zusätzlich zu den standardisierten "Logical Node" Status-Informationen können bis zu 64 weiteren Status-Informationen auf 64 Virtuelle Ausgänge rangiert werden. Dies erfolgt im Menü [Geräteparameter / IEC 61850 / Virt. Ausg. 1...4].

IEC 61850 - Virtuelle Eingänge

Haben Sie in der SCD-Datei einen INPUT für einen GOOSE-Subscriber definiert, wird der Status des Inputs unter [Betrieb / Zustandsanzeige / IEC 61850 / VirtuellerEingang] »GOSINGGIO[1...4].Ind1...32.stVal« angezeigt. Für jedes Status-Bit gibt es ein entsprechendes Quality-Bit unter [Betrieb / Zustandsanzeige / IEC 61850 / VirtuellerEingang] »GOSINGGIO[1...4].Ind1...32.q«.

GOOSE-Status

Den Status der GOOSE-Verbindung können Sie unter [Betrieb / Zustandsanzeige / IEC 61850 / Status] »All Goose Subscriber active« kontrollieren. Dieser fasst die *Quality* der Virtuellen Eingänge (siehe oben) zusammen.

4.4 DNP3

Mittels des DNP-Protokolls (*Distributed Network Protocol*) können Informationen zwischen der Leittechnik/SCADA-System (Master) und IEDs (Intelligenten Elektronischen Geräten) ausgetauscht werden.

Das DNP-Protokoll wurde zunächst für serielle Kommunikation entwickelt. In Rahmen der Weiterentwicklung des DNP Protokolls bietet es nun auch TCP- und UDP-basierte Kommunikation über ein Ethernet-Netzwerk.

DNP-Projektierung

Abhängig von der bestellten Gerätevariante des Schutzgeräts kann zwischen bis zu drei DNP-Kommunikationsoptionen in der Projektierung gewählt werden.

Wechseln Sie in das Menü [Projektierung / Projektierte Elemente] und wählen die gewünschte DNP-Kommunikationsvariante aus (Verfügbarkeit hängt vom Gerätetyp ab).

- DNP3 RTU (über serielle Schnittstelle)
- DNP3 TCP (über Ethernet)
- DNP3 UDP (über Ethernet)

DNP-Protokoll allgemeine Einstellungen

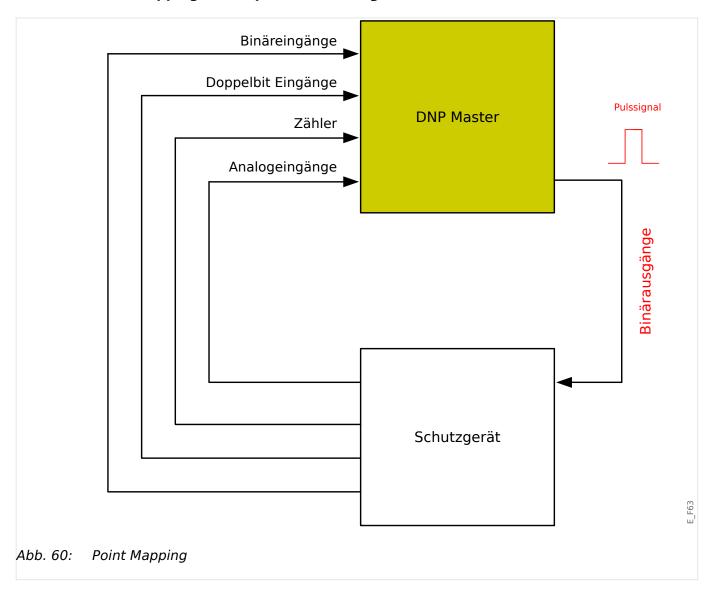
HINWEIS!

Bitte beachten Sie, dass "Unangefordertes Übertragen" (Unsolicited Reporting) nicht im Zusammenhang mit serieller Kommunikation verwendet werden kann, wenn mehrere Slaves an eine serielle Kommunikation angebunden sind (Kollisionsgefahr). Verwenden Sie in diesem Fall kein "Unangefordertes Übertragen" für DNP RTU.

"Unangefordertes Übertragen" (Unsolicited Reporting) ist auch mit serieller Kommunikation möglich, wenn jeder Slave über eine eigene serielle Kommunikation an den Master angebunden ist. Das bedeutet, der Master muss über eine eigene serielle Schnittstelle für jeden Client verfügen (Multi-Seriell-Karten).

Wechseln Sie ins Menü [Geräteparameter / DNP3 / Kommunikation].

Stellen Sie die allgemeinen Einstellungen passend zu den Anforderungen Ihrer Leittechnik bzw. Ihres Scada-Systems ein.


Selbst-Adressierung (Self Addressing) ist verfügbar für DNP-TCP. Das bedeutet, dass die ID für das Master-System und die Slaves automatisch erkannt werden.

HINWEIS!

Einige Meldungen (die nur für eine kurze Zeit aktiv sind) müssen durch die Leittechnik/ SCADA separat quittiert werden (z.B. Auslösesignale).

Point Mapping (Datenpunktzuordnung)

HINWEIS!

Bitte berücksichtigen Sie, dass die Bezeichnungen für Ein- und Ausgänge aus Sicht des Master-Systems festgelegt werden. Dies ist eine Vorgabe des DNP-Protokolls.

Das bedeutet: Werden z. B. Digitale Eingänge in den Geräteparametern des DNP-Protokolls parametriert, handelt es sich hierbei um die "Digitalen Eingänge" des Masters.

Wechseln Sie ins Menü [Geräteparameter / DNP3 / Point map]. Wenn die allgemeinen Einstellungen parametriert sind, ist im nächsten Schritt das Point-Mapping (Rangierung) vorzunehmen.

- Binäreingänge (Statusmeldungen, die an das Master-System gesendet werden):
 - Rangieren Sie das benötigte Statussignal (z. B. »Schutz . Ausl« auf einen der Parameter [Geräteparameter / DNP3 / Point map / Digitale Eingänge] »Binärer Eingang 0...63«.
- Doppel-Bit-Eingänge (Double Bit Inputs, Statusmeldungen der Schaltgeräte)

Rangieren Sie das benötigte Signal (z. B. die Stellungsmeldung eines Leistungsschalters »SG[1] . Pos« auf einen der Parameter [Geräteparameter / DNP3 / Point map / Doppel Bit Eingang] »Double Bit DI 0...5«.

• Zähler (Zähler, die an das Master-System übermittelt werden)

Rangieren Sie den benötigten Zähler (z.B. die Anzahl Betriebsstunden »Sys . Betriebsstunden Z« auf einen der Parameter [Geräteparameter / DNP3 / Point map / Zähler] »Double Bit DI 0...7«.

• Analogeingänge (z. B. Messwerte, die an das Master-System übermittelt werden). Bitte berücksichtigen Sie, dass Fließkomma-Werte als Integer-Werte übertragen werden müssen. Das bedeutet, dass diese mit einem Skalierungsfaktor multipliziert werden müssen, damit diese im richtigen (Integer-)Format vorliegen.

Rangieren Sie den benötigten Wert (z.B. den Leiterstrom »StW . IL1« auf einen der Parameter [Geräteparameter / DNP3 / Point map / Analogeingang] »Analogwert 0... 31«.

Hierfür definieren Sie anschließend die Skalierung: [Geräteparameter / DNP3 / Point map / Analogeingang] »Skalierungsfaktor 0...31«.

Dann legen Sie den *Deadband*-Wert fest: [Geräteparameter / DNP3 / Point map / Analogeingang] »*Totband 0...31*«. Der *Deadband*-Wert definiert die Wert-Änderung, ab der das Schutzgerät den aktuellen Wert nochmals überträgt. Der *Deadband*-Wert muss immer in Prozent des *Maximalwertes* angegeben werden. Siehe hierzu die Beispiele in ↔4.4.2 Deadband-Werte beim DNP3-Protokoll.

Verwenden Sie Binärausgänge, um z.B. LEDs oder Relais im Schutzgerät zu steuern (mittels Logik).

Vermeiden Sie Lücken (Gaps) in der Konfiguration/Rangierung des DNP-Protokolls, um die Übertragungsgeschwindigkeit zu optimieren. Das bedeutet, lassen Sie in der Konfiguration zwischen verwendeten Ein- und Ausgängen keine unverwendeten Ein- oder Ausgänge. (Beispiel: Verwenden Sie nicht den Binärausgang 1 und 3, während 2 nicht verwendet wird.)

4.4.1 Anwendungsbeispiel - Setzen eines Ausgangsrelais

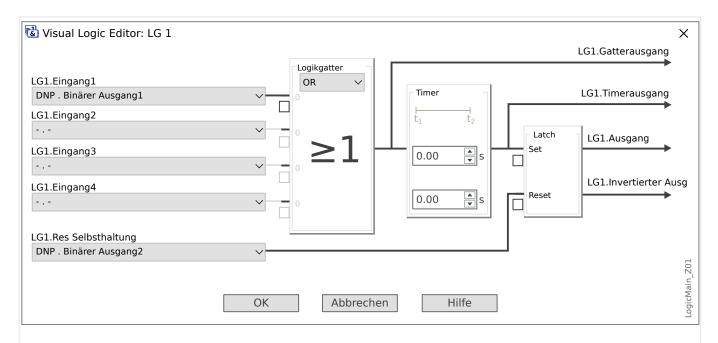


Abb. 61: Einstellbeispiel aus Smart view, um einen statischen Zustand aus einem DNP-Ausgangssignal zu erhalten.

Weil die "Digitalen Ausgangssignale" des DNP-Protokolls nur in Form von Pulssignalen ausgegeben werden, können diese nicht direkt zum Schalten von Ausgangsrelais verwendet werden (entsprechend der DNP Definition, keine statischen Zustände). Statische Zustände (Steady States) können mit Hilfe der Selbsthaltung von Logikfunktionen realisiert werden. Das Ausgangssignal der entsprechenden Logikfunktion kann dann auf den Eingang eines Ausgangsrelais rangiert werden.

4.4.2 Deadband-Werte beim DNP3-Protokoll

Der unter [Geräteparameter / DNP3 / Point map / Analogeingang] »Totband 0...31« eingestellte Deadband-Wert definiert die Wert-Änderung, ab der das Schutzgerät den aktuellen Wert nochmals überträgt. Der Deadband-Wert muss immer in Prozent des Maximalwertes angegeben werden.

Beispiele für Deadband-Werte

Die Einstellung des *Deadband*-Wertes soll an Hand der folgenden Beispiele verdeutlicht werden:

Spannung (über Spannungsmesskarte "TU")

- Für die Spannungsmesskarte "TU" gilt der Wertebereich 0 800 V. (Siehe Kapitel "Technische Daten" des Gerätehandbuches.) Mit anderen Worten, der Maximalwert beträgt 800 V.
- Der Nennwert (sekundär) ist 100 V.
- Folglich errechnet sich der Umrechnungsfaktor von "Prozent des Nennwertes" nach "Prozent des Maximalwertes" (= Einstellung des *Deadband*-Wertes) folgendermaßen:

$$q = 100 \text{ V} / 800 \text{ V} = 0.125$$

- Angenommen, es wird zum Beispiel ein *Deadband*-Wert von **10**% *des Nennwertes* benötigt:
- Dann muss für den *Deadband-*Wert Folgendes eingestellt werden:

$$10\% \cdot q = 0.0125 = 1.25\%$$

Leiterstrom (1 A-Stromwandler)

- Für den 1 A-Stromwandler gilt der Wertebereich 0 40 A.
- Der Nennstrom (sekundär) ist 1 A.
- Folglich errechnet sich der Umrechnungsfaktor von "Prozent des Nennwertes" nach "Prozent des Maximalwertes" (= Einstellung des *Deadband*-Wertes) folgendermaßen:

$$q = 1 A / 40 A = 0.025$$

- Angenommen, es wird zum Beispiel ein *Deadband*-Wert von **10**% *des Nennwertes* benötigt:
- Dann muss für den Deadband-Wert Folgendes eingestellt werden:

$$10\% \cdot q = 0.0025 = 0.25\%$$

Leiterstrom (5 A-Stromwandler)

-\\.

- Für den 5 A-Stromwandler gilt der Wertebereich 0 200 A.
- Der Nennstrom (sekundär) ist 5 A.
- Folglich errechnet sich der Umrechnungsfaktor von "Prozent des Nennwertes" nach "Prozent des Maximalwertes" (= Einstellung des Deadband-Wertes) folgendermaßen:

$$q = 5 A / 200 A = 0.025$$

- Angenommen, es wird zum Beispiel ein Deadband-Wert von 10% des Nennwertes benötigt:
- Dann muss für den *Deadband-*Wert Folgendes eingestellt werden:

$$10\% \cdot q = 0.0025 = 0.25\%$$

- Für die Standard-Strommesskarte "TI" gilt der Wertebereich 0 25 A.
- Der Nennwert (sekundär) ist 1 A.
- Folglich errechnet sich der Umrechnungsfaktor von "Prozent des Nennwertes" nach "Prozent des Maximalwertes" (= Einstellung des Deadband-Wertes) folgendermaßen:

$$q = 1 A / 25 A = 0.04$$

- Angenommen, es wird zum Beispiel ein Deadband-Wert von 10% des Nennwertes benötigt:
- Dann muss für den *Deadband-*Wert Folgendes eingestellt werden:

$$10\% \cdot q = 0.004 = 0.4\%$$

Empflindlicher Erdstrom (1 A-Stromwandler)

- Für die Strommesskarte "Tls" mit empfindlichem Erdstromeingang gilt der Wertebereich 0 2.5 A.
- Der Nennwert (sekundär) ist 1 A.
- Folglich errechnet sich der Umrechnungsfaktor von "Prozent des Nennwertes" nach "Prozent des Maximalwertes" (= Einstellung des *Deadband*-Wertes) folgendermaßen:

$$q = 1 A / 2.5 A = 0.4$$

- Angenommen, es wird zum Beispiel ein Deadband-Wert von 1% des Nennwertes benötigt:
- Dann muss für den *Deadband-*Wert Folgendes eingestellt werden:

$$1\% \cdot q = 0.004 = 0.4\%$$

Leistung (1 A-Stromwandler und Spannungsmesskarte "TU")

- Der Wertebereich ist 0 32000 VA.
- Der **Nennwert** (sekundär) ergibt sich aus der Nennspannung und dem Nennstrom: $100 \text{ V} \cdot 1 \text{ A} \cdot \sqrt{3} = 173.21 \text{ VA}.$
- Folglich errechnet sich der Umrechnungsfaktor von "Prozent des Nennwertes" nach "Prozent des Maximalwertes" (= Einstellung des Deadband-Wertes) folgendermaßen:

$$q = 173.21 \text{ VA} / 32000 \text{ VA} = 0.00541$$

- Angenommen, es wird zum Beispiel ein Deadband-Wert von 10% des Nennwertes benötigt:
- Dann muss für den *Deadband-*Wert Folgendes eingestellt werden:

$$10\% \cdot q = 0.000541 = 0.0541\%$$

* Leistung (5 A-Stromwandler und Spannungsmesskarte "TU")

- Der Wertebereich ist 0 160000 VA.
- Der **Nennwert** (sekundär) ergibt sich aus der Nennspannung und dem Nennstrom: $100 \text{ V} \cdot 5 \text{ A} \cdot \sqrt{3} = 866.05 \text{ VA}.$
- Folglich errechnet sich der Umrechnungsfaktor von "Prozent des Nennwertes" nach "Prozent des Maximalwertes" (= Einstellung des Deadband-Wertes) folgendermaßen:
 - q = 866.05 VA / 160000 VA = 0.00541
- Angenommen, es wird zum Beispiel ein Deadband-Wert von 10% des Nennwertes benötigt:
- Dann muss für den *Deadband-*Wert Folgendes eingestellt werden:

$$10\% \cdot q = 0.000541 = 0.0541\%$$

★ Frequenz (50 Hz-Netz)

- Der Wertebereich ist 40 70 Hz.
- Die Nennfrequenz ist: 50 Hz.
- Folglich errechnet sich der Umrechnungsfaktor von "Prozent des Nennwertes" nach "Prozent des Maximalwertes" (= Einstellung des *Deadband*-Wertes) folgendermaßen:
 - q = 50 Hz / 70 Hz = 0.714
- Angenommen, es wird zum Beispiel ein Deadband-Wert von 0.1% des Nennwertes benötigt:
- Dann muss für den *Deadband-*Wert Folgendes eingestellt werden:

$$0.1\% \cdot q = 0.000714 = 0.0714\%$$

Frequenz (60 Hz-Netz)

- Der Wertebereich ist 40 70 Hz (d. h. identisch zum 50 Hz-Netz).
- Die Nennfrequenz ist: 60 Hz.
- Folglich errechnet sich der Umrechnungsfaktor von "Prozent des Nennwertes" nach "Prozent des Maximalwertes" (= Einstellung des *Deadband*-Wertes) folgendermaßen:

$$q = 60 Hz / 70 Hz = 0.857$$

- Angenommen, es wird zum Beispiel ein *Deadband*-Wert von **0.1%** *des Nennwertes* benötigt:
- Dann muss für den *Deadband-*Wert Folgendes eingestellt werden:

$$0.1\% \cdot q = 0.000857 = 0.0857\%$$

Dies ist insofern ein Spezialfall, als dass es keinen Nennwert gibt.

- Der Maximalwert ist 1.0.
- Angenommen, es wird zum Beispiel ein *Deadband*-Wert von **0.01** benötigt. (Eine Prozentangabe wäre hier wenig hilfreich.)
- Dann muss für den *Deadband*-Wert Folgendes eingestellt werden:
 0.01 / 1.0 = 1%.

*

- Alle Winkel werden in (Alt-)Grad angegeben. Das heißt, der Maximalwert ist 360°.
- Angenommen, es wird zum Beispiel ein *Deadband-*Wert von **1**° benötigt. (Eine Prozentangabe wäre hier wenig hilfreich.)
- Dann muss für den Deadband-Wert Folgendes eingestellt werden:
 1° / 360° = 0.278%

4.5 Konfigurierbare Kommunikationsprotokolle

Bei einigen der vom MCDLV4 unterstützten SCADA-Protokolle besteht die Möglichkeit der Konfiguration. Das bedeutet, dass die interne Zuordnung von Datenobjekten zu protokollinternen Adressen an die Vorgaben der eigenen Leittechnik angepasst werden kann. Dies erfolgt mit einem speziellen PC-Software-Tool, *SCADApter*.

Die Protokolle, die eine solche freie Konfiguration unterstützen, sind derzeit folgende:

- IEC 60870-5-104,

 4.5.2 IEC 60870-5-104 Die Standard-Konfiguration ist verfügbar als IEC104_Default_IU.HptSMap.
- Modbus.

 4.5.3 Modbus®

Beachten Sie, dass die Verwendung von Modbus Tunnel (Gateway) (siehe Smart view Handbuch) nur mit der Standard-Konfiguration der Datenpunkte möglich ist. Es ist in diesem Fall also nicht möglich eine Benutzer-definierte Datenpunkt-Zuordnung zu verwenden.

• Profibus,

4.5.4 Profibus — Eine Beispielkonfiguration ist verfügbar als Profibus Default IU.HptSMap.

Die erwähnten *. HptSMap-Dateien lassen sich direkt von dem Download-Bereich herunterladen, der über den QR-Code auf dem Gerätegehäuse erreichbar ist. Außerdem befinden sie sich auf der (separat zu bestellenden) Produkt-DVD.

Für Details zu diesen SCADA-Protokollen siehe die *SCADApter*-Dokumentation und die jeweiligen protokollspezifischen Kapitel. Die Übermittlung einer neuen Protokolldefinitionsdatei an das MCDLV4 wird auch in →4.5.5 Datenobjekte zuweisen mit dem SCADApter beschrieben.

4.5.1 IEC60870-5-103

Weisen Sie in der Projektierung der X103 Schnittstelle das IEC60870-5-103 Protokoll zu, um dieses Protokoll nutzen zu können. Nach der Umparametrierung am Gerät wird das Gerät neu booten.

Außerdem muss das IEC103-Protokoll aktiviert werden durch die Einstellung [Geräteparameter / IEC103] »Funktion« = "Aktiv".

HINWEIS!

Der Parameter X103 steht nur zur Verfügung, wenn das Gerät über eine entsprechende physikalische Schnittstelle auf der Geräterückseite verfügt (z.B. RS485 oder LWL).

HINWEIS!

Bei vorhandener LWL-Schnittstelle muss in den Geräteparametern die Lichtwellenruhelage eingestellt werden.

Das IEC60870-5-103-Protokoll arbeitet nach dem Master-Slave-Prinzip. Das bedeutet, die Leittechnik sendet eine Anfrage oder Anweisung an ein Gerät (Slave) und diese wird vom Gerät beantwortet bzw. ausgeführt. Das Relais entspricht der Kompatibilitätsstufe 2, Kompatibilitätsstufe 3 wird nicht unterstützt.

Die folgenden IEC60870-5-103-Funktionen werden unterstützt:

- Initialisierung (Reset)
- Zeitsynchronisation
- Auslesen von zeitgestempelten spontanen Meldungen
- · Generalabfrage Abfrage
- Zyklische Messungen
- Allgemeine Befehle
- Übertragen von Stördaten

Initialisierung

Mit jedem Einschalten des Relais oder jeder Änderung der Kommunikationsparameter muss ein Reset-Befehl zur Initialisierung der Kommunikation gesendet werden. Das Relais reagiert auf beide Reset-Befehle (Reset CU oder Reset FCB).

Das Relais reagiert auf den Reset-Befehl mit der Identifizierungsmeldung ASDU 5 (Application Service Data Unit/Dateneinheit der Verbindungsschicht); als Grund für die Übertragung (Cause Of Transmission, COT) dieser Antwort wird entweder "Reset CU" oder "Reset FCB" gesendet, je nach Typ des Reset-Befehls. Die folgenden Informationen können im Datenabschnitt der ASDU-Meldung enthalten sein:

Name des Herstellers

Der Abschnitt zur Identifizierung der Software enthält die ersten drei Zeichen des Gerätetypcodes zur Kennzeichnung des Gerätetyps. Neben der oben genannten Identifizierungsnummer erzeugt das Gerät, ein Kommunikationsstartereignis.

Zeitsynchronisation

Die Relaiszeit und das Relaisdatum können mit Hilfe der Zeitsynchronisationsfunktion des Protokolls IEC60870-5-103 eingestellt werden. Wenn die Zeitsynchronisationsmeldung als Sende-/ Bestätigungsmeldung gesendet wird, reagiert das Relais mit einer Bestätigung.

Spontane Ereignisse

Die vom Gerät erzeugten Ereignisse werden mit den Nummern für Standardfunktionstyp/-Informationen an die IEC60870-5-103 Masterstation weitergegeben. Die Datenpunktliste enthält eine vollständige Liste aller vom Gerät erzeugten Ereignisse.

Zyklische Messungen

Das Gerät erzeugt auf zyklischer Basis Messwerte mit ASDU 9; diese Messwerte können über eine Abfrage der Klasse 2 aus dem Relais gelesen werden. Dabei ist zu beachten, dass die vom Relais übertragenen Messwerte als proportionaler Wert (das 1,2- oder 2,4-Fache des Nennwerts des Analogwerts) gesendet werden. Die Auswahl von 1,2 oder 2, 4 für einen bestimmten Wert ist in der Datenpunktliste beschrieben.

Mit dem Parameter "Übert priv Mesw" kann bestimmt werden, ob nur die in der Norm definierten Messwerte oder noch zusätzliche Messwerte im "privaten" Bereich übertragen werden. Sowohl die "öffentlichen" als auch die "privaten" werden mit der ASDU9 übertragen, wobei entweder die "private" oder "öffentliche" ASDU9 gesendet wird. Im Unterschied zu den in der Norm definierten "öffentlichen" ASDU9 enthält die "private" ASDU9 noch zusätzliche Messwerte. Dann werden die Messwerte aber mit einem von der Gerätevariante unabhängigen Funktionstyp übertragen. Siehe dazu entsprechende Datenpunktliste.

Befehle

Die Datenpunktliste enthält eine Liste der unterstützten Befehle. Auf alle Befehle reagiert das Gerät mit einer positiven oder negativen Bestätigung des Befehls. Kann der Befehl ausgeführt werden (positive Bestätigung), wird zunächst die Ausführung mit der entsprechenden Übertragungsursache eingeleitet und anschließend die Ausführung mit COT1 in einer ASDU1 bestätigt.

Störungsaufzeichnungen

Die vom Relais gespeicherten Störungsaufzeichnungen können mit den in der Norm IEC60870-5-103 definierten Mechanismen ausgelesen werden. Das Gerät wahrt die Kompatibilität zum VDEW-Steuersystem durch die Übertragung eines ASDU 23 ohne Störungsaufzeichnungen am Anfang jedes GI-Zyklus.

Folgende Informationen sind in einem Störschrieb enthalten:

- Analoge Messwerte, IL1, IL2, IL3, IN, Spannungen VL1, VL2, VL3, VEN;
- Binäre Zustandsmeldungen, übertragen als Marken, zum Beispiel Alarme und Auslösungen
- Das Übertragungsverhältnis wird nicht unterstützt, da das Übertragungsverhältnis im "Faktor" berücksichtigt wird.

Blockierung der Überwachungsrichtung

Das Schutzgerät unterstützt die Blockierung von Meldungen in der Überwachungsrichtung. Die Blockade lässt sich auf zwei Weisen aktivieren:

- Manuell über das Direktkommando »Bl. Überw.richt. akt.«
- Externe Aktivierung, indem ein Signal auf den Parameter »Ex Bl. Überw.r. akt.« rangiert wird

Testbetrieb

Das Schutzgerät unterstützt den Testbetrieb (Übertragungsursache 7). Der Testbetrieb lässt sich auf zwei Weisen aktivieren:

- Manuell über das Direktkommando »Testbetrieb akt.«
- Externe Aktivierung, indem ein Signal auf den Parameter »Ex Testbetrieb akt.« rangiert wird

4.5.2 IEC 60870-5-104

Das Kommunikationsprotokoll nach IEC 60870-5-104 ist mit allen HighPROTEC-Geräten verfügbar, sofern diese eine Ethernet-Schnittstelle aufweisen.

Obwohl das MCDLV4 ab Werk eine Standard-Zuordnung von Datenpunkten aufweist, dürfte man davon ausgehen können, dass die meisten Anwender diese Zuordnung an ihre eigene Leitstellenkommunikation individuell anpassen wollen. Dies kann mithilfe einer separaten PC-Software, *SCADApter* ausgeführt werden.

HINWEIS!

Das Protokoll nach IEC104 ist nur verfügbar, wenn das Gerät auf der Gehäuserückseite mit einer Ethernet-Schnittstelle (RJ45 oder Lichtwellenleiter mit LC-Duplex-Anschluss) ausgerüstet ist.

HINWEIS!

Siehe

14.3 Kompatibilität mit IEC 60870-5-104 für das Kapitel zur Kompatibilität und Implementierung.

Einrichtung

Zunächst muss IEC104 als Leitstellenprotokoll ausgewählt werden:

Dies geschieht durch die folgende Einstellung: [Projektierung / Projektierte Elemente]
»Protokoll« = "IEC104"

Stellen Sie die Geräteadresse ein, damit das Gerät eindeutig angesprochen werden kann: [Geräteparameter / IEC104 / Allg Einstellungen] »Gemeinsame Adresse«.

(Die Geräteadresse ist ein Direktkommando und wird deswegen nicht in einer Parameterdatei (*.HptPara) abgespeichert, sie muss explizit eingestellt werden!)

Anschließend wird das Protokoll nach IEC104 als Gerätemodul aktiviert: [Geräteparameter / IEC104 / Allg Einstellungen] »Funktion« to "Aktiv".

Es ist übrigens Absicht, dass einige der Parameter im Menüzweig [Geräteparameter / IEC104 / Extras] reine Informationswerte sind und nicht verändert werden können. Die Werte könnten aber für einen Netzwerk-Administrator interessant sein, daher wurden sie als Information sichtbar gemacht.

Die Einstellung [Geräteparameter / IEC104 / Extras] »Update-Intervall« kann allerdings durchaus (im Bereich 1 s ... 60 s) verändert werden: Hier wird die Zykluszeit im Falle einer zyklischen Übertragung eingestellt (d. h. die Zeitdauer, nach der die jeweils aktualisierten Werte übertragen werden).

Ob ein Messwert zyklisch übertragen wird, ist eine individuelle Eigenschaft des entsprechenden Datenpunktes. Für eine anwenderdefinierte Zuordnung von Datenpunkten ist diese Eigenschaft einstellbar. (Siehe auch die Dokumentation von *SCADApter*.)

Informationsobjektadresse

Das Konfigurationswerkzeug *SCADApter* ermöglicht, eine Zuordnungstabelle zu erstellen bzw. zu verändern; diese Tabelle enthält Einträge, die Datenobjekte den jeweils gewünschten Informationsobjektadressen (*Information Object Address*, "*IOA*") zuweisen.

Eine IOA besteht gemäß IEC104-Standard aus drei Bytes. Das *SCADApter* ermöglicht, jedes dieser Bytes separat zu definieren, sodass der Anwender jedes Datenobjekt einer individuellen, zur jeweiligen Anwendung passenden IOA zuweisen kann.

Datenpunktzuordnung von Messgrößen

Im Konfigurationswerkzeug *SCADApter* gibt es für Messwerte und Statistikdaten die Enstellung *»Deadband«*, die den *Deadband-*Wert festlegt. Das ist die relative Wertänderung (in Prozent des Maximalwertes), ab der das Schutzgerät den aktuellen Wert nochmals überträgt.

Eine zyklische Übertragung wird hierbei für eine Messgröße festgelegt, indem dessen Deadband-Einstellung auf Null gesetzt wird.

Ein Wert ungleich Null für die Deadband-Einstellung bezieht sich immer auf den *Maximalwert* der jeweiligen Messgröße. (Siehe auch die Beispiele in der Dokumentation von *SCADApter*.)

Für jede Messgröße kann gemäß dem IEC104-Standard zwischen drei unterschiedlichen Darstellungsformen gewählt werden:

- »Normiert« Der Messwert bezieht sich auf den jeweiligen Nennwert (M ME TD 1).
- »Skaliert« Der Messwert hat eine feste Anzahl Dezimalstellen nach dem Komma. Hierbei ist auch die Skalierung einstellbar (M_ME_TE_1).
- »Gleitkommazahl« Der Messwert ist eine Fließkommanzahl (M_ME_TF_1).

Energiezähler

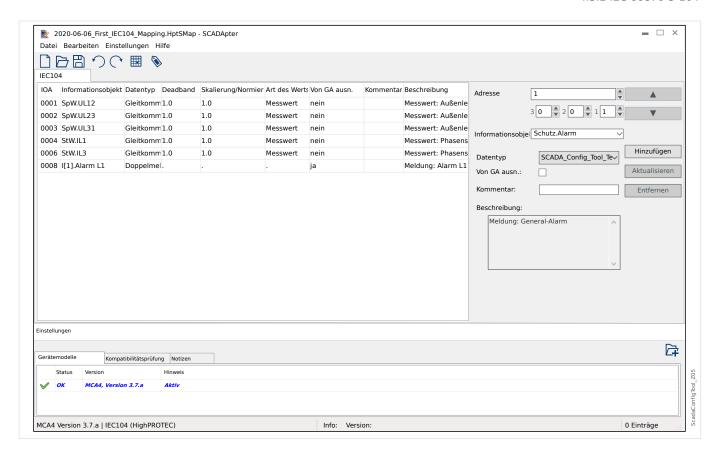
Energiezähler werden immer als Datenobjekte vom Typ »Zählwert« (integrated total) gemeldet.

Fehlerzähler

Alle Fehlerzähler sind Datenobjekte vom Typ »Bitmuster« (Bitstring, 32 bit).

Binäre Zustände

Für Binäre Zustände kann gemäß dem IEC104-Standard zwischen zwei unterschiedlichen Darstellungsformen gewählt werden:


- Einzelmeldung Einzelmeldung (Single-point information) (M SP TB 1),
- Doppelmeldung Doppelmeldung (Double-point information) (M DP TB 1),
- Bitmuster Bitmuster von 32 bit (M BO TB 1).

IEC-Kommandos

Das IEC104-Protokoll sieht 16 frei konfigurierbare Kommandos vor. Diese können für verschiedene Zwecke eingesetzt werden, z.B. für die Quittierung von selbstgehaltenen LEDs, Ausgangsrelais und Aus-Befehlen, oder um ein Schaltgerät zu schalten.

Es erfordert im Wesentlichen zwei Arbeitsschritte, um ein IEC104-Kommando einzurichten:

Der eine Schritt verwendet das Konfigurier-Tool *SCADApter*, um die protokollinternen Eigenschaften des jeweiligen Kommandos festzulegen.

Der andere Arbeitsschritt stellt eine Konfiguration des MCDLV4 dar: Die IEC104-Kommandos sind hier in Form von Auswahlwerten(!) verfügbar, die auf den jeweils gewünschten Parameter rangiert werden können.

Wenn zum Beispiel das IEC104-Kommando 2 die Selbsthaltung der LED 1 des MCDLV4 quittieren soll, macht man die folgende Einstellung:

[Geräteparameter / LEDs / LEDs Gruppe A / LED 1] »Rangierung 1« = "IEC104 . Leittechnik-Bef 2"

Wenn zum Beispiel das Kommando Ausgangsrelais Nummer 1 in Slot X2 ansteuern soll:

[Geräteparameter / Ausgangsrelais / K Slot X2 / K 1] »Rangierung 1« = "IEC104 . Leittechnik-Bef 2"

Wenn zum Beispiel das Kommando die Selbsthaltung von Ausgangsrelais Nummer 1 in Slot X2 *quittieren* soll:

Wenn zum Beispiel das Kommando das Schaltgerät SG[1] ausschalten (d. h. den Schalter öffnen) soll:

[Steuerung / SG / SG[1] / Ex EIN/AUS Bef] »SBef AUS« = "IEC104 . Leittechnik-Bef 2"

Speziell für Schaltgeräte gibt es allerdings noch etliche weitere Einstellungen, die sorgfältig geprüft werden müssen. Insbesondere funktioniert dieses Schaltkommando nur mit der richtigen Schalthoheit: [Steuerung / Allg Einstellungen] »Schalthoheit« muss entweder auf "von Fern" oder auf "vor Ort und Fern" eingestellt sein. Siehe →6 Steuerung / Schaltgeräte-Manager für Details.

Anwendungsbeispiel - Setzen eines Ausgangsrelais

Das Konzept zur Verwendung der Logikfunktionen zum Setzen eines statischen Zustandes ist identisch zur Beschreibung für das DNP3-Protokoll: →4.4.1 Anwendungsbeispiel – Setzen eines Ausgangsrelais

Eine anwenderdefinierte Zuweisungsdatei aktivieren

Informationen über Zuweisungen von Datenobjekten, und wie diese vom MCDLV4 geholt oder an das MCDLV4 übertragen werden können, findet man in der SCADApter-DoKumentation und in ⊶4.5.5 Datenobjekte zuweisen mit dem SCADApter. (Die Beschreibung befindet sich in einem separaten Kapitel, weil die anwenderdefinierte Zuordnung von Datenobjekten eine allgemeine Funktionalität ist, die in gleicher Weise für verschiedene Kommunikationsprotokolle verfügbar ist.)

4.5.3 Modbus®

Konfigurieren des Modbus®-Protokolls

Das Kommunikationsprotokoll nach Modbus[®] ist mit allen HighPROTEC-Geräten verfügbar, sofern diese entweder eine serielle Schnittstelle ("Modbus RTU") oder eine Ethernet-Schnittstelle ("Modbus TCP") aufweisen.

Das MCDLV4 weist ab Werk eine Protokolldefinition (Zuordnung von Datenpunkten) auf, die für die allermeisten Anwendungen passen dürfte, sodass nur wenige Parameter konfiguriert werden müssen (siehe unten).

Für den Spezialfall allerdings, dass ein Anwender die interne Zuordnung von Datenpunkten an ihre eigene Leitstellenkommunikation individuell anpassen muss, kann dies mithilfe einer separaten PC-Software, *SCADApter* ausgeführt werden.

Das zeitgesteuerte Modbus[®]-Protokoll arbeitet nach dem Master-Slave-Prinzip. Das bedeutet, die Leittechnik sendet eine Anfrage oder Anweisung an ein bestimmtes Gerät (Slave-Adresse) und diese wird vom Gerät beantwortet/ausgeführt. Wenn die Anfrage/Anweisung nicht beantwortet/ausgeführt werden kann, weil z. B. eine nicht definierte Adresse angesprochen wurde, so sendet das Gerät eine entsprechende Fehlermeldung.

HINWEIS!

Einige Meldungen (die nur sehr kurz anstehen) müssen explizit durch die Leittechnik quittiert werden (z.B. Auslösemeldungen).

Der Master (Leittechnik) kann Informationen vom Gerät abfragen:

- Informationen zur Geräteversion
- Messwerte/Statistische Messwerte
- Schaltstellungen
- Gerätestatus
- · Uhrzeit und Datum
- Status der digitalen Eingänge des Geräts
- Schutz-Status-Meldungen

Der Master (Leittechnik) kann dem Gerät Befehle erteilen:

- Steuerung von Schaltelementen
- Umschalten von Parametersätzen
- Rücksetzen und Quittieren von Meldungen
- · Stellen von Datum und Uhrzeit
- Steuerung von Melderelais

Genauere Informationen bezüglich zu den Datenpunktlisten und zur Fehlerbehandlung sind der Modbus®-Dokumentation zu entnehmen.

Um die Geräte für die Modbusanbindung konfigurieren zu können, benötigen Sie einige Vorgaben aus der Leittechnik.

Einrichtung

Zunächst muss Modbus als Leitstellenprotokoll ausgewählt werden:

Dies geschieht durch die folgende Einstellung: [Projektierung / Projektierte Elemente] »Protokoll«

• = "Modbus RTU" — Verwendung des Modbus®-Protokolls mit serieller Schnittstelle.

Es kann nur dann eine Verbindung über Modbus RTU zum Gerät hergestellt werden, wenn das Gerät über eine serielle Schnittstelle verfügt.

• = "Modbus TCP" — Verwendung des Modbus®-Protokolls mit Ethernet- (TCP/ IP-)Schnittstelle.

Es kann nur dann eine Verbindung über TCP/IP zum Gerät hergestellt werden, wenn das Gerät über eine Ethernet-Schnittstelle verfügt (RJ45).

Die Kommunikation über Modbus TCP ist mit bis zu 4 Clients gleichzeitig möglich. (Wenn ein fünfter Client sich verbindet, wird die "älteste" Verbindung – d. h. der TCP-Socket zu dem Client, der sich jeweils als erstes verbunden hatte – stillschweigend geschlossen.)

• = "Modbus TCP/RTU" — Verwendung sowohl der Ethernet- (TCP/IP-)Schnittstelle als auch der seriellen Schnittstellen für Modbus®-Nachrichten.

Anschließend macht man die Einstellungen für Modbus RTU bzw. Modbus TCP, je nach eingesetzten Schnittstellen.

Modbus RTU

Teil 1: Konfiguration der Geräte

Stellen Sie im Menü [Geräteparameter / Modbus] folgende Kommunikationsparameter ein:

- »Slave ID« Die Slave-Adresse, damit das Gerät eindeutig angesprochen werden kann.
- »Baudrate« Die Baud-Rate, die die serielle Schnittstelle verwenden soll.

Darüber hinaus müssen Sie folgende RS485-spezifische Parameter festlegen.

- · Anzahl der Datenbits
- Wählen Sie eine der unterstützten Kommunikationsvarianten aus, d. h. legen Sie die Anzahl der Datenbits, gerade, ungerade, Parität oder keine, sowie die Anzahl der Stoppbits fest.
- *»t-timeout«*: Kommunikationsstörungen werden erst nach Ablauf einer Überwachungszeit »t-timeout« erkannt.
- Länge des Antwortfensters (Zeit, innerhalb der das Gerät auf die Anfrage vom Master reagieren muss).

Teil 2: Physikalische Anbindung

• Zur physikalischen Anbindung an die Leittechnik befindet sich an der Geräterückseite eine RS485 Schnittstelle (RS485, LWL oder Klemmen).

- Stellen Sie die Verbindung Bus-Gerät her (Verdrahtung).
- Bis zu 32 Geräte können an den Bus angebunden werden (Sternkopplung/ Stichleitungen auf den Bus).
- Schließen Sie den Bus ab (Abschlusswiderstände)

Fehlerbehandlung - Physikalische Fehler

Eventuelle physikalische Kommunikationsfehler können im Ereignisrekorder eingesehen werden.

- Baudraten Error
- Parity Error ...

Fehlerbehandlung - Fehler auf Protokollebene

Wird z. B. eine nicht existierende Speicheradresse im Gerät abgefragt, so sendet das Gerät Fehlercodes, die interpretiert werden müssen.

Modbus TCP

HINWEIS!

Wenden Sie sich zur Einrichtung der Netzwerkverbindung an Ihren IT-Administrator.

Teil 1: Setzen der TCP/IP Parameter

Setzen Sie am Gerät (HMI) im Menü [Geräteparameter / TCP/IP / TCP/IP Konfig] die folgenden Parameter:

- TCP/IP Adresse
- Subnetz-Maske
- Gateway

Teil 2: Konfiguration der Geräte

Stellen Sie im Menü »Geräteparameter/Modbus« folgende Kommunikationsparameter ein:

- Ein Verstellen des Standardwerts für die Geräteadresse ist nur dann erforderlich, wenn das TCP-Netz mit einem Modbus RTU Netz gekoppelt werden soll.
- Um einen anderen als den Standard-Port 502 zu verwenden:
 - Wählen Sie in der Port-Konfiguration "Privat".
 - Setzen Sie nun die Port-Nummer.
- Setzen Sie die maximal zulässige Zeit, die ohne Kommunikation verstreichen darf. Nach Ablauf dieser Zeit geht das Gerät von einem Fehler in der Leittechnik-Anbindung aus.
- Erlauben oder verbieten Sie das Blockieren von SCADA-Kommandos.

Teil 3: Physikalische Anbindung

- Zur physikalischen Anbindung an die Leittechnik wird eine RJ 45-Schnittstelle benötigt, die sich an der Geräterückseite befindet.
- Stellen Sie die Verbindung zum Gerät mit einem geeigneten Ethernet Kabel her.

SCADApter

HINWEIS!

Beachten Sie, dass die Verwendung von Modbus Tunnel (Gateway) (siehe Smart view Handbuch) nur mit der Standard-Konfiguration der Datenpunkte möglich ist. Es ist in diesem Fall also nicht möglich eine Benutzer-definierte Datenpunkt-Zuordnung zu verwenden.

Der *SCADApter* ist eine separate PC-Software; daher ist dessen Verwendung detailliert im separaten *SCADApter*-Handbuch beschrieben.

Es ist möglich, eine frühere vom Anwender erstellte Protokolldefinition vom MCDLV4 herunterzuladen, sodass man diese als Vorlage für weitere Zuweisungen verwenden kann. Dies geschieht in *Smart view* bei bestehender Verbindung von *Smart view* mit dem MCDLV4. Dasselbe gilt auch ganz zum Schluss für das Übertragen der geänderten Protokolldefinitionen an das MCDLV4. Siehe \(\to 4.5.5\) Datenobjekte zuweisen mit dem SCADApter.

Man startet also zunächst den *SCADApter* und wählt entweder [Datei / Ne] oder [Datei / Öffnen]. Man wählt dann das Gerätemodell und das Kommunikationsprotokoll (in diesem Falle natürlich "Modbus"). Danach werden sechs Reiter angezeigt, "FC1" ... "FC6". Jeder Reiter enthält eine Tabelle mit den Zuweisungen von Datenobjekten.

FC

- Der "Funktionscode" entscheidet standardgemäß über die Arten von Datenobjekten:
 - FC1, FC2 enthalten Zustände (keine Messdaten).
 - FC3, FC4 können alle Arten beinhalten, außer Kommandos.
 - FC5, FC6 sind für Kommandos vorgesehen.
 - FC16 ist für spezielle Nachrichten, die aus mehreren Wörtern zusammengesetzt sind (im Wesentlichen zur Zeitsynchronisierung).

Man beachte unbedingt die Definitionen und ausführlichen Beschreibungen im Modbus-Standard!

Adresse, Bit-Position

- Der spezifizierten "Adresse" wird das Datenobjekt zugewiesen.
- Die Bit-Position wird nur angezeigt, sofern deren Einstellung sinnvoll ist. (Dies ist im Wesentlichen bei binären Zuständen mit 1 bit Länge der Fall).

Informationsobjekt, Beschreibung, Kommentar

 Das Datenobjekt, das der "Adresse" zugewiesen werden soll, mitsamt einem Beschreibungstext. Diese Informationen werden aus der Gerätemodelldatei gelesen, da ja nur solche Datenobjekte ausgewählt werden können, die tatsächlich vom MCDLV4 unterstützt werden. • Der Kommentar ist ein vom Anwender definierter Text ohne direkte technische Funktionalität. Hier kann man Hintergrundinformationen zu der gemachten Zuweisung eintragen.

Format, Bit-Länge, Selbsthaltung

- Das Format des Datenobjektes ist anzugeben:
 - 。 "Int16" Ganzzahliger Wert mit 16 Bit Länge
 - "Int32" Ganzzahliger Wert mit 32 Bit Länge
 - "Uint32" Ganzzahliger Wert ohne Vorzeichen, d.h. nicht-negativ) mit 32 Bit Länge
 - "Float" Gleitkommazahl (nach IEEE 754)
- Die Bit-Länge wird automatisch in Abhängigkeit des Formates gesetzt.
- Die Checkbox "Selbsthaltung" entscheidet darüber, ob die Modbus-Information selbsthaltend ist (bis zu einer expliziten Quittierung).

Faktor, Skalierung

- Die Skalierung und der Faktor sind einzutragen (sofern diese Eingabefelder sichtbar sind). Für die Skalierung gibt es die folgende Auswahl:
 - "Primär" Skalierungs des Informationsobjekts auf Primärwert
 - "Sekundär" Skalierung des Informationsobjekts auf Sekundärwert
 - "Relativ" Skalierung des Informationsobjekts relativ zum Nennwert

4.5.4 Profibus

Konfiguration der Geräte

Nachdem Profibus als SCADA-Protokoll eingestellt wurde (mittels [Projektierung / Projektierte Elemente] »Protokoll« = "Profibus"), stellen Sie im Menü [Geräteparameter / Profibus] folgenden Kommunikationsparameter ein:

• »Slave ID« – die Slave-Adresse, über die das Gerät eindeutig angesprochen werden kann. Dies ist eine Zahl von 2 bis 125, die unter allen Profibus-Geräten im Netzwerk jeweils eindeutig eingestellt sein muss.

Darüber hinaus muss dem Master die GSD-Datei zur Verfügung gestellt werden. Die GSD-Datei wird zusammen mit den SCADA/Profibus Dokumenten aus dem "DeviceDescriptionSetup" geliefert.

Weitere eventuell interessante (Profibus-)Parameter sind im Referenzhandbuch aufgeführt.

Physikalische Anbindung

- Die Schnittstelle zur physikalischen Anbindung an die Leittechnik hängt von der bestellten Hardware-Variante ab (siehe →2.2.1 Bestellschlüssel, →下). Auf der Geräterückseite des MCDLV4 befindet sich eine RS485-(D-SUB-)Schnittstelle oder ein Lichtwellenleiteranschluss (ST-Anschluss).
- Stellen Sie die Verbindung zwischen Bus und MCDLV4 her.
- Bis zu 123 Geräte können an den Bus angebunden werden.
- Im Falle einer D-SUB-Schnittstelle schließen Sie den Bus (über einen Abschlusswiderstand) ab.

Fehlerbehandlung

Informationen über eventuelle physikalische Kommunikationsfehler (z. B. die erkannte Baudrate) können in der Zustandsanzeige (Menüzweig [Betrieb / Zustandsanzeige]) bzw. im Ereignisrekorder (siehe ⇔8.3 Ereignisrekorder) eingesehen werden.

Status-LED (an der D-SUB-Schnittstelle)

Auf der Rückseite eines mit einem Profibus-D-SUB ausgerüsteten Moduls befindet sich eine Status-LED:

- Baud Search rot blinkend
- Baud Found grün blinkend
- Data Exchange grün
- Profibus-Protokoll nicht ausgewählt in der Projektierung [Projektierung / Projektierte Elemente] »SCADA . Protokoll« — rot

4.5.5 Datenobjekte zuweisen mit dem SCADApter

Software

Die Inbetriebnahme einer anwenderdefinierten Protokolldefinition läuft prinzipiell für alle Kommunikationsprotokolle, die das unterstützen, in gleicher Weise ab. Man operiert grundsätzlich immer auf einer separaten Datei vom Dateityp *.HptSMap, die alle Zuweisungen von Datenobjekten enthält. Diese Datei lässt sich mit einer speziellen PC-Software, SCADApter, bearbeiten, und die Parametrier-Software Smart view wird verwendet, um die bisherigen anwenderspezifischen Protokolldefinitionen vom MCDLV4 (für weitere Änderungen) herunterzuladen bzw. eine angepasste *.HptSMap-Datei an das Schutzgerät zu übertragen.

HINWEIS!

Die ab Werk implementierten Zuweisungen können nicht heruntergeladen werden.

Die Zuweisungen auswählen

Der Parameter [Geräteparameter / Protokollname / Konfig. Datenobj.] »Art der SCADA-Zuordn.« kann entweder auf "Standard" oder auf "Anwender-definiert" eingestellt werden.

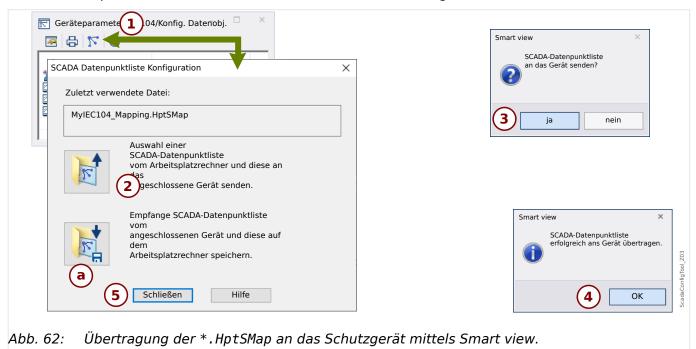
- "Standard" Das Schutzgerät verwendet die ab Werk vorgegebenen Datenobjektzuweisungen (also auch dann, wenn schon eine anwenderdefinierte *.HptSMap-Datei an das Schutzgerät übertragen wurde).
- "Anwender-definiert" Das Schutzgerät verwendet die anwenderdefinierten Datenobjektzuweisungen. (Wenn dann keine gültige *.HptSMap-Datei im Schutzgerät vorliegen sollte, wird dies dadurch erkennbar, dass das Gerät den Werteparameter [Geräteparameter / Protokollname / Extras] »Update-Intervall« = "Fehler 1/2" setzt.)

Die Zuweisungen übertragen

Wenn vom Anwender schon zuvor eine Protokolldefinition erstellt und hochgeladen wurde, ist es möglich, diese vom Schutzgerät herunterzuladen, um weitere Änderungen vorzunehmen. (Die Werksvorgabe kann nicht heruntergeladen werden.)

Abhängig von der Einstellung »Art der SCADA-Zuordn.« handelt es sich bei den aktiven Zuweisungen entweder um die Werksvorgabe oder eine zuvor an das Schutzgerät übertragene Protokolldefinition.

Beide Übertragungsrichtungen führt man mit *Smart view* bei bestehender Verbindung mit dem Schutzgerät aus.


Nachdem die Geräteverbindung mit *Smart view* aktiv ist und alle Gerätedaten geholt wurden, macht man einen Doppelklick auf den Menü-Eintrag [Geräteparameter / Protokollname / Konfig. Datenobj.].

Es öffnet sich ein Dialogfenster mit (unter anderem) einer kleinen Schaltfläche »SCADA-Konfigurations-Transfer« (Siehe Abbildung, (1).)

Ein Klick hierauf öffnet einen weiteren Dialog, »SCADA-Datenpunkte-Konfiguration«. Hier gibt es zwei Schaltflächen ((2) und (a) in der Abbildung).

Die Schaltfläche (a) startet das Herunterladen vom Schutzgerät: Das Schutzgerät sendet die (anwenderspezifische) SCADA-Protokolldefinitionen an *Smart view* und es erscheint ein »Speichern unter«-Dialog. Der Anwender kann nun die Protokolldefinitionen als

neue *.HptSMap-Datei speichern. (Dieses Herunterladen ist für die als Werksvorgabe implementierte Standard-Protokolldefinition nicht möglich.)

Die Schaltfläche **(2)**, »Auswahl einer SCADA-Datenpunktliste vom Arbeitsplatzrechner und diese an das angeschlossene Gerät senden«, startet die Übertragung einer *.HptSMap-Datei an das Schutzgerät. Wenn man hierauf klickt, öffnet sich ein gewöhnlicher Dateiwahl-Dialog.

In diesem navigiert man zu der gewünschten *. HptSMap-Datei und klickt auf »Öffnen«.

Smart view öffnet und prüft die *.HptSMap-Datei. Wenn sie mit dem angeschlossenen Schutzgerät kompatibel ist, wird der Anwender gefragt, ob diese übertragen werden solle (3).

Man klickt auf »ja« (und gibt danach das Passwort für den Zugangsbereich »Admin-Lv3« ein).

Die Daten werden nun übertragen, anschließend wird der Anwender informiert, ob die Übertragung erfolgreich war (4).

Der Anwender kann nun auf »Schließen« im Dialogfenster »SCADA-Konfigurations-Transfer« klicken **(5)** und zum Hauptarbeitsbereich von *Smart view* zurückkehren.

Zum Schluss muss diese anwenderspezifische Protokolldefinition noch aktiviert werden. Dies geschieht durch die Einstellung [Geräteparameter / Protokollname / Konfig. Datenobj.] »Art der SCADA-Zuordn.« = "Anwender-definiert".

Vergessen Sie hierbei nicht, alle (oder alle geänderten) Parameter (von *Smart view*) an das Schutzgerät zu übertragen. Außerdem ist es ratsam, die "automatische Aktualisierung" zu aktivieren, sodass alle Einträge im Dialogfenster [Konfig. Datenobj.] mit ihrem jeweils aktuellen Wert angezeigt werden.

4.6 Zeitsynchronisation

Der Anwender hat die Möglichkeit, das Schutzgerät mit einem zentralen Zeitgeber zu synchronisieren. Dies hat für ihn folgende Vorteile:

- Die Uhrzeit des Geräts driftet nicht von der Referenz-Uhrzeit ab. Eine sich sonst kontinuierlich akkumulierende Abweichung von der Echtzeit wird damit ausgeglichen. Siehe hierzu auch die Information im Kapitel "Toleranzen der Echtzeituhr".
- Alle synchronisierten Geräte der Anlage arbeiten mit der gleichen Uhrzeit. Hierdurch können protokollierte Ereignisse der einzelnen Geräte exakt miteinander verglichen und zusammen ausgewertet werden (Einzelereignisse des Eventrekorders, Störschriebe).

Die Uhrzeit des Geräts kann über folgende Protokolle synchronisiert werden:

- IRIG-B
- SNTP
- Kommunikations-Protokoll Modbus (RTU oder TCP)
- Kommunikations-Protokoll IEC 60870-5-103
- Kommunikations-Protokoll IEC 60870-5-104
- Kommunikations-Protokoll DNP3
- Schutzkommunikation (SchutzKom, nur für eines von zwei Leitungsdifferentialschutzgeräten)

Diese angebotenen Protokolle verwenden unterschiedliche Hardware-Schnittstellen und unterscheiden sich auch in Bezug auf die Genauigkeit der erreichten Zeitsynchronisation. Für nähere Informationen zur Genauigkeit, siehe $\hookrightarrow 13.3$ Toleranzen.

Ohne Zeitsynchronisation

Dies ist möglich, allerdings für den Industrie-Einsatz nicht empfohlen.

IRIG-B

Schnittstelle	Empfehlung
IRIG-B-Klemme	empfohlen, wenn Schnittstelle vorhanden

SNTP

Schnittstelle	Empfehlung
RJ45 (Ethernet)	empfohlen alternativ zu IRIG-B, speziell bei der Verwendung der IEC 61850 oder Modbus TCP

Modbus RTU

Schnittstelle	Empfehlung
RS485, D-SUB oder LWL	empfohlen bei der Verwendung von Modbus RTU als Kommunikations-Protokoll und der Abwesenheit eines IRIG-B-Zeitgebers

Modbus TCP

Schnittstelle	Empfehlung
RJ45 (Ethernet)	bedingt empfohlen bei der Verwendung von Modbus TCP als Kommunikations-Protokoll und der Abwesenheit eines IRIG-B-Zeitgebers oder eines SNTP-Servers

IEC 60870-5-103

Schnittstelle	Empfehlung
RS485, D-SUB oder LWL	empfohlen bei der Verwendung von IEC 10870-5-103 als Kommunikations-Protokoll und bei Abwesenheit eines IRIG-B-Zeitgebers

IEC 60870-5-104

Schnittstelle	Empfehlung
RJ45 (Ethernet)	empfohlen bei der Verwendung von IEC 10870-5-104 als Kommunikations-Protokoll und bei Abwesenheit eines IRIG-B-Zeitgebers

DNP3

Schnittstelle	Empfehlung
RS485 oder RJ45 (Ethernet)	bedingt empfohlen bei der Verwendung von DNP3 als Kommunikations-Protokoll und bei Abwesenheit eines IRIG-B-Zeitgebers oder eines SNTP-Servers

ProtCom

Schnittstelle	Empfehlung
X102 (LWL)	Die »SchutzKom«-Schnittstelle ist nur bei Leitungsdifferentialschutzgeräten vorhanden! Sie verbindet genau zwei Leitungsdifferentialschutzgeräte miteinander. Die Zeitsynchronisation über »SchutzKom« ist für genau eines der beiden Geräte empfohlen. (Die Zeitsynchronisation des anderen Gerätes sollte über eines der anderen Protokolle erfolgen.)

Genauigkeit der Zeitsynchronisation

ie Genauigkeit der synchronisierten Systemzeit des Schutzgeräts hängt von verschiedenen Faktoren ab:

- Genauigkeit des angeschlossenen Zeitgenerators
- verwendetes Synchronisationsprotokoll
- bei Verwendung von Modbus TCP, SNTP, IEC 60870-5-104 oder DNP3 TCP/UDP: Netzwerkauslastung und Paket-Laufzeiten auf dem Netzwerk

HINWEIS!

Achten Sie auf die Genauigkeit des verwendeten Zeitgenerators. Schwankungen in der Systemzeit des Zeitgenerators bewirken ebensolche Schwankungen in der Systemzeit des angeschlossenen Schutzgeräts.

Auswahl von Zeitzone und Synchronisationsprotokoll

Das Schutzgerät beherrscht sowohl UTC als auch Lokalzeit. Das heißt, das Gerät kann über die UTC-Zeit abgeglichen werden und zugleich die lokale Zeit für die Anzeige verwenden.

Zeitsynchronisation über UTC-Zeit (empfohlen):

Zeitsynchronisation erfolgt im Regelfall über Verwendung von UTC-Zeit. Dies bedeutet z. B., dass ein IRIG B-Zeitgeber UTC-Zeit an das Schutzgerät sendet. Dies ist der empfohlene Anwendungsfall, denn hierbei kann eine kontinuierliche Zeitsynchronisation sichergestellt werden. Es erfolgen keine "Zeitsprünge" durch Wechsel von Sommer- und Winterzeit.

Damit das Schutzgerät die lokal gültige Zeit anzeigt, können die Zeitzone und der Wechsel zwischen Sommer- und Winterzeit eingestellt werden.

Bitte nehmen Sie im Menü [Geräteparameter / Zeit / Zeitzone] die folgenden Einstellungen vor:

- Stellen Sie den Parameter »Zeitzonen« auf Ihre lokale Zeitzone.
- Konfigurieren Sie die Umschaltung zwischen Sommer- und Winterzeit.

Wechseln Sie dann in das Menü [Geräteparameter / Zeit / ZeitSync / ZeitSync]:

- Stellen Sie den Parameter »ZeitSync« auf das Protokoll ein, das für die Synchronisierung eingesetzt werden soll (z. B. "IRIG-B").
- Stellen Sie die protokollspezifischen Parameter ein.

Zeitsynchronisation über lokale Zeit:

Sollte die Zeitsynchronisation hingegen über lokale Zeit erfolgen, so belassen Sie bitte die Zeitzone auf "UTC+0 London" und verwenden keine Sommerzeitumschaltung.

HINWEIS!

Die Uhrzeit des Schutzgeräts wird ausschließlich über das Synchronisationsprotokoll abgeglichen, welches im Menü [Geräteparameter / Zeit / ZeitSync / ZeitSync] ausgewählt wird.

Ohne Zeitsynchronisation:

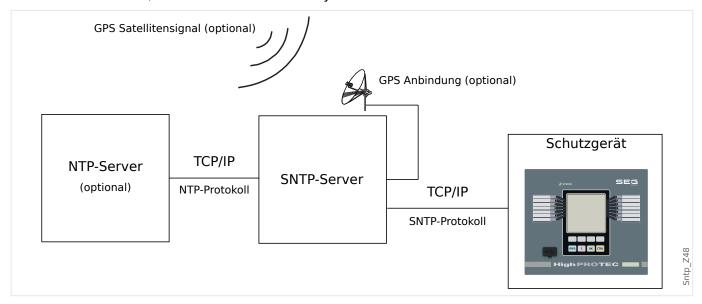
Damit das Schutzgerät die lokal gültige Zeit anzeigt, können die Zeitzone und der Wechsel zwischen Sommer- und Winterzeit eingestellt werden.

Bitte nehmen Sie die folgenden Einstellungen vor:

- Stellen Sie im Menü [Geräteparameter / Zeit / ZeitSync / ZeitSync] den Parameter »ZeitSync« auf "-".
- Stellen Sie im Menü [Geräteparameter / Zeit / Zeitzone] den Parameter »Zeitzonen« auf Ihre lokale Zeitzone.
- Konfigurieren Sie die Umschaltung zwischen Sommer- und Winterzeit.
- Stellen Sie Datum und Uhrzeit ein: [Geräteparameter / Zeit] »Datum/Uhrzeit«.

4.6.1 SNTP

HINWEIS!



Wichtige Voraussetzung: Das Schutzgerät muss über das angeschlossene Netzwerk Zugriff auf einen SNTP-Server haben. Dieser sollte vorzugsweise lokal installiert sein.

Prinzip - Generelle Verwendung

SNTP ist ein Standard zur Zeitsynchronisation über ein Netzwerk. Hierzu muss sich mindestens ein SNTP-Server im Netzwerk befinden. Das Gerät kann für ein oder zwei SNTP-Server parametriert werden.

Die Systemzeit des Schutzgeräts wird 1–4mal pro Minute über den angeschlossenen SNTP-Server synchronisiert. Der SNTP-Server wiederum synchronisiert seine Uhrzeit über NTP mit anderen NTP-Servern. Dies ist der Normalfall. Alternativ kann seine Uhrzeit jedoch auch über GPS, Funkuhr oder ähnliches synchronisiert werden.

Hinweise zur Genauigkeit

Die Genauigkeit des verwendeten SNTP-Servers und die Güte seiner Zeitabgleichquelle beeinflusst die Genauigkeit der Uhrzeit im Schutzgerät. Weitere Informationen über Genauigkeit: $\hookrightarrow 13.3$ Toleranzen

Weiter Informationen zur Genauigkeit siehe im Kapitel "Toleranzen".

Mit jeder gesendeten Zeitinformation übermittelt der SNTP-Server auch Informationen über seine Genauigkeit:

- Stratum: Das Stratum gibt an, über wie viele hintereinander geschaltete NTP-Server der verwendete SNTP-Server mit einer Atomuhr oder Funkuhr verbunden ist.
- *Precision:* Diese gibt die Genauigkeit an, mit welcher der SNTP-Server die Systemzeit zur Verfügung stellt.

Außerdem hat die Güte des angeschlossenen Netzwerks (Auslastung sowie Paketlaufzeit) Einfluss auf die Genauigkeit des Zeitabgleichs.

Empfohlen wird ein lokal installierter SNTP-Server mit einer Genauigkeit von ≤200 μs. Sollte dies nicht möglich sein, so kann die Güte des angeschlossenen Servers über das Menü [Betrieb / Zustandsanzeige / ZeitSync / SNTP] überprüft werden:

- Die Server-ualität gibt an, mit welcher Genauigkeit der verwendete Server arbeitet. Die Qualität sollte GUT oder AUSREICHEND sein. Von einer SCHLECHTen Server-Qualität ist abzuraten, da diese zu Schwankungen in der Zeitsynchronisation führen kann.
- Die Netzqualität gibt an, ob Auslastung und Paketlaufzeiten im Netz hinreichend gut sind. Die Qualität sollte GUT oder AUSREICHEND sein. Von einer SCHLECHTen Netzqualität ist abzuraten, da diese zu Schwankungen in der Zeitsynchronisation führen kann.

Verwendung von 2 SNTP-Servern

Bei Konfiguration von zwei SNTP-Servern synchronisiert das Gerät seine Uhrzeit standardmäßig mit Server 1.

Wenn Server 1 ausfällt, wechselt das Gerät automatisch zu Server 2.

Wenn Server 1 wieder zur Verfügung steht, wechselt das Gerät zurück zu Server 1.

SNTP-Inbetriebnahme

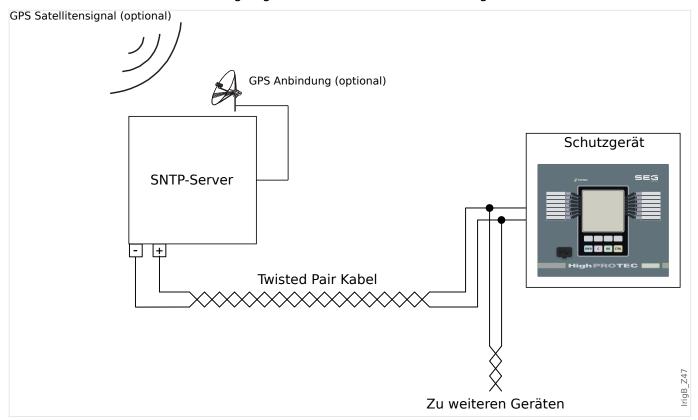
Aktivieren Sie die SNTP-Zeitsynchronisation über das Menü [Geräteparameter / Zeit / ZeitSync]:

- Setzen Sie den Parameter »ZeitSync« auf "SNTP".
- Konfigurieren Sie im SNTP-Menü die IP-Adresse des ersten Servers.
- Konfigurieren Sie die IP-Adresse des zweiten Servers, sofern vorhanden.
- Setzen Sie alle konfigurierten Server, die Sie tatsächlich nutzen möchten, auf »aktiv«.

4.6.2 IRIG-B00X

HINWEIS!

Wichtige Voraussetzung: Es wird ein IRIG-B00X Zeitgenerator benötigt. IRIG-B004 und höher unterstützen/übertragen die "Jahresinformation".


Wenn Sie einen IRIG Zeitcode verwenden, der die Jahresinformation nicht mitüberträgt (IRIG-B000, IRIG-B001, IRIG-B002, IRIG-B003), dann müssen Sie das "Jahr" manuell im Gerät einstellen. Das IRIG-B Modul kann ohne Jahresinformation nicht korrekt arbeiten.

Prinzip - Generelle Verwendung

Der IRIG-B Standard ist der am häufigsten verwendete Standard, um Schutzgeräte in der Mittelspannung zeitlich zu synchronisieren. Das Schutzgerät unterstützt IRIG-B entsprechend dem IRIG STANDARD 200-04.

Das bedeutet, es werden alle Zeitsynchronisationsinformationen entsprechend IRIG-B00X (IRIG-B000 / B001 / B002 / B003 / B004 / B005 / B006 / B007) unterstützt. Es wird die Verwendung von IRIG-B004 und höher empfohlen, bei welcher auch die "Jahresinformation" übertragen wird.

Die Systemzeit des Schutzgeräts wird hierbei jede Sekunde über den angeschlossenen IRIG-B Signalgenerator synchronisiert. Die Anbindung eines GPS-Empfängers an den verwendeten IRIG-B Signalgenerator erhöht dessen Genauigkeit.

Der Einbauort der IRIG-B Schnittstelle hängt vom bestellten Gerätetyp ab. Nähere Informationen zur Einbaulage sind dem Anschlussbild oben auf dem Schutzgerät zu entnehmen.

IRIG-B Inbetriebnahme

Aktivieren Sie die IRIG-B Synchronisation über das Menü [Geräteparameter / Zeit / ZeitSync]:

- Wählen Sie im Menü Zeitsynchronisation »IRIG-B« aus.
- Setzen Sie die Zeitsynchronisation im Menü [IRIG-B] auf "Aktiv".
- Wählen Sie den verwendeten IRIG-B-Typ aus (B000 bis B007).

Fehleranalyse

Wird für länger als 60 s kein IRIG-B Zeitcode empfangen, so wechselt der IRIG-B-Status von "Aktiv" auf "Inaktiv" und es erfolgt ein Eintrag im Ereignisrekorder.

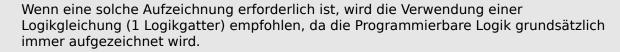
Prüfen Sie die IRIG-B Funktionalität über das Menü [Betrieb / Zustandsanzeige / ZeitSync / IRIG-B]:

Sollte der IRIG-B Status nicht als "Aktiv" gemeldet werden, gehen Sie bitte wie folgt vor:

- Prüfen Sie zunächst die Verdrahtung.
- Prüfen Sie, ob der richtige IRIG-B00X-Typ eingestellt ist.

IRIG-B-Steuerkommandos

Zusätzlich zu den Datums- und Zeitinformationen können über den IRIG-B-Code auch noch bis zu 18 Steuerkommandos übermittelt werden. Diese Steuerkommandos können im Gerät weiterverarbeitet werden.


Die Steuerkommandos müssen im IRIG-B-Signalgenerator gesetzt und übertragen werden.

Im Schutzgerät stehen diese Steuerkommandos als rangierbare Signale »IRIG-B. Steuersignal1« ... »IRIG-B. Steuersignal18« zur Verfügung. Sobald ein Steuerkommando vom Zeitgeber als wahr übertragen wird, wird das zugehörige rangierbare Signal gesetzt, sodass die Funktionalität, auf die das Signal rangiert wurde, gestartet wird.

HINWEIS!

IRIG-B-Steuerkommandos werden nicht durch den Ereignis-Recorder und den Störschreiber aufgezeichnet.

4.7 SchutzKom - Schutzkommunikation

VORSICHT!

Es ist dringend empfohlen, die beiden MCDLV4 *direkt* miteinander zu verbinden, um Übertragungszeiten und Latenzen zu minimieren.

Mit anderen Worten, wir müssen aus unserer Sicht von der Verwendung eines Switches für die Schutzkommunikation abraten, weil eine Verschlechterung der Übertragungsqualität droht, die die sichere Erkennung von Differenzströmen beeinträchtigen kann.

HINWEIS!

Es gibt zwei Typen der Schutzkommunikation, siehe den Bestellschlüssel und die Technischen Daten:

- Typschlüssel MCDLV4-2xxx**1**xx, ST-Anschluss, 820 nm multi mode, normale Reichweite,
- Typschlüssel MCDLV4-2xxx**0**xx, LC-Anschluss, 1310 nm mono mode, erhöhte Reichweite.

Es muss beachtet werden, dass diese zwei Typen nicht *miteinander* verbunden werden können, weil sie für die Schutzkommunikation zwei verschiedene (proprietäre) Kommunikationsprotokolle verwenden, die nicht miteinander kompatibel sind. Da diese Inkompatibilität software-bedingt ist, lässt sie sich nicht durch Hardware-Maßnahmen (etwa Einfügen eines optischen Konverters) beheben.

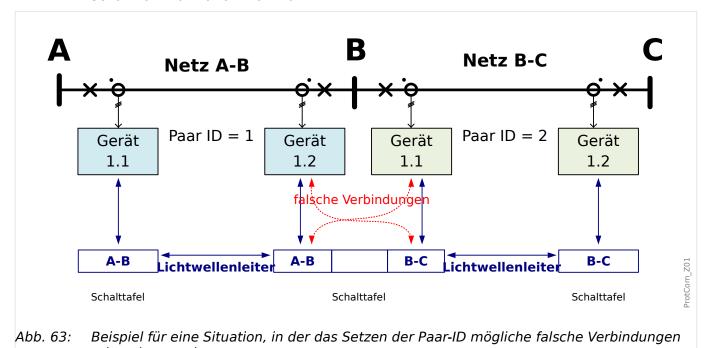
Sie müssen also sicherstellen, dass die beiden miteinander zu verbindenden MCDLV4 entweder beide eine ST-Schutzkommunikations-Schnittstelle oder beide eine LC-Schutzkommunikations-Schnittstelle aufweisen!

(Die zwei Ausführungen von LC-Modulen sind – mit Ausnahme unterschiedlicher Sendeund Empfangsstärken – miteinander kompatibel.)

Konfiguration der Geräte

Vergewissern Sie sich, dass das SchutzKom-Modul aktiviert ist:

• Aktivieren Sie das SchutzKom-Modul, indem Sie[Schutzparameter / Globale Schutzpara / Schutz-Sig-Transfer / SchutzKom] »Funktion« = "Aktiv" stellen.


Stellen Sie im Menü [Schutzparameter / Globale Schutzpara / Schutz-Sig-Transfer / SchutzKom] für beide Leitungsdifferentialschutzgeräte den gleichen Wert für »Paar ID« ein:

• Es müssen grundsätzliche beide Geräte die gleiche »Paar ID« verwenden.

Diese ID soll eine Hilfe bei der erstmaligen Einrichtung der Gerätekommunikation sein. Hintergrund ist, dass möglicherweise mehrere Lichtwellenleiter-Verbindungen zwischen beiden Stationen bestehen, sodass nicht einfach unterschieden werden kann, welcher der Anschlüsse das korrekte Gerät in der Gegenstelle verbindet. Wenn nun die ID des korrekten Gerätes gegeben ist, stellt man den gleichen Wert am aktuell anzuschließenden Gerät ein, und man kann davon ausgehen, dass es nun nicht mehr möglich ist, eine Verbindung zu einem falschen Gerät (mit einer anderen ID) aufzubauen.

Das folgende Diagramm ist ein Beispiel zur Verdeutlichung des Problems: Am Ort B können die beiden Felder für die Geräte "Gerät 1.2" und "Gerät 2.1" nahe zusammenliegen und die Lichtwellenleiter auf dieselbe Schalttafel geführt sein. Versehentlich getauschte

Anschlüsse – im Diagramm rot dargestellt – lassen dann die Aktivierung der Schutzkommunikation nicht zu.

erkennbar macht.

Legen Sie fest, ob *Smart view* auf die Gerätedaten der Gegenstelle (d. h. des fernen Gerätes) zugreifen darf:

 Stellen Sie [Schutzparameter / Globale Schutzpara / Schutz-Sig-Transfer / SchutzKom] »Fernzugriff benutz.« auf "Inaktiv", wenn der Fernzugriff verweigert werden soll. (Die Werkseinstellung ist "Aktiv".)

Stellen Sie die geforderte Signalqualität ein:

 Die Einstellung [Schutzparameter / Globale Schutzpara / Schutz-Sig-Transfer / SchutzKom] »Err/24h WarnLev« legt fest, wieviele Schutzkommunikationsfehler maximal pro 24 Stunden toleriert werden, bis das Gerät die Warnmeldung »SchutzKom . Qual.Warn.« ausgibt.

5 Schutzmodule

5.1 Modul: Schutz

Das Modul »Schutz-Hauptmodul« (»Schutz«) repräsentiert den äußeren Rahmen aller Schutzmodule. Das heißt, alle anderen Schutzmodule werden vom »Schutz«-Modul eingefasst.

WARNUNG!

Wenn der Parameter [Schutzparameter / Globale Schutzpara / Schutz] »Funktion« im Modul »Schutz« auf "Inaktiv" gestellt wird oder das Modul blockiert wird, wird die gesamte Schutzfunktionalität des Geräts außer Funktion gesetzt.

Verfügbarkeit des Schutzes

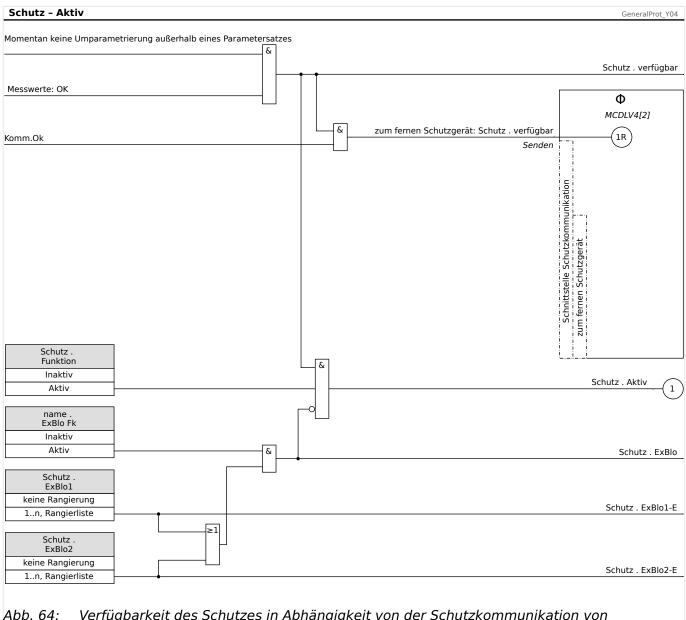


Abb. 64: Verfügbarkeit des Schutzes in Abhängigkeit von der Schutzkommunikation von Leitungsdifferentialschutzgeräten.

Den gesamten Schutz dauerhaft blockieren

Um alle Schutzfunktionen dauerhaft außer Funktion zu setzen bzw. um den gesamten Schutz dauerhaft zu blockieren gehen Sie bitte wie folgt vor:

- Rufen Sie den folgenden Menüpfad auf: [Schutzparameter / Globale Schutzpara / Schutz]
- Setzen Sie den Parameter »Funktion« = "Inaktiv".

Den gesamten Schutz temporär blockieren

Um alle Schutzfunktionen temporär außer Kraft zu setzen bzw. um den gesamten Schutz temporär zu blockieren gehen Sie bitte wie folgt vor:

Rufen Sie den folgenden Menüpfad auf: [Schutzparameter / Globale Schutzpara / Schutz]

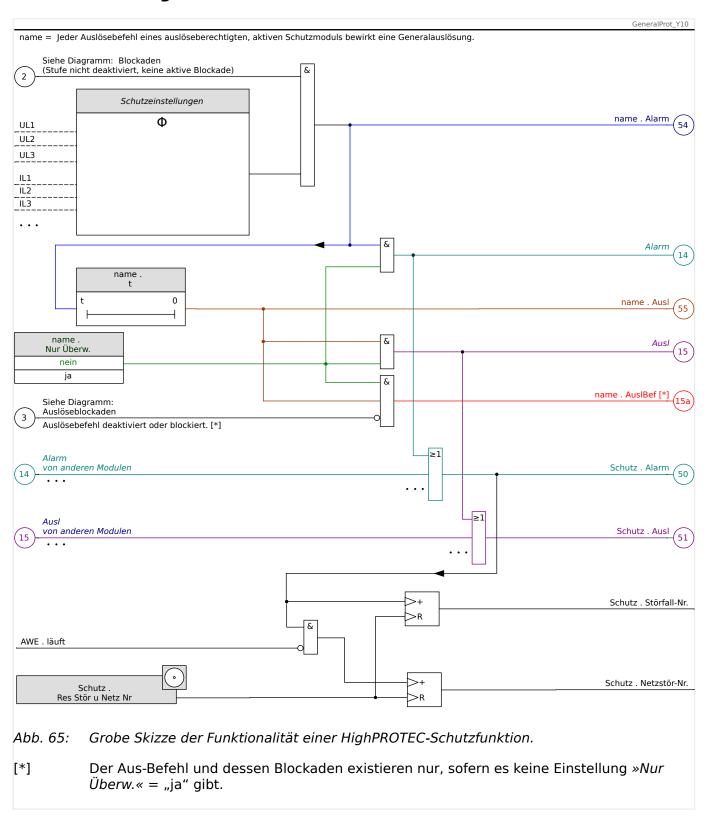
- Setzen Sie den Parameter »ExBlo Fk« = "Aktiv".
- Wählen Sie eine Rangierung für »ExBlo1« (d. h. weisen Sie ein Blockadesignal zu).
- Wählen Sie optional eine Rangierung für »ExBlo2«.

Der gesamte Schutz wird außer Kraft gesetzt, wenn diese Rangierung wahr wird, d. h. wenn irgendeines der zugewiesenen Signale ansteht.

Alle Auslösebefehle dauerhaft blockieren

Rufen Sie den folgenden Menüpfad auf: [Schutzparameter / Globale Schutzpara / Schutz]

• Setzen Sie den Parameter »Blo AuslBef« = "Aktiv".


Alle Auslösebefehle temporär blockieren

Rufen Sie den folgenden Menüpfad auf: [Schutzparameter / Globale Schutzpara / Schutz]

- Setzen Sie den Parameter »ExBlo AuslBef Fk« = "Aktiv".
- Wählen Sie eine Rangierung für »ExBlo AuslBef« (d. h. weisen Sie ein Blockadesignal zu).

Alle Auslösebefehle werden blockiert, wenn diese Rangierung wahr wird, d. h. wenn das zugewiesene Signal ansteht.

5.1.1 Grundlagen eines Schutzmodules

Das Diagramm zeigt das grundlegende Konzept hinter einer Schutzfunktion. (Beachten Sie dennoch, dass es bei den implementierten Schutzfunktionen gerätespezifische und auch schutzspezifische Unterschiede geben kann: Einige Gerätetypen haben keine Spannungsmessung, andere keine Strommessung, einige Schutzfunktionen verfügen über ein anderes Zeitstufenkonzept und/oder phasenspezifische Algorithmen, usw. Die exakte Funktionalität ist somit immer im jeweiligen Handbuchkapitel nachzusehen.)

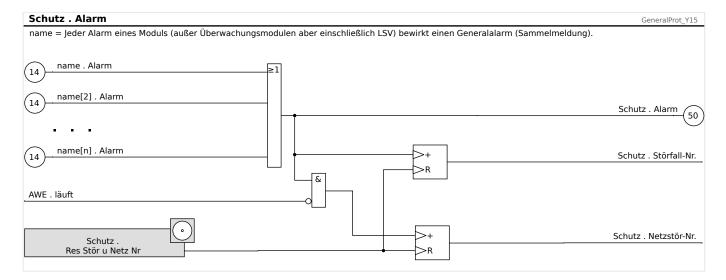
Alarm

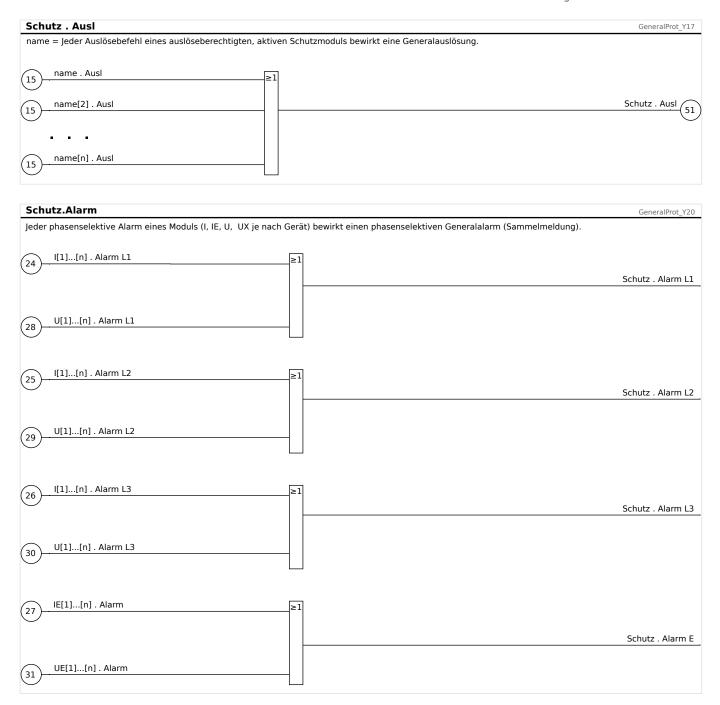
- Wenn ein Schutzmodul namens »name« einen Fehler erkennt, setzt es ein Alarmsignal: »name . Alarm« "(54)" im Diagramm.
- Da auch andere Schutzfunktionen eine *Generalanregung* bewirken können, lässt sich sagen, dass eine *Generalanregung* eine Sammelmeldung ist, die durch ver-odern aller Schutzanregungen entsteht.

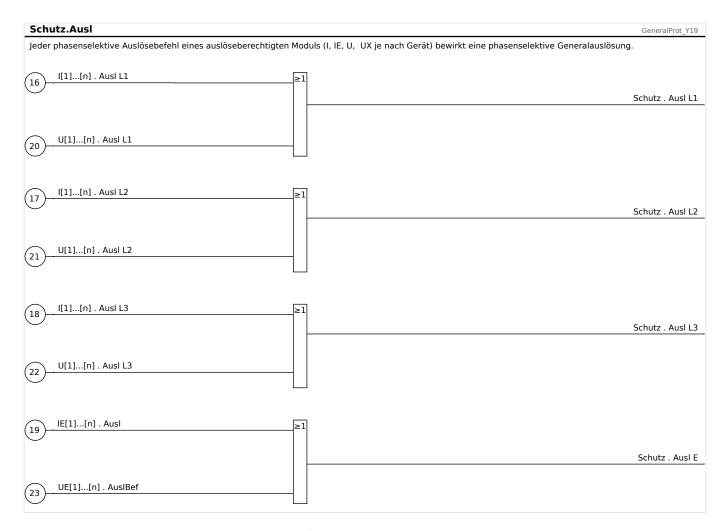
Auslösung

- Wenn der Fehler auch nach Ablauf einer schutzspezifischen Zeitstufe »name . t«
 immer noch ansteht, setzt das Schutzmodul ein Auslöse-Signal: »name . Ausl« "
 (55)" im Diagramm.
- Da auch andere Schutzfunktionen eine *Generalauslösung* bewirken können, lässt sich sagen, dass eine *Generalauslösung* eine Sammelmeldung ist, die durch verodern aller Schutzauslösungen entsteht.

Aus-Befehl (und dessen Blockaden existieren nur, wenn es keine Einstellung »Nur Überw.« = "ja" gibt)


- Wenn es zu einer *Generalauslösung* kommt, gibt das Schutzmodul einen *Aus-Befehl*: »name . AuslBef« – "(15a)" im Diagramm, sofern der Aus-Befehl nicht blockiert ist (siehe ⇔5.1.3 Blockaden).
- Da auch andere Schutzfunktionen einen Aus-Befehl ausgeben können, gibt es im MCDLV4 einen sogenannten Auslöse-Manager für jeden Leistungsschalter. Hierüber lassen sich die verschiedenen Aus-Befehle den angeschlossenen Leistungsschaltern zuweisen (siehe →,,Auslösebefehlsmanager – Befehlsausgabe rangieren").


Phasenspezifische Signale


Zusätzlich zu der Generalanregung bzw. General-Auslösung gibt es im Modul »Schutz« noch entsprechende phasenspezifische Signale. Auch diese können von einem beliebigen Schutzmodul »name« gesetzt werden, sofern dieses Fehler phasenspezifisch detektieren kann und sofern es dort nicht eine Einstellung »name . Nur Überw.« = "ja" gibt.

Beispiele: »Schutz . Alarm L1« ist die Sammelmeldung (oder-verknüpft) für alle Alarme aus einem beliebigen Schutzmodul in Phase L1.

»Schutz . Ausl L1« ist die Sammelmeldung (oder-verknüpft) für alle Auslöseentscheidungen aus einem beliebigen Schutzmodul in Phase L1.

Definition als Schutz- oder Überwachungs-Funktion (»Nur Überw.«)

Für die meisten Schutzstufen ist es möglich bei der Einstellung festzulegen, ob die Stufe für Schutzzwecke verwendet wird, so dass der Leistungsschalter im Fehlerfall geöffnet werden, oder ob die Stufe ausschließlich für Überwachungszwecke verwendet wird, ohne dass der Leistungsschalter betätigt wird. Diese Einstellung erfolgt im Menü [Projektierung / Definition]. Dort befindet sich für jede Stufe der Parameter »Nur Überw.«:

- »Nur Überw.« = "ja" Die Stufe wirkt als reine Überwachungsfunktion, das bedeutet:
 - Keines der Anregungs- und Trip-Signale an das »Schutz-Hauptmodul« (»Schutz«) weitergeleitet. In anderen Worten: Es kommt zu keiner Generalanregung oder -auslösung.
 - Der Leistungsschalter wird niemals von dieser Stufe betätigt.
- »Nur Überw.« = "nein" Die Stufe wirkt als reine Schutzfunktion und kann den Leistungsschalter betätigen:
 - Das »Schutz-Hauptmodul« (»Schutz«) gibt einen Generalanregung »Schutz .
 Alarm« aus.

Wenn die Anregung von einer Erdstrom-Schutzstufe kommt, wird zusätzlich das Anregesignal »Schutz . Alarm E« ausgegeben.

Wenn die Anregung von einer Phasen-selektiven Schutzstufe kommt, werden zusätzlich die Anregesignale zu den betroffenen Phasen aktiv: »Alarm L1«, »Alarm L2«, »Alarm L3«.

- Wenn der Fehler bestehen bleibt bis eine einstellbare Zeitstufe abgelaufen ist siehe auch → 5.1.1 Grundlagen eines Schutzmodules:
 - Ein Auslösesignal »Auslösung« wird ausgegeben. Dieses wird intern an das »Schutz-Hauptmodul« (»Schutz«) weitergeleitet.
- Das »Schutz-Hauptmodul« (»Schutz«) gibt eine Generalauslösung »Schutz .
 Ausl« aus.
 - Wenn die Schutzstufe Phasen-selektiv arbeitet, werden außerdem die entsprechenden Signale »Auslösung IL1«, »Auslösung IL2«, »Auslösung IL3« ausgegeben und intern an das »Schutz-Hauptmodul« (»Schutz«) weitergeleitet. Dieses gibt die zusätzlich die Signale »Schutz . Ausl L1«, »Schutz . Ausl L2«, »Schutz . Ausl L3« aus.
- Schließlich wird das Auslöse-Signal an den sogenannten »Ausl Manager«
 weitergeleitet. Dieser entscheidet, ob der Schalter geöffnet werden soll. Dafür
 muss das Auslöse-Signal im »Ausl Manager« rangiert sein. Siehe →6 Steuerung /
 Schaltgeräte-Manager für alle Schaltgeräte bezogenen Aspekte, insbesondere
 →"Auslösebefehlsmanager Befehlsausgabe rangieren".

Ein Pop-Up mit Informationen zur Fehlerursache erscheint im Display (siehe →8.2.2 Automatische Fehleranzeige (Pop-up) auf dem Display.)

5.1.2 Richtungserkennung

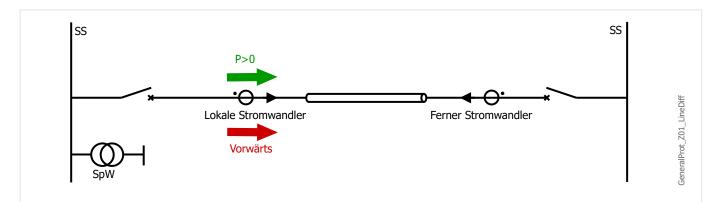


Abb. 66: Strom- und Leistungsrichtung werden beim MCDLV4 immer auf der Lokale Stromwandler Seite erfasst.

(red) = \blacksquare = Phasen- und Erdstromrichtung

 $(green) = \blacksquare = Leistungsrichtung$

Änderungen an den Parametern [Feldparameter / Richtung] »Phasen-MTA« und »Erd-MTA« können zu einer Umkehrung der Richtungsdefinition des Stromes führen.

Das MCDLV4 ermittelt die Richtung für Phasen- und Erdfehler.

Die Richtungserkennung ist im MCDLV4 als Bestandteil des »Schutz«-Moduls integriert.

Die richtungsbezogenen Einstellungen können im Menüzweig [Feldparameter / Richtung] vorgenommen werden.

Die Resultate werden in folgenden Menüzweigen angezeigt:

- [Betrieb / Messwerte / Richtung]
 - Phasenstromrichtung
 - Im Normalbetrieb und im Fehlerfall
- [Betrieb / Zustandsanzeige / Schutz]
 - Phasen- und Erdstromrichtung
 - Nur im Fehlerfall

Wenn die Beträge der Spannungs- oder Stromzeiger zu klein für eine Richtungserkennung sind, wird die Richtung als "Nicht möglich" angegeben.

Die Richtungserkennung wird von den Überstromstufen I[1] ... [6] verwendet, falls diese (im Menü [Projektierung / Projektierte Elemente]) als "gerichtet" betrieben werden (ANSI 67), und das gilt gleichermaßen auch für die Richtungserkennung beim gemessenen und errechneten Erdstrom (IE[1] ... [4], ANSI 67N). In diesem Falle wird nur dann ein Auslöse-Entscheid gegeben, wenn ein Fehler in der eingestellten Richtung auftritt.

Definitionen

• Polarisationsgröße – Die Referenzgröße für die Richtungsbestimmung.

- **Fehlermesswert** Der Winkel zwischen dieser Größe und der Polarisationsgröße bestimmt den Fehler bei der Richtungsbestimmung.
- **Richtungswinkel** Winkel, der die Lage der Richtungskennlinie relativ zur Polarisationsgröße festlegt.
- **Richtungskennlinie** Gerade Linie orthogonal zum Richtungswinkel, die das Gebiet der *Vorwärtsrichtung* von dem Gebiet der *Rückwärtsrichtung* trennt.

5.1.2.1 Richtungserkennung von Phasenfehlern

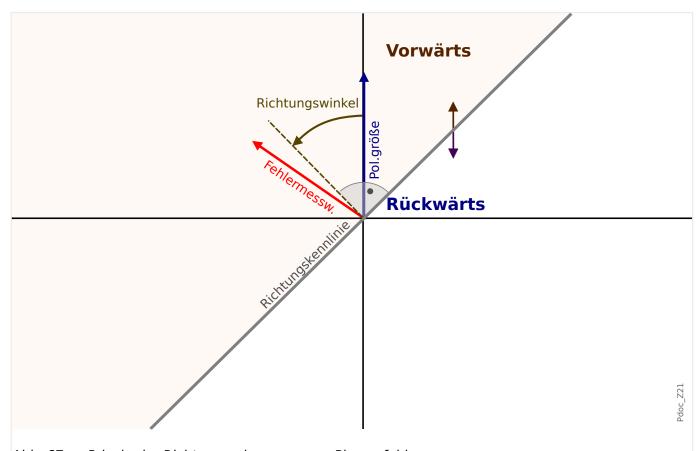
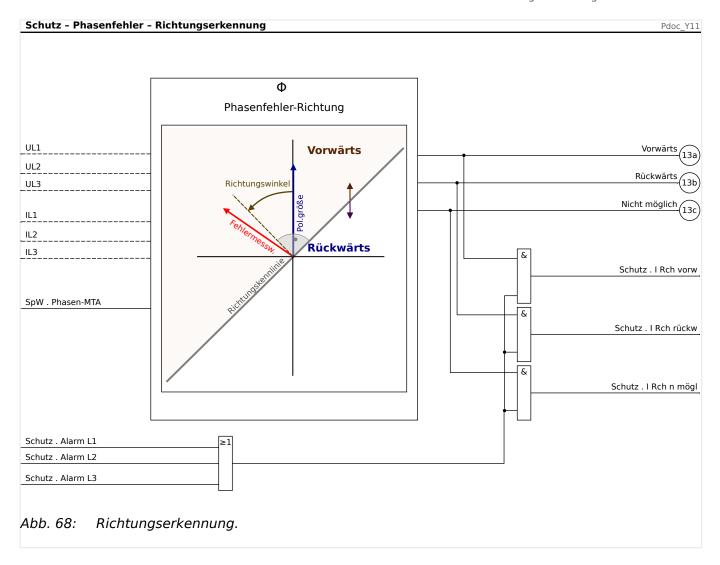



Abb. 67: Prinzip der Richtungserkennung von Phasenfehlern.

Methode der Richtungserkennung	Fehlermesswert	Polarisationsgröße	Richtungswinkel
Phasenstrom	Phase mit der größten Stromstärke	Leiter-Leiter-Spannung der anderen Phasen	»Phasen-MTA«

Das MCDLV4 ermittelt den Winkel zwischen dem Phasenstrom mit der größten Stromstärke (Fehlermesswert) und der Leiter-Leiter-Spannung der anderen Phasen (Polarisationsgröße). Im Falle eines dreiphasigen Fehlers, bei dem die Leiter-Leiter-Spannung zu klein für eine Richtungserkennung ist, wird ein Spannungsspeicher verwendet.

Der Richtungswinkel ist gleich dem Einstellwert von [Feldparameter / Richtung] »Phasen-MTA«. Die Richtungskennlinie ist definiert als die Gerade senkrecht zum Richtungswinkel.

VORSICHT!

• Falls [Feldparameter / Allg Einstellungen] »Drehfeldrichtung« = "ABC", ist der Richtungswinkel gleich dem Einstellwert »Phasen-MTA«.

Die Richtungskennlinie ist somit gegeben durch »Phasen-MTA« ±90°.

• Falls [Feldparameter / Allg Einstellungen] »Drehfeldrichtung« = "ACB", ist der Richtungswinkel gleich (»Phasen-MTA« + 180°).

Die Richtungskennlinie ist somit gegeben durch »Phasen-MTA« ±270°.

• Wenn der Phasenwinkel des Fehlermesswertes kleiner ist als (*»Phasen-MTA*« ±90°), dann wird auf *Vorwärts-*Richtung entschieden.

5 Schutzmodule

5.1.2.1 Richtungserkennung von Phasenfehlern

• Wenn der Phasenwinkel des Fehlermesswertes größer ist als (*»Phasen-MTA*« ±90°), dann wird auf *Rückwärts*-Richtung entschieden.

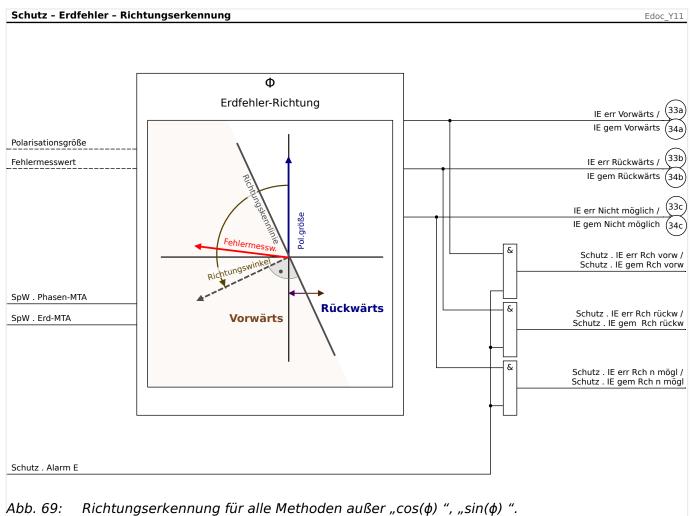
Die Richtungskennlinie wird definiert durch »Phasen-MTA« ±90°.

5.1.2.2 Erdfehler-Richtung

Definitionen

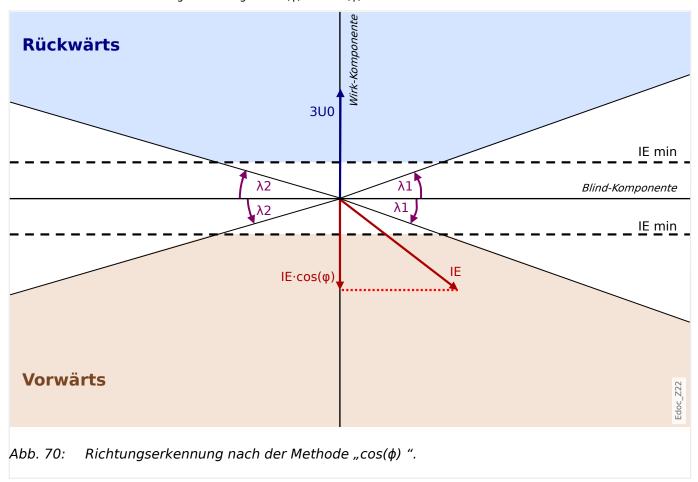
- IE gem Der (über den vierten Stromwandler) gemessene Erdstrom.
- IE err Der errechnete Erdstrom, d. h. die Summe IL1+IL2+IL3.
- (Siehe außerdem die Definitionen in ↔ "Definitionen".)

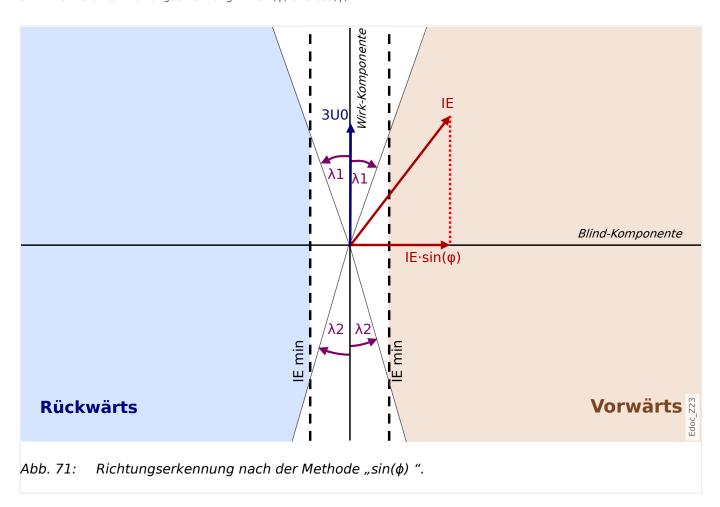
5.1.2.2.1 Richtungserkennungsmethoden


- Für den gemessenen Erdstrom IE gem werden Polarisationsgröße und Fehlermesswert über die Einstellung [Feldparameter / Richtung / IE gem] »IE gem Richtungsoptionen« festgelegt. Die möglichen Auswahlwerte sind:
 - = "IE gem 3U0" 3U0 ist die Polarisationsgröße und IE gem der Fehlermesswert für die Richtungsbestimmung. Siehe →5.1.2.2.2 Richtungserkennung über 3U0, U2, IE gem, IE err.
 - = "I2,U2" Die Gegensystemspannung U2 ist die Polarisationsgröße und I2 der Fehlermesswert. Siehe →5.1.2.2.2 Richtungserkennung über 3U0, U2, IE gem, IE err.
 - = "Dual" Wenn die Gegensystemgrößen I2 und U2 verfügbar sind, funktioniert diese Methode genauso wie die Methode "I2,U2", ansonsten werden IE gem und 3U0 verwendet, wie bei der Methode "IE gem 3U0". Siehe →5.1.2.2.2 Richtungserkennung über 3U0, U2, IE gem, IE err.
 - = $"cos(\phi)"$ Diese Methode wird zur Richtungsbestimmung in kompensierten Netzen eingesetzt. 3U0 ist die Polarisationsgröße und IE gem ist der Fehlermesswert. Details siehe $\hookrightarrow 5.1.2.2.3$ Erdfehler-Richtungserkennung mit $sin(\phi)$ und $cos(\phi)$.
 - = "sin(φ) " Diese Methode wird zur Richtungsbestimmung in isolierten Netzen eingesetzt. 3U0 ist die Polarisationsgröße und IE gem ist der Fehlermesswert. Details siehe ⇔5.1.2.2.3 Erdfehler-Richtungserkennung mit sin(φ) und cos(φ).
- Für den errechneten Erdstrom IE err werden Polarisationsgröße und der Fehlermesswert über die Einstellung [Feldparameter / Richtung / IE err] »IE err Richtungsoptionen« festgelegt. Die möglichen Auswahlwerte sind:
 - = "IE err 3U0" 3U0 ist die Polarisationsgröße und IE err der Fehlermesswert für die Richtungsbestimmung. Siehe →5.1.2.2.2 Richtungserkennung über 3U0, U2, IE gem, IE err.
 - = "I2,U2" Die Gegensystemspannung U2 ist die Polarisationsgröße und I2 der Fehlermesswert. Siehe

 5.1.2.2.2 Richtungserkennung über 3U0, U2, IE gem, IE err.
 - "Dual" Wenn der gemessene Erdstrom IE gem verfügbar ist, wird er als Polarisationsgröße verwendet, zusammen mit IE err als Fehlermesswert und die Methode funktioniert genauso wie die Methode "IE err IPol (IE gem)". Ansonsten werden IE err und 3U0 verwendet, wie bei der Methode "IE err 3U0". Siehe →5.1.2.2.2 Richtungserkennung über 3U0, U2, IE gem, IE err.
 - = "IE err IPol (IE gem)" IE gem ist die Polarisationsgröße und IE err der Fehlermesswert. Siehe →5.1.2.2.2 Richtungserkennung über 3U0, U2, IE gem, IE err.
 - ∘ = "cos(ϕ) " Diese Methode wird zur Richtungsbestimmung bei Erdfehlern in kompensierten Netzen eingesetzt. 3U0 ist die Polarisationsgröße und IE err ist der Fehlermesswert. Details siehe $\hookrightarrow 5.1.2.2.3$ Erdfehler-Richtungserkennung mit sin(ϕ) und cos(ϕ).
 - = "sin(φ) " Diese Methode wird zur Richtungsbestimmung in isolierten Netzen eingesetzt. 3U0 ist die Polarisationsgröße und IE err ist der Fehlermesswert. Details siehe ⇔5.1.2.2.3 Erdfehler-Richtungserkennung mit sin(φ) und cos(φ).

Die Richtung wird basierend auf dem Winkel zwischen der Polarisationsgröße und dem Fehlermesswert ermittelt. Anhand des Richtungswinkels entscheidet das MCDLV4 auf einen Fehler in Vorwärts- bzw. Rückwärtsrichtung. Dieser Richtungswinkel wird geräteintern errechnet und hängt von den Einstellparametern »Phasen-MTA« oder »Erd-MTA« ab, die sich beide im Menüzweig [Feldparameter / Richtung / Allg Einstellungen] befinden.

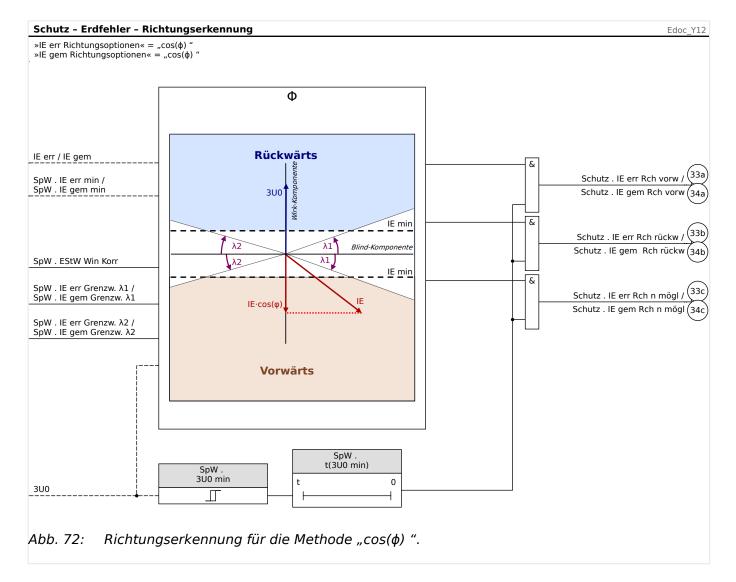

Wenn 3U0 als Polarisationsgröße verwendet wird, dann muss auch der Parameter [Feldparameter / Richtung / Allg Einstellungen] »3U0 Quelle« entweder auf "gemessen" oder auf "berechnet" eingestellt werden. Das gemessene 3U0 verwendet die Werte des vierten Spannungswandlers. Das errechnete 3U0 ist die Summe (UL1+UL2+UL3).

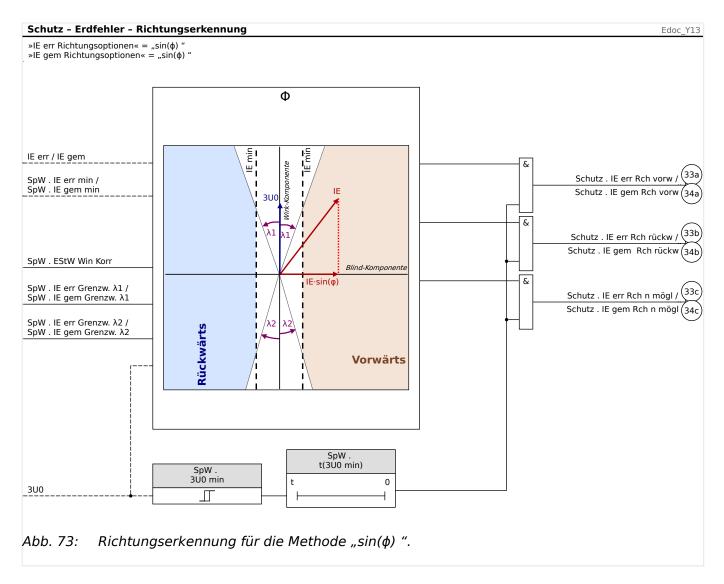

5.1.2.2.2 Richtungserkennung über 3U0, U2, IE gem, IE err

Methode der Richtungserkennung	Fehler- messwert	Polarisa- tionsgröße	Richtungswinkel	
IE gem 3U0	IE gem	3U0	Erd-MTA	
IE err 3U0	IE err			
12,U2	12	U2	90° + »Phasen-MTA«	
Dual for »IE gem Richtungsoptionen«	12,	U2,	90° + »Phasen-MTA«	
	falls U2 und I2 verfügbar sind; sonst:			
(d. h. für IE gem)	IE gem	3U0	Erd-MTA	
Dual for »IE err Richtungsoptionen«	IE err	IE gem	0°	
	falls IE gem verfügbar ist; sonst:			
(d. h. für IE err)	IE err	3U0	Erd-MTA	
IE err IPol (IE gem)	IE err	IE gem	0°	

5.1.2.2.3 Erdfehler-Richtungserkennung mit $sin(\phi)$ und $cos(\phi)$

Für die Methoden der Erdfehler-Richtungserkennung gibt es weitere Einstellungen:


- [Feldparameter / Richtung / Allgemein] »300 min« Das Hauptkriterium für die Erdfehler-Erkennung in kompensierten und isolierten Netzen ist die Verlagerungsspannung. Daher wird eine Richtungserkennung für Erdfehler nur dann durchgeführt, wenn 300 über dem eingestellten Schwellwert »300 min« ist.
- [Feldparameter / Richtung / Allgemein] »t(3U0 min)« Um die Richtungserkennung gegen Transienten zu stabilisieren, ist es ratsam, eine zusätzliche Zeitstufe zu aktivieren. Sobald 3U0 über dem Schwellwert »3U0 min« ist, wird diese Zeitstufe gestartet, und die Richtungserkennung ist erst nach deren Ablauf freigegeben. Allerdings stellt diese Zeitstufe eine zusätzliche Verzögerung für gerichtete Erdüberstromstufen IE[n] dar.
- [Feldparameter / Richtung / IE gem] »IE gem min« Schwellwert für die aktiven ("cos(φ)") bzw. reaktive ("sin(φ)") Komponente des Erdstromes.


Falls die Strommesskarte "TIs" mit empfindlichen Messeingängen für die Messung von IE gem eingesetzt wird, hängt der Einstellbereich von dem Strommesseingang ab, der auf der 3U0-Seite mit dem vierten Spannungswandler verbunden ist:

- Für den Standard-Strommesseingang ist der Wertebereich 0.02 ... 2.00 In für die Einstellung zu verwenden.
- Für den empfindlichen Strommesseingang ist der Wertebereich 0.002 ... 2.00 In für die Einstellung zu verwenden.
- [Feldparameter / Richtung / IE gem] »IE gem Grenzw. λ1« und »IE gem Grenzw.
 λ2« Begrenzungswinkel, die den Sperrbereich der Kennlinie vergrößern (siehe Diagramme, →Abb. 72). Es ist ratsam, diese Begrenzungswinkel sorgfältig

einzustellen, sodass das Risiko von Fehlmessungen auf Grund von Winkelfehlern bei hohen Stromstärken reduziert wird.

Die gleichen Einstellungen [Feldparameter / Richtung / IE err] »IE err min«, »IE err Grenzw. $\lambda 1$ « und »IE err Grenzw. $\lambda 2$ « gibt es analog, falls IE err verwendet wird.

Empfehlungen zur Genauigkeit

Im Allgemeinen ist die Genauigkeit weitaus besser, wenn IE gem verwendet wird anstatt IE err und somit entsprechend die Einstellung »3U0 Quelle« = "gemessen" ist anstatt »3U0 Quelle« = "berechnet".

Außerdem sollte man den Einstellwert von [Feldparameter / Richtung / Allg Einstellungen] » EStW Win Korr« anpassen: Dieser Parameter legt eine Winkelkorrektur fest, über die ein eventueller Messfehler von Seiten des Erdstromwandlers ausgeglichen werden kann. Vor allem für die Methode " $\cos(\phi)$ " ist dies empfehlenswert.

Bei der Methode " $\cos(\phi)$ " ist eine möglichst exakte Winkelbestimmung wichtig. Es ist somit ratsam, Kabelumbauwandler einzusetzen, denn diese haben eine höhere Winkelgenauigkeit als Phasenwandler in Holmgreen-Schaltung.

Außerdem ist für isolierte und kompensierte Netze ein MCDLV4 zu empfehlen, das mit einem empfindlichen Erdstromeingang versehen ist (Messkarte "Tls", →3.5.2 Tls – Strommesseingänge und Empfindlicher Erdstrommesseingang).

5.1.2.2.4 Einstellhinweise

Diese Hinweise erläutern nur die Einstellungen der Richtungsbestimmung für Erdfehler in einem kompensierten Netz. Die Schutzeinstellungen (Schwellwerte, Zeitstufen etc.) werden allerdings im Kapitel "Erdstrom" ($\hookrightarrow 5.12$ IE – Erdüberstromschutz) beschrieben.

Erdfehlerrichtung mittels der Methode $cos(\phi)$ ("wattmetrisch") für IE gem und 300 (gemessen)

Der Erdstrom IE gem soll hierbei am vierten Stromwandlereingang mittels Kabelumbauwandler und 3U0 am vierten Spannungswandlereingang über eine offene Dreieckswicklung (V-Schaltung) gemessen werden.

Wählen Sie den Menüpunkt [Feldparameter / Richtung / Allgemein] an.

• Wählen Sie als Richtungserkennungs-Methode cos(φ) für gemessenen Erdstrom aus:

```
»IE gem Richtungsoptionen« = ,cos(\phi) "
```

• Bestimmen Sie, dass die gemessene Verlagerungsspannung verwendet werden soll:

```
»3U0 Quelle« = "gemessen"
```

Wählen Sie den Menüpunkt [Feldparameter / Richtung / Erdschlussrichtung] an.

• Die ausgewählte Richtungserkennungs-Methode muss nun konfiguriert werden, wobei allerdings die Einstellungen abhängig von der jeweiligen Anwendung und somit vom Anwender festzulegen sind.

```
»3U0 min«

»t(3U0 min)«

»IE gem min«
```

• Die Begrenzungswinkel sind ebenfalls festzulegen:

```
»IE gem Grenzw. λ1«
»IE gem Grenzw. λ2«
```

Hiermit wird die Richtung erkannt und im Falle eines Erdfehlers unter dem Menüpunkt [Betrieb / Zustandsanzeige / Schutz] gemeldet.

Einige weitere Einstellungen werden benötigt, um das Ergebnis der Richtungserkennung in Zusammenhang mit einer Erdstromschutzelement »IE[n]« zu verwenden.

Wählen Sie den Menüpunkt [Projektierung] an.

• Aktivieren Sie ein Erdstromschutzelement und wählen die erforderliche Richtung:

```
[Projektierung / Projektierte Elemente]»IE[n] . Modus« = "Vorwärts" oder "Rückwärts".
```

• Falls keine Generalanregung, -auslösung und auch kein Aus-Befehl gewünscht sind, sondern das Erdstromschutzelement nur als Meldefunktion arbeiten soll, dann ist außerdem folgende Einstellung erforderlich:

```
[Projektierung / Definition]»IE[n] . Nur Überw.« = "ja"
```

Wählen Sie den Menüpunkt [Schutzparameter / Satz 1...4 / I-Schutz / IE[n]] an.

• Aktivieren Sie die Schutzfunktionalität und wählen die Erdfehlerrichtung des gemessenen Erdstromes:

```
»Funktion« = "Aktiv"
```

• »IE Quelle« = "gemessen", oder

```
»IE Quelle« = "empfindliche Messung"
```

• Stellen Sie Schwellwert und Zeitstufe ein:

```
»IE>«, oder
»IEs>«
»t«
```

Beachten Sie auf jeden Fall, dass die Gesamtverzögerung sich aus der Summe der Verzögerungen von Erdstromschutzelement und Richtungserkennung ergibt.

5.1.3 Blockaden

Das Gerät bietet temporäre und dauerhafte Blockademöglichkeiten des gesamten Schutzes oder einzelner Stufen.

WARNUNG!

Stellen Sie sicher, dass Sie keine unsinnigen oder gar lebensgefährlichen Blockaden rangieren.

Stellen Sie sicher, dass Sie nicht fahrlässig Schutzfunktionalität deaktivieren, die das Gerät laut Schutzkonzept zur Verfügung stellen muss.

Dauerhafte Blockaden

Den gesamten Schutz des Geräts ein- oder ausschalten:

Im Modul »Schutz« kann der komplette Schutz des Geräts ein- oder ausgeschaltet werden. Setzen Sie hierzu den Parameter [Schutzparameter / Globale Schutzpara / Schutz] »Funktion« auf "Aktiv" bzw. "Inaktiv".

WARNUNG!

Nur wenn im Modul »Schutz« der Parameter »Funktion« = "Aktiv" ist, funktioniert der Schutz. Das heißt, bei »Funktion« = "Inaktiv" arbeitet keine Schutzfunktion. Das Gerät schützt dann keine Betriebsmittel.

Module ein- oder ausschalten:

Jedes Modul kann (dauerhaft) ein- oder ausgeschaltet werden. Hierzu setzen Sie in dem entsprechenden Modul den Parameter »Funktion« auf "Aktiv" bzw. "Inaktiv".

Den Auslösebefehl einer Schutzstufe dauerhaft aktivieren bzw. deaktivieren:

In jeder Schutzstufe können Sie den Auslösebefehl auf den Leistungsschalter dauerhaft blockieren. Setzen Sie hierzu den Parameter »Blo AuslBef« auf "Aktiv".

Temporäre Blockaden

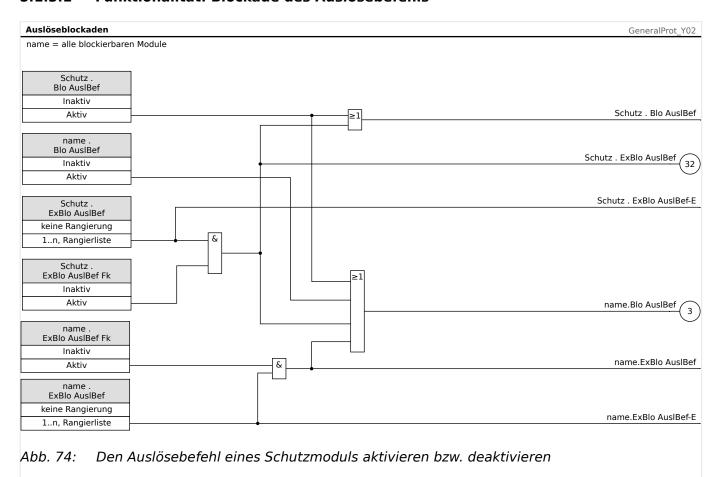
Den gesamten Schutz des Geräts temporär durch ein Signal blockieren

Im Modul »Schutz« kann der komplette Schutz des Geräts temporär durch ein Signal blockiert werden. Voraussetzung dafür ist, dass die modul-externe Blockade erlaubt ist »ExBlo Fk«="Aktiv". Zusätzlich muss ein entsprechendes Blockadesignal aus der »Rangierliste« dieser Blockade zugeordnet sein. Solange das rangierte Blockadesignal aktiv ist, wird das Modul blockiert.

WARNUNG!

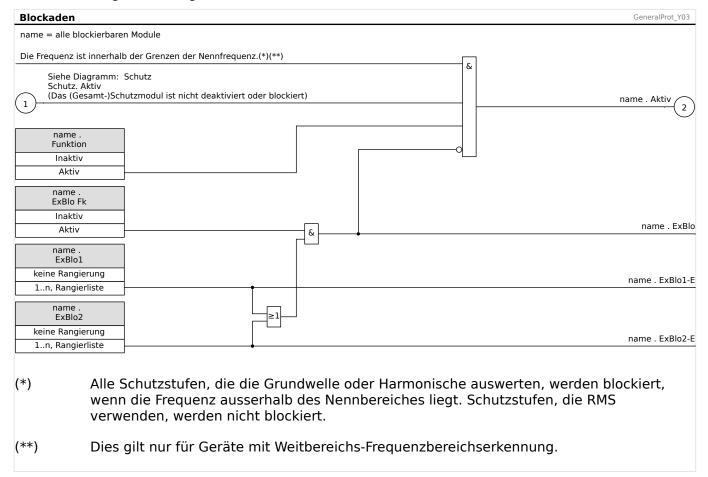
Wenn das Modul »Schutz« blockiert wird, ist die gesamte Schutzfunktionalität außer Funktion gesetzt. Das Gerät schützt dann keine Betriebsmittel, solange das Blockadesignal aktiv ist.

Ein ganzes Schutzmodul temporär durch eine aktive Rangierung blockieren:

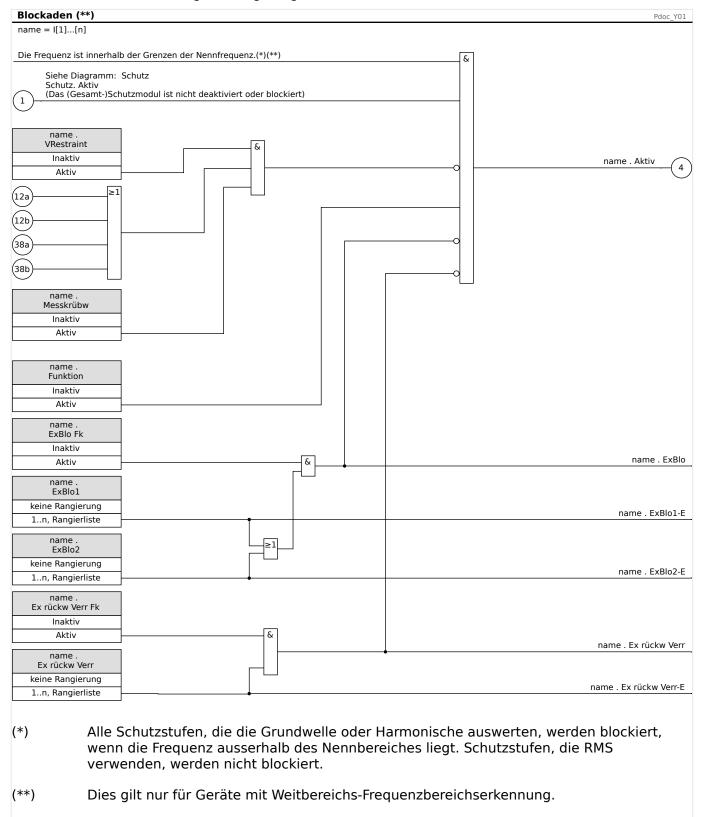

- Um eine temporäre Blockade eines Schutzmoduls einzurichten, ist zunächst innerhalb des Moduls der Parameter »ExBlo Fk« auf "Aktiv" zu setzen. Dadurch vergeben Sie die Erlaubnis: »Dieses Modul darf blockiert werden«.
- Zusätzlich muss innerhalb der globalen Schutzparameter dem Parameter »ExBlo1« oder »ExBlo2«ein Signal aus der »Rangierliste« zugewiesen werden. Wird das ausgewählte Signal wahr, dann wird die temporäre Blockade wirksam.

Den Auslösebefehl einzelner Schutzstufen temporär durch eine aktive Rangierung blockieren.

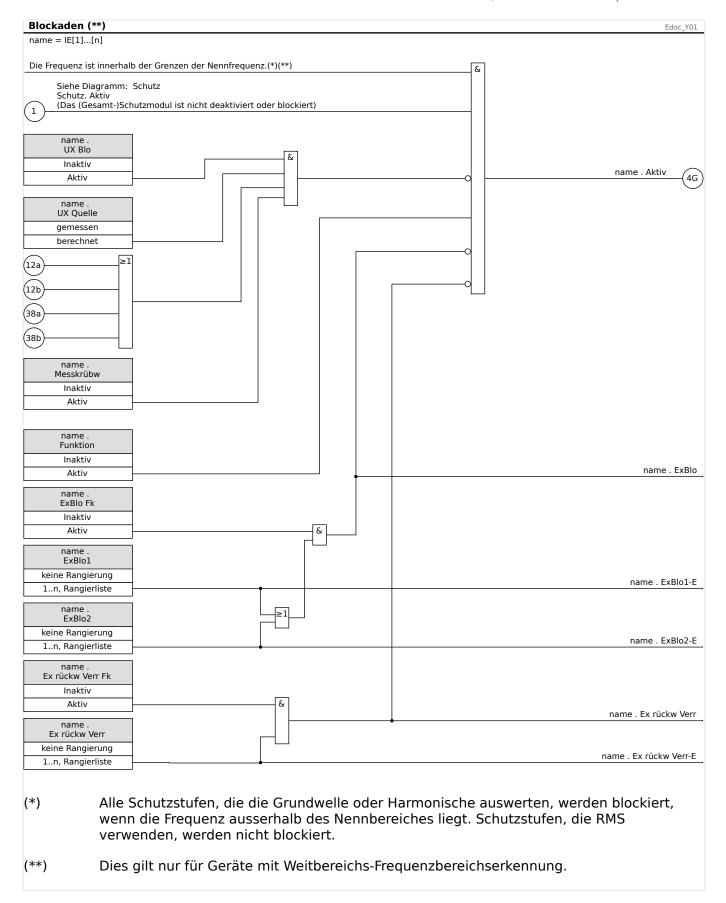
Sie können den Auslösebefehl einer jeden Schutzstufe auch extern blockieren. Extern bedeutet nicht nur »geräteextern«, sondern auch »modulextern«. Als Blockadesignal sind nicht nur wirklich externe Signale wie die Zustände eines digitalen Eingangs erlaubt. Ebenso können Sie als Blockadesignal ein beliebiges anderes Signal aus der »Rangierliste« wählen.


- Um eine temporäre Blockade des Auslösebefehls einer Schutzstufe einzurichten, ist zunächst innerhalb des Moduls der Parameter »ExBlo AuslBef Fk« auf "Aktiv" zu setzen. Dadurch vergeben Sie die prinzipielle Erlaubnis: »Der Auslösebefehl dieser Schutzstufe darf blockiert werden«.
- Zusätzlich muss innerhalb der globalen Schutzparameter ein Signal aus der »Rangierliste« dem Parameter »ExBlo AuslBef« zugeordnet werden. Wird das ausgewählte Signal wahr, dann wird die temporäre Blockade wirksam.

5.1.3.1 Funktionalität: Blockade des Auslösebefehls

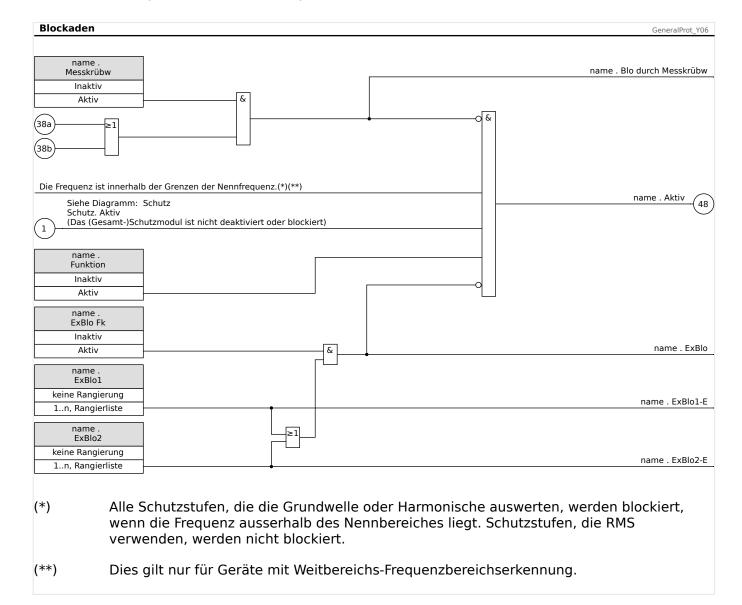

5.1.3.2 Schutzfunktionen aktivieren, deaktivieren bzw. temporär blockieren

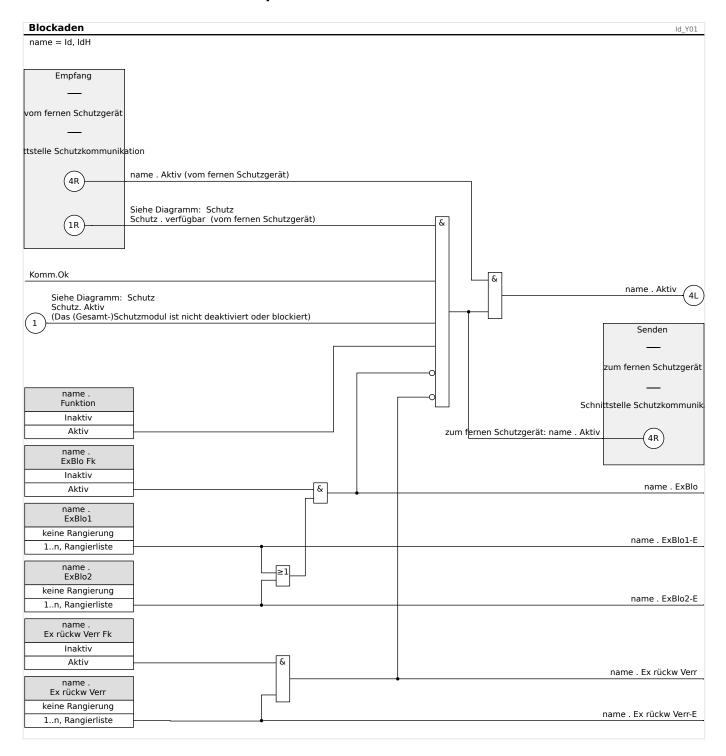
Das folgende Diagramm gilt für alle Module, sofern nicht weiter unten modulspezifische Diagramme folgen:


5.1.3.3 Phasenstromstufen aktivieren, deaktivieren bzw. temporär blockieren

Phasenstromschutzstufen können nicht nur dauerhaft (»Funktion« = "Inaktiv") oder temporär durch ein beliebiges Blockadesignal aus der »Rangierliste«, sondern auch durch eine »Rückwärtige Verriegelung« blockiert werden.

5.1.3.4 Erdstromstufen aktivieren, deaktivieren bzw. temporär blockieren


Erdstromschutzstufen können nicht nur dauerhaft (»Funktion« = "Inaktiv") oder temporär durch ein beliebiges Blockadesignal aus der »Rangierliste« sondern auch durch eine »Rückwärtige Verriegelung« blockiert werden.


5.1.3.5 Schutzmodule mit Messkreisüberwachung aktivieren, deaktivieren bzw. temporär blockieren

Das folgende Diagramm gilt für die folgenden Module:

•
$$Q -> \&U < -$$
 "name" = $Q -> \&U <$

5.1.3.6 Phasenstrom-Differentialschutz und die Hochstromdifferentialstufe aktivieren, deaktivieren bzw. temporär blockieren

5.2 Netz- und Anlagenschutz

Da dem Netz- und Anlagenschutz eine zunehmende Bedeutung zukommt, wurden für die HighPROTEC zahlreiche dem Stand der Technik entsprechende Schutzfunktionen entwickelt und in einem speziellen Menü [NA-Schutz] "Netz- und Anlagenschutz" zusammengefasst.

Diese sind so universell einsetzbar, dass sie über die Parametrierung an unterschiedlichste international und lokal gültige Netzanschlussrichtlinien (Grid-Codes) einfach angepasst werden können.

Im Folgenden wird ein Überblick über dieses Menü gegeben. Details zu den entsprechenden Schutzmodulen entnehmen Sie bitte der Dokumentation zu den entsprechenden Schutzmodulen.

Der Netz- und Anlagenschutz umfasst:

Ein Untermenü mit Netzentkopplungsfunktionen. Je nach vor Ort gültigen Netzanschlussrichtlinien (Grid-Codes) sind unterschiedlichste Netzentkopplungsfunktionen vorgeschrieben (oder auch verboten). In diesem Menü haben Sie Zugriff auf folgende Netzentkopplungsfunktionen:

- df/dt (siehe Frequenzschutz-Kapitel, →5.21 f Frequenz [810/U, 78, 81R]). Diese Schutzfunktion einspricht einem Frequenzschutz-Modul in der Projektierung "df/dt".
- Vektorsprung (siehe Frequenzschutz-Kapitel,

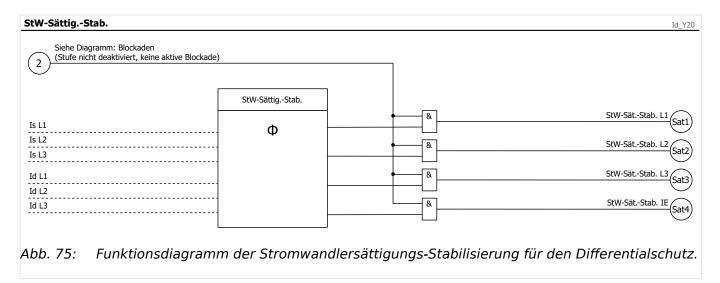
 5.21 f Frequenz [810/U, 78, 81R]).
 Diese Schutzfunktion einspricht einem Frequenzschutz-Modul in der Projektierung
 "delta phi".
- Pr Wirk-Rückleistung (siehe Leistungsschutz-Kapitel) Diese Schutzfunktion einspricht einem Frequenzschutz-Modul in der Projektierung df/dt. Diese Schutzfunktion einspricht einem Leistungschutz-Modul in der Projektierung "Pr>".
- Qr Blind-Rückleistung (siehe Leistungsschutz-Kapitel). Diese Schutzfunktion einspricht einem Leistungschutz-Modul in der Projektierung "Qr>".

Ein Untermenü für den Low Voltage Ride Through (siehe $\hookrightarrow 5.27$ LVRT – Low Voltage Ride Through [27(t)]).

Ein Untermenü zum Q->&U<-Schutz (siehe →5.24 Q->&U< – Blindleistungs-Unterspannungsschutz).

Ein Untermenü für die Synchronisierung (siehe →5.23 Sync - Synchrocheck [25]).

HINWEIS!



Das Schutzgerät bietet u.a. für Niederspannungsanwendungen eine 10 Minuten gleitende Mittelwertüberwachung. (siehe ⇔5.19 U - Spannungsschutz [27,59]).

5.3 StW-Sättig.-Stab. - Stromwandlersättigungs-Stabilisierung für den Differentialschutz

Die Stromwandlersättigungs-Stabilisierung erkennt externe Fehler und kann dazu verwendet werden den Phasen- und/oder Erdstrom-Differentialschutz gegen Stromwandlersättigung zu stabilisieren. Dies kann Fehlauslösungen bei externen Fehlern in Verbindung mit Stromwandlersättigung verhindern.

Funktionalität

Die Stabilisierung wird gestartet sobald ein externer Fehler erkannt wird, was kontinuierlich überprüft wird. Der Differentialschutz ist robust gegen Wandlersättigung, solange der

externe Fehler andauert und somit auch die Stabilisierung. Wird hingegen ein interner Fehler erkannt, wird die Stabilisierung gestoppt.

Da die Stabilisierungsfunktion bei einem internen Fehler nicht gestartet wird, gibt es in diesem Falle auch keine verzögerte Auslösung. Wenn sich jedoch ein externer Fehler zu einem internen Fehler entwickelt, nachdem die Stabilisierung schon gestartet wurde, kann sich die Auslösung der Differentialschutzfunktion um etwa $1\dots 2$ Zyklen verzögern.

Über den Parameter »tBlock« wird die maximale Stabilisierungsdauer eingestellt. Diese Zeitstufe startet, wenn die Stabilisierung gestartet wird. Nach Ablauf der eingestellten Zeit wird die Stabilisierung gestoppt, unabhängig von eventuell erkannten, externen Fehlern. Die eingestellte, maximale Stabilisierungsdauer sollte – neben weiteren Abhängigkeiten – mit der maximalen Abschaltzeit für einen externen Fehler abgestimmt sein.

Wenn die Stabilisierung gestoppt wurde, kann für eine Sekunde keine neue Stabilisierung gestartet werden.

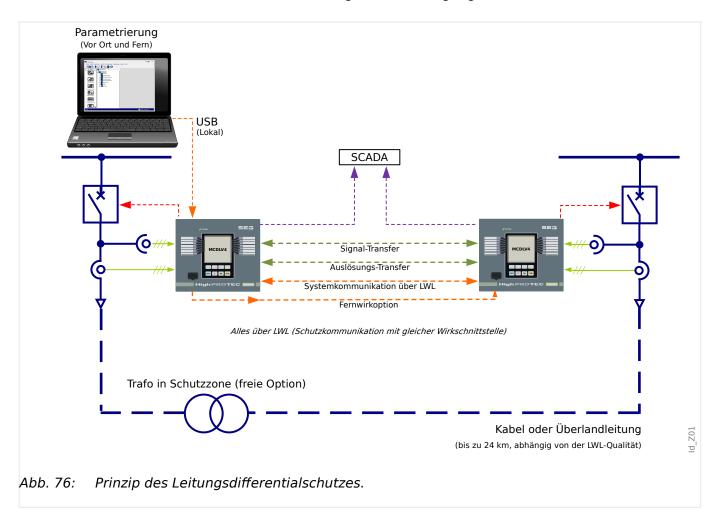
5.3.1 Einstellhinweise

- Die Funktion wird projektiert via:
 - [Projektierung / Projektierte Elemente] »StW-Sättig.-Stab. . Modus« = "verwenden"
- Aktivieren der Funktion:
 - [Schutzparameter / Satz 1...4 / Diff-Schutz / StW-Sättig.-Stab.] »Funktion« = "Aktiv"

- Die maximale Stabilisierungsdauer sollte mit der maximalen Abschaltzeit für einen externen Fehler abgestimmt sein:
 - [Schutzparameter / Satz 1...4 / Diff-Schutz / StW-Sättig.-Stab.] »tBlock« = 0,3 s (Beispiel)
- Am Ende muss Id[n] or IdE[n] so konfiguriert werden, dass die Stabilisierung verwendet wird. Dies wird hier beispielhaft durchgeführt für Id:
 - [Schutzparameter / Satz 1...4 / Diff-Schutz / Id] »StW-Sättig.-Stab.« = "Aktiv"

5.4 Id - Phasenstrom-Differentialschutz

Das Phasenstrom-Differentialschutz-Modul »Id« stellt die folgenden ANSI-Schutzfunktionen zur Verfügung:

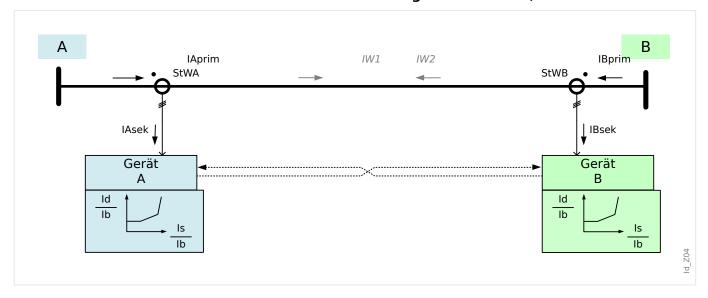

- ANSI 87L
- ANSI 87T

Prinzip des Phasenstrom-Differentialschutzes

Die Phasenstrom-Differentialschutzstufe des Geräts besitzt eine phasen-selektive Mehrbereichs-Stabilisierungskennlinie, um Fehler durch statische und dynamische (transiente) Vorgänge zu kompensieren.

Statische Fehler können u. a. durch den Magnetisierungsstrom oder durch Abgleichfehler in den Stromwandlermesskreisen hervorgerufen werden. Dynamische Fehler können verursacht werden von Stufenstellern oder durch große Ströme während eines Netzfehlers, die die Stromwandler in Sättigung treiben.

Um Fehlauslösungen durch Übererregung oder bei ausgeprägter Wandlersättigung zu verhindern, kann die Ansprech-Grundkennlinie temporär angehoben werden. Auf der Basis der 2. und 4. Harmonischen (Oberwellen) werden Inrushvorgänge erkannt. Die 5. Harmonische kann im Zusammenhang mit Übererregung auftreten.



Der Leitungsdifferentialschutz basiert auf zwei Schutzgeräten, die an den Enden einer Leitung den Stromfluss überwachen und die miteinander über einen speziellen Kommunikationskanal, die Wirkschnittstelle SchutzKom, zusammenwirken.

Die Zuverlässigkeit und ständige Verfügbarkeit der SchutzKom-Schnittstelle ist essentiell für den Leitungsdifferentialschutz. Daher wird die Schnittstelle kontinuierlich geräteintern überwacht. Sobald die Verbindung als nicht stabil befunden wird, wird der Leitungsdifferentialschutz (also insbesondere auch das hier beschriebene Modul "Id") blockiert, bis die Geräteverbindung wieder stabil ist. Da beim Phasendifferentialschutz beide Geräten als "Paar" zusammenarbeiten, wird auch immer auf beiden Seiten der Phasendifferentialschutz blockiert, sobald eine Seite z. B. mit externer Blockade blockiert wird.

Betriebsart 1 (Kabel / Leitung):

Phasenstrom-Differentialschutz von Leitungen und Kabeln, ANSI 87L

Dazu muss folgender Projektierungsparameter auf **beiden** Schutzgeräten eingestellt werden: [Projektierung / Projektierte Elemente] »*Transformator . Modus*« = "-"

Für die Betriebsart "ANSI 87L" wird für den Bezugsstrom "Ib", der für den Leitungsdifferentialschutz zugrunde gelegt wird, der Wandlernennstrom "In" verwendet. Im Normalfall sollten an beiden Enden die gleichen Phasenstromwandler verwendet werden, so dass gilt:

Ib = StWA prim = StWB prim

Wenn in besonderen Fällen Stromwandler mit unterschiedlichen Primärnennströmen verwendet werden, muss der Bezugstrom "Ib" an jeder Geräteseite eingestellt werden. In der Regel wird der größere der beiden gewählt.

Mit dem Parameter [Feldparameter / Allg Einstellungen] »Ib Referenz« muss dann bei jedem der beiden Geräte ausgewählt werden, ob der lokale Stromwandler ("StW Lokal") oder der Stromwandler der Gegenstelle ("StW Fern") den Bezugstrom "Ib" als Referenz nehmen soll.

***** Beispiel:

Wenn der primäre Nennstrom des Stromwandlers am Ort **B** mit Stromwandler StWB (**1000**:1) größer ist als der primäre Nennstrom des Stromwandlers am Ort A mit Stromwandler StWA (800:1), soll StWB den Bezugsstrom Ib mit **1000** A definieren.

Am Schutzgerät Ort A ist folgendes einzustellen:

[Feldparameter / Allg Einstellungen] »Ib Referenz« = "StW Fern"]

[Feldparameter / StW Lokal] »StW pri« = 800 A

[Feldparameter / StW Fern] »StW pri« = 1000 A

Am Schutzgerät Ort **B** ist folgendes einzustellen:

[Feldparameter / Allg Einstellungen] »Ib Referenz« = "StW Lokal"]

[Feldparameter / StW Lokal] »StW pri« = 1000 A

[Feldparameter / StW Fern] »StW pri« = 800 A

Für die Gleichungen in der nachfolgenden Beschreibung werden die Indizes W1 und W2 verwendet, welche für die Wicklungsseiten des Transformators stehen sollen. Die Gleichungen können prinzipiell auch für diese Betriebsart 1 (Kabel/Leitung ohne Transformator) angewendet werden, wenn man statt der Leitung sich einen fiktiven Transformator in der Leitung vorstellt mit der Schaltgruppe Yy0 und einer fiktiven Spannungsübersetzung W1:W2 = 1:1.

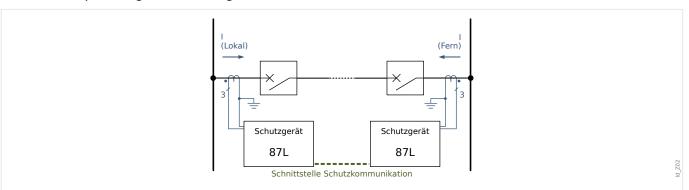


Abb. 77: ANSI 87L - Leitungsdifferentialschutz.

Erforderliche Einstellungen:

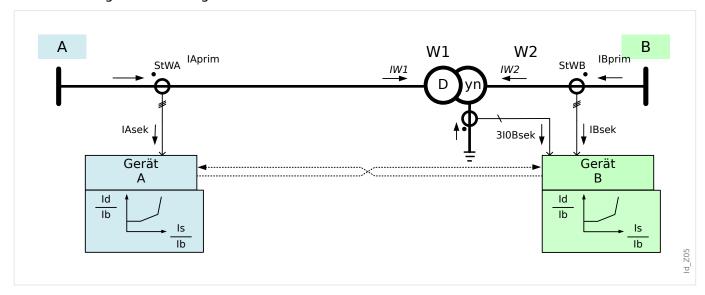
Hinweis 1: Bei beiden Schutzgeräten müssen die Stromwandler mit der Klemme X3 verbunden werden, ferner müssen die Lichtwellenleiter für die Schutzkommunikation ("SchutzKom", X102) angeschlossen und die Verbindung konfiguriert werden.

Folgende Einstellungen sollten im Wesentlichen für beide Geräte gleich eingestellt werden.

Legen Sie den Applikationsmodus fest:

[Projektierung / Projektierte Elemente] »Transformator . Modus« = "-"

Parametrieren Sie den Differentialschutz im Menüzweig [Schutzparameter / Satz x / Diff-Schutz].


Hinweis 2: Die Einstellungen für zusätzliche Stabilisierung furch Harmonische (siehe $\hookrightarrow 5.4.7$ Stabilisierung gegen Transiente) können aktiviert werden, [Schutzparameter / Satz x / Diff-Schutz / Id] »Stab H2«, »Stab H4«, »Stab H5« = "Inaktiv", wenn davon auszugehen ist, dass sie nicht benötigt werden.

Hinweis 3: Die Festlegung der Stromrichtungen wird in der Grafik gezeigt.

Hinweis 4: Bei unterschiedlichen Wandlernennströmen (Primärnennstrom) ist im Menü [Feldparameter / Allg Einstellungen] »Ib Referenz« die entsprechende Einstellung zu wählen. (Der Wandler mit dem größtem Nennstrom sollte Ib definieren).

Betriebsart 2 (Kabel / Leitung mit Transformator):

In-Zone-Transformator-Differentialschutz für einen in der Schutzzone (Kabel / Leitung) liegenden Leitungstransformator – **87T**

Dazu muss folgender Projektierungsparameter auf **beiden** Schutzgeräten eingestellt werden: [Projektierung / Projektierte Elemente] »*Transformator* . *Modus* « = "verwenden"

Für die Betriebsart ANSI 87T wird nun zusätzlich ein Transformator in der Leitung mit berücksichtigt. Das primäre Schutzobjekt wird nun der Transformator sein. Der Bezugsstrom "Ib" ist nun nicht mehr einer der Stromwandler-Nennströme, sondern wird nun der Nennstrom des Transformators (welcher sich aus Nennscheinleistung und Nennspannung der Wicklungsseite berechnen).

Für den Phasendifferentialschutz (87T) wird die Wicklungsseite W1 (Oberspannungsseite) als Bezug verwendet, so dass der Bezugsstrom "Ib" nun dem Nennstrom des Transformators von Wicklungsseite W1 entspricht.

Für einen Erdstromdifferentialschutz (87N, 64REF) entspricht der Bezugsstrom "Ib" dem Nennstrom der Wicklungsseite des Transformators, an dem dieser Schutz angewendet wird (Wicklung W1 oder W2).

Mit dem Parameter [Feldparameter / Transformator] »Messseite« muss dann bei jedem Gerät ausgewählt werden, an welcher Wicklung des Transformators ("W1" oder "W2") sich das Schutzgerät befindet.

Beispiel:

Die Wicklungsseite W1 (Oberspannungsseite) wird vom Schutzgerät an Ort A erfasst, die Wicklungsseite W2 (Unterspannungsseite) wird vom Schutzgerät an Ort B erfasst.

Am Schutzgerät Ort A ist folgendes einzustellen:

[Feldparameter / Transformator] »Messseite« = "W1"

Die Stromwandlerdaten sind ähnlich wie unter Betriebsart 1 entsprechend einzustellen.

Am Schutzgerät Ort **B** ist folgendes einzustellen:

[Feldparameter / Transformator] »Messseite« = "W2"

Die Stromwandlerdaten sind ähnlich wie unter Betriebsart 1 entsprechend einzustellen.

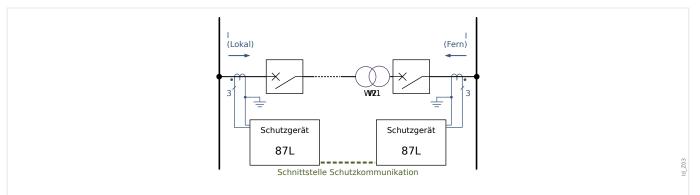


Abb. 78: ANSI 87L / 87T - Leitungsdifferentialschutz mit in der Schutzzone installiertem Transformator.

Erforderliche Einstellungen:

Hinweis 1: Bei beiden Schutzgeräten müssen die Stromwandler mit der Klemme X3 verbunden werden, ferner müssen die Lichtwellenleiter für die Schutzkommunikation ("SchutzKom", X102) angeschlossen und die Verbindung konfiguriert werden.

Folgende Einstellungen sollten im Wesentlichen für beide Geräte gleich eingestellt werden.

Legen Sie den Applikationsmodus fest.

[Projektierung / Projektierte Elemente] »Transformator . Modus« = "verwenden"

Setzen Sie die Feldparameter des Transformators im Menü [Feldparameter / Transformator].

Parametrieren Sie den Differentialschutz im Menüzweig [Schutzparameter / Satz x / Diff-Schutz].

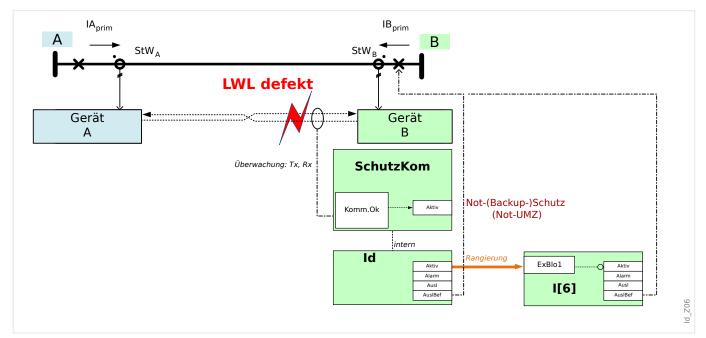
Hinweis 2: Die Einstellungen für die Wandlersättigungserkennung können aktiviert werden, [Schutzparameter / Satz x / Diff-Schutz / Id] »Stab H2«, »Stab H4«, »Stab H5« = "Aktiv", wenn davon auszugehen ist, dass sie für den Phasendifferentialschutz benötigt werden.

Hinweis 3: Die Festlegung der Stromrichtungen wird in der Grafik gezeigt.

Hinweis 4: Dem Gerät muss bekannt gegeben werden, an welcher Transformatorseite gemessen wird. Die entsprechende Seite wird über die Einstellung [Feldparameter / Transformator] »Messseite« ausgewählt:

- "W1" (Primärseite / Oberspannungsseite)
- "W2" (Sekundärseite / Unterspannungsseite)

Not-(Backup-)Schutz


Für eine Not-Schutzfunktion, die zur Verfügung steht, wenn der Leitungsdifferentialschutz (d. h. Insbesondere die Schutzkommunikationsverbindung zwischen beiden Geräten) ausfällt, gibt es prinzipiell zwei Strategien:

- Die Not-Schutzfunktionen können dauerhaft (d. h. parallel zum Leitungsdifferentialschutz) aktiv sein.
- Die Not-Schutzfunktionen k\u00f6nnen aktiviert werden, sobald die \u00fcbertragungsqualit\u00e4t der Schutzkommunikationsverbindung nicht mehr ausreicht, d. h. diese Schutzfunktionen sind blockiert, solange der Leitungsdifferentialschutz normal arbeitet.

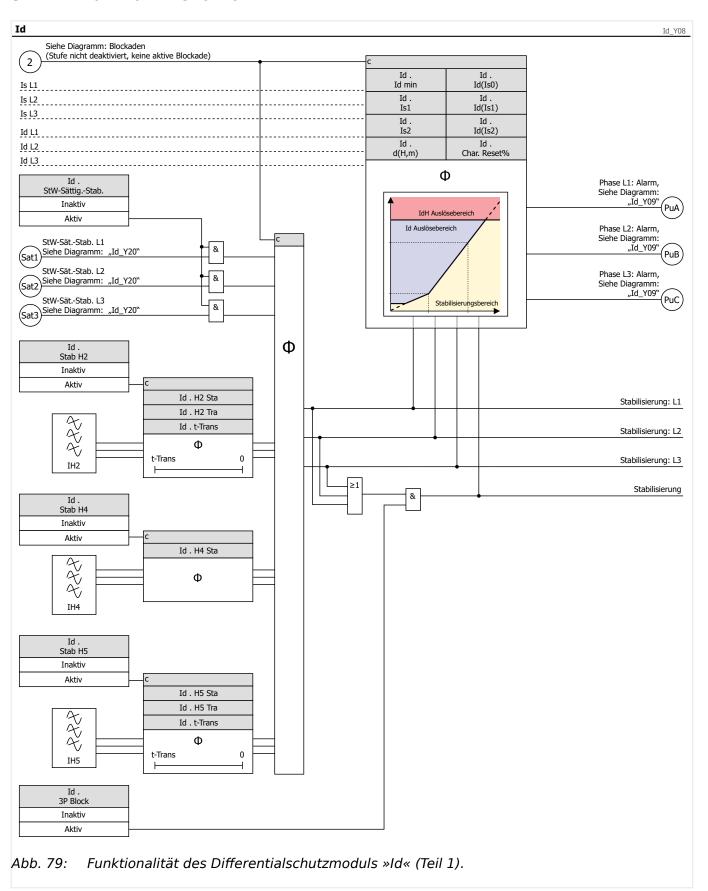
Die jeweils gewünschten Not-Schutzfunktionen (typischerweise ein Überstromschutz nach ANSI 50, 51, 51Q, 51V, 67) sind für "Strategie 1" zu konfigurieren und (unabhängig vom Leitungsdifferentialschutz) zu aktivieren, wie im jeweiligen Kapitel dieses Handbuches beschrieben. Das heißt, es gibt keine Maßnahmen, die spezifisch für den Leitungsdifferentialschutz wären.

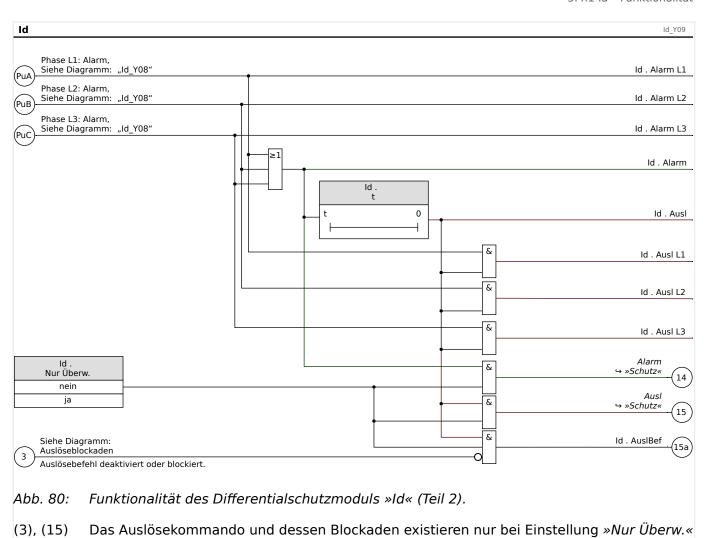
Alle Schutzfunktionen stellen grundsätzlich zwei unabhängige Blockade-Eingänge zur Verfügung. "Strategie 2" kann umgesetzt werden, indem das Ausgangssignal »SchutzKom . Komm.Ok« (siehe Kapitel "Schutzkommunikation", \$\to 4.7 \text{ SchutzKom} - \text{ Schutzkommunikation}), das ein ordnungsgemäßes Funktionieren der Schutzkommunikation anzeigt, auf einen Blockade-Eingang der gewünschten Not-Schutzfunktionen rangiert wird. Wenn die Qualität der Schutzkommunikation nicht mehr ausreichen sollte, wird automatisch »SchutzKom . Komm.Ok« rückgesetzt und somit die Blockade dieser Schutzfunktionen aufgehoben.

Folgendes Diagramm soll als Beispiel zu Strategie 2 dienen: Wenn das dem Differentialschutz zugrundeliegende »SchutzKom«-Modul Übertragungsprobleme feststellt, wird die Phasendifferentialschutzstufe »Id« automatisch blockiert.

HINWEIS!

Bei einem Gerätestart wird die Schutzkommunikation erst einige Sekunden nach Aktivierung des Schutzes aktiv, daher ist während dieser Zeit die für den Not-UMZ vorgesehene Überstromstufe aktiv.


Verwendete Symbole


In den nachfolgenden Beschreibungen der Prinzipien des Phasendifferentialschutzes werden die folgenden Symbole verwendet:

Symbol	Bedeutung
S_N	Nennleistung des Schutzobjekts (z.B. Generator oder Transformator).
U_{LL}	Nennspannung des Schutzobjekts (z. B. Generator).
U _{LL,W1}	Nennspannung des Transformators auf der Oberspannungsseite W1 (HV).

Symbol	Bedeutung
U _{LL,W2}	Nennspannung des Transformators auf der Unterspannungsseite W2 (LV).
StW _{prim,W1}	Primärer Nennstrom des Stromwandlers auf der W1-Seite.
StW _{sek,W1}	Sekundärer Nennstrom des Stromwandlers auf der W1-Seite.
StW _{prim,W2}	Primärer Nennstrom des Stromwandlers auf der W2-Seite.
StW _{sek,W2}	Sekundärer Nennstrom des Stromwandlers auf der W2-Seite.
I _b	Bezugsstrom (hängt von der Applikation ab, im Allgemeinen ist dies der Nennstrom des Schutzobjekts, z. B. Generator oder Transformator).
$I_{b,W1}$	Bezugsstrom der Transformatorwicklung der W1-Seite.
I _{b,W2}	Bezugsstrom der Transformatorwicklung der W2-Seite.
I _{pri,W1}	Nicht umgerechnete / unkompensierte Primärgrößen (Stromzeiger) auf der jeweiligen Seite.
<u>I</u> W1 <u>I</u> W2	Nicht umgerechnete/unkompensierte Sekundärgrößen (Stromzeiger) auf der entsprechend zugeordneten W1-Seite bzw. W2-Seite.

5.4.1 Id - Funktionalität

= "nein".

5.4.2 Auslösekennlinie

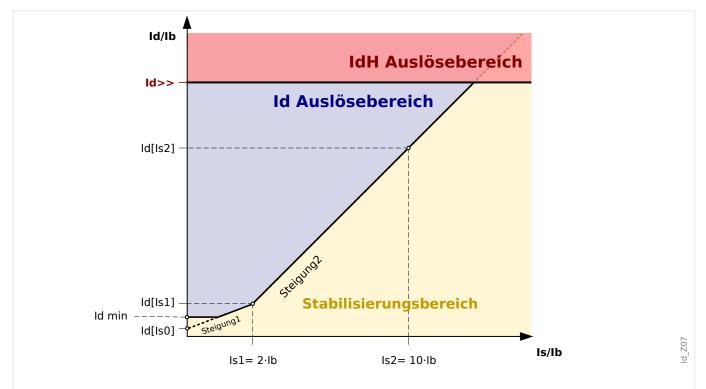


Abb. 81: Auslösekennlinie der Schutzfunktionen »Id« (blauer Bereich) und »IdH« (roter Bereich).

In dieser Auslösekennlinie sind die Größen folgendermaßen definiert:

Blauer Bereich im Diagramm ⇔Abb. 81:	Auslösebereich der Schutzfunktion »Id«.
7,65. 61.	(Dies ist der Phasenstrom-Differentialschutz, der in diesem Kapitel beschrieben wird.)
Roter Bereich im Diagramm →Abb. 81:	Auslösebereich der Schutzfunktion »IdH«. Dies ist der Unstabilisierte Hochstromdifferentialschutz, der
	in →5.5 IdH – Unstabilisierte Hochstromdifferentialstufe beschrieben wird. Diese Schutzfunktion arbeitet unabhängig von der »Id«-Schutzfunktion (und muss separat konfiguriert werden), wurde aber der Vollständigkeit halber mit in das Diagramm eingezeichnet.
	Die zugehörige Auslöseschwelle ist Id>>, siehe ⇔5.5 IdH – Unstabilisierte Hochstromdifferentialstufe.
	Insgesamt bedeutet dies, dass das MCDLV4 eine Generalanregung ausführt, sobald das Wertepaar aus Differenzstrom I_d und Stabilisierungsstrom I_s in der blauen oder in der roten Fläche liegt.
$ \underline{I}_{d} = \underline{I}'''_{W1} + \underline{I}'''_{W2} $	Differenzstrom.
$ \underline{l}_{s} = 0.5 \cdot \underline{l}^{m}_{W1} - \underline{l}^{m}_{W2} $	Der Stabilisierungsstrom entspricht dem Durchgangsstrom im Normalbetrieb und bei Fehlern außerhalb der Schutzzone
$I_{d0} \equiv I_d(I_{s0})$	Startpunkt der statischen Auslösekennlinie bei I_{s0} =0.

	Der zugehörige Einstellwert ist: [Schutzparameter / Satz 14 / Diff-Schutz / Id] »Id(Is0)«
$ \underline{\mathbf{L}}_{d,min} \equiv \mathbf{I}_{d,min}$	Minimaler Differenzstrom, bezogen auf den Bezugsstrom I $_{\rm b}$. Der zugehörige Einstellwert ist: [Schutzparameter / Satz 14 / Diff-Schutz / Id] »Id min« Für einen bestimmten Einstellwert errechnet sich der zugehörige I $_{\rm s}$ -Wert wie folgt: $I_{\rm s0,0} = \frac{I_{\rm d,min} - I_{\rm d0}}{K_1}$
l _{s1}	Knickpunkt (I_s -Wert) der statischen Auslösekennlinie. Der zugehörige Einstellwert ist: [Schutzparameter / Satz 14 / Diff-Schutz / Id] » $Is1$ «
$I_{d1} \equiv I_d(I_{s1})$	Knickpunkt (I_d -Wert) der statischen Auslösekennlinie bei I_{s1} . Der zugehörige Einstellwert ist: [Schutzparameter / Satz 14 / Diff-Schutz / $Id] * Id(Is1) * (Id) * Id(Is1) * (Id) * $
l _{s2}	I_{s2} -Wert der statischen Auslösekennlinie. Der zugehörige Einstellwert ist: [Schutzparameter / Satz 14 / Diff-Schutz / Id] » $Is2$ «
$I_{d2} \equiv I_{d}(I_{s2})$	I_d -Wert der statischen Auslösekennlinie bei I_{s2} . Der zugehörige Einstellwert ist: [Schutzparameter / Satz 14 / Diff-Schutz / Id] $*Id(Is2)*$
K ₁ , K ₂	Steigungen der beiden Geradenabschnitte der Auslösekennlinie. Diese ergeben sich wie folgt aus den Einstellwerten: $K_1 = \frac{I_{\rm d1} - I_{\rm d0}}{I_{\rm s1}}$ und $K_2 = \frac{I_{\rm d2} - I_{\rm d1}}{I_{\rm s2} - I_{\rm s1}}$
d(H,m)	Temporärer Stabilisierungsstrom, siehe \hookrightarrow Abb. 82. Dieser Stabilisierungsfaktor kann als Vielfache des Bezugsstromes I _b eingestellt werden.
<u>l</u> ‴w1, <u>l</u> ‴w2	Kompensierte/umgerechnete sekundäre Phasenstromvektoren. Diese Sekundärgrößen werden aus den nicht kompensierten Primärgrößen <u>Ipri,W1</u> und <u>Ipri,W2</u> errechnet. Diese Phasenstromvektoren/Zählpfeile zeigen definitionsgemäß auf das Schutzobjekt.

Die Ansprechkennlinie für den Phasenstrom-Differentialschutz somit mathematisch als Zusammenfassung dreier Abschnitte beschrieben werden:

• Für
$$I_s < I_{s,min} = I_{s1} \cdot (I_{d,min} - I_{d0}) / (I_{d1} - I_{d0})$$
:

$$I_d \ge I_{\mathrm{d.min}} + d(H, m)$$

• Für
$$I_{s,min} \le I_s < I_{s1}$$
:

$$I_d \geq I_{d0} + \frac{\left(I_{d1} - I_{d0}\right) \cdot I_s}{I_{s1}} + d(H, \, m)$$

• Für
$$I_S \ge I_{S1}$$
:

$$I_d \geq I_{d1} + \frac{\left(I_{d2} - Id1\right) \cdot \left(I_s - I_{s1}\right)}{I_{s2} - I_{s1}} + d(H, m)$$

Unter normalen Betriebsbedingungen sollte der Differenzstrom unterhalb von $I_{d,min}$ sein. Tritt innerhalb der Schutzzone ein Fehler auf, so steigt der Differenzstrom über den Ansprechstrom, was zur Auslösung führt.

5.4.2.1 Einstellen der Auslösekennlinie

 $I_{d,min}$ ist der Mindestansprechwert, unter dem keine Auslösung des Gerätes erfolgt. Dies dient dazu, Fehlauslösungen durch statische Differenzströme zu verhindern, die durch Magnetisierungsströme des Schutzobjekts im Leerlauf oder Ungenauigkeiten bei den Stromwandler-Übersetzungsverhältnissen hervorgerufen werden.

 K_1 und K_2 sind die Steigungen der jeweiligen Abschnitte der Auslösekennlinie $I_d(I_{s0})$, $I_d(I_{s1})$, und $I_d(I_{s2})$, die sich wie folgt berechnen:

$$K_1 = \frac{\left|\begin{array}{cc}I_d(&I_{s1}\end{array}\right) - I_d(&I_{s0}\end{array}\right)}{I_{s1}}$$

$$K_2 = \frac{\left|\begin{array}{cc}I_d(&I_{s2}\end{array}\right) - I_d(&I_{s1}\end{array}\right)}{\left(I_{s2} - I_{s1}\right)}$$

Alle Einstellwerte sind Vielfache des Bezugsstroms (I_b). Der Bezugsstrom wird intern aus den Nennleistungs- und den Nennspannungsangaben des Schutzobjekts errechnet. Diese Angaben sind in den entsprechenden Feldparametermenüs zu setzen.

HINWEIS!

Alle Einstellungen der Auslösekennlinie beziehen sich für Leitungsdifferentialschutzanwendungen auf den ausgewählten Nennstrom des Wandlers, bzw. auf $I_{b,W1}$, falls ein Transformator im Schutzbereich enthalten ist.

Die Ansprechwerte $I_d(I_{s0})$, $I_d(I_{s1})$, and $I_d(I_{s2})$ werden wie folgt festgelegt:

- $I_d(I_{s0})$ Phasen Differenzstrom (Startpunkt der Ansprech-Grundkennlinie bei $I_{s0} = 0$)
- Steigung der Ansprechkennlinie K₁ im Abschnitt 1 (typisch 50%)
- Berechne I_d(I_{s1}) aus I_d(I_{s0}) und K₁:

$$I_d(I_{s1}) = I_d(I_{s0}) + I_{s1} \cdot K_1$$

- Steigung der Ansprechkennlinie K₂ im Abschnitt 2 (typisch 100%)
- Berechne I_d(I_{s2}) aus I_d(I_{s1}) und K₂:

$$I_d(I_{s2}) = I_d(I_{s1}) + (I_{s2} - I_{s1}) \cdot K_2$$

5.4.3 Zeigeranpassungen

Hinweis: Dieser Abschnitt gilt nur, wenn ein Blocktransformator mit in die Differentialschutzzone einbezogen wird.

HINWEIS!

Die Bezugsseite (Referenzseite) für die Zeigeranpassung ist der W1-Seite fest zugeordnet.

Im Gerät erfolgt eine automatische Anpassung der Messströme in Betrag und Phasenlage, basierend auf den Einstellungen in den Feldparametern.

Die kompensierten sekundärseitigen Stromzeiger der W2-Seite werden wie folgt auf die Bezugsseite W1 umgerechnet:

$I'_{W2} = \frac{U_{\text{LL,W2}}}{U_{\text{LL,W1}}(1 + \text{Stufenschalter})} \cdot \frac{\text{StW}_{\text{pr}}}{\text{StW}_{\text{pr}}}$	$\frac{W^2}{W^1} \cdot I_{W^2}$ Amplituden-Anpassung.
$I_{W2} = T_{\text{Phasendrehzahl}(n)} \cdot I_{W2}$	Winkelkorrektur (Schaltgruppenanpassung), wobei T _{Phasendrehung(n)} der Drehfaktor für die Schaltgruppenanpassung ist.

5.4.4 Stromwandler-Übersetzungsfehler

Hinweis: Dieser Abschnitt gilt nur, wenn ein Transformator mit in die Differentialschutzzone einbezogen wird.

HINWEIS!

Beide Amplituden-Korrekturfaktoren müssen kleiner 10 sein.

$$k_{StW1} = \frac{StW_{prim,W1}}{Ib_{W1}} \leq 10$$

und

$$k_{StW2} = \frac{StW_{prim,W2}}{Ib_{W2}} \leq 10$$

Das Verhältnis zwischen dem größten und dem zweitgrößten Amplitudenkorrekturfaktor darf nicht >3 sein.

5.4.5 Phasen-/Schaltgruppen-Korrektur

Hinweis: Dieser Abschnitt gilt nur, wenn ein Transformator mit in die Differentialschutzzone einbezogen wird.

Das MCDLV4 berechnet die Schaltgruppenanpassung bezogen zur W1-Seite des Gerätes. Die Schaltgruppe (Stundenzahl) ist von der Betrachtungsrichtung abhängig.

Die Einstellung [Feldparameter / Transformator] »Phasenverschiebung« gibt an, um welchen Winkel (als Vielfaches von 30°) der Zeiger der W2-Seite der W1-Seite nacheilt.

Transformator-Typenschild

Die Angaben auf dem Transformator-Typenschild (Schaltgruppe, Stundenzahl z. B. Yd7) beziehen sich auf die Oberspannungsseite.

Die eingestellte Phasenfolge [Feldparameter / Allg Einstellungen] »Drehfeldrichtung« wird bei der Schaltgruppenanpassung intern korrigiert, sodass diese nicht mehr bei der Angabe der Schaltgruppe berücksichtigt werden muss.

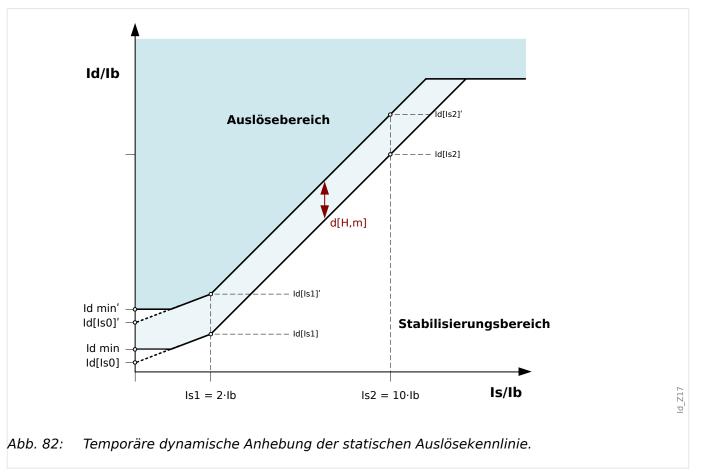
5.4.6 Externer Fehler - Nullkomponenten-Kompensierung

Hinweis: Dieser Abschnitt gilt nur, wenn ein Transformator mit in die Differentialschutzzone einbezogen wird.

Damit der Phasendifferentialschutz im Fall von externen Erdfehlern nicht fehlanregt, muss das Nullsystem aus den Strömen herausgerechnet werden. Die Nullstrom-Komponenten existieren nur auf der geerdeten Sternpunktseite des Transformators. Differenzströme, die durch unterschiedliche Sternpunktbehandlungen hervorgerufen werden, führen zu Fehlanregungen des Differentialschutzes, und müssen daher kompensiert (entfernt) werden. Die Nullstromkomponenten werden vom Schutzgerät automatisch kompensiert auf der Basis der parametrierten Sternpunktbehandlung »W1 Wicklungsart/Erdung« und »W2 Wicklungsart/Erdung«. Eine Kompensation durch externe Kompensationswandler ist daher nicht erforderlich.

$$\underline{I}_{W1}''' = \underline{I}_{W1} - \underline{I}_{0,W1}$$

$$\underline{I}_{W2}''' = \underline{I}_{W2} - \underline{I}_{0,W2}$$


Die Nullkomponenten-Kompensierung ist standardmäßig im automatischen Modus aktiviert und verwendet den berechneten Erdstrom. Mit dem Parameter [Feldparameter / Transformator] »Nullstromeliminierung« lassen sich die verschiedenen Betriebs-Modi festlegen:

- "Aus": Nullkomponenten-Kompensierung ist nicht aktiv. Auftretende Nullströme werden nicht automatisch kompensiert und ohne externe Kompensation kann dies zu Fehlauslösungen des Differentialschutzes bei externen Fehlern führen.
- "Automatisch/Gerechnet": Nullkomponenten-Kompensierung ist im automatischen Modus aktiviert und verwendet den berechneten Erdstrom. Dieser Modus funktioniert automatisch für alle Erdungs-Konfigurationen, unabhängig davon, ob eine Nullstrom-Kompensation notwendig ist oder nicht. Es wird empfohlen diese Einstellung zu verwenden, sofern nicht anders vorgesehen.
- "Measured": Nullkomponenten-Kompensierung verwendet den gemessenen Erdstrom. Dieser Modus darf nur verwendet werden, wenn der gemessene Erdstrom vom Gerät auf den/der geerdeten Seite(n) erfasst wird.

5.4.7 Stabilisierung gegen Transiente

Um den Differentialschutz unempfindlich gegenüber transienten Vorgängen, wie Wandlersättigung und Auftreten von Harmonischen zu machen, besitzt das Gerät eine Funktion zur dynamischen (vorübergehenden) Stabilisierung der Phasen-Differentialschutzstufe.

Beim Ansprechen der dynamischen Stabilisierung wird auf den Anteil der statischen Stabilisierung ein konstanter Anteil für die dynamische Stabilisierung d(H,m) addiert.

Transiente Vorgänge können u. a. Hervorgerufen werden durch:

- Das Auferregen (Einschalten) eines Transformators (Inrush-Eeffekt);
- Zuschalten benachbarter Transformatoren (sympathetic Inrush);
- oder durch Sättigung der Stromwandler.

Die dynamische Stabilisierung kann durch folgende Ereignisse aktiviert werden (Trigger-Möglichkeiten):

- [Schutzparameter / Satz 1...4 / Diff-Schutz / Id] »Stab H2« ist "Aktiv" und der Anteil (%) der 2. Harmonischen überschreitet den eingestellten Ansprechwert.
- [Schutzparameter / Satz 1...4 / Diff-Schutz / Id] »Stab H4« ist "Aktiv" ist in den »Schutzparametern«aktiv und der Anteil (%) der 4. Harmonischen überschreitet den eingestellten Ansprechwert.
- [Schutzparameter / Satz 1...4 / Diff-Schutz / Id] »Stab H5« ist "Aktiv" ist in den »Schutzparametern«aktiv und der Anteil (%) der 5. Harmonischen überschreitet den eingestellten Ansprechwert.

• Die Wandler-Sättigungsüberwachung [Schutzparameter / Satz 1...4 / Diff-Schutz / Id] »StW-Sättig.-Stab.« ist "Aktiv" und es liegt ein externer Fehler mit Stromwandler-Sättigung vor.

Über den Parameter [Schutzparameter / Satz 1...4 / Diff-Schutz / Id] »3P Block« kann der Anwender festlegen, ob das Auftreten von Harmonischen, bzw. Wandlersättigung in einer Phase zur Stabilisierung in nur einer Phase (Einstellung "Inaktiv") oder allen drei Phasen (Einstellung "Aktiv") führt.

Auswertung der Harmonischen

Grafisch betrachtet, wird die Statische Stabilisierungskennlinie um den Betrag d(H,m) angehoben, wodurch die Empfindlichkeit der Differentialschutzfunktion reduziert wird.

Der Betrag der dynamischen Stabilisierung kann als Vielfaches des Transformator-Nennstromes I_b parametriert werden.

Die dynamische Stabilisierung kann durch das Überschreiten des eingestellten Ansprechwertes der zweiten, vierten und fünften Harmonischen bezogen in % der Grundwelle angestoßen werden. Die Parameter für »Stab H2«, »Stab H4« und »Stab H5« müssen "Aktiv" parametriert sein.

Die Stabilisierungsfunktionen für die 2. und 5. Harmonische haben getrennte Ansprechwerte »H2 Tra« bzw. »H5 Tra« für transiente und statische Harmonische »H2 Sta« bzw. »H5 Sta«; diese können getrennt voneinander eingestellt werden. Die dynamische Stabilisierung ist vom Zeitpunkt der Anregung für ein einstellbares Zeitintervall »t-Trans« aktiv, das der zu erwartenden Dauer des Inrush-Stromes (IH2) entsprechen sollte. Die Inrush-Dauer kann, je nach Anwendung zwischen 1 s, bis hin zu 30 s bei speziellen Anwendungen wie Spartransformator-Bänken, liegen.

Nach Ablauf des Transienten-Zeitintervalls »t-Trans« bleibt die statische Stabilisierungsfunktion weiterhin aktiv, solange einer der Ansprechwerte der stationären Harmonischen (»H2 Sta«, »H4 Sta«, »H5 Sta«) überschritten ist.

Stabilisierung bei Stromwandlersättigung

Für das Hauptkapitel und die Einstellhinweise siehe

5.3 StW-Sättig.-Stab. – Stromwandlersättigungs-Stabilisierung für den Differentialschutz

Um den Differentialschutz gegen Stromwandlersättigung bei externen Fehlern zu stabilisieren, kann das Modul "StW-Sättig.-Stab." verwendet werden.

Das Modul muss entsprechend ⇔5.3.1 Einstellhinweise eingestellt werden. Anschließend muss die Stabilisierung für den Phasenstrom-Differentialschutz aktiviert werden:

• [Schutzparameter / Satz 1...4 / Diff-Schutz / Id] »StW-Sättig.-Stab.« = "Aktiv".

5.4.8 Schaltgruppen

[Feldparameter / Transformator] »W1 Wicklungsart/Erdung«

Mögliche Einstellungen:

- "Y" Stern (Wicklung auf der Primärseite)
- "D" Delta (Wicklung auf der Primärseite)
- "Z" Zickzack (Wicklung auf der Primärseite)
- "YN" Stern geerdet (Wicklung auf der Primärseite)
- "ZN" Zickzack mit Erdung (Wicklung auf der Primärseite)

Diese Einstellung entspricht der Wicklungsart der zugeordneten W1-Seite und der Erdung des Transformators.

[Feldparameter / Transformator] »W2 Wicklungsart/Erdung«

Mögliche Einstellungen:

- "y" Star (Wicklung auf der Sekundärseite)
- "d" Delta (Wicklung auf der Sekundärseite)
- "z" Zickzack (Wicklung auf der Sekundärseite)
- "yn" Stern geerdet (Wicklung auf der Sekundärseite)
- "zn" Zickzack mit Erdung (Wicklung auf der Sekundärseite)

Diese Einstellung entspricht der Wicklungsart der zugeordneten W2-Seite und der Erdung des Transformators.

Mit den unterschiedlichen Kombinationen von »W1 Wicklungsart/Erdung« und »W2 Wicklungsart/Erdung« lassen sich nahezu alle möglichen Schaltgruppen von Transformatoren abbilden.

"YN" oder "ZN" bedeutet, der Sternpunktleiter des Transformators ist auf der Oberspannungsseite W1 geerdet.

"yn" oder "zn" bedeutet, der Sternpunktleiter des Transformators ist auf der Unterspannungsseite W2 geerdet.

[Feldparameter / Transformator] »Phasenverschiebung«

Mögliche Einstellungen: 0, ..., 11

Die Phasenverschiebung wird in Vielfachen von 30° eingestellt und gibt an, um welchen Winkel die Spannung auf der W2-Seite der Spannung auf der W1-Seite nacheilt.

Im Kapitel Schaltgruppenkorrektur sind alle gängigenTransformator-Schaltgruppen mit den dazugehörigen Schaltgruppen-Kennziffern tabellarisch aufgelistet.

Im Fall von (Y, y, Z, z)-Transformatoren kann der Sternpunkt geerdet sein oder nicht. Prinzipiell ist zwischen ungeraden (1, 3, 5, ..., 11) und geraden (0, 2, 4, ..., 10) Schaltgruppen zu unterscheiden. Zusammen mit den Schaltgruppen und der Behandlung des Sternpunkts des Transformators werden folgende Festlegungen getroffen:

- Der Transformator verursacht je nach Schaltgruppe eine Phasendrehung. Das Stromsystem der Wicklungsseite W2 eilt dem der Wicklungsseite W1 nach (gilt für L1-L2-L3-Systeme).
- Eine andere Phasenfolge (L1-L3-L2) wird über einen Feldparameter berücksichtigt (siehe Feldparameter desTransformators).
- Die Übertragung des Nullsystems I0 hängt von der Verschaltung der Wicklungen ab (Schaltgruppen):
 - Nur bei den Schaltgruppen (Y, y, Z, z) kann der Sternpunkt herausgeführt sein. Dies wird bei den Schaltgruppenparametern durch ein zusätzliches angehängtes n ausgedrückt (Beispiel Dyn).
 - Nur wenn ein Sternpunkt herausgeführt und geerdet ist, und mindestens ein weiteres Betriebsmittelnetzseitig geerdet ist, kann ein Strom im Nullsystem fließen.
 - Nur dann, wenn auf beiden Seiten des Transformators ein Strom im Nullsystem fließen kann, dann kanndieser Strom auch zwischen den beiden Wicklungsseiten ohne Phasendrehung übertragen werden.
- Dy, Yd, Yz, Zy Transformatoren entsprechen ungeraden Schaltgruppen.
- Yy, Zd, Dz, Dd Transformatoren entsprechen geraden Schaltgruppen.
- Wicklungsseite W1 ist die Bezugsseite. Das bedeutet, die Primärwerte der Wicklungsseite W1 werden als Refenzgrößen verwendet für die Ableitung, Berechnungen und Darstellungen weiterer Größen.

Das Übersetzungsverhältnis des Transformators kann über einen Stufensteller beeinflusst werden:

[Feldparameter / Transformator] Mögliche Einstellungen: -15%, ..., 15% »Stufenschalter«Der Transformator-Stufenschalter ändert das Transformator-Übersetzungsverhältnis k_{Tap} . $k_{Tap} = \frac{U_{\rm LL,W1} \left(1 + Stufensteller\right)}{U_{\rm LL,W2}}$

Prinzipiell müssen vom Anwender die folgenden Berechnungen und Einstellungen vorgenommen werden, damit das Gerät die Differentialströme korrekt berechnen sowie entsprechende Stabilisierungsmaßnahmen vornehmen kann:

- Umrechnung der Phasenlage(-drehung) von Wicklungsseite 2 auf die Bezugsseite/ Wicklungsseite 1, d. h. $(0...11) \times 30$ Grad unter Berücksichtigung der Drehfeldrichtung.
- Anpassen der Messwerte für die Wicklungsseite 2 unter Berücksichtigung der Abweichung bei den Stromwandler-Übertragungsverhältnissen.
- Anpassen der Messwerte für die Wicklungsseite 2 unter Berücksichtigung der Transformator-Schaltgruppe (y, d, z); und
- Anpassen der Messwerte für die Wicklungsseite 1 und 2 unter Berücksichtigung der Sternpunkterdung(Nullkomponenten-Kompensierung)
- Anpassen des Transformator-Übersetzungsverhältnisses unter Berücksichtigung des Transformator-Stufenschalters.

5.4.9 Automatische Berechnung der Amplitudenanpassung, Schaltgruppenkorrektur und Nullkomponenten-Kompensierung

Das Gerät führt die folgenden Berechnungen automatisch durch:

- **1.** Amplitudenanpassung unter Berücksichtigung aller Übersetzungsverhältnisse (Transformator und Stromwandler).
- 2. Schaltgruppenkorrektur (Phasendrehung) durch entsprechende Drehung des Drei-Phasen-Systems.
- 3. Nullkomponenten-Kompensierung, wo erforderlich (für beide Wicklungsseiten).

Zu **1.**: Amplitudenanpassung:

$$\underline{I}_{W2} = \underline{I}_{W2} \cdot k_r \cdot k_r = \frac{\text{StW}_{\text{prim},W2}}{I_{\text{b},W2}} \cdot \frac{I_{\text{b},W1}}{\text{StW}_{\text{prim},W1}} = \frac{\text{StW}_{\text{prim},W2}}{\text{StW}_{\text{prim},W1}} \cdot \frac{U_{\text{LL},W2}}{U_{\text{LL},W1}} \cdot \frac{U_{\text{LL},W2}}{I_{\text{b},W2}} \cdot \frac{I_{\text{b},W2}}{I_{\text{b},W2}} \cdot \frac{I_{\text{b},W1}}{I_{\text{b},W2}} \cdot \frac{I_{\text{b},W2}}{I_{\text{b},W2}} \cdot \frac{I_{\text{b},W2}}{I_{\text{b},$$

Zu 2.: Schaltgruppenkorrektur:

Die Schaltgruppenkorrektur wird mit folgender Formel und nachfolgenden Transformationsmatrizen berechnet:

$$\underline{I}_{W2} = [T_{\text{Phasendrehzahl}}] \cdot \underline{I}_{W2} \cdot [T_{\text{Phasendrehzahl}}] \rightarrow [T_{0,1,2...11}]$$

Gerade Schaltgruppenkennzahl	Ungerade Schaltgruppenkennzahl
$T_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$T_1 = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$
$T_2 = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix}$	$T_3 = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 0 & -1 & 1\\ 1 & 0 & -1\\ -1 & 1 & 0 \end{bmatrix}$
$T_4 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	$T_5 = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} -1 & 0 & 1\\ 1 & -1 & 0\\ 0 & 1 & -1 \end{bmatrix}$
$T_6 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	$T_7 = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 1 & 0 & -1 \end{bmatrix}$
$T_8 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	$T_9 = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$
$T_{10} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	$T_{11} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$

Zu 3.: Nullkomponenten-Kompensierung

Dies bedeutet die Eliminierung eines Nullstromes, der bei einem externen asymmetrischen Fehler nur auf einer Transformatorseite zu messen ist und somit als Differenzstrom zur Auslösung des Gerätes führen würde.

W1-Seite: Eine Nullkomponenten-Kompensierung erfolgt auf der W1-Seite, wenn der Parameter »W1 Wicklungsart/Erdung« auf YN oder ZN eingestellt ist.

Ein Strom im Nullsystem kann nur fließen, wenn:

- Der Sternpunkt auf der W1-Seite geerdet ist und
- 2. Das Netz der zugeordneten W1-Seite ebenfalls geerdet ist.

$$\underline{I}_{W1}''' = \underline{I}_{W1} - \underline{I}_{0.W1}$$

W2-Seite: Eine Nullkomponenten-Kompensierung erfolgt auf der W2-Seite, wenn der Parameter »W2 Wicklungsart/Erdung« auf yn oder zn eingestellt ist.

Ein Strom im Nullsystem kann nur fließen, wenn:

- Die Schaltgruppenkennzahl ungerade ist
- Der Sternpunkt auf der W2-Seite geerdet ist und
- 2. Das Netz der zugeordneten W2-Seite ebenfalls geerdet ist.

$$\underline{I}_{W2}''' = \underline{I}_{W2}'' - \underline{I}_{0.W2}''$$

Neben der Einstellung der statischen Stabilierungskennlinie müssen die Einstellwerte für die dynamische Stabilisierung gegen harmonische Oberwellen und transiente Vorgänge definiert werden.

Diese Einstellungen hängen von vielen Faktoren ab, wie:

- · Transformatortyp,
- Transformatormaterial,
- Netzparameter und
- Auferregungszeitpunkt innerhalb der Periode (Nulldurchgang oder Spannungsmaximum).

Aus diesem Grund ist es schwer eine universelle Einstellung bzw. einen Kompromiss zu finden, das Relais auf der einen Seite extrem schnell und auf der anderen Seite extrem zuverlässig in den Auslöseentscheidungen zu machen.

Hinweise für Einstellungen

Typische Steigungen für die Abschnitte der statischen Stabilisierungskennlinie sind 50% und 100% und werden durch die Einstellungen [Schutzparameter / Satz x / Diff-Schutz / Id] »Id(Is0)«, »Id(Is1)«, »Id(Is2)« erreicht.

Beim Ansprechen der dynamischen Stabilisierung durch Harmonische Oberwellen oder durch transiente Vorgänge wird auf den Anteil der statischen Stabilisierung ein konstanter Anteil für die dynamische Stabilisierung d(H,m) addiert.

Um eine bestmögliche Stabilisierung des Relais gegen Oberwellen, Magnetisierungsströme und Übererregung des Transformators zu erzielen, ist es erforderlich, die Ansprechwerte für die harmonische Stabilisierung [Schutzparameter / Satz x / Diff-Schutz / Id] »H2 Sta«, »H4 Sta«, »H5 Sta« möglichst gut abzuschätzen.

Einschalt-Magnetisierungsströme:

Beim Zuschalten von Transformatoren kann es durch Remanenz zu hohen Magnetisierungsströmen (Inrush) kommen, die durch einen hohen Anteil der zweiten Harmonischen gekennzeichnet sind (zum Teil auch mit Anteilen der 4. Harmonischen). Die Höhe ist unter anderem abhängig vom Zuschaltmoment, und so ist der Extremwert bei Zuschaltungen im Spannungsnulldurchgang zu erwarten. Der Rush-Strom fließt einseitig und erscheint damit als Differenz-Strom. Aus diesem Grunde ist eine Stabilisierung des Differentialschutzes notwendig.

Generell sollte die Stabilisierung gegen Harmonische aktiviert sein. Dies geschieht (für jede Harmonische separat), indem der jeweilige Parameter [Schutzparameter / Satz x / Diff-Schutz / Id] »Stab H2«, »Stab H4« bzw. »Stab H5« auf "Aktiv" eingestellt wird.

Um im stationären Betrieb einen stabilen Schutz zu gewährleisten, gibt es getrennte Ansprechwerte für die Stabilisierung gegen stationäre Harmonische und transiente Harmonische, wie sie beim Auferregen des Transformators entstehen.

Die dynamische Stabilisierung ist vom Zeitpunkt der Anregung für ein einstellbares Zeitintervall »t-Trans« aktiv, das der zu erwartenden Dauer der transienten Vorgänge entsprechen sollte. Dies kann, je nach Anwendung zwischen 1 s bis hin zu 30 s bei speziellen Anwendungen wie Spartransformator-Bänken liegen. Die typische Einstellung für gängige Transformatoren liegt bei ca. 2 s.

Das Transienten-Zeitintervall *t-Trans* wird immer dann gestartet, wenn sowohl der Differentialstrom als auch der Stabilisierungsstrom unter 5% des Bezugsstroms I_{b} liegen.

Folgende Einstellungen sind für typische Anwendungen empfohlen:

- »H2 Sta« = 30 %
- »H2 Tra« = 15 %
- »H4 Sta« = 30 %

Übererregung:

Kommt es zu einer Übererregung eines Transformators, steigt der Magnetisierungsstrom, und es treten Sättigungserscheinungen auf, die durch einen hohen Anteil an der 5. Harmonischen gekennzeichnet sind. Da dieser Magnetisierungsstrom als Differentialstrom erscheint, ist eine Stabilisierung des Differentialschutzes erforderlich. Diese Stabilisierung erfolgt über eine entsprechende Erkennung des Anteils der 5. Harmonischen.

- »H5 Sta« = 30 %
- »H5 Tra« = 15 %

Alle Ereignisse, die Harmonische hervorrufen, können mehr oder weniger in einer, zwei oder drei Phasen ausgeprägt sein. Aus diesem Grund besitzt das MCDLV4 die Funktion, nur die Phase zu stabilisieren, in der Harmonische gemessen werden, oder alle drei Phasen zu stabilisieren. Solange es die Netzgegebenheiten nicht anders erfordern, sollte sich die Stabilisierung nicht grundsätzlich auf alle drei Phasen auswirken.

- »3P Block« = "Aktiv": Phasenübergreifende Stabilisierung der Differentialschutzfunktion.
- *»3P Block«* = "Inaktiv": Phasenselektive Stabilisierung der Differentialschutzfunktion.

Die Stabilisierung über die Stromwandlersättigung überwacht den Differenzund Stabilisierungsstrom nach jedem Nulldurchgang, um zwischen internen und externen Fehlern zu unterscheiden. Bei Anwendungen, für die im Fehlerfall eine Stromwandlersättigung zu erwarten ist, bietet die Aktivierung dieses Features einen zusätzlichen Schutz gegen falsche Auslöse-Entscheide. Wenn die Sättigung auf einen externen Fehler zurückzuführen ist, wird die Auslösekennlinie um d(H,m) angehoben. Im Falle eines internen Fehlers erfolgt keine Anhebung der Auslösekennlinie.

- Die Funktion wird projektiert unter:
 - [Projektierung / Projektierte Elemente] »StW-Sättig.-Stab. . Modus« = "verwenden"
- Aktivieren der Funktion:
 - [Schutzparameter / Satz 1...4 / Diff-Schutz / StW-Sättig.-Stab.] »Funktion« = "Aktiv"
- Die maximale Stabilisierungsdauer sollte mit der maximalen Abschaltzeit für einen externen Fehler abgestimmt sein:
 - [Schutzparameter / Satz 1...4 / Diff-Schutz / StW-Sättig.-Stab.] »tBlock« = 0,3 s (Beispiel)
- Die Stabilisierung muss noch für Id aktiv geschaltet werden:
 - [Schutzparameter / Satz 1...4 / Diff-Schutz / Id] »StW-Sättig.-Stab.« = "Aktiv"

5.5 IdH - Unstabilisierte Hochstromdifferentialstufe

Unabhängig von der eingestellten Ansprech-Grundkennlinie und dem Stabilisierungsfaktore d[H,m] kann ein Ansprechwert für einen maximalen Differentialstrom IdH eingestellt werden, der bei Überschreitung zu einer unverzögerten Auslösung führt. Diese Schutzstufe wird als Hochstromdifferentialstufe IdH bezeichnet und löst nur bei Fehlern innerhalb der Schutzzone aus.

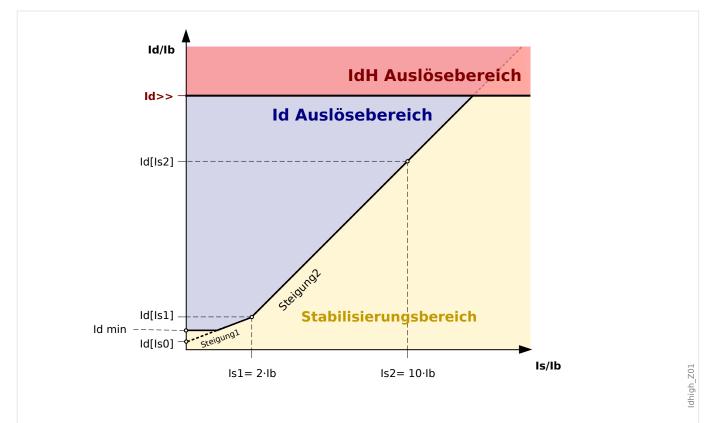


Abb. 83: Unstabilisierte Hochstromdifferentialstufe IdH.

Id>> Hochstrom-Differentialschutzstufe/Unstabilisierte Phasenstrom-Differentialschutzstufe: Ansprechwert des Differentialstromes bezogen auf den Nennstrom Ib des Schutzobjektes.

In dem Diagramm sind die folgenden Auslösekennlinien bzw. Auslösebereiche dargestellt:

Blauer Bereich im Diagramm ⇔Abb. 83:	Auslösebereich der Schutzfunktion »Id«. (Dies ist der Phasenstrom-Differentialschutz, der in ⇔5.4.2 Auslösekennlinie beschrieben wird. Dort werden auch die im Diagramm gezeigten Symbole bzw. Größen erläutert.)
Roter Bereich im Diagramm →Abb. 83:	Auslösebereich der Schutzfunktion »IdH«. Dies ist der Unstabilisierte Hochstromdifferentialschutz, der unabhängig von der »Id«-Schutzfunktion arbeitet (und somit auch separat konfiguriert werden muss). Die zugehörige Auslöseschwelle ist Id>> und wird (in Einheiten von Ib) über den Einstellparameter [Schutzparameter / Satz 14 / Diff-Schutz / IdH] »Id>>« konfiguriert.

Insgesamt bedeutet dies, dass das MCDLV4 eine Generalanregung ausführt, sobald das Wertepaar aus Differenzstrom I_d und Stabilisierungsstrom I_s in der blauen **oder** in der roten Fläche liegt.

5.6 IdE - Erdstrom-Differentialschutz

Das Phasenstrom-Differentialschutz-Modul »Id« stellt die folgenden ANSI-Schutzfunktionen zur Verfügung:

- ANSI 64REF
- 87N

Das Erdstromdifferentialschutzmodul kann dazu verwendet werden:

- Erkennung von Erdfehlern auf der zu schützenden Leitungsstrecke.
- Erkennung interner Transformatorfehler auf der Sternpunktseite (im Falle eines in der Schutzzone implementierten Transformators)

Beschreibung

Das Schutzprinzip des Erdstrom-Differentialschutzes IdE basiert auf einem Differentialschutzschema welches nur in Netzen mit geerdetem Sternpunkt angewendet werden kann. Dabei wird der gemessene Erdstrom IdE mit dem aus den erfassten Phasenströmen gebildeten Nullstrom IO (Summenstrom) verglichen. Bei Überschreitung eines vorher definierten Ansprechwertes löst die Schutzstufe aus. Erdstrom-Differentialschutzstufe besitzt, wie die Phasendifferentialschutzstufe eine Mehrbereichs-Auslösekennlinie, jedoch ohne dynamische Stabilisierung (temporäre Anhebung).

WARNUNG!

Die Auslösekommandos der Erdstrom-Differentialschutzstufe »IdE« müssen im Leistungsschalter Manager Menü entsprechend zugeordnet werden.

HINWEIS!

Es ist zu beachten, dass der Erdstrom-Differentialschutz »IdE« nur für die geerdete Transformatorseite angewendet werden kann.

Schutzprinzip

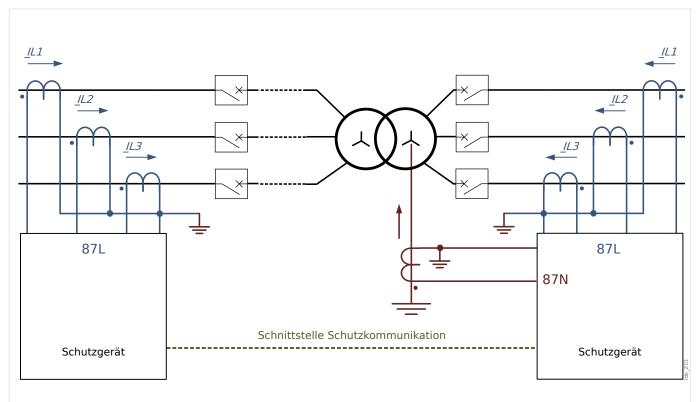
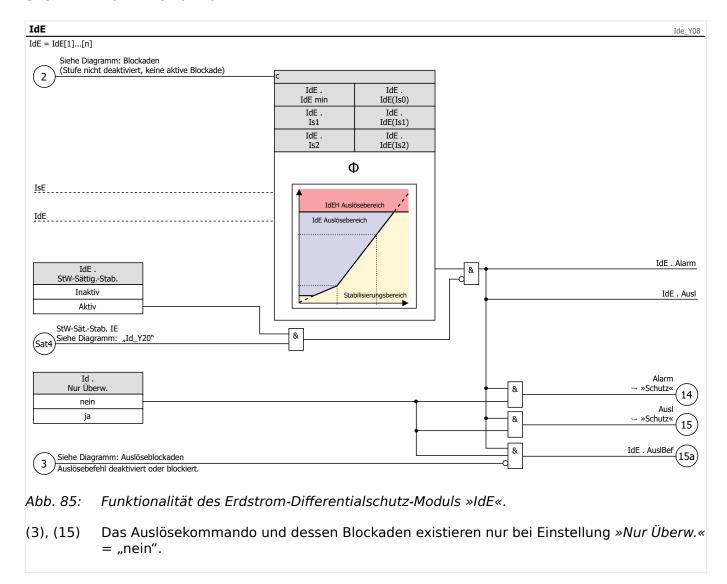



Abb. 84: Prinzip des Erdstrom-Differentialschutzes.

5.6.1 Funktionalität

5.6.2 Anwendungen

Applikation ANSI 87N

Bestimmungsgemäße Verwendung

Diese Applikation ist anwendbar, wenn der Transformator innerhalb der Schutzzone an die zu schützende Leitung angeschlossen ist und gegen Erdfehler geschützt werden soll, die im Bereich zwischen den Phasenstromwandlern und dem Erdstromwandler liegen. Dieses Schutzmodul kann nur an dem Schutzgerät angewendet werden, das auch den Sternpunktstrom der entsprechenden Transformatorseite erfasst.

Bezeichnung des zu verwendenden Moduls: IdE

Verdrahtung der Stromwandler:

- Die Phasenstromwandler sind mit folgenden Klemmen zu verbinden X3 . IL1, X3 . IL2, X3 . IL3
- Der Kabelumbauwandler bzw. der Erdstromwandler ist mit folgenden Klemmen zu verbinden X3 . IE

Berechnung des Bezugsstroms

$$I_b = \frac{S_N}{\sqrt{3} \cdot V_{\rm LL}}$$

$$= \frac{Nennleistung_{Transformator}}{\sqrt{3} \cdot Nennspannung_{Wicklungsseite}(Ph - Ph)}$$

Legen Sie den Anwendungsmodus fest: [Projektierung / Projektierte Elemente] »Transformator . Modus« = "verwenden"

Aktivieren Sie das Schutzmodul: [Projektierung / Projektierte Elemente] »IdE . Modus« = "verwenden"

Setzen Sie die Feldparameter des Transformators im Menüzweig [Feldparameter / Transformator].

Parametrieren Sie den Differentialschutz im Menüzweig [Schutzparameter / Satz x / Diff-Schutz].

5.6.3 Stabilisierung bei Stromwandlersättigung

Für das Hauptkapitel und die Einstellhinweise siehe →5.3 StW-Sättig.-Stab. – Stromwandlersättigungs-Stabilisierung für den Differentialschutz

Um den Differentialschutz gegen Stromwandlersättigung bei externen Fehlern zu stabilisieren, kann das Modul "StW-Sättig.-Stab." verwendet werden.

Das Modul muss entsprechend →5.3.1 Einstellhinweise eingestellt werden. Anschließend muss die Stabilisierung für den Erdstrom-Differentialschutz aktiviert werden:

• [Schutzparameter / Satz 1...4 / Diff-Schutz / IdE] »StW-Sättig.-Stab.« = "Aktiv".

5.7 IdEH - Erdhochstrom-Differentialschutz

Wie die Hochstrom-Phasendifferentialschutzstufe besitzt auch die Erdhochstrom-Differentialschutzstufe eine Mehrbereichs-Auslösekennlinie.

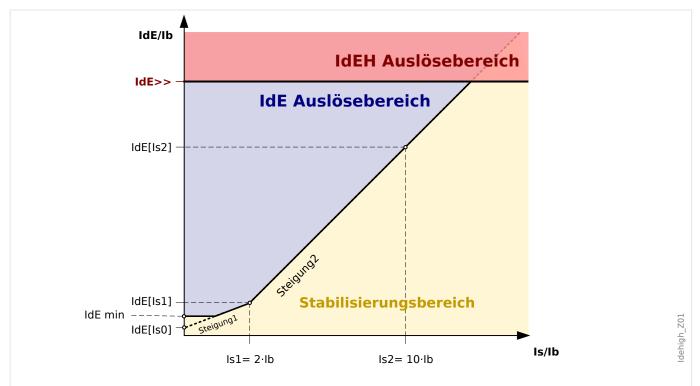
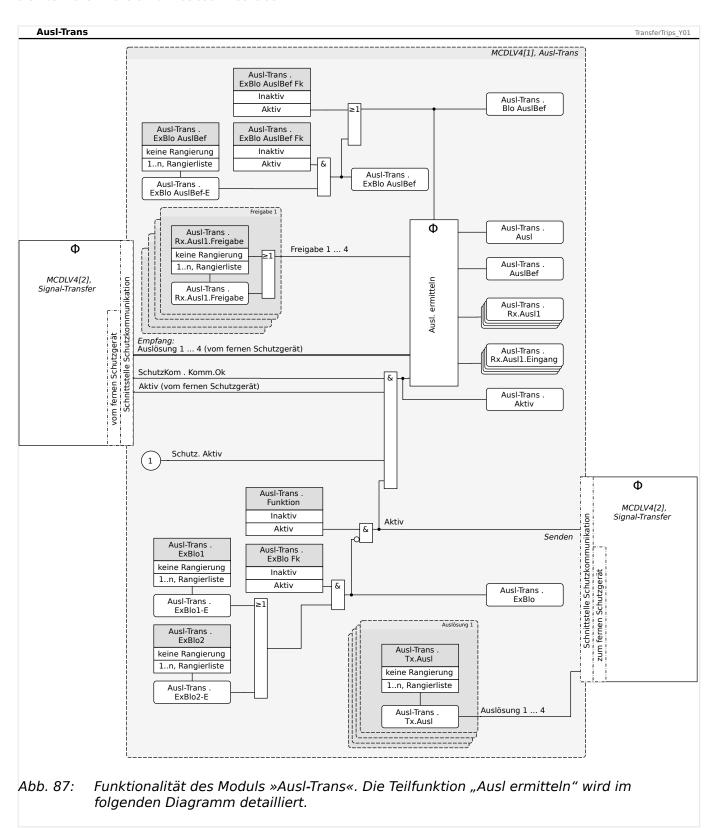
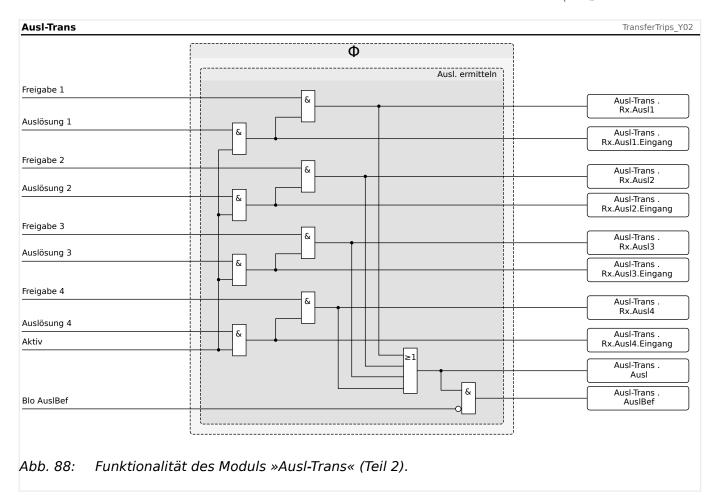


Abb. 86: Ansprechwert »IdE>>« des Erddifferentialstromes bezogen auf den Nennstrom »Ib« des entsprechenden Schutzobjektes.

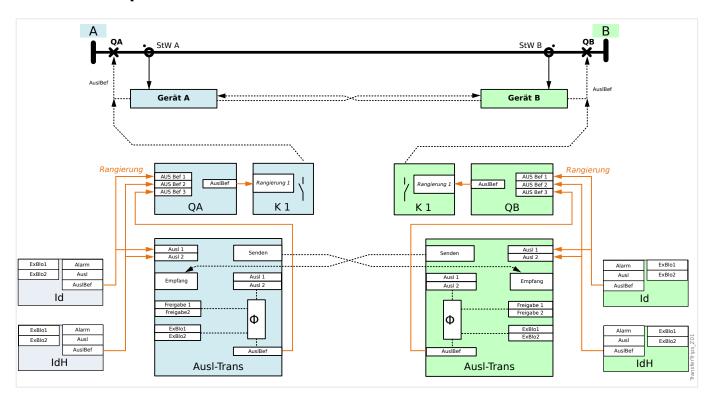
In dem Diagramm sind die folgenden Auslösekennlinien bzw. Auslösebereiche dargestellt:

Blauer Bereich im Diagramm →Abb. 86:	Auslösebereich der Schutzfunktion »IdE«. (Dies ist der Erdstrom-Differentialschutz, der in ⇔5.6 IdE – Erdstrom-Differentialschutz beschrieben wird.
Roter Bereich im Diagramm →Abb. 86:	Auslösebereich der Schutzfunktion »IdEH«. Dies ist der Erdhochstrom-Differentialschutz, der unabhängig von der »IdE«-Schutzfunktion arbeitet (und somit auch separat konfiguriert werden muss). Die zugehörige Auslöseschwelle ist IdE>> und wird (in Einheiten von Ib) über den Einstellparameter [Schutzparameter / Satz 14 / Diff-Schutz / IdEH] »IdE>>« konfiguriert. Insgesamt bedeutet dies, dass das MCDLV4 eine Generalanregung ausführt, sobald das Wertepaar aus Erd-Differenzstrom I _{dE} und Stabilisierungsstrom I _s in der blauen oder in der roten Fläche liegt.


5.8 Ausl-Trans - Transfer von Auslöse-Entscheiden


Der Leitungsdifferentialschutz basiert auf zwei Schutzgeräten, die miteinander über einen speziellen Kommunikationskanal, die Wirkschnittstelle SchutzKom, in Verbindung stehen. Das Modul »Ausl-Trans« ("Transfer von Auslöse-Entscheiden über die Schutzkommunikation") ist vergleichbar mit dem »Sig-Trans«-Modul, es erlaubt die Übertragung von Auslöse-Entscheiden über die SchutzKom-Verbindung vom einen Gerät zum anderen. Der hauptsäche Unterschied zwischen diesen beiden Modulen besteht darin, dass »Ausl-Trans« Auslöse-Entscheide generiert und somit einer Schutzfunktion vergleichbar ist. Das Aus des »Ausl-Trans«-Moduls kann also genauso behandelt werden wie ein Aus einer jeden anderen Schutzfunktion, es kann insbesondere über den Auslösebefehls-Manager einem Leistungsschalter zugewiesen werden, und es wird vom Fehlerrekorder erfasst.

Inwiefern eine solche Aus-Mitnahme überhaupt erforderlich ist, hängt insbesondere von der Konfiguration des Leitungsdifferentialschutzes ab. Da die Werte von Differenzstrom und Stabilisierungsstrom sowieso über die Schutzkommunikation übertragen werden und somit beiden Leitungsdifferentialschutzgeräten gleichermaßen zur Verfügung stehen, treffen bei gleicher Konfiguration beide Geräte in gleicher Weise einen Aus-Entscheid. In diesem Falle wird das »Ausl-Trans«-Modul nicht benötigt. Anders verhält es sich bei ungleicher Konfiguration des Leitungsdifferentialschutzes, hier können beide Geräte unterschiedlich entscheiden, und der Einsatz einer direkten Aus-Mitnahme kann erforderlich sein.

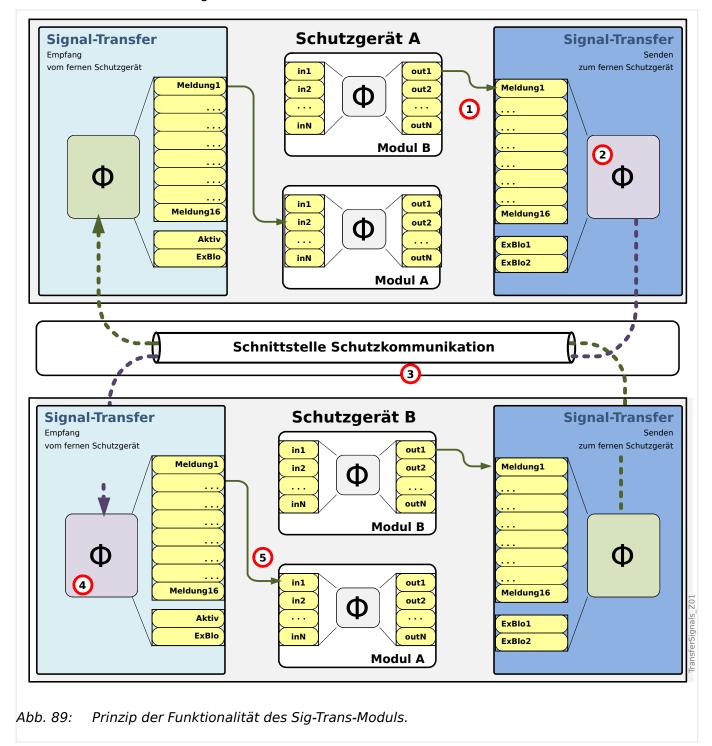

Unabhängig hiervon steht das »Ausl-Trans«-Modul für weitere Applikationen zur Verfügung, die eine Übertragung einer Auslösung zu einem entfernten Leistungsschalter erfordern, sodass zwei Leistungsschalter in kontrollierter Weise gleichzeitig auslösen.

Bei einem Ausfall der Schutzkommunikation werden natürlich keine Auslöse-Entscheide übertragen, das heißt, die entsprechenden Aus-Meldungen haben dann einfach den Wert 0 (inaktiv).

5.8.1 Beispiel: "Auslöse"-Mitnahme

Soll in einer Applikation die Auslöse-Entscheidung des Phasendifferentialschutzes vom fernen Schutzgerät stets vom lokalen Gerät "mitgenommen" werden, so kann dieses mit dem Modul Auslöse-Transfer (»Ausl-Trans«) gelöst werden.

5 Schutzmodule


5.8.1 Beispiel: "Auslöse"-Mitnahme

Dazu werden die Auslöse-Signale (»Ausl«) von der stabilisierten Phasendifferential-Stufe »Id« und der Hochstrom-Phasendifferential-Stufe »IdH« auf die Sende-Eingänge des Auslöse-Transfer-Moduls rangiert.

Das Auslöse-Kommando (»AuslBef«) vom Modul »Ausl-Trans« wird als zusätzliches Aus-Kommando (»AUS Bef«) auf den Auslöse-Manager des Schaltgerätes rangiert und anschließend auf ein Ausgangsrelais zur Ansteuerung der Auslösespule rangiert.

5.9 Sig-Trans - Signal-Transfer über Schutzkommunikation

Der Leitungsdifferentialschutz basiert auf zwei Schutzgeräten, die miteinander über einen speziellen Kommunikationskanal, die Wirkschnittstelle SchutzKom, in Verbindung stehen. Das Modul »Sig-Trans« ("Signal-Transfer über Schutzkommunikation") erlaubt es nun, bis zu 16 Signale zu konfigurieren, die über die SchutzKom-Verbindung vom einen Gerät zum anderen übertragen werden.

- Es können Modulausgänge bzw. Meldungen auf Signale des Moduls »Sig-Trans« rangiert werden (1).
- Diese Signale werden über die Schutzkommunikations-Schnittstelle (3) an das entfernte Gerät übertragen (2).

• Das Modul »Sig-Trans« des entfernten Gerätes empfängt (4) die Signale und triggert jeweils zugeordnete Digitale Eingänge (5).

Diese Digitalen Eingänge können bestimmte Funktionen aktivieren oder deaktivieren, das Gerät auf einen anderen Parametersatz umschalten, oder die Signale können Schutz- oder Steuerungsmodulen zugewiesen werden.

Jeder Ausfall der Schutzkommunikation blockiert die Übertragung der Signale. Damit diese trotzdem einen definierten Zustand beibehalten, kann für jedes der 16 Signale eine Strategie konfiguriert werden, gemäß der ein Wert zugewiesen werden soll, wenn die Schutzkommunikation ausfallen sollte:

Mögliche Einstellungen für Rx.Signal1.Rückfall, ..., Rx.Signal16.Rückfall

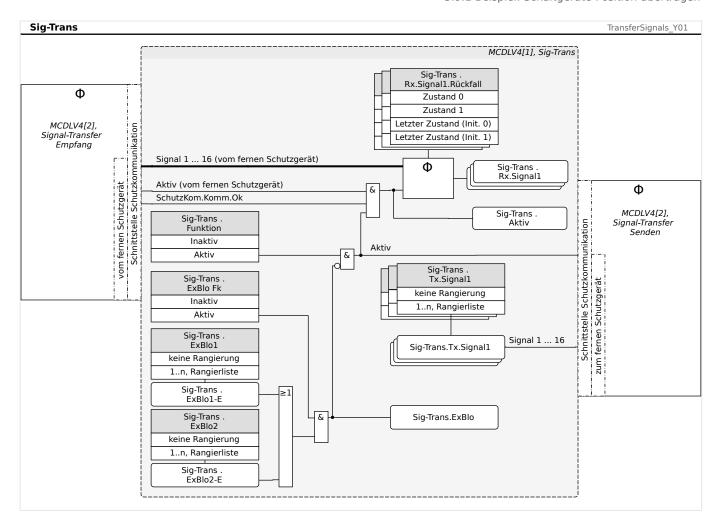
Zustand 0

Rückfall des empfangenden Zustands zu 0 (inaktiv), wenn Schutzkommunikation inaktiv ist.

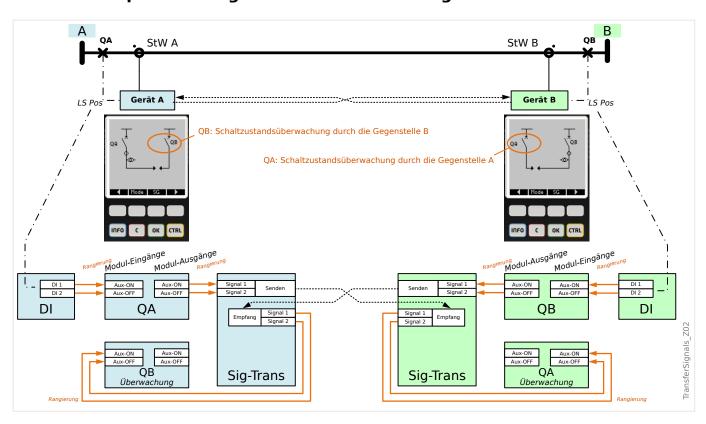
• Zustand 1

Rückfall des empfangenden Zustands zu 1 (aktiv), wenn Schutzkommunikation inaktiv ist.

• Letzter Zustand (Init. 0)


Wechselt die Schutzkommuniation in den Status inaktiv, wird der letzte empfangende Zustand festgehalten. Der Zustand ist mit 0 (inaktiv) initialisiert, solange kein gültiger Wert empfangen wurde. HINWEIS: Der Zustand ausfallsicher gespeichert.

• Letzter Zustand (Init. 1)


Wechselt die Schutzkommuniation in den Status inaktiv, wird der letzte empfangende Zustand festgehalten. Der Zustand ist mit 1 (aktiv) initialisiert, solange kein gültiger Wert empfangen wurde. HINWEIS: Der Zustand ausfallsicher gespeichert.

Werkseinstellung

• Zustand 0

5.9.1 Beispiel: Schaltgeräte-Position übertragen

Soll die Schaltgeräte-Position des Leistungsschalters von der entfernten Seite im lokalen Abzweigsteuerbild anzeigt werden, so kann dies mit Hilfe des Moduls »Sig-Trans« realisiert werden.

Im folgenden Beispiel ist exemplarisch gezeigt, welche Rangierungen notwendig sind.

Mit dem Tool "Page-Editor" muss dazu ein zusätzliches Schaltgerät (im Abzweigbild für Gerät A als "QB" benannt) platziert werden. In folgendem Beispiel soll das remote-seitige Schaltgerät nicht gesteuert werden ("Controlled"-Flag nicht gesetzt = Monitored).

Im Gerät A müssen im Modul »Sig-Trans« lediglich die Positions-Signale des ersten Schaltgerätes ("QA") auf die Sende-Eingänge (z. B. Signal 1 und Signal 2) rangiert werden.

Vom Modul »Sig-Trans« müssen dann die Empfangs-Ausgänge auf die Positions-Eingänge des zweiten Schaltgerätes ("QB") rangiert werden.

Da die Rangierungen in diesem Beispiel symmetrisch sind, können die Rangierungen 1:1 für Gerät B übernommen werden. Gerät B hat in unserem Beispiel lediglich ein angepasstes Abzweigsteuerbild, bei dem das erste Schaltgerät "QB" benannt ist, das zweite Schaltgerät ist als "QA" benannt.

5.10 I - Überstromschutz

Das Überstromschutz-Modul »I« stellt die folgenden ANSI-Schutzfunktionen zur Verfügung:

- ANSI 50 → "ANSI 50, 51 Überstromzeitschutz, ungerichtet", →5.10.1 Kennlinien (Phasenstrom)
- ANSI 51 → "ANSI 50, 51 Überstromzeitschutz, ungerichtet", →5.10.1 Kennlinien (Phasenstrom)
- ANSI 51C → "ANSI 51C Spannungsgesteuerter Überstromzeitschutz", →5.10.5 Spannungsgesteuerter Überstromschutz [51C]
- ANSI 51Q → "ANSI 51Q Gegensystem-Überstromzeitschutz", →5.10.4 I2> Gegensystem-Überstrom [51Q]
- ANSI 51V → "ANSI 51V Spannungsabhängiger Überstromzeitschutz", →5.10.3
 51V Spannungsabhängiger Überstromzeitschutz
- ANSI 67 → "ANSI 67 Überstromzeitschutz, gerichtet", →5.1.2 Richtungserkennung

WARNUNG!

Bei Benutzung der Einschaltrushblockade muss eine minimale Auslöseverzögerung von 30 ms für die Stromschutzfunktionen eingehalten werden.

VORSICHT!

Damit bei einphasigen Kurzschlüssen die Richtungserkennung korrekt funktioniert, werden folgende Referenzspannungen verwendet: Referenzspannung für den Phasenstrom »I1« ist die Außenleiterspannung »U23«, für den Phasenstrom »I2« die Außenleiterspannung »U31« und für den Phasenstrom »I3« die Außenleiterspannung »U12«.

Für den Fall, dass der Fehler nahe am Messort liegt und keine Referenzspannung für den Richtungsentscheid mehr zur Verfügung steht (Spannung nicht mehr messbar und kein Spannungsspeicher), löst das Modul – je nach Parametrierung – entweder ungerichtet aus oder es wird blockiert.

HINWEIS!

Alle Überstromschutzstufen sind gleich aufgebaut.

HINWEIS!

Für dieses Modul stehen Adaptive Parametersätze zur Verfügung.

Mittels adaptiver Parametersätze können Parameter innerhalb eines Parametersatzes dynamisch umgeschaltet werden. Siehe ⇔2.3.2 Adaptive Parametersätze.

ANSI 50, 51 - Überstromzeitschutz, ungerichtet

Diese Applikation des »I«-Schutzmoduls wird über das Menü [Projektierung / Projektierte Elemente] aktiviert:

• [Projektierung / Projektierte Elemente] »I[x] . Modus« = "Ungerichtet"

Ist die Stromschutzstufe als "Ungerichtet" projektiert, dann wird keine Richtungsinformation zur Schutzentscheidung der betroffenen Schutzfunktion herangezogen.

Optionen:

- [Schutzparameter / Satz n / I-Schutz / I[x]] »Messprinzip« =
 - Grundwelle
 - Effektivwert
 - I2

ANSI 67 - Überstromzeitschutz, gerichtet

Diese Applikation des »I«-Schutzmoduls wird über das Menü [Projektierung / Projektierte Elemente] aktiviert:

- [Projektierung / Projektierte Elemente] »I[x] . Modus« =
 - "Vorwärts"
 - "Rückwärts"

Optionen:

- [Schutzparameter / Satz n / I-Schutz / I[x]] »Messprinzip« =
 - Grundwelle
 - Effektivwert
 - 12

Die Vor- oder Rückwärtsrichtung basiert auf dem charakteristischen Winkel für Phasenrichtungsbestimmung, der abhängig vom Feldparameter [Feldparameter / Richtung] »Phasen-MTA« festgelegt ist.

Details zur Implementierung der Richtungserkennung findet man hier: $\leftrightarrow 5.1.2$ Richtungserkennung, und speziell zur Richtungserkennung bei Phasenfehlern: $\leftrightarrow 5.1.2.1$ Richtungserkennung von Phasenfehlern.

ANSI 51V - Spannungsabhängiger Überstromzeitschutz

Diese Applikation des »I«-Schutzmoduls wird wie folgt aktiviert:

• [Schutzparameter / Satz n / I-Schutz / I[x]] »VRestraint« = "Aktiv"

Optionen:

- [Schutzparameter / Satz n / I-Schutz / I[x]] »Messprinzip« =
 - Grundwelle

- Effektivwert
- 。 I2
- »Mess-Modus« =
 - Leiter-Leiter
 - Phasenspannung

Mit der Einstellung »VRestraint« auf "Aktiv" erfolgt der Überstromzeitschutz spannungsabhängig, d. h. die Anregeschwelle wird bei sinkender Spannung herabgesetzt und der Stromschutz erfolgt sensibler. Für die Spannungsschwelle »VRestraint max« kann zusätzlich der »Mess-Modus« ausgewählt werden.

Mit dem Parameter [Schutzparameter / Satz n / I-Schutz / I[x]] »Mess-Modus« kann festgelegt werden, ob die "Leiter-Leiter"-Spannung oder die "Phasenspannung" gemessen wird.

ANSI 51Q - Gegensystem-Überstromzeitschutz

Diese Applikation des »I«-Schutzmoduls wird wie folgt aktiviert:

• [Schutzparameter / Satz n / I-Schutz / I[x]] »Messprinzip« = "I2"

ANSI 51C - Spannungsgesteuerter Überstromzeitschutz

Diese Applikation des »I«-Schutzmoduls wird über Adaptive Parametersätze aktiviert, siehe

→2.3.2 Adaptive Parametersätze.

Optionen:

- [Schutzparameter / Satz n / I-Schutz / I[x]] »Messprinzip« =
 - Grundwelle
 - Effektivwert
 - 。 I2
- [Schutzparameter / Satz n / U-Schutz / U[x]] »Mess-Modus« =
 - Leiter-Leiter
 - Leiter-Erd

Messprinzip

Für alle Schutzstufen kann ausgewählt werden, ob die Messwerterfassung auf Basis der "Grundwelle" erfolgt, oder der "Effektivwert" verwendet wird.

Alternativ können die Stromschutzstufen mit der Einstellung "I2" so eingestellt werden, dass der Strom im Gegensystem gemessen wird (Erfassung unsymmetrischer Fehler).

5.10.1 Kennlinien (Phasenstrom)

Für jede Stufe kann über den Parameter [Schutzparameter / Satz 1...4 / I-Schutz / I[x]] »Kennl« eine der folgenden Kennlinien gewählt werden:

• DEFT - Definite Time-Overcurrent / Unabhängiger Überstromzeitschutz

- Abhängiger Überstromzeitschutz, Kennlinien nach IEC 60255-151:
 - NINV IEC Normal Inverse (IEC 60255-151)
 - VINV IEC Very Inverse (IEC 60255-151)
 - LINV IEC Long Time Inverse (IEC 60255-151)
 - EINV IEC Extremely Inverse (IEC 60255-151)
- Abhängiger Überstromzeitschutz, Kennlinien nach ANSI / IEEE C37.112:
 - MINV ANSI Moderately Inverse (IEEE C37.112)
 - VINV ANSI Very Inverse (IEEE C37.112)
 - EINV ANSI Extremely Inverse (IEEE C37.112)
- RINV R Inverse
- Thermische Kennlinien:
 - Therm Flat Thermal Flat
 - o IT
 - I2T
 - I4T

Legende für alle folgenden Diagramme

• I: Fehlerstrom

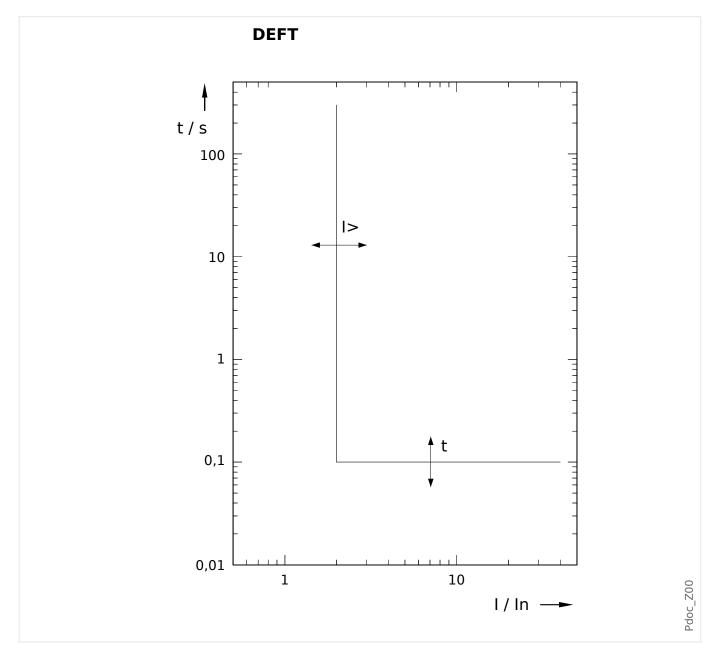
Die folgenden Einstellungen befinden sich unter [Schutzparameter / Satz 1...4 / I-Schutz / I[x]] und definieren das Verhalten der Schutzfuntion:

- »I>«: Anregeschwelle für das Phasenüberstrom-Schutzmodul. Beim Überschreiten des Einstellwertes regt das Modul an.
- »t« für »Kennl« = "DEFT": Die Auslöseverzögerung der Schutzstufe.
- »tChar« (für alle Kennlinien außer "DEFT"): Die Auslöseverzögerung ergibt sich in Abhängigkeit von »tChar«, der gewählten Charakteristik und der Höhe des Fehlerstromes als Vielfaches von »I>«.
- Die Rückfallverzögerung ist mittels »Rücksetz Modus« einstellbar auf:
 - "unverzögert": Unverzögerter Reset: Wenn der Strom unter den Anregewert zurückfällt, wird der Timer innerhalb von 2 Perioden zurückgesetzt.
 - "unabhängig": Die Rückfallverzögerung ist einstellbar mittels »tReset«.
 - "abhängig (aus Kennl.)": Die Rückfallverzögerung wird aus der jeweils gewählten Kennlinie errechnet (für alle Kennlinien außer "DEFT").

Für alle Kennlinien, außer DEFT und den Thermischen Kennlinien, gibt es zwei minimale Auslöseverzögerungen, und unabhängig von der gewählten Kennlinie, wird die effektive Auslöseverzögerung niemals unterhalb von diesen beiden liegen.

• »tMinimum« ist die vom Anwender einstellbare, minimale Auslöseverzögerung. Diese Zeitstufe wird unabhängig von der inversen Strom-Zeit-Charakteristik

gestartet und muss abgelaufen sein, bevor es zur Auslösung der Schutzstufe kommen kann. Die Funktion wird deaktiviert, in dem diese auf 0 Sekunden eingestellt wird.


- Unabhängig davon gibt es eine weitere minimale Auslöseverzögerung t_{min} , die abhängig von einem I_{max} ist. Die Auslöseverzögerung ist hierbei niemals kleiner als t_{min} , unabhängig von den Stromwerten für I.
 - \circ I_{max} ist dabei definiert als der kleinste Wert von 20·I> und 40·In.

Anmerkung: Da der Parameter I > als Vielfaches von In eingestellt wird, also: $I > = \mathbf{p} \cdot In$, gilt auch $I_{max} = 20 \cdot \mathbf{p} \cdot In = 20 \cdot I >$ für $\mathbf{p} \le 2$, ansonsten $I_{max} = 40 \cdot In = 40 \cdot I >$ \mathbf{p} .

 \circ t_{min} ist die Auslöseverzögerung, die sich rechnerisch aus der jeweiligen Kennlinie für I_{max} ergibt.

Zu den Thermischen Kennlinien gibt es weitere Erläuterungen in \hookrightarrow 5.10.1.2.4 Thermische Kennlinien (Phasenstrom).

5.10.1.1 DEFT - Unabhängiger Überstromzeitschutz

Die Auslöseverzögerung für $I > I_>$ ist einstellbar über [Schutzparameter / Satz 1...4 / I-Schutz / I[x]] *t*.

Die Rückfallverzögerung für $I < I_>$ ist grundsätzlich immer gleich 0 ("unverzögert").

5.10.1.2 AMZ-Kennlinien (Phasenstrom)

Siehe → "Legende für alle folgenden Diagramme" für weitere Informationen.

Kennlinie »Kennl«	Auslöseverzög	gerung		Rückfallverzögerung (nur für »Rücksetz Modus« = "abhängig (aus Kennl.)")	
	$t = \left(\frac{k}{\left(\frac{I}{I>}\right)^{\alpha} - 1} + c\right) \cdot tChar$			$t = \frac{\tau}{1 - \left(\frac{I}{I}\right)^{\alpha}} \cdot tChar$	
	k	c	α	τ	α
	[s]	[s]		[s]	
IEC NINV	0,14	0	0,02	0,14	2
IEC VINV	13,5	0	1	13,5	2
IEC EINV	80	0	2	80	2
IEC LINV	120	0	1	120	2
IEEE MINV	0,0515	0,1140	0,02	4,85	2
IEEE VINV	19,61	0,491	2	21,6	2
IEEE EINV	28,2	0,1217	2	29,1	2

Kennlinie	Auslöseverzögerung			Rückfallverzögerung	
»Kennl«				(nur für »Rücksetz Modus« = "abhängig (aus Kennl.)")	
	$t = \frac{k}{b \cdot \frac{c}{\left(\frac{I}{I>}\right)}} \cdot tChar$			$t = \frac{\tau}{1 - \left(\frac{I}{I}\right)^{\alpha}} \cdot tChar$	
	k	b	С	τ	α
	[s]			[s]	
RINV	1,0	0,339	0,236	1,0	2

Kennlinie »Kennl«	Auslöseverzögerung			Rückfallverzögerung (nur für »Rücksetz Modus« = "abhängig (aus Kennl.)")	
	$t = \frac{c \cdot tChar \cdot K^{M}}{\left(\frac{I}{In}\right)^{M}}$			$t = c \cdot \text{tChar} \cdot K^2$	
	K	М	С	K	С
			[s]		[s]
Therm Flat	3	0	5	3	5
IT	3	1	5	3	5
I2T	3	2	5	3	5
I4T	3	4	5	3	5

Siehe auch $\hookrightarrow 5.10.1.2.4$ Thermische Kennlinien (Phasenstrom) für weitere Informationen speziell zu den "Thermischen Kennlinien".

5.10.1.2.1 Kennlinien nach IEC 60255-151 (Phasenstrom)

5.10.1.2.1.1 IEC Normal Inverse [NINV] (IEC 60255-151)

$$I[x]$$
 . Kennl« = IEC NINV

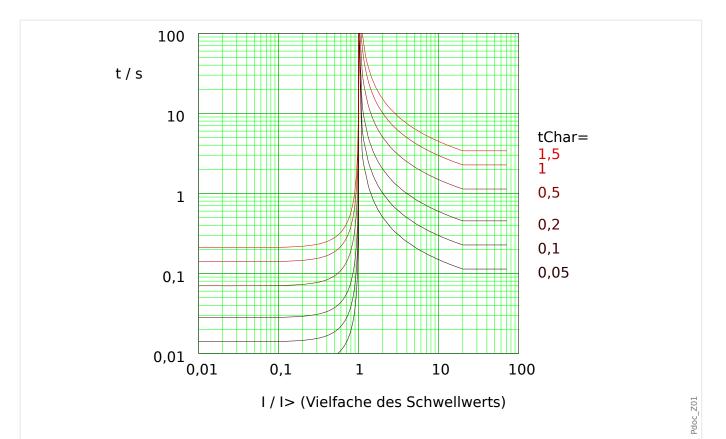


Abb. 90: NINV: Rückfallverzögerung (linke Hälfte, $I < I_>$) und Auslöseverzögerung (rechte Hälfte, $I > I_>$), Beispieldiagramm für $I_{max} = 20 \cdot I_>$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.10.1.2 AMZ-Kennlinien (Phasenstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{>} < I < I_{max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.1.2 IEC Very Inverse [VINV] (IEC 60255-151)

$$|x| = |x| \cdot |x|$$

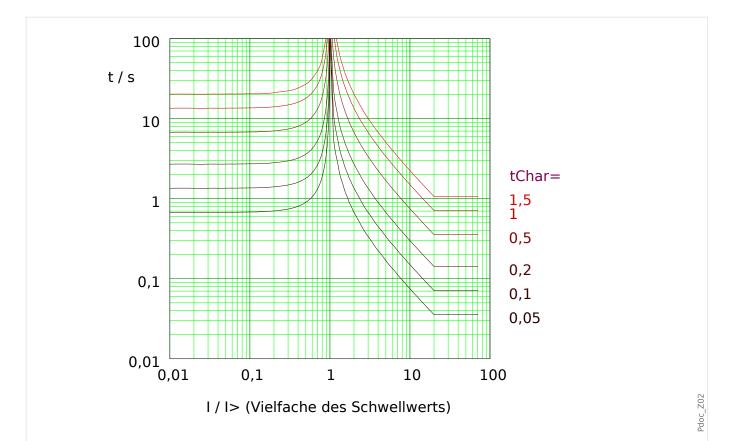


Abb. 91: VINV: Rückfallverzögerung (linke Hälfte, $I < I_>$) und Auslöseverzögerung (rechte Hälfte, $I > I_>$), Beispieldiagramm für $I_{max} = 20 \cdot I_>$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.10.1.2 AMZ-Kennlinien (Phasenstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{>} < I < I_{max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.1.3 IEC Extremely Inverse - Kennlinie [INV] (IEC 60255-151)

$$|x| = |EC| = |$$

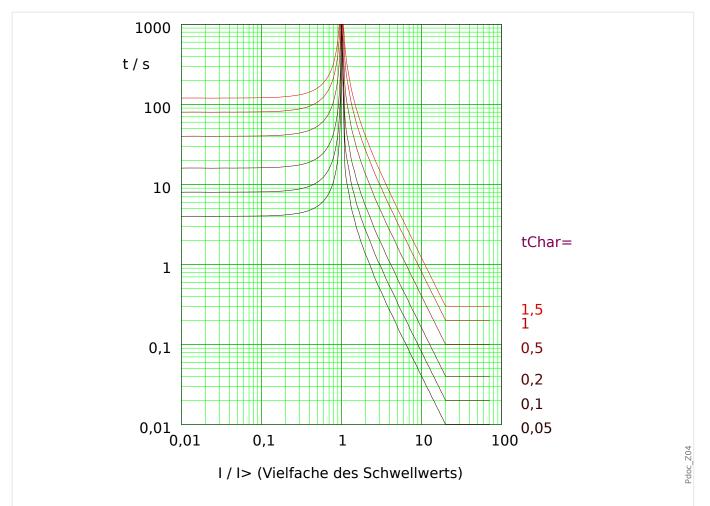


Abb. 92: EINV: Rückfallverzögerung (linke Hälfte, $I < I_>$) und Auslöseverzögerung (rechte Hälfte, $I > I_>$), Beispieldiagramm für $I_{max} = 20 \cdot I_>$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.10.1.2 AMZ-Kennlinien (Phasenstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{>} < I < I_{max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.1.4 IEC Long Time Inverse - Kennlinie [LINV] (IEC 60255-151)

$$|x| = |EC| = |$$

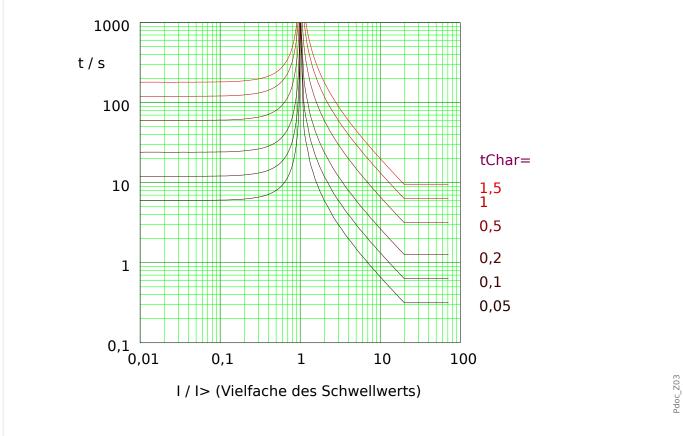


Abb. 93: LINV: Rückfallverzögerung (linke Hälfte, $I < I_>$) und Auslöseverzögerung (rechte Hälfte, $I > I_>$), Beispieldiagramm für $I_{max} = 20 \cdot I_>$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.10.1.2 AMZ-Kennlinien (Phasenstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{>} < I < I_{max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.2 R Inverse [RINV] - Kennlinie (Phasenstrom)

$$I[x]$$
 . Kennl« = RINV

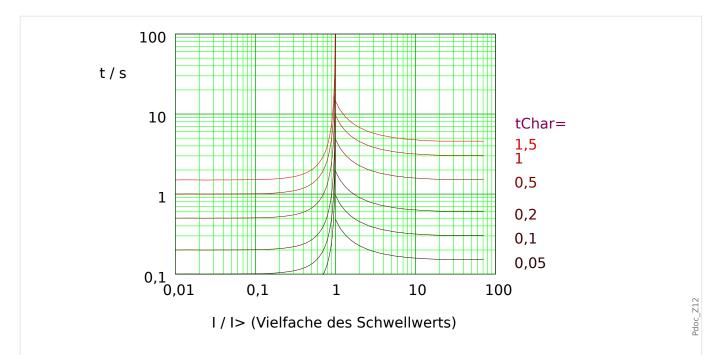


Abb. 94: RINV: Rückfallverzögerung (linke Hälfte, $I < I_>$) und Auslöseverzögerung (rechte Hälfte, $I > I_>$), Beispieldiagramm für $I_{max} = 20 \cdot I_>$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.10.1.2 AMZ-Kennlinien (Phasenstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{>} < I < I_{max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.3 Kennlinien nach IEEE C37.112 (Phasenstrom)

5.10.1.2.3.1 Moderately Inverse [MINV] - Kennlinie (IEEE C37.112)

*I[x] . Kennl« = "ANSI MINV"

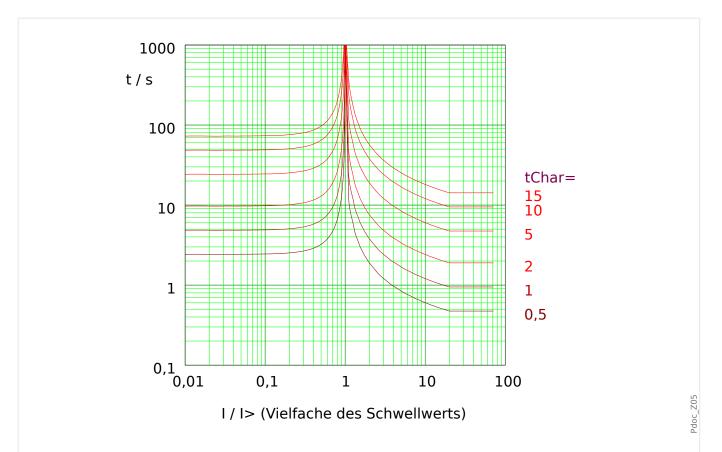


Abb. 95: MINV: Rückfallverzögerung (linke Hälfte, $I < I_>$) und Auslöseverzögerung (rechte Hälfte, $I > I_>$), Beispieldiagramm für $I_{max} = 20 \cdot I_>$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.10.1.2 AMZ-Kennlinien (Phasenstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{>} < I < I_{max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.3.2 Very Inverse [VINV] (IEEE C37.112)

$$|x| = \|ANSIVINV^*\|$$

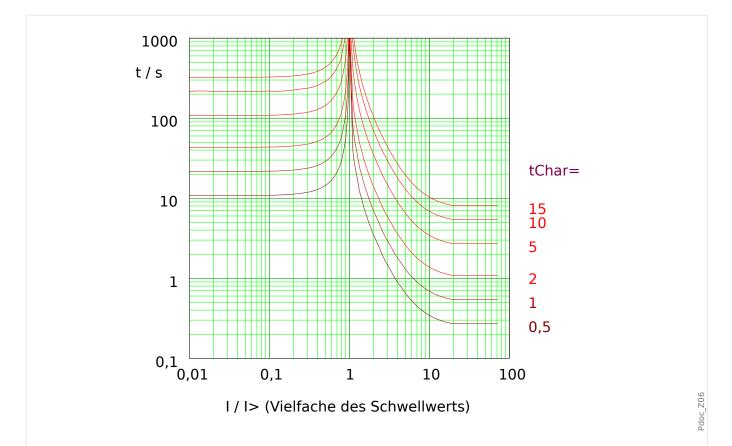


Abb. 96: VINV: Rückfallverzögerung (linke Hälfte, $I < I_>$) und Auslöseverzögerung (rechte Hälfte, $I > I_>$), Beispieldiagramm für $I_{max} = 20 \cdot I_>$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.10.1.2 AMZ-Kennlinien (Phasenstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{>} < I < I_{max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.3.3 Extremely Inverse - Kennlinie [INV] (IEEE C37.112)

$$*I[x]$$
 . Kennl« = "ANSI EINV"

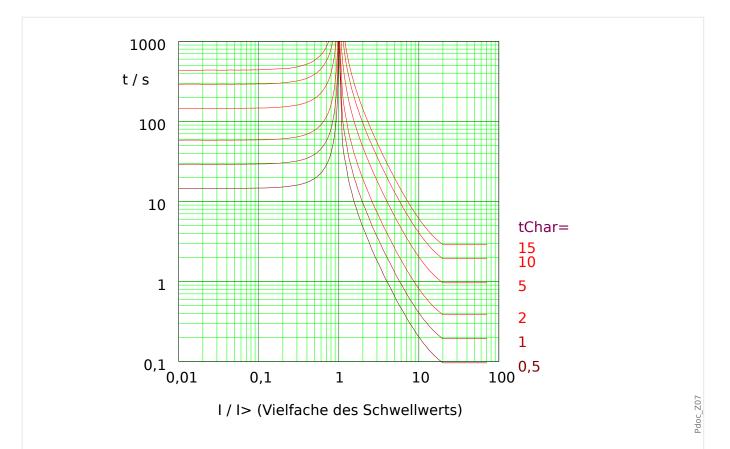


Abb. 97: EINV: Rückfallverzögerung (linke Hälfte, $I < I_>$) und Auslöseverzögerung (rechte Hälfte, $I > I_>$), Beispieldiagramm für $I_{max} = 20 \cdot I_>$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.10.1.2 AMZ-Kennlinien (Phasenstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{>} < I < I_{max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.4 Thermische Kennlinien (Phasenstrom)

Auslöseverzögerungen

Für die Auslöseverzögerungen der "Thermischen" Kennlinien Therm Flat, IT, I2T, and I4T gilt die folgende Berechnungsformel:

$$t = \frac{5 \cdot tChar \cdot K^{M}}{\left(\frac{I}{In}\right)^{M}}$$

t Auslöseverzögerung [in Sekunden].

tChar Einstellung für den Zeitfaktor [in Sekunden].

K = 3 für die Phasenströme,

= 1 für den Erdstrom.

M Kennliniensteigung: = 0 für Therm Flat,

= 1 für IT, = 2 für I2T, = 4 für I4T.

In Nennstrom, entweder 1 A oder 5 A, je nach Einstellung [Feldparameter /

StW] »StW sek«.

I Gemessener Strom.

Der dynamische Bereich für Auslöseverzögerungen beginnt oberhalb der eingestellten Anregeschwelle und endet bei 40·IEn, und der kleinste

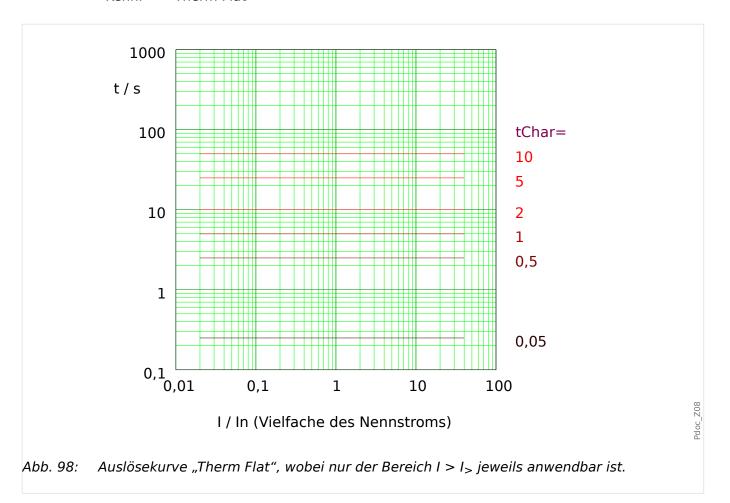
einstellbare Wert für die Anregeschwelle ist 0,02·In.

Rückfallverzögerungen

Die Rückfallverzögerungen sind von den gemessenen Stromwerten unabhängig, abgesehen davon, dass der Strom unterhalb der Anregeschwelle sein muss. Es gilt die folgende Berechnungsformel:

$$t = 5 \cdot tChar \cdot K^2 = 45 \cdot tChar$$

t Rückfallverzögerung [in Sekunden].


tChar Einstellung für den Zeitfaktor [gleicher Wert wie für die

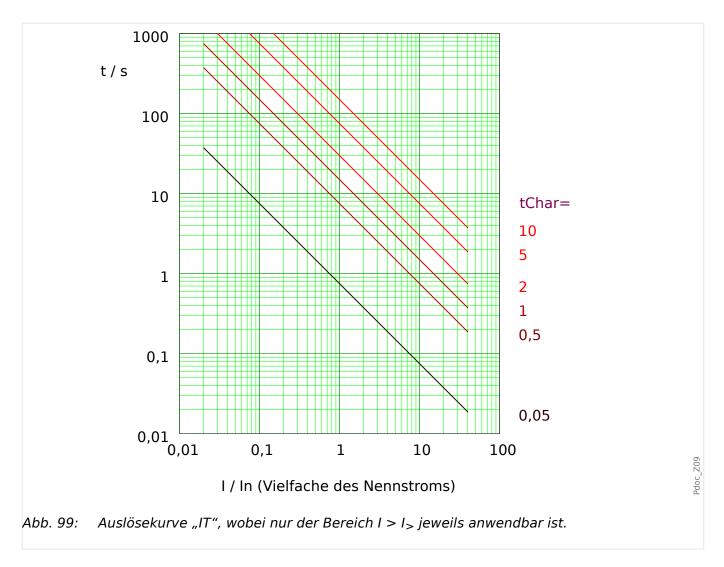
Auslöseverzögerungen].

K [identisch zu dem K-Wert für die Auslöseverzögerungen oben].

5.10.1.2.4.1 Therm Flat [TF] - Kennlinie

»Kennl« = Therm Flat

Rückfallverzögerung


Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

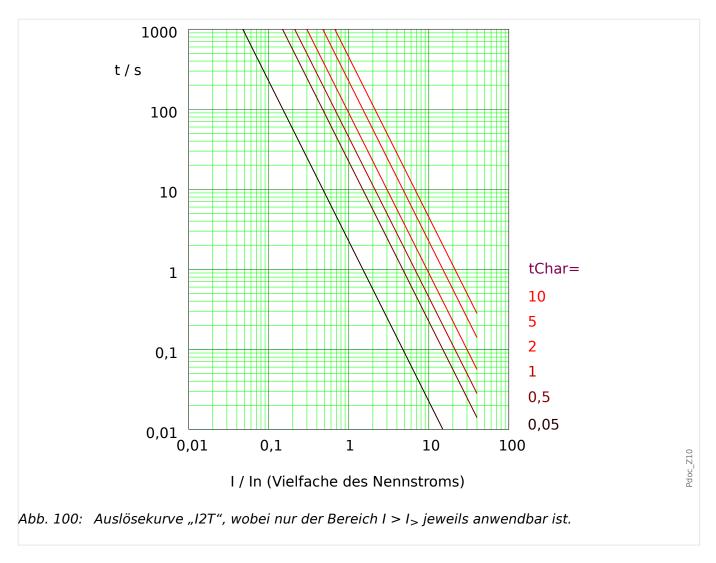
Auslöseverzögerung

Für $I > I_{>}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.4.2 IT - Kennlinie

»Kennl« = IT

Rückfallverzögerung


Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

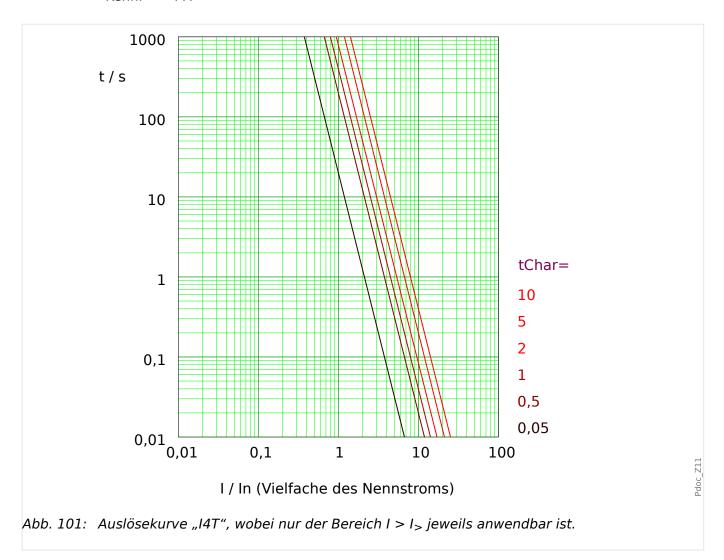
Auslöseverzögerung

Für $I > I_{>}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.4.3 I2T - Kennlinie

»Kennl« = I2T

Rückfallverzögerung


Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

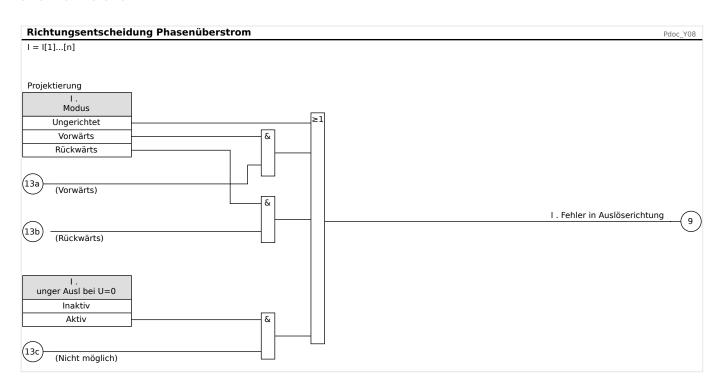
Auslöseverzögerung

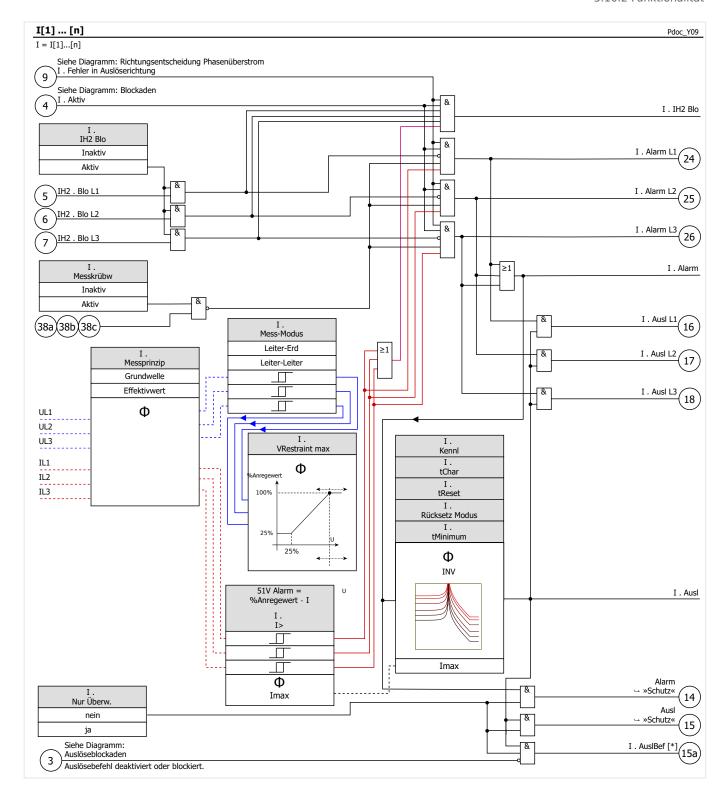
Für $I > I_{>}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.1.2.4.4 I4T - Kennlinie

Kennl = I4T

Rückfallverzögerung

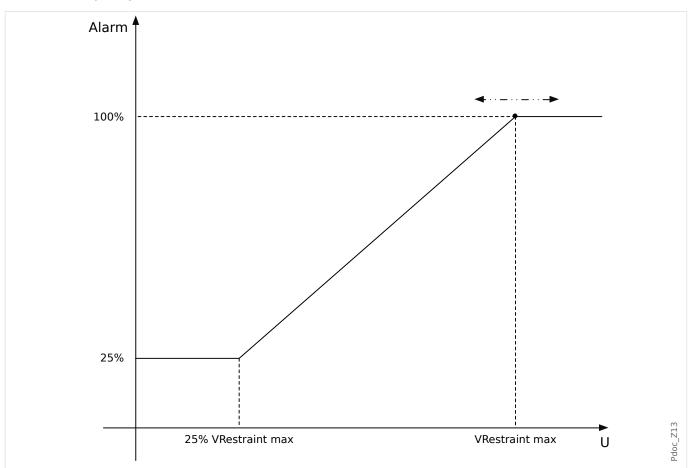

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.


Auslöseverzögerung

Für $I > I_{>}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.10.2 Funktionalität

Die **Richtungserkennung** basiert auf dem Modul »Schutz«. Für weitere Informationen siehe ⇔5.1.2 Richtungserkennung.


Anmerkung: Um das Diagramn nicht zu sehr zu überladen, ist hierin nicht die Tatsache berücksichtigt, dass für den Fall [Feldparameter / SpW] »SpW Anschluss« = "Leiter-Leiter" der Parameter »I[x]« . Mess-Modus geräteintern auf "Leiter-Leiter" gesetzt wird, unabhängig vom ursprünglich konfigurierten Wert (siehe auch den Hinweis in \hookrightarrow Kapitel 5.10.3).

5.10.3 51V - Spannungsabhängiger Überstromzeitschutz

Zum Aktivieren dieser Funktion muss innerhalb der Parametersätze in der jeweiligen Stromstufe I[x] der Parameter [Schutzparameter / Satz n / I-Schutz / I[x]] »VRestraint« = "Aktiv" gesetzt sein.

Diese Funktion setzt in Abhängigkeit der Höhe einer Spannungsabsenkung die Anregeschwelle der Überstromstufe herab. Insbesondere bei generatornahen Kurzschlüssen kann es durch den Spannungseinbruch vorkommen, dass der Fehlerstrom kleiner ist als der zulässige Volllaststrom. In diesem Falle kann ein normaler Übertromzeitschutz den Fehler nicht erkennen. Abhängig von der Einstellung [Schutzparameter / Satz 1...4 / I-Schutz / I[x]] »Mess-Modus« in den Stromschutzmodulen wird entweder die Außenleiter- oder die Strangspannung überwacht.

Es besteht ein einfacher linearer Zusammenhang zwischen der Spannungsabsenkung und Absenkung der Überstrom-Anregeschwelle (siehe Diagramm). Die unterste Schwelle für die Absenkung der Überstrom-Anregeschwelle beträgt 25%, auch wenn die Spannung unter 25% des Einstellwertes von von [Schutzparameter / Satz 1...4 / I-Schutz / I[x]] »VRestraint max« fällt.

Das bedeutet:

- $U_{min} = 0.25 \cdot U_{max}$;
- %Anregewert_{min} = 25%;
- %Anregewert = 25%, wenn U ≤ U_{min};
- %Anregewert = $1 / U_{max} \cdot (U U_{min}) + 25\%$, wenn $U_{min} < U < U_{max}$;

• %Anregewert = 100%, wenn U ≥ U_{max};

Die Auslösekennlinien (Charakteristik) der Stromschutzstufen bleiben beim spannungsabhängigen Überstromschutz unbeeinflusst.

Wenn die Spannungswandler-Überwachung »Ex Autom SpW« aktiviert ist, wird im Falle eines Sicherungs-Automatenfalls der Spannungswandler die spannungsabhängige Überstromfunktion blockiert, um eine Fehlauslösung zu verhindern.

HINWEIS!

Definition von Un:

Un ist abhängig vom Anschlusstyp der Spannungswandler sowie von der Einstellung Mess-Modus in den Stromschutzmodulen:

Falls [Feldparameter / SpW] »SpW Anschluss« = "Leiter-Erde" **und** [Schutzparameter / Satz n / I-Schutz / I[x]] »Mess-Modus« = "Phasenspannung" eingestellt ist, gilt:

$$Un = \frac{SpW \ sek}{\sqrt{3}}$$

Falls [Feldparameter / SpW] »SpW Anschluss« = "Leiter-Erde" und [Schutzparameter / Satz n / I-Schutz / I[x]] »Mess-Modus« = "Leiter-Leiter" eingestellt ist, gilt:

Un = SpW sek

Falls [Feldparameter / SpW] »SpW Anschluss« = "Leiter-Leiter" eingestellt ist, gilt:

Un = SpW sek

Anmerkung: Dies bedeutet, dass wenn in den Feldparametern »SpW Anschluss« = "Leiter-Leiter" eingestellt ist, wird die Einstellung »Mess-Modus« in den Stromschutzmodulen ignoriert.

5.10.4 I2> - Gegensystem-Überstrom [51Q]

Zum Aktivieren dieser Funktion muss innerhalb der Parametersätze in der jeweiligen Stromstufe I[x] der Parameter [Schutzparameter / Satz n / I-Schutz / I[x]] »Messprinzip« = "I2" gesetzt sein.

Die Gegensystem-Überstromschutzfunktion arbeitet in ähnlicher Weise wie die normale Phasen-Übertromschutzfunktion, mit dem Unterschied, dass hier die Ströme des Gegensystems ausgewertet werden.

Dabei werden die Gegensystemströme nach der Methode der Symmetrischen Komponenten aus den Phasenströmen ermittelt:

$$I_2 = \frac{1}{3}(I_{L1} + a^2I_{L2} + aI_{L3})$$

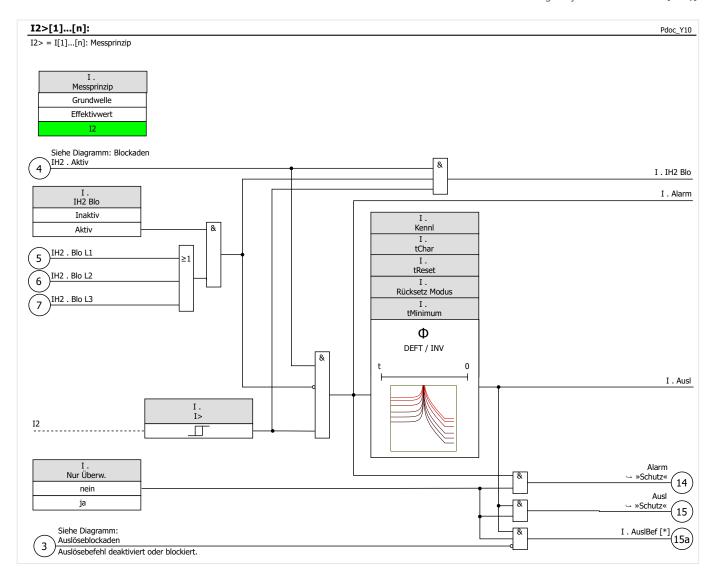
Der Ansprechwert der Gegensystem-Überstromfunktion sollte entsprechend der zu erwartenden, bzw. zulässigen Gegensystem-Ströme des jeweiligen Betriebsmittels eingestellt werden.

Die Gegensystem-Überstromfunktion besitzen die gleichen Parameter, wie die Phasenstromfunktion, d. h. Auslöse- und Rücksetzcharakteristik, Zeitfaktoren, Auslöseverzögerung, etc.

Die Gegensystem-Überstromfunktion dient dazu, elektrische Betriebsmittel, wie Generatoren, Transformatoren und Motoren vor unsymmetrischen Fehlern zu schützen.

Bei Symmetrischer Last ist der Strom im Gegensystem nahezu Null. Im Gegensatz zum Phasenstromschutz kann die Gegensystem-Überstromschutzfunktion wesentlich empfindlicher eingestellt werden und ist somit in der Lage, unsymmetrische Fehler schneller zu erkennen und abzuschalten.

WARNUNG!



Bei Benutzung der Einschaltrushblockade muss eine minimale Auslöseverzögerung von 30 ms für die Stromschutzfunktionen eingehalten werden.

HINWEIS!

Durch Schalthandlungen können ebenfalls Gegensystemströme verursacht werden.

5.10.5 Spannungsgesteuerter Überstromschutz [51C]

Kurzschlüsse in Generatornähe können zum Einbruch der Spannung führen. Mittels **Adaptiver Parameter** (siehe ⇔2.3.2 Adaptive Parametersätze) kann in Abhängigkeit von Spannungsschwellwerten Einfluss auf die Auslösezeiten bzw. Auslösekennlinie genommen werden. Auslösezeit, Kennlinie, Rücksetzmodi usw. können auf diese Weise direkt und in Abhängigkeit von Spannungsschwellwerten beeinflusst werden. So ist es z. B. möglich, von einer normalen "Lastkennline" im Fall eines generatornahen Kurzschlusses auf eine empfindlichere Kennlinie umzuschalten.

Gehen Sie hierzu wie folgt vor:

- Sie müssen den Abschnitt "Adaptive Parameter" (→2.3.2 Adaptive Parametersätze) gelesen und deren Funktionsweise verstanden haben.
- Projektieren und parametrieren Sie eine Unterspannungsstufe.
- Projektieren und parametrieren Sie eine Stromschutzstufe.
- Parametrieren Sie innerhalb der Parametersätze die gewünschten Adaptiven Parameter für diese Stromschutzstufe (z. B. anderer Kennlinienfaktor, andere Auslösecharakteristik...).
- Rangieren Sie innerhalb der Globalen Parameter den Unterspannungsalarm als Aktivierungssignal für einen Adaptiven Parametersatz für diejenige Stromschutzstufe, die im Fall einer Unterspannung in ihrem Auslöseverhalten beeinflusst werden soll.
- Überprüfen Sie die durchgeführte Parametrierung durch eine Inbetriebnahmeprüfung.

5.10.6 Inbetriebnahme: Überstromzeitschutz ungerichtet [50, 51]

Auslöseverzögerungen und die Rückfallverhältnisse.

Gegenstand der Prüfung

 Messen Sie für jede Stromschutzstufe jeweils 3 x einphasig und 1 x dreiphasig die Ansprechwerte, die Gesamtauslösezeit (Empfehlung) oder alternativ die

HINWEIS!

Insbesondere bei der Holmgreenschaltung schleichen sich schnell Verdrahtungsfehler ein, die so sicher erkannt werden können. Durch das Messen der Gesamtauslösezeit kann sichergestellt werden, dass die Sekundärverdrahtung bis zur Auslösespule des Leistungsschalters (ab Klemme) in Ordnung ist.

HINWEIS!

Es wird empfohlen die Gesamtauslösezeit anstelle der Auslöseverzögerung zu messen. Die Auslöseverzögerung sollte durch den Kunden vorgegeben werden. Die Gesamtauslösezeit wird an den Stellungsmeldekontakten des Leistungsschalters gemessen (nicht am Relaisausgang!).

Gesamtauslösezeit= Auslöseverzögerung (siehe Toleranzen der Schutzstufen) + Schaltereigenzeit (ca. 50 ms)

Entnehmen Sie die Schaltereigenzeiten den Technischen Daten der Dokumentation des Schaltgeräteherstellers.

Benötigte Geräte

- Stromquelle
- Ggf. Amperemeter
- Timer (Zeitgeber)

Durchführung

Prüfen der Ansprechwerte (3 x einphasig und 1 x dreiphasig)

• Speisen Sie jeweils einen Strom ein, der ca. 3-5% über dem Schwellwert für die Anregung/Auslösung liegt. Kontrollieren Sie jeweils die Ansprechwerte.

Prüfen der Gesamtauslöseverzögerung (Empfehlung)

Messen Sie die Gesamtauslösezeiten an den Hilfskontakten des Leistungsschalters (Schalterfall).

Prüfen der Auslöseverzögerung (Messung am Relaisausgang)

Messen Sie die Auslösezeiten am Relaisausgang.

Prüfen des Rückfallverhältnisses

Verringern Sie jeweils den Strom auf unter 97% des Auslösewerts und kontrollieren Sie das Rückfallverhältnis.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

Rücksetzen der Funktion zwischen Tests

Je nach verwendetem Rücksetz-Modus kann es notwendig sein, einige Zeit zwischen den einzelnen Tests vergehen zu lassen, bis die Funktion wieder komplett zurückgesetzt ist. Alternativ kann die gesamte Funktion inklusive aller Zeitstufen unverzögert zurückgesetzt werden via [Betrieb / Reset] »Reset I-Schutz«. Dadurch entfallen die Wartezeiten zwischen den Tests.

Bitte beachten Sie: [Betrieb / Reset] »Reset I-Schutz« setzt alle überstrombasierten Funktionen auf einmal zurück.

5.10.7 Inbetriebnahme: Überstromzeitschutz gerichtet [67]

Gegenstand der Prüfung

Messen Sie für jede gerichtete Überstromstufe jeweils 3 x einphasig und 1 x dreiphasig die Ansprechwerte, die Gesamtauslösezeit (Empfehlung) oder alternativ die Auslöseverzögerungen und die Rückfallverhältnisse.

HINWEIS!

Insbesondere bei der Holmgreenschaltung schleichen sich schnell Verdrahtungsfehler ein, die so sicher erkannt werden können. Durch das Messen der Gesamtauslösezeit kann sichergestellt werden, dass die Sekundärverdrahtung bis zur Auslösespule des Leistungsschalters (ab Klemme) in Ordnung ist.

HINWEIS!

Es wird empfohlen die Gesamtauslösezeit anstelle der Auslöseverzögerung zu messen. Die Auslöseverzögerung sollte durch den Kunden vorgegeben werden. Die Gesamtauslösezeit wird an den Stellungsmeldekontakten des Leistungsschalters gemessen (nicht am Relaisausgang!).

Gesamtauslösezeit = Auslöseverzögerung (siehe Toleranzen der Schutzstufen) + Schaltereigenzeit (ca. 50 ms)

Entnehmen Sie die Schaltereigenzeiten den Technischen Daten der Dokumentation des Schaltgeräteherstellers.

Benötigte Geräte

- Synchronisierbare Strom- und Spannungsquelle
- Ggf. Amperemeter
- Timer (Zeitgeber)

Durchführung

Synchronisieren Sie die 3-phasigen Strom und Spannungsquellen zueinander. Simulieren Sie durch den Winkel zwischen Strom und Spannung die zu überprüfenden Auslöserichtungen.

Das MCDLV4 zeigt unter dem Menüpfad [Betrieb / Messwerte / Richtung] die Richtung der Phasenströme (sowie des gemessenen und errechneten Erdstromes) als Messwerte an, siehe $\hookrightarrow 5.1.2$ Richtungserkennung. Es ist empfohlen, mittels dieser Werte die Stromrichtungen zu verifizieren.

Prüfen der Ansprechwerte (3 x einphasig und 1 x dreiphasig)

Speisen Sie jeweils einen Strom ein, der ca. 3-5% über dem Schwellwert für die Anregung/ Auslösung liegt. Kontrollieren Sie jeweils die Ansprechwerte.

Prüfen der Gesamtauslöseverzögerung (Empfehlung)

Messen Sie die Gesamtauslösezeiten an den Hilfskontakten des Leistungsschalters (Schalterfall).

Prüfen der Auslöseverzögerung (Messung am Relaisausgang)

Messen Sie die Auslösezeiten am Relaisausgang.

Prüfen des Rückfallverhältnisses

Verringern Sie jeweils den Strom auf unter 97% des Auslösewerts und kontrollieren Sie das Rückfallverhältnis.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

Rücksetzen der Funktion zwischen Tests

Je nach verwendetem Rücksetz-Modus kann es notwendig sein, einige Zeit zwischen den einzelnen Tests vergehen zu lassen, bis die Funktion wieder komplett zurückgesetzt ist. Alternativ kann die gesamte Funktion inklusive aller Zeitstufen unverzögert zurückgesetzt werden via [Betrieb / Reset] »Reset I-Schutz«. Dadurch entfallen die Wartezeiten zwischen den Tests.

Bitte beachten Sie: [Betrieb / Reset] »Reset I-Schutz« setzt alle überstrombasierten Funktionen auf einmal zurück.

5.10.8 Inbetriebnahme: Spannungsabhängiger Überstromzeitschutz

Gegenstand der Prüfung

Messen Sie für jede Stromschutzfunktion jeweils 3 x einphasig und 1 x dreiphasig

die Ansprechwerte, die Gesamtauslösezeit (Empfehlung) oder alternativ die Auslöseverzögerungen und die Rückfallverhältnisse.

HINWEIS!

Es wird empfohlen die Gesamtauslösezeit anstelle der Auslöseverzögerung zu messen. Die Auslöseverzögerung sollte durch den Kunden vorgegeben werden. Die Gesamtauslösezeit wird an den Stellungsmeldekontakten des Leistungsschalters gemessen (nicht am Relaisausgang!).

Gesamtauslösezeit= Auslöseverzögerung (siehe Toleranzen der Schutzstufen)+ Schaltereigenzeit (ca. 50 ms)

Entnehmen Sie die Schaltereigenzeiten den Technischen Daten der Dokumentation des Schaltgeräteherstellers.

Benötigte Geräte

- Stromquelle
- Spannungsquelle
- Ggf. Amperemeter
- Timer (Zeitgeber)

Durchführung

Prüfen der Ansprechwerte ($3 \times einphasig$ und $1 \times dreiphasig$)

Legen Sie eine Spannung an, die niedriger als »VRestraint max« ist. Speisen Sie jeweils einen Strom ein, der ca. 3-5% über dem Schwellwert für die Anregung/Auslösung liegt. Kontrollieren Sie jeweils die »%Anregewerte«.

Prüfen der Gesamtauslöseverzögerung (Empfehlung)

Messen Sie die Gesamtauslösezeiten an den Hilfskontakten des Leistungsschalters (Schalterfall).

Prüfen der Auslöseverzögerung (Messung am Relaisausgang)

Messen Sie die Auslösezeiten am Relaisausgang.

Prüfen des Rückfallverhältnisses

Verringern Sie jeweils den Strom auf unter 97% des Auslösewerts und kontrollieren Sie das Rückfallverhältnis.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

Rücksetzen der Funktion zwischen Tests

Je nach verwendetem Rücksetz-Modus kann es notwendig sein, einige Zeit zwischen den einzelnen Tests vergehen zu lassen, bis die Funktion wieder komplett zurückgesetzt ist. Alternativ kann die gesamte Funktion inklusive aller Zeitstufen unverzögert zurückgesetzt werden via [Betrieb / Reset] »Reset I-Schutz«. Dadurch entfallen die Wartezeiten zwischen den Tests.

Bitte beachten Sie: [Betrieb / Reset] »Reset I-Schutz« setzt alle überstrombasierten Funktionen auf einmal zurück.

5.10.9 Inbetriebnahme: Gegensystem-Überstromzeitschutz

Gegenstand der Prüfung

Messen Sie für jede Stromschutzfunktion jeweils $3 \times einphasig und 1 \times dreiphasig die Ansprechwerte, die Gesamtauslösezeit (Empfehlung) oder alternativ die Auslöseverzögerungen und die Rückfallverhältnisse.$

HINWEIS!

Es wird empfohlen die Gesamtauslösezeit anstelle der Auslöseverzögerung zu messen. Die Auslöseverzögerung sollte durch den Kunden vorgegeben werden. Die Gesamtauslösezeit wird an den Stellungsmeldekontakten des Leistungsschalters gemessen (nicht am Relaisausgang!).

Gesamtauslösezeit= Auslöseverzögerung (siehe Toleranzen der Schutzstufen)+ Schaltereigenzeit (ca. 50 ms)

Entnehmen Sie die Schaltereigenzeiten den Technischen Daten der Dokumentation des Schaltgeräteherstellers.

Benötigte Geräte

- Stromquelle
- ggf. Amperemeter
- Timer (Zeitgeber)

Durchführung

Prüfen der Ansprechwerte

Um einen Gegensystemstrom zu erhalten, muss die Phasenfolge an den Stromeingängen von ABC auf ACB geändert werden.

Speisen Sie jeweils einen Strom ein, der ca. 3-5% über dem Schwellwert für die Anregung/ Auslösung liegt. Kontrollieren Sie jeweils die Ansprechwerte.

Prüfen der Gesamtauslöseverzögerung (Empfehlung)

Messen Sie die Gesamtauslösezeiten an den Hilfskontakten des Leistungsschalters (Schalterfall).

Prüfen der Auslöseverzögerung (Messung am Relaisausgang)

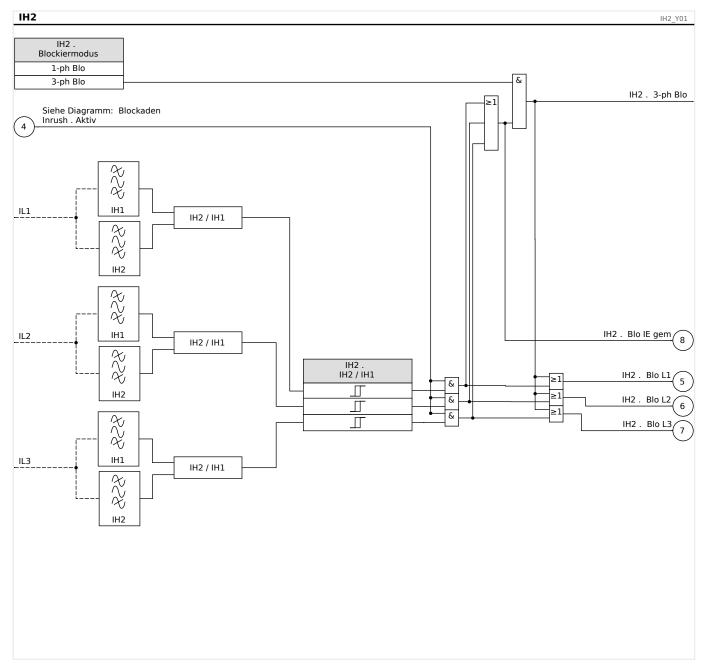
Messen Sie die Auslösezeiten am Relaisausgang.

Prüfen des Rückfallverhältnisses

Verringern Sie jeweils den Strom auf unter 97% des Auslösewerts und kontrollieren Sie das Rückfallverhältnis.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.


Rücksetzen der Funktion zwischen Tests

Je nach verwendetem Rücksetz-Modus kann es notwendig sein, einige Zeit zwischen den einzelnen Tests vergehen zu lassen, bis die Funktion wieder komplett zurückgesetzt ist. Alternativ kann die gesamte Funktion inklusive aller Zeitstufen unverzögert zurückgesetzt werden via [Betrieb / Reset] »Reset I-Schutz«. Dadurch entfallen die Wartezeiten zwischen den Tests.

Bitte beachten Sie: [Betrieb / Reset] »Reset I-Schutz« setzt alle überstrombasierten Funktionen auf einmal zurück.

5.11 IH2 - Inrush

Durch das Inrush-Modul können Fehlauslösungen vermieden werden, die durch Schaltvorgänge von gesättigten induktiven Lasten hervorgerufen werden. Betrachtet wird das Verhältnis der 2. Harmonischen zur Grundwelle.

HINWEIS!

Um fehlerhafte Auslösungen zu vermeiden, darf das Inrush-Modul nicht in Kombination mit unverzögertem Übertromschutz benutzt werden.

5.11.1 Inbetriebnahme: Inrush

Die Durchführung der Prüfung ist abhängig vom eingestellten Inrush-Blockade-Modus:

• [Schutzparameter / Satz x / I-Schutz / IH2] »Blockiermodus« = "1-ph Blo":

Für diesen Modus müssen Sie die Prüfung für jede Phase einzeln und abschließend für alle drei gemeinsam durchführen.

• [Schutzparameter / Satz x / I-Schutz / IH2] »Blockiermodus« = "3-ph Blo":

Für diesen Modus müssen Sie den Test dreiphasig durchführen.

Gegenstand der Prüfung:

Überprüfung der Inrush-Blockade.

Benötigte Geräte:

- dreiphasige Stromquelle mit einstellbarer Frequenz
- dreiphasige Stromquelle (für die Grundschwingung)

Durchführung (je nach parametriertem Blockademodus):

- Speisen Sie Strom mit Nennfrequenz sekundärseitig ein.
- Speisen Sie schlagartig Strom mit doppelter Nennfrequenz sekundärseitig ein. Die Amplitude muss dabei so groß sein, dass der Schwellwert »IH2 / IH1« überschritten wird.
- Vergewissern Sie sich, dass nun die jeweils zugehörige Inrush-Blockade-Meldung generiert wird: »IH2 . Blo L1«, »IH2 . Blo L2«, »IH2 . Blo L3« oder »IH2 . 3-ph Blo«

Erfolgreiches Testergebnis:

Die jeweils zu erwartende Inrush-Blockade-Meldung wird generiert und im Ereignisrekorder wird eine entsprechende Blockademeldung der Stromschutzstufe sichtbar.

5.12 IE - Erdüberstromschutz

Das Überstromschutz-Modul »IE« stellt die folgenden ANSI-Schutzfunktionen zur Verfügung:

- ANSI 50N/G
- ANSI 51N/G
- ANSI 67N/G

WARNUNG!

Bei Benutzung der Einschaltrushblockade muss eine minimale Auslöseverzögerung von 30 ms für die Stromschutzfunktionen eingehalten werden.

HINWEIS!

Alle Erdstromstufen sind gleich aufgebaut.

HINWEIS!

Für dieses Modul stehen Adaptive Parametersätze zur Verfügung.

Mittels adaptiven Parametersätzen können Parameter innerhalb eines Parametersatzes dynamisch umgeschaltet werden. Siehe $\hookrightarrow 2.3.2$ Adaptive Parametersätze.

ANSI 50N/G - Erdüberstromschutz, ungerichtet

Diese Applikation des »IE«-Schutzmoduls wird über das Menü [Projektierung / Projektierte Elemente] aktiviert:

• [Projektierung / Projektierte Elemente] »IE[x] . Modus« = "Ungerichtet"

Ist die Stromschutzstufe als "Ungerichtet" projektiert, dann wird keine Richtungsinformation zur Schutzentscheidung der betroffenen Schutzfunktion herangezogen.

Optionen:

- [Schutzparameter / Satz 1...4 / I-Schutz / IE[x]] »Messprinzip« =
 - Grundwelle
 - Effektivwert

ANSI 51N/G - Erdkurzschlussschutz, ungerichtet

Diese Applikation des »IE«-Schutzmoduls wird über das Menü [Projektierung / Projektierte Elemente] aktiviert:

• [Projektierung / Projektierte Elemente] »IE[x] . Modus« = "Ungerichtet"

Ist die Stromschutzstufe als "Ungerichtet" projektiert, dann wird keine Richtungsinformation zur Schutzentscheidung der betroffenen Schutzfunktion herangezogen.

Optionen:

- [Schutzparameter / Satz 1...4 / I-Schutz / IE[x]] »Messprinzip« =
 - Grundwelle
 - Effektivwert

ANSI 67N/G - Erdüberstrom-/Kurzschlussschutz gerichtet

Diese Applikation des »IE«-Schutzmoduls wird über das Menü [Projektierung / Projektierte Elemente] aktiviert:

- [Projektierung / Projektierte Elemente] »IE[x] . Modus« =
 - "Vorwärts"
 - "Rückwärts"
- [Feldparameter / Richtung] »3U0 Quelle« =
 - · "gemessen"
 - "berechnet"
- [Feldparameter / Richtung] »310 Quelle« =
 - "gemessen"
 - "berechnet"

Optionen:

- [Schutzparameter / Satz 1...4 / I-Schutz / IE[x]] »Messprinzip« =
 - "Grundwelle"
 - "Effektivwert"
- [Schutzparameter / Satz 1...4 / I-Schutz / IE[x]] »IE Quelle« =
 - "gemessen"
 - "berechnet"
- [Schutzparameter / Satz 1...4 / I-Schutz / IE[x]] »UX Quelle« =
 - "gemessen"
 - "berechnet"

Richtungsbestimmung

Details zur Implementierung der Richtungserkennung findet man hier: $\hookrightarrow 5.1.2$ Richtungserkennung, und eine Beschreibung der Richtungserkennungsmethoden ist hier: $\hookrightarrow 5.1.2.2$ Erdfehler-Richtung.

Im Menü [Feldparameter / Richtung] wird über die Einstellungen »310 Quelle« und »3U0 Quelle« festgelegt, ob die Erdschlussrichtungsbestimmung aus den gemessenen oder berechneten Werten für Strom und Spannung erfolgen soll. Diese Einstellung wirkt auf alle Erdstromstufen.

WARNUNG!

Die Berechnung der Verlagerungspannung ist nur dann möglich, wenn Strangspannungen an den Spannungsmesseingängen anliegen.

Bei der Einstellung Messung müssen die zu messenden Größen, wie Verlagerungsspannung und Summenstrom jeweils am vierten Messeingang anliegen.

Alle Erdstromschutzstufen können beliebig (unabhängig voneinander) als gerichtet oder ungerichtet projektiert werden.

Für jede einzelne einzusetzende Erdstromschutz-Stufe »IE[n]« muss eingestellt werden, welche der unter ⇔5.1.2.2 Erdfehler-Richtung beschriebenen Methoden zur Richtungserkennung verwendet werden soll:

- [Schutzparameter / Satz 1...4 / I-Schutz / IE[n]] »IE Quelle« = "StW . berechnet":
 - Der Schwellwert für den Erdstromschutz und die Richtungserkennung basieren auf IE err, und die Polarisationsgröße ist durch den Wert von »IE err Richtungsoptionen« festgelegt.
- [Schutzparameter / Satz 1...4 / I-Schutz / IE[n]] »IE Quelle« = "StW . gemessen":
 - Der Schwellwert für den Erdstromschutz und die Richtungserkennung basieren auf IE gem, und die Polarisationsgröße ist durch den Wert von *»IE gem Richtungsoptionen«* festgelegt.
- [Schutzparameter / Satz 1...4 / I-Schutz / IE[n]] »IE Quelle« = "StW . empfindliche Messung":

Der Schwellwert für den Erdstromschutz und die Richtungserkennung basieren auf IE gem, wobei der empfindliche Erdstromeingang zugrunde gelegt wird . (Siehe
→3.5.2 Tls – Strommesseingänge und Empfindlicher Erdstrommesseingang.) Die Polarisationsgröße ist durch den Wert von »IE gem Richtungsoptionen« festgelegt.

Messprinzip

Für alle Schutzstufen kann ausgewählt werden, ob die Messwerterfassung auf Basis der "Grundwelle" erfolgt, oder der "Effektivwert" verwendet wird.

IE-Quelle/UE-Quelle

Die Parameter »IE Quelle« und »UX Quelle« legen fest, ob der Erdstrom bzw. die Verlagerungsspannung "gemessen" oder "berechnet" wird.

5.12.1 Kennlinien (Erdstrom)

Für jede Stufe kann über den Parameter [Schutzparameter / Satz 1...4 / I-Schutz / IE[x]] »Kennl« eine der folgenden Kennlinien gewählt werden:

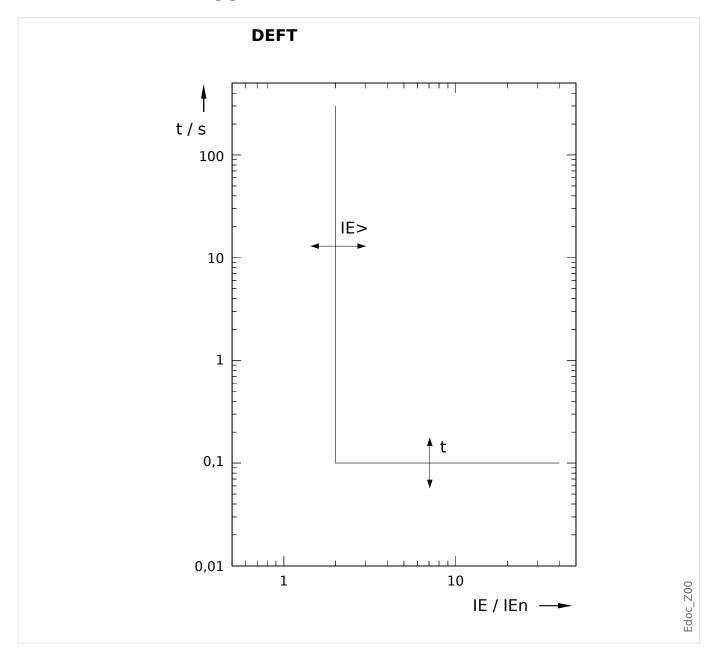
- DEFT Definite Time-Overcurrent / Unabhängiger Überstromzeitschutz
- Abhängiger Überstromzeitschutz, Kennlinien nach IEC 60255-151:
 - NINV IEC Normal Inverse (IEC 60255-151)
 - VINV IEC Very Inverse (IEC 60255-151)
 - LINV IEC Long Time Inverse (IEC 60255-151)
 - EINV IEC Extremely Inverse (IEC 60255-151)
- Abhängiger Überstromzeitschutz, Kennlinien nach ANSI / IEEE C37.112:
 - MINV ANSI Moderately Inverse (IEEE C37.112)
 - VINV ANSI Very Inverse (IEEE C37.112)
 - EINV ANSI Extremely Inverse (IEEE C37.112)
- RINV R Inverse
- RXIDG
- Thermische Kennlinien:
 - Therm Flat Thermal Flat
 - o IT
 - I2T
 - I4T

Legende für alle folgenden Diagramme

· IE: Fehlerstrom

Die folgenden Einstellungen befinden sich unter [Schutzparameter / Satz 1...4 / I-Schutz / IE[x]] und definieren das Verhalten der Schutzfuntion:

- »IE>«: Anregeschwelle für das Erdüberstrom-Schutzmodul. Beim Überschreiten des Einstellwertes regt das Modul an.
- »t« für »Kennl« = "DEFT": Die Auslöseverzögerung der Schutzstufe.
- »tChar« (für alle Kennlinien außer "DEFT"): Die Auslöseverzögerung ergibt sich in Abhängigkeit von »tChar«, der gewählten Charakteristik und der Höhe des Fehlerstromes als Vielfaches von »IE>«.
- Die Rückfallverzögerung ist mittels »Rücksetz Modus« einstellbar auf:
 - »Rücksetz Modus« = "unverzögert": Unverzögerter Reset: Wenn der Strom unter den Anregewert zurückfällt, wird der Timer innerhalb von 2 Perioden zurückgesetzt.


- »Rücksetz Modus« = "unabhängig": Die Rückfallverzögerung ist einstellbar mittels »tReset«.
- »Rücksetz Modus« = "abhängig (aus Kennl.)": Die Rückfallverzögerung wird aus der jeweils gewählten Kennlinie errechnet (für alle Kennlinien außer "DEFT" und "RXIDG").

Für alle Kennlinien, außer DEFT und den Thermischen Kennlinien, gibt es zwei minimale Auslöseverzögerungen, und unabhängig von der gewählten Kennlinie, wird die effektive Auslöseverzögerung niemals unterhalb von diesen beiden liegen.

- »tMinimum« ist die vom Anwender einstellbare, minimale Auslöseverzögerung. Diese Zeitstufe wird unabhängig von der inversen Strom-Zeit-Charakteristik gestartet und muss abgelaufen sein, bevor es zur Auslösung der Schutzstufe kommen kann. Die Funktion wird deaktiviert, in dem diese auf 0 Sekunden eingestellt wird.
- Unabhängig davon gibt es eine weitere minimale Auslöseverzögerung t_{min} , die abhängig von einem $I_{E,max}$ ist. Die Auslöseverzögerung ist hierbei niemals kleiner als t_{min} , unabhängig von den Stromwerten für IE. $I_{E,max}$ ist dabei definiert als der kleinste Wert der folgenden Größen:
 - ∘ 20·/_{F>},
 - 40·IEn, im Falle von errechnetem Erdstrom IE err,
 - 25·IEn, im Falle von gemessenem Erdstrom IE gem,
 - 2.5·IEn, im Falle von empfindlichem Erdstrom.
- t_{min} ist die Auslöseverzögerung, die sich rechnerisch aus der jeweiligen Kennlinie für $I_{F,max}$ ergibt.
 - Ausnahme: Für »Kennl« = "RXIDG" ist t_{min} unabhängig von $I_{E,max}$, sondern festgesetzt auf den Wert t_{min} = 0,02 s

Zu den Thermischen Kennlinien gibt es weitere Erläuterungen in \hookrightarrow 5.12.1.2.5 Thermische Kennlinien (Erdstrom).

5.12.1.1 DEFT - Unabhängiger Überstromzeitschutz

Die Auslöseverzögerung für IE > $I_{E>}$ ist einstellbar über [Schutzparameter / Satz 1...4 / I-Schutz / IE[x]] »t«.

Die Rückfallverzögerung für IE $< I_{E>}$ ist grundsätzlich immer gleich 0 ("unverzögert").

5.12.1.2 AMZ-Kennlinien (Erdstrom)

Siehe \hookrightarrow "Legende für alle folgenden Diagramme" für weitere Informationen.

Kennlinie »Kennl«	Auslöseverzögerung		Rückfallverzögerung (nur für »Rücksetz Modus« = "abhängig (aus Kennl.)")		
	$t = \left(\frac{k}{\left(\frac{\text{IE}}{\text{IE}}\right)^{\alpha} - 1} + c\right) \cdot \text{tChar}$		$t = \frac{\tau}{1 - \left(\frac{\text{IE}}{\text{IE}}\right)^{\alpha}} \cdot \text{tChar}$		
	k	c	α	τ	α
	[s]	[s]		[s]	
IEC NINV	0,14	0	0,02	0,14	2
IEC VINV	13,5	0	1	13,5	2
IEC EINV	80	0	2	80	2
IEC LINV	120	0	1	120	2
IEEE MINV	0,0515	0,1140	0,02	4,85	2
IEEE VINV	19,61	0,491	2	21,6	2
IEEE EINV	28,2	0,1217	2	29,1	2

Kennlinie	Auslöseverzögerung		Rückfallverzögerung		
»Kennl«			(nur für <i>»Rück</i> = "abhängig (
	$t = \frac{k}{b \cdot \frac{c}{\left(\frac{\text{IE}}{\text{IE}}\right)}} \cdot \text{tChar}$		$t = \frac{\tau}{1 - \left(\frac{\text{IE}}{\text{IE}}\right)^{\alpha}} \cdot \text{tChar}$		
	k	b	С	τ	α
	[s]			[s]	
RINV	1,0	0,339	0,236	1,0	2

Kennlinie »Kennl«	Auslöseverzögerung		Rückfallverzögerung (nur für »Rücksetz Modus« = "abhängig (aus Kennl.)")		
	$t = \frac{c \cdot tChar \cdot K^{M}}{\left(\frac{IE}{IEn}\right)^{M}}$		$t = c \cdot \text{tChar} \cdot K^2$		
	K	М	c	K	С
			[s]		[s]
Therm Flat	1	0	5	1	5
IT	1	1	5	1	5
I2T	1	2	5	1	5
14T	1	4	5	1	5

Siehe auch $\hookrightarrow 5.12.1.2.5$ Thermische Kennlinien (Erdstrom) für weitere Informationen speziell zu den "Thermischen Kennlinien".

Kennlinie	Auslöseverzögerung		
»Kennl«	$t = m - k \cdot \ln \left(\frac{IE}{IE > \cdot tChar} \right)$		
	k	m	
	[s]	[s]	
RXIDG	1,35	5,8	

5.12.1.2.1 Kennlinien nach IEC 60255-151 (Erdstrom)

5.12.1.2.1.1 IEC Normal Inverse [NINV] (IEC 60255-151)

*IE[x] . Kennl« = IEC NINV

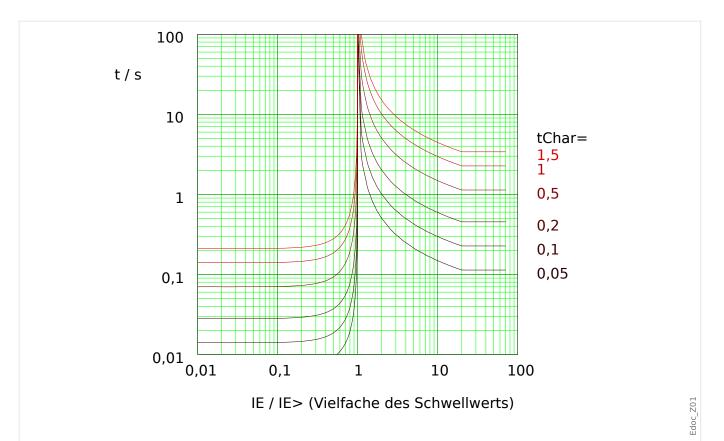


Abb. 102: NINV: Rückfallverzögerung (linke Hälfte, $IE < I_{E>}$) und Auslöseverzögerung (rechte Hälfte, $IE > I_{E>}$), Beispieldiagramm für $I_{max} = 20 \cdot I_{E>}$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.12.1.2 AMZ-Kennlinien (Erdstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{E>} < IE < I_{E,max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.12.1.2.1.2 IEC Very Inverse [VINV] (IEC 60255-151)

$$*IE[x]$$
. Kennl« = IEC VINV

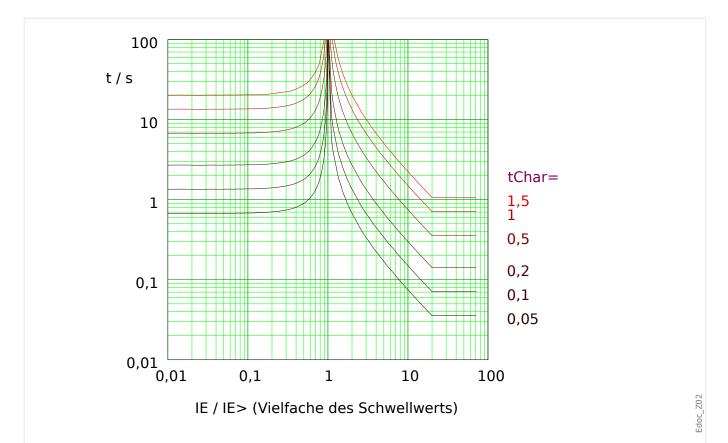


Abb. 103: VINV: Rückfallverzögerung (linke Hälfte, $IE < I_{E>}$) und Auslöseverzögerung (rechte Hälfte, $IE > I_{E>}$), Beispieldiagramm für $I_{max} = 20 \cdot I_{E>}$.

Für Details siehe auch ⇔"Legende für alle folgenden Diagramme" und ⇔5.12.1.2 AMZ-Kennlinien (Erdstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{E>} < IE < I_{E,max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.12.1.2.1.3 IEC Extremely Inverse - Kennlinie [INV] (IEC 60255-151)

*IE[x]. Kennl« = IEC EINV

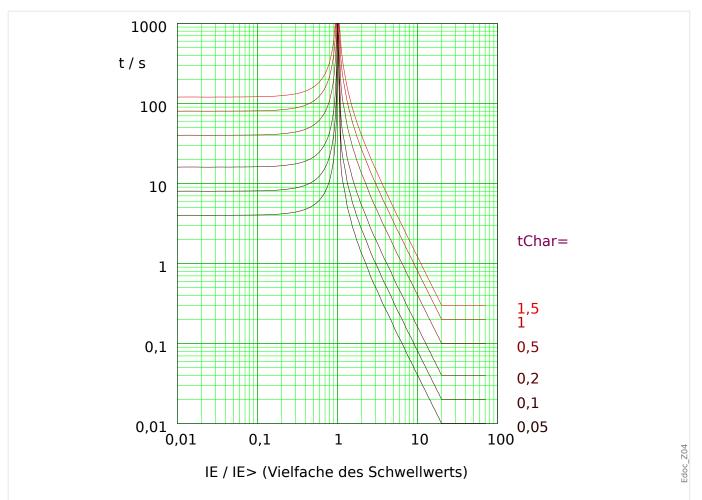


Abb. 104: EINV: Rückfallverzögerung (linke Hälfte, IE < $I_{E>}$) und Auslöseverzögerung (rechte Hälfte, IE > $I_{E>}$), Beispieldiagramm für $I_{max} = 20 \cdot I_{E>}$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.12.1.2 AMZ-Kennlinien (Erdstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{E>} < IE < I_{E,max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.12.1.2.1.4 IEC Long Time Inverse - Kennlinie [LINV] (IEC 60255-151)

$$*IE[x]$$
. Kennl« = IEC LINV

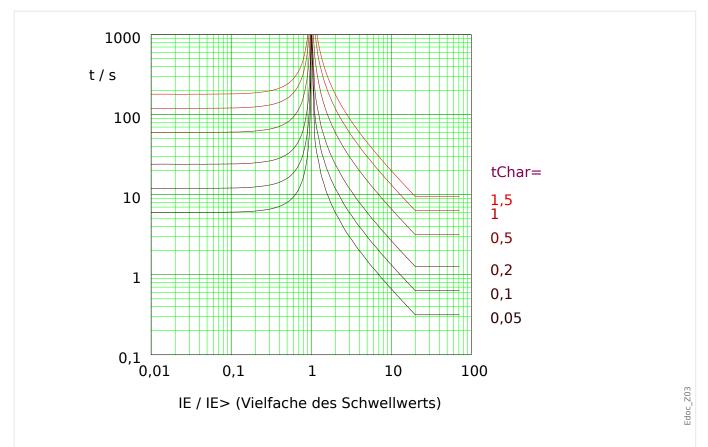


Abb. 105: LINV: Rückfallverzögerung (linke Hälfte, IE < $I_{E>}$) und Auslöseverzögerung (rechte Hälfte, IE > $I_{E>}$), Beispieldiagramm für $I_{max}=20\cdot I_{E>}$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.12.1.2 AMZ-Kennlinien (Erdstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{E>} < IE < I_{E,max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.12.1.2.2 R Inverse [RINV] - Kennlinie

»IE[x] . Kennl« = RINV

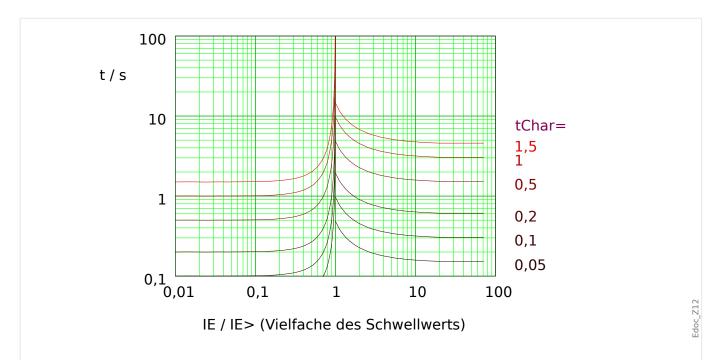


Abb. 106: RINV: Rückfallverzögerung (linke Hälfte, $IE < I_{E>}$) und Auslöseverzögerung (rechte Hälfte, $IE > I_{E>}$), Beispieldiagramm für $I_{max} = 20 \cdot I_{E>}$.

Für Details siehe auch ⇔"Legende für alle folgenden Diagramme" und ⇔5.12.1.2 AMZ-Kennlinien (Erdstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{E>} < IE < I_{E,max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.12.1.2.3 Kennlinien nach IEEE C37.112 (Erdstrom)

5.12.1.2.3.1 Moderately Inverse [MINV] - Kennlinie (IEEE C37.112)

$$*IE[x]$$
 . Kennl« = "ANSI MINV"

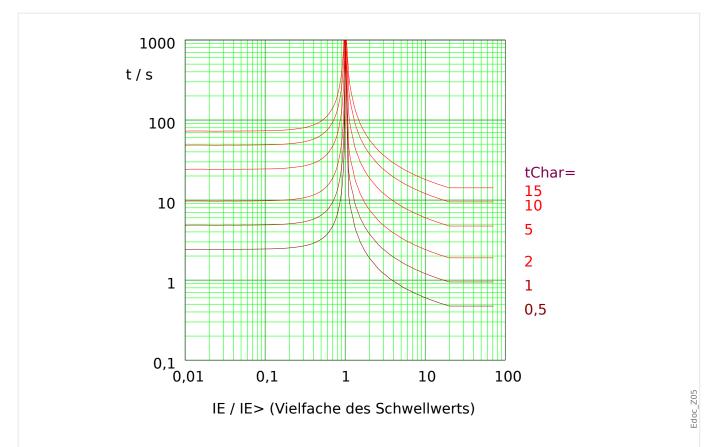


Abb. 107: MINV: Rückfallverzögerung (linke Hälfte, IE < $I_{E>}$) und Auslöseverzögerung (rechte Hälfte, IE > $I_{E>}$), Beispieldiagramm für $I_{max} = 20 \cdot I_{E>}$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.12.1.2 AMZ-Kennlinien (Erdstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{E>} < IE < I_{E,max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.12.1.2.3.2 Very Inverse [VINV] (IEEE C37.112)

*IE[x] . Kennl« = "ANSI VINV"

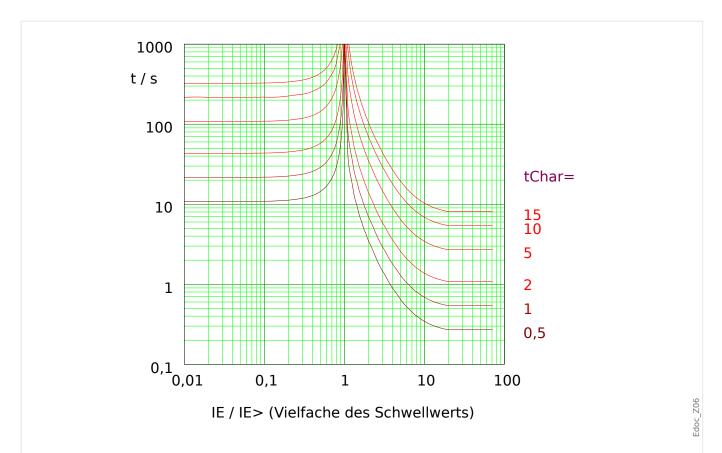


Abb. 108: VINV: Rückfallverzögerung (linke Hälfte, IE < $I_{E>}$) und Auslöseverzögerung (rechte Hälfte, IE > $I_{E>}$), Beispieldiagramm für $I_{max}=20\cdot I_{E>}$.

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.12.1.2 AMZ-Kennlinien (Erdstrom).

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{E>} < IE < I_{E,max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.12.1.2.3.3 Extremely Inverse - Kennlinie [INV] (IEEE C37.112)

$$*IE[x]$$
 . Kennl« = "ANSI EINV"

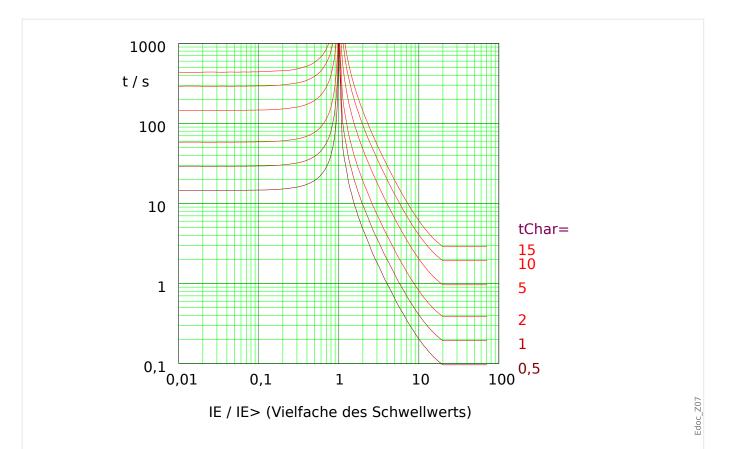
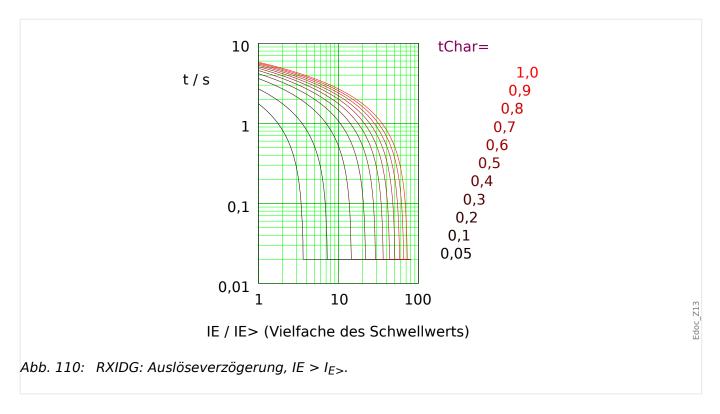


Abb. 109: EINV: Rückfallverzögerung (linke Hälfte, $IE < I_{E>}$) und Auslöseverzögerung (rechte Hälfte, $IE > I_{E>}$), Beispieldiagramm für $I_{max} = 20 \cdot I_{E>}$.

Für Details siehe auch ⇔"Legende für alle folgenden Diagramme" und ⇔5.12.1.2 AMZ-Kennlinien (Erdstrom).

Rückfallverzögerung


Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

Für $I_{E>} < IE < I_{E,max}$ ergibt sich die Auslöseverzögerung gemäß Kennlinie.

5.12.1.2.4 RXIDG

*IE[x] . Kennl« = RXIDG

Für Details siehe auch \hookrightarrow "Legende für alle folgenden Diagramme" und \hookrightarrow 5.12.1.2 AMZ-Kennlinien (Erdstrom).

Rückfallverzögerung

Es kann zwischen den Rücksetzmodi "unverzögert" oder "unabhängig" gewählt werden. Eine dynamische, d. h. kennlinienabhängige Rückfallverzögerung ist für diese Kennlinie nicht verfügbar.

Auslöseverzögerung

Für $I_{E>} < IE$ ergibt sich die Auslöseverzögerung aus der folgenden Gleichung, allerdings nur unter der Bedingung, dass für diese Zeit gilt: $t > t_{min}$ mit $t_{min} = 0.02$ s.

Die Auslöseverzögerung t beträgt somit immer mindestens $t_{min} = 0.02$ s.

5.12.1.2.5 Thermische Kennlinien (Erdstrom)

Auslöseverzögerung

Für die Auslöseverzögerungen der "Thermischen" Kennlinien Therm Flat, IT, I2T, and I4T gilt die folgende Berechnungsformel:

$$t = \frac{5 \cdot t C har \cdot K^{M}}{\left(\frac{IE}{IEn}\right)^{M}}$$

Auslöseverzögerung [in Sekunden]. t

tChar Einstellung für den Zeitfaktor [in Sekunden].

Κ = 3 für die Phasenströme,

= 1 für den Erdstrom.

Kennliniensteigung: = 0 für Therm Flat, Μ

> = 1 für IT,= 2 für I2T. = 4 für I4T.

Nennstrom, entweder 1 A oder 5 A, je nach Einstellung [Feldparameter / **IEn**

StW] »EStW sek«.

ΙE Gemessener Strom.

> Bei errechnetem Erdstrom beginnt der dynamische Bereich für Auslöseverzögerungen oberhalb der eingestellten Anregeschwelle und

endet bei 40·IEn, und der kleinste einstellbare Wert für die

Anregeschwelle ist 0,02:IEn.

Bei gemessenem Erdstrom beginnt der dynamische Bereich für Auslöseverzögerungen oberhalb der eingestellten Anregeschwelle und

endet bei 25·IEn, und der kleinste einstellbare Wert für die

Anregeschwelle ist 0.02:IEn.

Bei empfindlichem gemessenem Erdstrom beginnt der dynamische Bereich für Auslöseverzögerungen oberhalb der eingestellten

Anregeschwelle und endet bei 2,5·IEn, und der kleinste einstellbare Wert

für die Anregeschwelle ist 0,002 IEn.

Rückfallverzögerungen

Die Rückfallverzögerungen sind von den gemessenen Stromwerten unabhängig, abgesehen davon, dass der Strom unterhalb der Anregeschwelle sein muss. Es gilt die folgende Berechnungsformel:

 $t = 5 \cdot tChar \cdot K^2 = 5 \cdot tChar$

t Rückfallverzögerung [in Sekunden].

tChar Einstellung für den Zeitfaktor [gleicher Wert wie für die

Auslöseverzögerungen].

Κ [identisch zu dem K-Wert für die Auslöseverzögerungen oben].

5.12.1.2.5.1 Therm Flat [TF] - Kennlinie

*IE[x] . Kennl« = Therm Flat

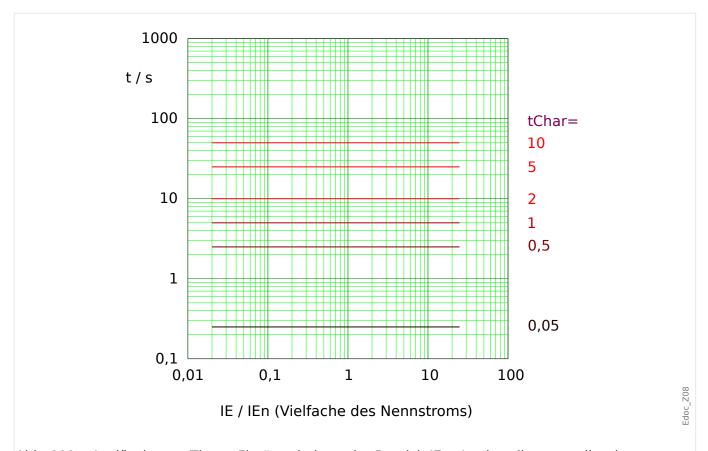
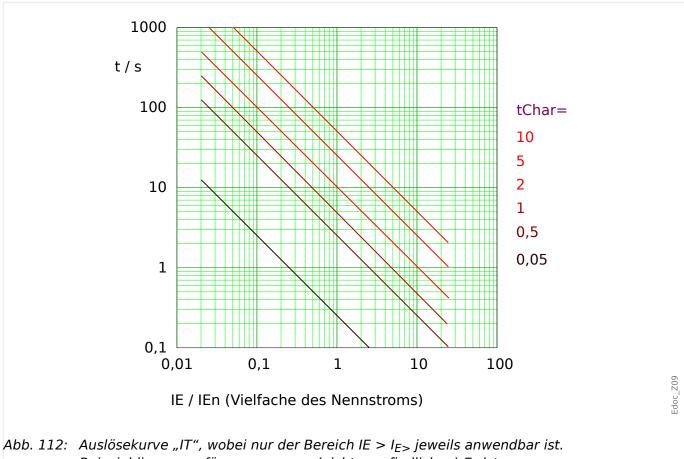


Abb. 111: Auslösekurve "Therm Flat", wobei nur der Bereich IE > $I_{E>}$ jeweils anwendbar ist. Beispieldiagramm für gemessenen (nicht empfindlichen) Erdstrom.


Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

5.12.1.2.5.2 IT - Kennlinie

$$*IE[x]$$
. Kennl« = IT

Beispieldiagramm für gemessenen (nicht empfindlichen) Erdstrom.

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

5.12.1.2.5.3 I2T - Kennlinie

»IE[x] . Kennl« = I2T

Beispieldiagramm für gemessenen (nicht empfindlichen) Erdstrom.

Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.

Auslöseverzögerung

5.12.1.2.5.4 I4T - Kennlinie

$$*IE[x]$$
 . Kennl« = I4T

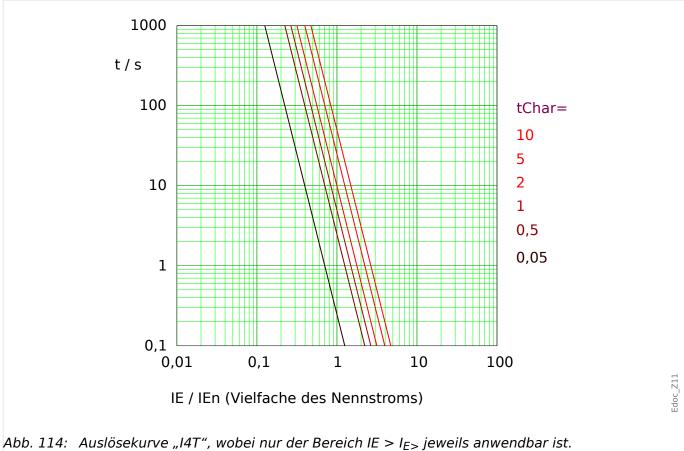
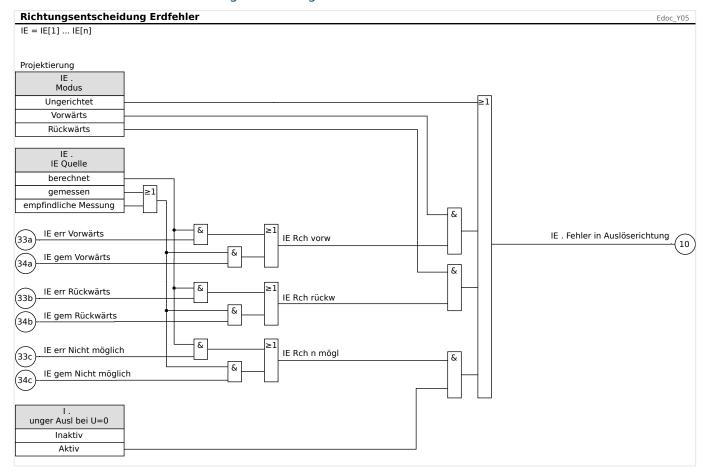
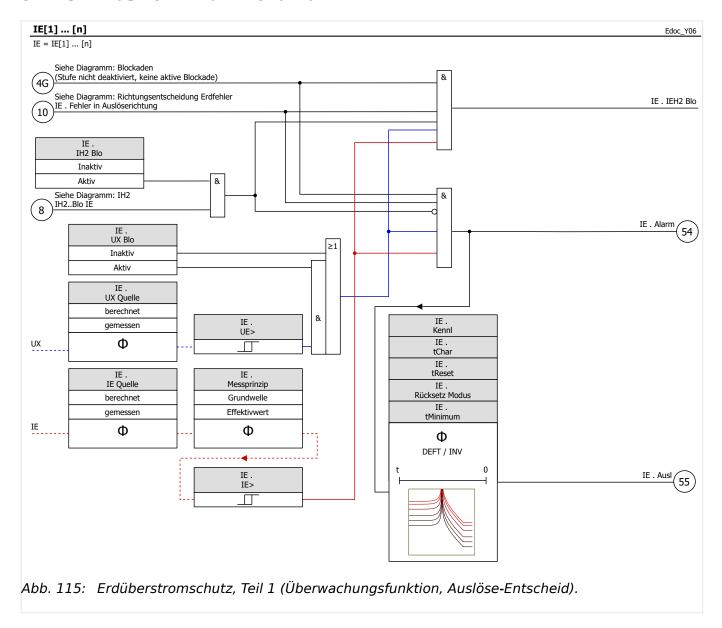
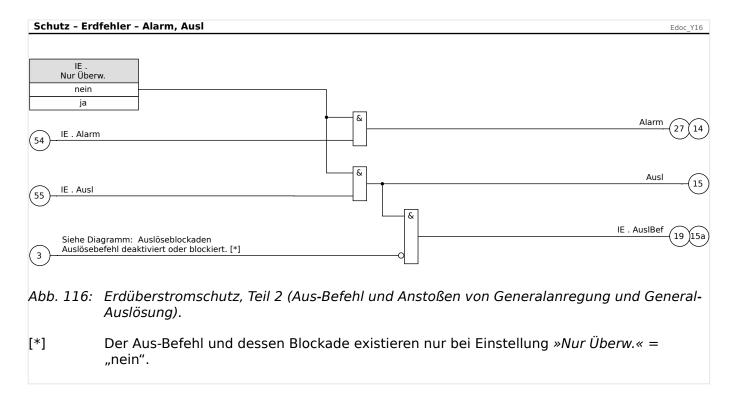


Abb. 114: Auslösekurve "I4T", wobei nur der Bereich IE > I_{E>} jeweils anwendbar ist. Beispieldiagramm für gemessenen (nicht empfindlichen) Erdstrom.


Rückfallverzögerung

Es kann zwischen verschiedenen Rücksetzmodi gewählt werden: Nach Kennlinie, verzögert oder unverzögert.


Auslöseverzögerung


5.12.2 Richtungserkennung

Die **Richtungserkennung** basiert auf dem Modul »Schutz«. Für weitere Informationen siehe ⇔5.1.2 Richtungserkennung.

5.12.3 Erdstrom - Funktionalität

5.12.4 Inbetriebnahme: Erdstrom ungerichtet [50N/G, 51N/G]

Führen Sie die Inbetriebnahme analog zum ungerichteten Phasen-Überstromzeitschutz durch, siehe ⇔5.10.6 Inbetriebnahme: Überstromzeitschutz ungerichtet [50, 51].

Rücksetzen der Funktion zwischen Tests

Je nach verwendetem Rücksetz-Modus kann es notwendig sein, einige Zeit zwischen den einzelnen Tests vergehen zu lassen, bis die Funktion wieder komplett zurückgesetzt ist. Alternativ kann die gesamte Funktion inklusive aller Zeitstufen unverzögert zurückgesetzt werden via [Betrieb / Reset] »Reset I-Schutz«. Dadurch entfallen die Wartezeiten zwischen den Tests.

Bitte beachten Sie: [Betrieb / Reset] »Reset I-Schutz« setzt alle überstrombasierten Funktionen auf einmal zurück.

5.12.5 Inbetriebnahme: Erdstrom gerichtet [50N/G, 51N/G, 67N/G]

Führen Sie die Inbetriebnahme analog zum gerichteten Phasen-Überstromzeitschutz durch, siehe $\hookrightarrow 5.10.7$ Inbetriebnahme: Überstromzeitschutz gerichtet [67].

Rücksetzen der Funktion zwischen Tests

Je nach verwendetem Rücksetz-Modus kann es notwendig sein, einige Zeit zwischen den einzelnen Tests vergehen zu lassen, bis die Funktion wieder komplett zurückgesetzt ist. Alternativ kann die gesamte Funktion inklusive aller Zeitstufen unverzögert zurückgesetzt werden via [Betrieb / Reset] »Reset I-Schutz«. Dadurch entfallen die Wartezeiten zwischen den Tests.

Bitte beachten Sie: [Betrieb / Reset] » Reset I-Schutz« setzt alle überstrombasierten Funktionen auf einmal zurück.

5.13 I2> und %I2/I1> - Schieflast [46]

Die »I2>«-Stufen sind in ihrem logischen Verhalten ähnlich aufgebaut wie die Spannungsasymmetrie-Stufen »U012«. Mittels symmetrischer Komponentenzerlegung werden aus den drei Phasenströmen die Mit- und Gegenströme errechnet. Damit das Schutzmodul sicher (d. h. ohne Gefahr einer Fehlauslösung) anregt, muss sowohl der Schwellwert (Freigabewert, entweder »I2>« oder »I2/FLA«) als auch der Anregewert (wenn parametriert) »%(I2/I1)« überschritten werden. Der Anregewert ist das Verhältnis vom Strom des Gegensystems zum Strom des Mitsystems. (Natürlich berücksichtigt die Ermittlung von Mit- und Gegensystemstrom automatisch die unter [Feldparameter] »Drehfeldrichtung« eingestellte Phasenfolge.)

(Hinweis: "FLA" = Ib: Full Load Amperes = Nennstrom des Schutzobjekts.)

Alle Schutzstufen sind gleich aufgebaut.

Das Modul prüft die Bedingung, ob der Schieflaststrom I2 oberhalb des eingestellten Wertes »I2>« (bzw. »I2/FLA«) **und** – wenn parametriert – das Verhältnis von Gegensystemstrom zu Mitsystemstrom oberhalb des eingestellten Wertes »%(I2/I1)« liegen. Ist diese Bedingung für die Dauer der Auslöseverzögerung erfüllt, löst das Schutzmodul aus.

Die Einstellung »Basisstrom« entscheidet darüber, welcher Schwellwert eingesetzt wird:

- Falls »Basisstrom« = "Gerätenennstrom": Der dauerhaft zulässige Schieflaststrom ist »12>« und wird in Einheiten des Nennstromes In angegeben.
- Falls »Basisstrom« = "Nennstrom der Maschine": Der dauerhaft zulässige Schieflaststrom ist »I2/FLA« und wird in Einheiten des Nennstromes des zu schützenden Objekts Ib angegeben.

Für die Auslöseverzögerung stehen zwei Auslösecharakteristiken zur Verfügung:

- If »Kennl« = "DEFT": Die Auslöseverzögerung ist ein über den Parameter »t« festzulegender Einstellwert.
- If »Kennl« = "INV": Die Verzögerungszeit wird vom MCDLV4 berechnet.

Das Grundprinzip der unabhängigen Auslösecharakteristik (DEFT) ist wie folgt:

• Es erfolgt eine Auslösung, wenn für die (über den Satzparameter »t« fest eingestellte) Zeitdauer der Schieflaststrom I2 oberhalb des eingestellten Grenzwertes »I2>« (und - wenn parametriert - das Stromverhältnis I2/I1 oberhalb des Einstellwertes »%(I2/I1)«) liegt.

Das Grundprinzip der abhängigen Auslösecharakteristik (INV) ist wie folgt:

- Das Schutzgerät berechnet fortlaufend und unabhängig von Anregungen / Auslöse-Entscheiden die aktuelle Wärmeenergie θ des zu schützenden Objektes. Es erfolgt eine Auslösung, wenn während einer Zeitdauer t_{Ausl} , die abhängig von θ ist, alle folgenden Bedingungen erfüllt sind:
- Der Gegensystemstrom 12 liegt oberhalb des eingestellten Grenzwertes »12>« (bzw. »12/FLA«) und

- das Stromverhältnis I2/I1 liegt oberhalb des Einstellwertes »%(I2/I1)« (falls parametriert) **und**
- die berechnete Wärmeenergie θ erreicht einen Maximalwert θ_{max} , dessen Größe auf der eingestellten thermischen Belastbarkeit »K« basiert.

Für $\theta=0$ und mit der Einstellung »Basisstrom« = "Gerätenennstrom" ist die Auslöseverzögerung t_{Ausl} :

$$t_{\text{Ausl}} = \frac{K}{\left(\frac{\text{I2}}{\text{In}}\right)^2 - \left(\frac{\text{I2}>}{\text{In}}\right)^2}$$

Für $\theta = 0$ und mit der Einstellung »Basisstrom« = "Nennstrom der Maschine" ist die Auslöseverzögerung t_{Ausl} :

$$t_{\text{Ausl}} = \frac{K}{\left(\frac{\text{I2}}{\text{Ib}}\right)^2 - \left(\frac{\text{I2/FLA}}{\text{Ib}}\right)^2}$$

Hierbei ist:

t _{Ausl}	= Auslöseverzögerung in Sekunden.
K	= thermische Belastbarkeit (in Sekunden) des Schutzobjekts bei 100% Schieflaststrom. Dies ist eine Geräteeigenschaft des Schutzobjekts und muss über den Einstellparameter » K « eingestellt werden).
In	= Nennstrom
Ib	= Nennstrom des zu schützenden Objekts - »Basisstrom« = "Nennstrom der Maschine"
12	= Gegensystemstrom (berechnet aus den Strommesswerten)
12> = I _{2>}	= Schwellwert (Einstellwert) $>12>$ «, falls $>Basisstrom$ « = "Gerätenennstrom" (Man beachte, dass dieser Schwellwert in Einheiten von I_n angegeben wird.)
I2/FLA	= Schwellwert (Einstellwert) »I2/FLA«, falls »Basisstrom« = "Nennstrom der Maschine"
	(Man beachte, dass dieser Schwellwert in Einheiten von I_b angegeben wird.)

Im Falle einer Restwärme $\theta > 0$ verkürzt sich die Auslöseverzögerung t_{Ausl} entsprechend, d. h. es kommt zu einer beschleunigten Auslösung.

Solange der Gegensystemstrom I2 **größer** ist als der Einstellwert >I2>«, wird angenommen, dass sich das zu schützende Objekte *erwärmt*. Die Wärmeenergie wird während dieser Zeit berechnet über eine Integration von I_2 :

$$\Theta(t) = \Theta_{0,abk} + f \cdot \left[\begin{array}{ccc} I & I & 2 \end{array} \right] dt$$

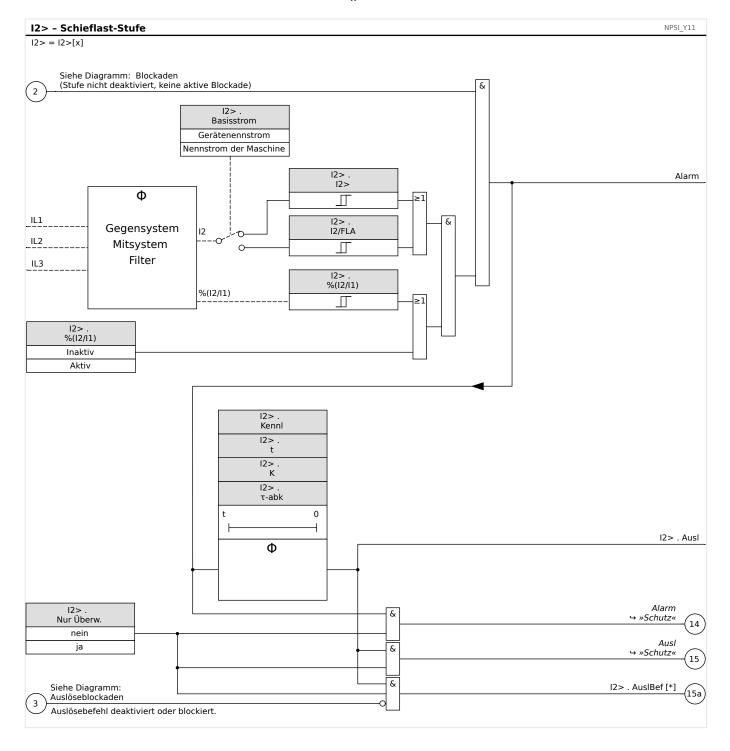
θ(t)	= aktuelle Wärmeenergie,
$ heta_{0,\mathrm{abk}}$	 Anfangswert, d. h. Wärmeenergie am Ende des letzten Abkühlungsprozesses(bzw 0, falls der letzte Abkühlungsprozess beendet wurde, siehe unten, oder noch kein Abkühlungsprozess stattfand).
f	= Skalierungsfaktor.

Solange der Gegensystemstrom *I2* **kleiner** ist als der Einstellwert *»I2>«* (bzw. *»I2/FLA«*), wird angenommen, dass sich das zu schützende Objekte *abkühlt*.

Die Wärmeenergie wird während dieser Zeit berechnet über eine Abkühlkonstante, die eine Geräte-Eigenschaft des Schutzobjekts darstellt und daher als Einstellwert parametriert werden muss (Satz-Parameter $\nu\tau$ -abk«):

$$\theta(t) = \theta_{0,erw} \cdot e^{-\frac{t}{\tau_{abk}}}$$

$\theta(t)$	= aktuelle Wärmeenergie,
$\theta_{0, erw}$	= Anfangswert, d. h. Wärmeenergie am Ende des letzten Erwärmungsphase,
$ au_{abk}$	= Geräte-Eigenschaft, Einstellwert » τ -abk«.


• Die Abkühlungsphase wird grundsätzlich fortgesetzt, solange I2 unterhalb des Schwellwertes ist, d. h. $\theta(t)$ wird intern weiterhin berechnet. (Erst wenn $\theta(t)$ auf einen Wert unterhalb $0.01 \cdot \theta_{\text{max}}$ abgefallen ist, wird die Berechnung beendet und θ auf null gesetzt, d. h. jede danach erfolgende Erwärmungsphase beginnt mit dem Anfangswert $\theta_{0,\text{abk}} = 0.$)

HINWEIS!

Die Wärmeenergie ist eine Hilfsgröße, die geräteintern berechnet wird und weder am Display angezeigt noch über ein Kommunikationsprotokoll abgefragt werden kann.

Funktionalität des Schutzmoduls "Schieflast"

5.13.1 Inbetriebnahme: Schieflastschutz

Gegenstand der Prüfung

Überprüfen der Schieflastschutzfunktion

Benötigte Geräte

- Dreiphasige Stromquelle
- Timer

Durchführung

Kontrolle der Drehfeldrichtung

- Stellen Sie sicher, dass die in den Feldparametern eingestellte Drehfeldrichtung mit der anliegenden Drehfeldrichtung übereinstimmt.
- Speisen Sie dreiphasig Nennstrom ein.
- Wechseln Sie in das Menü Messwerte.
- Kontrollieren Sie den Messwert für den Schieflaststrom »I2«. Der angezeigte Messwert für »I2« muss Null (im Rahmen der physikalischen Messgenauigkeit) sein.

HINWEIS!

Falls der angezeigte Betrag für I2 so groß ist, als würde das Relais mit Nennstrom gespeist, so wird fälschlicherweise ein Linksdrehfeld eingespeist. Korrigieren Sie die Drehfeldrichtung.

- · Schalten Sie nun Phase L1 stromlos.
- Kontrollieren Sie nun erneut im Menü »Messwerte« den Messwert des Schieflaststroms »I2«.Der Messwert des Schieflaststroms »I2« muss nun 33% betragen.
- Schalten Sie nun Phase L1 wieder zu und dafür Phase L2 stromlos.
- Kontrollieren Sie nun erneut im Menü »Messwerte« den Messwert des Schieflaststroms »I2«.Der Messwert des Schieflaststroms »I2« muss nun erneut 33% betragen.
- Schalten Sie nun Phase L2 wieder zu und dafür Phase L3 stromlos.
- Kontrollieren Sie nun erneut im Menü »Messwerte« den Messwert des Schieflaststroms »I2«.Der Messwert des Schieflaststroms »I2« muss nun erneut 33% betragen.

Prüfen der Auslöseverzögerung

- Prägen Sie ein symmetrisches dreiphasiges Stromsystem (Nennströme) ein.
- Schalten Sie dann IL1 ab (Der Schwellwert für »I2« muss unter 33% liegen).
- Messen Sie die Auslösezeit.

Der aktuelle Schieflaststrom »I2« entspricht einem Drittel des angezeigten momentanen Phasenstromes.

Prüfen der Ansprechwerte (des Schwellwerts I2>)

- Stellen Sie den Parameter »%I2/I1« sehr empfindlich ein (2%) und Parametrieren Sie einen beliebigen Wert für den Schwellwert (Freigabe) »I2>« (I2).
- Zum Prüfen der Ansprechwerte muss ein Strom in Phase 1 eingespeist werden, der kleiner als das Dreifache des eingestellten Ansprechwerts »I2« ist.
- Hinweis: Wenn in Phase L1 »%I2/I1 = 100%« Nennstrom eingespeist wird, ist die Bedingung »%I2/I1 >= 2%« sicher erfüllt.

• Nun Erhöhen Sie den Strom in Phase L1 bis das Schutzmodul anregt.

Prüfen des Rückfallverhältnisses des Schwellwerts (Freigabewerts I2>)

Nachdem im vorherigen Abschnitt das Schutzmodul ausgelöst hat, senken Sie nun den Strom in Phase L1. Der Rückfallwert darf nicht größer als das 0,97-fache des Anregewerts sein.

Überprüfung von %I2/I1

- Wählen Sie eine äußerst empfindliche Einstellung für den Schwellwert (Freigabe) »I2>« (I2) (0.01 x In) und setzen Sie »%I2/I1« größer oder gleich 10%.
- Speisen Sie symmetrischen dreiphasigen Nennstrom. Der Messwert »%I2/I1« muss nun 0% betragen.
- Nun erhöhen Sie den Strom in L1 weiter. Hierdurch sollte sichergestellt werden, dass der Schwellwert »I2>« (I2) bereits vor dem Schwellwert »%I2/I1« überschritten wird.
- Erhöhen Sie den Strom in Phase 1 bis das Schutzmodul anregt.

Testen des Rückfallverhältnisses von %I2/I1

Nachdem das Schutzmodul im vorherigen Test angesprochen hat, senken Sie nun den Strom in Leiter L1 wieder ab. Das Rückfallwert für »%l2/l1« muss 1% unterhalb der »%l2/l1« Einstellung liegen.

Erfolgreiches Testergebnis

Die gemessenen Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse liegen innerhalb der durch die Technischen Daten vorgegebenen zulässigen Abweichungen/Toleranzen.

Rücksetzen der Funktion zwischen Tests

Je nach verwendetem Rücksetz-Modus kann es notwendig sein, einige Zeit zwischen den einzelnen Tests vergehen zu lassen, bis die Funktion wieder komplett zurückgesetzt ist. Alternativ kann die gesamte Funktion inklusive aller Zeitstufen unverzögert zurückgesetzt werden via [Betrieb / Reset] »Reset I-Schutz«. Dadurch entfallen die Wartezeiten zwischen den Tests.

Bitte beachten Sie: [Betrieb / Reset] »Reset I-Schutz« setzt alle überstrombasierten Funktionen auf einmal zurück.

5.14 ThA - Thermisches Abbild [49]

Die maximal zulässige thermische Belastbarkeit und damit auch die Auslöseverzögerung für ein Betriebsmittel hängt von der Höhe des momentan fließenden Stroms, von der »vorher vorhandenen Last (Strom)« und einer durch das Betriebsmittel vorgegebenen Konstante ab.

Im Gerät ist eine vollständige thermische Abbildfunktion als *Einkörperabbild* des zu schützenden Betriebsmittels unter Berücksichtigung der Vorbelastung implementiert. Die Schutzfunktion ist einstufig mit einer Warngrenze ausgelegt.

Hierzu errechnet das Gerät aus den gegebenen Messgrößen und den eingestellten Parametern die thermische Belastung des Betriebsmittels. Mit Kenntnis der thermischen Konstanten kann dann auf die Temperatur des Betriebsmittels geschlossen (nachgebildet) werden.

Das thermische Abbild wird in folgenden Fällen zurückgesetzt:

- wenn ein Neustart (Warm- oder Kaltstart) des MCDLV4 erfolgt;
- wenn die Einstellungen (d. h. irgendwelche Parameterwerte) verändert werden;
- · wenn auf einen anderen Parametersatz umgeschaltet wird;
- wenn der Zustand der externen Blockade sich ändert.

Auslösezeit


Die allgemeinen Auslösezeiten des Überlastschutzes ergeben sich aus der folgenden Gleichung:

$$t = \tau$$
-erw $\cdot \ln \left(\frac{I^2 - \text{Ip}^2}{I^2 - (K \cdot \text{Ib})^2} \right)$

Legende:

- t = Auslöseverzögerung
- τ-erw = Erwärmungszeitkonstante
- τ-abk = Abkühlzeitkonstante
- Ib = Basisstrom: maximal zulässiger thermischer Dauerstrom
- K = Überlastfaktor: Das Produkt aus Überlastfaktor und Basisstrom K·Ib definiert den maximal zulässigen thermischen Grenzwert für das Betriebsmittel.
- I = gemessener Strom (in Einheiten von In)
- Ip = zuvor vorhandene Last

Funktionalität

5.14.1 Inbetriebnahme: Thermisches Abbild

Gegenstand der Prüfung

Prüfen der Schutzfunktion ThA

Benötigte Geräte

- Dreiphasige Stromquelle
- Timer

Durchführung

Berechnen Sie mithilfe der Formel für das thermische Abbild (siehe →下) die Auslösezeit für den Strom, den Sie konstant einprägen.

HINWEIS!

Die Erwärmungskonstante des Betriebsmittels » τ_{erw} « muss bekannt sein, um einen optimalen Schutz zu gewährleisten.

Prüfen der Ansprechwerte

Prägen Sie den Strom ein, den Sie Ihrer mathematischen Berechnung zugrunde gelegt haben.

Prüfen der Auslöseverzögerung

HINWEIS!

Die thermische Kapazität sollte vorher Null sein. Siehe [Betrieb / Messwerte / ThA] »Therm. Niveau«.

Zum Prüfen der Auslöseverzögerung wird ein Timer mit dem Kontakt des zugehörigen Auslöserelais verbunden.

Prägen Sie den Strom ein, den Sie Ihrer mathematischen Berechnung zugrunde gelegt haben. Der Timer wird gleichzeitig mit dem Anlegen des Stroms gestartet und beim Auslösen des Relais gestoppt.

Erfolgreiches Testergebnis

Die errechnete Auslösezeit und das Rückfallverhältnis stimmen mit den gemessenen überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

5.15 U/f> - Übererregungsschutz [24]

Diese Schutzstufe schützt den Generator und Blocktransformator vor Übererregung. Der Übererregungsschutz ist zweistufig ausgeführt mit unabhängigen Ansprechwerten und Auslösezeiten.

Neben der unabhängigen Auslösecharakteristik können abhängige, inverse Auslösekennlinien ausgewählt werden um das Schutzgerät bestmöglich an die Übererregungskurve des Generatorblocksatzes anzupassen.

Der Ansprechwert ist bezogen auf die eingestellte Nennspannung und Nennfrequenz. Die Übererregungsschutzfunktion liefert zuverlässige Messungen (V/Hz) bis zu 200% und in einem Frequenzbereich von 5 ... 70 Hz.

5.15.1 Charakteristik/Kennlinie: INV A

$$t = \frac{\text{t-Multiplikator}}{\left(\frac{\frac{U/-\text{Un}}{f/-\text{fN}}}{\text{U/f>}}\right)^2 - 1}$$

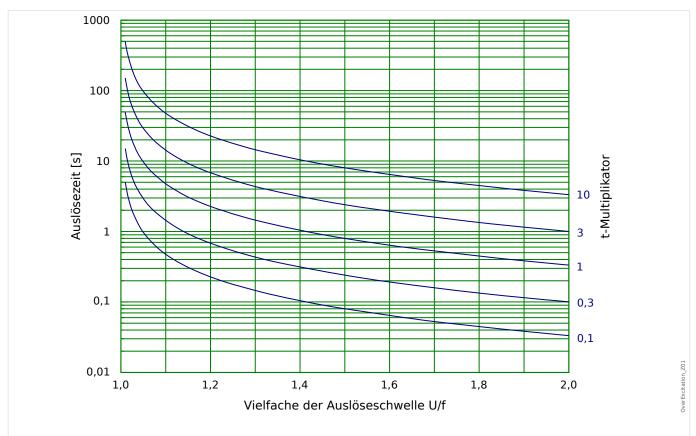


Abb. 118: Charakteristik/Kennlinie: INV A

5.15.2 Charakteristik/Kennlinie: INV B

$$t = \frac{\text{t-Multiplikator}}{\left(\frac{\frac{U/-\text{Un}}{f/-\text{fN}}}{\text{U/f>}}\right) - 1}$$

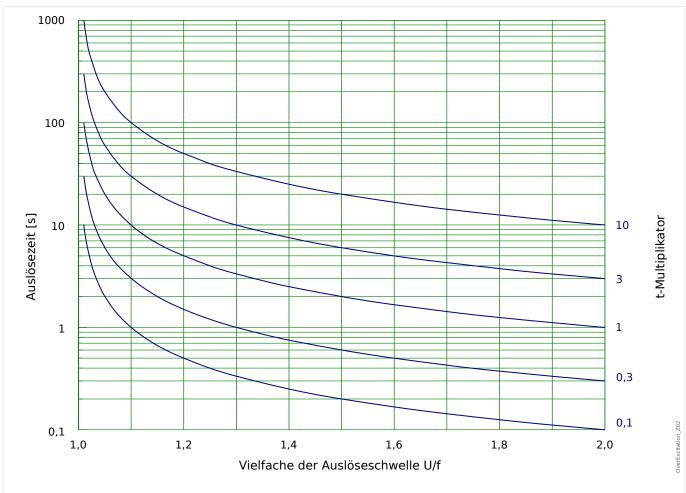


Abb. 119: Charakteristik/Kennlinie: INV B

5.15.3 Charakteristik/Kennlinie: INV C

$$t = \frac{\text{t-Multiplikator}}{\left(\frac{\frac{U/-\text{Un}}{f/-\text{fN}}}{\text{U/f>}}\right)^{0.5}} - 1$$

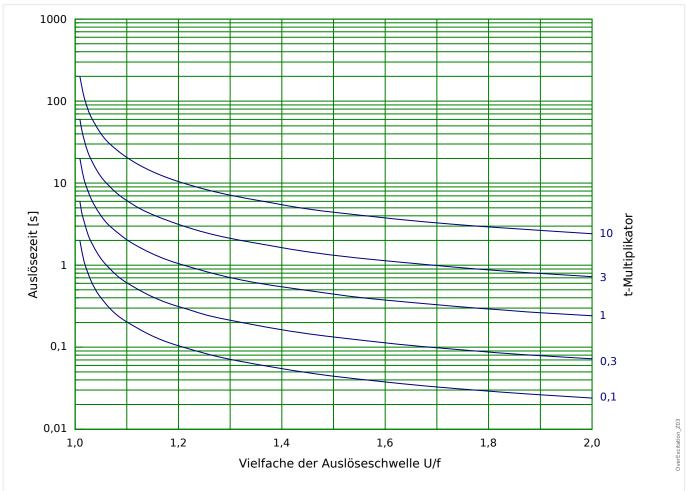


Abb. 120: Charakteristik/Kennlinie: INV C

5.16 FAS - Fehleraufschaltung

Wird auf eine fehlerbehaftete Leitung geschaltet (z.B. bei eingeschaltetem Erdungsschalter während einer Inbetriebnahme), ist eine unverzögerte Auslösung erforderlich. Das »FAS«-Modul kann (über Adaptive Parameter, siehe →2.3.2 Adaptive Parametersätze) dazu genutzt werden, eine Schnellauslösung der Überstromschutzmodule zu veranlassen.

Folgende Triggermodi stehen über den Einstellparameter [Schutzparameter / Globale Schutzpara / FAS] »Modus« zur Erkennung einer Fehleraufschaltung (FAS) zur Verfügung:

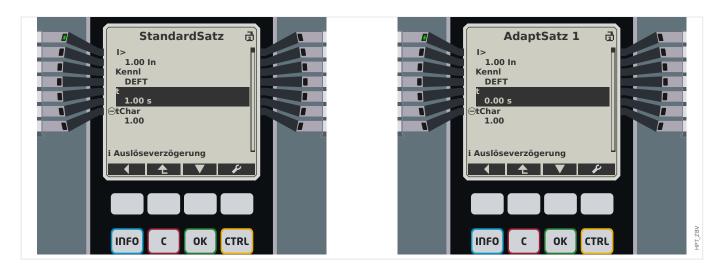
- »Modus« = "LS Pos" Leistungsschalterstellung;
- »Modus« = "I<" Kein Laststrom;
- »Modus« = "LS Pos und I<" Leistungsschalterstellung und kein Laststrom;
- »Modus« = "LS manuell EIN" Leistungsschalter wurde manuell eingeschaltet;
- »Modus« = "Ext FAS" Externer Trigger.

Für das »FAS«-Modul ist es erforderlich, dass dem Parameter [Schutzparameter / Globale Schutzpara / FAS] »Auswahl SG« ein Schaltgerät (Leistungsschalter) zugeordnet (rangiert) wird. Es dürfen nur Schaltgeräte (Leistungsschalter) zugeordnet werden, deren Wandlermesswerte vom MCDLV4 auch erfasst werden.

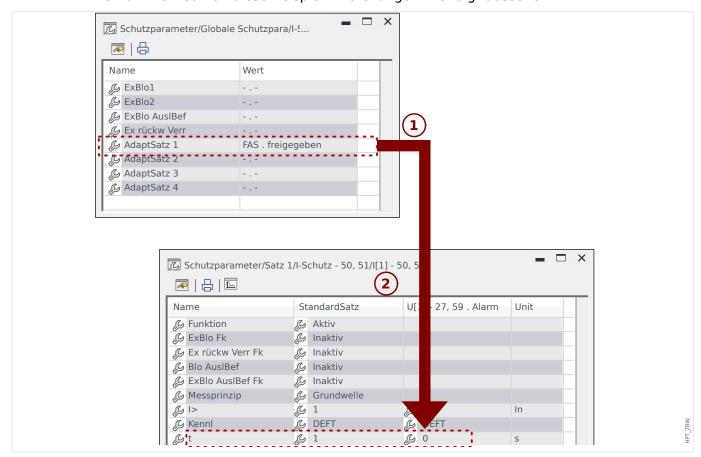
Dieses Modul gibt nur ein Meldesignal aus, d. h. es erteilt keinen Auslösebefehl.

Um im Fall einer Fehleraufschaltung Einfluss auf das Auslöseverhalten des Stromschutzes nehmen zu können, müssen Sie das Ausgangssignal »FAS . freigegeben« auf einen Adaptiven Parametersatz rangieren. (Siehe →2.3.2 Adaptive Parametersätze für eine allgemeine Beschreibung.) In den Adaptiven Parametersätzen sind die Parametermodifikationen entsprechend dem gewünschten Auslöseverhalten des Stromschutzes zu setzen.

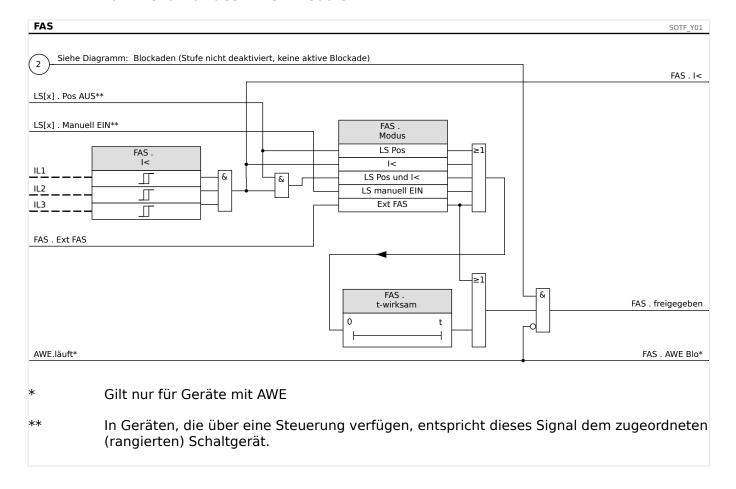
Beispiel: Unverzögerte Auslösung des Überstromschutz-Elements »I[1]«


Nehmen wir an, dass alle Einstellungen des Überstromschutz-Element »I[1]« schon gemacht wurden. (Siehe ⇔5.10 I – Überstromschutz für eine detaillierte Beschreibung des Überstromschutzes.)

Nun soll die Auslöseverzögerung »I[1] . t« aber vom zunächst eingestellten Wert 1.00 s auf 0 s gesetzt werden, sobald das »FAS«-Modul angestoßen wird. Dies kann beispielsweise mit den folgenden Einstellungen erreicht werden:


- Es gibt vier Adaptive Parametersätze. Nehmen wir für dieses Beispiel den Adaptiven Parametersatz 1. Wir stellen also Folgendes ein:
 - [Schutzparameter / Globale Schutzpara / I-Schutz / I[1]] » $AdaptSatz\ 1$ « = "FAS . freigegeben".
- Anschließend weisen wir der Auslöseverzögerung den alternativen "AdaptSatz 1"-Einstellwert zu:

[Schutzparameter / Satz 1...4 / I-Schutz / I[1]] »AdaptSatz 1« [AdaptSatz 1] = 0.00 s


Wenn wir nun am Bedienfeld des Schutzgerätes den Menüzweig [Schutzparameter / Satz 1...4 / I-Schutz / I[1]] aufsuchen, sollten wir prinzipiell Seiten wie folgt sehen können:

In Smart view sollten diese Beispiel-Einstellungen wie folgt aussehen:

Funktionalität des »FAS«-Moduls

5.16.1 Inbetriebnahme des Fehleraufschaltung Moduls

Gegenstand der Prüfung

Überprüfung der Funktion des Fehleraufschaltung Moduls entsprechend dem parametriertem Betriebs-Modus:

- Leistungsschalterstellung (LS Pos);
- Kein Laststrom (I<);
- Leistungsschalterstellung und kein Laststrom (LS Pos und I<);
- · Leistungsschalter wurde manuell eingeschaltet (LS manuell Ein); und/oder
- Externer Trigger (Ex FAS).

Benötigte Geräte

- Stromquelle (nur beim Enable-Mode mit Strommessung)
- Ggf. Amperemeter (nur beim Enable-Mode mit Strommessung)
- Timer (Zeitgeber)

Durchführungsbeispiel für den Modus LS manuell EIN

HINWEIS!

Modus I<: Zum Überprüfen der Wirksamkeit: Speisen Sie zunächst keinen Strom. Starten Sie den Timer und schalten Sie schlagartig einen Strom deutlich oberhalb der I<-Schwelle ein.

Modus I< und LS POS: Kombinieren Sie das schlagartige Einschalten des Stromes mit dem manuellen Einschalten des Leistungsschalters.

Modus LS POS: Der Leistungsschalter muss sich in der AUS Position befinden. Die Meldung "FAS.Freigegeben"=0 muss anstehen. Nach dem Einschalten des Leistungsschalters muss für die Zeit t-wirksam die Meldung "FAS.Freigegeben "=1 anstehen.

- Der Leistungsschalter befindet sich in der Position AUS. Es fließt kein Laststrom.
- In der Zustandsanzeige des Gerätes muss die Meldung "FAS.**Freigegeben** "=1 anstehen.

Prüfung

- Schalten Sie den Leistungsschalter manuell EIN und starten Sie gleichzeitig den Timer.
- Nach Ablauf der parametrierten Haltezeit t-wirksam muss die Meldung "FAS. Freigegeben "=0 abfallen.
- Notieren Sie die gemessene Zeit.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

5.17 KLA - Kalte Last Alarm

Wird die Energieversorgung nach einem längeren Ausfall wieder zugeschaltet, können sehr hohe Lastspitzen auftreten. Diese Lastspitzen können betragsmäßig ein mehrfaches normaler Lastzustände betragen (z.B. auf Grund von nicht mehr diversifizierten thermostatisch gesteuerten Lasten oder Motoranlaufströmen). Dieses Phänomen wird als Kalte Last Aufschaltung (Cold Load Inrush) bezeichnet.

Werden die Auslöseschwellen des Überstromschutzes so gewählt, dass diese während des Aufschaltens einer kalten Last keine Fehlauslösung verursachen, dann besteht die Gefahr, dass es Betriebszustände gibt, in denen der Überstromschutz nicht mehr empfindlich genug ist. Dadurch wird dann möglicherweise die Erstellung eines Staffelkonzepts erschwert oder gar unmöglich. Werden die Einstellungen entsprechend den Netzfehlerstudien gewählt, besteht die Gefahr, dass ein Übertromschutzmodul während der Aufschaltung einer kalten Last fehlauslöst. Das Modul Kalte Last Alarm erkennt einen Zustandswechsel von einer warmen hin zu einer kalten Last an einem der vier wählbaren Trigger-Modi:

- LS POS (Leistungsschalterposition)
- I< (Stromlosigkeit)
- I< (Stromlosigkeit) und LS POS (Position des Leistungsschalters)
- I< (Stromlosigkeit) oder LS POS (Position des Leistungsschalters)

Nach einem Übergang von einer Warmen Last zu einer Kalten Last wird der »t-Last-AUS« Timer gestartet. Durch diesen Timer wird festgelegt, nach welcher Zeit die Last erkaltet ist. Nach Ablauf dieses Timers wird die Meldung »KLA.Freigegeben« gesetzt. Diese Meldung kann dazu verwendet werden, empfindliche Schutzstufen wie z.B. Stromschutzstufen (DEFT) oder Schieflaststufen usw. temporär zu blockieren. Mit diesem Signal können ebenfalls Inverse Stromschutzstufen über Adaptive Parameter temporär desensibilisiert (unempfindlicher) werden.

Wenn die Kalte Last Bedingung beendet wird (wenn eine kalt-zu-warm Bedingung erkannt wird), z.B. durch Schließen eines Leistungsschalters oder z.b. durch das Einspeisen von Laststrom wird eine Einschaltstoßstromerkennung (Load Ínrush Detector) aktiviert. Die Einschaltstoßstromerkennung überwacht den Verlauf (das Kommen und Gehen) des Stoßstromes. Ein Einschaltstoßstrom wird erkannt, sobald der gemessene Strom oberhalb des parametrierten »Schwellwerts« liegt. Der Einschaltstoß gilt als beendet, wenn der Strom unter 90% des Schwellwerts abfällt. Nach dem Abklingen des Einschaltstoßstroms wird die Beruhigungszeit gestartet. die Meldung »KLA.Freigegeben«kann frühestens nach Ablauf der Beruhigungszeit zurückgesetzt werden. Zeitgleich mit der Einschaltstoßstromerkennung wird ein weiterer Timer »t-Max Block« gestartet. Dieser setzt die Meldung »KLA.Freigegeben« automatisch zurück, falls die Kalte Last Bedingung abnormal lange andauert.

Das Kalte Last Modul kann durch beliebige externe oder interne Signal blockiert werden.

Für Geräte die über eine Automatische Wiedereinschaltung verfügen gilt: Das Kalte Last-Modul wird automatisch blockiert, wenn eine Automatische Wiedereinschaltung angeworfen wird.

VORSICHT!

Dieses Modul gibt nur ein Meldesignal aus.

Um im Fall einer Kalten Last Einfluss auf das Auslöseverhalten des Stromschutzes nehmen zu können, müssen Sie das Ausgangssignal "KLA.Freigegeben" auf einen Adaptiven Parametersatz rangieren. Siehe Kapitel Parameter / Adaptive Parametersätze. In den Adaptiven Parametersätzen sind die Parametermodifikationen entsprechend des gewünschten Auslöseverhaltes des Stromschutzes zu setzen.

HINWEIS!

Es ist wichtig, die Bedeutung der beiden Timer verstanden zu haben.

t Last Aus (Ansprechverzögerung): Nach Ablauf dieses Timers gilt die Last als nicht mehr diversifiziert, die Last ist kalt.

t Max Block (Rückfallverzögerung): Nachdem die Startbedingung erfüllt wurde (z.B. wenn der Leistungsschalter manuell eingeschaltet wurde) wird das Signal KLA.freigegeben noch für diese Zeit aufrecht erhalten. Das bedeutet, für die Dauer dieser Zeit können die Auslöseschwellen des Überstromzeitschutzes über Adaptive Parameter unempfindlicher geschaltet werden. (Siehe Kapitel Parameter).

HINWEIS!

Dieser Hinweis gilt nur für Geräte mit Steuerfunktion! Für diese Schutzfunktion ist es erforderlich, dass ihr ein Schaltgerät (Leistungsschalter) zugeordnet (rangiert) wird.

Es dürfen nur Schaltgeräte (Leistungsschalter) zugeordnet werden, deren Wandlermesswerte vom Schutzgerät auch erfasst werden.

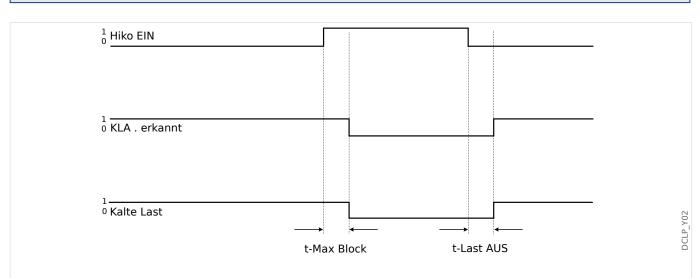
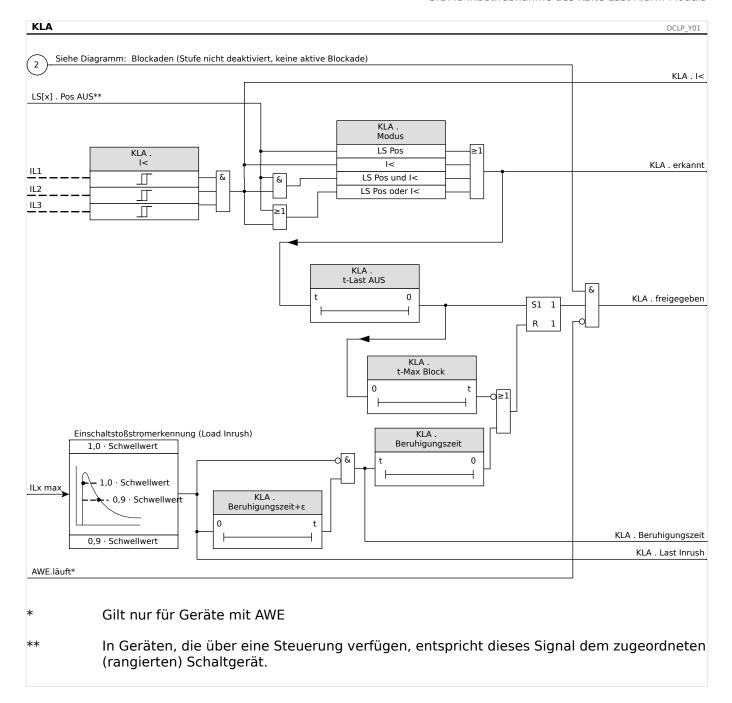



Abb. 121: Example Mode: Breaker Position.

5.17.1 Inbetriebnahme des Kalte Last Alarm Moduls

Gegenstand der Prüfung

Überprüfung der Funktion des Kalte Last Alarm Moduls entsprechend dem parametriertem Betriebs-Modus:

- I< (Stromlosigkeit)
- LS POS (Leistungsschalterposition)
- I< (Stromlosigkeit) und LS POS (Position des Leistungsschalters)
- I< (Stromlosigkeit) oder LS POS (Position des Leistungsschalters)

Benötigte Geräte

- Stromguelle (nur beim Enable-Mode mit Strommessung)
- Amperemeter (beim Enable-Mode mit Strommessung)
- Timer (Zeitgeber)

Durchführungsbeispiel für den Modus LS POS (Leistungsschalter Position)

HINWEIS!

Modus I<: Zum Überprüfen der Anzugsverzögerung senken Sie einen eingespeisten Strom schlagartig unterhalb die I<-Schwelle und messen die Zeit. Zum Überprüfen der Rückfallverzögerung schalten Sie schlagartig einen Strom deutlich oberhalb der I<-Schwelle ein und messen die Zeit.

Modus I< und LS POS: Kombinieren Sie das schlagartige Ein- und Ausschalten des Stromes mit dem manuellen Ein- und Ausschalten des Leistungsschalters.

Modus I< oder LS POS: Führen Sie den Test zunächst mit schlagartigem Ein- und Ausschalten eines Stromes unter- und oberhalb der I<-Schwelle durch und messen die Zeiten. Anschließend führen Sie die Prüfung mit manuellem Ein- und Ausschalten des Leistungsschalters durch.

- Der Leistungsschalter befindet sich in der Position AUS. Es fließt kein Laststrom.
- In der Zustandsanzeige des Gerätes muss die Meldung "KLA.Freigegeben"=1 anstehen.
- In der Zustandsanzeige des Gerätes muss die Meldung "KLA.I<"=1 anstehen.

Prüfen der Anzugs- und Rückfallverzögerung.

- Schalten Sie den Leistungsschalter manuell EIN und starten Sie gleichzeitig den Timer.
- Nach Ablauf der parametrierten Rückfallzeit »t Max Block« muss die Meldung "KLA.Freigegeben"=0 abfallen.
- Notieren Sie die gemessene Zeit.
- Schalten Sie den Leistungsschalter manuell AUS und starten Sie gleichzeitig den Timer.
- Nach Ablauf der parametrierten Anzugsverzögerung »t Last Aus« muss die Meldung "KLA.Freigegeben"=1 anstehen.
- Notieren Sie die gemessene Zeit.

Erfolgreiches Testergebnis

5.18 AWE - Automatische Wiedereinschaltung [79]

Die Wiedereinschaltautomatik dient dazu Ausfälle von Freileitungen zu minimieren. Die Mehrzahl aller Fehler in Freileitungen (>60% in MV- und >85% in HV-Systemen, siehe "VDE-Verlag: Schutztechnik in elektrischen Netzen 1, Page179, ISBN 3-8007-1753-0") sind temporärer Natur (z. B. Lichtbögen), die durch eine Kurzunterbrechung mit automatischer Wiedereinschaltung gelöscht werden können.

HINWEIS!

Wenn das Gerät zum Schutz von Kabeln, Generatoren oder Transformatoren eingesetzt wird, findet die AWE keine Anwendung und kann wegprojektiert werden.

5.18.1 Funktionen

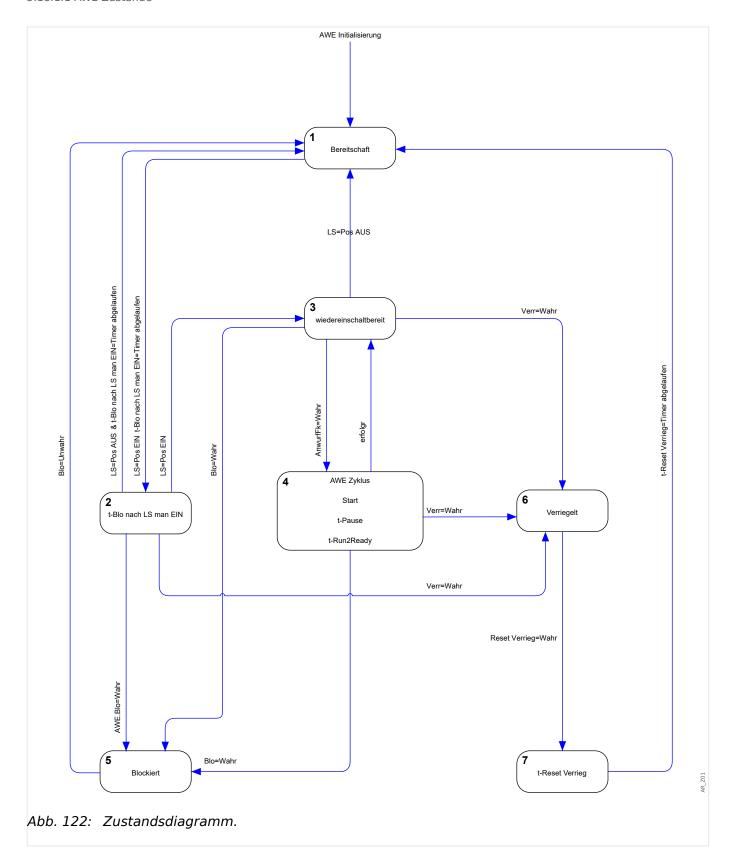
Die AWE besitzt umfangreiche Möglichkeiten, ihre Schutzfunktionen den unterschiedlichsten Anwendungen und Anforderungen der Netzbetreiber anzupassen.

AWE-Funktionen in der Übersicht:

- Flexible Zuordnung der Anwurffunktionen, individuell für jeden AWE-Schuss.
- Bis zu sechs AWE-Schüsse.
- Dynamische Anpassung der Schutzeinstellwerte (z. B. Anregung, Auslöseverzögerung, Auslösekennlinie, usw.) während des AWE-Zyklus über adaptive Parameter.
- Einstellbares Limit für die Anzahl der AWE-Zyklen pro Stunde.
- AWE-Zähler mit Wartungsalarm.
- Programmierbare Wiedereinschaltblockade.
- Automatische Ablaufkoordinierung mit untergeordneten Wiedereinschalteinrichtungen.
- Automatische AWE-Blockade bei Hand-Ein-Signal.
- Manuelles/Automatisches Rücksetzen der Verriegelung (am Gerät, Kontakteingang, Kommunikation, usw.)
- AWE mit Synchrocheck (in Verbindung mit den internen Synchrocheck- und Steuerfunktionen).
- Hochzählen des AWE-Zählers über externes Signal möglich.
- AWE-Ergebnisauswertung (erfolgreich/nicht erfolgreich).
- Separater Zähler für erfolgreiche und nicht erfolgreiche AWE-Zyklen.

HINWEIS!

Schutzfunktionen, die in Verbindung mit der Automatischen Wiedereinschaltung eingesetzt werden, müssen als »Nur Überw.« = "nein" definiert werden. Siehe auch 5.1.1 Grundlagen eines Schutzmodules.


Die folgenden Tabelle gibt eine Übersicht über die AWE-Menüstruktur:

AWE-Menü	Einstellungen
AWE [Schutzparameter / Globale Schutzpara / AWE]	In diesem Menü können, externe Blockaden, externe Verriegelungen, externe Schusszähler und externe Rücksetzsignale zugeordnet werden.
	Diese externen Signale können nur effektiv werden, wenn sie zuvor im Menü Allgemeine Einstellungen aktiviert wurden.
Allgemeine Einstellungen	In diesem Menü können verschiedene
[Schutzparameter / Satz 14 / AWE / Allg Einstellungen]	allgemeine Einstellungen aktiviert werden, wie die Funktion selbst, externe Blockaden, Ablaufkoordinierung, externe Verriegelung, externe AWE-Zähler-Erhöhung.
	Die zugehörigen Anwurf-Ereignisse (z.B. Digitale Eingänge) müssen in den allgemeinen Einstellungen entsprechend zugeordnet werden.
	Darüber hinaus enthält das Menü einige Timer. Die Anzahl erlaubter Wiedereinschaltungen, der Alarmmodus (Alarm/Auslösung) und der Rücksetzmodus (Reset Mode) können gesetzt werden.
Schussmanager	Im Schussmanager-Menü wird die Steuerlogik
[Schutzparameter / Satz 14 / AWE / Schussmanager]	der einzelnen Schüsse und den zugeordneten Schutzfunktionen spezifiziert. Für jeden Schuss, inklusive der Schnellauslösung kann ein Anwurfereignis zugeordnet werden.
	Für jeden Schuss können bis zu vier Anwurffunktionen aus der Liste der Schutzfunktionen ausgewählt werden.
	Wenn die AWE der Phase X läuft werden die entsprechenden Schutz- und Steuereinstellungen verwendet, die für diese Phase eingestellt sind.
	Für jeden Schuss kann die Pausenzeit individuell eingestellt werden. Für die Schnellauslösung (Schuss 0) ist keine Pausenzeit erforderlich. Die Pausenzeit legt die Dauer zwischen der Leistungsschalterauslösung und dem nächsten Wiedereinschaltbefehl fest.
Wartungsmonitor	Im Wartungsmonitor-Menu kann festgelegt
[Schutzparameter / Satz 14 / AWE / Wart Monitor]	werden, nach wie vielen AWE ein Alarm ausgegeben wird. Hierzu gibt es zwei Alarme. Der Parameter »Max AWE/h« legt die zulässige Anzahl der Wiedereinschaltungen pro Stunde fest.

AWE-Menü	Einstellungen
AWE-Blockade [Schutzparameter / Globale Schutzpara / AWE / Blo Fk]	Diese Parametergruppe legt fest, bei welchen Schutzfunktionen die AWE blockiert, bzw. abgebrochen werden muss. Bitte beachten Sie den Unterschied zwischen der Blockade einer Schutzfunktion durch die AWE und die Blockade der AWE durch eine Schutzfunktion.

5.18.1.1 AWE Zustände

Das folgende Diagramm zeigt die Übergänge zwischen den einzelnen Zuständen der AWE. Es verdeutlicht die Laufzeitenlogik zwischen den einzelnen Zustandsübergängen und den Ereignissen, die zum Anwurf der AWE führen.

Generell ist die AWE-Funktion nur aktiv, wenn folgende Bedingungen erfüllt sind:

- AWE-Funktion ist aktiviert ([Schutzparameter / Satz 1...4 / AWE / Allg Einstellungen]
 »Funktion« = "Aktiv")
- Der Leistungsschalter ist im Menü [Schutzparameter / Globale Schutzpara / AWE] konfiguriert.

Die AWE-Funktion ist nicht durch die Blockadeeingänge (»ExBlo1/2«) blockiert.

Zustand 1: Bereitschaft

Die AWE befindet sich in diesem Zustand wenn die folgenden Bedingungen erfüllt sind:

- Der Leistungsschalter ist geöffnet.
- Die AWE ist durch keine Anwurffunktion gestartet worden.
- Es liegen keine externen oder internen AWE-Blockadesignale an.

HINWEIS!

Wenn die AWE-Funktion sich im Zustand "Bereitschaft" befindet, ist kein AWE-Schuss möglich.

Zustand 2: t-Blo nach LS man EIN

Vorausgesetzt, der Leistungsschalter ist geöffnet und die AWE ist im Zustand "Bereitschaft". Nun wird der Leistungsschalter manuell geschlossen. Das Ereignis "LS Pos EIN" startet den Timer "Blockade nach Leistungsschalter manuell EIN". Die AWE wechselt vom Zustand »Bereitschaft« in den Übergangszustand »t-Blo nach LS man EIN«. Die AWE-Funktion wechselt erst nach Ablauf der Blockadezeit wieder in den »wiedereinschaltbereit« Zustand und wenn der Leistungsschalter geschlossen ist.

Die Blockadezeit nach manuellem Einschalten dient dazu, eine Fehleraufschaltung zu vermeiden, für den Fall, dass zwischenzeitlich ein Fehler aufgetreten ist und ein Schutzorgan ausgelöst hat.

Zustand 3: Wiedereinschaltbereit

Eine aktivierte AWE-Funktion befindet sich im Zustand "Wiedereinschaltbereit", wenn die folgenden Bedingungen erfüllt sind:

- Der Leistungsschalter ist geschlossen.
- Der Blockadetimer nach manuellem Einschalten des Leistungsschalters ist abgelaufen.
- Die AWE-Funktion ist nicht durch eine Anwurffunktion gestartet worden.
- Es liegen keine externen oder internen AWE-Blockadesignale an.

HINWEIS!

Ein AWE Start ist nur möglich, wenn sich die AWE-Funktion im Zustand "Wiedereinschaltbereit befindet.

Zustand 4: AWE (Zyklus)

Der Zustand »AWE Zyklus« kann nur erreicht werden, wenn die folgenden Bedingungen erfüllt sind:

Die AWE-Funktion befand sich zuvor im Zustand »Wiedereinschaltbereit«.

- Der Leistungsschalter war eingeschaltet.
- Es liegen keine externen oder internen AWE-Blockadesignale an.
- Eine der Anwurfbedingungen erfüllt sind (rangierte Schutz- und Steuerfunktionen).

HINWEIS!

Eine komplette AWE mit mehreren Einschaltversuchen erfolgt im Zustand "läuft".

Beim Übergang in den "läuft" Zustand wechselt die AWE-Funktion in einen Zustand mit zahlreichen Unter-Zuständen. Diese werden in einem gesonderten Kapitel beschrieben:
→5.18.2 AWE Zyklus (Schuss)

Zustand 5: Blockiert

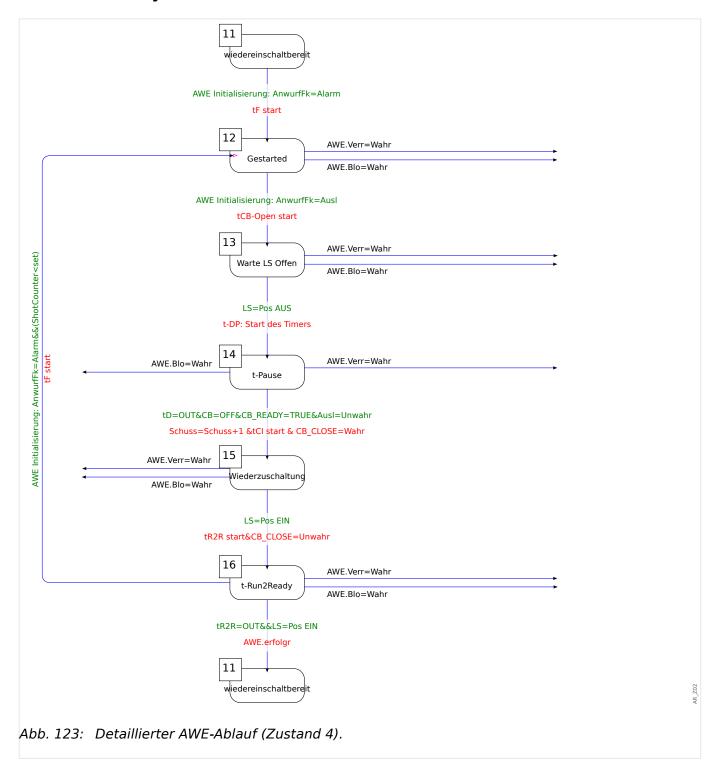
Eine aktivierte AWE-Funktion geht in den »Blo« Zustand wenn eine oder mehrere der rangierten Blockadefunktionen aktiv (wahr) sind.

Die AWE-Funktion verlässt den »Blo« Zustand sobald kein Blockadesignal mehr anliegt.

Zustand 6: Verriegelung

Eine aktivierte AWE-Funktion geht in den »Verr« Zustand wenn eine der folgenden Bedingungen erfüllt sind:

- Eine erfolglose AWE wird erkannt, nachdem Ablauf aller programmierten AWE-Schüsse. Der Fehler ist dauerhaft.
- AWE-Fehler (z. B. unvollständige Schaltsequenz)
- Die Anzahl der erlaubten AWE pro Stunde wird überschritten.
- Der Fehlertimer ist abgelaufen (Auslösezeit überschritten)
- Leistungsschalterfehler während eines AWE-Anwurfs
- Manuelles Schließen des Leistungsschalters während eines AWE-Zyklus.
- Eine Schutzfunktion löst aus, bevor das Wiedereinschaltkommando gegeben wird.


Die AWE-Funktion verlässt den »Verr« Zustand wenn der programmierte Verriegelungsrücksetztimer abgelaufen ist und das programmierte Verriegelungsrücksetzsignal erscheint.

HINWEIS!

Ein Service-Alarm (Service-Alarm 1 oder Service-Alarm 2) führt nicht zu einer Verriegelung der AWE-Funktion.

5.18.2 AWE Zyklus (Schuss)

Zustand 11: Wiedereinschaltbereit

Eine aktivierte AWE-Funktion befindet sich im Zustand "Wiedereinschaltbereit" wenn die folgenden Bedingungen erfüllt sind:

- Der Leistungsschalter ist geschlossen.
- Der Blockadetimer nach manuellem Einschalten des Leistungsschalters ist abgelaufen.

- Die AWE-Funktion ist nicht durch eine Anwurffunktion gestartet worden.
- Es liegen keine externen oder internen AWE-Blockadesignale an.

Zustand 12: Läuft

Dies ist der erste untergeordnete Zustand nachdem eine AWE von einem Ereignis angeworfen wurde und vom »Wiedereinschaltbereit« in den »Läuft« Zustand wechselt.

Während des »Läuft« Zustandes überwacht die AWE-Funktion ob ein Auslösesignal der Anwurffunktion kommt, während ein Fehlertimer abläuft. Die AWE-Funktion wechselt in den »Warte LS Offen« Zustand sobald das Auslösesignal der Anwurffunktion ansteht, der Fehlertimer noch nicht abgelaufen ist und keine Blockade- oder Verriegelungsbedingungen vorliegen.

Zustand 13: Warte LS Offen

Im »Warte LS Offen« Zustand überwacht die AWE-Funktion, ob der Leistungsschalter nach Empfang des Auslösesignals der Anwurffunktion tatsächlich nach der eingestellten Schalterüberwachungszeit (200 ms) auslöst. Wenn dies der Fall ist startet die AWE-Funktion den eingestellten Pausenzeit-Timer und wechselt in den Zustand »t-Pause«.

Zustand 14: t-Pause

Während des Zustandes »t-Pause« läuft der Pausenzeit-Timer ab. Dieser kann nur durch ein Blockade- oder Verriegelungssignal unterbrochen werden. Nach Ablauf der Pausenzeit gibt die AWE-Funktion den Einschaltbefehl für den Leistungsschalter und wechselt in den Zustand »Wiederzuschaltung«, wenn folgende Bedingungen erfüllt sind:

- Der Leistungsschalter ist geöffnet
- Der Leistungsschalter ist wiedereinschaltbereit (vorrausgesetzt der "Leistungsschalter bereit" Logikeingang wird verwendet).
- Keine Anregung einer zugeordneten Anwurffunktion vorliegt
- Kein Auslösekommando einer zugeordneten Anwurffunktion vorliegt
- Kein generelles Auslösekommando vorliegt.

Bevor das Wiedereinschaltkommando ausgegeben wird, wird der AWE-Zähler erhöht. Dies ist für die AWE-Zähler abhängigen Anwurf- und Blockadefunktionen von Bedeutung.

Bevor die AWE-Funktion in den Zustand »Wiederzuschaltung« geht, wird der Leistungsschalter-Überwachungstimer »t-LS ein Bef«gestartet.

Zustand 15: Wiederzuschaltung

Wenn keine Blockade- oder Verriegelungssignale vorliegen und der Leistungsschalter während der Leistungsschalter-Überwachungszeit geschlossen bleit, wechselt die AWE-Funktion in den Zustand »t-Run2Ready« und startet die Zeitstufe [Schutzparameter / Satz 1...4 / AWE / Allg Einstellungen] »t-Run2Ready«.

Zustand 16: t-Run2Ready

Erfolgreiche Wiedereinschaltung:

Wenn im Zustand »t-Run2Ready« keine weiteren Blockade- oder Verriegelungssignale sowie keine weiteren Fehler auftreten, bevor der Timer »t-Run2Ready« abgelaufen ist, wechselt

die AWE-Funktion vom "AWE-Zyklus" in den Zustand »Wiedereinschaltbereit«. Das Flag "Erfolgreich" wird gesetzt.

Nicht erfolgreiche Wiedereinschaltung:

Wird ein erneuter Fehler erkannt (Anwurffunktion regt erneut an), während die Zeitstufe »t-Run2Ready« läuft, wechselt die AWE-Funktion wieder zum Anfang des AWE-Zuklus. Bei einem permanenten Fehler wird der zuvor beschriebene Zyklus so oft durchlaufen, bis die Anzahl der parametrierten AWE-Schüsse erreicht ist. Anschließend wechselt die AWE-Funktion in den Zustand »Verriegelung«. Das Flag "Erfolglos" wird gesetzt.

5.18.3 Ablaufdiagramme

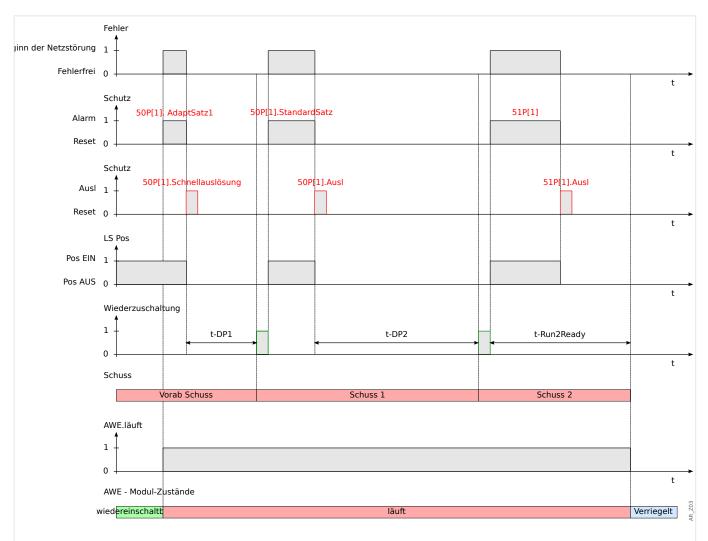
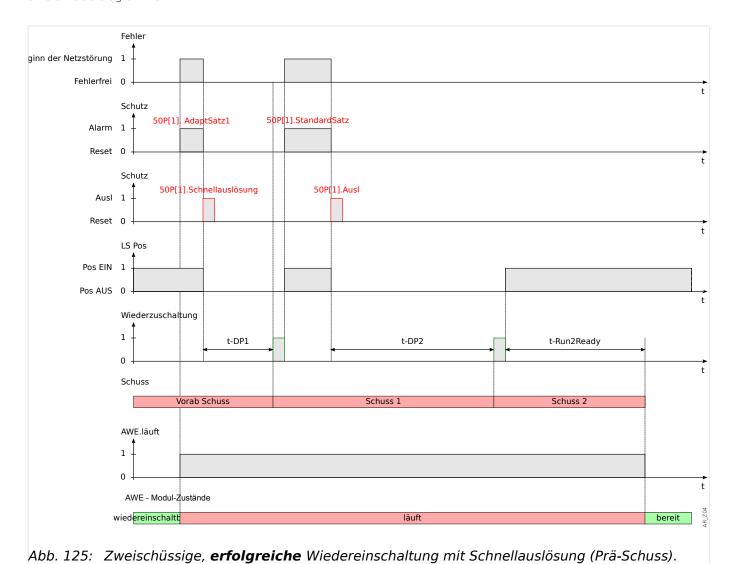
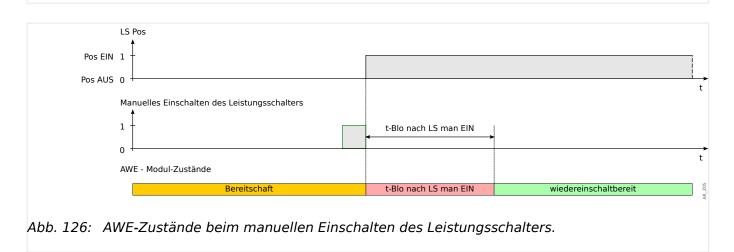




Abb. 124: Zweischüssige, **nicht erfolgreiche** Wiedereinschaltung mit Schnellauslösung (Prä-Schuss).

Was passiert, wenn das Gerät einen Auslösebefehl erhält, während die Zeitstufe »t-Blo nach LS man EIN« läuft?

Der Timer »t-Blo nach LS man EIN« blockiert keine Auslösebefehle. Auslösebefehle werden unabhängig von diesem Timer ausgeführt. In diesem Fall läuft der Timer einfach weiter.

Nachdem der Timer abgelaufen ist, prüft das AWE-Modul erneut den Status des Leistungsschalters. Ist der Leistungschalter zu diesem Zeitpunkt in der Offen-Position, dann wechselt das AWE-Modul in den »STANDBY«-Status. In diesem Zustand ist keine AWE möglich (Hinweis: Die AWE wechselt nicht in den »Verriegelt« Zustand).

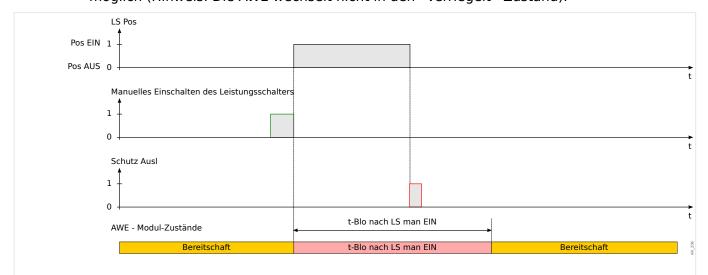


Abb. 127: Schutzauslösung nach manuellem Einschalten des Leistungsschalters.

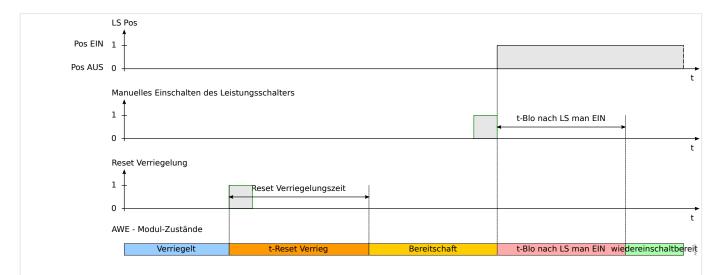


Abb. 128: AWE-Verriegelungs-Rücksetzlogik mit Rücksetzkommando **vor** dem manuellem Einschalten des Leistungschalters.

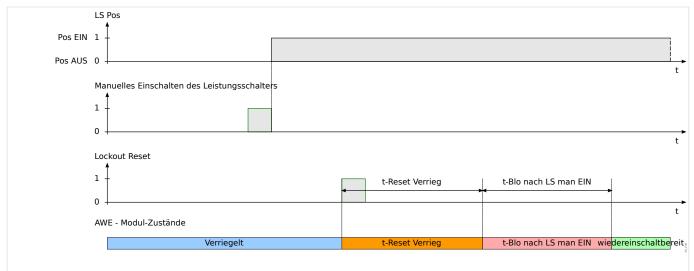


Abb. 129: AWE-Verriegelungs-Rücksetzlogik mit Rücksetzkommando **nach** dem manuellem Einschalten des Leistungschalters.

5.18.4 Ablaufkoordinierung

Was bedeutet Ablaufkoordinierung?

Ablaufkoordinierung bedeutet, dass das übergeordnete Schutzorgan eine virtuelle AWE durchläuft, während das untergeordnete Schutzorgan eine echte AWE durchläuft. Mit Hilfe der Ablaufkoordinierung kann die Selektivität gewährleistet werden, auch wenn das untergeordnete Schutzorgan seine Auslösecharakteristik nach dem Durchlauf eines AWE-Zyklus ändert. Die virtuelle AWE des übergeordneten Schutzorgans folgt dem AWE-Zyklus des untergeordneten Schutzorgans.

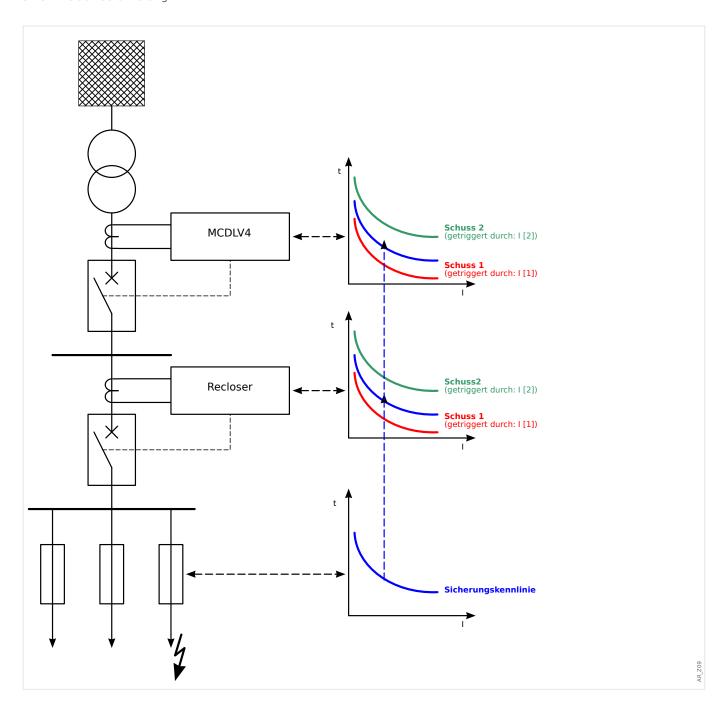
Welche Anwendung kann damit realisiert werden?

Ein strahlenförmiges Verteilnetz wird in der Regel durch ein übergeordnetes Schutzorgan, welches auf den Leistungsschalter wirkt, geschützt. Das untergeordnete Schutzorgan besteht aus einer Wiedereinschalteinrichtung und einer Sicherung. Mit Hilfe der Ablaufkoordinierung kann ein Sicherungssparschema realisiert werden. Um Sicherungen zu sparen, löst das untergeordnete Schutzorgan beim ersten Wiedereinschaltversuch mit niedrigeren Auslösewerten aus, sofern der Fehler noch ansteht. Die Sicherung wird unterstaffelt. Wenn der Wiedereinschaltveruch erfolglos war, erfolgt eine weitere AWE mit erhöhten Auslösewerten, d. h. die Sicherung wird überstaffelt und löst aus.

Was ist wichtig?

Die Anrege-, bzw. Auslösewerte des übergeordneten und untergeordneten Schutzorgans müssen übereinstimmen, die Auslösezeiten müssen jedoch selektiv (unterschiedlich) sein.

Wie wird die Ablaufkoordinierung aktiviert?


Die Ablaufkoordinierung ist Bestandteil der AWE-Funktion und kann für den übergeordneten Schutz aktiviert werden, indem der Parameter [Schutzparameter / Satz 1...4 / AWE / Allg Einstellungen] »Ablaufkoordinierung« = "Aktiv" eingestellt wird.

Wie funktioniert die Ablaufkoordinierung des übergeordneten Schutzorgans?

Wenn die Ablaufkoordinierung aktiviert ist, arbeitet sie ähnlich, wie eine normale AWE mit den gleichen Einstellwerten für: Maximale Anzahl AWE, Pausenzeit für jeden Schuss,

Anwurffunktion für jeden Schuss und andere Timer für den AWE-Zyklus, aber mit den folgenden Ablaufkoordinierungsfunktionen für den untergeordneten Schutz:

- Die entsprechende Pausenzeit für jeden Schuss wird gestartet, auch wenn der Leistungsschalter nicht durch das übergeordnete Schutzorgan ausgelöst wurde.
- Der Timer für die Pausenzeit beginnt abzulaufen, sobald ein Wegfallen des Anwurfsignals erkannt wird. Dies bedeutet, dass der Fehler durch eine AWE im untergeordneten Abgang gelöscht wurde.
- Der AWE-Zähler der aktivierten Ablaufkoordinierung wird nach Ablauf der Pausenzeit erhöht, auch wenn kein Auslösekommando an den Leistungsschalter ausgegeben wurde und zwischenzeitlich die Zeitstufe »t-Run2Ready« gestartet wurde.
- Erfolgt eine erneute Wiederzuschaltung auf einen permanenten Fehler, regt das übergeordnete Schutzorgan erneut an, jedoch mit den Anregewerten und Auslösecharakteristiken, die für den jeweiligen AWE-Schuss parametriert wurden. Auf diese Weise folgt die übergeordnete Schutzeinrichtung der untergeordneten Schuss für Schuss.
- Ist der Fehler temporär, wird die Ablaufkoordinierung nicht erneut angeworfen, da kein Fehlerstrom mehr auftritt. Nach Ablauf der Zeitstufe »t-Run2Ready« wird die Ablaufkoordinierung auf den normalen Zustand zurückgesetzt.

5.19 U - Spannungsschutz [27,59]

VORSICHT!

Wenn der Messort der Spannungswandler nicht auf der Sammelschienenseite liegt, sondern auf der Abgangsseite, muss Folgendes beachtet werden:

Wenn die Leitung freigeschaltet wird oder wenn die Hilfsspannung eingeschaltet wird und die Messspannung noch nicht anliegt, müssen die U<-Stufen an einer Unterspannungsauslösung gehindert werden.

Dies wird im Allgemeinen durch die Aktivierung der Mindeststromprüfung erreicht, die genau eine solche passende Blockade, basierend auf der Phasenstrommessung, darstellt. (Siehe ;,Mindeststromprüfung für den Unterspannungsschutz".)

Bei einer älteren Firmware-Version, die dieses Feature noch nicht zur Verfügung stellt, kann dies alternativ auch durch Erkennen der Schalterstellung (über digitale Eingänge) und eine entsprechende »Externe Blockade« geschehen, also z. B. durch folgende Einstellungen:

- *U[x] . ExBlo *1 = "SG[n] . Pos AUS",
- *U[x] . ExBlo Fk < 1 = "Aktiv".

VORSICHT!

Die »U<-Stufen« müssen bei einem Automatenfall blockiert werden, sonst kommt es zu einer Überfunktion (Fuse Failure).

Um diese Blockade zu aktivieren, setzen Sie »Messkrübw« = "Aktiv" und aktivieren das jeweils gewünschte Spannungswandler-Überwachungsmodul (z. B. SPÜ, SpWÜ).

Außerdem muss die Auslöseverzögerung »t« der Unterspannungsauslösung auf einen Wert eingestellt werden, der größer ist als die Zeitdauer für die Erkennung eines Automatenfalls. Folgende Zeiten sind hierfür grundlegend:

- SpWÜ, Automatenfall (Fuse Failure) über Digitaleingang: 20 ms
- SpWÜ, Erkennung über Messwerte bzw. interne Berechnung: 20 ms
- SPÜ, Automatenfall (Fuse Failure) über Digitaleingang: 20 ms
- SPÜ, Erkennung über Messwerte bzw. interne Berechnung: **30 ms**

WARNUNG!

(Für Geräte mit SPÜ-Modul:)

Zu beachten ist außerdem, dass das Modul SPÜ (Erweiterte Spannungswandlerüberwachung) eine feste Unterspannungsschwelle **0,03·Un** verwendet. Es ist dann also unsinnig, für die »U<-Stufen« einen Grenzwert »U<« kleiner als 0.03·Un einzustellen, weil ja dann der Unterspannungsschutz grundsätzlich vor einer Auslösung blockiert würde.

HINWEIS!

Alle Spannungsstufen sind gleich aufgebaut und können wahlweise als Über-, oder Unterspannungsstufe projektiert werden.

Liegen an den Messeingängen des Geräts Phasenspannungen an und ist in den Feldparametern der Parameter »SpW Anschluss« auf "Leiter-Erde" gesetzt, sind die Meldungen im Fall einer Anregung bzw. Auslösung, die durch das Spannungsschutzmodul ausgegeben werden folgendermaßen zu interpretieren:

- »Alarm L1« bzw. »Ausl L1« Alarm bzw. Auslösung durch Phasenspannung UL1 verursacht.
- »Alarm L2« bzw. »Ausl L2« Alarm bzw. Auslösung durch Phasenspannung UL2 verursacht.
- »Alarm L3« bzw. »Ausl L3« Alarm bzw. Auslösung durch Phasenspannung UL3 verursacht.

Liegen an den Messeingängen stattdessen Außenleiterspannungen an und ist in den Feldparametern der Parameter »SpW Anschluss« auf "Leiter-Erde" gesetzt, sind die Meldungen folgendermaßen zu interpretieren:

- »Alarm L1« bzw. »Ausl L1« Alarm bzw. Auslösung durch Außenleiterspannung UL12 verursacht.
- »Alarm L2« bzw. »Ausl L2« Alarm bzw. Auslösung durch Außenleiterspannung UL23 verursacht.
- »Alarm L3« bzw. »Ausl L3« Alarm bzw. Auslösung durch Außenleiterspannung UL31 verursacht.

Die folgende Tabelle zeigt die grundlegenden Verwendungsmöglichkeiten (Applikationen) des U-Schutzmoduls.

Applikationsoptionen des U-Moduls	Einstellung im:	Option
ANSI 27 Unterspannungsschutz	[Projektierung / Projektierte Elemente] »U[x] . Modus«, Einstellwert: U<	»Messprinzip«:• Grundwelle, Effektivwert»Mess-Modus«:• Leiter-Erd, Leiter-Leiter
10 Minuten Gleitende Mittelwertüberwachung U<	[Projektierung / Projektierte Elemente] »U[x] . Modus«, Einstellwert: U<	»Messprinzip«:• Umit»Mess-Modus«:• Leiter-Erd, Leiter-Leiter
ANSI 59 Überspannungsschutz	[Projektierung / Projektierte Elemente] »U[x] . Modus«, Einstellwert: U>	»Messprinzip«:• Grundwelle, Effektivwert

Applikationsoptionen des U-Moduls	Einstellung im:	Option
		»Mess-Modus«:Leiter-Erd, Leiter-Leiter
Gleitende Mittelwertüberwachung U>	[Projektierung / Projektierte Elemente] »U[x] . Modus«, Einstellwert: U>	»Messprinzip«:• Umit»Mess-Modus«:• Leiter-Erd, Leiter-Leiter

Messprinzip

Für alle Spannungsschutzstufen kann über den Parameter »Messprinzip« ausgewählt werden, ob die Messwerterfassung auf Basis der "Grundwelle" erfolgt, oder ob der "Effektivwert" verwendet wird. Darüber hinaus kann hier eine gleitende Mittelwertüberwachung "Umit" gewählt werden.

HINWEIS!

Die erforderlichen Einstellungen für die Ermittlung des "Mittelwerts" der "Gleitenden Mittelwertüberwachung" sind im Menü [Geräteparameter / Statistik / Umit] vorzunehmen.

Mess-Modus

Wenn an den Messeingängen der Spannungsmesskarte Leiter-Erd-Spannungen anliegen, dann ist in den Feldparametern »SpW Anschluss« auf "Leiter-Erde" zu setzen. In diesem Fall kann dann über den Parameter »Mess-Modus« festgelegt werden, ob dieses Modul mit "Leiter-Erd"- oder "Leiter-Leiter"-Spannungen arbeiten soll. Hierdurch wird die Definition von Un festgelegt:

- »Mess-Modus« = "Leiter-Erd" $Un = SpW \text{ sek}/\sqrt{3}$
- »Mess-Modus« = "Leiter-Leiter" Un = SpW sek

Wenn allerdings an den Messeingängen der Spannungsmesskarte Leiter-Leiter-Spannungen anliegen (»SpW Anschluss« = "Leiter-Leiter"), dann wird die Einstellung »Mess-Modus« ignoriert und intern auf "Leiter-Leiter" gesetzt, mit Un = SpW sek.

Mindeststromprüfung für den Unterspannungsschutz

Fall das Spannungsschutz-Element in der Betriebsart "Unterspannungsschutz" arbeitet – »Modus« = "U<" -, gibt es die Option, zusätzlich eine Mindeststromprüfung zu aktivieren. Dieses Kriterium blockiert den Unterspannungsschutz, sobald **alle** Phasenströme unter einen bestimmten Schwellwert absinken. Und umgekehrt, falls nach einem solchen "Stromausfall" die Phasenströme wieder oberhalb dieses Schwellwertes ansteigen, wird der Unterspannungsschutz erst nach einer bestimmten Verzögerung wieder freigegeben.

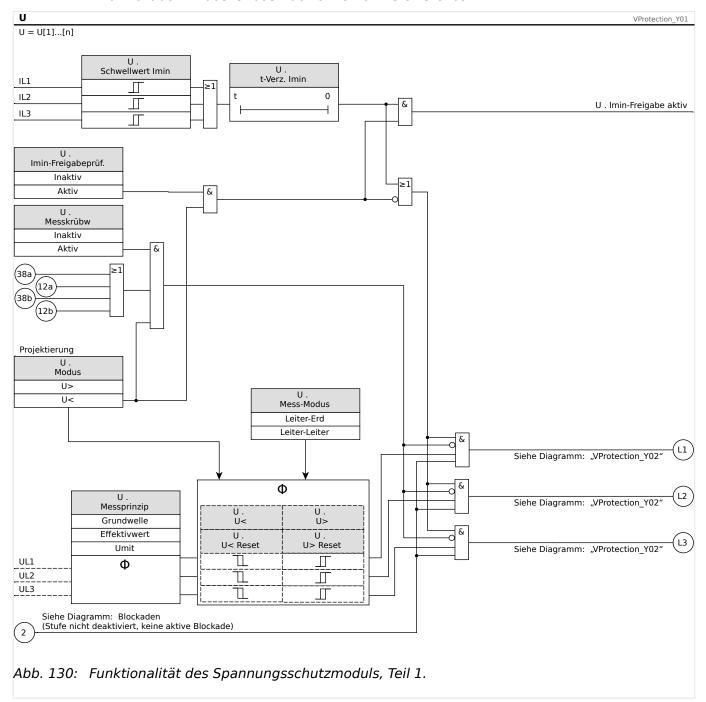
Die Motivation hinter einer solchen Funktionalität ist, dass eine Situation, in der alle Phasenströme "tot" sind, normalerweise auf einen offenen Leistungsschalter hinweist, und es ist eventuell nicht wünschenswert, dass hierauf der Unterspannungsschutz reagiert. Der Zweck der Freigabeverzögerung ist, eine sofortige Auslösung während des

Wiedereinschaltens zu verhindern: Ohne diese Verzögerung gäbe es die Möglichkeit, dass der Unterspannungsschutz sofort auslöst, weil die Spannungen möglicherweise noch nicht wieder oberhalb des Spannungsschwellwertes >U<< sind (obwohl die Phasenströme eventuell schon wieder über dem Mindestromwert liegen).

Die Mindeststromprüfung ist optional in dem Sinne, dass sie per Einstellung aktiviert werden muss: *»Imin-Freigabeprüf.«* = Aktiv).

Wenn die Mindeststromprüfung aktiv ist, ist der Mindeststromwert einstellbar über »Schwellwert Imin«, d. h. der Unterspannungsschutz wird blockiert, sobald **alle** Phasenströme unter diesem Schwellwert liegen.

Die Verzögerungszeit für die Wiederfreigabe (nachdem mindestens einer der Phasenströme wieder oberhalb des Schwellwertes angestiegen ist) kann eingestellt werden über »t-Verz. Imin«.


VORSICHT!

Bei aktiver Mindeststromprüfung löst der Unterspannungsschutz ohne Stromfluss grundsätzlich nicht aus. Insofern kann es je nach Anwendungsfall gute Gründe geben, dieses Kriterium nicht zu verwenden.

5.19.1 Funktionalität und Auslöselogik

In jeder Spannungsschutzstufe kann festgelegt werden, ob diese anregen soll, wenn die Über- bzw. Unterspannung in einer von drei, zwei von drei oder in allen drei Phasen erkannt wird. Darüber hinaus ist das Rückfallverhältnis einstellbar.

5.19.2 Inbetriebnahme: Überspannungsschutz [59]

Gegenstand der Prüfung

Testen der Überspannungsschutzstufen jeweils $3 \times einphasig$ und $1 \times dreiphasig$ (für jede Stufe)

VORSICHT!

Das Überprüfen der Überspannungsschutzstufe dient unter anderem auch dazu, die korrekte Verdrahtung ab Schaltschrankeingangsklemmen sicherzustellen. Verdrahtungsfehler an den Spannungsmesseingängen führen zu:

• Fehlauslösungen des gerichteten Stromschutzes.

Beispiel: Gerät löst plötzlich in Rückwärtsrichtung aus, aber in Vorwärtsrichtung nicht.

- Falsche oder nicht vorhandene cos φ-Anzeige.
- Fehler im Zusammenhang mit Leistungsrichtungen usw.

Benötigte Geräte

- 3-phasige Wechselspannungsquelle
- Timer zur Messung der Auslösezeit
- Spannungsmessgerät

Durchführung (3 x einphasig, 1 x dreiphasig und für jede Stufe)

Prüfen der Ansprechwerte

Zum Prüfen der Ansprech- und Rückfallwerte muss die Prüfspannung so lange erhöht werden, bis das Relais angeregt ist. Vergleicht man die auf dem Display angezeigten Werte mit denen des Spannungsmessers, so muss die Abweichung innerhalb der zulässigen Toleranzen liegen.

Prüfen der Auslöseverzögerung

Zum Prüfen der Auslöseverzögerung wird ein Timer mit dem Kontakt des zugehörigen Auslöserelais verbunden.

Der Timer wird gleichzeitig mit dem Überschreiten des Grenzwertes der Auslösespannung gestartet und beim Auslösen des Relais gestoppt.

Prüfen des Rückfallverhältnis

Verringern Sie die Messgröße auf unter (z.B.) 97% des Auslösewerts. Frühestens bei 97% des Auslösewerts darf das Relais zurückfallen.

Erfolgreiches Testergebnis

Die gemessenen Ansprechwerte, Auslöseverzögerungen und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

5.19.3 Inbetriebnahme: Unterspannungsschutz [27]

Führen Sie den Test analog zum Überspannungsschutz durch (mit entsprechenden Unterspannungen).

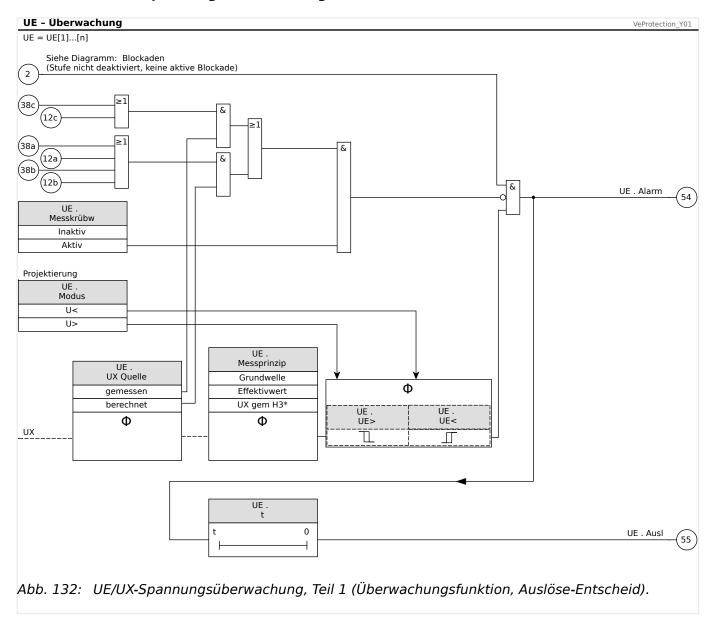
Abweichend dazu:

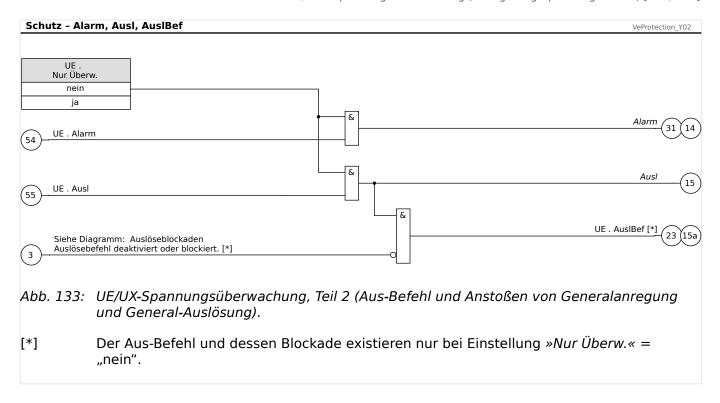
- Zum Prüfen der Ansprechwerte muss die Prüfspannung so lange abgesenkt werden, bis das Relais angeregt ist.
- Für die Ermittlung des Rückfallverhältnisses erhöhen Sie die Messgröße auf über (z.B.) 103% des Auslösewertes. Frühestens bei 103% des Auslösewertes darf das Relais zurückfallen.

5.20 UE/UX - Spannungsüberwachung (Verlagerungsspannungsschutz) [27A, 59A]

HINWEIS!

Alle Stufen der Spannungsüberwachung für den vierten Messeingang sind gleich aufgebaut.


Diese Schutzstufe kann je nach Projektierung und Parametrierung dazu genutzt werden:


• Die gemessene oder berechnete Verlagerungsspannung zu überwachen. Die Verlagerungsspannung kann nur dann berechnet werden, wenn an den Messeingängen des Geräts die Phasenspannungen in Sternschaltung anliegen.

Siehe auch →3.6.4 Bestimmung der Verlagerungsspannung UX für unterschiedliche Anschlussvarianten.

• Eine andere Spannung auf Unter- oder Überspannung zu überwachen.

UE/UX Spannungsüberwachung - Funktionalität

ANSI 59N - Verlagerungsspannungsschutz (gemessen oder berechnet)

Diese Applikation des »UE«-Schutzmoduls wird über das Menü [Projektierung / Projektierte Elemente] aktiviert:

• [Projektierung / Projektierte Elemente] »UE[x] . Modus« = "U>"

Optionen:

- [Schutzparameter / Satz 1...4 / U-Schutz / UE[x]] »UX Quelle« =
 - gemessen

Hinweis: Hierbei wird für Un der folgende Einstellwert verwendet:

Un = [Feldparameter / SpW] »ESpW sek«

berechnet

Hinweis: Hierbei wird für Un der folgende Einstellwert verwendet:

Un = [Feldparameter / SpW] »SpW sek«

ANSI 59A - Überwachung einer anderen Spannung auf Überspannung

Diese Applikation des »UE«-Schutzmoduls wird folgendermaßen aktiviert:

- [Projektierung / Projektierte Elemente] »UE[x] . Modus« = "U>"
- [Schutzparameter / Satz 1...4 / U-Schutz / UE[x]] »UX Quelle« = "gemessen"

Optionen:

- [Schutzparameter / Satz 1...4 / U-Schutz / UE[x]] »Messprinzip« =
 - Grundwelle

Effektivwert

ANSI 27A - Überwachung einer anderen Spannung auf Unterspannung

Diese Applikation des »UE«-Schutzmoduls wird folgendermaßen aktiviert:

- [Projektierung / Projektierte Elemente] »UE[x] . Modus« = "U<"
- [Schutzparameter / Satz 1...4 / U-Schutz / UE[x]] »UX Quelle« = "gemessen"

Optionen:

- [Schutzparameter / Satz 1...4 / U-Schutz / UE[x]] »Messprinzip« =
 - Grundwelle
 - Effektivwert

5.20.1 Inbetriebnahme: Verlagerungsspannungsschutz - gemessen [59N]

Gegenstand der Prüfung für gemessene Verlagerungsspannung

Testen der Verlagerungsspannungsschutzstufen

Benötigte Geräte für gemessene Verlagerungsspannung

- 1-phasige Wechselspannungsquelle
- Timer zur Messung der Auslösezeit
- Spannungsmessgerät

Durchführung für gemessene Verlagerungsspannung (für jede Stufe)

Prüfen der Ansprechwerte für gemessene Verlagerungsspannung

Zum Prüfen der Ansprech- und Rückfallwerte muss die Prüfspannung am Verlagerungsspannungsmesseingang so lange erhöht werden, bis das Relais angeregt ist. Vergleicht man die auf dem Display angezeigten Werte mit denen des Spannungsmessers, so muss die Abweichung innerhalb der zulässigen Toleranzen liegen.

Prüfen der Auslöseverzögerung für gemessene Verlagerungsspannung

Zum Prüfen der Auslöseverzögerung wird ein Timer mit dem Kontakt des zugehörigen Auslöserelais verbunden.

Der Timer wird gleichzeitig mit dem Überschreiten des Grenzwertes der Auslösespannung gestartet und beim Auslösen des Relais gestoppt.

Prüfen des Rückfallverhältnis für gemessene Verlagerungsspannung

Verringern Sie die Messgröße auf unter 97% des Auslösewerts. Spätestens bei 97% des Auslösewerts darf das Relais zurückfallen.

Erfolgreiches Testergebnis für gemessene Verlagerungsspannung

Die gemessenen Ansprechwerte, Auslöseverzögerungen und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

5.20.2 Inbetriebnahme: Verlagerungsspannungsschutz - berechnet [59N]

Gegenstand der Prüfung für berechnete Verlagerungsspannung

Testen der Verlagerungsspannungsschutzstufen

Benötigte Geräte für gemessene Verlagerungsspannung

• 3-phasige Spannungsquelle

HINWEIS!

Die Berechnung der Verlagerungsspannung ist nur möglich, wenn an den Spannungsmesseingängen Phasenspannungen (Stern) anliegen und im Parametersatz der Parameter [Schutzparameter / Satz 1...4 / U-Schutz / UE[x]] »UX Quelle« = "berechnet" gesetzt ist).

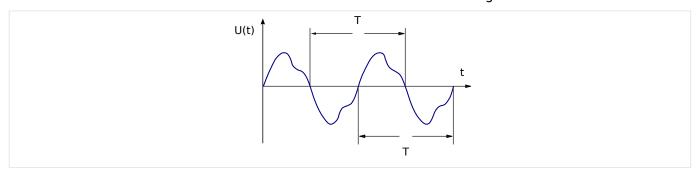
Hinweis: Hierbei wird für Un der folgende Einstellwert verwendet:

Un = [Feldparameter / SpW] »SpW sek«

Durchführung

- Speisen Sie ein dreiphasiges, symmetrisches Spannungssystem mit einer Leiter-Erd-Spannung von $Un/\sqrt{3} = 0,5774\cdot Un$ in die Spannungsmesseingänge des Schutzgerätes ein.
- Stellen Sie den Grenzwert von [Schutzparameter / Satz 1...4 / U-Schutz / UE[x]] »UE>« auf 0,5·Un ein.
- Schalten Sie an zwei Messeingängen die Phasenspannung ab (sekundärseitig muss weiterhin symmetrisch eingespeist werden).
- Der Messwert von [Betrieb / Messwerte / Spannung] »UE err« muss nun circa 0,57·Un betragen.
- Vergewissern Sie sich (im Menü [Betrieb / Zustandsanzeige / U-Schutz / UE[x]]), dass nun die Meldung »Alarm« bzw. »Ausl« generiert wird.

Erfolgreiches Testergebnis


Die Meldung »UE[x] . Alarm« bzw. »UE[x] . Ausl« wird generiert.

5.21 f - Frequenz [810/U, 78, 81R]

Frequenz - Messprinzip

Die Frequenz ist der Mittelwert der gemessenen Phasenfrequenzen. In den Mittelwert gehen nur diejenigen Phasenfrequenzen mit ein, die eindeutig ausgewertet werden können. Bricht die Spannung innerhalb einer Phase zusammen, so geht dieser Messwert nicht mehr mit in den Mittelwert mit ein.

Das Messprinzip der Frequenzüberwachung basiert allgemein auf der Zeitmessung von jeweils ganzen Schwingungsperioden, wobei bei jedem Spannungsnulldurchgang der Leiter-Leiter-Spannungen der Frequenzmesswert aktualisiert wird. Ein Tiefpassfilter minimiert den Einfluss von Oberwellen ab der 2. Oberwelle auf das Messergebnis.

Frequenzmessung und alle Frequenz-Schutzfunktionen werden blockiert, sobald die Spannung unter den Wert fällt, der hier einstellbar ist: [Feldparameter / Frequenz] »U Block f« – Dies verhindert falsche Anregungen des Frequenzschutzes, falls ein Netzfehler die Spannungsmessung stört. Wenn zum Beispiel ein Lichtbogen durch einen Netzfehler entsteht, werden große Anteile von Harmonischen bei der Spannung gemessen. Solche Störungen verhindern eine präzise Ermittlung der Frequenz.

Die Blockade wird nach Spannungswiederkehr noch für mindestens 0,5 s gehalten. Außerdem wird der Frequenzwert noch für mindestens 0,3 s auf 0 Hz gehalten, und df/dt wird noch für ca. 1 s auf 0 Hz/s gehalten.

Mit Hilfe eines Glättungsfensters kann der Frequenzwert zusätzlich mit dem Parameter [Feldparameter / Frequenz] »Stab.-Fenster f« stabilisiert werden. Die Frequenzmessung ist im Allgemeinen gegen Phasensprünge bis zu 90° stabil, d. h. es werden Phasensprünge (>1°) und Spannungssprünge (>2%) nahezu vollständig ignoriert. Der Frequenzwert wird in diesem Fall für mindestens zwei Perioden stabil gehalten, und der df/dt-Wert wird in diesem Fall auf 0 Hz/s gesetzt, bis die Störung vorüber und Messfenster und Stabiliserungsfenster durchlaufen wurden.

HINWEIS!

Jede Vergrößerung des Stabiliserungsfensters (vergrößerung des Einstellwertes »Stab.-Fenster f«) erhöht die Messzeit und somit auch die Ansprechzeit. (Siehe auch $\hookrightarrow 13.3.3$ Toleranzen der Schutzstufen.)

HINWEIS!

Für Relais-Konfigurationen entsprechend der Standards VDE AR-N 4110:2023-9 und VDE-AR-N 4120:2018-11 muss folgende Einstellung verwendet werden: [Feldparameter / Frequenz]»Stab.-Fenster f«="0".

Frequenzfunktionen

Dank der vielfältigen Frequenzschutz-Funktionen und deren Kombinationen, ist das Gerät äußerst flexibel und für zahlreiche Anwendungen geeignet, in denen ein zuverlässiger und selektiver Frequenzschutz gefordert ist.

Im Menü Projektierung wird festgelegt, wie die einzelnen Schutzstufen arbeiten sollen.

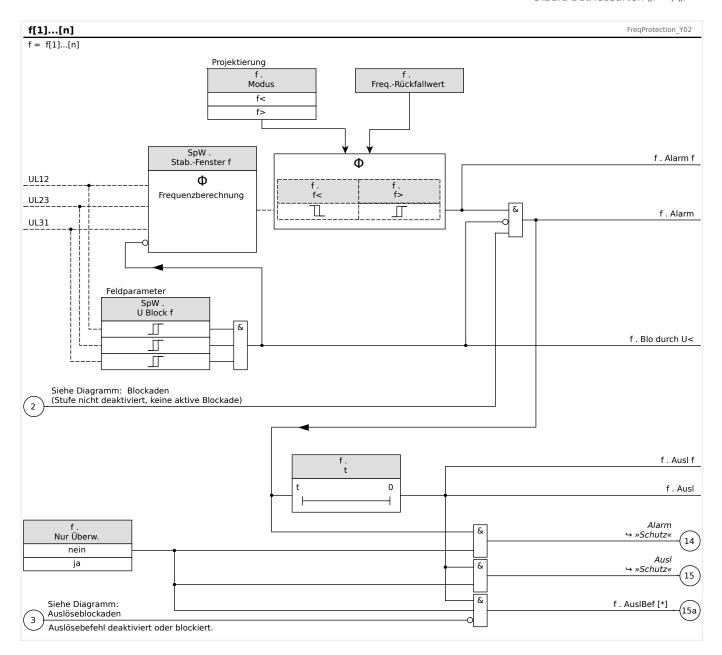
Die Schutzstufen f[1] bis f[6] können wie folgt projektiert werden:

- "f<" Unterfrequenz (siehe →5.21.1 Betriebsarten "f<", "f>");
- "f>" Überfrequenz (siehe ⇔5.21.1 Betriebsarten "f<", "f>");
- "df/dt" Frequenzgradient (siehe →5.21.2 Betriebsart "df/dt");
- "f< und df/dt" Unterfrequenz und Frequenzgradient (siehe →5.21.3 Betriebsarten "f< und df/dt", "f> und df/dt");
- "f> und df/dt" Überfrequenz und Frequenzgradient (siehe →5.21.3 Betriebsarten "f< und df/dt", "f> und df/dt");
- "f< und DF/DT" Unterfrequenz und absolute Frequenzänderung während eines Zeitintervalls (siehe ⇔5.21.4 Betriebsarten "f< und DF/DT", "f> und DF/DT");
- "f> und DF/DT" Überfrequenz und absolute Frequenzänderung während eines Zeitintervalls (siehe ⇔5.21.4 Betriebsarten "f< und DF/DT", "f> und DF/DT"); and
- "delta phi" Vektorsprung (siehe →5.21.5 Betriebsart "delta phi" [ANSI 78V]).

5.21.1 Betriebsarten "f<", "f>"

f< - Unterfrequenz

Diese Schutzfunktion besitzt einen einstellbaren Anregewert und eine dazugehörige einstellbare Auslöseverzögerung. Fällt die Frequenz unter den Anregewert, erfolgt unverzögert ein Alarm. Bleibt die Frequenz bis zum Ablauf der Auslöseverzögerung unterhalb des Anregewertes, dann erfolgt eine Auslösung.


f> - Überfrequenz

Diese Schutzfunktion besitzt einen einstellbaren Anregewert und eine dazugehörige einstellbare Auslöseverzögerung. Steigt die Frequenz über den Anregewert, erfolgt unverzögert ein Alarm. Bleibt die Frequenz bis zum Ablauf der Auslöseverzögerung oberhalb des Anregewertes, dann erfolgt eine Auslösung.

Funktionsprinzip

Die Frequenzstufe überwacht die drei Leiter-Leiter-Spannungen UL12, UL23 und UL31. Liegen alle drei Leiter-Leiter-Spannungen unterhalb eines Schwellwertes, wird die Frequenzmessung blockiert. (Der Schwellwert ist einstellbar, siehe Messprinzip, ↔ "Frequenz – Messprinzip").

Je nach Einstellung der Frequenzstufe im Menü [Projektierung / Projektierte Elemente] (»f[x] . Modus« = "f<" oder = "f>") werden die ausgewerteten Phasenspannungen mit den eingestellten Über- oder Unterfrequenz-Anregewerten verglichen. Wenn in einer der drei Phasen die Frequenz den Anregewert unter-, bzw. überschreitet und die Frequenzstufe nicht blockiert ist, erfolgt unverzögert ein Alarm. Gleichzeitig wird der Timer für die Auslöseverzögerung wird gestartet. Liegt die Frequenz nach Ablauf der Auslöseverzögerung immer noch unter bzw. über dem Anregewert, erfolgt ein Auslösekommando.

5.21.2 Betriebsart "df/dt"

df/dt - Frequenzgradient (Frequenzänderungsgeschwindigkeit)

Netzparallel laufende Stromerzeuger, z.B. Eigenversorgungsanlagen der Industrie, sollten aus folgenden Gründen bei Ausfall des Verbundnetzes schnellstmöglich vom Netz getrennt werden:

- Es muss verhindert werden, dass die Stromerzeuger bei nicht-synchroner Wiederkehr der Netzspannung, z. B. nach einer Kurzunterbrechung, Schaden nehmen.
- Die Industrie-Eigenversorgung muss aufrecht erhalten bleiben.

Die Messung der Frequenzänderungsgeschwindigkeit df/dt ist ein zuverlässiges Kriterium für die Erkennung eines Netzfehlers. Voraussetzung hierzu ist ein Leistungsfluss über die Netzkuppelstelle. Bei einem Netzfehler führt der sich dann spontan ändernde Leistungsfluss zu einer steigenden, bzw. sinkenden Frequenz. Bei einem Leistungsdefizit der Eigenerzeugungsanlage sinkt die Frequenz dabei linear ab und steigt bei einem Leistungsüberschuss linear an (vorausgesetzt man vernachlässigt die Turbinenregelung und die Frequenzabhängigkeit der Lasten). Typische Frequenzgradienten bei der Anwendung "Netzentkupplung" liegen im Bereich von 0,5 Hz/s bis über 2 Hz/s.

Das Schutzgerät ermittelt den momentanen Frequenzgradienten df/dt jeder Netzspannungsperiode, wobei bei jedem Spannungsnulldurchgang der Leiter-Leiter-Spannungen der Frequenzgradient aktualisiert wird.

Über ein einstellbares Messfenster kann die Genauigkeit des Frequenzgradienten mit dem Einstellwert [Feldparameter / Frequenz] »Fenster df/dt« erhöht werden. Das Messfenster beträgt mindestens zwei Netzperioden der Nennfrequenz und kann bis zu 10 Netzperioden verlängert werden (z. B. bei fN = 50 Hz: 10.20 ms = 200 ms maximales Messfenster).

Zur Berechnung des Frequenzgradienten df/dt wird der gemessene Frequenzwert (vor der Glättung bzw. Stabiliserung, siehe →"Frequenz – Messprinzip") herangezogen. Es gibt zwei Einstellparameter, über die der gemessene Frequenzwert als Eingangsgröße für df/dt geglättet bzw. stabilisiert werden kann, um eine noch höhere Genauigkeit, siehe auch →13.3.3 Toleranzen der Schutzstufen, zu erreichen:

- [Feldparameter / Frequenz] »Stab.-Fenster f für df/dt«: Stabilisierung der zugrunde gelegten Frequenzwerte; für diese Einstellung wird allerdings empfohlen, sie im Allgemeinen auf dem Vorgabewert (3 Netzperioden) zu belassen.
- [Feldparameter / Frequenz] »Stab.-Fenster df/dt«: Stabilisierung von df/dt gegen kurzzeitige Schwankungen, Einstellung in Zyklen bei Nennfrequenz.

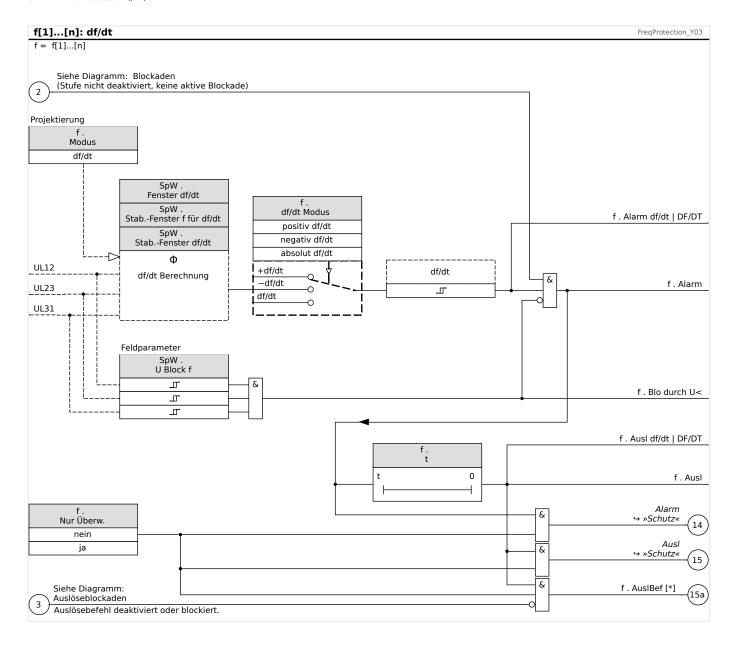
HINWEIS!

Jede Vergrößerung von Messfenster oder Stabilisierungsfenster erhöht die Messzeit und somit auch die Ansprechzeit.

Durch dieses spezielle Messverfahren wird eine hohe Auslösesicherheit und damit eine hohe Stabilität gegen transiente Vorgänge, z. B. Schalthandlungen erreicht.

Der Frequenzgradient df/dt (Frequenzänderungsgeschwindigkeit) kann abhängig davon ob eine Frequenzsteigerung oder ein Frequenzrückgang vorliegt, ein positives oder negatives Vorzeichen besitzen.

In den Frequenzparametersätzen kann festgelegt werden, wie die Frequenzgradientüberwachung arbeiten soll.


- Positives df/dt = Die Frequenzgradientüberwachung erkennt eine Frequenzsteigerung
- Negatives df/dt = Die Frequenzgradientüberwachung erkennt einen Frequenzrückgang
- Absolut df/dt = Die Frequenzgradientüberwachung erkennt sowohl eine Frequenzsteigerung, als auch einen Frequenzrückgang

Diese Schutzfunktion besitzt einen einstellbaren Anregewert und eine dazugehörige einstellbare Auslöseverzögerung. Übersteigt, bzw. unterschreitet der Frequenzgradient den Anregewert, erfolgt unverzögert ein Alarm. Bleibt der Frequenzgradient bis zum Ablauf der Auslöseverzögerung oberhalb, bzw. unterhalb des Anregewert, dann erfolgt eine Auslösung.

Funktionsprinzip

Die Frequenzstufe überwacht die drei Leiter-Leiter-Spannungen UL12, UL23 und UL31. Liegen alle drei Leiter-Leiter-Spannungen unterhalb eines Schwellwertes, wird die Frequenzmessung blockiert. (Der Schwellwert ist einstellbar, siehe Messprinzip, ↔ "Frequenz – Messprinzip").

Je nach Einstellung der Frequenzstufe im Menü [Projektierung / Projektierte Elemente] (»f[x] . Modus« = "df/dt") werden die ausgewerteten Phasenspannungen mit den eingestellten Frequenzgradienten-Anregewerten verglichen. Wenn in einer der drei Phasen der Frequenzgradient den Anregewert unter-, bzw. überschreitet und die Frequenzstufe nicht blockiert ist, erfolgt unverzögert ein Alarm. Gleichzeitig wird der Timer für die Auslöseverzögerung wird gestartet. Liegt der Frequenzgradient nach Ablauf der Auslöseverzögerung immer noch unter, bzw. über dem Anregewert, erfolgt ein Auslösekommando.

5.21.3 Betriebsarten "f< und df/dt", "f> und df/dt"

f< und df/dt - Unterfrequenz- und Frequenzgradientüberwachung

In dieser Einstellung überwacht die Frequenzstufe, ob die Frequenz und gleichzeitig der Frequenzgradient unter den eingestellten Anregewert fallen.

Der jeweilige Parametersatz f[X] besitzt jeweils einen einstellbaren Anregewert für Unterfrequenz und Frequenzgradient und eine dazugehörige einstellbare Auslöseverzögerung.

Wobei:

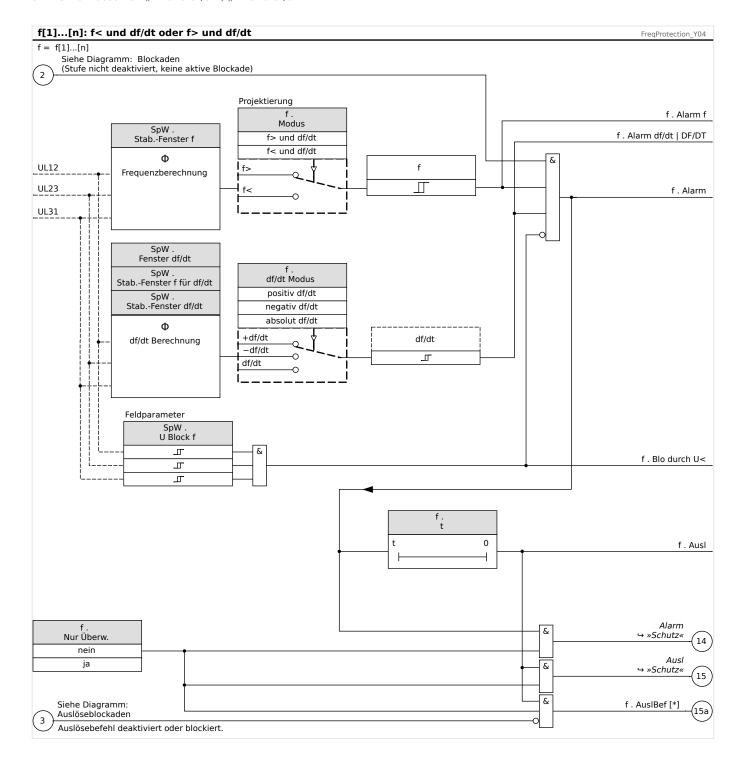
- Positives df/dt = Die Frequenzgradientüberwachung erkennt eine Frequenzsteigerung
- Negatives df/dt = Die Frequenzgradientüberwachung erkennt einen Frequenzrückgang
- Absolut df/dt = Die Frequenzgradientüberwachung erkennt sowohl eine Frequenzsteigerung, als auch einen Frequenzrückgang

f> und df/dt - Überfrequenz- und Frequenzgradientüberwachung

In dieser Einstellung überwacht die Frequenzstufe, ob die Frequenz und gleichzeitig der Frequenzgradient den eingestellten Anregewert überschreiten.

Der jeweilige Parametersatz f[X] besitzt jeweils einen einstellbaren Anregewert für Überfrequenz und Frequenzgradient und eine dazugehörige einstellbare Auslöseverzögerung.

Wobei:


- Positives df/dt = Die Frequenzgradientüberwachung erkennt eine Frequenzsteigerung
- Negatives df/dt = Die Frequenzgradientüberwachung erkennt einen Frequenzrückgang
- Absolut df/dt = Die Frequenzgradientüberwachung erkennt sowohl eine Frequenzsteigerung, als auch einen Frequenzrückgang

Funktionsprinzip

Die Frequenzstufe überwacht die drei Leiter-Leiter-Spannungen UL12, UL23 und UL31. Liegen alle drei Leiter-Leiter-Spannungen unterhalb eines Schwellwertes, wird die Frequenzmessung blockiert. (Der Schwellwert ist einstellbar, siehe Messprinzip, ↔ "Frequenz – Messprinzip").

Je nach Einstellung der Frequenzstufe im Menü [Projektierung / Projektierte Elemente] (*f[x] . Modus* = ,f< und df/dt* oder = ,f> und df/dt*) werden die ausgewerteten Phasenspannungen mit den eingestellten Anregewerten für Unter-, bzw. Überfrequenz sowie dem Frequenzgradient-Anregewert verglichen.

Wenn in einer der drei Phasen die Frequenz und der Frequenzgradient den Anregewert unter-, bzw. überschreitet und die Frequenzstufe nicht blockiert ist, erfolgt unverzögert ein Alarm. Gleichzeitig wird der Timer für die Auslöseverzögerung wird gestartet. Liegt die Frequenz und der Frequenzgradient nach Ablauf der Auslöseverzögerung immer noch unter, bzw. über dem Anregewert, erfolgt ein Auslösekommando.

5.21.4 Betriebsarten "f< und DF/DT", "f> und DF/DT"

f< und DF/DT - Unterfrequenz und DF/DT

In dieser Einstellung überwacht die Frequenzstufe die Frequenz und gleichzeitig den absoluten Frequenzrückgang während eines definierten Zeitintervalls.

Der jeweilige Parametersatz f[X] besitzt jeweils einen einstellbaren Anregewert für Unterfrequenz f<, für den absoluten Frequenzrückgang DF und ein einstellbares Zeitintervall DT.

f> und DF/DT - Überfrequenz und DF/DT

In dieser Einstellung überwacht die Frequenzstufe die Frequenz und gleichzeitig den absoluten Frequenzzuwachs während eines definierten Zeitintervalls.

Der jeweilige Parametersatz f[X] besitzt jeweils einen einstellbaren Anregewert für Überfrequenz f>, für den absoluten Frequenzzuwachs DF und ein einstellbares Zeitintervall DT.

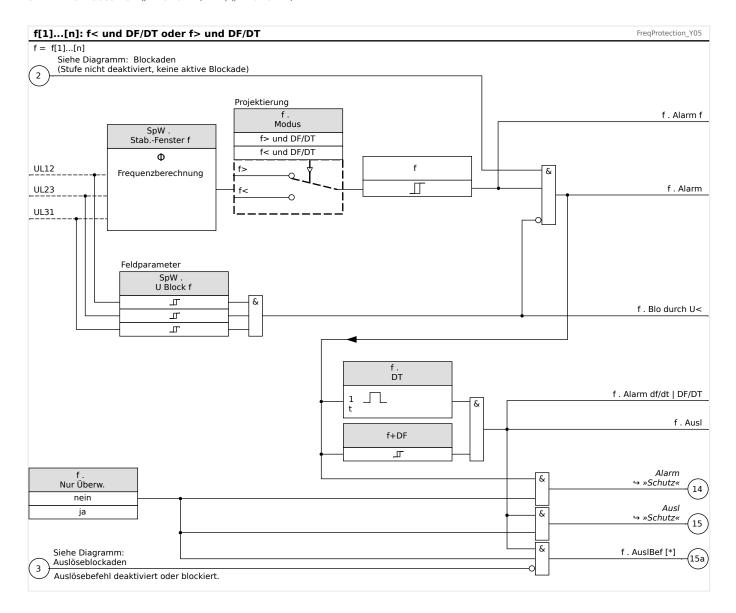
Funktionsprinzip

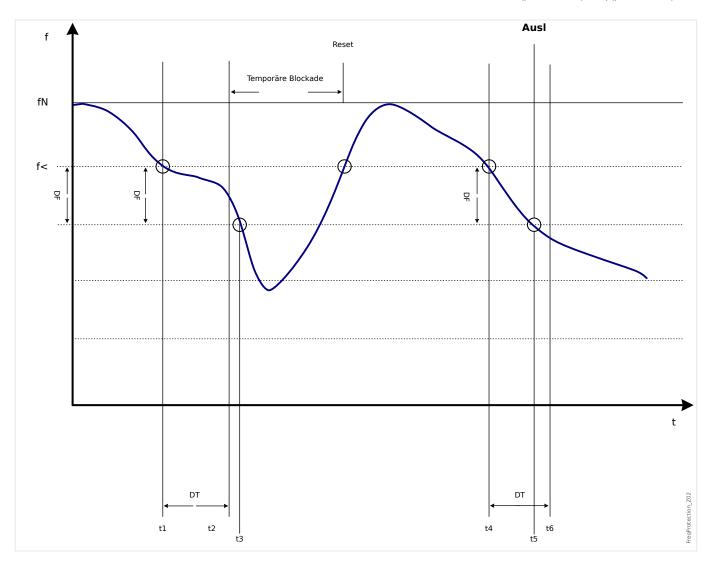
Die Frequenzstufe überwacht die drei Leiter-Leiter-Spannungen UL12, UL23 und UL31. Liegen alle drei Leiter-Leiter-Spannungen unterhalb eines Schwellwertes, wird die Frequenzmessung blockiert. (Der Schwellwert ist einstellbar, siehe Messprinzip, →"Frequenz – Messprinzip").

Je nach Einstellung der Frequenzstufe im Menü [Projektierung / Projektierte Elemente] (*f[x] . Modus* = ,f< und DF/DT* oder = ,f> und DF/DT*) werden die ausgewerteten Phasenspannungen mit den eingestellten Anregewerten für Unter-, bzw. Überfrequenz sowie dem Schwellwert für die absolute Frequenzdifferenz DT verglichen.

Wenn in einer der drei Phasen die Frequenz den Anregewert unter-, bzw. überschreitet und die Frequenzstufe nicht blockiert ist, erfolgt unverzögert ein Alarm. Gleichzeitig wird der Timer für das Überwachung-Zeitintervall DT gestartet. Liegt die Frequenz während des Überwachungs-Zeitintervalls unter, bzw. über dem Anregewert und erreicht der absolute Frequenzrückgang, bzw. -zuwachs DF den eingestellten Schwellwert, erfolgt ein Auslösekommando.

Arbeitsprinzip der DF/DT-Funktion


(Siehe f(t)-Diagramm, →Abb.)


Fall 1:

Fällt die Frequenz unter den Unterfrequenz-Ansprechwert (t1) so regt die DF/DT-Stufe an. Erreicht der absolute Frequenzrückgang DF nicht den eingestellten Wert, vor Ablauf des Zeitintervalls DT, erfolgt keine Auslösung. Die Frequenzstufe bleibt solange blockiert, bis der eingestellte Unterfrequenz-Ansprechwert f< wieder überschritten wird.

Fall 2:

Fällt die Frequenz unter den Unterfrequenz-Ansprechwert (t4) so regt die DF/DT-Stufe an. Erreicht der absolute Frequenzrückgang DF den eingestellten Wert, vor Ablauf des Zeitintervalls DT (bei t5), erfolgt eine sofortige Auslösung.

5.21.5 Betriebsart "delta phi" - [ANSI 78V]

Delta phi - Vektorsprung

Die Vektorsprungüberwachung schützt netzparallelarbeitende Synchrongeneratoren durch schnelle Abschaltung bei Netzstörungen. Bei Netz-KU-Schaltungen sind diese Generatoren besonders gefährdet. Die nach ca. 300 ms wiederkehrende Netzspannung könnte den Generator in asynchroner Phasenlage treffen. Auch bei länger andauernden Netzstörungen ist eine schnelle Trennung erforderlich. Grundsätzlich sind zwei Anwendungsfälle zu unterscheiden:

a) Nur Netzparallelbetrieb, kein Inselbetrieb:

Hier schützt die Vektorsprungüberwachung den Generator durch Ausschalten des Generatorschalters bei Netzfehlern.

b) Netzparallel und Inselbetrieb:

Hier wirkt die Vektorsprungüberwachung auf den Netzschalter. Dadurch wird gewährleistet, dass das Aggregat genau dann nicht blockiert wird, wenn es als Notstromaggregat gefordert ist.

Eine sehr schnelle Erfassung von Netzausfällen ist bei netzparallelarbeitenden Synchrongeneratoren schwierig. Netzspannungswächter sind ungeeignet, denn der Synchrongenerator sowie die Verbraucherimpedanzen stützen die abklingende Netzspannung.

Aus diesem Grund sinkt die Spannung erst nach mehreren 100 ms unter die Ansprechschwelle des Spannungswächters. Daher ist eine sichere Erfassung von Kurzunterbrechungen der Netzspannung mit Netzspannungswächtern nicht möglich.

Auch Frequenzrelais sind teilweise ungeeignet, denn nur ein hochbelasteter Generator sinkt innerhalb von 100 ms messbar in der Drehzahl. Stromrelais sprechen erst durch die Existenz kurzschlussartiger Ströme an, können jedoch deren Entstehung nicht vermeiden.

Leistungsänderungswächter sprechen innerhalb von 200 ms an, verhindern aber auch nicht die auf Kurzschlussleistung ansteigende Leistungsänderung. Da auch Lastsprünge durch plötzliche Belastungen des Generators auftreten können, ist eine Anwendung von Leistungsänderungswächtern ebenfalls als problematisch anzusehen.

Ohne vorstehend benannte Einschränkungen erfasst das Gerät die beschriebenen Netzausfälle innerhalb von 60 ms, denn es wurde speziell für solche Fälle entwickelt, wo die äußeren Bedingungen eine sehr schnelle Trennung vom Netz erfordern.

Voraussetzung für das Auslösen des Generator/Netzwächters ist eine Leistungsänderung um mindestens 15 - 20% der Nennlast. Langsame Änderungen der Systemfrequenzen, z. B. durch Regelvorgänge (Verstellen des Drehzahlreglers), führen nicht zur Auslösung.

Kurzschlüsse innerhalb des Netzes können auch zur Auslösung führen, da auch hier ein Sprung des Spannungsvektors größer als der Einstellwert auftreten kann. Die Größe des Spannungsvektorsprungs ist abhängig von der Entfernung des Kurzschlussortes vom Generator. Diese Funktion bietet auch für das EVU den Vorteil, dass die Netzkurzschlussleistung und somit die einspeisende Energie auf den Kurzschluss von der Eigenerzeugungsanlage nicht unnötig erhöht wird.

Bei sehr niedriger Eingangsspannung wird die Vektorsprungmessung blockiert, um mögliches Fehlansprechen zu verhindern, siehe Messprinzip, →"Frequenz – Messprinzip". Hierbei wirkt die Unterspannungsblockade schneller als die Vektorsprungauslösung. Ein Phasenausfall führt ebenfalls zur Blockierung der Vektorsprungauslösung,

sodass ein Wandlerfehler (z. B. Sicherungsausfall der Spannungswandler) nicht zur Fehlauslösung führt.

Messprinzip der Vektorsprungüberwachung

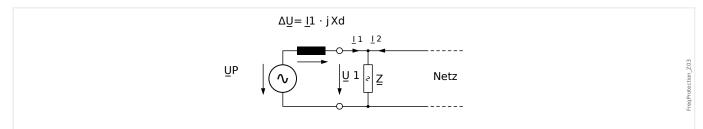
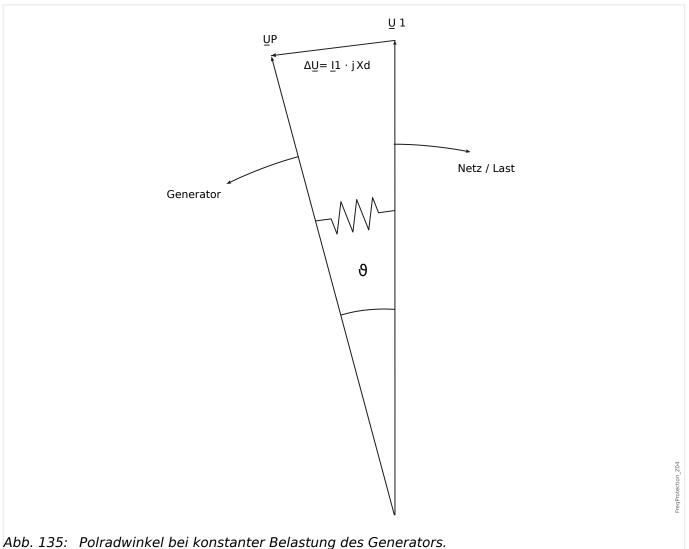
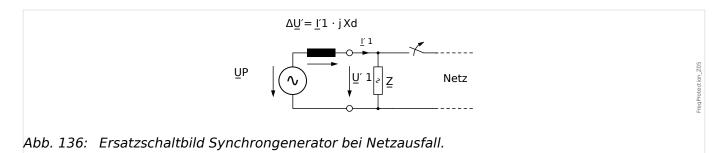




Abb. 134: Ersatzschaltbild netzparalleler Synchrongenerator

Der Polradwinkel zwischen Ständerdrehfeld und Polrad ist abhängig vom mechanischen Antriebsmoment der Generatorwelle. Es bildet sich ein Gleichgewicht zwischen der zugeführten mechanischen Wellenleistung und der elektrischen abgegebenen Netzleistung, wobei die synchrone Drehzahl erhalten bleibt

Bei einem Netzausfall oder bei einer KU speist der Generator plötzlich eine sehr große Verbraucherlast. Der Polradwinkel vergrößert sich sprungartig und der Spannungsvektor U1 ändert seine Richtung (U1').

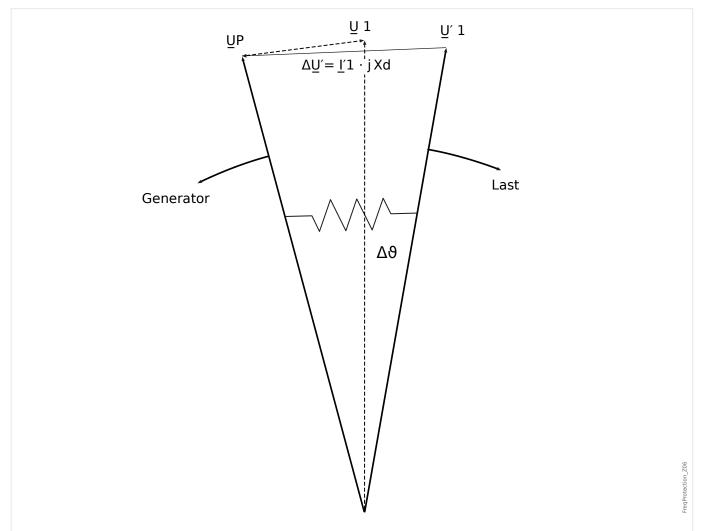
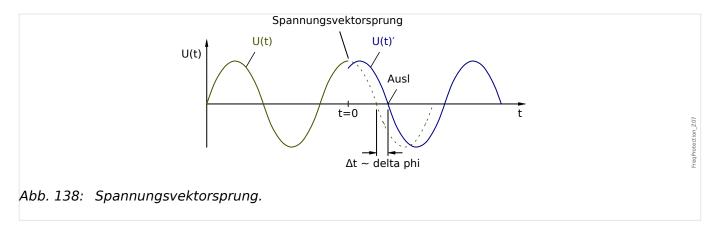
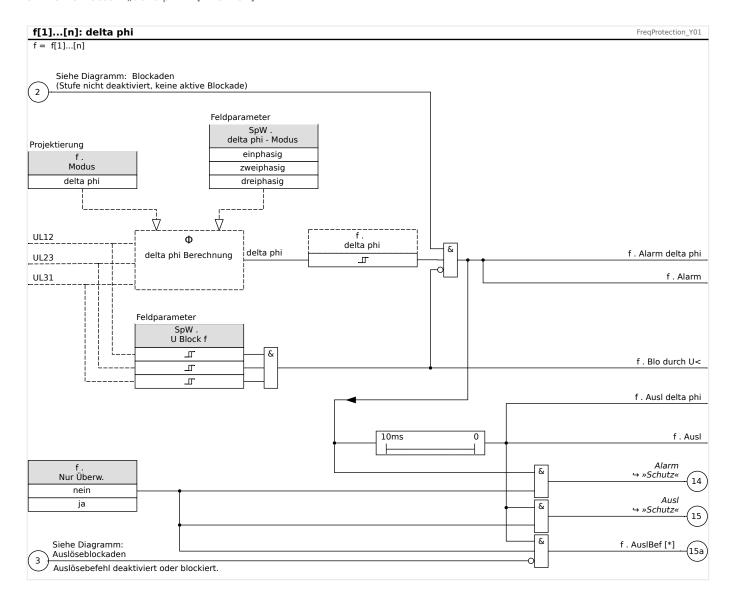



Abb. 137: Änderung des Polradwinkels bei plötzlicher Belastung des Generators.

Wie im zeitlichen Ablauf dargestellt, springt die Spannung auf einen anderen Wert, wodurch sich ihre Phasenlage ändert. Dieser Vorgang wird allgemein als Phasen- oder Vektorsprung bezeichnet.

Das Gerät misst die Zeit einer Schwingungsperiode, wobei bei jedem Spannungsnulldurchgang eine neue Messung gestartet wird. Die gemessene Periodendauer wird mit einer internen Referenzzeit verglichen. Daraus wird die Periodendauerabweichung des Spannungssignals ermittelt. Durch einen Vektorsprung erfolgt der Nulldurchgang entweder früher oder später. Die ermittelte Periodendauerabweichung entspricht dem auftretenden Vektorsprungwinkel.

Überschreitet der Vektorsprungwinkel den eingestellten Wert, so erfolgt die unverzögerte Auslösung.


Der Ausfall einer oder mehrerer Phasen der Messspannung führt zur Blockierung der Vektorsprungauslösung.

Funktionsprinzip

Die Vektorsprungüberwachung überwacht die drei Leiter-Leiter-Spannungen UL12, UL23 und UL31. Liegen alle drei Leiter-Leiter-Spannungen unterhalb eines Schwellwertes, wird die Frequenzmessung blockiert. (Der Schwellwert ist einstellbar, siehe Messprinzip, ↔ "Frequenz – Messprinzip").

Je nach Einstellung der Frequenzstufe im Menü [Projektierung / Projektierte Elemente] (*f[x] . Modus* = "f" und DF/DT" oder = "f" und DF/DT") wird der gemessene Vektorsprung mit dem eingestellten Vektorsprung-Anregewert verglichen.

Wenn, je nach Parametrierung, in einer, zwei oder drei der drei Phasen der Vektorsprungwinkel den eingestellten Wert delta phi überschreitet und die Frequenzstufe nicht blockiert ist, erfolgt unverzögert ein Auslösekommando.

5.21.6 Inbetriebnahme: Frequenzschutz (Überfrequenz) [ANSI 810]

Gegenstand der Prüfung:

Überprüfung aller parametrierten Überfrequenzschutzstufen.

Benötigte Geräte:

- Dreiphasige Spannungsquelle mit veränderbarer Frequenz.
- Timer

Durchführung - Prüfen der Ansprechwerte:

- Erhöhen Sie die Frequenz so lange, bis die Anregung der entsprechenden Frequenzschutzstufe ansteht.
- Notieren Sie den Frequenz-Wert.
- Schalten Sie die Prüfspannung ab.

Durchführung - Prüfen der Auslöseverzögerung:

- Stellen Sie die Prüfspannung auf Nennfrequenz ein.
- Schalten Sie nun einen Frequenzsprung (Anregewert) auf und starten mit dem Aufschalten einen Timer. Messen Sie am Relaisausgang die Auslösezeit.

Durchführung - Prüfen des Rückfallverhältnisses:

Verringern Sie die Messgröße auf unter 99,95% des Auslösewerts bzw. um 0,05% fn. Frühestens bei 99,95% (oder 0,05% fn) des Auslösewerts darf das Relais zurückfallen.

Erfolgreiches Testergebnis:

Zulässige Abweichungen / Toleranzen sind den Technischen Daten (⇔13.3.3 Toleranzen der Schutzstufen) zu entnehmen.

5.21.7 Inbetriebnahme: Frequenzschutz (Unterfrequenz) [ANSI 81U]

Führen Sie den Test analog zum Überfrequenzschutz für alle parametrierten Unterfrequenzschutzstufen durch (mit entsprechenden Unterfrequenzen).

Abweichend dazu:

- Zum Prüfen der Ansprechwerte muss die Frequenz so lange abgesenkt werden, bis die Schutzstufe angeregt ist.
- Für die Ermittlung des Rückfallverhältnisses erhöhen Sie die Messgröße auf über 100,05% des Auslösewerts (oder 0,05% fn). Frühestens bei 100,05% (oder 0,05% fn) des Auslösewerts darf das Relais zurückfallen.

5.21.8 Inbetriebnahme: df/dt

Gegenstand der Prüfung:

Überprüfung der Frequenzschutzstufen, die als df/dt-Stufen projektiert sind.

Benötigte Geräte:

- Dreiphasige Spannungsquelle
- Frequenzgenerator, der einen linearen, definierten Frequenzgradienten erzeugen und messen kann.

Durchführung - Prüfen der Ansprechwerte:

- Erhöhen Sie den Frequenzgradienten von Null an so lange, bis die Anregung der entsprechenden Stufe ansteht.
- Notieren Sie den Auslösewert.

Durchführung - Prüfen der Auslöseverzögerung:

- Stellen Sie die Prüfspannung auf Nennfrequenz ein.
- Schalten Sie nun sprunghaft einen Frequenzgradienten auf, der das 1,5-fache des eingestellten Wertes beträgt (Beispiel: Schalten Sie einen Frequenzgradienten von 3 Hz pro Sekunde auf, wenn der Einstellwert 2 Hz pro Sekunde beträgt).
- Messen Sie am Relaisausgang die Auslösezeit. Vergleichen Sie die gemessene Auslöseverzögerung mit der parametrierten.

Erfolgreiches Testergebnis

Zulässige Abweichungen/Toleranzen und Rückfallverhältnisse sind den Technischen Daten (→13.3.3 Toleranzen der Schutzstufen) zu entnehmen.

5.21.9 Inbetriebnahme: f< und -df/dt

Gegenstand der Prüfung:

Überprüfung der Frequenzschutzstufen, die als f< und -df/dt-Stufen projektiert sind.

Benötigte Geräte:

- Dreiphasige Spannungsquelle
- Frequenzgenerator, der einen linearen, definierten Frequenzgradienten erzeugen und messen kann.

Durchführung - Prüfen der Ansprechwerte:

- Speisen Sie Nennspannung mit Nennfrequenz ein.
- Senken Sie die Frequenz unterhalb die f<-Anregeschwelle (z.B. 49 Hz).
- Schalten Sie nun einen negativen Frequenzgradienten zu, der unterhalb des Einstellwerts liegt (Beispiel: Schalten Sie -1 Hz pro Sekunde zu, wenn -0,8 Hz pro Sekunde parametriert sind). Nach der parametrierten Auslösezeit muss die Auslösung erfolgen.

Erfolgreiches Testergebnis:

Zulässige Abweichungen/Toleranzen und Rückfallverhältnisse sind den Technischen Daten (→13.3.3 Toleranzen der Schutzstufen) zu entnehmen.

5.21.10 Inbetriebnahme: f> und df/dt

Gegenstand der Prüfung:

Überprüfung der Frequenzschutzstufen, die als f>und df/dt-Stufen projektiert sind.

Benötigte Geräte:

- Dreiphasige Spannungsquelle
- Frequenzgenerator, der einen linearen, definierten Frequenzgradienten erzeugen und messen kann.

Durchführung - Prüfen der Ansprechwerte:

- Speisen Sie Nennspannung mit Nennfreguenz ein.
- Erhöhen Sie die Frequenz über die f>-Anregeschwelle (z.B. 51 Hz).
- Schalten Sie nun einen positiven Frequenzgradienten zu, der oberhalb des Einstellwerts liegt (Beispiel: Schalten Sie 1 Hz pro Sekunde zu, wenn 0,8 Hz pro Sekunde parametriert sind). Nach der parametrierten Auslösezeit muss die Auslösung erfolgen.

Erfolgreiches Testergebnis:

Zulässige Abweichungen/Toleranzen und Rückfallverhältnisse sind den Technischen Daten (→13.3.3 Toleranzen der Schutzstufen) zu entnehmen.

5.21.11 Inbetriebnahme: f< und DF/DT

Gegenstand der Prüfung:

Überprüfung der Frequenzschutzstufen, die als f< und DF/DT-Stufen projektiert sind.

Benötigte Geräte:

- Dreiphasige Spannungsquelle
- Frequenzgenerator, der einen definierten Frequenzgrückgang erzeugen und messen kann.

Durchführung - Prüfen der Ansprechwerte:

- Speisen Sie Nennspannung mit Nennfrequenz ein.
- Senken Sie die Frequenz unterhalb die f<-Anregeschwelle (z.B. 49 Hz).
- Schalten Sie nun innerhalb des Überwachungsintervalls DT eine Frequenzdifferenz DF zu, die unterhalb des Einstellwerts liegt (Beispiel: Schalten Sie 1 Hz Frequenzabnahme zu, wenn 0,8 Hz parametriert sind). Es muss eine sofortige Auslösung erfolgen.

Erfolgreiches Testergebnis:

Zulässige Abweichungen/Toleranzen und Rückfallverhältnisse sind den Technischen Daten (→13.3.3 Toleranzen der Schutzstufen) zu entnehmen.

5.21.12 Inbetriebnahme: f> und DF/DT

Gegenstand der Prüfung:

Überprüfung der Frequenzschutzstufen, die als f>und DF/DT-Stufen projektiert sind.

Benötigte Geräte:

- Dreiphasige Spannungsquelle
- Frequenzgenerator, der einen definierten Frequenzanstieg erzeugen und messen kann.

Durchführung - Prüfen der Ansprechwerte:

- Speisen Sie Nennspannung mit Nennfreguenz ein.
- Erhöhen Sie die Frequenz über die f>-Anregeschwelle (z.B. 51 Hz).
- Schalten Sie nun innerhalb des Überwachungsintervalls DT eine Frequenzdifferenz DF zu, die überhalb des Einstellwerts liegt (Beispiel: Schalten Sie 1 Hz Frequenzzuwachs zu, wenn 0,8 Hz parametriert sind). Es muss eine sofortige Auslösung erfolgen.

Erfolgreiches Testergebnis:

Zulässige Abweichungen/Toleranzen und Rückfallverhältnisse sind den Technischen Daten (→13.3.3 Toleranzen der Schutzstufen) zu entnehmen.

5.21.13 Inbetriebnahme: delta phi

Gegenstand der Prüfung:

Überprüfung der Frequenzschutzstufen, die als delta phi-Stufen (Vektorsprung) projektiert sind.

Benötigte Geräte:

• Dreiphasige Spannungsquelle, bei der sprunghaft die Phasenlage der Spannungsvektoren in einem definierten Winkel verändert werden kann.

Durchführung - Prüfen der Ansprechwerte:

 Schalten Sie nun sprunghaft einen Vektorsprung auf, der das 1,5-fache des eingestellten Wertes beträgt (Beispiel: Schalten Sie einen Vektorsprung von 15° auf, wenn der Einstellwert 10° beträgt).

Erfolgreiches Testergebnis:

Zulässige Abweichungen/Toleranzen und Rückfallverhältnisse sind den Technischen Daten (→13.3.3 Toleranzen der Schutzstufen) zu entnehmen.

5.22 **U012 - Asymmetrie [47]**

Im Projektierungsmenü kann festgelegt werden, ob mit dem Modul »U012« (Asymmetrie) das Mitsystem auf Über- bzw. auf Unterspannung oder das Gegensystem auf Überspannung überwacht werden soll. Das Modul arbeitet auf der Basis der drei Phasenspannungen.

Das Modul regt an, wenn der parametrierte Schwellwert überschritten wird. Wird der Schwellwert auch während der Verzögerungszeit kontinuierlich überschritten, löst das Modul aus.

Wenn das Gegensystem auf Überspannung überwacht werden soll (Einstellung [Projektierung / Projektierte Elemente] >U012. Modus = U2>"), kann der eigentliche Schwellwert [Schutzparameter / Satz x / U-Schutz / U012[n]] >U2>« zusätzlich mit einem zweiten Schwellwert >U2/U1« UND-verknüpft werden, um das Modul gegen Fehlauslösungen bei unzureichender Spannung im Mitsystem zu stabilisieren.

ANSI 47 - Asymmetrieschutz (Überwachung des Gegensystems)

Diese Applikation des »U012«-Schutzmoduls wird wie folgt aktiviert:

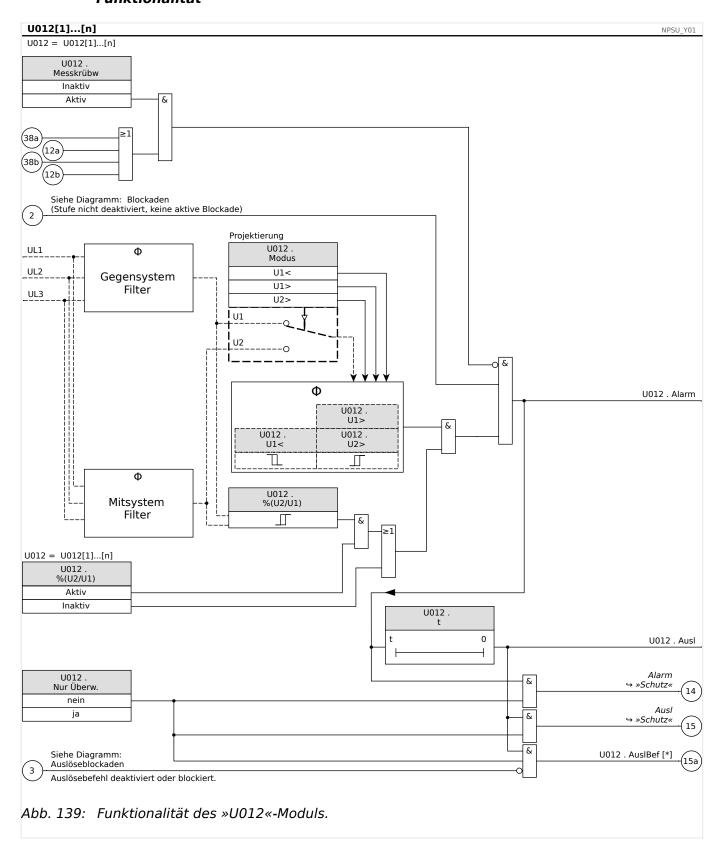
• [Projektierung / Projektierte Elemente] »U012 . Modus« = "U2>"

Optionen:

• [Schutzparameter / Satz 1...4 / U-Schutz / U012[x]] »%(U2/U1)« = Anregewert (Schwellwert) als höchstzulässiger prozentualen Anteil des Gegensystems, bezogen auf das Mitsystem.

ANSI 59U1 - Überwachung des Mitsystems auf Überspannung

Diese Applikation des »U012«-Schutzmoduls wird wie folgt aktiviert:


• [Projektierung / Projektierte Elemente] »U012 . Modus« = "U1>"

ANSI 27U1 - Überwachung des Mitsystems auf Unterspannung

Diese Applikation des »U012«-Schutzmoduls wird wie folgt aktiviert:

• [Projektierung / Projektierte Elemente] »U012 . Modus« = "U1<"

Funktionalität

5.22.1 Inbetriebnahme des Asymmetrie-Moduls

Gegenstand der Prüfung

Testen der Asymmetrieschutzstufen

Benötigte Geräte

- 3-phasige Wechselspannungsquelle
- Timer zur Messung der Auslösezeit
- Spannungsmessgerät

Durchführung

Prüfen der Ansprechwerte (Beispiel)

Setzen Sie den Schwellwert für die Spannung im Gegensystem auf 0,5 Un. Setzen Sie die Auslöseverzögerung auf 1 s.

Um eine Prüfspannung im Gegensystem zu erzeugen vertauschen Sie zwei Phasen (UL2 und UL3).

Prüfen der Auslöseverzögerung

Starten Sie den Timer und schalten Sie schlagartig auf das 1,5-fache des eingestellten Ansprechwertes. Messen Sie die Auslöseverzögerung.

Erfolgreiches Testergebnis

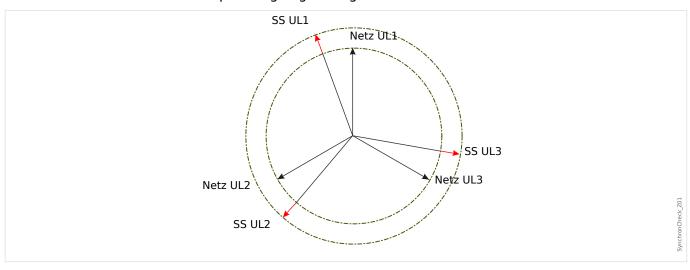
Die gemessenen Ansprechwerte und Auslöseverzögerungen stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

5.23 Sync - Synchrocheck [25]

WARNUNG!

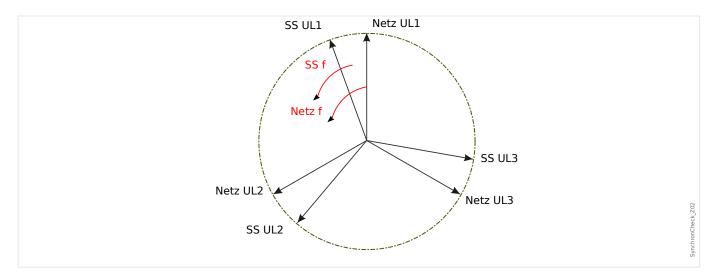
Die Synchrocheck-Funktion kann über externe Signale außer Kraft gesetzt werden. In diesem Fall muss die Synchronität über eine andere Synchronisiereinrichtung sichergestellt sein, bevor der Leistungsschalter geschlossen wird!

HINWEIS!

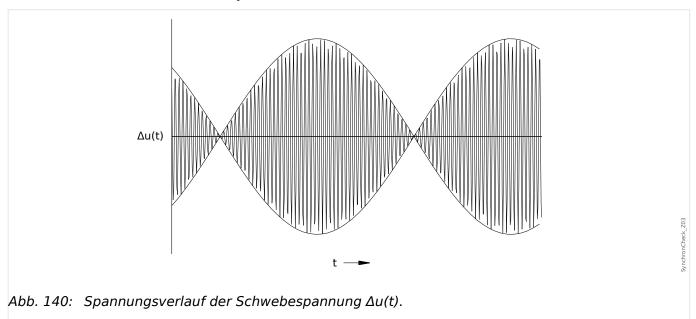

Die ersten drei Spannungsmesseingänge der Spannungsmesskarte (UL1/UL1-L2, UL2/UL2-L3, UL3/UL3-L1) werden innerhalb des Sychrocheck-Moduls grundsätzlich als "Sammelschienen-Spannungen" bezeichnet (auch in Generatorschutzanwendungen). Die über den vierten Eingang der Spannungsmesskarte angeschlossene Spannung (UX) wird grundsätzlich als Netzspannung bezeichnet (auch in Generatorschutzanwendungen). Im Menü [Feldparameter/SpannungsW/U Sync] muss der Anwender festlegen, mit welcher Phase der vierte Messeingang verglichen wird.

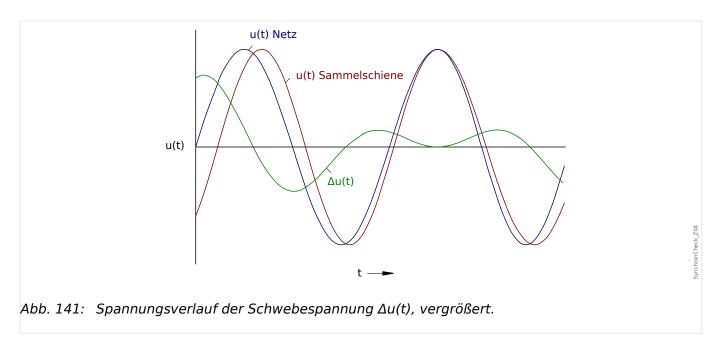
Synchrocheck

Die Synchrocheck-Funktion ist für Anwendungen gedacht, bei denen Generatoren zum Netz geschaltet oder zwei unterschiedlich gespeiste Netzabschnitte miteinander gekoppelt werden. Die Synchrocheck-Funktion vergleicht die Spannungs-, Frequenz- und Winkeldifferenz zwischen der Sammelschienenspannung und der Netzspannung. Wenn die Synchrocheck-Funktion aktiviert ist wird sowohl manuelles, als auch automatisches Einschalten des Leistungsschalters überwacht. Diese Funktion kann durch bestimmte Spannungszustände der Sammelschiene, bzw. des Netzes oder durch ein externes Signal außer Kraft gesetzt werden.

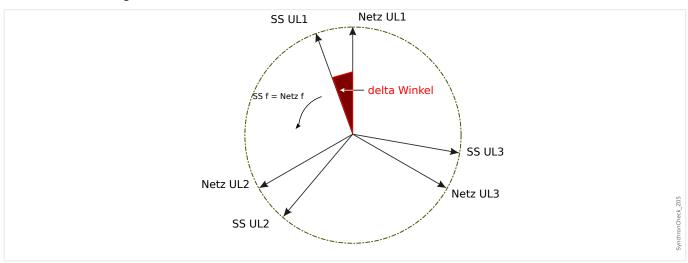

Spannungsdifferenz AU

Die erste Bedingung zwei Energiesysteme parallel zu schalten ist dass die Spannungsvektoren den gleichen Betrag haben. Die Spannungshöhe wird in der Regel über den Generatorspannungsregler eingestellt.




Frequenzdifferenz (Schlupffrequenz) AF

Die zweite Bedingung zwei Energiesysteme parallel zu schalten ist dass deren Frequenzen annähernd gleich sind. Die Frequenz wird über den Generator-Drehzahlregler geregelt.


Wenn die Generatorfrequenz fSS ungleich der Netzfrequenz fNetz ist, so stellt sich zwischen den beiden Systemen eine Schwebefrequenz ein. $\Delta F = |fSS - fNetz|$ Schwebefrequenz zwischen den beiden Systemen.

Winkel-, bzw. Phasendifferenz

Auch wenn die Frequenz beider Systeme exakt gleich ist, haben die Spannungsvektoren in der Regel eine Winkeldifferenz zueinander.

Im Moment des Parallelschaltens der beiden Systeme sollte die Winkeldifferenz idealer Weise Null betragen, ansonsten können hohe Ausgleichsströme und große Laststöße die Folge sein. Theoretisch kann die Winkeldifferenz (Phasenlage) durch kurze Impulse auf den Drehzahlregler der Antriebsmaschine auf nahezu Null geregelt werden. In der Praxis ist in der Regel eine schnelle Verfügbarkeit der Generatoren gefordert, sodass eine gewisse Frequenzdifferenz – abhängig von der Größe des Maschinensatzes – toleriert wird. In diesem Fall ist die Winkeldifferenz nicht konstant, sondern ändert sich mit der Schlupffrequenz ΔF .

Unter Berücksichtigung der Leistungsschaltereigenzeit kann der Zeitpunkt des Einschaltimpulses so berechnet werden, dass der Moment der Parallelschaltung exakt bei Winkelübereinstimmung beider Systeme erfolgt.

Grundsätzlich gilt folgendes:

Bei großen rotierenden Massen sollte die Frequenzdifferenz (Schlupffrequenz) zum Zeitpunkt der Zuschaltung nahezu Null sein, da ansonsten große Laststöße auftreten können. Bei kleineren rotierenden Massen kann eine entsprechend höhere Frequenzdifferenz toleriert werden.

Synchronisationsarten

Das Synchrocheckmodul ist in der Lage die Synchronisierung zweier elektrischer Netze (»NetzZuNetz«) oder die Synchronisierung eines Generators zum Netz zu überwachen (»GeneratorZuNetz«).

Zum Zusammenschalten (Kuppeln) zweier Netze müssen die Stationsfrequenz, Stationsspannung und Phasenlage möglichst exakt übereinstimmen.

Im Gegensatz dazu ist beim Synchronisieren eines Generators zum Netz, abhängig von der Größe des Maschinensatzes, eine gewisse Schlupffrequenz zulässig. Hierbei muss die Leistungsschaltereigenzeit berücksichtigt werden. Ist diese korrekt eingestellt, errechnet das Synchrocheck-Modul den exakten Zeitpunkt der Synchronität und erteilt entsprechend voreilend die Freigabe für den Zuschaltimpuls.

WARNUNG!

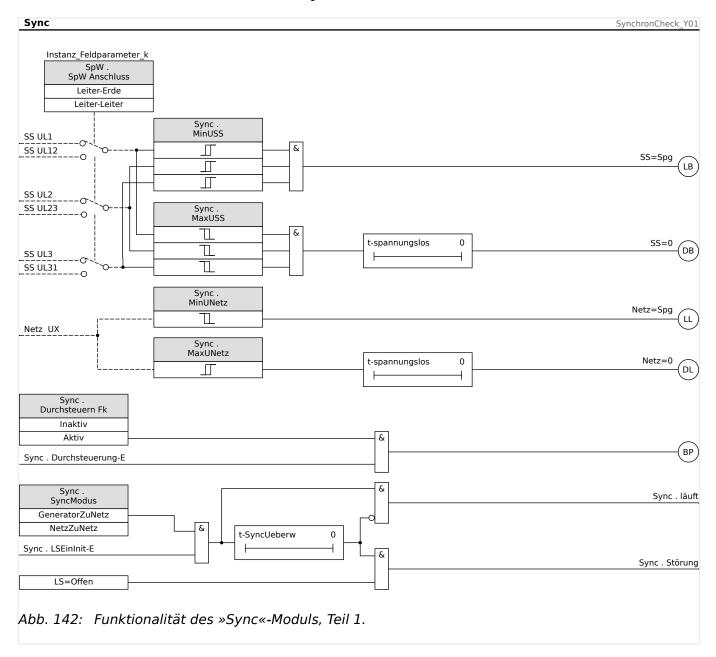
Beim Parallelschalten zweier Netze muss sichergestellt sein, dass die Betriebsart NetzZuNetz ausgewählt ist. Das Parallelschalten zweier Netze in der Betriebsart GeneratorZuNetz kann schwere Schwere Schäden verursachen!

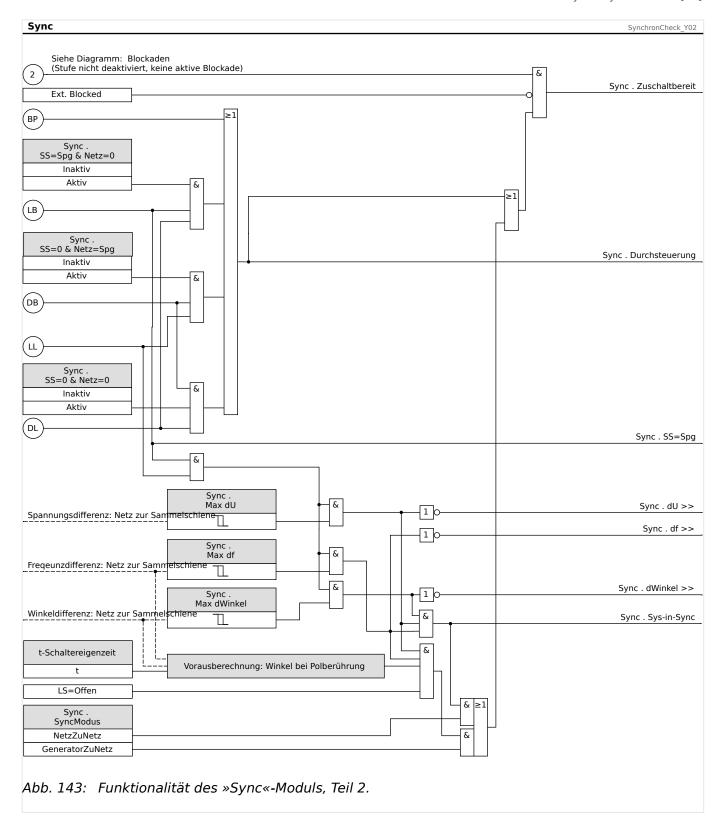
Funktionsprinzip des Synchrocheck-Moduls, "GeneratorZuNetz"

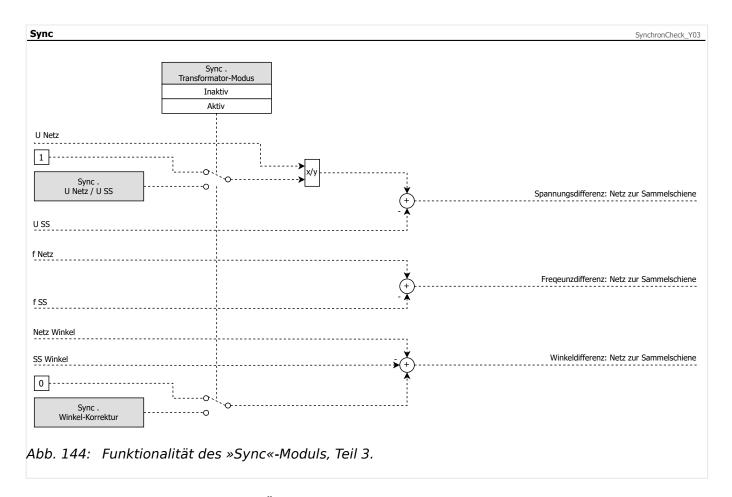
Einstellung: [Schutzparameter / Satz x / NA-Schutz / Sync / Modus/Zeiten] »SyncModus« = "GeneratorZuNetz"

Das Synchrocheck-Modul misst die Strangspannungen »UL1«, »UL2«, und »UL3« oder die Außenleiterspannungen »UL1-L2«, »UL2-L3« und »UL3-L1« der Generatorsammelschiene. Die Netzspannung UX wird über den vierten Spannungsmesseingang gemessen. Wenn alle Synchronitätsbedingungen erfüllt sind, d. h. ΔU [Max dU], ΔF [Max df], und $\Delta \phi$ [Max dWinkel] sind innerhalb der eingestellten Grenzen, erfolgt die Zuschaltfreigabe unter Berücksichtigung der Leistungsschaltereigenzeit.

Funktionsprinzip des Synchrocheck-Moduls, "NetzZuNetz"


Einstellung: [Schutzparameter / Satz x / NA-Schutz / Sync / Modus/Zeiten] »SyncModus« = "NetzZuNetz"


Die Synchrocheckfunktion zur Synchronfreigabe zweier Netze funktioniert in ähnlicher Weise, wie bei der Synchrocheckfunktion »GeneratorZuNetz«, jedoch ohne Berücksichtigung der Leistungsschaltereigenzeit.


Das Synchrocheck-Modul misst die Strangspannungen »UL1«, »UL2«, und »UL3« oder die Außenleiterspannungen »UL1-L2«, »UL2-L3« und »UL3-L1« der Stationssammelschiene. Die Netzspannung UX wird über den vierten Spannungsmesseingang gemessen.

Wenn alle Synchronitätsbedingungen erfüllt sind, d. h. ΔU [Max dU], ΔF [Max df], und $\Delta \phi$ [Max dWinkel] sind innerhalb der eingestellten Grenzen, erfolgt die Zuschaltfreigabe.

Funktionalität des Moduls »Sync«

Bedingungen für das Überschreiben der Synchrocheck-Funktion

Sofern in den Schutzparametersätzen entsprechend parametriert, können folgende Bedingungen die Synchrocheckfunktion außer Kraft setzen (überschreiben):

- SS=Spg & Netz=0: Sammelschiene spannungsführend Netzspannung nicht vorhanden
- SS=0 & Netz=Spg: Sammelschiene spannungslos Netzspannung vorhanden
- SS=0 & Netz=0: Sammelschiene spannungslos Netzspannung nicht vorhanden

Ebenso kann die Synchrocheckfunktion durch externe Signale außer Kraft gesetzt (überbrückt) werden.

WARNUNG!

Wenn die Synchrocheckfunktion überschrieben, bzw. überbrückt wird, müss die Synchronität durch andere geeignete Synchronisiersysteme sichergestellt werden, bevor der Leistungsschalter geschlossen wird!

5.23.1 Transformator-Modus

Mit dem Transformator-Modus ist es möglich die Synchronisierung zweier elektrischer Netze, die über einen Transformator miteinander verbunden sind, zu überwachen. Dazu unterstützt der Modus Amplituden- und Winkel-Korrekturen, um die Unterschiede auf beiden Seiten des Transformators herauszurechnen.

Einstellhinweise

Aktivieren des Transformator-Modus:

[Schutzparameter / Globale Schutzpara / NA-Schutz / Sync]»Transformator-Modus«
 "Aktiv"

Für die Amplituden-Kompensation wird das Verhältnis von Netz- zu Sammelschienenbetriebsspannung berechnet:

[Schutzparameter / Globale Schutzpara / NA-Schutz / Sync]»U Netz / U SS«
 = (U_{Netz} / U_{SS})

Die Phasen-Winkel-Korrektur berechnet sich aus der Winkeldifferenz zwischen den Netz- und Sammelschienen-Spannungszeigern während des normalen (synchronen) Betriebs:

• [Schutzparameter / Globale Schutzpara / NA-Schutz / Sync]» Winkel-Korrektur« = (ϕ_{Netz} - ϕ_{SS})

Alternativ kann die Phasen-Winkel-Korrektur auch aus der Schaltgruppe des Transformators vg berechnet werden, wie in der Tabelle unten gezeigt wird:

Phasen-Winkel-Korrektur aus der Transformator-Schaltgruppe

Transformator-Primärseite an Sammelschiene	Transformator Primärseite an Netz
$*Winkel-Korrektur* = +30^{\circ} \cdot vg$	$*Winkel-Korrektur = -30^{\circ} \cdot vg$

Achtung: Für ein Linksdrehfeld (ACB Drehfeld) muss das Vorzeichen von »Winkel-Korrektur« invertiert werden!

Beispiel

Transformator:	YNd5
Sammelschiene - Betriebsspannung:	110 kV
Netz - Betriebsspannung:	10 kV

Die Amplituden-Korrektur ergibt sich zu:

»
$$U$$
 $Netz$ / U SS « = $\frac{U_{Netz}}{U_{SS}} = \frac{10kV}{110kV} = 0.091$

Anhand der Transformator-Daten ergibt sich die Schaltgruppe:

$$vg = 5$$

Die Primärseite des Transformators ist an die Sammelschiene angeschlossen (110 kV). Deshalb wird die erste Spalte aus der Tabelle oben verwendet, um die Phasen-Winkel-Korrektur zu berechnen:

$$Winkel-Korrektur = +30^{\circ} \cdot vg = 30^{\circ} \cdot 5 = 150^{\circ}$$

5.24 Q->&U< - Blindleistungs-Unterspannungsschutz

Die Anzahl der netzparallel in das Hoch- und Mittelspannungsnetz einspeisenden Erzeugungsanlagen steigt stetig. Hierdurch sinkt der prozentuale Anteil der durch fossile Großkraftwerke bereitgestellten Regelreserve.

Aus diesem Grund verlangen diverse Netzanschlussregeln und Verordnungen von Erzeugungsanlagen, die aus einer oder mehreren Erzeugungseinheiten (EZE) bestehen und netzparallel in das Hoch- und Mittelspannungsnetz eines Netzbetreibers einspeisen, ein netzfreundliches Verhalten.

Das bedeutet unter anderem, dass diese sich über eine Systemautomatik an der Stützung der Netzspannung zur Vermeidung eines Spannungskollapses im Fehlerfall beteiligen müssen.

Im Fehlerfall ist die Spannung rund um einen Kurzschluss nahe Null. Von der Kurzschlussstelle ausgehend bildet sich ein Spannungstrichter. Dessen Steilheit (räumliche Ausdehnung) kann durch die Speisung von Blindleistung (Verbraucherzählpfeilsystem) begrenzt werden.

Der Q->&U<-Schutz verhindert, dass im Fehlerfall (Spannungseinbruch) durch die Entnahme von Blindleistung die räumliche Ausdehnung des Spannungseinbruchs noch weiter vergrößert wird.

Die Aufgabe dieses Schutzmoduls ist somit nicht der Schutz von Erzeugungseinheiten, sondern die Entkupplung von spannungsdestabilisierenden Erzeugungseinheiten vom Netz im Fall eines Spannungseinbruchs. Es handelt sich um einen feldübergeordneten Systemschutz.

Die umfangreichen Einstellungs- und Konfigurierungsmöglichkeiten gestatten die Anpassung des Schutzmoduls an verschiedenste Einsatzbedingungen und Ausführungsformen des Anschlusses von Erzeugungsanlagen.

Für die korrekte Funktion des Moduls müssen Sie:

- Die »Allgemeinen Einstellungen« setzen.
- Die Entkupplungsmethodik wählen und parametrieren.
- Die Wiederzuschaltung der Erzeugungsanlagen und -Einheiten konfigurieren (separates Kapitel).

Das Q->&U<-Schutzmodul ist als eigenständiges Schutzmodul gemäß der Richtlinien VDE AR-N 4110/4120 implementiert.

Allgemeine Einstellungen

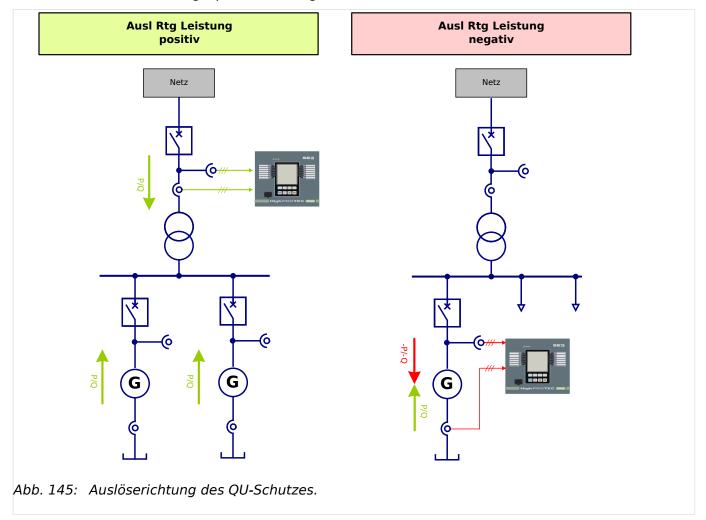
Legen Sie im Menü [Schutzparameter / Satz 1...4 / NA-Schutz / Q->&U< / Allg Einstellungen] die allgemeinen Einstellungen fest.

Hier kann die grundsätzliche Funktionalität des Moduls aktiviert oder inaktiviert werden.

Durch Aktivieren der Spannungswandlerüberwachung kann eine Fehlfunktion/Überfunktion des Schutzmoduls verhindert werden.

Auslöserichtung des QU-Schutz

Definitionen


- Verbraucherzählpfeilsystem = Verbrauchte Wirk- und Blindleistung werden positiv gezählt (haben ein positives Vorzeichen)
- Erzeugerzählpfeilsystem = Erzeugte Wirk- und Blindleistung werden positiv gezählt (haben ein positives Vorzeichen)

Mit Hilfe des Parameters »Ausl Rtg Leistung positiv/negativ« kann das Vorzeichen bzw. Zählpfeilrichtung der Blindleistung innerhalb des QU-Schutzes invertiert werden.

Schutzgeräte, die das Verbraucherzählpfeilsystem verwenden (siehe ↔,,Zählpfeilsystem"), sind mit folgender Parametrierung zu betreiben (keine Änderung): [Schutzparameter / Globale Schutzpara / NA-Schutz] »Ausl Rtg Leistung« = "positiv"

Schutzgeräte, die auf der Basis des Erzeugerzählpfeilsystems arbeiten (Generatorschutzgeräte), sind mit folgender Einstellung zu betreiben: [Schutzparameter / Globale Schutzpara / NA-Schutz] »Ausl Rtg Leistung« = "negativ"

Generatorschutzrelais wie das MCDGV4 können somit innerhalb des QU-Schutzes auf das Verbraucherzählpfeilsystem umgestellt werden, ohne dass weitere Leistungsmessungen wie z.B. die eingespeiste Leistung invertiert würden.

Parametrieren der Entkupplung

Um die dynamische Netzstützung zu gewährleisten, fordern die Regularien der Netzbetreiber, wie z.B. die VDE-Anschlussregeln, von den angeschlossenen Erzeugungsanlagen während einer Netzstörung einen Blindleistungsrichtungs-Unterspannungsschutz (Q-U-Schutz) mit folgendem Verhalten:

"Der Q-U-Schutz soll das systemgerechte Verhalten der Erzeugungsanlage nach einem Fehler im Netz mit zu überwachen. Erzeugungsanlagen, die den Wiederaufbau der Netzspannung durch Aufnahme von induktiver Blindleistung aus dem Netz beeinträchtigen, sind vor Erreichen der Endzeit der Netzschutzeinrichtungen vom Netz zu trennen."

"Hierzu trennt der Q-U-Schutz die Erzeugungsanlage nach 0,5 s vom Netz, wenn alle drei verketteten Spannungen am Netzanschlusspunkt kleiner als 0,85 UN sind (logisch UND-verknüpft) und wenn die Erzeugungsanlage gleichzeitig induktive Blindleistung aus dem Netz des Netzbetreibers aufnimmt." (VDE-AR-N 4120)

HINWEIS!

Es wird die Blindleistung (Q1) in der Mitsystemleistung zur Auswertung herangezogen.

Für die Spannungsüberwachung werden ausschließlich nur die verketteten Spannungen benutzt. Hierdurch werden in gelöscht betriebenen Netzen Messverfälschungen durch Sternpunktverlagerungen vermieden.

Im Menü [Schutzparameter / Satz 1...4 / NA-Schutz / Q->&U< / Entkupplung] können Sie die Entkupplung einstellen.

Der Blindleistungsbezug aus dem Netz kann durch zwei unterschiedliche Verfahren festgestellt werden. Wählen Sie daher zunächst die Entkupplungs-Charakteristik über den Parameter »QU-Variante«:

- "Leistungswinkelüberwachung" (Variante 1)
- "Reine Blindleistunsschwelle" (Variante 2)

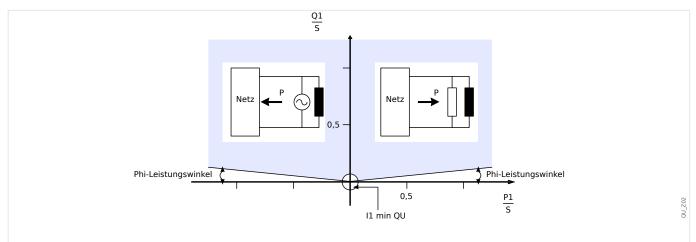
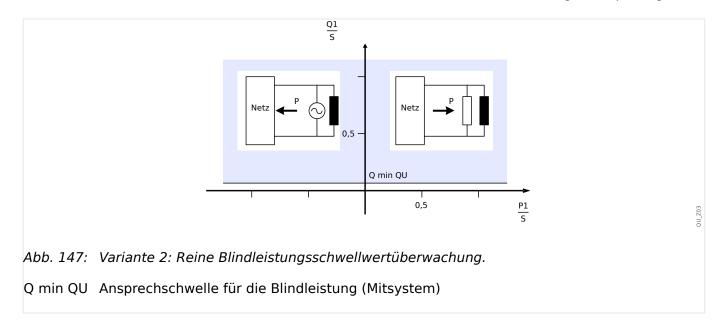
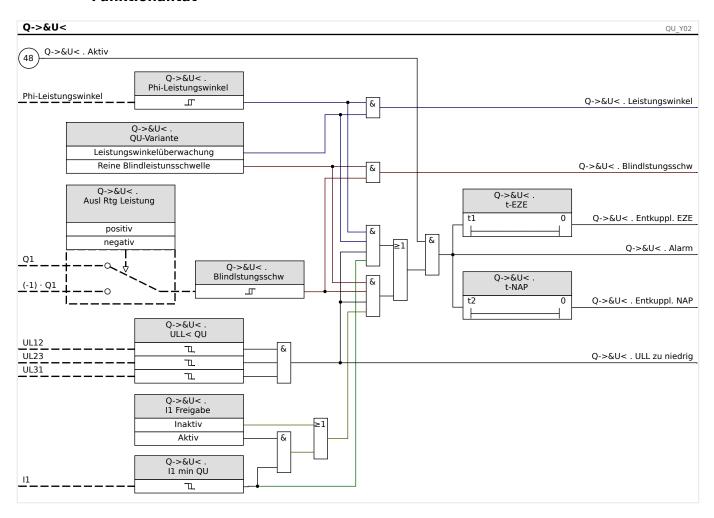



Abb. 146: Variante 1: Leistungswinkelüberwachung.

Durch die Mindeststromüberwachung (I1) im Mitsystem kann eine mögliche Überfunktion der Blindleistungsüberwachung im unteren Leistungsbereich verhindert werden.

Die Mindeststromüberwachung ist beim Leistungswinkelüberwachung-Verfahren immer aktiviert, beim Blindleistungsschwellwert-Verfahren ist diese optional.

Wenn der Blindleistungsbezug über den Leistungswinkel (Variante 1) erkannt werden soll:


- Setzen Sie den Leistungswinkel »Phi-Leistungswinkel« (Werkseinstellung 3°).
- Wählen Sie einen geeigneten Mindeststrom »11 min QU« der Fehlauslösungen verhindert.

Wenn der Blindleistungsbezug über den Blindleistungschwellwert (Variante 2) erkannt werden soll:

- Setzen Sie den Blindleistungsschwellwert »Q min QU«.
- Wählen Sie optional einen geeigneten Mindeststrom »11 min QU«, um Fehlauslösungen zu verhindern.

Es stehen Ihnen zwei Zeitstufen »t-EZE« und »t-NAP« zur Verfügung. Beide Zeitstufen werden beim Ansprechen des Q->&U<-Moduls gestartet. Die aktuellen Regularien der Netzbetreiber fordern allerdings nur eine einstufige Entkopplung.

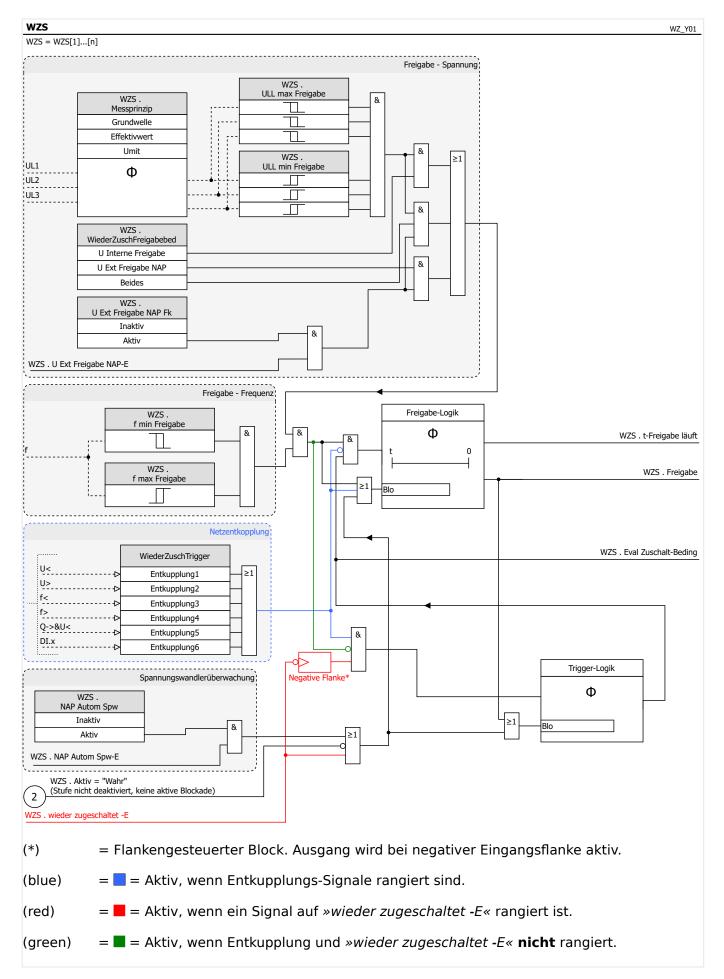
Funktionalität

5.25 Wiederzuschaltung

Nach einer Netz-Entkupplung kann die Wiederzuschaltungsfunktion automatisch ein Freigabe-Signal für das erneute Schließen des Leistungsschalters erzeugen, wenn die dafür notwendigen Bedingungen erfüllt sind.

Das MCDLV4 verfügt über 2 Instanzen des Wiederzuschaltmoduls, »WZS[1]«, »WZS[2]«. Diese zwei Instanzen ermöglichen die Überprüfung zwei unterschiedlicher Zuschaltbedingungen, z.B. für eine (Wieder-)Zuschaltung nach Entkupplung mit oder ohne Auslösung des Entkupplungsschutzes (Spannungs-, Frequenz- und QU-Schutz).

WARNUNG!



Gefahr asynchronen Zuschaltens:

Die Wiederzuschaltungsfunktion ersetzt kein Synchronisiergerät.

Vor dem Zusammenschalten elektrischer Netze muss die Synchronität der Netze sichergestellt sein.

Funktionalität

Grundsätzlich kann die Funktion unterteilt werden in eine Trigger- und eine Freigabe-Logik. Der Trigger-Teil definiert, wann mit der Evaluation der Zuschalt-Bedingungen begonnen wird. Die Evaluations-Phase, welche die Netzberuhigungszeit »t-Freigabe Blo« beinhaltet, wird von der Freigabe-Logik definiert.

Die Trigger hängen von der Konfiguration der Funktion und folgenden Bedingungen ab:

- Leistungsschalter öffnet (»WZS . wieder zugeschaltet -E« fällt zurück),
- ein rangiertes Entkupplungs-Signal ist "Wahr" (z.B. ein Unterspannungs-Auslösebefehl),
- Spannung/Frequenz außerhalb der festgelegten Grenzen, und/oder
- das externe Freigabesignal »WZS . U Ext Freigabe NAP-E« fällt zurück.

Die Freigabe-Logik wird von der Trigger-Logik gestartet und evaluiert folgende Bedingungen:

- · keine aktiven Entkupplungs-Signale,
- Spannung/Frequenz innerhalb der festgelegten Grenzen, und/oder
- externe Freigabe (»WZS . U Ext Freigabe NAP-E«) ist erteilt.

Wenn alle Bedingungen erfüllt sind, wird die Zeitstufe »t-Freigabe Blo« gestartet und nach Ablauf das Freigabe-Signal »WZS . Freigabe« erzeugt. Während der Evaluations-Phase ist das Signal »WZS . Eval Zuschalt-Beding« "Wahr". Es fällt zurück, sobald das Freigabe-Signal ausgegeben wird.

Die Funktion ist komplett blockiert, wenn:

- Die Funktion deaktiviert ist oder eine aktive Blockade anliegt (Signal (2) »Stufe nicht deaktiviert, keine aktive Blockade« = "Unwahr").
- Die Spannungswandlerüberwachung hat angesprochen (»NAP Autom Spw-E« = "Wahr"), falls konfiguriert.

Das Wiederzuschaltmodul lässt sich über eine geeignete Logikgleichung (→9 Programmierbare Logik) und den Eingang »WZS . ExBlo Fk-E« blockieren, wenn das Freigabesignal bei Eintreten eines nicht-rangierten Zustandes verhindert werden soll, z.B. wenn der Überstromschutz ausgelöst hat.

Der Ausschnitt "Netzentkopplung" in dem Diagramm veranschaulicht die Entkupplungs-Signale, die als Trigger-Funktionen verfügbar sind, und für eine Wiederzuschaltung nach Entkupplung durch Auslösung des Entkupplungsschutzes verwendet werden. Die Prüfung der Zuschaltfreigabe kann von bis zu 6 Entkupplungs-Funktionen oder über Digitale Eingangssignale, Logikfunktionen oder über die Leittechnikanbindung angestoßen werden. Für eine Zuschaltung nach Entkupplung ohne Auslösung des Entkupplungsschutzes dürfen keine Entkupplungs-Signale rangiert werden.

Bitte beachten Sie, dass die Frequenzmessung und alle Frequenz-Schutzfunktionen blockiert werden, sobald die Spannung unter den Wert fällt, der einstellbar ist unter: [Feldparameter / Frequenz] »U Block f«.

Trigger- und Freigabe-Logik

Die Funktionsweise der Wiederzuschaltung hängt von den Rangierungen auf den Eingang »wieder zugeschaltet -E« und den Entkupplungs-Eingängen ab. Dies wird im Folgenden erläutert:

- Wiederzuschaltungs-Freigabe nach Entkupplung durch Auslösung des Entkupplungsschutzes unter Berücksichtigung der Schalter-Position: »WZS . wieder zugeschaltet -E« und »WZS . Entkupplung-E« rangiert Die Funktion wird gestartet, sobald ein Entkupplungs-Signal aktiv wird und »wieder zugeschaltet -E« zurückfällt (Leistungsschalter öffnet). Nachdem der Schalter geöffnet hat, startet die Funktion die Evaluation der Zuschalt-Bedingungen. Während der Evaluations-Phase ist das Signal »Eval Zuschalt-Beding« aktiv. Sobald alle Bedingungen erfüllt sind und die Netzberuhigungszeit abgelaufen ist, wird das Signal »Freigabe« aktiv und »Eval Zuschalt-Beding« fällt zurück. »Freigabe« fällt zurück, sobald die Wiederzuschaltung abgeschlossen ist (»wieder zugeschaltet -E« = "Wahr"), eines der Entkupplungs-Signale erneut aktiv wird oder die Freigabe-Bedingungen nicht mehr erfüllt sind (Spannung, Frequenz und/oder externe Freigabe).
- Wiederzuschaltungs-Freigabe nach Entkupplung ohne Auslösung des Entkupplungsschutzes unter Berücksichtigung der Schalter-Position: »WZS . wieder zugeschaltet -E« rangiert Die Funktion wird gestartet und startet mit der Evaluation der Zuschalt-Bedingungen, sobald »wieder zugeschaltet -E« zurückfällt (Leistungsschalter öffnet). Während der Evaluations-Phase ist das Signal »Eval Zuschalt-Beding« aktiv. Sobald alle Bedingungen erfüllt sind und die Netzberuhigungszeit abgelaufen ist, wird das Signal »Freigabe« aktiv und »Eval Zuschalt-Beding« fällt zurück. »Freigabe« fällt zurück, sobald die Zuschaltung abgeschlossen ist (»wieder zugeschaltet -E« = "Wahr") oder die Freigabe-Bedingungen nicht mehr erfüllt sind (Spannung, Frequenz und/oder externe Freigabe).
- Wiederzuschaltungs-Freigabe nach Entkupplung durch Auslösung des Entkupplungsschutzes ohne Berücksichtigung der Schalter-Position: »WZS.
 Entkupplung-E« rangiert — Die Funktion wird aktiv und startet mit der Evaluation der Zuschalt-Bedingungen, sobald ein Entkupplungs-Signal aktiv wird. Während der Evaluations-Phase ist das Signal »Eval Zuschalt-Beding« aktiv. Sobald alle Bedingungen erfüllt sind und die Netzberuhigungszeit abgelaufen ist, wird das Signal »Freigabe« aktiv und »Eval Zuschalt-Beding« fällt zurück. »Freigabe« fällt zurück, sobald eines der Entkupplungs-Signale erneut aktiv wird oder die Freigabe-Bedingungen nicht mehr erfüllt sind (Spannung, Frequenz und/oder externe Freigabe).
- Wiederzuschaltungs-Freigabe nach Entkupplung ohne Auslösung des Entkupplungsschutzes ohne Berücksichtigung der Schalter-Position: keine Rangierung — Die Funktion wird aktiv, sobald die Freigabe-Bedingungen (Spannung, Frequenz und/oder externe Freigabe) nicht mehr erfüllt sind und beginnt mit der Evaluation. Während der Evaluations-Phase ist das Signal »Eval Zuschalt-Beding« aktiv. Sobald alle Bedingungen erfüllt sind und die Netzberuhigungszeit abgelaufen ist, wird das Signal »Freigabe« aktiv und »Eval Zuschalt-Beding« fällt zurück.
 »Freigabe« fällt zurück, sobald die Freigabe-Bedingungen nicht mehr erfüllt sind (Spannung, Frequenz und/oder externe Freigabe).

Freigabebedingungen zur (Wieder-)Zuschaltung basieren auf einer Überprüfung der Netzspannungen auf gültige Spannungs- und Frequenzwerte. Hierbei kann bzw. muss eine Spannungsüberprüfung durch direkte Messung von netzseitigen Spannungen und/oder durch ein externes Signal (im Diagramm: »WZS. U Ext Freigabe NAP-E«) realisiert werden.

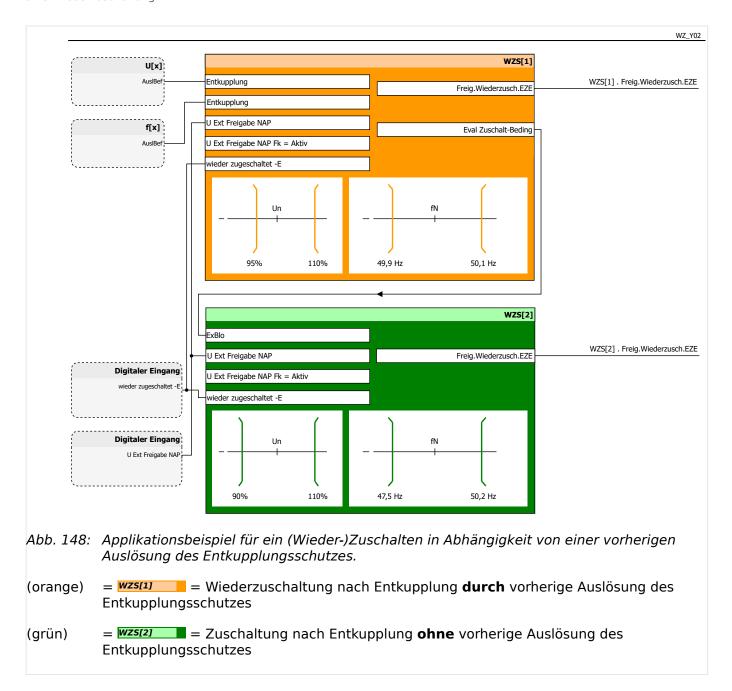
Alle Einstellungen für die Freigabebedingungen erfolgen im Gerätemenü [Schutzparameter / Globale Schutzpara x / NA-Schutz / WZS[n] / Freigabe Para].

Die Abweichung von der Nennfrequenz für die Einstellwerte »f min Freigabe« und »f max Freigabe« sollte nicht mehr als 4 Hz betragen:

Nennfrequenz [Feldparameter / Frequenz] »f«	Niedrigster empfohlener Einstellwert »f min Freigabe«	Höchster empfohlener Einstellwert »f max Freigabe«
50 Hz	46,0 Hz	54,0 Hz
60 Hz	56,0 Hz	64,0 Hz

HINWEIS!

Bitte beachten Sie während Inbetriebnahme-Tests für folgende Konfiguration:


 Wiederzuschaltungs-Freigabe nach Entkupplung durch Auslösung des Entkupplungsschutzes unter Berücksichtigung der Schalter-Position: »WZS . wieder zugeschaltet -E« und »WZS . Entkupplung-E« rangiert.

Die Funktion wird gestartet, sobald ein Entkupplungs-Signal aktiv wird und »wieder zugeschaltet -E« zurückfällt (Leistungsschalter öffnet). Um dies zu testen und die Wiederzuschaltung zu starten, ist es wichtig, folgende zeitliche Abhängigkeiten zu kennen:

- Als erstes muss ein Entkupplungs-Signal aktiv werden (Auslösung des Entkupplungsschutzes),
- danach öffnet der Leistungsschalter und »WZS . wieder zugeschaltet -E« fällt zurück während
- das Entkupplungs-Signal weiterhin aktiv bleibt.
- Jetzt ist die Funktion gestartet und beginnt mit der Evaluation der Zuschalt-Bedingungen. Das Entkupplungs-Signal darf jetzt zurückfallen.

Anwendungsbeispiel für (Wieder-)Zuschaltung nach Entkupplung mit und ohne Auslösung des Entkupplungsschutzes (nach VDE-AR N 4110/4120)

Im folgenden Beispiel werden zwei verschiedene Wiederzuschaltungs-Module verwendet. Diese verhalten sich unterschiedlich, je nachdem, ob es vorher eine Entkupplung durch Auslösung des Entkupplungsschutzes (Spannungs-, Frequenz- und QU-Schutz) gegeben hat oder nicht, sodass für beide Fälle unterschiedliche Freigabe-Grenzen für Spannung und Frequenz gelten.

Die Freigabegrenzen (orange) nach einer Entkupplung durch Auslösung des Entkupplungsschutzes sind enger vorgegeben als ohne vorherige Auslösung. Für das engere Freigabeband lässt sich die erste Instanz »WZS[1]« verwenden, auf die auch die Entkupplungs-Funktionen rangiert werden.

Die zweite Instanz »WZS[2]« kann für die Zuschaltung ohne vorherige Auslösung verwendet werden. Sie wird mit den äußeren Freigabegrenzen (grün) parametriert und darf keine Entkupplungs-Funktionen rangiert haben. Damit diese zweite Instanz »WZS[2]« **kein** Wiederzuschaltsignal nach vorheriger Auslösung erzeugt, wird sie blockiert über eine Rangierung des Ausgangssignals »WZS[1]. Eval Zuschalt-Beding«, welches gesetzt wird, sobald eine der rangierten Entkupplungs-Funktionen auslöst und »WZS[1]« getriggert ist.

Erst nach erfolgtem Freigabesignal durch »WZS[1]« wird das Blockadesignal für »WZS[2]« zurückgenommen. Für eine einwandfreie Funktion der Blockade sollte die Zeitverzögerung [Schutzparameter / Satz x / NA-Schutz / WZS[2] / Freigabe Para] »t-Freigabe Blo« nicht weniger als eine Periode betragen.

Bitte beachten Sie das Signal »wieder zugeschaltet -E« (Schalter-Position) für beide Instanzen »WZS[1]« und »WZS[2]« zu rangieren, um einen einwandfreien Betrieb für diese Konfiguration zu erhalten.

5.26 UFLA - Unterfrequenzabhängiger Lastabwurf

Aufgabe des Unterfrequenzabhängigen Lastabwurfs (UFLA) ist es, durch koordinierten, intelligenten Lastabwurf wieder ein Gleichgewicht zwischen erzeugter und verbrauchter Wirkleistung herzustellen und so die Netzfrequenz zu stabilisieren. Im Unterschied zum klassischen Lastabwurf wirft der Unterfrequenzabhängige Lastabwurf (UFLA) unter Verwendung der Wirkleistungsrichtungserkennung nur Teilnetze ab, die die Netzfrequenz belasten. Ein Abwurf von Teilnetzen, die auf Grund ihrer Wirkleistungsspeisung die Frequenz stützen, wird blockiert.

Siehe auch:

- VDE-AR-N 4142 Automatische Letztmaßnahmen zur Vermeidung von Systemzusammenbrüchen
- VDE-AR-N 4110 Technische Regeln für den Anschluss von Kundenanlagen an das Mittelspannungsnetz und deren Betrieb (TAR Mittelspannung)
- VDE-AR-N 4120 Technische Regeln für den Anschluss von Kundenanlagen an das Hochspannungsnetz und deren Betrieb (TAR Hochspannung)

5.26.1 Applikationsbeispiele

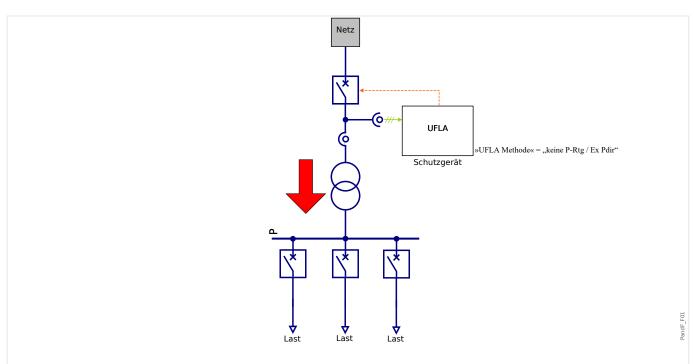


Abb. 149: Netz ohne/mit geringer dezentraler Einspeisung, Richtungsabhängigkeit des Frequenzabhängigen Lastabwurfs ist nicht gefordert (klassischer Lastabwurf).

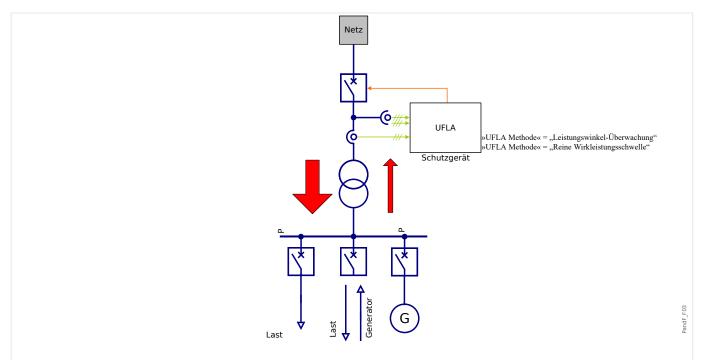


Abb. 150: Mischnetze mit Rückspeisung, Richtungsabhängigkeit des Frequenzabhängigen Lastabwurfs ist gefordert.

Bei aktivierter Wirkleistungsrichtungserkennung verhindert der Unterfrequenzabhängige Lastabwurf bei Unterfrequenz die Abtrennung von Teilnetzen die zur Stabilisierung der Frequenz durch Speisung von Wirkleistung beitragen. Das Teilnetz wird nur dann getrennt, wenn es die Netzfrequenz destabilisiert (durch die Entnahme von Wirkleistung).

5.26.2 Wirkleistungsrichtungserkennung

Definitionen

- Verbraucherzählpfeilsystem = Verbrauchte Wirk- und Blindleistung werden positiv gezählt (haben ein positives Vorzeichen)
- Erzeugerzählpfeilsystem = Erzeugte Wirk- und Blindleistung werden positiv gezählt (haben ein positives Vorzeichen)

Auslöserichtung

Mit Hilfe des Parameters [Schutzparameter / Globale Schutzpara / NA-Schutz / UFLA] »P-Block Rtg« kann das Vorzeichen bzw. Zählpfeilrichtung der Wirkleistung innerhalb des UFLA-Moduls invertiert werden. Schutzgeräte, die das Verbraucherzählpfeilsystem verwenden, sind mit der Parametrierung »P-Block Rtg« = "Negativ" zu betreiben.

Schutzgeräte, die auf der Basis des Erzeugerzählpfeilsystems arbeiten (siehe → "Zählpfeilsystem"), sind mit der Einstellung »P-Block Rtg« = "Positiv" zu betreiben.

5.26.3 Parametrieren

HINWEIS!

Es wird die Wirkleistung (P1) in der Mitsystemleistung zur Auswertung herangezogen.

Allgemeine Einstellungen

Wechseln Sie zunächst ins Menü [Schutzparameter / Globale Schutzpara / NA-Schutz / UFLA].

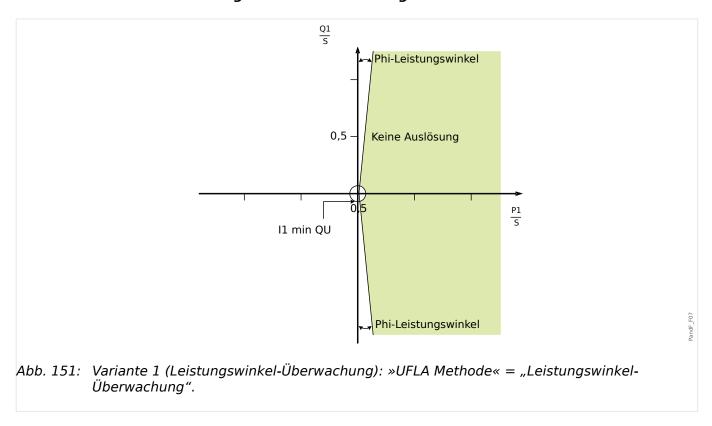
Hier können Sie:

- Signale, die Aktivierung Adaptiver Parameter rangieren.
- Ein Signal rangieren, das die Wirkleistungsrichtungserkennung blockiert.
- Das Vorzeichen der Wirkleistung invertieren. (Siehe hierzu auch ⇔5.26.2 Wirkleistungsrichtungserkennung.)

Parametrierung des Lastabwurfs

Wechseln Sie ins Menü [Schutzparameter / Satz n / NA-Schutz / UFLA].

Hier können Sie die Variante bzw. den Wirkleistungsbereich parametrieren, in dem eine Unterfrequenz zu keinem Lastabwurf führen soll.


Durch die Mindeststromüberwachung (I1 min) im Mitsystem kann eine mögliche Überfunktion der Wirkleistungsschwellwertüberwachung im unteren Leistungsbereich verhindert werden.

Durch die Mindestspannungsüberwachung kann festgelegt werden, ab welcher Spannung das UFLA-Modul freigegeben wird (Leiter-Leiter-Spannung).

Die Wirkleistungsrichtung kann durch unterschiedliche Verfahren festgestellt werden. Wählen Sie daher über den Parameter »UFLA Methode« die gewünschte Methode.

- "Leistungswinkel-Überwachung" Leistungswinkel-Überwachung, siehe →"Variante 1: Leistungswinkel-Überwachung"
- "Reine Wirkleistungsschwelle" Reine Wirkleistungsschwelle, siehe ↔"Variante 2: Reine Wirkleistungsschwellwertüberwachung"
- "keine P-Rtg / Ex Pdir" Klassischer rein frequenzabhängiger Lastabwurf, ignoriert die Richtung des Wirkleistungsflusses oder Externe Vorgabe des Blockadebereichs., siehe →"Variante 3 – klassischer Lastabwurf ohne Berücksichtigung der Wirkleistungsrichtung", →"Variante 4 – Externe Vorgabe der Wirkleistungsrichtung"

Variante 1: Leistungswinkel-Überwachung

Wenn die Wirkleistung innerhalb des durch den Leistungswinkel vorgegebenen Bereichs liegt, wird bei Unterfrequenz ein Lastabwurf verhindert.

- Setzen Sie den Parameter »UFLA Methode« = "Leistungswinkel-Überwachung".
- Setzen Sie den Leistungswinkel »Leistungswinkel«.
- Wählen Sie einen geeigneten Mindeststrom »11 min«, der Fehlauslösungen verhindert.

Variante 2: Reine Wirkleistungsschwellwertüberwachung

Wenn die Wirkleistung oberhalb der parametrierten Schwelle liegt wird bei Unterfrequenz ein Lastabwurf verhindert.

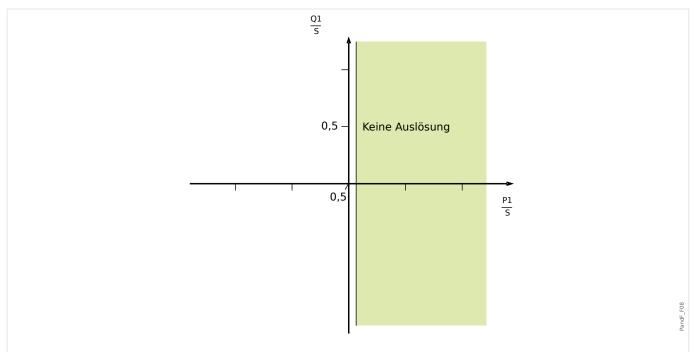


Abb. 152: Variante 2 (Reine Wirkleistungsschwellwertüberwachung): »UFLA Methode« = "Reine Wirkleistungsschwelle".

- Setzen Sie den Parameter »UFLA Methode« = "Reine Wirkleistungsschwelle".
- Setzen Sie den Schwellwert für die Wirkleistung: »P min«.
- Wählen Sie einen geeigneten Mindeststrom »11 min«, der Fehlauslösungen verhindert.

Variante 3 - klassischer Lastabwurf ohne Berücksichtigung der Wirkleistungsrichtung

Der Lastabwurf wird nur durch Unterschreiten von Unterfrequenzschwellen ausgelöst. Der Wirkleistungsfluss bleibt unberücksichtigt.

Wenn die Wirkleistungsrichtung unberücksichtigt bleiben soll:

• Stellen Sie den Parameter folgendermaßen ein: »UFLA Methode« = "keine P-Rtg / Ex Pdir".

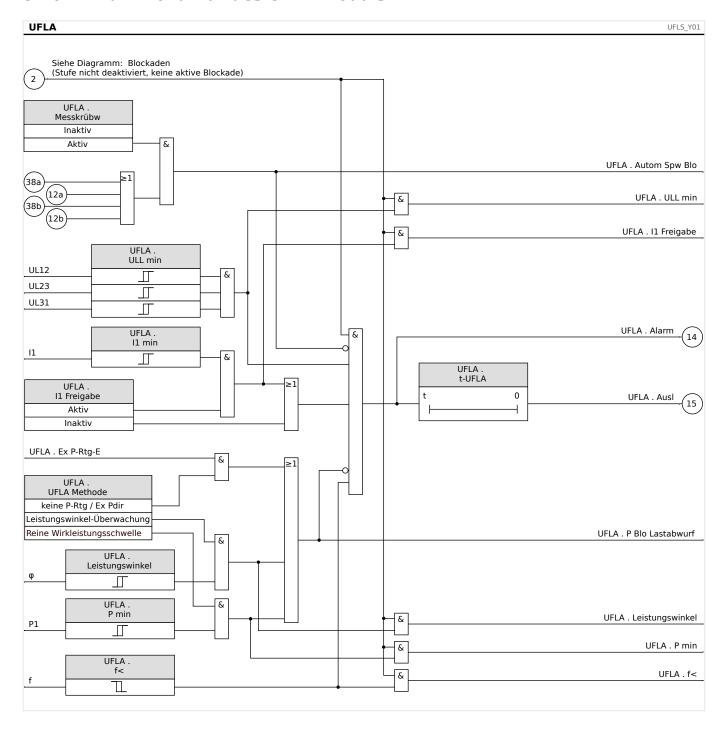
Variante 4 - Externe Vorgabe der Wirkleistungsrichtung

Wenn die Wirkleistungsrichtung von extern kommen soll. (Diese Variante kann z. B. dann zur Anwendung kommen, wenn entsprechende Spannungswandlersignale fehlen.)

- Setzen Sie den Parameter »UFLA Methode« = "keine P-Rtg / Ex Pdir".
- Rangieren Sie auf den Parameter [Schutzparameter / Globale Schutzpara / NA-Schutz / UFLA] »Ex P-Rtg« ein Signal, das die Richtung des Wirkleistungsflusses vorgibt.

Unterfrequenzansprechwert und Zeitverzögerung

Die folgenden Parameter können im Zusammenhang mit diskriminierungsfreien Lastabwurf verwendet werden (siehe auch den nachfolgenden Abschnitt, ⇔"Diskriminierungsfreier Lastabwurf mittels Adaptiver Parameter").


- Legen Sie den Unterfrequenzansprechwert fest: [Schutzparameter / Satz n / NA-Schutz / UFLA / Lastabwurf] »f<«.
- Legen Sie die Auslöseverzögerung fest: [Schutzparameter / Satz n / NA-Schutz / UFLA / Lastabwurf] »t-UFLA«. Die Zeitstufe wird beim Ansprechen des UFLA-Moduls gestartet.

Diskriminierungsfreier Lastabwurf mittels Adaptiver Parameter

Mittels Adaptiver Parameter kann ein diskriminierungsfreier Lastabwurf realisiert werden. Hierdurch entfällt eine aufwändige Neuparametrierung und deren Inbetriebnahme. Mittels adaptiver Parameter besteht die Möglichkeit ohne Wechsel eines ganzen Parametersatzes gezielt eine einzelne Funktion durch ein Aktivierungssignal umzuschalten.

- Rangieren Sie hierzu in den Globalen Schutzparametern [Schutzparameter / Globale Schutzpara / NA-Schutz / UFLA] die Signale, die die jeweiligen Adaptiven Parameter aktivieren (siehe ⇔2.3.2 Adaptive Parametersätze).
- Im Menü [Schutzparameter / Satz n / NA-Schutz / UFLA / Lastabwurf] können dann die für den jeweiligen Adaptiven Parametersatz gültigen Parameter definiert werden.

5.26.4 Funktionalität des UFLA-Moduls

5.27 LVRT - Low Voltage Ride Through [27(t)]

Der steigende Anteil an dezentraler Einspeisung wie Windkraft, Solarenergie und anderen erneuerbaren Energien in das elektrische Energieversorgungsnetz (DR – Distributed Resources) hat nicht nur nachhaltige Auswirkungen auf die dafür erforderlichen Schutz- und Steuerkonzepte sondern auch auf die Art der Messwerterfassung und die Kommunikation.

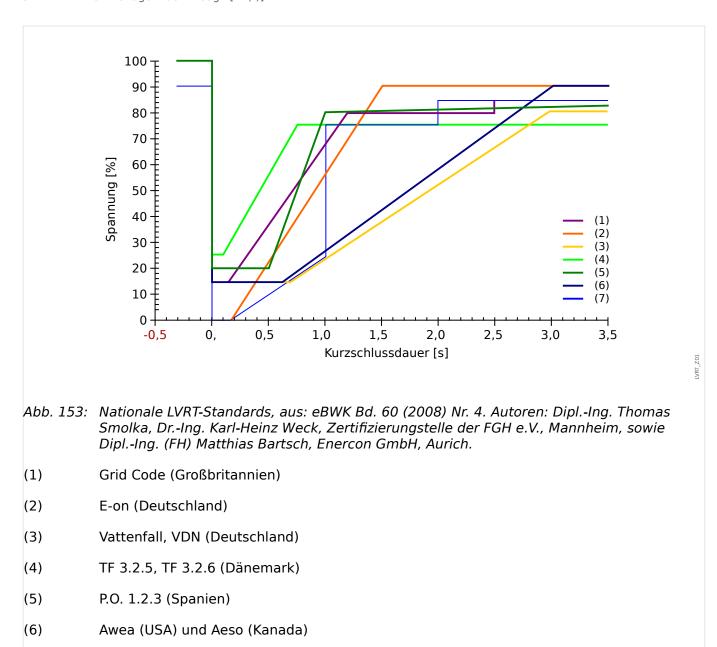
Das Verhalten von netzparallel speisenden dezentralen Energieerzeugungsanlagen während Netzstörungen stellt eine große Herausforderung dar. Die Mehrzahl der Netzspannungseinbrüche kann dadurch charakterisiert werden, dass sie nur sehr kurzzeitig, wenn auch mit variabler Länge anstehen.

Konventionelle Schutzkonzepte sahen vor, dass dezentrale Energieerzeugungsanlagen im Fall eines signifikanten Einbruchs der Netzspannung, so schnell wie möglich vom elektrischen Energieversorgungs-netz getrennt werden.

Dieses Verhalten, bzw. diese Schutzphilosophie kann nicht länger akzeptiert werden, da der prozentuale Anteil der dezentralen Einspeiseanlagen an der elektrischen Energieerzeugung kontinuierlich steigt. Die unkontrollierte Abkopplung systemrelevanter Anteile auf der Erzeugungsseite im Falle einer Netzstörung gefährdet die Stabilität des gesamten Energieversorgungsnetzes.

Basierend auf solchen Erfahrungen haben viele Energieversorger Netzanschlussrichtlinien herausgegeben, die von dezentralen Einspeisungen die Fähigkeit zum Low-Voltage-Ride-Through während Netzstörungen verlangen.

Was bedeutet LVRT im Detail?


Es ist nicht länger zulässig, eine dezentrale Einspeisung vom Netz zu trennen (zu entkoppeln), nur weil die Netzspannung kurzzeitig signifikant einbricht. Schutzgeräte und Steuerungsanlagen haben dies entsprechend zu berücksichtigen. Anstelle dessen, muss die dezentrale Einspeisung in der Lage sein, einen Netzspannungseinbruch auf der Basis eines durch den Energieversorger vorgegebenen Spannungsprofils zu durchfahren. Die äußerliche Verlaufsform der vorgegebenen Spannungsprofile (LVRT-Profile) ähneln sich länderübergreifend. Die Abweichungen liegen in Details.

Mit Hilfe der LVRT-Funktionalität kann die Netzstabilität genau in jenen Situationen verbessert werden, wenn die netzstützende Wirkung der dezentralen Einspeiseanlagen am dringendsten benötigt wird. Es ist davon auszugehen, dass die Bedeutung der LVRT-Funktionalität mit weiter steigendem Anteil der dezentralen Einspeisung am Energiemix noch weiter zunehmen wird.

Auf der Basis der oben erwähnten technischen Erfordernisse wurde für das MCDLV4 ein LVRT-Modul entwickelt, mit dem die LVRT-Anforderungen aller relevanten nationalen und lokalen Netzanschlussrichtlinien umgesetzt werden können.

Die folgende Zeichnung zeigt im Detail die unterschiedlichen nationalen LVRT-Standards. Es ist zu berücksichtigen, dass die Standards (Profile) in einigen Ländern noch in der Entwicklungsphase sind.

(7)

Das LVRT-Funktionsprinzip

Hydro-Quebec (Kanada)

Aus der Sicht eines Netzbetreibers ist ein LVRT-Profil ein Spannungsprofil, dass eine netzparallel speisende, dezentrale Energieerzeugungsanlage im Fall einer Netzstörung durchfahren können muss, solange die Netzspannung am Netzanschlusspunkt oberhalb der Kennlinie verbleibt, die durch das LVRT-Profil vorgegeben wird.

Die dezentrale Einspeiseanlage darf nur dann vom Netz getrennt werden, wenn die Spannung am Netzanschlusspunkt unter die durch das LVRT-Profil vorgegebene Kennlinie fällt. Oder anders ausgedrückt, das LVRT-Modul ist eine zeitabhängige Spannungsüberwachung nach einem vordefinierten Spannungsprofil.

Das LVRT-Modul wird gestartet, wenn die Spannung am Netzanschlusspunkt unter einen Startwert [Schutzparameter / Satz 1...4 / NA-Schutz / LVRT[x] / LVRT Profil] »Ustart < « fällt.

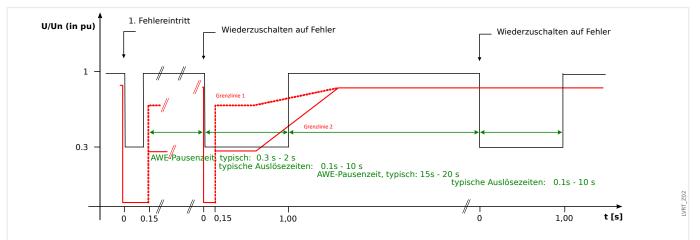
Das LVRT-Modul wird gestoppt, sobald die Spannung am Netzanschlusspunkt wieder über den Stoppwert (Recover-Spannung) [Schutzparameter / Satz 1...4 / NA-Schutz / LVRT[x] / LVRT Profil] »Ustop>« steigt.

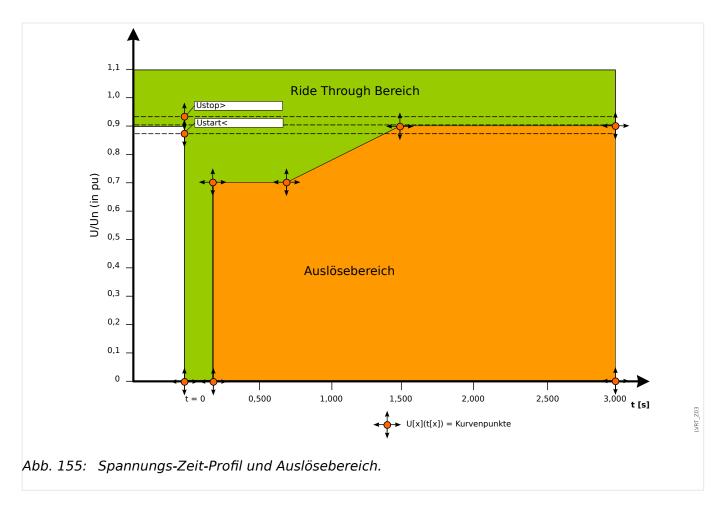
AWE gesteuertes LVRT

Wie bereits erwähnt, ist es die Aufgabe des LVRTs, die dezentrale Erzeugungsanlage im Fall von kurzzeitigen, Netzspannungseinbrüchen am Netz zu halten. Fehler innerhalb des elektrischen Energieversorgungsnetzes, auf die Automatische Wiedereinschaltversuche (koordiniert mit Schutzfunktionen wie Kurzschlussschutz oder Distanzschutz) angewendet werden, führen zu einer möglichen Serie von Netzspannungseinbrüchen in einem Zeitfenster, das durch die parametrierten Pausenzeiten und Kommandozeiten des AWE-Moduls vorgegeben wird. Die durch die Pausenzeiten der AWE verursachten Spannungseinbrüche sind temporär. Das Schutzgerät muss somit in der Lage sein, die von einer AWE verursachten temporären Spannungseinbrüche zu erkennen und nur in dem Fall einen Auslösebefehl abzusetzen, wenn die Spannung am Netzanschlusspunkt unter das Spannungsprofil fällt oder wenn alle Wiedereinschaltversuche des AWE-Moduls erfolglos waren.

Die folgende Abbildung zeigt den Verlauf der Spannung während einer nicht erfolgreichen zweischüssigen AWE.

Wie von einigen Anschlussrichtlinien gefordert, muss die dezentrale Erzeugungsanlage in der Lage sein, mehrere Spannungseinbrüche, die z.B. von einer AWE verursacht sind, zu durchfahren. Aber sie kann vom elektrischen Energieversorgungsnetz getrennt werden, wenn der Fehler permanent ist. Mittels des Features »AWE gesteuertes LVRT«, das im LVRT-Modul gewählt werden kann, kann diese Anforderung leicht umgesetzt werden.



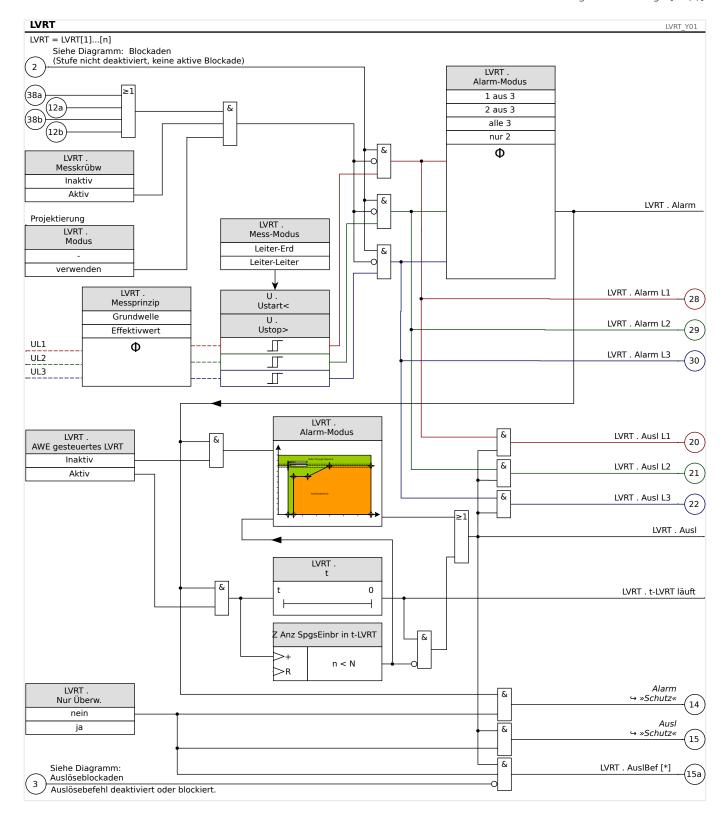

Abb. 154: Spannungsverlauf während einer zweischüssigen, nicht erfolgreichen AWE (aus: VDE-AR-N 4110/4120).

Funktionale Beschreibung des LVRT-Moduls

Das LVRT-Modul wurde für netzparallel arbeitende dezentrale Energieerzeugungsanlagen entwickelt.

Es vergleicht die gemessene momentane Netzspannung mit einem einstellbaren Spannungsprofil welches getriggert wird, sobald die Netzspannung unter die Startschwelle »Ustart<« fällt.

Nach dem das Modul gestartet (getriggert) wurde, überwacht es die Netzspannung darauf, ob diese oberhalb des vorgegebenen Spannungs-Zeit-Profils verläuft. Ein Auslösesignal wird nur dann abgesetzt, wenn die Netzspannung unter das LVRT-Profil fällt (Auslösebereich).



Das LVRT-Modul wechselt in den Standby-Modus zurück, wenn die Netzspannung den Stoppwert »Ustop>« wieder überschreitet.

AWE gesteuerte LVRT

Wenn das LVRT-Modul auch im Zusammenhang mit Automatischen Wiedereinschaltungen verwendet werden soll, dann muss der Parameter [Schutzparameter / Satz 1...4 / NA-Schutz / LVRT[x] / Allg Einstellungen] »AWE gesteuertes LVRT« auf "Aktiv" gesetzt werden.

Weiterhin muss die Überwachungszeit [Schutzparameter / Satz 1...4 / NA-Schutz / LVRT[x] / Allg Einstellungen] »t-LVRT« parametriert werden, innerhalb derer alle zu erwartenden Wiedereinschaltversuche ausgeführt sein müssen. Darüber hinaus muss die Anzahl erlaubter LVRT-Durchläufe unter [Schutzparameter / Satz 1...4 / NA-Schutz / LVRT[x] / Allg Einstellungen] »Anz erl SpgEinbr bis Ausl« parametriert werden. Diese Anzahl entspricht in der Regel der Anzahl erlaubter AWE-Versuche. Wird innerhalb eines LVRT-Ereignisses die parametrierte zulässige Anzahl von LVRT-Durchläufen erreicht, dann wird das LVRT-Modul davon ausgehen, dass der Spannungseinbruch permanent ist und unverzüglich einen Auslösebefehl ausgeben, um die dezentrale Einspeiseanlage vom Netz abzukoppeln.

Allgemeine Applikationshinweise zur Parametrierung des LVRT

Das LVRT-Modul umfasst unter anderem die folgenden Parameter:

- Mittels des Parameters [Schutzparameter / Satz 1...4 / NA-Schutz / LVRT[x] / LVRT Profil] »Ustart<« wird das LVRT-Modul gestartet (getriggert).
- Über den Parameter [Schutzparameter / Satz 1...4 / NA-Schutz / LVRT[x] / LVRT Profil]
 »Ustop>« erkennt das LVRT-Modul das Ende einer »LVRT«-Störung.

- Es ist zu berücksichtigen, dass der Parameter »Ustop>« größer als »Ustart<« sein muss. Sollte dies nicht der Fall sein, dann wird die interne Plausibilitätsüberwachung den Parameter »Ustop>« auf 103% von »Ustart<« setzen.
- [Schutzparameter / Satz 1...4 / NA-Schutz / LVRT[x] / LVRT Profil] »U(tk)«, »tk« sind die Einstellpunkte des LVRT-Profils.

Spezielle Applikationshinweise zur Parametrierung des LVRT

- Für einige Anwendungen werden nicht alle Einstellpunkte des LVRT-Profils benötigt.
- Für den Fall, dass nicht alle Einstellpunkte benötigt werden um ein vorgegebenes LVRT-Profil nachzubilden, sind alle nicht verwendeten Einstellpunkte mit dem gleichen Wert wie der letzte benötigte Punkt zu belegen.
- Die Einstellpunkte sind in aufsteigender Reihenfolge zu setzen (»U(tk+1)«>»U(tk)«).
- Der Wert für den letzten Spannungspunkt soll größer als der Startwert gewählt werden. Sollte dies nicht der Fall sein, dann wird der Spannungswert »Ustop>« intern auf den maximalen Spannungs-Einstellwert gesetzt werden.

Üblicherweise wird mit den Werkseinstellungen das auf der Typ-I-Kurve der VDE-AR-N 4110/4120-Richtlinie (⇔14.1 Standards) basierende LVRT-Profil ausgeliefert.

Dieses wird in der folgenden Grafik dargestellt:

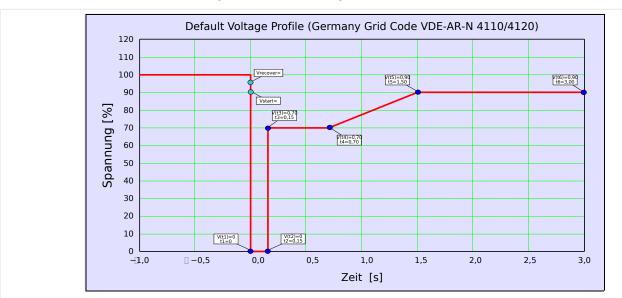
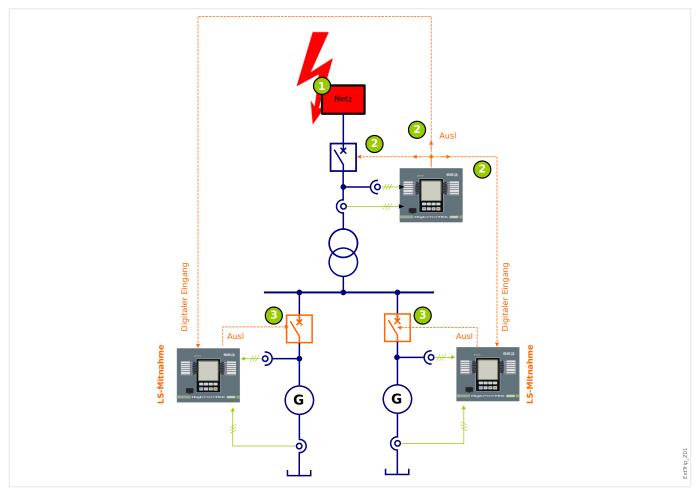


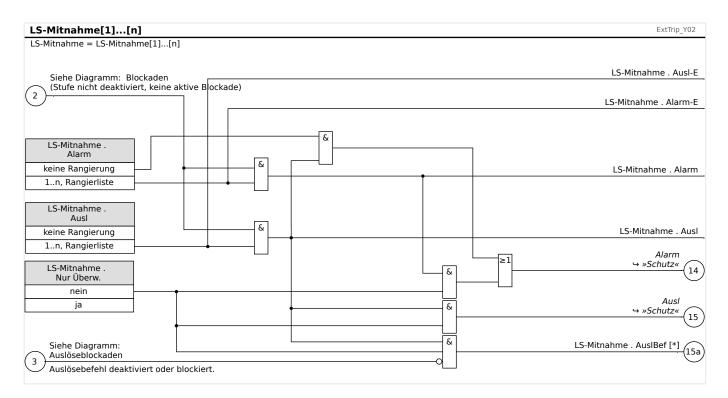
Abb. 156: LVRT-Werkseinstellung (Typ I).

5.28 LS - Mitnahme (Fern)

Dies Modul gestattet die Anbindung externer Auslösekommandos, Blockaden und digitaler externer Signale in die Gerätefunktionalität.

Anwendungsbeispiel


Mehrere Erzeugungsanlagen speisen über einen gemeinsamen, zentralen Netzanschlusspunkt (NAP) netzparallel ins Netz (NAP). Am Netzanschlusspunkt ist ein Netzschutzrelais verbaut. Hierbei kann es sich z.B. um ein Distanzschutzrelais handeln, das z.B. die abgehende Leitung überwacht.


In der abgehenden Leitung kommt es nun zu einem Fehler **①**. Die abgehende Leitung wird getrennt. Die erzeugte Energie kann nun nicht mehr ins Netz gespeist werden.

Das Modul »LS-Mitnahme« ermöglicht das Mitnehmen (Übernehmen) des Auslösebefehls der übergeordneten Entkupplungs- oder Netzschutzeinrichtung des Netzbetreibers, die am Netzanschlusspunkt (NAP) verbaut ist z.B. durch eine oder mehrere untergeordnete dezentrale Einspeisungen/Erzeugungsanlagen.

Die Auslöseentscheidung des Schutzgeräts am Netzanschlusspunkt wird über Digitale Eingänge an die »LS-Mitnahme«-Module der Schutzgeräte der untergeordneten Einspeisungen übergeben ②.

Die untergeordneten dezentralen Einspeisungen übernehmen den Ausschaltbefehl und trennen die jeweilige Erzeugungsanlage (EZA) vom Netz **6**. Die Auslöseentscheidung des übergeordneten Schutzrelais wird gezielt "mitgenommen".

5.28.1 Inbetriebnahme: LS-Mitnahme

Gegenstand der Prüfung

Überprüfen des Moduls Externe Auslösung.

Benötigte Geräte

• Abhängig von der Anwendung

Durchführung

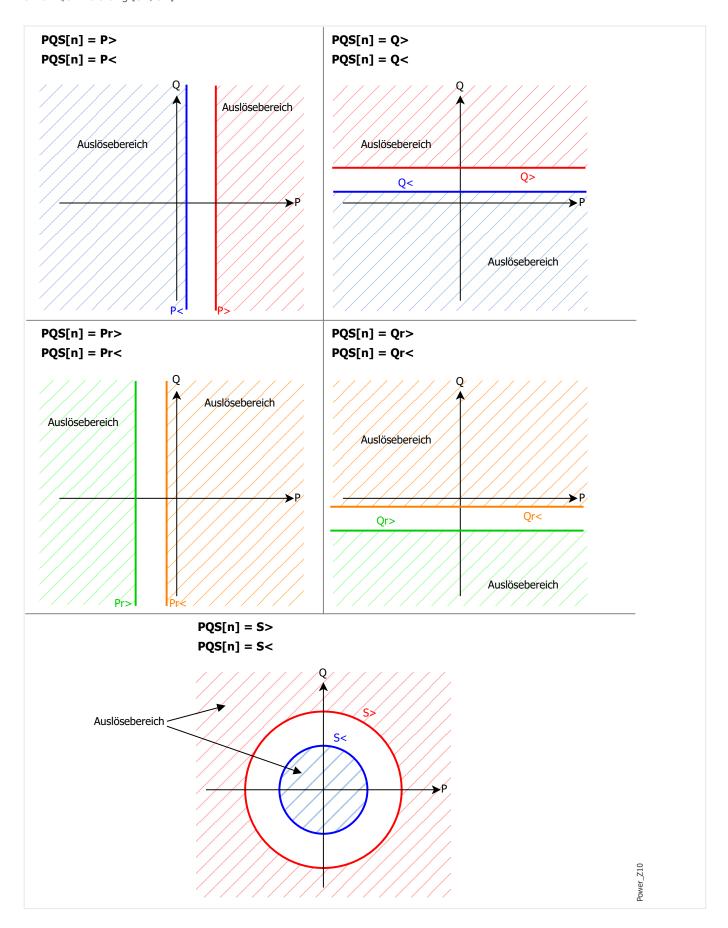
Simulieren Sie die Funktionalität des Externen Schutzes (Alarm, Auslösung. Blockade ...) durch entsprechendes Beschalten der Digitalen Eingänge.

Erfolgreiches Testergebnis

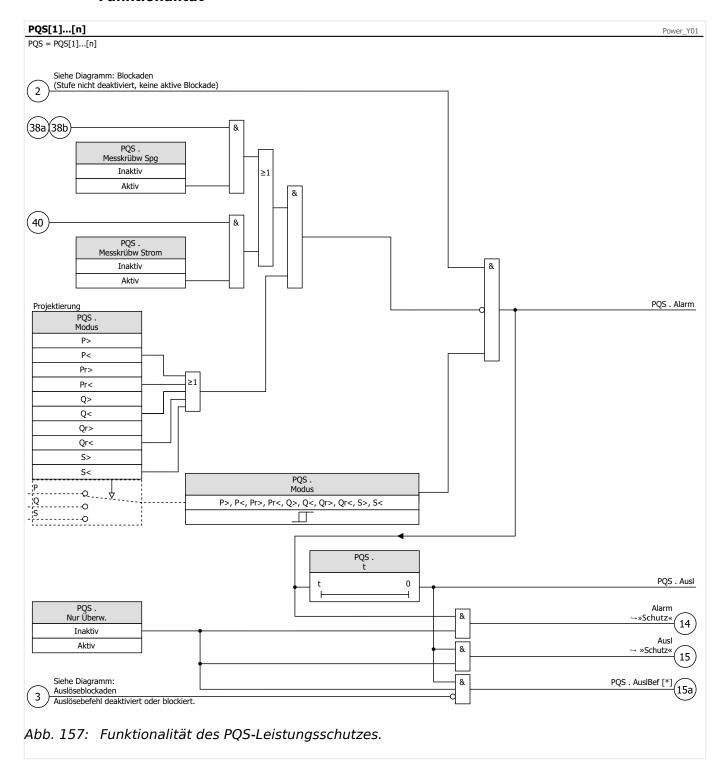
Alle Externen Alarme, Externen Auslösebefehle und Externen Blockaden werden vom Gerät erkannt und entsprechend weiterverarbeitet.

5.29 **PQS - Leistung [32, 37]**

Im Menü [Projektierung / Projektierte Elemente] kann für jede »PQS«-Stufe ein »Modus« eingestellt werden, nämlich wahlweise: P>, P<, Pr<, Pr>, Q>, Q<, Qr<, Qr>, S> oder S<


P< und P> überwachen positive Wirkleistung (Vorzeichen). Q< und Q> überwachen positive Blindleistung (Vorzeichen). Diese Modi können zur Überwachung von Unter- und Überlast in positiver Leistungsrichtung eingesetzt werden (Quadrant 1 und 4).

Der Betrag der Scheinleistung wird kreisförmig über alle vier Quadranten überwacht. S< überwacht das Unterschreiten des Betrages der Scheinleistung. S> überwacht ein Überschreiten des Betrages der Scheinleistung (jeweils über alle vier Quadranten).


Die (Wirk-) Rückleistungsüberwachung Pr> ist im negativen Wirkleistungsbereich aktiv. Es wird die Wirkleistungsumkehr vom positiven in den negativen Wirkleistungsbereich überwacht.

Die (Blind-) Rückleistungsüberwachung Qr> ist im negativen Blindleistungsbereich aktiv. Es wird die Blindleistungsumkehr vom positiven in den negativen Blindleistungsbereich überwacht.

Die folgenden Grafiken zeigen den Schutzbereich der einzelnen Modi.

Funktionalität

5.29.1 Einstellhinweise

Alle Einstellungen/Auslösewerte im Leistungsschutzmodul sind als bezogene Größen einzustellen. Per Definition wird als Bezugsgröße stets Sn verwendet.

Sn=√3* SpannungswandlerLeiter_Nennspannung* StromwandlerNennstrom

Wenn die Auslösewerte auf Primärgrößen basieren sollen:

Sn=√3* SpannungswandlerPrimärseite_Leiter-Leiter_Nenn-Spannung* StromwandlerPrimärseite_Nennstrom Wenn die Auslösewerte auf Sekundärgrößen basieren sollen:

Sn=√3* SpannungswandlerSekundärseite_Leiter-Leiter_Nenn-Spannung * StromwandlerSekundärseite Nennstrom

Beispiele - angenommene Anlagendaten

- Stromwandler CT pri =200 A; CT sek = 5 A
- Spannungswandler VT pri = 10 kV; VT sek =100 V
- Generatornennleistung 2 MVA
- Die Rückleistung soll bei 3% ansprechen.

Einstellbeispiel 1 für Pr> auf Basis der Primärseite

Rückleistung soll bei 3% ansprechen. Dies entspricht 60 kW (primär).

Zunächst ist Sn zu berechnen:

 $Sn=\sqrt{3}$ * SpannungswandlerPrimärseite_Leiter_Nenn-Spannung* StromwandlerPrimärseite_Nennstrom

Sn= 1,73 * 10000 V * 200 A = 3,464 MVA

Einzustellender Schwellwert für Pr> im Gerät = 60 kW / Sn

Pr > = 60 kW / 3464 kVA = 0.0173 Sn

Einstellbeispiel 2 für Pr> auf Basis der Sekundärseite

Rückleistung soll bei 3% ansprechen. Dies entspricht 60 kW (primär) ansprechen.

Zunächst ist Sn für zu berechnen.

 $Sn=\sqrt{3}$ * SpannungswandlerSekundärseite_Leiter-Leiter_Nenn-Spannung * StromwandlerSekundärseite_Nennstrom

Sn = 1,73 * 100 V * 5 A = 866,05 VA

Umrechnung der Rückleistung auf die Sekundärseite:

Prsec> = PrPri> / (SpwPri_ULL Nenn/SpwSek_ULL Nenn* StwPri/StwSek) = 60 kW / 4000 = 15 W

Einzustellender Schwellwert für Pr> im Gerät = 15W /Sn

Pr > 15 W / 866 VA = 0.0173 Sn

5.29.2 Inbetriebnahmebeispiele für das Leistungsschutz-Modul

Gegenstand der Prüfung

• Überprüfung (aller projektierten Stufen) des Leistungsschutz-Moduls (P>, P<, Pr<, Pr>, Q>, Q<, Qr<, Qr>, S>, S<, PAV,E P1>, PAV,E P1r>, PAV,E P1< oder PAV,E P1r<).

Benötigte Geräte

- 3-phasige Stromquelle
- 3-phasige Spannungsquelle
- Timer (Zeitgeber)

Durchführung - Überprüfen der Verdrahtung

- Beaufschlagen Sie die Messeingänge mit Nennspannung und Nennstrom.
- Speisen Sie den Strom 30° nacheilend zur Spannung ein.
- Nun müssen folgende Messwerte angezeigt werden:P=0,86 PnQ=0,5 QnS=1 Sn

HINWEIS!

Bei negativen Vorzeichen innerhalb der Messwerte überpfrüfen Sie die Verdrahtung des Geräts.

HINWEIS!

Führen Sie die in diesem Kapitel dargestellten Testbeispiele mit den für Ihre Anlage maßgeblichen Auslöseschwellen und Auslöseverzögerungen durch.

Für den Test von "Größer-als-Auslösewerten" (z.B. P>) beginnen Sie mit 80% des Auslösewertes und erhöhen Sie das Testobjekt solange bis die Anregung erfolgt.

Für den Test von "Kleiner-als-Auslösewerten" (z.B. P<) beginnen Sie mit 120% des Auslösewertes und verkleinern Sie das Testobjekt solange bis die Anregung erfolgt.

Für den Test von "Größer-als -Auslöseverzögerungen" (z.B. P>) starten Sie einen Timer und verändern Sie gleichzeitig sprungartig das Testobjekt von 80% des Auslösewertes auf 120%.

Für den Test von "Kleiner-als-Auslöseverzögerungen" (z.B. P<) starten Sie einen Timer und verändern Sie gleichzeitig sprungartig das Testobjekt von 120% des Auslösewertes auf 80%.

"P>" und "PAV,E P1>"

Messen der Auslösewerte (Beispiel, Auslöseschwelle 1,1 Pn)

- Speisen Sie Nennspannung und 0,9 * Nennstrom mit cos phi=1 ein.
- Der Messwert für P muss positiv sein.
- Setzen Sie die Auslöseschwelle (z. B. 1,1 Pn).
- Zum Überprüfen der Auslösewerte starten Sie mit einem Strom in Höhe von 0,9 In und erhöhen Sie diesen langsam, bis die Anregung erfolgt. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Vergleichen Sie den Messwert zum Zeitpunkt der Auslösung mit dem parametrierten Anregewert.

Überprüfen der Auslöseverzögerung (Beispiel, Auslöseschwelle 1,1 Pn)

• Speisen Sie Nennspannung und Nennstrom mit cos phi=1 ein.

- Der Messwert für P muss positiv sein.
- Setzen Sie die Auslöseschwelle (z. B. 1,1 Pn).
- Zum Überprüfen der Auslöseverzögerung starten Sie mit einem Strom in Höhe von 0.9 In und erhöhen diesen schlagartig auf das 1,2-fache vom Einstellwert (Halten Sie dabei den Winkel zwischen Strom und Spannung konstant). Messen Sie die Auslösezeit am Relaisausgang.
 - Bitte beachten Sie bei Verwendung des Modus PAV,E P1>, dass hier der 200ms Mittelwert der Wirkleistung im Mitsystem betrachtet wird und es somit zu einer zusätzlichen Verzögerung kommen kann.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

"**Q**>"

Messen der Auslösewerte (Beispiel, Auslöseschwelle 1,1 Qn)

- Speisen Sie Nennspannung und 0,9 * Nennstrom mit cos phi=0 ein.
- Der Messwert für Q muss positiv sein.
- Setzen Sie die Auslöseschwelle (z. B. 1,1 Qn).
- Zum Überprüfen der Auslösewerte starten Sie mit einem Strom in Höhe von 0,9 In und erhöhen Sie diesen langsam, bis die Anregung erfolgt. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Vergleichen Sie den Messwert zum Zeitpunkt der Auslösung mit dem parametrierten Anregewert.

Überprüfen der Auslöseverzögerung (Beispiel, Auslöseschwelle 1,1 Qn)

- Speisen Sie Nennspannung und Nennstrom mit cos phi=0 ein.
- Der Messwert für Q muss positiv sein.
- Setzen Sie die Auslöseschwelle (z. B. 1,1 Qn).
- Zum Überprüfen der Auslöseverzögerung starten Sie mit einem Strom in Höhe von 0.9 In und erhöhen diesen schlagartig auf das 1,2-fache vom Einstellwert (Halten Sie dabei den Winkel zwischen Strom und Spannung konstant). Messen Sie die Auslösezeit am Relaisausgang.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

"P<" und "PAV,E P1<"

Messen der Auslösewerte (Beispiel, Auslöseschwelle 0,3 Pn)

• Speisen Sie Nennspannung und Nennstrom in Phase ein (cos phi=1).

- Der Messwert für P muss positiv sein.
- Setzen Sie die Auslöseschwelle (z. B. 0,3 Pn).
- Zum Überprüfen der Auslösewerte starten Sie mit einem Strom in Höhe von 0,5 In und senken Sie diesen langsam, bis die Anregung erfolgt. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Vergleichen Sie den Messwert zum Zeitpunkt der Auslösung mit dem parametrierten Anregewert.

Überprüfen der Auslöseverzögerung (Beispiel, Auslöseschwelle 0,3 Pn)

- Speisen Sie Nennspannung und Nennstrom in Phase ein (cos phi=1).
- Der Messwert für P muss positiv sein.
- Setzen Sie die Auslöseschwelle (z. B. 0,3 Pn).
- Zum Überprüfen des Auslösewertes starten Sie mit einem Strom in Höhe von 0,5 In und senken diesen schlagartig auf 0,2 In. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Messen Sie die Auslösezeit am Relaisausgang.
 - Bitte beachten Sie bei Verwendung des Modus PAV,E P1<, dass hier der 200ms Mittelwert der Wirkleistung im Mitsystem betrachtet wird und es somit zu einer zusätzlichen Verzögerung kommen kann.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

"**O**<"

Messen der Auslösewerte (Beispiel, Auslöseschwelle 0,3 Qn)

- Speisen Sie Nennspannung und Nennstrom bei cos phi=0 ein.
- Der Messwert für Q muss positiv sein.
- Setzen Sie die Auslöseschwelle (z. B. 0,3 Qn).
- Zum Überprüfen der Auslösewerte starten Sie mit einem Strom in Höhe von 0,5
 In und senken Sie diesen langsam, bis die Anregung erfolgt. Halten Sie dabei den
 Winkel zwischen Strom und Spannung konstant. Vergleichen Sie den Messwert zum
 Zeitpunkt der Auslösung mit dem parametrierten Anregewert.

Überprüfen der Auslöseverzögerung (Beispiel, Auslöseschwelle 0,3 Qn)

- Speisen Sie Nennspannung und Nennstrom bei cos phi=0 ein.
- Der Messwert für Q muss positiv sein.
- Setzen Sie die Auslöseschwelle (z. B. 0.3 On).
- Zum Überprüfen des Auslösewertes starten Sie mit einem Strom in Höhe von 0,5 In und senken diesen schlagartig auf 0,2 In. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Messen Sie die Auslösezeit am Relaisausgang.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

"Pr<" und "PAV.E P1r<"

Messen der Auslösewerte (Beispiel, Auslöseschwelle 0,3 Pn)

- Speisen Sie Nennspannung und Nennstrom um 180° phasenverschoben ein.
- Der Messwert für P muss nun negativ sein.
- Setzen Sie die Auslöseschwelle (z. B. 0,3 Pn).
- Zum Überprüfen der Auslösewerte starten Sie mit einem Strom in Höhe von 0,5 In und senken diesen langsam, bis die Anregung erfolgt. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Vergleichen Sie den Messwert zum Zeitpunkt der Auslösung mit dem parametrierten Anregewert.

Überprüfen der Auslöseverzögerung (Beispiel, Auslöseschwelle 0,3 Pn)

- Speisen Sie Nennspannung und Nennstrom um 180° phasenverschoben ein.
- Der Messwert für P muss nun negativ sein.
- Setzen Sie die Auslöseschwelle auf z. B. 0,3 Pn.
- Zum Überprüfen des Auslösewertes starten Sie mit einem Strom in Höhe von 0,5 In und senken diesen schlagartig auf 0,2 In. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Messen Sie die Auslösezeit am Relaisausgang.
 - Bitte beachten Sie bei Verwendung des Modus PAV,E P1r>, dass hier der 200ms Mittelwert der Wirkleistung im Mitsystem betrachtet wird und es somit zu einer zusätzlichen Verzögerung kommen kann.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

"Pr>" und "PAV,E P1r>"

Messen der Auslösewerte (Beispiel, Auslöseschwelle 0,2 Pn)

- Speisen Sie Nennspannung und Nennstrom um 180° phasenverschoben ein.
- Der Messwert für P muss nun negativ sein.
- Setzen Sie die Auslöseschwelle (z. B. 0,2 Pn).
- Zum Überprüfen der Auslösewerte starten Sie mit einem Strom in Höhe von 0,1 In und erhöhen diesen langsam, bis die Anregung erfolgt. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Vergleichen Sie den Messwert zum Zeitpunkt der Auslösung mit dem parametrierten Anregewert.

Überprüfen der Auslöseverzögerung (Beispiel, Auslöseschwelle 0,2 Pn)

• Speisen Sie Nennspannung und Nennstrom um 180° phasenverschoben ein.

- Der Messwert für P muss nun negativ sein.
- Setzen Sie die Auslöseschwelle auf z. B. 0.2 Pn.
- Zum Überprüfen des Auslösewertes starten Sie mit einem Strom in Höhe von 0,1 In und erhöhen diesen schlagartig auf 0,3 In. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Messen Sie die Auslösezeit am Relaisausgang.
 - Bitte beachten Sie bei Verwendung des Modus PAV,E P1r>, dass hier der 200ms Mittelwert der Wirkleistung im Mitsystem betrachtet wird und es somit zu einer zusätzlichen Verzögerung kommen kann.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

"*Qr*<"

Messen der Auslösewerte (Beispiel, Auslöseschwelle 0,3 Qn)

- Speisen Sie Nennspannung und Nennstrom um 90° phasenverschoben ein.
- Der Messwert für Q muss nun negativ sein.
- Setzen Sie die Auslöseschwelle auf z. B. 0,3 Qn.
- Zum Überprüfen der Auslösewerte starten Sie mit einem Strom in Höhe von 0,5
 In und senken diesen langsam, bis die Anregung erfolgt. Halten Sie dabei den
 Winkel zwischen Strom und Spannung konstant. Vergleichen Sie den Messwert zum
 Zeitpunkt der Auslösung mit dem parametrierten Anregewert.

Überprüfen der Auslöseverzögerung (Beispiel, Auslöseschwelle 0,3 Qn)

- Speisen Sie Nennspannung und Nennstrom um 90° phasenverschoben ein.
- Der Messwert für Q muss nun negativ sein.
- Setzen Sie die Auslöseschwelle auf z. B. 0,3 Qn.
- Zum Überprüfen des Auslösewertes starten Sie mit einem Strom in Höhe von 0,5 In und senken diesen schlagartig auf 0,2 In. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Messen Sie die Auslösezeit am Relaisausgang.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

"*Or*>"

Messen der Auslösewerte (Beispiel, Auslöseschwelle 0,2 Qn)

- Speisen Sie Nennspannung und Nennstrom um 90° phasenverschoben ein.
- Der Messwert für Q muss nun negativ sein.

- Setzen Sie die Auslöseschwelle auf z. B. 0,2 Qn.
- Zum Überprüfen der Auslösewerte starten Sie mit einem Strom in Höhe von 0,1 In und erhöhen diesen langsam, bis die Anregung erfolgt. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Vergleichen Sie den Messwert zum Zeitpunkt der Auslösung mit dem parametrierten Anregewert.

Überprüfen der Auslöseverzögerung (Beispiel, Auslöseschwelle 0,2 Qn)

- Speisen Sie Nennspannung und Nennstrom um 90° phasenverschoben ein.
- Der Messwert für Q muss nun negativ sein.
- Setzen Sie die Auslöseschwelle auf z. B. 0,2 Qn.
- Zum Überprüfen des Auslösewertes starten Sie mit einem Strom in Höhe von 0,1 In und erhöhen diesen schlagartig auf 0,3 In. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Messen Sie die Auslösezeit am Relaisausgang.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

"S>"

Messen der Auslösewerte

- Speisen Sie 80% der Leistung der S> -Schwelle ein.
- Erhöhen Sie langsam die eingespeiste Leistung, bis die Anregung erfolgt. Vergleichen Sie den Messwert zum Zeitpunkt der Auslösung mit dem parametrierten Anregewert.

Überprüfen der Auslöseverzögerung

- Speisen Sie 80% der Leistung der S> -Schwelle ein.
- Erhöhen Sie schlagartig die eingespeiste Leistung auf das 1,2-fache vom Einstellwert. Messen Sie die Auslösezeit am Relaisausgang.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

"S<"

Messen der Auslösewerte

- Speisen Sie 120% der Leistung der S< -Schwelle ein.
- Senken Sie langsam die eingespeiste Leistung, bis die Anregung erfolgt. Halten Sie dabei den Winkel zwischen Strom und Spannung konstant. Vergleichen Sie den Messwert zum Zeitpunkt der Auslösung mit dem parametrierten Anregewert.

Überprüfen der Auslöseverzögerung

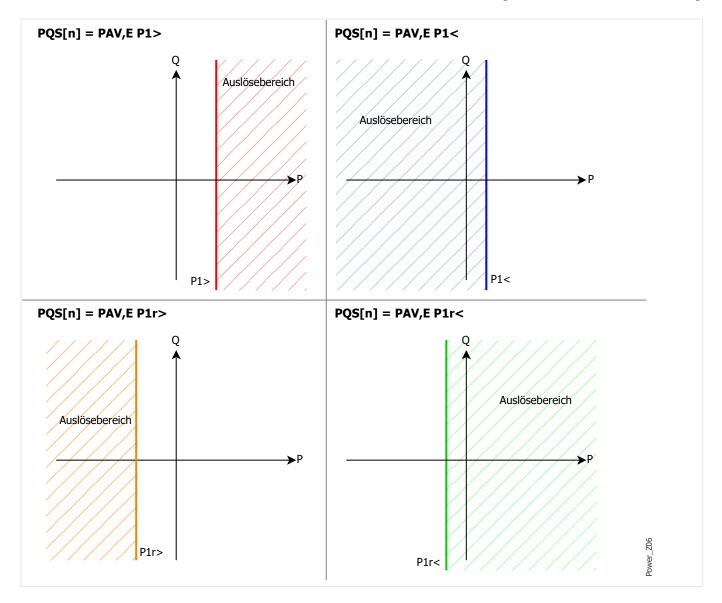
- Speisen Sie 120% der Leistung der S< -Schwelle ein.
- Senken Sie schlagartig die eingespeiste Leistung auf das 0,8-fache vom Einstellwert (Halten Sie dabei den Winkel zwischen Strom und Spannung konstant). Messen Sie die Auslösezeit am Relaisausgang..

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechwerte und Rückfallverhältnisse stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.

5.29.3 PAV, E - Überwachung der vereinbarten Anschlussleistung

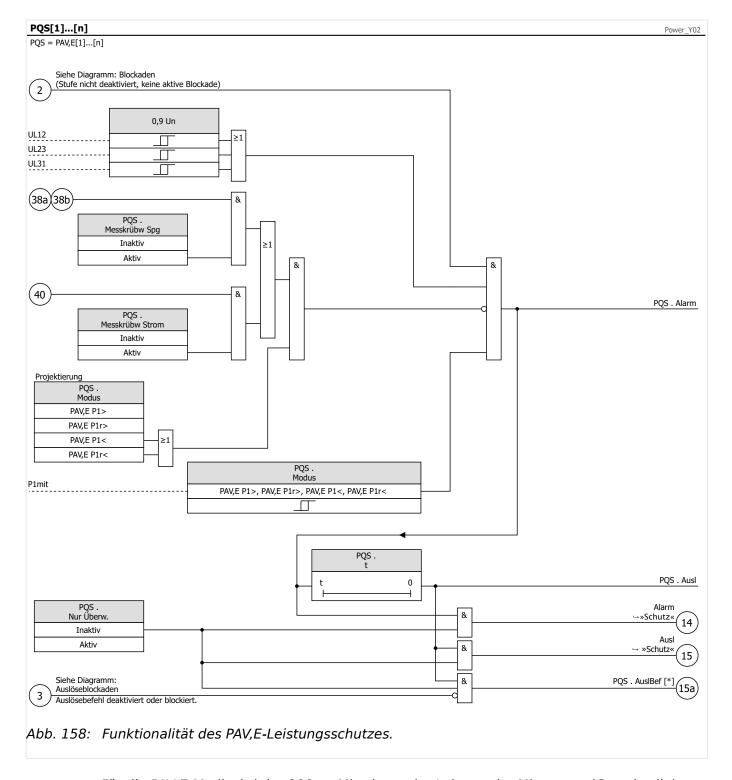
Die **VDE-AR N 4110/4120** legt fest, dass der Netzbetreiber berechtigt ist eine Überwachung der Einspeiseleistung zu fordern. Diese soll verhindern, dass die am Netzanschlusspunkt vereinbarte Einspeiseleistung (PAV,E) der Erzeugungsanlage überschritten wird, indem für diesen Fall eine Trennung vom Netzanschlusspunkt erfolgt.


Für eine solche Überwachungseinrichtung wird im FNN-Hinweis "PAV, E - Überwachung bei Anschlüssen am Mittel- & Hochspannungsnetz" eine Umsetzung empfohlen, die mit dieser Funktion erfolgen kann.

Dazu muss für [Projektierung / Projektierte Elemente]» PQS[x] . Modus« eine der folgenden Optionen gewählt werden:

- "PAV.E P1>"
- "PAV.E P1r>"
- "PAV,E P1<"
- "PAV,E P1r<"

"PAV,E P1<" und "PAV,E P1>" überwachen den 200ms Mittelwert der positiven Wirkleistung (Vorzeichen) im Mitsystem. Diese können zur Überwachung von Unter- und Überlast in positiver Leistungsrichtung eingesetzt werden. "PAV,E P1r<" und "PAV,E P1r>" wirken analog in Rückwärtsrichtung (negativer Wirkleistungsbereich).


Die folgenden Grafiken zeigen den Schutzbereich der einzelnen Modi:

Die Überwachung muss am Netzanschlusspunkt erfolgen.

Für die Stromwandler wird eine Genauigkeit von mindestens 5P gefordert und für die Spannungswandler mindestens Kl. 0,5.

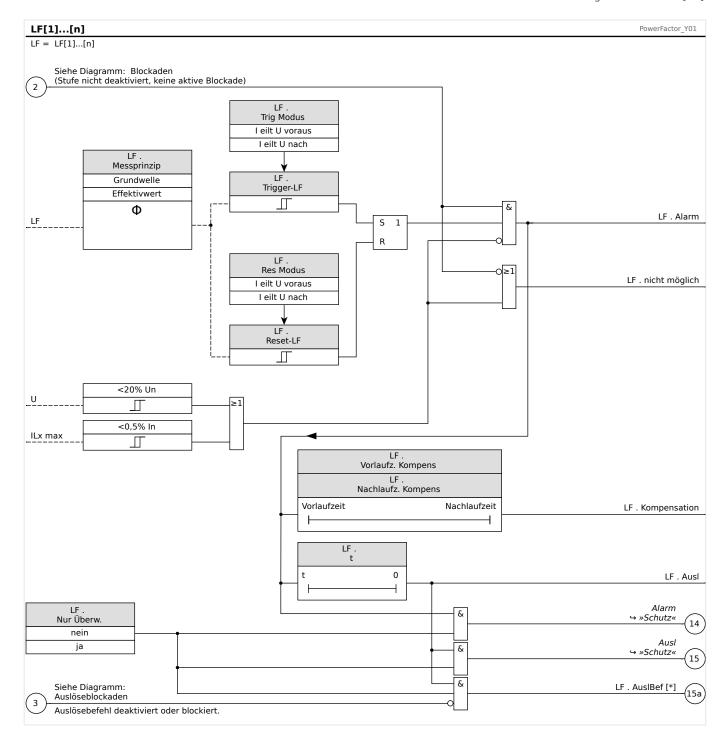
Funktionalität

Für die PAV,E-Modi wird der 200ms Mittelwert der Leistung im Mitsystem (Grundwelle) überwacht. Zusätzlich werden die Außenleiterspannungen gemessen - nur wenn die Spannung oberhalb von 0,9 Un liegt, ist die Funktion freigegeben.

Einstellhinweise

Inbetriebnahmebeispiele für das Leistungsschutz-Modul

Siehe ⇔5.29.2 Inbetriebnahmebeispiele für das Leistungsschutz-Modul.


5.30 LF - Leistungsfaktor [55]

Das Modul LF überwacht, ob sich der Leistungsfaktor innerhalb vorgegebenen Grenzen befindet.

Die Überwachungsgrenzen werden durch vier Parameter definiert:

- Trigger-Quadrant (voreilend/lead oder nacheilend/lag).
- Ansprechwert/-schwelle (cos phi)
- Reset-Quadrant (voreilend/lead oder nacheilend/lag).
- Rückfallwert/-schwelle (cos phi)

"Rückwärtsstrom" eilt der Spannung nach	Strom eilt der Spannung voraus
Quadrant2	Quadrant1
– P	+P
−Q ig	-Q
−LF affice	+LF
− P − Q − LF Wirkleistung fließt in die Quelle	Wirkleistung fließt in die Last →
-P	+P
+Q	+Q
-LF	+LF
−LF Quadrant3 "Rückwärtsstrom" eilt der Spannung voraus	Quadrant4 Strom eilt der Spannung nach

5.30.1 Inbetriebnahme des Leistungsfaktor-Moduls [55]

Gegenstand der Prüfung

• Überprüfung (aller projektierten Stufen) des Leistungsfaktor-Moduls.

Benötigte Geräte

- 3-phasige Stromquelle
- 3-phasige Spannungsquelle
- Timer (Zeitgeber)

Durchführung - Überprüfen der Verdrahtung

- Beaufschlagen Sie die Messeingänge mit Nennspannung und Nennstrom.
- Speisen Sie den Strom 30° nacheilend zur Spannung ein.
- Nun müssen folgende Messwerte angezeigt werden:P=0,86 PnQ=0,5 QnS=1 Sn

HINWEIS!



Bei negativen Vorzeichen innerhalb der Messwerte überprüfen Sie die Verdrahtung des Gerätes.

HINWEIS!

In diesem Beispiel wird ein LF-Trigger von 0,86 = 30° nacheilend (lag) und ein LF-Reset von 0,86 = 30° voreilend (lead) angenommen.

Prüfen des Trigger-Ansprechwertes (LF Trigger: Beispiel = 0,86 nacheilend / lagging)

- Speisen Sie Nennspannung und Nennstrom in Phase ein (cos phi=1).
- Verstellen Sie den Winkel zwischen Spannung und Strom (Stromzeiger nacheilend / lagging) solange bis die Anregung erfolgt.
- Notieren Sie den Auslösewert.

Prüfen des Reset-Rückfallwerts (LF Reset: Beispiel = 0,86 voreilend / leading)

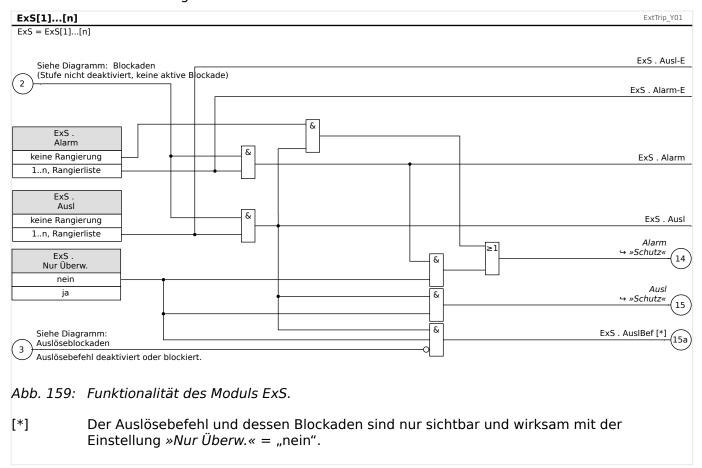
- Verkleinern Sie nun den Winkel zwischen Spannung und Strom über cos phi =1 hinaus (Stromzeiger voreilend / leading) solange bis der Alarm zurückfällt.
- Notieren Sie den Rückfallwert.

Prüfen der Auslöseverzögerung (LF Trigger: Beispiel = 0,86 nacheilend / lagging)

- Speisen Sie Nennspannung und Nennstrom in Phase ein (cos phi=1).
- Verstellen Sie den Winkel zwischen Spannung und Strom (Stromzeiger nacheilend / lagging) sprungartig auf cos phi = 0,707 (45°) nacheilend / lagging.
- Messen Sie am Relaisausgang die Auslösezeit. Vergleichen Sie die gemessene Auslöseverzögerung mit der parametrierten.

Erfolgreiches Testergebnis

Die gemessenen Gesamtauslöseverzögerungen bzw. Auslöseverzögerungen, Ansprechund Resetwerte stimmen mit den durch die Einstellliste vorgegebenen Werten überein. Zulässige Abweichungen/Toleranzen sind den Technischen Daten zu entnehmen.


5.31 ExS - Externer Schutz

HINWEIS!

Alle Stufen des Externen Schutzes ExS[1] ... ExS[4] sind gleich aufgebaut.

Über das Modul Externer Schutz können Auslösebefehle, Alarme und Blockaden externer Schutzgeräte in die Gerätefunktionalität mit eingebunden werden. Darüber hinaus können Geräte, die über keine eigenen Kommunikationsschnittstellen verfügen, mit an die Leittechnik angebunden werden.

5.31.1 Inbetriebnahme: Externer Schutz

Gegenstand der Prüfung

Überprüfen des Moduls "Externer Schutz".

Benötigte Geräte

Abhängig von der Anwendung

Durchführung

Simulieren Sie die Funktionalität des Externen Schutzes (Alarm, Auslösung. Blockade ...) durch entsprechendes Beschalten der Digitalen Eingänge.

Nach Aktivierung des Moduls über [Projektierung / Projektierte Elemente] »ExS[n] . Modus« = "verwenden" rangieren Sie verfügbare Digitale Eingänge auf die Globalen Parameter für Alarm und Auslösung, zum Beispiel:

- [Schutzparameter / Globale Schutzpara / ExS / ExS[n]] »Alarm« = "DI Slot X1 . DI 1"
- [Schutzparameter / Globale Schutzpara / ExS / ExS[n]] »Ausl« = "DI Slot X1 . DI 2"

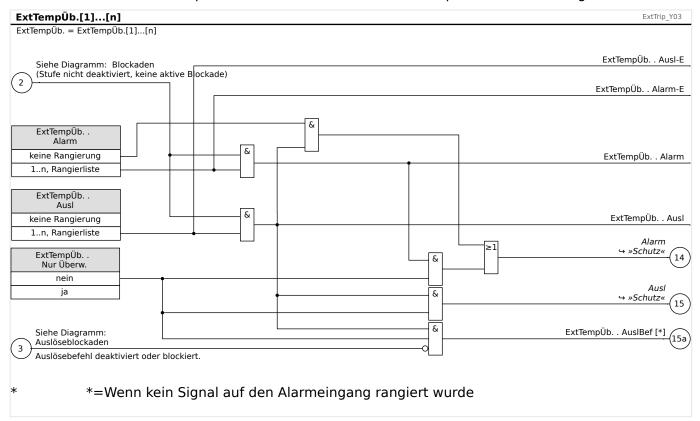
Analog für die Blockadeparameter, zum Beispiel:

• [Schutzparameter / Globale Schutzpara / ExS / ExS[n]] »ExBlo1« = "DI Slot X1 . DI 3"

Erfolgreiches Testergebnis

Alle Externen Alarme, Externen Auslösebefehle und Externen Blockaden werden vom MCDLV4 erkannt und entsprechend weiterverarbeitet. Prüfen bzw. vergleichen Sie auch die zugehörigen Einträge im Ereignisrekorder.

5.32 ExtTempÜb. - Externe Temperaturüberwachung


HINWEIS!

Alle Stufen dieses Moduls sind gleich aufgebaut.

Dies Modul gestattet die Anbindung externer Auslösekommandos, Blockaden und digitaler externer Temperaturschutzsignale in die Gerätefunktionalität.

Die Funktionalität des »ExtTempÜb.«-Moduls ist identisch zu derjenigen des Moduls »ExS«. Es liegt in der Verantwortung des Anwenders, die Zuordnungen für Alarm und Auslösung korrekt und entsprechend den Erfordernissen der Temperaturüberwachung vorzunehmen.

5.32.1 Inbetriebnahme: Externe Temperaturüberwachung

Gegenstand der Prüfung

Überprüfen des Moduls Externer Schutz.

Benötigte Geräte

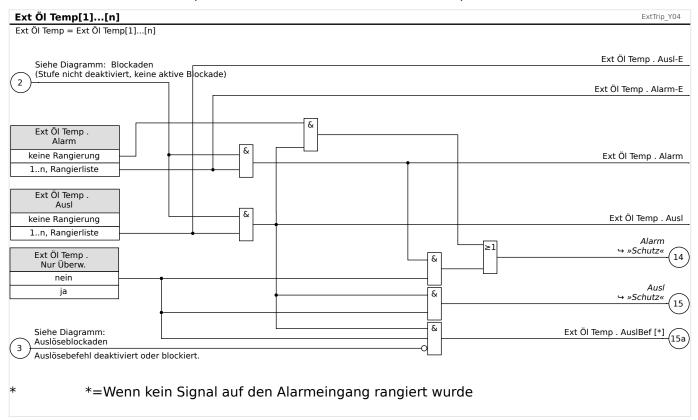
· Abhängig von der Anwendung

Durchführung

Simulieren Sie die Funktionalität des Externen Schutzes (Alarm, Auslösung. Blockade ...) durch entsprechendes Beschalten der Digitalen Eingänge.

Erfolgreiches Testergebnis

5 Schutzmodule


5.32.1 Inbetriebnahme: Externe Temperaturüberwachung

Alle Externen Alarme, Externen Auslösebefehle und Externen Blockaden werden vom Gerät erkannt und entsprechend weiterverarbeitet.

5.33 Ex Öl Temp Schutzmodul - Externe Öltemperaturüberwachung

Das Modul »Ext Öl Temp« gestattet die Anbindung externer Auslösekommandos, Blockaden und digitaler externer Öltemperaturschutzsignale in die Gerätefunktionalität.

Die Funktionalität des »Ext Öl Temp«-Moduls ist identisch zu derjenigen des Moduls »ExS«. Es liegt in der Verantwortung des Anwenders, die Zuordnungen für Alarm und Auslösung korrekt und entsprechend den Erfordernissen des Öltemperaturschutzes vorzunehmen.

5.33.1 Inbetriebnahme: Externe Öltemperaturüberwachung

Gegenstand der Prüfung

Überprüfen des Moduls Externer Schutz.

Benötigte Geräte

· Abhängig von der Anwendung

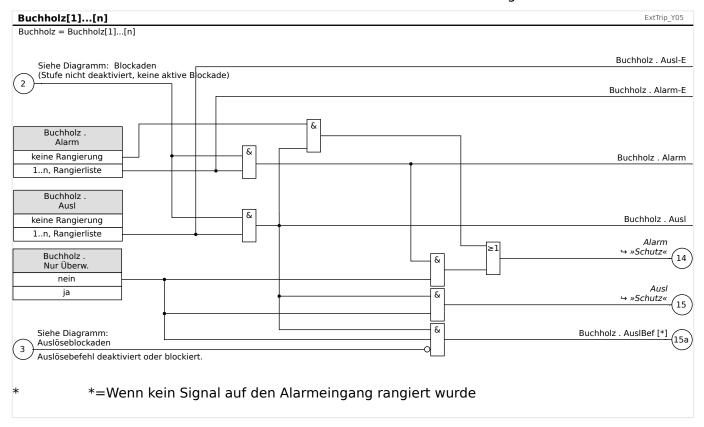
Durchführung

Simulieren Sie die Funktionalität des Externen Schutzes (Alarm, Auslösung. Blockade ...) durch entsprechendes Beschalten der Digitalen Eingänge.

Erfolgreiches Testergebnis

Alle Externen Alarme, Externen Auslösebefehle und Externen Blockaden werden vom Gerät erkannt und entsprechend weiterverarbeitet.

5.34 Buchholz-Schutzmodul


Funktionsprinzip

Größere Transformatoren (5000 kVA oder größer) sollten mit einem Buchholz-Schutz ausgestattet sein. Durch den Buchholz-Schutz wird eine plötzliche Änderung des Öl- oder Gasdrucks innerhalb des Tanks erkannt. So können interne Fehler wie Spannungsüberschläge zwischen Wicklungen unter Umständen früher als durch andere Schutzfunktionen wie z. B. Differentialschutz- oder Überstromschutzfunktionen erkannt werden.

In der Regel verfügt der Buchholzschutz des Transformators über einen Alarm und einem Auslösekontakt, aber keine Aufzeichungs- oder Kommunikationsschnittstellen.

Das Buchholz-Schutzmodul »Buchholz« des MCDLV4 verarbeitet die digitalen Ausgangssignale des Buchholzrelais um einen sicheren und intelligenten Schutz des Transformators zu gewährleisten.

Durch dieses Modul können die Ereignisse (Events) des Buchholzrelais aufgezeichnet und mittels Kommunikationsschnittstellen an die Leittechnik weitergeleitet werden.

5.34.1 Inbetriebnahme: Buchholz

Gegenstand der Prüfung

Überprüfen des Buchholz-Moduls

Benötigte Geräte

Abhängig von der Anwendung

Durchführung:

Simulieren Sie die Funktion des Buchholz-Schutzrelais.

Erfolgreiches Testergebnis

Alle Externen Alarme, Externen Auslösebefehle und Externen Blockaden werden vom Gerät erkannt und entsprechend weiterverarbeitet.

5.35 Überwachung

5.35.1 LSV - Schalterversager [50BF*/62BF]

* = Nur verfügbar in Schutzgeräten, die Ströme messen können.

5.35.1.1 Prinzip - Generelle Verwendung

Mittels des Schalterversagerschutzes – das ist im MCDLV4 das Modul »LSV« – werden nicht ausgeführte Auslösebefehle eines Leistungsschalters erkannt (z. B. ein defekter Leistungsschalter). Diese Meldung wird über ein Ausgangsrelais oder die Leittechnik (SCADA) an einen übergeordneten Leistungsschalter (z. B. Einspeisung auf die Sammelschiene) weitergereicht.

Je nach bestellter Gerätevariante stehen unterschiedliche Methoden zur Erkennung eines Schalterversagers zur Verfügung.

HINWEIS!

Schutzfunktionen, die in Verbindung mit dem Schalterversagerschutz eingesetzt werden, müssen als »Nur Überw.« = "nein" definiert werden. Siehe auch $\hookrightarrow 5.1.1$ Grundlagen eines Schutzmodules.

Überwachungsmethoden

Die Einstellung [Schutzparameter / Globale Schutzpara / Überwachung / LSV] »Überwachungsmethode« ermöglicht auszuwählen, welche Überwachungsmethode zur Erkennung eines Leistungschalterversagers eingesetzt werden soll. Zur Verfügung stehen die folgenden Optionen:

- "50BF" Falls der Strom nach einem abgesetzten Auslösebefehl nicht innerhalb der parametrierten Verzögerungszeit unterhalb des parametrierten Grenzwerts liegt, liegt ein Leistungsschalterversager vor und es wird eine Meldung generiert.
- "LS Pos" Falls die Stellungsmeldekontakte nach einem abgesetzten Auslösebefehl nicht innerhalb der parametrierten Verzögerungszeit das erfolgreiche Öffnen des Leistungsschalters indizieren, liegt ein Leistungsschalterversager vor und es wird eine Meldung generiert.

Diese Methode empfiehlt sich insbesondere wenn ein Leistungsschalterversagen erkannt werden soll während keine oder nur geringe Ströme fließen (z. B. Überfrequenz oder Überspannungsüberwachung bei geringem oder gar keinem Lastfluss).

 "50BF und LS Pos" — Falls der Strom nach einem abgesetzten Auslösebefehl nicht innerhalb der parametrierten Verzögerungszeit unterhalb des parametrierten Grenzwerts liegt und gleichzeitig durch die Stellungsmeldekontakte ein erfolgreiches Öffnen des Leistungsschalters indiziert wird, liegt ein Leistungsschalterversager vor und es wird eine Meldung generiert.

Diese Variante empfiehlt sich, wenn das erfolgreiche Erkennen des Abschaltens doppelt abgesichert werden soll. In dieser Variante wird ein Auslösebefehl auf den übergeordneten Leistungsschalter ausgegeben auch dann, wenn die Stellungsmeldekontakte fälschlicherweise ein erfolgreiches Öffnen des Leistungsschalters signalisieren oder wenn die Strommessung fälschlicherweise ein erfolgreiches Öffnen des Leistungsschalters vermuten lässt.

Start/Trigger des LSV-Timers

Die Einstellung [Schutzparameter / Satz 1...4 / Überwachung / LSV] »t-LSV« definiert eine Verzögerungszeit: Immer wenn das Modul »LSV« getriggert wird, wird die Zeitstufe gestartet (und läuft auch weiter, wenn das Triggersignal wieder abfällt). Wird die Zeitstufe nicht (durch das erfolgreiche Öffnen des Leistungsschalters) gestoppt, wird nach Ablauf dieser Zeit ein Auslösebefehl ausgegeben. Dieser dient dazu, den übergeordneten Leistungsschalter (Backup) auszuschalten.

HINWEIS!

Um Fehlauslösungen des Leistungsschalterversagerschutzes zu verhindern, müssen Sie sicherstellen, dass die Verzögerungszeit »t-LSV« größer ist als die Summe aus:

- · Kommandozeit des Relais
- + Schaltereigenzeit (siehe Technische Daten des Herstellers des Leistungsschalters)
- + Rückfallzeit (Strom- oder Stellungsmeldekontakt)
- + Sicherheitszuschlag

Stopp des LSV-Timers

Die Zeitstufe »t-LSV« wird gestoppt, wenn das erfolgreiche Öffnen des Schaltgerätes erkannt wurde. Je nach Überwachungsmethode (→"Überwachungsmethoden") wird die Zeitstufe gestoppt, wenn die Ströme unter die Stromschwelle zurückfallen, die Stellungsmeldekontakte ein erfolgreiches Öffnen des Leistungschalters indizieren, oder eine Kombination aus beiden. Das »LSV«-Modul befindet sich im Zurückweisungsmodus, bis das Triggersignal zurückfällt.

Zurückweisungsmodus / Bereitschaft

Wenn das erfolgreiche Öffnen des Leistungsschalters erkannt wurde, die Triggerbedingungen aber noch anstehen, wechselt das »LSV«-Modul in den Zurückweisungsmodus.

Wenn die Triggerbedingungen abgefallen sind, wechselt das »LSV«-Modul in den Standby zurück.

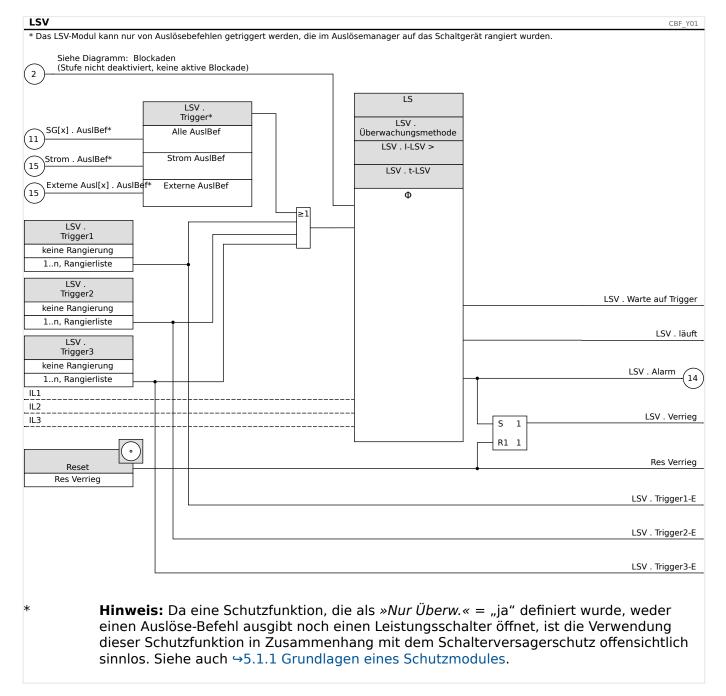
Verriegelung

Gleichzeitig mit dem »LSV«-Signal wird ein Verriegelungssignal gesetzt. Das Verriegelungssignal ist eine Dauermeldung. Diese muss am HMI manuell quittiert werden.

Wenn ein Leistungsschalterversager erkannt wurde, dann wird ein selbsthaltendes Signal generiert. Dieses Signal kann dazu verwendet werden, den Leistungsschalter gegen erneutes Einschalten zu verriegeln.

Trigger

Die Einstellung [Schutzparameter / Globale Schutzpara / Überwachung / LSV] »Trigger« ermöglicht die Auswahl eines Trigger-Modus. Darüber hinaus können drei weitere Signale als Triggersignal für den Leistungsschalterversagerschutz rangiert werden, auch wenn sie nicht im Auslösemanager auf den Leistungsschalter rangiert sind.


Diese zusätzlichen Triggersignale werden über die Parameter [Schutzparameter / Globale Schutzpara / Überwachung / LSV] »Trigger1« ... »Trigger3« rangiert.

Die folgenden Optionen stehen für »Trigger« zur Verfügung:

- "Alle AuslBef" Alle Auslösebefehle, die (innerhalb des Auslöse-Managers, →"Auslösebefehlsmanager – Befehlsausgabe rangieren") auf einen Leistungsschalter rangiert sind, triggern den Leistungsschalterversagerschutz.
- "Externe AuslBef" Alle externen Auslösebefehle, die (innerhalb des Auslöse-Managers, →"Auslösebefehlsmanager – Befehlsausgabe rangieren") auf einen Leistungsschalter rangiert sind, triggern den Leistungsschalterversagerschutz.
 - Alle externen Auslösebefehle sind im Referenzhandbuch (MCDLV4-3.10-DE-REF), Kapitel "Auswahllisten", in der Tabelle "Externe AuslBef" aufgeführt.
- "Strom AuslBef" Alle Auslösebefehle von Stromschutzfunktionen, die (innerhalb des Auslöse-Managers, ⇔"Auslösebefehlsmanager Befehlsausgabe rangieren") auf einen Leistungsschalter rangiert sind, triggern den Leistungsschalterversagerschutz.
 - Alle Auslösebefehle von Stromschutzfunktionen sind im Referenzhandbuch (MCDLV4-3.10-DE-REF), Kapitel "Auswahllisten", in der Tabelle "Strom AuslBef" aufgeführt.
- "- . -" Keine Zuweisung, es sollen die zusätzlichen Triggersignale eingesetzt werden.

5.35.1.2 Funktionalität

Leistungsschalterversagerschutz für Geräte mit Strommessung

5.35.1.3 Inbetriebnahmebeispiel: Überwachungsschema 50BF

Gegenstand der Prüfung

Überprüfen des Leistungsschalterversagerschutzes (Überwachungsschema 50BF).

Benötigte Geräte

- Stromquelle
- · Ggf. Amperemeter

• Timer (Zeitgeber)

HINWEIS!

Der Prüfstrom muss während der Prüfung stets oberhalb des Ansprechwerts »I-LSV« liegen. Fällt der Prüfstrom bei ausgelöstem Leistungsschalter LS unter den Ansprechwert »I-LSV« so kommt es zu keiner Alarmmeldung.

Durchführung (einphasig):

Zum Prüfen der Auslösezeit des Schalterversagerschutzes wird ein Prüfstrom eingeprägt, der über dem Schwellwert der Stromschutzfunktion liegt. Mit dem Anziehen des der Schutzfunktion zugeordneten Auslöserelais wird ein Timer gestartet und die Zeit gemessen, bis am entsprechenden Melderelais der LSV ansteht.

Um Verdrahtungsfehler auszuschließen, prüfen Sie, ob im übergeordneten Feld der Leistungsschalter abschaltet.

Die mit Hilfe des Timers gemessene Zeit sollte den angegebenen Zeittoleranzen entsprechen.

Erfolgreiches Testergebnis

Die gemessenen Ist-Zeiten stimmen mit den Sollzeiten überein. Im übergeordneten Feld schaltet der Leistungsschalter ab.

WARNUNG!

Schließen Sie die Steuerleitung wieder an den Leistungsschalter an.

5.35.2 AKÜ- Auslösekreisüberwachung [74TC]

Durch dieses Überwachungsmodul wird die Betriebsbereitschaft des Auslösekreises überwacht. Es bestehen zwei Optionen für die Überwachung. Die erste setzt die Verwendung des »Hiko EIN (52a)« voraus. Die zweite Option verwendet für die Überwachung des Auslösekreises zusätzlich zum »Hiko EIN (52a), den »Hiko AUS (52b)«-Kontakt.

Wenn für die Auslösekreisüberwachung nur der »Hiko EIN (52a) verwendet wird, dann ist die Auslösekreisüberwachung nur dann wirksam, wenn der Leistungsschalter geschlossen ist. Wenn beide Kontakte verwendet werden, dann ist die Auslösekreisüberwachung solange wirksam, wie die Steuerspannung anliegt.

Beachten Sie, dass die Digitalen Eingänge korrekt zu konfigurieren sind. Dazu müssen diese an die Steuerspannung angepasst werden. Wenn eine Unterbrechung im Auslösekreis entdeckt wird, dann wird nach einer festzulegenden Verzögerungszeit ein Alarm ausgegeben.

Damit Schaltvorgänge nicht zu Fehlauslösungen in diesem Modul führen, muss die Verzögerungszeit länger sein als die Zeit, die zwischen dem Schließen der Stellungsmeldekontakte und dem Erkennen der Schaltgeräteposition durch das Gerät vergeht.

HINWEIS!

Auf Slot 1 stehen für die Auslösekreisüberwachung jeweils 2 digitale Eingänge mit je einer separaten Wurzel (galvanische Trennung) zur Verfügung.

HINWEIS!

Dieser Hinweis gilt nur für Geräte mit Steuerfunktion! Für diese Schutzfunktion ist es erforderlich, dass ihr ein Schaltgerät (Leistungsschalter) zugeordnet (rangiert) wird.

Die Versorgungsspannung des Auslösekreises ist in diesem Fall auch die Versorgungsspannung für die digitalen Eingänge. Dadurch wird der Spannungsausfall des Auslösekreises direkt erfasst.

Um einen Leiterbruch im Auslösekreis auf der Zuleitung oder in der Auslösespule zu erkennen, ist die Ausschaltspule mit in den Überwachungskreis einzuschleifen.

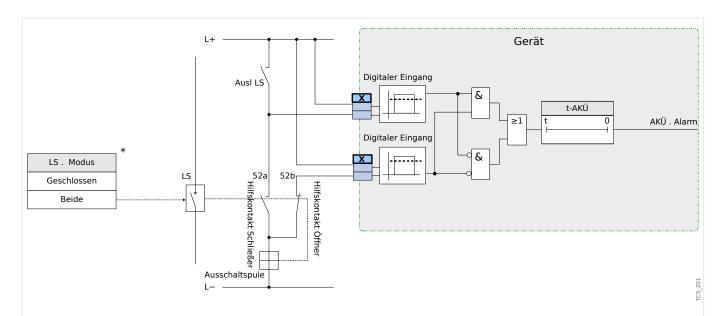


Abb. 160: Anschlussbeispiel (Empfehlung): Auslösekreisüberwachung mit zwei Hilfskontakten »Hiko EIN« (52a) und »Hiko AUS« (52b).

Abb. 161: Anschlussbeispiel: Auslösekreisüberwachung mit einem Hilfskontakt »Hiko EIN« (52a).

5.35.2.1 Inbetriebnahme: Auslösekreisüberwachung [74TC]

HINWEIS!

Bei Leistungsschaltern, die durch sehr wenig Energie auslösen (z. B. über einen Optokoppler) ist sicherzustellen, dass der durch die digitalen Eingänge eingeprägte Strom nicht zu Fehlauslösungen des Leistungsschalters führt.

Gegenstand der Prüfung

Überprüfen der Auslösekreisüberwachung der Leistungsschalter.

Durchführung Teil 1

Simulieren Sie einen Ausfall der Steuerspannung in den Leistungskreisen.

Erfolgreiches Testergebnis Teil 1

Die Auslösekreisüberwachung AKÜ des Gerätes muss nach Ablauf von »t-AKÜ« einen Alarm ausgeben.

Durchführung Teil 2

Simulieren Sie einen Kabelbruch im Steuerkreis des Leistungsschalters.

Erfolgreiches Testergebnis Teil 1

Die Auslösekreisüberwachung »AKÜ« des Gerätes muss nach Ablauf von »t-AKÜ« einen Alarm ausgeben.

5.35.3 StWÜ - Stromwandlerüberwachung [60L]

Stromwandlerfehler können durch einen Leiterbruch oder Messkreisfehler verursacht werden.

Das Modul »StWÜ« kann einen Stromwandlerfehler dadurch erkennen, dass der gemessene Erdstrom nicht mit dem berechneten Erdstrom übereinstimmt. Beim Überschreiten eines einstellbaren Schwellwertes (Differenz zwischen gemessenem und berechnetem Erdstrom) kann auf einen möglichen Stromwandlerfehler geschlossen werden. Dies wird durch eine Meldung signalisiert. Voraussetzung hierzu ist, dass die Leiterströme vom Gerät gemessen werden und der Erdstrom z.B. über einen Kabelumbauwandler gemessen wird.

Das Messprinzip der Stromkreisüberwachung basiert auf dem Vergleich der gemessenen und berechneten Summenströme:

Idealfall

$$(\overrightarrow{\mathrm{IL1}} + \overrightarrow{\mathrm{IL2}} + \overrightarrow{\mathrm{IL3}}) + \mathbf{KI} * \overrightarrow{\mathrm{IE}} = 3 * I_0 + \mathbf{KI} * \overrightarrow{\mathrm{IE}} = 0$$

KI ist ein Korrekturfaktor, welcher die unterschiedlichen Wandlerübersetzungsverhältnisse der Phasen- und Erdstromwandler berücksichtigt. Dieser Faktor wird automatisch vom Gerät aus den eingestellten Feldparametern, also dem Verhältnis zwischen primären und sekundären Nennstromangaben der Phasenstrom- und Erdstromwandler, berechnet.

Um den stromproportionalen Übersetzungsfehler der Messkreise zu kompensieren, kann der dynamische Korrekturfaktor Kd verwendet werden. Dieser Faktor berücksichtigt, in Abhängigkeit des gemessenen Strommaximums, die linear ansteigenden Messfehler.

Der Grenzwert der Stromwandlerüberwachung berechnet sich dann wie folgt:

DI = Abweichung I (Einstellwert)

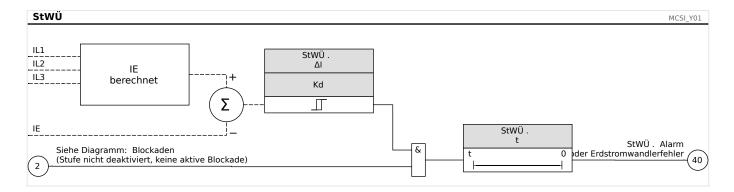
Kd = Korrekturfaktor

Imax = Strommaximum

Grenzwert = DI + Kd x Imax

Bedingung für die Erkennung eines Fehlers

$$3 * \overrightarrow{I_0} + KI * \overrightarrow{IE} \ge DeltaI + Kd * Imax$$


Das Auswertungsverfahren der Strommesskreisüberwachung mit dem Faktor Kd lässt sich mit folgendem Bild grafisch darstellen:

VORSICHT!

Bei nur zweiphasiger Strommessung (zum Beispiel nur IL1/IL3) oder nicht vorhandener separater Erdstrommessung (z.B. normalerweise über einen Kabelumbauwandler) ist die Überwachungsfunktion zu deaktivieren.

5.35.3.1 Inbetriebnahme: Stromwandlerfehlerüberwachung

HINWEIS!

Voraussetzung:

- Alle drei Phasenströme werden gemessen (liegen an den Messeingängen des Geräts an), und:
- Der Erdstrom wird über einen Kabelumbauwandler erfasst. (Keine Holmgreenschaltung).

Gegenstand der Prüfung

Überprüfung der Stromwandlerüberwachung (durch einen Vergleich von errechnetem mit gemessenem Erdstrom).

Benötigte Geräte

• Dreiphasige Stromquelle

Durchführung Teil 1

- Stellen Sie den Grenzwert der Stromwandlerüberwachung auf »delta I=0,1*In« ein.
- Speisen Sie ein dreiphasiges, symmetrisches Stromsystem in Höhe des Nennstroms sekundärseitig ein.
- Schalten Sie an einem Messeingang einen Phasenstrom ab (sekundärseitig muss weiterhin symmetrisch eingespeist werden).
- Vergewissern Sie sich, dass nun die Meldung »StWÜ.Alarm« generiert wird.

Erfolgreiches Testergebnis Teil 1

• Die Meldung »StWÜ.Alarm« wird generiert.

Durchführung Teil 2

- Speisen Sie ein dreiphasiges, symmetrisches Stromsystem in Höhe des Nennstroms sekundärseitig ein.
- Speisen Sie in den Erdstrommesseingang einen Strom oberhalb des Schwellwerts für die Messkreisüberwachung ein.
- Vergewissern Sie sich, dass nun die Meldung »StWÜ.Alarm« generiert wird.

Erfolgreiches Testergebnis Teil 2

Die Meldung »StWÜ.Alarm« wird generiert.

5.35.4 SPÜ - Erweiterte Spannungswandlerüberwachung [60]

5.35.4.1 Erweiterte Spannungswandlerüberwachung durch Auswertung von Messgrößen

HINWEIS!

Vermeiden Sie eine Unterfunktion der Spannungswandlerüberwachung.

Die Ansprechverzögerung der Spannungswandlerüberwachung sollte kürzer sein als die Auslöseverzögerung derjenigen Schutzmodule, die die Spannungswandlerüberwachung verwenden.

HINWEIS!

Die von der Spannungswandlerüberwachung verwendeten Strom- und Spannungsmesswerte werden bei Transformatorschutzrelais durch den Parameter: [Feldparameter / SpW / Wicklgseite] vorgegeben.

Die Spannungswandlerüberwachung erkennt einen Spannungs-/Potentialausfall an den Spannungsmesseingängen. Durch diese Überwachungsfunktion können Überfunktionen von Schutzmodulen, wie z.B. die Fehlanregung Spannungsschutzfunktionen verhindert werden. Folgende Messgrößen und Informationen werden für die Erkennung eines Phasenspannungswandlerfehlers herangezogen:

- Die drei Phasenspannungen;
- das Verhältnis der Spannung im Mitsystem zur Spannung im Gegensystem;
- · die Nullspannung;
- · die drei Phasenströme;
- · der Nullstrom;
- die Anregungen von Überstromstufen; und
- die Position des Leistungsschalters (Optional).

Nach Ablauf einer einstellbaren Verzögerungszeit wird die Alarmmeldung »SPÜ.PoV Blo« ausgegeben.

Parametrierung der Phasenspannungswandlerüberwachung (Potentialverlust)

- Stellen Sie die Alarmverzögerungszeit »SPÜ.t-Alarm« ein.
- Zur Vermeidung einer Überfunktion/Fehlanregung der Spannungswandlerüberwachung bei (Netz-) Fehlern rangieren Sie die Anregungen bzw. Alarme von Überstromfunktionen, die die Spannungswandlerüberwachung blockieren sollen.
- Setzen Sie den Parameter »SPÜ Blo Erlauben« auf »aktiv«, damit die Spannungswandlerüberachung auf andere Module wirken kann.

Verwendung der Phasenspannungswandlerüberwachung

Die Phasenspannungswandlerüberwachung bzw. Messkreisüberwachung kann von Schutzmodulen wie z.B. Unterspannungsschutz dazu verwendet werden um Fehlauslösungen zu verhindern.

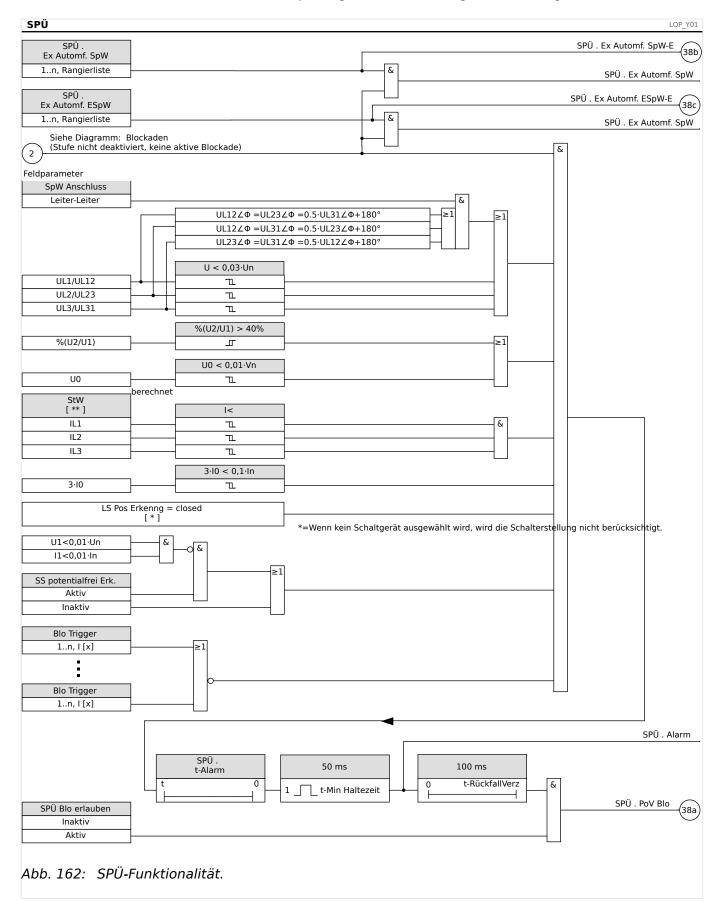
 Setzen Sie in den Schutzmodulen, die durch die Phasenspannungswandlerüberwachung blockiert werden soll den Parameter »Messkreisüberwachung=aktiv«.

5.35.4.2 Spannungswandlerüberwachung durch Erkennung eines Automatenfalls (FF)

Überwachung auf Automatenfall über digitale Eingänge

Mit dem Modul »SPÜ« kann ein Automatenfall auf der Sekundärseite der Spannungswandler erkannt werden, wenn der Sicherungsautomat der Spannungswandler über einen Digitalen Eingang mit dem Gerät verbunden ist und der Digitale Eingang auf das Modul rangiert wurde.

Parametrierung der Überwachung eines Automatenfalls an einem Phasenspannungswandler (FF)


Um den Fall eines Automatens eines Phasenspannungswandlers (Fuse Failure) über einen digitalen Eingang zu erkennen gehen Sie wie folgt vor:

- Rangieren Sie auf den Parameter »SPÜ.ExAutomf. SpW« den Digitalen Eingang, der den Zustand des Automaten am Spannungswandler abbildet.
- Setzen Sie in den Schutzmodulen, die durch den Automatenfall blockiert werden soll den Parameter »Messkreisüberwachung=aktiv«.

Parametrierung der Überwachung eines Automatenfalls am Erdspannungswandler (FF)

Um den Fall eines Automatens eines Erdspannungswandlers (Fuse Failure) über einen digitalen Eingang zu erkennen gehen Sie wie folgt vor:

- Rangieren Sie auf den Parameter »SPÜ.ExAutomf. ESpW« den Digitalen Eingang, der den Zustand des Automaten am Spannungswandler abbildet.
- Setzen Sie in den Schutzmodulen, die durch den Automatenfall blockiert werden soll den Parameter »Messkreisüberwachung=aktiv«.

Hinweise:

• [*] Wenn kein Schaltgerät ausgewählt wird, dann wird die Schalterstellung nicht berücksichtigt.

• [**] Bei Schutzgeräten mit mehr als einem Stromwandler bezeichnet "StW" diejenige Seite, an der auch der Spannungswandler angeschlossen ist.

5.35.4.3 Inbetriebnahme: Erweiterte Spannungswandlerüberwachung

Gegenstand der Püfung

Überprüfen der Schutzfunktion Erweiterte Spannungswandlerüberwachung.

Benötigte Geräte

- · Dreiphasige Stromquelle
- Dreiphasige Spannungsquelle

Durchführung, Test Teil 1

Überprüfen Sie das Ausgangssignal »SPÜ.PoV Blo «. Dies Ausgangssignal darf nur den Wert »1=wahr« annehmen wenn folgende Bedingungen erfüllt sind :

- Eine der drei Phasenspannungen wird kleiner 0,01*Vn Volt,
- die Verlagerungsspannung ist kleiner 0,01*Vn Volt ist oder das Verhältnis %V2V1 ist größer 40%,
- die drei Phasenströme sind kleiner als der Schwellwert der Überstrom-/ Betriebsstromerkennung (I<),
- der gemessene Nullstrom (3*lo) ist kleiner 0.1 * lpu (Nennstrom),
- keine Anregung von Überstromfunktionen, die die Spannungswandlerüberwachung blockieren sollen

und

- der Leistungsschalter ist geschlossen (optional, wenn ein Schaltgerät zugeordnet wurde).
- Die Spannungslose SS-Erkennung hat keine spannungslose/stromlose Sammelschiene erkannt (Keine Spannung, kein Strom wird gemessen)

Erfolgreiches Testergebnis für Teil 1:

Die Ausgangssignale werden nur wahr, wenn alle oben aufgeführten Bedingungen erfüllt sind.

Durchführung, Test Teil 2

Aktivieren Sie die Messkreisüberwachung durch Setzen des Parameters »Messkreisüberwachung=aktiv« in den Schutzfunktionen die durch einen Spannungswandlerfehler blockiert werden sollen (z.B.: Unterspannungsschutz, spannungsabhängiger Überstromschutz...).

Überprüfen Sie ob diese Schutzfunktionen blockiert sind, wenn die Spannungswandlerüberwachung einen Blockadebefehl erteilt.

Erfolgreiches Testergebnis für Teil 2:

Alle durch die Spannungswandlerfehlererkennung zu blockierenden Schutzfunktionen sind blockiert wenn die Bedingungen (Test Teil 1) erfüllt sind.

5.35.4.4 Inbetriebnahme: Spannungswandlerüberwachung (FF über DI)

Gegenstand der Prüfung

Überprüfen, ob der Automatenfall vom Gerät richtig erkannt wird.

Durchführung

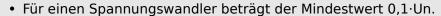
• Schalten Sie den Sicherungsautomaten der Spannungswandler ab (allpolige Spannungsfreiheit).

Erfolgreiches Testergebnis

- Der Status des entsprechenden digitalen Eingangs ändert sich.
- Es werden die Schutzstufen blockiert, die durch einen Spannungswandlerausfall an einer Überfunktion gehindert werden sollen »Messkreisüberwachung=aktiv«.

5.35.5 Überwachung der Phasenfolge

Das MCDLV4 überwacht an jedem Messeingang die Phasenfolge (mittels der Mitsystemund Gegensystemkomponenten). Die ermittelte Phasenfolge (d. h. "ACB" oder "ABC") wird permanent mit der Einstellung verglichen, die unter [Feldparameter / Allg Einstellungen] »Drehfeldrichtung« konfiguriert wurde.


Das Menü [Betrieb / Zustandsanzeige / Überwachung / Drehfeldrichtung] enthält ein eigenes (Warn-)Signal für jeden Strom- und Spannungswandler. Wenn die Überwachung eines Wandlers eine Phasenfolge ermittelt, die von der unter [Feldparameter] gemachten Einstellung abweicht, wird das zugehörige Signal wahr (Aktiv).

Die Überwachung der Phasenfolge ist prinzipiell während der Inbetriebnahme des MCDLV4 nützlich, denn es hilft sicherzustellen, dass die Einstellung der »Drehfeldrichtung« unter [Feldparameter] korrekt ist.

HINWEIS!

Die Überwachung benötigt Mindestwerte, damit die Phasenfolge auch tatsächlich zuverlässig bestimmt werden kann:

• Für einen Stromwandler beträgt der Mindestwert 0,1·In.

6 Steuerung / Schaltgeräte-Manager

WARNUNG!

WARNUNG: Die Fehlkonfiguration und Fehlbedienung von Schaltgeräten kann Tod oder schwere Verletzungen zur Folge haben. Dies gilt u. a. für das Öffnen eines stromführenden Stromkreises durch einen Trennschalter oder für das Zuschalten eines Erdungsschalters auf unter Spannung stehende Anlagenteile.

Der Inbetriebnehmer hat die einwandfreie Konfiguration und Verdrahtung der Schaltgeräte sicherzustellen und zu dokumentieren.

Zu den weiterführenden Aufgaben von Schutzgeräten gehören zunehmend auch Steuerungsfunktionen für MS-Schaltgeräte, zu denen z.B. Leistungsschalter, Lasttrennschalter, Trennschalter sowie Erdungsschalter zählen.

Die korrekte Konfiguration aller Schaltgeräte ist unabdingbare Voraussetzung für die ordnungsgemäße Funktion des Schutzgeräts. Dies gilt auch dann, wenn die Schaltgeräte nicht gesteuert d.h. nur überwacht werden.

Abzweigsteuerbild (Single Line)

Das Abzweigsteuerbild beinhaltet die grafische Darstellung des Schaltgeräts und dessen Bezeichnung (Name) sowie seiner Eigenschaften (kurzschlussstromfest oder nicht,...). Die Bezeichnungen der Schaltgeräte (z. B. **QA1**, **QA2**, anstatt eines abstrakten Modulnamens »SG[x]«) werden aus dem Abzweigsteuerbild für die Darstellung innerhalb der Gerätesoftware übernommen.

Eine Konfigurationsdatei beinhaltet neben den Eigenschaften des Schaltgeräts auch ein Abzweigsteuerbild. Parametrierung und Abzweigsteuerbild sind über die Konfigurationsdatei miteinander verbunden/gekoppelt.

HINWEIS!

Die Standardkonfiguration (Werkseinstellung) für die Schaltgeräte hängt vom verwendeten Abzweigsteuerbild ab. Die hier angegebenen Werte für die Standardkonfiguration entsprechen einem Abzweigsteuerbild mit zwei Leistungsschaltern und zwei Trennschaltern.

Abzweigsteuerbilder (Control Pages) können mittels des *Page-Editors* erstellt und modifiziert werden. Die Abzweigsteuerbilder (Control Pages) sind mittels Smart view in das Schutzgerät zu übertragen. Informationen über die Erstellung, Änderung und Übertragung von Single Lines (Seiten/pages) sind dem separaten *Page-Editor*-Handbuch (Englisch) zu entnehmen. Dieses Handbuch ist über das Hilfe-Menü des *Page-Editors* zu erreichen.

6.1 Schaltgerätesteuerung

Darstellung eines Schaltgerätes im Page Editor

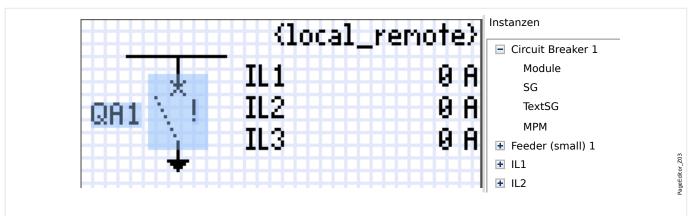


Abb. 163: Beispiel eines Abzweigsteuerbildes, wobei ein "Leistungsschalter" angewählt ist.

Obwohl ein Schaltgerät im *Page Editor* immer eine feste Darstellung hat, mit einem Ausrufungszeichen "!" als zusätzliche Markierung, handelt es sich um ein Symbol mit mehreren möglichen Darstellungsformen: eine für den geschlossenen ("Ein"-)Zustand, eine für den geschlossenen ("Aus"-)Zustand, sowie weitere für Zwischen- und Fehler-Positionen. Das angezeigte Symbol hängt vom Typ des Schaltgerätes ab. Die im *Page Editor* definierten Typen sind hier in mehreren Kapiteln nacheinander aufgeführt, beginnend mit ⇔6.1.2 Schaltgerät.

Detaillierte Erläuterungen, wann eine Position als "Zwischenposition" oder "Störstellung" angezeigt wird, befinden sich in \hookrightarrow 6.2 Konfiguration der Schaltgeräte.

Nachdem die Steuer-Seite in das Schutzgerät übertragen wurde, wird für jedes Schaltgerät automatisch die Darstellung in Abhängigkeit von den konfigurierten Schaltzuständen gewählt.

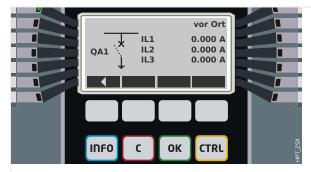


Abb. 164: Beispiel einer Steuer-Seite mit "Leistungsschalter" in Zwischenposition).

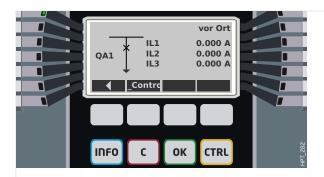


Abb. 165: Beispiel einer Steuer-Seite mit geschlossenem "Leistungsschalter".

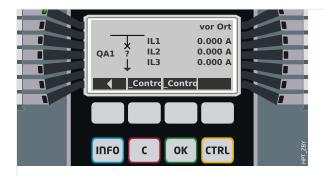


Abb. 166: Beispiel einer Steuer-Seite mit "Leistungsschalter" in Störstellung (bzw. unplausiblem Zustand).

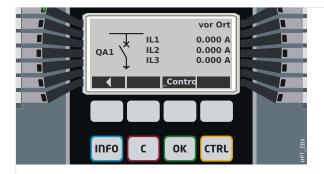


Abb. 167: Beispiel einer Steuer-Seite mit geöffnetem "Leistungsschalter".

Schaltgeräte-Eigenschaft "Ausschaltvermögen"

Im *Page Editor* wird für jedes Schaltgerät die Eigenschaft "**Ausschaltvermögen**" festgelegt. Wenn diese gesetzt ist, wird das Schaltgerät als Leistungsschalter deklariert, kann also im Falle eines Schutz-Aus-Befehls die Leiterströme abschalten.

Deswegen wird im MCDLV4 der "Auslöse-Manager" nur für Schaltgeräte mit "Ausschaltvermögen" verfügbar. (Eine Beschreibung des Auslöse-Managers findet sich in →"Auslösebefehlsmanager – Befehlsausgabe rangieren".)

HINWEIS!

HighPROTEC-Schutzgeräte erwarten, dass für das erste Schaltgerät, »SG[1]«, "Ausschaltvermögen" gesetzt ist, weil in der Standardkonfiguration Schutz-Aus-Befehle nach »SG[1]« geroutet werden.

Deswegen wird im *Page Editor* für eine Steuerseite mit einem »SG[1]« ohne "Ausschaltvermögen" die Kompatibilitätsprüfung scheitern.

Schaltgeräte-Eigenschaft "Gesteuert"

Für jedes Schaltgerät kann die Eigenschaft "**Gesteuert**" im *Page Editor* the "**Controlled**" definiert werden. Nur wenn diese Eigenschaft gesetzt ist, sind manuelle Schaltkommandos für dieses Schaltgerät möglich.

Wenn diese Eigenschaft nicht gesetzt ist, aber das "Ausschaltvermögen" gesetzt ist, eignet sich das Schaltgerät durchaus für **Schutz-Aus**-Befehle. Es sind aber keine manuellen Schaltkommandos möglich.

Wenn weder "Ausschaltvermögen" noch "Gesteuert" gesetzt sind, ist das Schaltgerät nur überwacht, d. h. die Schaltpositionen sind zwar verfügbar, aber das Schaltgerät dient nicht dazu, von dem jeweiligen Schutzgerät gesteuert zu werden.

Die Reihenfolge der Schaltgeräte ändern

Dieser Abschnitt ist nur für Schutzgeräte relevant, die mehr als ein Schaltgerät unterstützen.

Im Allgemeinen werden die konfigurierten Schaltgeräte mit dem vom Anwender definierten Bezeichner angezeigt. Dies gilt sowohl für die Darstellung auf dem Geräte-Display als auch für die Dialoge in *Smart view*.

Eine Ausnahme stellen aber die Schaltgerätebezeichnungen in SCADA-Protokollen dar, denn diese unterstützen keine anwenderdefinierten Bezeichner. Stattdessen greifen SCADA-Protokolle auf die Schaltgeräte über ihre laufende Nummer zu.

Deswegen besteht im *Page Editor* die Möglichkeit, die konfigurierten Schaltgeräte umzunummerieren: Wählen Sie den Menüpunkt [Konfiguration / Schaltgeräte-Sortierung...] (bzw. Taste »F6«). Dies öffnet ein Dialogfenster, das alle konfigurierten Schaltgeräte mit ihrer laufenden Nummer tabelliert. Nachdem eines angewählt wurde, kann es mit den Schaltflächen »Hoch« und »Runter« in seiner Position verändert werden.

HINWEIS!

Aus technischen Gründen muss das Schaltgerät mit der Nummer SG1 die Eigenschaft "Ausschaltvermögen" gesetzt haben (d. h. es muss sich um einen Leistungsschalter handeln). Für die weiteren Schaltgeräte, sofern verfügbar, gibt es keine solche Einschränkung.

Die Reihenfolge von Schaltgerätetypen wird von *Smart view* geprüft: Es wird eine Warnung angezeigt, wenn beim Laden der Steuer-Seite festgestellt wird, dass sich für eine der Schaltgeräte**nummern** der Schaltgeräte**typ** geändert hat. Da diese Änderung möglicherweise mit Absicht vorgenommen wurde, kann sie einfach quittiert werden.

6.1.1 Einstellungen im Schutzgerät

Stellungsmeldungen rangieren (Digitale Eingänge)

Einstellungen im Gerätemenü [Steuerung / SG / SG[x] / Stellungsmeldungen]:

• »Hiko EIN« — Hilfskontakt 52a. Der Leistungsschalter ist in EIN-Position, wenn der Status des rangierten Signals wahr ist.

Ausnahme: Für den Erdungsschalter im "Dreistellungsschalter" heißt diese Einstellung: »Hiko ERDER« — Der Leistungsschalter ist in der Erdungs-Position, wenn der Status des rangierten Signals wahr ist.

• »Hiko AUS« — Hilfskontakt 52b. Der Leistungsschalter ist in AUS-Position, wenn der Status des rangierten Signals wahr ist.

Ausnahme: Für die "Trenner-Erdungsschalter-Kombination" heißt diese Einstellung: »Hiko ERDER« — Der Leistungsschalter ist in der Erdungs-Position, wenn der Status des rangierten Signals wahr ist.

- »Bereit« Leistungsschalter ist schaltbereit, wenn der Status der Rangierung wahr ist. Mit diesen rangierbaren Digitalen Eingang wird erkannt, dass der Leistungsschalter manuell eingeschaltet wurde. Dieser Digitale Eingang kann von Schutzfunktionen (wenn im Gerät vorhanden) wie z.B. Automatische Wiedereinschaltung (AWE) verwendet werden (z.B. als Triggersignal)
- »Entnommen« Leistungsschalter entnommen.

Einstellung der Überwachungszeiten

Überwachungszeiten festlegen im Gerätemenü [Steuerung / SG / SG[x] / Allg Einstellungen]:

- »t-Eigenz EIN« Eigenzeit für das Schließen des Leistungsschalters
- »t-Eigenz AUS« Eigenzeit für das Öffnen des Leistungsschalters

Befehlsausgabe rangieren (Ausgangsrelais)

Nur verfügbar für Schaltgeräte, die im *Page Editor* als "**Gesteuert**" definiert wurden (siehe "Schaltgeräte-Eigenschaft 'Gesteuert").

Einstellungen im Gerätemenü [Geräteparameter / Ausgangsrelais / K Slot Xx / K y]:

• »Rangierung 1« ... »Rangierung 7« — zum Beispiel für Schaltgerät Nummer 1 einstellbar auf "SG[1] . EIN Bef" / "SG[1] . AUS Bef".

Option: Externe Ein-/Aus-Befehle

Nur verfügbar für Schaltgeräte, die im *Page Editor* als "**Gesteuert**" definiert wurden (siehe "Schaltgeräte-Eigenschaft 'Gesteuert'").

Einstellungen im Gerätemenü [Steuerung / SG / SG[x] / Ex EIN/AUS Bef]:

- »SBef EIN« Einschaltbefehl, ggf Zustand der Logik oder des Digitalen Eingangs
- »SBef AUS« Ausschaltbefehl, ggf Zustand der Logik oder des Digitalen Eingangs

Weitere Details unter → "Ex EIN / AUS".

Verriegelungen

Nur verfügbar für Schaltgeräte, die im *Page Editor* als "**Gesteuert**" definiert wurden (siehe "Schaltgeräte-Eigenschaft 'Gesteuert'").

Einstellungen im Gerätemenü [Steuerung / SG / SG[x] / Verriegelungen]:

- »Verrieg EIN1« ... »Verrieg EIN3« Verriegelung des EIN-Schaltbefehls (d. h. Ein-Befehle werden zurückgewiesen, falls das rangierte Signal wahr ist).
- »Verrieg AUS1« ... »Verrieg AUS3« Verriegelung des AUS-Schaltbefehls (d. h. Aus-Befehle werden zurückgewiesen, falls das rangierte Signal wahr ist).

Weitere Details unter → "Verriegelungen".

Auslöse-Manager (Auslösebefehle zuweisen)

Nur verfügbar für Schaltgeräte, die im *Page Editor* mit der Eigenschaft "**Ausschaltvermögen**" definiert wurden.

Einstellungen im Gerätemenü [Steuerung / SG / SG[x] / Ausl Manager]:

- »AUS Bef1« ... Ausschaltbefehl an den Leistungsschalter wenn der Zustand der Rangierung wahr wird.
- »t-AuslBef« Mindesthaltezeit des Ausschaltbefehls (an den Leistungsschalter, Lasttrennschalter...)
- »Selbsthaltung« Legt fest, ob der Auslösebefehl selbsthaltend ist.
- »Quit AuslBef« Quittierung des Auslösebefehls

Für weitere Details siehe → "Schaltgeräte-Eigenschaft "Ausschaltvermögen"" and → "Auslösebefehlsmanager – Befehlsausgabe rangieren".

Option: Synchronisierpflicht

Nur verfügbar für Schaltgeräte, die im *Page Editor* mit der Eigenschaft "**Ausschaltvermögen**" definiert wurden, und falls das Schutzgerät über das Modul »Sync« verfügt.

Einstellungen im Gerätemenü [Steuerung / SG / SG[x] / Sync Zuschalten]:

- »Synchronität« Synchronität
- »t-SyncUeberw« Maximal zulässige Dauer des Synchronisiervorgangs nachdem das Einschalten des Leistungsschalters initiiert wurde (wird nur für den GeneratorZuNetz-Modus benötigt).

Weitere Details unter → "Synchronpflichtiges Schalten*".

Option: Schaltgerätewartung

6.1.2 Schaltgerät

Generischer Schalter.

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]				
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«				
✓	✓	✓	✓	

6.1.3 Unsichtbares Schaltgerät

Schaltgerät, das nicht sichtbar ist, aber in den Schutzgeräteparametrierung verfügbar ist.

(Da dieser Schaltgerätetyp nicht im Abzweigsteuerbild sichtbar ist, kann er nicht über das Bedienfeld angewählt werden, und somit ist auch kein manuelles Schalten möglich.)

[Betrieb / Zustan	dsanzeige / Steuerung / SG[x]]
(Invisible)	»Pos« = 0 (Pos Unbest)
	»Pos« = 1 (Pos AUS)
	»Pos« = 2 (Pos EIN)
	»Pos« = 3 (Pos Gestört)

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]				
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«				
✓	✓	✓	✓	

6.1.4 Leistungsschalter

Schaltgerät, das Ströme unter Betriebsbedingungen einschalten, führen und ausschalten und auch unter festgelegten außergewöhnlichen Bedingungen (wie Kurzschluss) einschalten, während einer festgelegten Zeit führen und ausschalten kann.

[Betrieb / Zustan	dsanzeige / Steuerung / SG[x]]
\ <u>*</u>	»Pos« = 0 (Pos Unbest)
*	»Pos« = 1 (Pos AUS)
*	»Pos« = 2 (Pos EIN)
火 ? 」	»Pos« = 3 (Pos Gestört)

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]				
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«				
✓	✓	✓	✓	

6.1.5 Leistungsschalter1

Schaltgerät, das Ströme unter Betriebsbedingungen einschalten, führen und ausschalten und auch unter festgelegten außergewöhnlichen Bedingungen (wie Kurzschluss) einschalten, während einer festgelegten Zeit führen und ausschalten kann.

[Betrieb / Zustar	ndsanzeige / Steuerung / SG[x]]
	»Pos« = 0 (Pos Unbest)
	»Pos« = 1 (Pos AUS)
	»Pos« = 2 (Pos EIN)
?	»Pos« = 3 (Pos Gestört)

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]				
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«				
✓	✓	✓	✓	

6.1.6 Trennschalter

Schaltgerät, das in geöffneter Stellung den für die Trennfunktion festgelegten Anforderungen entspricht.

[Betrieb / Zustan	[Betrieb / Zustandsanzeige / Steuerung / SG[x]]		
\	»Pos« = 0 (Pos Unbest)		
\	»Pos« = 1 (Pos AUS)		
†	»Pos« = 2 (Pos EIN)		
?	»Pos« = 3 (Pos Gestört)		

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]				
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«				
✓	✓	-	_	

6.1.7 Trenner-Erdungsschalter-Kombination

Ein Schalter, der einen Trennschalter und einen Erdungsschalter verbindet. " "Dieser Schalter hat zwei Positionen (verbunden – geerdet).

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]				
»Hiko EIN« »Hiko ERDER« »Bereit« »Entnommen«				
✓	•	_	_	

6.1.8 Erdungsschalter

Erdungsschalter mit Kurzschlusseigenschaften.

[Betrieb / Zustan	dsanzeige / Steuerung / SG[x]]
	»Pos« = 0 (Pos Unbest)
Ţ	»Pos« = 1 (Pos AUS)
Ţ	»Pos« = 2 (Pos EIN)
ሂ ? <u>‡</u>	»Pos« = 3 (Pos Gestört)

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]				
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«				
✓	✓	-	-	

6.1.9 Sicherungs-Lastschalter-Kombination

Schaltgerät, das Ströme unter normalen Bedingungen einschließlich einer angegebenen betriebsmäßigen Überlast einschalten, führen und ausschalten und auch unter angegebenen außergewöhnlichen Bedingungen (wie Kurzschluss) während einer festgelegten Zeit führen kann.

[Betrieb / Zustar	[Betrieb / Zustandsanzeige / Steuerung / SG[x]]			
\\\\\	»Pos« = 0 (Pos Unbest)			
₽	»Pos« = 1 (Pos AUS)			
Å	»Pos« = 2 (Pos EIN)			
ბ ? !	»Pos« = 3 (Pos Gestört)			

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]						
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«						
<i>'</i>						

6.1.10 Lasttrennschalter

Schaltgerät, das Ströme unter normalen Bedingungen einschließlich einer angegebenen betriebsmäßigen Überlast einschalten, führen und ausschalten und auch unter angegebenen außergewöhnlichen Bedingungen (wie Kurzschluss) während einer festgelegten Zeit führen kann und in geöffneter Stellung den für die Trennfunktion festgelegten Anforderungen entspricht.

[Betrieb / Zustandsanzeige / Steuerung / SG[x]]			
*	»Pos« = 0 (Pos Unbest)		
\$	»Pos« = 1 (Pos AUS)		
*	»Pos« = 2 (Pos EIN)		
ቴ ? !	»Pos« = 3 (Pos Gestört)		

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]						
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«						

6.1.11 Sicherungs-Trennschalter-Kombination

Schaltgerät, das in geöffneter Stellung den für die Trennfunktion festgelegten Anforderungen entspricht.

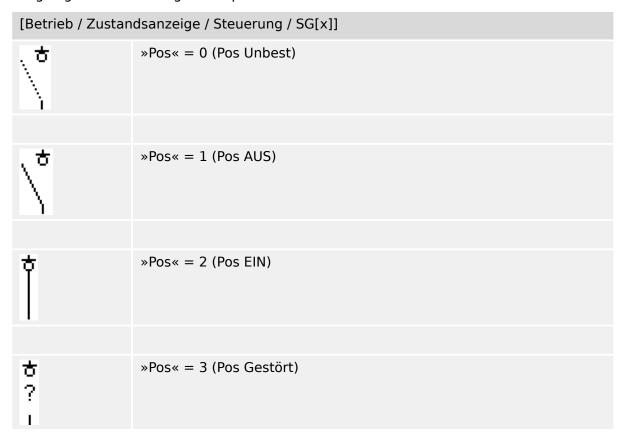
[Betrieb / Zustan	[Betrieb / Zustandsanzeige / Steuerung / SG[x]]			
1	»Pos« = 0 (Pos Unbest)			
	»Pos« = 1 (Pos AUS)			
†	»Pos« = 2 (Pos EIN)			
1 ?	»Pos« = 3 (Pos Gestört)			

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]					
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«					
✓					

6.1.12 Lastschalter

Schaltgerät, das Ströme unter normalen Bedingungen einschließlich einer angegebenen betriebsmäßigen Überlast einschalten, führen und ausschalten und auch unter angegebenen außergewöhnlichen Bedingungen (wie Kurzschluss) während einer festgelegten Zeit führen kann.


[Betrieb / Zustandsanzeige / Steuerung / SG[x]]			
\	»Pos« = 0 (Pos Unbest)		
\	»Pos« = 1 (Pos AUS)		
ļ	»Pos« = 2 (Pos EIN)		
ь ?	»Pos« = 3 (Pos Gestört)		

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]					
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«					

6.1.13 Lasttrennschalter

Schaltgerät, das Ströme unter normalen Bedingungen einschließlich einer angegebenen betriebsmäßigen Überlast einschalten, führen und ausschalten und auch unter angegebenen außergewöhnlichen Bedingungen (wie Kurzschluss) während einer festgelegten Zeit führen kann und in geöffneter Stellung den für die Trennfunktion festgelegten Anforderungen entspricht.

Stellungsmeldungen rangieren (Digitale Eingänge)

[Steuerung / SG / SG[x] / Stellungsmeldungen]					
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«					
<i>'</i>					

6.1.14 Dreistellungsschalter

Ein Schalter, der einen Trennschalter und einen Erdungsschalter verbindet Dieser Schalter hat drei Positionen (ein – aus – geerdet) und ist außerdem eigensicher gegen Fehlbedienung.

[Betrieb / Zustar	[Betrieb / Zustandsanzeige / Steuerung /]			
1	[SG[1]] »Pos« = 0 (Pos Unbest) [SG[2]] »Pos« = 0 (Pos Unbest)			
l q ₁ ,	[SG[1]] »Pos« = 2 (Pos EIN)			
	[SG[2]] »Pos« = 1 (Pos AUS)			
1 40	[SG[1]] »Pos« = 1 (Pos AUS)			
	[SG[2]] »Pos« = 1 (Pos AUS)			
l 4p	[SG[1]] »Pos« = 1 (Pos AUS)			
1/	[SG[2]] »Pos« = 2 (Pos ERDER)			
1 41.	[SG[1]] »Pos« = 3 (Pos Gestört)			
? ? !	[SG[2]] »Pos« = 3 (Pos Gestört)			

Der Dreistellungsschalter ist funktional in zwei Schaltgeräte aufgeteilt. Das eine Schaltgerät entspricht dem Trennschalter des Dreistellungsschalters und das zweite Schaltgerät entspricht dem Erder.

Das Abzweigsteuerbild zeigt die aktuelle Schalterstellung des Dreistellungsschalters an. Die funktionale Auftrennung in zwei Schaltgeräte verhindert ein unbeabsichtigtes Durchschalten aus der Stellung »Pos EIN« über »Pos AUS« nach »Pos ERDER«.

Die Bedienung des Dreistellungsschalters ist somit funktional und sicherheitstechnisch eindeutig in ein »Trennen« und ein »Erden« aufgeteilt. Dies ermöglicht die Festlegung unterschiedlicher Schalt- und Überwachungszeiten für den Trenner und für den Erder. Darüber hinaus können für den Trenner und den Erder individuelle Verriegelungen und Schaltgerätebezeichnungen festgelegt werden.

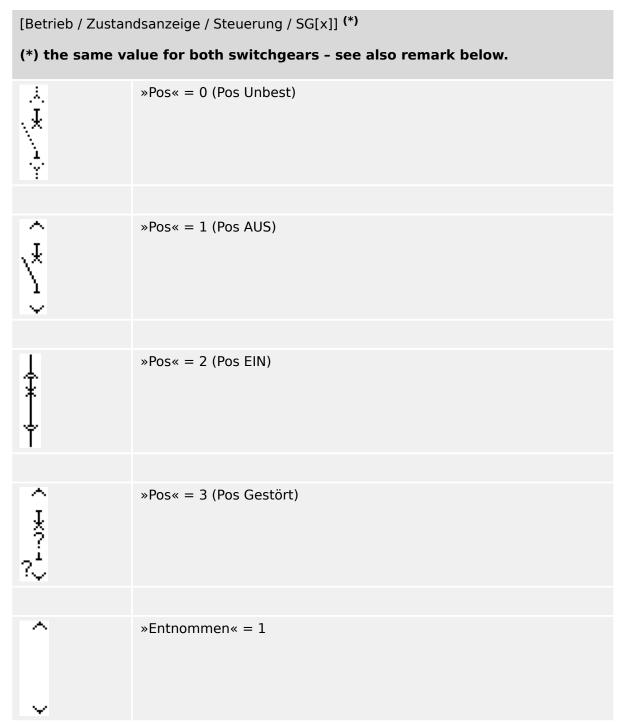
HINWEIS!

Die Schaltbefehlsüberwachung gibt folgende Meldung aus, wenn versucht wird, direkt von der Erdungs- in die Trennerposition oder umgekehrt zu schalten:

• [Betrieb / Zustandsanzeige / Steuerung / SG[x]] »SBÜ Schaltrichtg«

Die in den SCADA-Adresslisten verwendeten Datenpunkte für die LS-AUS-Position sind für den Kombischalter als Erdungsposition ("Pos ERDER") zu interpretieren.

Stellungsmeldungen rangieren (Digitale Eingänge)


Siehe ↔ "Stellungsmeldungen rangieren (Digitale Eingänge)". Die folgenden Einstellungen sind im Gerätemenü sichtbar:

Trennschalter, z. B. »SG[1]«: [Steuerung / SG / SG[1] / Stellungsmeldungen] »Hiko EIN« »Bereit« »Entnommen«

6.1.15 Ausfahrbarer Leistungsschalter

Auf einem Wagen montierter Leistungsschalter.

(*) Anmerkung: Die Tabelle enthält nicht alle Kombinationen von Schaltgerätestellungen, die technisch möglich wären, sondern nur einige typische "Endpositionen" als Beispiele.

Der Fahrwagen eines ausfahrbaren Leistungsschalters stellt funktional einen Trennschalter dar.

Zwischen Leistungsschalter und Fahrwagen besteht keine feste Verriegelung. Da der Wagen aber nicht ausgefahren werden darf, wenn der Leistungsschalter noch geschlossen ist, muss hierzu eine Verriegelung parametriert werden. Der Leistungsschalter auf dem Wagen kann im eingefahrenen Zustand und im ausgefahrenen Zustand geschaltet werden. Das Signal des Fahrwagensteckers muss mit dem Schutzgerät verdrahtet und konfiguriert

werden. Wenn der Fahrwagenstecker entfernt wird, dann wird der Eingang der Steuerung auf »Entnommen« gesetzt. Der entnommene Leistungsschalter wird für die Dauer des »Entnommen« Zustandes auf »Pos AUS« gesetzt.

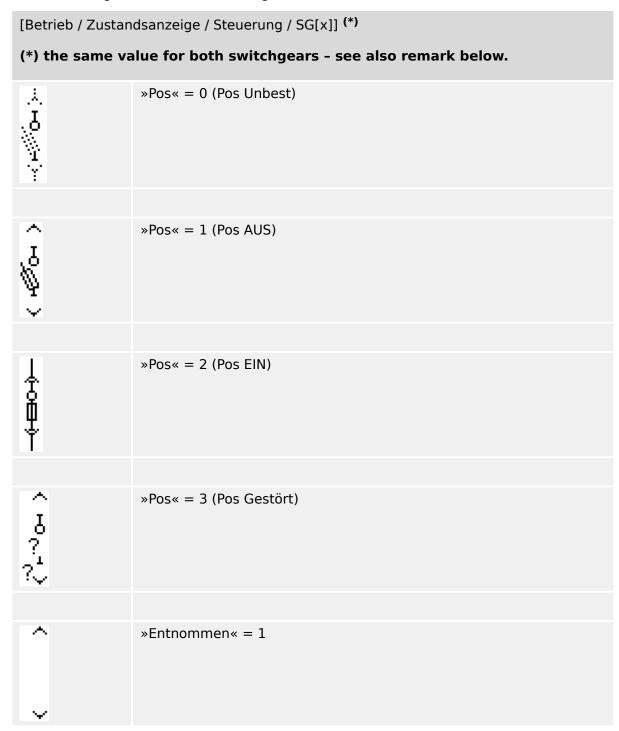
HINWEIS!

Stellungsmeldungen eines entnommenen Leistungsschalters können nicht manipuliert werden.

Stellungsmeldungen rangieren (Digitale Eingänge)

Siehe ↔ "Stellungsmeldungen rangieren (Digitale Eingänge)". Die folgenden Einstellungen sind im Gerätemenü sichtbar:

Leistungsschalter-Komponente, z. B. »SG[1]«:					
[Steuerung / SG / SG[1] / Stellungsmeldungen]					
»Hiko EIN« »Hiko AUS« »Bereit« »Entnommen«					
	./				


Fahrwagen, z. B. »SG[2]«:

[Steuerung / SG / SG[2] / Stellungsmeldungen]

»Hiko EIN«	»Hiko AUS«	»Bereit«	»Entnommen«
✓	•	_	_

6.1.16 Ausfahrbare Sicherungs-Lastschalter-Kombination

Auf einem Wagen montierte Sicherungs-Lastschalter-Kombination.

(*) Anmerkung: Die Tabelle enthält nicht alle Kombinationen von Schaltgerätestellungen, die technisch möglich wären, sondern nur einige typische "Endpositionen" als Beispiele.

Der Fahrwagen eines ausfahrbaren Leistungsschalters stellt funktional einen Trennschalter dar.

Zwischen Sicherungs-Lastschalter-Kombination und Fahrwagen besteht keine feste Verriegelung. Da der Wagen aber nicht ausgefahren werden darf, wenn die Sicherungs-Lastschalter-Kombination noch geschlossen ist, muss hierzu eine Verriegelung parametriert werden. Die Sicherungs-Lastschalter-Kombination auf dem Wagen kann im

eingefahrenen Zustand und im ausgefahrenen Zustand geschaltet werden. Das Signal des Fahrwagensteckers muss mit dem Schutzgerät verdrahtet und konfiguriert werden. Wenn der Fahrwagenstecker entfernt wird, dann wird der Eingang der Steuerung auf »Entnommen« gesetzt. Die entnommene Sicherungs-Lastschalter-Kombination wird für die Dauer des »Entnommen« Zustandes auf »Pos AUS« gesetzt.

HINWEIS!

Stellungsmeldungen einer entnommenen Sicherungs-Lastschalter-Kombination können nicht manipuliert werden.

Stellungsmeldungen rangieren (Digitale Eingänge)

Siehe → "Stellungsmeldungen rangieren (Digitale Eingänge)". Die folgenden Einstellungen sind im Gerätemenü sichtbar:

Sicherungs-Lastschalter-Kombination, z. B. »SG[1]«:

[Steuerung / SG / SG[1] / Stellungsmeldungen]

»Hiko EIN«	»Hiko AUS«	»Bereit«	»Entnommen«
✓	✓	✓	✓

Fahrwagen, z. B. »SG[2]«:

[Steuerung / SG / SG[2] / Stellungsmeldungen]

»Hiko EIN«	»Hiko AUS«	»Bereit«	»Entnommen«
✓	✓	_	_

6.2 Konfiguration der Schaltgeräte

Verdrahtung

Zunächst müssen die Stellungsmeldekontakte der Schaltgeräte mit den Digitalen Eingängen des Schutzgeräts verbunden werden. Der »Hiko EIN«- oder »Hiko AUS«-Kontakt muss verdrahtet werden. Es wird empfohlen, beide zu verdrahten.

Danach sind die Befehlsausgänge (Ausgangsrelais) mit den Schaltgeräten zu verdrahten.

HINWEIS!

Bitte beachten Sie folgende Option: In den Allgemeinen Einstellungen eines Leistungsschalters können die EIN/AUS-Kommandos der Schutzeinheit auf denselben Ausgangsrelais ausgegeben werden, auf denen auch die Steuerkommandos ausgegeben werden.

Werden die Befehle auf unterschiedlichen Relaisausgängen ausgegeben (Option), so erhöht sich der Verdrahtungsaufwand.

Überwachungs- / Schaltzeiten festlegen

Im Menü [Steuerung / SG / SG[x] / Allg Einstellungen] sind die Überwachungs- bzw. Schaltzeiten »t-Eigenz EIN« und »t-Eigenz AUS« für jedes Schaltgerät festzulegen.

Je nach Schaltgerätetyp kann es erforderlich sein, hier noch weitere Parameter wie z.B. Nachdrückzeit »t-Nachdrück« zu setzen.

HINWEIS!

Die Überwachungszeiten »t-Eigenz EIN« und »t-Eigenz AUS« sind zugleich auch die Schaltzeiten, d. h. nicht nur entscheidend für die Erkennung von Zwischen- und Fehlerpositionen. Auch die (maximale) Länge des Schaltkommandos, das an das Schaltgerät ausgegeben wird, entspricht genau diesen eingestellten Zeiten.

Das heißt: Die Dauer des Schaltkommandos »EIN Bef« ist (maximal) gleich »t-Eigenz EIN«, begrenzt durch das Erkennen der neuen Schaltgeräteposition.

In gleicher Weise: Die Dauer des Schaltkommandos »AUS Bef« ist (maximal) gleich »t-Eigenz AUS«, begrenzt durch das Erkennen der neuen Schaltgeräteposition.

Stellungsmeldungen rangieren

Das Schutzgerät benötigt die Stellungsmeldungen, um die aktuelle Schaltgerätestellung ermitteln zu können. Die Stellungsmeldungen der Schaltgeräte werden im Display grafisch dargestellt. Jeder Positionswechsel der Schaltgeräte bewirkt eine Änderung des entsprechenden Symbols auf dem Display des Schutzgeräts.

HINWEIS!

Für die sichere Erfassung der Stellung eines Schaltgerätes ist es empfohlen, immer beide Hilfskontakte (Einzelmeldungen) zu verwenden! Wird die Stellung des Schaltgeräts über einen einzelnen Kontakt erfasst, können keine Zwischenpositionen (Differenzstellung) und Störstellungen erkannt werden.

Eine (eingeschränkte) Laufzeitüberwachung (Zeit zwischen der Befehlsausgabe und der Stellungsrückmeldung der angestrebten Stellung des Schaltgeräts) kann jedoch auch durch die Auswertung eines einzelnen Meldekontakts erfolgen.

Im Menü [Steuerung / SG / SG[x] / Stellungsmeldungen] sind die für die Stellungserkennung erforderlichen Rangierungen vorzunehmen.

Erkennung der Schaltgerätestellung über zwei Kontakte – Hiko EIN und Hiko AUS (Empfehlung!)

Zur Erkennung der Stellung von Schaltgeräten verfügen diese über Stellungsmeldekontakte (*Hiko EIN und Hiko AUS*). Es wird empfohlen, beide Kontakte für die Erkennung der Schaltgerätestellung zu verwenden, da nur so Zwischenstellungen und Störstellungen erkannt werden können.

Das Schutzgerät überwacht kontinuierlich die Zustände der Eingänge »Hiko EIN-E« und »Hiko AUS-E«. Mit Hilfe der Überwachungszeiten »t-Eigenz EIN« and »t-Eigenz AUS« werden diese validiert. Darauf basierend wird die Stellung des Schaltgeräts erkannt und in Form der folgenden Signale ausgegeben:

- »Pos EIN«
- »Pos AUS«

- »Pos Unbest«
- »Pos Gestört«
- »Pos« (Meldung: Stellungsmeldung des Leistungsschalters (0 = In Bewegung, 1 = AUS, 2 = EIN, 3 = Störstellung).)

Überwachung des EIN-Kommandos

Mit dem Absetzen eines EIN-Kommandos wird die Zeitstufe »t-Eigenz EIN« gestartet. Während diese läuft, ist die Meldung »Pos Unbest« gesetzt (= "wahr" = 1). Wurde das Kommando erfolgreich, also vor Ablauf der Zeitstufe, ausgeführt, wird die Meldung »Pos EIN« = "wahr". Andernfalls, wenn die Zeitstufe abläuft, ohne dass die erwartete Stellungsmeldung am Digitalen Eingang ansteht, wird die Meldung »Pos Gestört« = "wahr".

Überwachung des AUS-Kommandos

Mit dem Absetzen eines AUS-Kommandos wird die Zeitstufe »t-Eigenz AUS« gestartet. Während diese läuft, ist die Meldung »Pos Unbest« gesetzt (= "wahr"). Wurde das Kommando erfolgreich, also vor Ablauf der Zeitstufe, ausgeführt, wird die Meldung »Pos AUS« = "wahr". Andernfalls, wenn die Zeitstufe abläuft, ohne dass die erwartete Stellungsmeldung am Digitalen Eingang ansteht, wird die Meldung »Pos Gestört« = "wahr".

Die folgende Tabelle zeigt, wie die Schaltgerätestellung auf der Basis der beiden Kontakte Hiko EIN und Hiko AUS validiert wird.

Status der Digitalen Eingänge		Validierte Stellungserkennung					
Hiko EIN-E	Hiko AUS-E	Pos EIN	Pos AUS	Pos Unbest	Pos Gestört	Pos	
0	0	0	0	1 (während ein Über- wachungs- timer läuft)	0 (während ein Über- wachungs- timer läuft)	0 Pos Unbest	
1	1	0	0	1 (während ein Über- wachungs- timer läuft)	0 (während ein Über- wachungs- timer läuft)	0 Pos Unbest	
0	1	0	1	0	0	1 Pos AUS	
1	0	1	0	0	0	2 Pos EIN	
0	0	0	0	0 (Über- wachungs- timer abge- laufen)	1 (Über- wachungs- timer abge- laufen)	3 Pos Gestört	
1	1	0	0	0 (Über- wachungs- timer abge- laufen)	1 (Über- wachungs- timer abge- laufen)	3 Pos Gestört	

Einpolige Stellungserkennung und Laufzeitüberwachung der Schaltgeräte – **Hiko EIN oder Hiko AUS**

Wenn die einpolige Überwachung für Schaltgeräte verwendet wird, wird die Meldung »EKA Nur ein HIKO« wahr.

Die Überwachung funktioniert in diesem Fall nur in einer Richtung. Wenn nur der »Hiko AUS« mit dem Gerät verbunden wurde, dann kann nur das AUS-Kommando überwacht werden. Wenn nur der »Hiko EIN« mit dem Schutzgerät verbunden wurde, dann kann nur das EIN-Kommando überwacht werden.

Einpolige Stellungserkennung - Hiko EIN

Wenn nur der Hiko EIN für die einpolige Überwachung des EIN-Kommandos verwendet wird, wird mit dem Schaltbefehl die Überwachungszeit gestartet. Während die Zeitstufe läuft, wird die Meldung »Pos Unbest« wahr. Wenn das Schaltgerät die Endposition vor Ablauf der Zeitstufe erreicht hat, werden die Meldungen »Pos EIN« und »SBÜ erfolgreich« wahr und die Meldung »Pos Unbest« fällt ab.

Wird die Endposition hingegen gar nicht oder erst nach Ablauf der Überwachungszeit erreicht, wird die Meldung »Pos Gestört« wahr und die Meldung »Pos Unbest« fällt ab.

Nach Ablauf der Überwachungszeit wird eine Nachdrückzeit »t-Nachdrück« gestartet (wenn diese parametriert wurde). Während diese Zeitstufe läuft, bleibt die Meldung »Pos Unbest« wahr. Nach Ablauf der Nachdrückzeit wird die EIN-Position des Schaltgeräts angenommen und durch die Meldung »Pos EIN« signalisiert.

Die folgende Tabelle zeigt wie die Schaltgerätestellung auf der Basis des einzelnen Kontakts »Hiko EIN« validiert wird.

Status der Dig Eingänge	italen	Validierte Stellungserkennung				
Hiko EIN-E	Hiko AUS-E	Pos EIN	Pos AUS	Pos Unbest	Pos Gestört	Pos
0	Nicht verdrahtet	0	0	1 (während » <i>t-</i> <i>Eigenz EIN</i> « läuft)	0 (während <i>»t-</i> <i>Eigenz EIN«</i> läuft)	0 Pos Unbest
0	Nicht verdrahtet	0	1	0	0	1 Pos AUS
1	Nicht verdrahtet	1	0	0	0	2 Pos EIN

Wenn kein Digitaler Eingang auf »Hiko EIN« rangiert ist, nimmt »Pos« den Wert 3 (Gestört) an.

Einpolige Stellungserkennung - Hiko AUS

Wenn nur der Hiko AUS für die einpolige Überwachung des AUS-Kommandos verwendet wird, wird mit dem Schaltbefehl die Überwachungszeit gestartet. Während der Timer läuft, wird die Meldung »Pos Unbest« wahr. Wenn das Schaltgerät die Endposition vor Ablauf des Timers erreicht hat, werden die Meldungen »Pos AUS« und »SBÜ erfolgreich« wahr und die Meldung »Pos Unbest« fällt ab.

Wird die Endposition hingegen gar nicht oder erst nach Ablauf der Überwachungszeit erreicht, wird die Meldung »Pos Gestört« wahr und die Meldung »Pos Unbest« fällt ab.

Nach Ablauf der Überwachungszeit wird eine Nachdrückzeit »t-Nachdrück« gestartet (wenn diese parametriert wurde). Während diese Zeitstufe läuft, bleibt die Meldung »Pos Unbest« wahr. Nach Ablauf der Nachdrückzeit wird die EIN-Position des Schaltgeräts angenommen und durch die Meldung »Pos AUS« signalisiert.

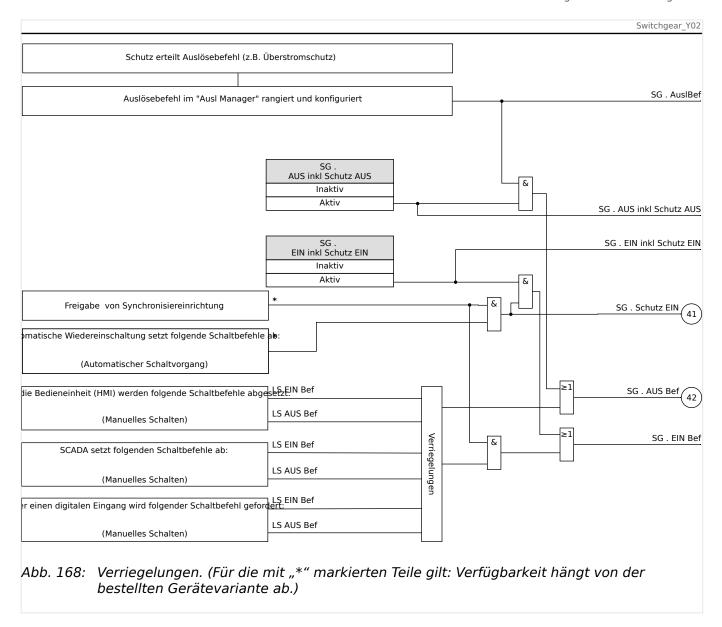
Die folgende Tabelle zeigt wie die Schaltgerätestellung auf der Basis des einzelnen Kontakts »Hiko AUS« validiert wird.

Status der Dig Eingänge	italen	Validierte Stellungserkennung				
Hiko EIN-E	Hiko AUS-E	Pos EIN	Pos AUS	Pos Unbest	Pos Gestört	Pos
Nicht verdrahtet	0	0	0	1 (während » <i>t-</i> <i>Eigenz AUS</i> « läuft.)	0 (während » <i>t-</i> <i>Eigenz AUS</i> « läuft.)	0 Pos Unbest
Nicht verdrahtet	1	0	1	0	0	1 Pos AUS
Nicht verdrahtet	0	1	0	0	0	2 Pos EIN

Wenn kein Digitaler Eingang auf »Hiko AUS« rangiert ist, nimmt »Pos« den Wert 3 (Gestört) an.

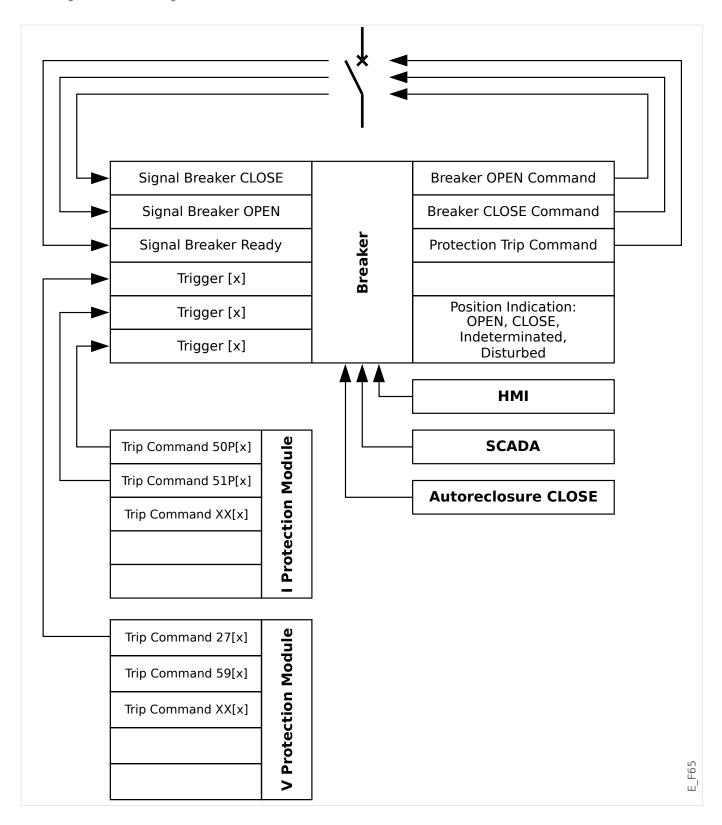
Verriegelungen

Fehlbedienungen in Schaltanlagen stellen eine besondere Gefährdung für das Personal und die Betriebsmittel dar.


Dies gilt besonders für das Öffnen eines stromführenden Stromkreises mit einem Trennschalter oder für das Zuschalten eines Erdungsschalters auf unter Spannung stehende Anlagenteile.

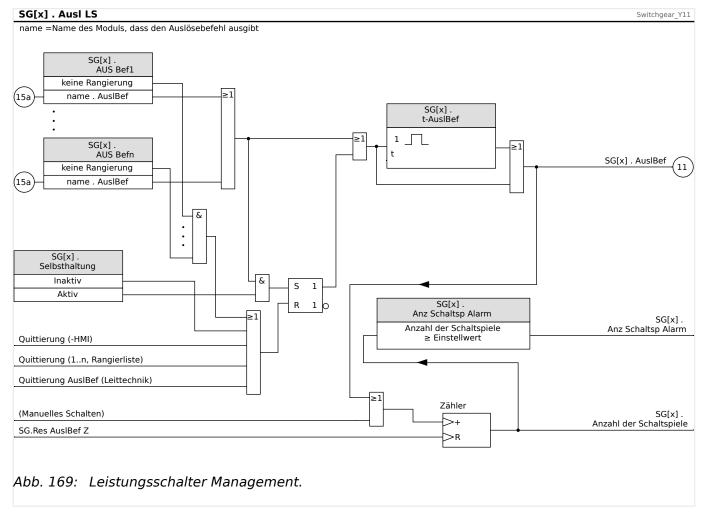
Um Fehlbedienungen zu verhindern, müssen Verriegelungsfunktionen vorgesehen werden, die mechanisch und elektrisch realisiert werden können.

Steuerbare Schaltgeräte bieten in jeder Schaltrichtung (EIN/AUS) drei Verriegelungsrangierungen. Über diese Verriegelungsrangierungen wird ein Ausführen des Schaltbefehls in die jeweilige Richtung verhindert.


Das Schutz-AUS Kommando und der Einschaltbefehl der Automatischen Wiedereinschaltung (Modul »AWE«, Verfügbarkeit hängt von der bestellten Gerätevariante ab) werden ohne Verriegelung ausgeführt. Falls ein Schutz-AUS-Kommando **nicht** ausgegeben werden darf, muss der Schutz-AUS-Befehl blockiert werden.

Mit Hilfe der Logik können darüber hinaus weitere Verriegelungen realisiert werden.

Auslösebefehlsmanager - Befehlsausgabe rangieren


Die Auslösebefehle der Schutzstufen müssen den Schaltgeräten zugeordnet werden, die Kurzschlussströme abschalten können (Leistungsschalter). Jedes Schaltgerät, das in der Lage ist, Kurzschlussströme abzuschalten, verfügt über einen Auslösebefehlsmanager.

Im Menü [Steuerung / Qxx / Ausl Manager] (wobei "Qxx" die Bezeichnung des Schaltgerätes gemäß Abzweigsteuerbild ist) gibt es Einstellparameter »AUS Bef n«, auf die man die erforderlichen Schutz-Auslösebefehle rangiert. In diesem sogenannten Auslösebefehlsmanager werden alle Auslösebefehle durch eine ODER-Logik zusammengeführt und bewirken dann einen Schaltgerät-Auslösebefehl.

Nur dieser vom Auslösebefehlsmanager generierte Schaltgerät-Auslösebefehl wird tatsächlich an das Schaltgerät gesandt. Das bedeutet, dass nur diejenigen Auslösebefehle zu einem Fall des Schaltgeräts führen, die hier rangiert wurden.

Im Auslösebefehlsmanager wird ebenfalls festgelegt, ob der Auslösebefehl selbsthaltend sein soll. (Siehe hierzu auch →"Selbsthaltung".) Darüber hinaus kann eine Mindesthaltezeit für das Aus-Kommando festgelegt werden.

Anmerkung: In diesem Logikdiagramm steht "SG[x]" für "Schaltgerät Nummer x"; die genaue Schaltgerätebezeichnung wird allerdings über das Abzweigsteuerbild (Single-Line-Diagramm) festgelegt. (Siehe auch ↔ "Abzweigsteuerbild (Single Line)".)

Selbsthaltung

Wenn ein Auslösebefehl als selbsthaltend konfiguriert ist (*Selbsthaltung* = "Aktiv"), wird er aktiv bleiben, bis er irgendwann quittiert wird. (Eine allgemeine Beschreibung von Quittierungen ist hier: $\hookrightarrow 2.5$ Quittierungen).

Ein gehaltener Auslösebefehl wird erst zurückgenommen, nachdem alle darauf rangierten Schutz-Auslösebefehle zurückgefallen sind; dann gibt es die folgenden Rücksetzmöglichkeiten:

- Über ein Quittierung, entweder durch den Anwender an der Bedieneinheit, oder über die SCADA, siehe→2.5 Quittierungen.
- Rücksetzung durch dasjenige Signal, das auf den Parameter »Quit AuslBef« rangiert wurde.
- Über die Einstellung »Selbsthaltung« = "Inaktiv" wird die Selbsthaltung nachträglich deaktiviert.
- Es ist gar kein Schutz-Auslösebefehl (mehr) rangiert, d. h. es werden (nachträglich) **alle** »AUS Befn« = "-" eingestellt.

Ex EIN / AUS

Steuerbare Schaltgeräte können auch durch externe Signale gesteuert werden. Für das EIN- und das AUS-Kommando kann je ein Signal rangiert werden (z. B. Digitale Eingänge oder Logikausgänge).

Das externe EIN-Kommando kann auf [Steuerung / SG / SG[x] / Ex EIN/AUS Bef] *SBef EIN * rangiert werden.

Das externe AUS-Kommando kann auf [Steuerung / SG / SG[x] / Ex EIN/AUS Bef] »SBef AUS« rangiert werden.

Das AUS-Kommando hat Vorrang. Die EIN-Befehle sind flankenorientiert, die AUS-Befehle sind pegelorientiert.

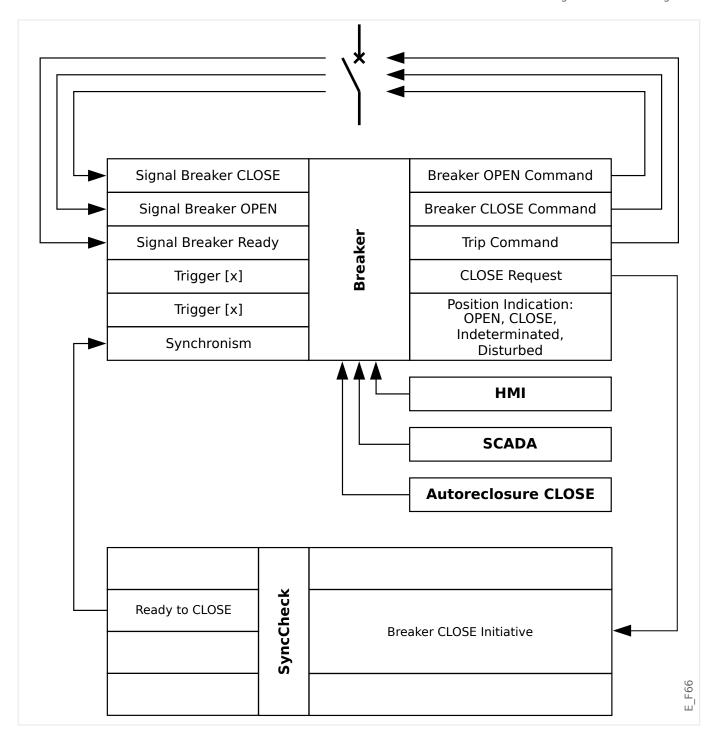
Schalten über SCADA-Kommandos

Das Schalten über SCADA-Kommandos ist möglich, sofern die Schalthoheit [Steuerung / Allg Einstellungen] »Schalthoheit« passend eingestellt ist, nämlich entweder auf "von Fern" oder auf "vor Ort und Fern". (Siehe auch ↔ "Schalthoheit".)

Auf das Schalten mittels des Kommunikationsprotokolls nach IEC 60870-5-104 wird hier eingegangen: ⇔"IEC-Kommandos". Bei anderen Kommunikationsprotokolls, die SCADA-Kommandos unterstützen, ist das Prinzip analog.

Synchronpflichtiges Schalten*

*=Verfügbarkeit hängt von der bestellten Gerätevariante ab.


Bevor ein Schaltgerät unterschiedliche Netzabschnitte verbinden darf, muss deren Synchronität sichergestellt sein. Im Untermenü [Steuerung / SG / SG[x] / Sync Zuschalten] kann über den Parameter »Synchronität« festgelegt werden, wodurch die Synchronität erkannt bzw. signalisiert werden soll.

Wenn das Signal vom geräteinternen Synchrocheck ausgewertet werden soll, ist die Rangierung »Zuschaltbereit« (Freigabe vom Modul »Sync«) zu wählen. Alternativ kann hier auch ein Digitaler Eingang oder ein Logikausgang zugeordnet werden.

Im Synchronisiermodus "GeneratorZuNetz" muss zusätzlich im Menü [Schutzparameter / Globale Schutzpara / NA-Schutz / Sync] die Synchronitätsanforderung rangiert werden (Die Synchronitätsprüfung muss angefordert werden).

Wenn ein Synchronitätssignal zugeordnet wurde, dann wird der Schaltbefehl nur dann ausgeführt, wenn das Synchronitätssignal innerhalb der parametrierten maximalen Wartezeit »t-SyncUeberw« wahr wird.

Diese Überwachungszeit wird mit einem abgesetzten Einschaltbefehl gestartet. Wenn kein Synchronitätssignal zugeordnet wird, dann ist die Sycnronitätsfreigabe permanent.

Schalthoheit

Die Schalthoheit legt fest, von welchen Steuerstellen alle Schaltgeräte gesteuert werden können. Die Schalthoheit hat keinen Einfluss auf Schutzauslösungen.

Für die Einstellung der Schalthoheit [Steuerung / Allg Einstellungen] »Schalthoheit« können folgende Einstellungen gewählt werden:

- "keine": Schaltoperationen werden blockiert. (Auch hierbei bleiben Schutzauslösungen möglich.)
- "vor Ort": Schaltoperationen nur über die Bedieneinheit (HMI).
- "von Fern": Schaltoperationen über SCADA, Digitale Eingänge oder interne Signale.

• "vor Ort und Fern": Schaltoperationen über die Bedieneinheit, SCADA, Digitale Eingänge oder interne Signale.

Unverriegeltes Schalten

Zu Testzwecken, während der Inbetriebnahme und bei provisorischen Fahrweisen können Verriegelungen an einer Anlage außer Kraft gesetzt werden.

GEFAHR!

Unverriegelte Schaltvorgänge können Tod oder schwere Verletzungen zur Folge haben.

Der Einstellparameter [Steuerung / Allg Einstellungen] »Res Unver« stellt die folgenden Optionen für ein unverriegeltes Schalten zur Verfügung:

- "Einzelbefehl": Unverriegeltes Schalten für einen einzelnen Befehl
- "permanent": Permanent
- "Zeitüberschrtg": Unverriegeltes Schalten für eine bestimmte Zeit

Die Zeiteinstellung für das unverriegelte Schalten wird über den Parameter »Zeitüber Unver« eingestellt und gilt auch für die Option "Einzelbefehl".

Unverriegeltes Schalten kann auch durch ein Signal aktiviert werden, das auf den Parameter »Zeitüber Unver« rangiert wird.

Manuelle Manipulation der Schaltgerätestellung

Im Fall schadhafter Positionsmeldekontakte oder bei Drahtbruch kann die Stellungsrückmeldung, die sich aus den rangierten Rückmeldungen ergibt, manipuliert (überschrieben) werden, um in ein einer solchen Situation schaltfähig zu bleiben.

Dies kann über den Parameter [Steuerung / SG / SG[x] / Allg Einstellungen] »Manipuliere Stellung« vorgenommen werden.

Eine manipulierte Schaltgerätestellung wird im Display durch ein Rufzeichen "!" neben dem Schaltgerät dargestellt.

GEFAHR!

Manipulationen der Schaltgerätestellung können Tod oder schwere Verletzungen zur Folge haben.

Doppelbetätigungssperre

Steuerbefehle müssen sequentiell abgearbeitet werden. Während ein Schaltvorgang läuft, wird jeder weitere Schaltbefehl abgewiesen.

Validierung der Richtung eines Schaltbefehls

Schaltbefehle werden vor einer Ausführung validiert. Befindet sich ein Schaltgerät bereits in der anbefohlenen Position, so wird der Schaltbefehl nicht ausgeführt. (Das heißt zum Beispiel, ein AUS-Befehl auf einen bereits geöffneten Leistungsschalter wird abgewiesen.)

Dies gilt ebenso für Schaltbefehle die an der Bedieneinheit oder über die Leittechnik (SCADA) abgesetzt wurden.

Anti-Pumping

Mit dem Drücken des Softkeys für das Einschaltkommando wird einmalig ein Einschalt-Impuls abgesetzt, und zwar unabhängig davon, wie lange die Taste weiter gedrückt gehalten wird. Das Schaltgerät führt das EIN-Kommando nur einmal aus.

6.3 Schaltgeräte-Wartung

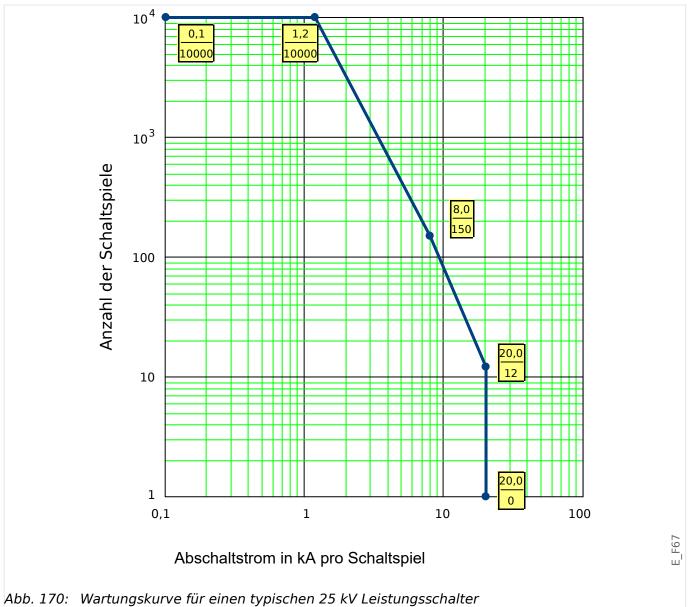
Features der Schaltgeräte-Wartung

Das MCDLV4 berechnet fortlaufend verschiedene statistische Daten für jedes Schaltgerät.

- Die Anzahl der Schaltspiele (EIN/AUS-Zyklen) steht zur Verfügung unter [Betrieb / Zähl und RevDat / Steuerung / SG[x]] »AuslBef Z«.
 - Unter [Steuerung / SG[x] / SG Wartung] »Anz Schaltsp Alarm« kann ein Grenzwert für die Anzahl der Schaltspiele festgelegt werden. Bei Überschreiten dieses Grenzwertes wird das Alarmsignal [Betrieb / Zustandsanzeige / Steuerung / SG[x]] »Anz Schaltsp Alarm« gesetzt.
- Die Summe der Abschaltströme steht zur Verfügung unter [Betrieb / Zähl und RevDat / Steuerung / SG[x]] »Sum Abschalt IL1«, ..., »Sum Abschalt IL3«.
 - Unter [Steuerung / SG[x] / SG Wartung] »Sum Ik Alarm« kann ein Grenzwert für die maximal erlaubte Summe der abgeschalteten Ströme festgelegt werden. Bei Überschreiten dieses Grenzwertes wird das Alarmsignal [Betrieb / Zustandsanzeige / Steuerung / SG[x]] »Sum Abschalt« gesetzt, zusammen mit jeweiligen phasenselektiven Signalen »Sum Abschalt: Ixx«.
- Das MCDLV4 ermittelt kontinuierlich die verbleibende "Ausschalt-Kapazität" [Betrieb / Zähl und RevDat / Steuerung / SG[x]] »LS-Verschleiß« (in Form einer Prozentangabe). Wenn der Wert 100 % erreicht wird, bedeutet dies, dass das Schaltgerät gewartet werden muss.
- Die Meldung [Betrieb / Zustandsanzeige / Steuerung / SG[x]] »SGMon SGverzögert« zeigt an, dass das Schaltgerät langsamer geworden ist. (Siehe auch →"Träges Schaltgerät".) Dies kann frühzeitig auf eine Fehlfunktion des Schaltgerätes hindeuten.
- Es kann für jedes Schaltgerät eine individuelle Wartungskennlinie definiert werden, siehe auch →,,Wartungskennlinie eines Schaltgeräts" weiter unten. Basierend hierauf setzt das MCDLV4 das Alarmsignal [Betrieb / Zustandsanzeige / Steuerung / SG[x]] »SGWartAlarm«.
- Das MCDLV4 errechnet die Häufigkeit der Schaltvorgänge: Unter [Steuerung / SG[x] / SG Wartung] »Sum Ik/h Alarm« kann ein Grenzwert für die maximal erlaubte Summe der abgeschalteten Ströme pro Stunde festgelegt werden. Bei Überschreiten dieses Grenzwertes wird das Alarmsignal [Betrieb / Zustandsanzeige / Steuerung / SG[x]] »Sum Ik/h Alarm« gesetzt. Hierdurch kann frühzeitig eine Überbeanspruchung des Schaltgeräts erkannt werden.

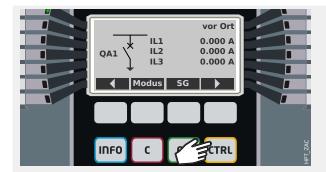
Träges Schaltgerät

Verlängern sich die Schaltereigenzeiten, so ist dies ein Indiz dafür, dass das Schaltgerät wartungsbedürftig ist.


Wenn die gemessenen Schaltzeiten ***t-Eigenz AUS** oder ***t-Eigenz EIN** überschritten werden, wird die Meldung [Betrieb / Zustandsanzeige / Steuerung / SG[x]] ***SGMon SGverzögert** gesetzt.

Wartungskennlinie eines Schaltgeräts

Durch Überwachung eines Schaltgeräts erhöht sich seine Betriebsbereitschaft. Der (Alterungs-) Zustand des Schaltgeräts hängt vor allem von folgenden Faktoren ab:


- Anzahl der Schaltspiele (EIN-/AUS-Zyklen).
- Der Stromhöhe zum Abschaltzeitpunkt.
- Der Schaltfrequenz mit der das Schaltgerät betrieben wird (Schaltspiele pro Stunde).

Der Anwender hat das Schaltgerät gemäß den Vorgaben (Technische Daten/Wartungsplan) des Hersteller bestimmungsgemäß zu warten. Die Wartungskurve des Schaltgeräts kann durch bis zu 10 Punkte im Menü [Steuerung / SG / SG[x] / SG Wartung] nachgebildet werden. Jeder Punkt wird über zwei Parameter eingestellt. Den Abschaltstrom in Kilo-Ampere und die Anzahl der erlaubten Schaltspiele. Die erlaubten Schaltspiele des letzten Punktes sind immer Null. Das Schutzgerät berechnet die verbleibende Schaltkapazität auf der Basis der Wartungskurve. Wenn der Abschaltstrom größer als der des letzten Punkts der Kurve ist, dann wird dieser Punkt mit "Null" erlaubten Schaltspielen bewertet.

6.4 Steuerung - Beispiel: Schalten eines Leistungsschalters

Im folgenden Beispiel soll gezeigt werden, wie über die Bedieneinheit ein Leistungsschalter geschaltet wird.

Durch Betätigen des »CTRL«-Softkeys gelangen Sie zu einer Darstellung des Abzweigsteuerbildes. Von hier haben Sie direkten Zugriff auf steuerungsrelevante Daten und Steuerfunktionen.

Anmerkung: Die Bezeichnung »QA1« des Betriebsmittels ist nur ein Beispiel; die verfügbaren Schaltgeräte bzw. Betriebsmittel und ihre Bezeichnungen hängen von der jeweiligen Anwendung ab.

Ein Schaltvorgang kann nur dann über die Bedieneinheit durchgeführt werden, wenn die Schalthoheit, die in der rechten oberen Ecke des Displays angezeigt wird, entweder auf "vor Ort" oder auf "vor Ort und Fern" gesetzt ist.

Anmerkung: Dieses Abzweigsteuerbild sowie die Funktionalität der Softkeys "Allg Einstellungen" und "SG" sind auch über das Menü erreichbar:

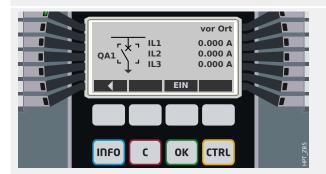
- Über den Menüpfad [Steuerung / Steuer-Seite] erreicht man das Abzweigsteuerbild.
- Über den Menüpfad [Steuerung / Allg Einstellungen] erreicht man denselben Menüzweig wie über den Softkey "Modus".
- Über den Menüpfad [Steuerung / SG] erreicht man denselben Menüzweig wie über den Softkey "SG".

Durch Betätigen des "Modus"-Softkey erreicht man den Menüzweig [Steuerung / Allg Einstellungen].

Hier lassen sich diverse steuerungsrelevante Einstellungen vornehmen, insbesondere kann hier die Schalthoheit eingestellt werden.

Für den Einstellparameter »Schalthoheit« stehen folgende Werte zur Verfügung:

- "keine": Keine Steuerfunktionalität.
- "vor Ort": Schaltbefehle nur über die Bedieneinheit.
- "Fern": Schaltbefehle nur über SCADA, digitale Eingänge oder interne Meldungen.
- "vor Ort und Fern": Schaltbefehle über die Bedieneinheit, SCADA, digitale Eingänge oder interne Meldungen.



Für dieses Beispiel muss, wie gesagt, die Einstellung "vor Ort" oder "vor Ort und Fern" gewählt sein.

Über den Softkey "SG" erreicht man eine Liste aller implementierten Betriebsmittel.

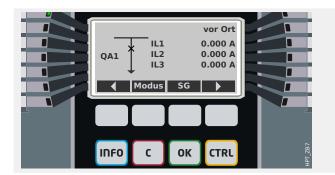
(HighPROTEC-Geräte der Typen »MC...« unterstützen bis zu 6 Betriebsmittel. Geräte der Typen »MR...« unterstützen 1 Betriebsmittel.)

Nachdem das zu betätigende Betriebsmittel ausgewählt ist, erreicht man über den Softkey "▶" (Enter) ein Menü mit Parametern speziell für dieses ausgewählte Betriebsmittel. Hier können z. B. Schaltzeiten, Stellungmeldekontakte, externe Schaltbefehle und Verriegelungsbedingung konfiguriert werden.

Über den Softkey "▶" (Enter) erreicht man ein erweitertes Abzweigsteuerbild (nachdem das Passwort für den Zugriffsbereich "Strg-Lv1" eingegeben worden ist); hier ist nun ein Betriebsmittel durch kleine Ecken markiert und dadurch als "ausgewählt" gekennzeichnet. Falls mehrere Betriebsmittel unterstützt werden, ist außerdem der Softkey "Ausw" sichtbar, über den (zyklisch durchrotierend) ein anderes Betriebsmittel angewählt werden kann.

Wenn die Schalthoheit lokales Schalten erlaubt, sind außerdem Softkeys "AUS" und/oder "EIN" sichtbar; über diese können nun Schaltbefehle angestoßen werden.

(Bei korrekter Verdrahtung und Konfiguration der Stellungsmeldekontakte "weiß" das MCDLV4 natürlich, ob das gewählte Betriebsmittel gerade geschlossen oder geöffnet ist, und somit ist nur einer dieser beiden Softkeys sichtbar: Wenn also zum Beispiel das gewählte Betriebsmittel geöffnet ist, ist auch nur "EIN" sichtbar.)



Nach Betätigen des Softkeys "EIN" erhält man einen Bestätigungsdialog; dies soll versehentliches Schalten verhindern.

Nach Betätigen von "ja" wird der Schaltbefehl ausgeführt.

6 Steuerung / Schaltgeräte-Manager

6.4 Steuerung - Beispiel: Schalten eines Leistungsschalters

Die neue Stellung des Betriebsmittels wird (nach Ablauf der jeweiligen Schaltzeit bzw. nach entsprechender Rückmeldung durch die Stellungsmeldekontakte) auf dem Display angezeigt.

Außerdem ändert sich die Sichtbarkeit der Softkeys, sodass die nun neu verfügbaren Schaltbefehle sichtbar werden.

7 System-Alarme

HINWEIS!

Es ist zu beachten, dass Leistungsüberwachung und Bezugsmanagement für Wirk-, Blind- und Scheinleistung usw. nur in Geräten verfügbar ist, die über eine Strom- und Spannungsmessung verfügen.

Nach der Aktivierung (über [Projektierung / Projektierte Elemente] »SysA . Modus« = "verwenden") können im Menü [SysA] folgende Features konfiguriert werden:

- Allgemeine Einstellungen (aktivieren/deaktivieren des Bezugsmanagements, optional kann ein Blockadesignal rangiert werden);
- Mittelwertüberwachung (→7.1 Bezugsmanagement (Mittelwerte))
 - Bezugsmanagement (Strom),
 - · Bezugsmanagement (Leistung),
- Maximalwertüberwachung (→7.2 Spitzenbezugswerte (Maximalwerte))
 - · Leistungsüberwachung (Schleppzeiger),
- Total Harmonic Distortion (THD-Schutz).

Es ist zu beachten, dass alle Einstellwerte als Primärwerte einzugeben sind.

7.1 Bezugsmanagement (Mittelwerte)

Bezugsmanagement

Bezugsmanagement bedeutet den durchschnittlichen Netzstrom oder Netzleistung in einem bestimmten Zeitintervall zu überwachen. Abnehmer größerer Mengen elektrischer Energie schließen in der Regel mit dem jeweiligen elektrischen Versorgungsunternehmen Verträge ab, die den maximalen Energiebezug in einem gewissen Zeitintervall festlegen. Wird dieser Überschritten, wird für den Mehrverbrauch meistens ein sehr viel höherer Strompreis zu Grunde gelegt. Das Bezugsmanagement des Gerätes hilft einen Mehrverbrauch rechtzeitig zu erkennen und ggf. zu verhindern. Alarme können auf Ausgangsrelais rangiert werden. Somit lässt sich z.B. ein Lastabwurf realisieren bzw. das zeitgleiche Zuschalten größerer Verbraucher verhindern.

Das Bezugsmanagement kann folgende Bezüge überwachen:

Leistungsbezug

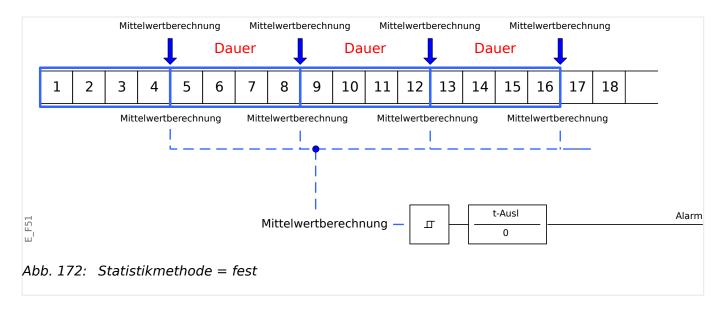
- Wirkleistungsbezug Wp
- Blindleistungsbezug Wg
- Scheinleistungsbezug Ws
- Strombezug

Im Menü [Betrieb / Statistik / Bezugsmanagem] können die jeweiligen Mittelwerte eingesehen werden. (Siehe auch ⇔2.7 Statistik.)

Konfiguration des Bezugsmanagements

Die Konfiguration des Bezugsmanagements erfolgt in zwei Schritten:

Schritt1: Konfiguration der allgemeinen Einstellungen im Menü [Geräteparameter / Statistik / Bezugsmanagem]:


- Stellen Sie die Triggerquelle auf »Dauer«.
- Stellen Sie die Zeit für das Überwachungs-Zeitfenster ein.
- Legen Sie fest, ob das Zeitfenster »fest« oder »gleitend« sein soll.
- Rangieren Sie ggf. ein Rücksetzsignal.

Hinweis zum Zeitfenster: Das Zeitfenster kann entweder gleitend oder fest eingestellt werden.

Einstellung festes Zeitfenster: Wenn das Zeitfenster z. B. auf 15 Minuten eingestellt ist, errechnet das Gerät den momentanen Strom-, bzw. Leistungsmittelwert innerhalb dieses Zeitfensters und startet nach 15 Minuten mit einer neuen Berechnung.

Einstellung gleitendes Zeitfenster: Ist das Zeitfenster gleitend eingestellt und ein Intervall von beispielsweise 15 Minuten ausgewählt, errechnet das Gerät fortwährend den Strom-, bzw. Leistungsmittelwert der vergangenen 15 Minuten. Der neueste Messwert überschreibt jeweils den ältesten.

Schritt 2:

- Konfigurieren Sie die spezifischen Einstellungen des Bezugsmanagements im Menü [SysA].
- Legen Sie fest, ob das Bezugsmanagement einen Alarm auslösen soll oder nicht (*»Alarm«* = "Aktiv" or "Inaktiv").
- Stellen Sie einen Schwellwert (»Schwellwert«) ein.
- Legen Sie eine Alarmverzögerung fest (»t-Ausl«).

7.2 Spitzenbezugswerte (Maximalwerte)

Das Gerät speichert die Spitzenbezugswerte für Strom und Leistung. Die gespeicherten Werte repräsentieren die jeweils höchsten Werte seit dem letzten Rücksetzen. Die Spitzenbezugswerte werden mit einem Datums- und Zeitstempel versehen. Im Menü [Geräteparameter / Statistik / Bezugsmanagem] werden die aktuellen Mittelwert- und Spitzenbezugswerte angezeigt.

Konfiguration der Spitzenlastüberwachung

Die Überwachung der Spitzenlasten (Schleppzeiger) lässt sich im Menü [SysA / Leistung] für folgende Größen konfigurieren:

- Wirkleistung (Watt),
- Blindleistung (VAr) und
- Scheinleistung (VA)

Die spezifischen Einstellungen sind im Menü [SysA / Leistung] anzupassen.

- Legen Sie fest, ob die Spitzenlastüberwachung einen Alarm auslösen soll oder nicht (Alarm aktiv/inaktiv).
- Stellen Sie einen Schwellwertwert (Alarmschwelle) ein.
- Legen Sie eine Alarmverzögerung fest.

Minimal- und Maximalwerte

Im Menü [Betrieb] können verschiedene Minimal- und Maximalwerte eingesehen werden. (Siehe auch →2.7 Statistik.)

Minimumwerte seit dem letzten Rücksetzen: Die Werte einer gemessenen Größe werden ständig mit dem letzten Minimumwert verglichen. Ist ein Messwert kleiner als der letzte gespeicherte Minimumwert, wird dieser überschrieben. Im Menü [Geräteparameter / Statistik] kann ein Rücksetzsignal rangiert werden.

Maximumwerte seit dem letzten Rücksetzen: Die Werte einer gemessenen Größe werden ständig mit dem letzten Maximumwert verglichen. Ist ein Messwert größer als der letzte gespeicherte Maximumwert, wird dieser überschrieben. Im Menü [Geräteparameter / Statistik] kann ein Rücksetzsignal rangiert werden.

7.3 THD-Schutz

Das Gerät ist in der Lage die Stromqualität zu überwachen, indem es die harmonischen Verzerrungen (THD) der Außenleiterspannungen und Phasenströme misst.

Im Menü [SysA / THD] müssen folgende Einstellungen vorgenommen werden:

- Legen Sie fest, ob ein Alarm ausgegeben werden soll oder nicht (»Alarm« = "Aktiv" or "Inaktiv").
- Stellen Sie einen Schwellwertwert (»Schwellwert«) ein.
- Legen Sie eine Alarmverzögerung fest (»t-Ausl«).

8 Rekorder

Das MCDLV4 enthält mehrere Rekorder, die verschiedenartige Log-Meldungen (in nichtflüchtigem Speicher) sammeln:

 Die Selbstüberwachungsmeldungen (→10.2 Meldungen der Selbstüberwachung) enthalten geräteinterne Ereignisse. Dies können zum Beispiel sicherheitsrelevante Meldungen sein (z. B. wenn ein falsches Passwort eingegeben wurde), oder Meldungen, die sich direkt auf die Gerätefunktionalität beziehen (und im "Troubleshooting-Guide" nachzuschlagen sind).

Die Liste der Einträge erreicht man über den Menüpunkt [Betrieb / Selbstüberwachung / Meldungen].

• Der Störschreiber (⇔8.1 Störschreiber) fügt mit jedem neuen Störfall (sofern dieser als Startereignis konfiguriert ist) einen Eintrag hinzu.

Die Liste der Einträge erreicht man über den Menüpunkt [Betrieb / Rekorder / Störschr].

In Smart view hat man zusätzlich die Möglichkeit, einen Doppelklick auf einen dieser Störschriebe zu machen, wodurch man den Störschrieb in einer *.HptDr-Datei abspeichern und mittels der PC-Software *DataVisualizer* graphisch analysieren kann.

• Der Fehlerrekorder (→8.2 Fehlerrekorder) stellt Informationen über Fehlerfälle bereit (z. B. die Auslöse-Ursache).

Die Liste der Einträge erreicht man über den Menüpunkt [Betrieb / Rekorder / Fehlerrek].

Die Liste der Einträge erreicht man über den Menüpunkt [Betrieb / Rekorder / Ereignisrek].

 Der Trendrekorder (→8.4 Trendrekorder) zeichnet analoge Messwerte in ihrer Zeitabhängigkeit auf.

Eine Zusammenfassung (Datum/Uhrzeit, Anzahl der Einträge) erreicht man über den Menüpunkt [Betrieb / Rekorder / Trendrek].

In Smart view hat man zusätzlich die Möglichkeit, einen Doppelklick auf diese Zusammenfassung zu machen, wodurch man alle Analogdaten in einer *.HptTr-Datei abspeichern und mittels der PC-Software *DataVisualizer* graphisch analysieren kann.

8.1 Störschreiber

- Mittels der Bedien- und Auswertesoftware *Smart view* können Störschriebe ausgelesen werden.
- In der separaten Anwendung *DataVisualizer* (wird immer mit *Smart view* installiert) können Störschriebe angesehen und analysiert werden.
- Mittels des *DataVisualizer* können die Störschriebe ins COMTRADE-Format gewandelt werden.

Der Störschreiber kann durch bis zu 8 auswählbare Startsignale gestartet werden (z. B. Auslösung). Der Störschreiber arbeitet mit 32 Abtastungen pro Periode (Samples per cycle). Der Störschreiber zeichnet die Messdaten zum Zeitpunkt des Startsignals (+Vorlauf) auf. Mithilfe der Bediensoftware *Smart view | DataVisualizer* können die Kurvenverläufe der analogen (Strom, Spannung) und digitalen Kanäle/Spuren grafisch dargestellt und ausgewertet werden. Der Störschreiber hat eine Speicherkapazität von 120 s. Die maximal parametrierbare Aufzeichnungszeit eines Störschriebes beträgt 15 s. Die maximal mögliche Anzahl von Aufzeichnungen hängt von der Größe der einzelnen Störschriebe ab.

Auslesen von Störschrieben

Im Menü [Betrieb / Rekorder / Störschr] können Sie einsehen, ob Störschriebe aufgelaufen sind.

HINWEIS!

Im Menü [Betrieb / Rekorder / Man Trigger] können Sie den Störschreiber manuell anstoßen.

Löschen von Störschrieben

Im Menü [Betrieb / Rekorder / Störschr] können Sie:

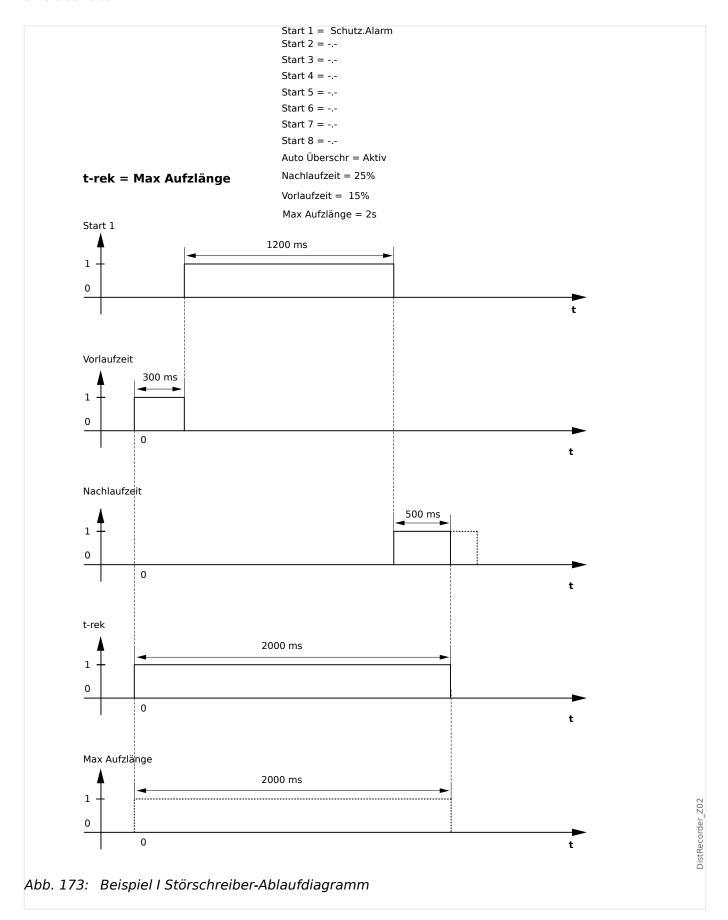
- · Störschriebe löschen.
- Wählen Sie dazu mittels des »SOFTKEYs« »herunter« und des »SOFTKEYs« »herauf« den zu löschenden Störschrieb aus
- Rufen Sie mittels des »SOFTKEYs« »rechts« die Detailansicht auf.
- Betätigen Sie den »SOFTKEY« »Löschen«.
- Geben Sie das Passwort ein und bestätigen Sie dieses durch einen Druck auf die Taste OK
- Wählen Sie ob nur der aktuell ausgewählte oder alle Störschriebe gelöscht werden sollen.
- Bestätigen Sie durch den Softkey »OK«

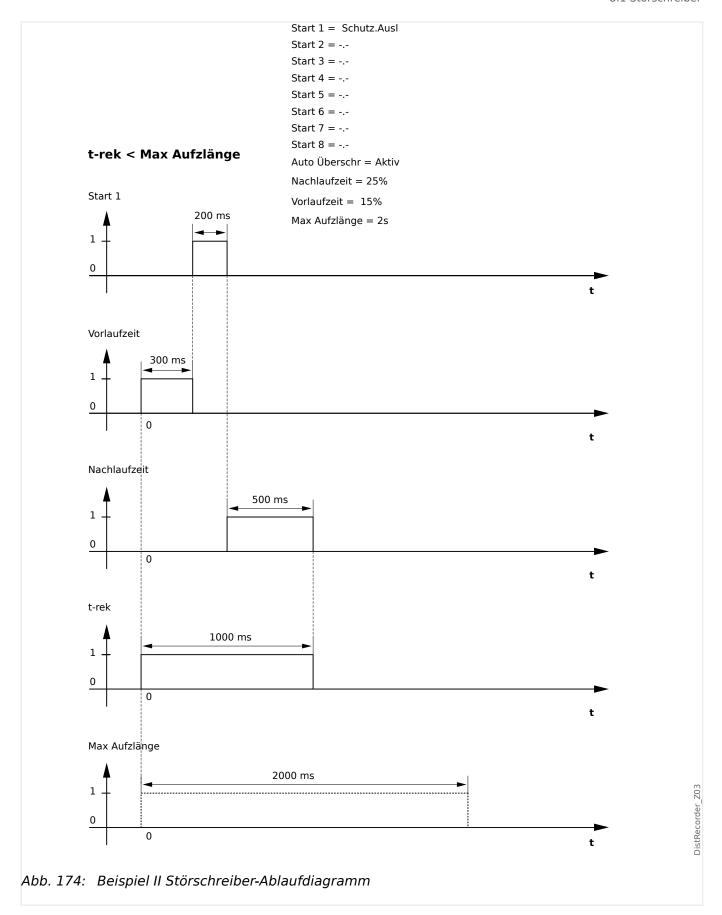
Einstellungen

Im Menü [Geräteparameter / Rekorder / Störschr] können Sie den Störschreiber parametrieren. Legen Sie über den Parameter »Max Aufzlänge« die maximale Aufzeichnungslänge eines Störschriebes fest, der maximal einstellbare Wert beträgt 15 s (inklusive Vor- und Nachlauf). Die Vor- und Nachlaufzeit des Störschreibers werden (über die Parameter »Vorlaufzeit« bzw. »Nachlaufzeit«) in Prozent der »Max Aufzlänge« angegeben.

Aus der »Rangierliste« können bis zu 8 Signale als Startsignale (Trigger) für den Störschreiber gewählt werden. Diese Startsignale wirken flankengesteuert mit der positiven Flanke und sind ODER-verknüpft. Wenn ein Störschrieb abgeschlossen ist und die Startsignale nicht zurückfallen, startet eine positive Flanke eines der anderen Signale einen neuen Störschrieb, sofern der Störschreiber wieder aufzeichnungsbereit ist. Dies ist der Fall sobald der Speichervorgang im internen Speicher abgeschlossen ist.

HINWEIS!

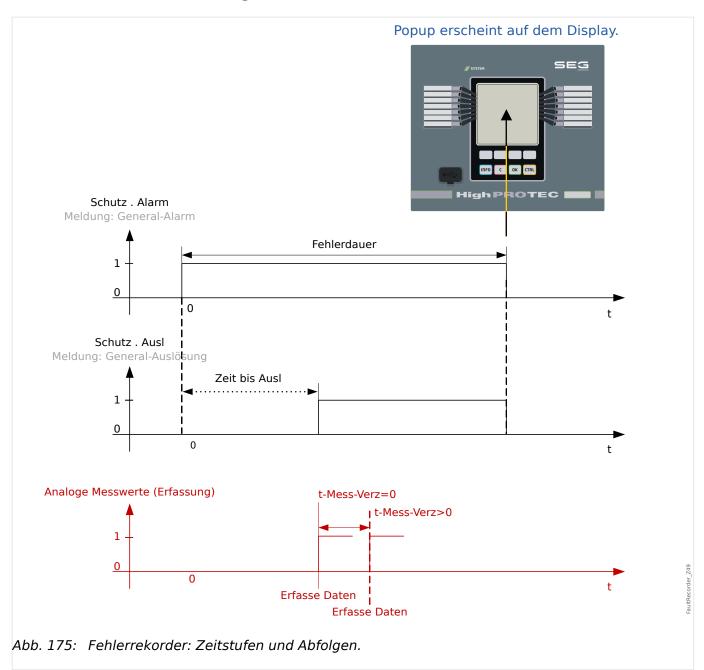

Wenn tT die Dauer des Startsignals ist und tMax=»Max Aufzlänge«, tVor=(»Vorlaufzeit« · tMax), tNach=(»Nachlaufzeit« · tMax), dann ergeben sich folgende Zeitdauern:


- Die tatsächliche Vorlaufzeit ist immer gleich tVor
- Das Ereignis selbst wird für die Zeitdauer tStör aufgezeichnet mit: tStör = min(tT , (tMax -tVor))
- Die tatsächliche Nachlaufzeit tRest beträgt: tRest = min(tNach , (tMax –tVor–tStör))

Es kann hierbei – je nach Zeitdauer des Startsignals und der Einstellung tVor – offensichtlich passieren, dass tStör < tT, dass also nicht das gesamte Ereignis aufgezeichnet wird. Dies wird natürlich tendenziell vermieden, indem ein größerer Wert für tMax konfiguriert wird, allerdings werden dann entsprechend weniger Ereignisse im Gerätespeicher Platz finden.

In gleicher Weise kann es passieren, dass keine Nachlaufzeit mehr übrig ist (d. h. tRest = 0). Die Aufzeichnung wird in jedem Falle nach Ablauf des konfigurierten tMax-Wertes abgebrochen.

Legen Sie außerdem fest, wie sich der Störschreiber verhalten soll, wenn kein weiterer Speicherplatz mehr zur Verfügung steht: Sollen ältere Störschriebe automatisch überschrieben werden (»Auto Überschr« = "Aktiv"), oder sollen (bis zum manuellen Löschen des Gerätespeichers) keine weitere Aufzeichnungen mehr erstellt werden (»Auto Überschr« = "Inaktiv").



8.2 Fehlerrekorder

Prinzip des Fehlerrekorders

Der Fehlerrekorder stellt in kompakter Form Informationen über Fehlerfälle bereit (z.B. die Auslöse-Ursache). Diese kompakten Informationen können auch über das Bedienpanel gelesen werden. Dadurch ist eine erste schnelle Fehleranalyse möglich. Nach einem Fehler erscheint ein Pop-up mit Informationen zur Fehlerursache auf dem Display. Die weitergehende detaillierte Fehleranalyse kann dann mit Hilfe des Störschreibers am PC erfolgen. Anhand der »Störfall-« und »Netzstörfallnummer« können die Aufzeichnungen des Fehlerrekorders und die des Störschreibers einander zugeordnet werden.

Zeitstufen und Abfolgen

8.2.1 Verhalten des Fehlerrekorders

Wodurch wird der Fehlerrekorder getriggert?

Der Fehlerrekorder wird mit der steigenden Flanke des General-Anregungs-Signals (»Schutz . Alarm«) gestartet.

Es ist zu beachten, dass die General-Anregung eine Oder-Verknüpfung aller Alarm-Signale ist. Das erste Alarm-Signal (steigende Flanke) startet den *Fehlerrekorder*.

Zu welchem Zeitpunkt werden die Messwerte erfasst/aufgezeichnet?

Der Fehler wird zu dem Zeitpunkt erfasst (geschrieben), an dem die Auslöseentscheidung getroffen wird. Der Zeitpunkt für die Aufzeichnung (Schreiben der Messwerte) kann optional durch den Parameter [Geräteparameter / Rekorder / Fehlerrek /] »Fehlerrek . t-Mess-Verz« verzögert werden. Dies kann z.B. sinnvoll sein, um stabilere Messwerte zu erhalten (z.B. um Störungen durch transiente Gleichspannungsanteile aus den Aufzeichnungen fernzuhalten).

Modi

Wenn eine Fehleraufzeichnung auch dann erfolgen soll, wenn der Alarm nicht zu einer Auslösung führt, dann ist der Parameter [Geräteparameter / Rekorder / Fehlerrek /] »Fehlerrek . Rekorder-Modus« auf "Alarme und Ausl" zu setzen.

Wenn der Parameter »Rekorder-Modus« auf "Nur Ausl" gestellt wird, werden nur Fehler aufgezeichnet, die auch zu einer Auslösung führen.

Wann erscheint das Pop-up (Fehleraufzeichnung) auf dem Display des Bedienpanels?

Ein Pop-up (Fehleraufzeichnung) erscheint auf dem Gerätedisplay der Bedieneinheit mit der fallenden Flanke der General-Anregung (»Schutz . Alarm«).

HINWEIS!

Es wird keine "Zeit bis zur Auslösung" angezeigt, wenn Alarm- und Auslösesignal aus verschiedenen Modulen stammen. Dies kann dann geschehen, wenn mehr als ein Schutzmodul in die Klärung eines Fehlers involviert sind.

HINWEIS!

Es ist zu beachten: Die in einer Fehleraufzeichnung gezeigten Parameter-Einstellungen (Werte) sind nicht Teil der Aufzeichung selbst. Diese werden stets den aktuellen Geräteeinstellungen entnommen. Wenn also Parameter nach der Aufzeichnung eines Fehlers geändert werden, dann werden diese mit einem Stern-Symbol in der Fehleraufzeichnung kenntlich gemacht.

Um Fehlinterpretationen zu verhindern, ist wie folgt zu verfahren:

Speichern Sie jede Aufzeichnung des Fehlerrekorders, die Sie archivieren möchten auf einer lokalen Festplatte, bevor Sie jegliche Parameteränderungen vornehmen. Löschen Sie danach die Fehleraufzeichnungen im Schutzgerät.

Speicher

Die zuletzt gespeicherte Fehleraufzeichnung wird spannungsausfallsicher innerhalb des Fehlerrekorders archiviert (fail safe, die anderen werden in einem Speicherbereich abgelegt, der von der Hilfsspannungsversorgung abhängig ist). Steht kein weiterer Speicherplatz mehr zur Verfügung, dann wird die älteste Fehleraufzeichnung überschrieben (FIFO). Bis zu 20 Aufzeichnungen können gespeichert werden.

Wie schließt man ein Pop-up (Aufzeichnung) des Fehlerrekorders?

Durch Betätigen des Softkeys »OK«.

Wie lässt sich erkennen, ob ein Fehler eine Auslösung zur Folge hatte oder nicht?

Fehler, die eine Auslösung zur Folge hatten, werden innerhalb des Übersichtsmenüs des Fehlerrekorders mit einem "Blitz"-Symbol "5" auf der rechten Seite des Displays gekennzeichnet.

Welche Fehleraufzeichnung poppt im Gerätedisplay auf?

Die neuste.

8.2.2 Automatische Fehleranzeige (Pop-up) auf dem Display

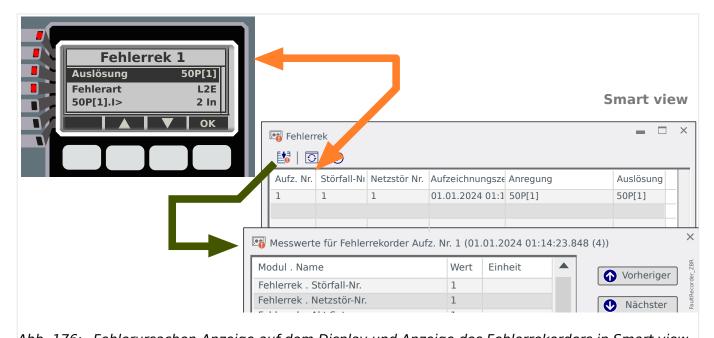


Abb. 176: Fehlerursachen-Anzeige auf dem Display und Anzeige des Fehlerrekorders in Smart view.

Eine automatische Fehleranzeige erscheint auf dem Gerätedisplay mit der fallenden Flanke der General-Anregung (siehe $\hookrightarrow 5.1.1$ Grundlagen eines Schutzmodules).

HINWEIS!

Es wird keine "Zeit bis zur Auslösung" angezeigt, wenn Alarm- und Auslösesignal aus verschiedenen Modulen stammen. Dies kann dann geschehen, wenn mehr als ein Schutzmodul in die Klärung eines Fehlers involviert sind.

HINWEIS!

Es ist zu beachten: Die in einer Fehleraufzeichnung gezeigten Parameter-Einstellungen (Werte) sind nicht Teil der Aufzeichung selbst. Diese werden stets den aktuellen Geräteeinstellungen entnommen. Wenn also Parameter nach der Aufzeichnung eines Fehlers geändert werden, dann werden diese mit einem Stern-Symbol in der Fehleraufzeichnung kenntlich gemacht.

Um Fehlinterpretationen zu verhindern, ist wie folgt zu verfahren:

Speichern Sie jede Aufzeichnung des Fehlerrekorders, die Sie archivieren möchten, auf einer lokalen Festplatte, bevor Sie jegliche Parameteränderungen vornehmen. Löschen Sie danach die Fehleraufzeichnungen im Schutzgerät.

Die Fehleraufzeichnungen werden spannungsausfallsicher innerhalb des *Fehlerrekorders* archiviert. Steht kein weiterer Speicherplatz mehr zur Verfügung, dann wird die älteste Fehleraufzeichnung überschrieben (FIFO).

Es poppt immer die jeweils neueste Fehleraufzeichnung im Gerätedisplay auf. Durch Betätigen der Taste »Ok« wird das Pop-up des Fehlerrekorders geschlossen, erscheint allerdings beim nächsten Gerätestart erneut. Das Pop-up wird durch Betätigen der Taste »C« dauerhaft quittiert.

8.2.3 Inhalt einer Fehleraufzeichnung

Die Information in einer Fehleraufzeichnung kann im Wesentlichen in folgende drei Abschnitte aufgeteilt werden:

Teil 1: Allgemeine Information (unabhängig von der Schutzfunktion)	
Datum/Uhrzeit	Datum und Zeitpunkt des Fehlers
Störfall-Nr.	Dieser Zähler wird mit jedem Fehler erhöht (General Anregung »Schutz . Alarm«)
Netzstör-Nr.	Dieser Zähler wird ebenso mit jedem Fehler erhöht (»Schutz . Alarm«), mit Ausnahme der Automatischen Wiedereinschaltung (gilt nur für Geräte, die über eine AWE-Funktion verfügen).
Akt Satz	Der aktive Parametersatz
Fehlerdauer	Zeit zwischen der steigenden Flanke der General-Anregung (»Schutz . Alarm«) bis zur fallenden Flanke der General-Anregung. Es ist zu beachten, dass die General-Anregung eine Oder-Verknüpfung aller Alarm-Signale ist. Die General-Auslösung (»Schutz . Ausl«) ist eine Oder-Verknüpfung aller Auslösesignale.
Zeit bis Ausl	Die Zeit zwischen Alarm und Auslösung. Bitte beachten Sie: Die Zeit bis zur Auslösung wird nicht angezeigt, wenn der erste Alarm und die erste Auslösung von unterschiedlichen Modulen ausgelöst wurden.
Alarm	Name des Schutzmoduls, das zuerst einen Alarm ausgegeben hat.
Ausl	Name des Schutzmoduls, das zuerst eine Auslösung ausgegeben hat.
Aktiver AdaptSatz	Wenn adaptive Parametersätze verwendet werden, dann wird die Nummer des "aktiven" Satzes angezeigt.

Teil 2: Information, die abhängig ist von dem Schutzmodul, die ausgelöst hat		
z.B. Fehlerart	Diese Informationen sind abhängig vom Schutzmodul.	
	Falls es sich zum Beispiel um ein phasenselektives Schutzmodul handelt, werden auch phasenspezifische Daten angezeigt.	

Teil 3: Information, die vom jeweiligen Schutzgerät abhängig ist	
Messwerte	Es werden zahlreiche Messwerte zum Auslösezeitpunkt (oder verzögert abhängig von der Parametrierung) angezeigt.
	Diese Daten hängen von dem Umfang der Messwerte ab, die mit dem jeweiligen Schutzgerät zur Verfügung stehen.

8.2.4 Verwendung des Fehlerrekorders über die Bedieneinheit des MCDLV4

Navigieren innerhalb des Fehlerrekorders

Navigieren innerhalb des Fehlerrekorders	Softkey
Zurück zur Übersicht.	•
Nächster (höherer) Eintrag innerhalb der Fehleraufzeichnung.	A
Vorherige Fehleraufzeichnung.	▶▶
Nächster (niedrigerer) Eintrag innerhalb des Fehlerrekorders.	▼

Einsichtnahme in eine Aufzeichnung des Fehlerrekorders (über die Bedieneinheit)

Es bestehen zwei unterschiedliche Optionen, um eine Aufzeichnung des Fehlerrekorders einzusehen:

- Option 1: Ein Fehler (Auslöse-Ursache) erscheint auf dem Display des Schutzgeräts (Pop-up, weil es zu einer Auslösung kam).
- Option 2: Manueller Aufruf des Fehlerrekorder-Menüs.

Option 1 (Eine Fehler-Aufzeichnung (Pop-up) erscheint auf dem Gerätedisplay:

- Analysieren Sie die Fehler-Aufzeichnung mit Hilfe der Softkeys "▲" und "▼".
- Oder schließen Sie das Pop-up-Fenster durch Betätigen des Softkeys OK.

Option 2:

- Öffnen Sie den Menüzweig [Betrieb / Rekorder / Fehlerrek].
- Wählen Sie eine Aufzeichnung.
- Analysieren Sie die Fehler-Aufzeichnung mit Hilfe der Softkeys "▲" und "▼".

8.3 Ereignisrekorder

Der Ereignisrekorder zeichnet bis zu 300 Ereignisse auf. Die (mindestens) 50 zuletzt gespeicherten Ereignisse werden ausfallsicher aufgezeichnet. Zu jedem Ereignis werden folgende Informationen zur Verfügung gestellt:

Jedes Ereignis wird nach folgendem Schema aufgezeichnet:

Aufzeichnungsnummer	Laufende Nummer
Störfallnummer	Nummer des aktuellen Störfalls
	Dieser Zähler wird mit jeder General-anregung (»Schutz . Alarm«) inkrementiert
Netzstörnummer	Zu einem Netzstörfall können mehrere Störfallnummern gehören
	Dieser Zähler wird mit jeder General-anregung inkrementiert
	(Ausnahme AWE: gilt nur für AWE-fähige Geräte)
Aufzeichnungszeitpunkt	Zeitpunkt der Aufzeichnung
Modulname	Was hat sich geändert?
Status	Geänderter Wert

Die Ereignisse lassen sich in drei Klassen einteilen.

- Binäre Zustandswechsel: Der Statuswechsel wird dargestellt als:
- 0->1 wenn das Signal physikalisch von »0« zu »1« wechselt bzw
- 1->0 wenn das Signal physikalisch von »1« nach »0« wechselt.
- Zähler: Der Zustandswechsel wird dargestellt als:
- Alter Zählerstand -> Neuer Zählerstand (z.B. 3->4)
- Multiple Zustandswechsel: Der Zustandswechsel wird dargestellt als:
- Alter Zustand->Neuer Zustand (z.B. 0->2)

Lesen des Ereignisrekorders

- Rufen Sie das Menü [Betrieb / Rekorder / Ereignisrek] auf.
- Blättern Sie in den Ereignissen.

8.4 Trendrekorder

Lesen des Trendrekorders

Der Trendrekorder dient der Auszeichnung des zeitlichen Verlaufes analoger Signale.

- Rufen Sie das Menü [Betrieb / Rekorder / Trendrek] auf.
- An der Bedieneinheit wird eine Zusammenfassung angezeigt (Datum/Uhrzeit, Anzahl der Einträge).

Eine weitergehende Anzeige ist auf Grund der technischen Möglichkeiten des LCD-Displays nicht möglich.

• In Smart view wird unter diesem Menüpfad ebenfalls zunächst nur eine Zusammenfassung angezeigt. Man kann dort allerdings einen Doppelklick auf den Eintrag mit der Zusammenfassung machen. Hierüber werden alle analogen Daten vom MCDLV4 heruntergeladen und auf dem PC in einer Datei (mit der Namenserweiterung *.HptTr) abgespeichert.

Anschließend lässt sich die *. HptTr-Datei mit dem DataVisualizer öffnen. Eine detaillierte Beschreibung des DataVisualizer gibt es in dessen Handbuch.

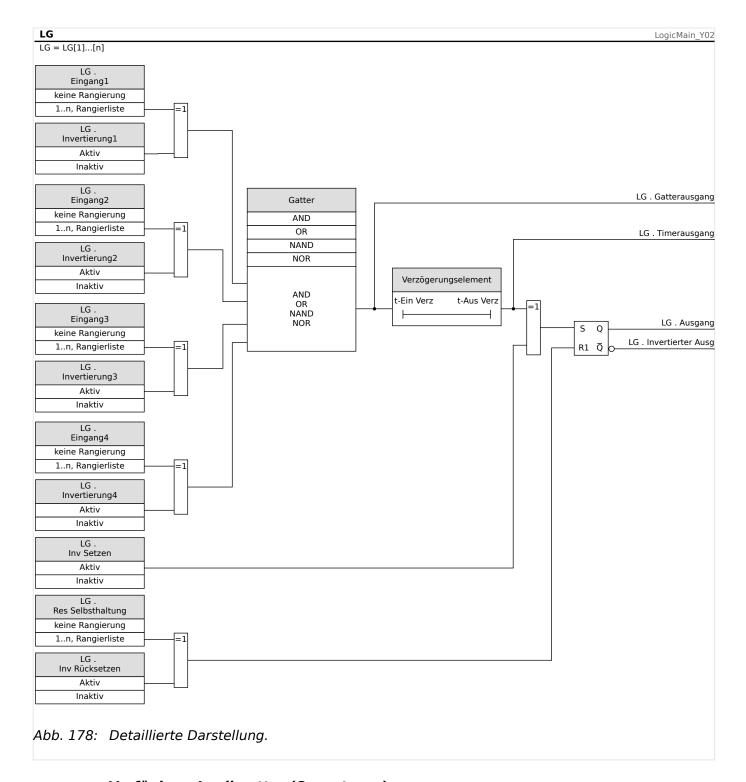
Konfiguration des Trendrekorders

Um den Trendrekorder zu konfigurieren, wechseln Sie ins Menü [Geräteparameter / Rekorder / Trendrek].

Die Auflösung (das Intervall) legt den Abstand zwischen zwei Messpunkten fest.

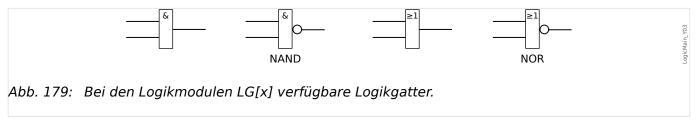
Sie können bis zu 10 Signale festlegen, die aufgezeichnet werden sollen.


9 Programmierbare Logik


Generelle Beschreibung

Das Schutzgerät bietet ein Vielzahl von programmierbaren Logikgleichungen. Mit Hilfe der Logikgleichungen können z.B. Ausgangsrelais, Blockaden von Schutzfunktionen usw. programmiert werden.

Mit Hilfe der Logik können Ausgangsrelais in Abhängigkeit von Eingangssignalen gesetzt werden. Die Eingangssignale können aus der Rangierliste (Auslösungen von Schutzmodulen, Zuständen von Schutzfunktionen, Status eines Leistungsschalters, Alarmmeldungen und Zuständen von Moduleingängen – siehe ⇔2.3 Module, Parameter, Meldungen, Werte) frei ausgewählt werden.


Logikgleichungen können kaskadiert werden, d.h. der Ausgang einer Logikgleichung kann als Eingangssignal einer weiteren Logikgleichung verwendet werden. So kann z.B. der Ausgang von Logikgleichung 10 als Eingangssignal von Logikgleichung 11 verwendet werden.

Verfügbare Logikgatter (Operatoren)

Innerhalb einer Logikgleichung können die folgenden Logikgatter verwendet werden:

Eingangssignale

Jedem Logikgatter können bis zu vier Eingangssignale aus der Rangierliste zugeordnet werden.

Optional kann jedes einzelne Eingangssignal invertiert (negiert) werden.

Timer (Anzugs- und Rückfallverzögerung)

Der Anzug und der Rückfall des Zeitglieds kann verzögert werden.

Selbsthaltung

Jede Logikgleichung verfügt über einen selbsthaltenden und einen nicht-selbsthaltenden Ausgang. Der selbsthaltende Ausgang steht auch als invertierter Ausgang zur Verfügung.

Um ein selbsthaltendes Signal zurücksetzen zu können, muss ein Rücksetz-Signal aus der Rangierliste ausgewählt werden. Das Rücksetz-Signal kann ebenfalls invertiert werden. Das Selbsthaltungssignal (Latch) arbeitet mit Reset-Priorität.

Kaskadierung von Logikgleichungen

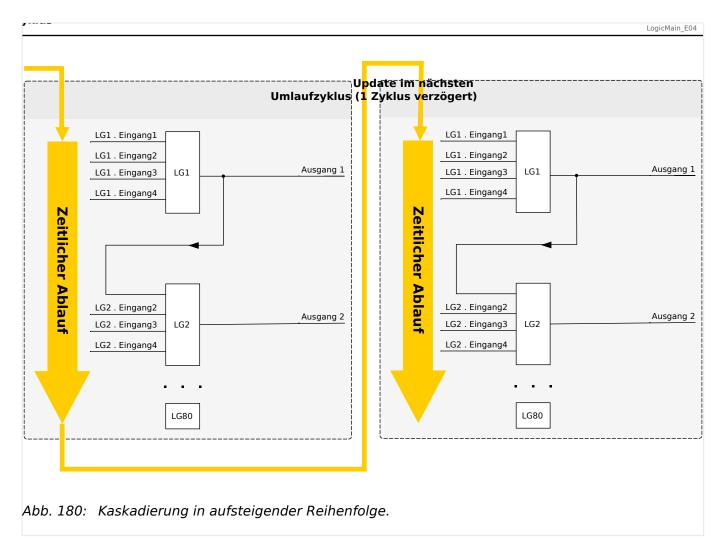
Das MCDLV4 wertet alle Logikgleichungen, beginnend mit Logikgleichung 1, in aufsteigender Reihenfolge aus. Dieser Auswertungs-Zyklus wird stetig wiederholt.

Für zeitkritische Abläufe kann es unter Umständen wichtig sein, das Prinzip der Auswertung in aufsteigender Reihenfolge zu berücksichtigen, wann immer der Ausgang einer Logikgleichung (d. h. das Ergebnis ihrer Auswertung) als Eingang einer anderen Logikgleichung dient. Von einem rein technischen Standpunkt kann diese Kaskadierung in aufsteigender oder in absteigender Reihenfolge konfiguriert werden.

• Kaskadierung in **aufsteigender** Reihenfolge bedeutet, dass der Ausgang einer Logikgleichung auf den Eingang einer Logikgleichung mit **höherer** Nummer rangiert wird. Das Diagramm →Abb. 180 weiter unten zeigt ein Beispiel, bei dem der Ausgang von LG1 auf einen Eingang von LG2 rangiert wird.

```
(Das heißt: »LG2 . Eingang 1« = »LG1 . Ausgang«)
```

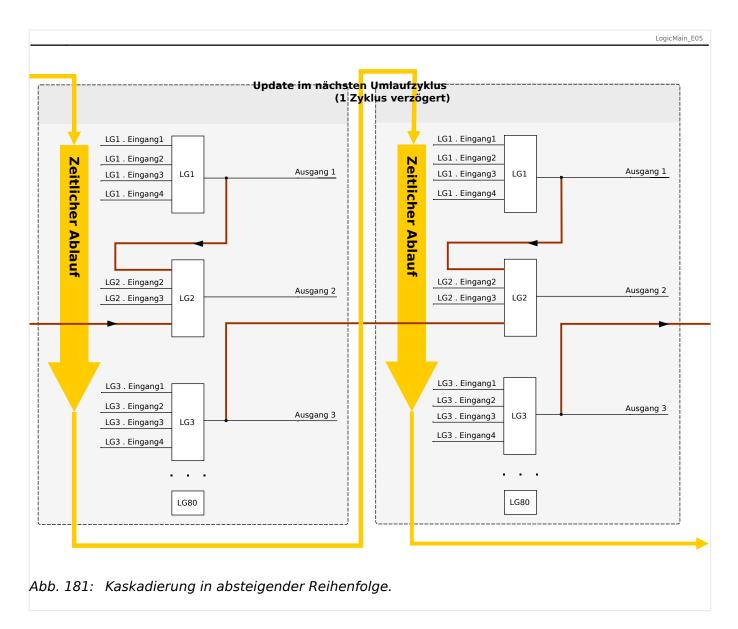
 Kaskadierung in absteigender Reihenfolge bedeutet, dass der Ausgang einer Logikgleichung auf den Eingang einer Logikgleichung mit niedrigerer Nummer rangiert wird. Das Diagramm →Abb. 181 zeigt ein Beispiel, bei dem der Ausgang von LG3 auf einen Eingang von LG2 rangiert wird.


```
(Das heißt: *LG2. Eingang 4* = *LG3. Ausgang*)
```

Bei der Konfiguration des Schutzgerätes bestehen keinerlei Einschränkungen oder Unterschiede zwischen aufsteigender und absteigender Reihenfolge. Da allerdings während der Laufzeit des MCDLV4 die Logikgleichungen in aufsteigender Reihenfolge ausgewertet werden, haben die resultierenden Ausgangswerte, die am Eingang der Logikgleichung anstehen, ein unterschiedliches "Alter", wie in →Abb. 180 und →Abb. 181 veranschaulicht wird.

Kaskadierung von Logikgleichungen in aufsteigender Reihenfolge

Kaskadierung in aufsteigender Reihenfolge bedeutet, dass das Ausgangssignal von "Logikgleichung \mathbf{k} " als Eingangssignal von "Logikgleichung \mathbf{n} ", $\mathbf{k} < \mathbf{n}$, rangiert wird.


Auf Grund der Auswertung in aufsteigender Reihenfolge wird der Ausgang von "Logikgleichung **k**" (d. h. der Eingang von "Logikgleichung **n**") im selben Auswertungs-Zyklus aktualisiert wie der Ausgang von "Logikgleichung **n**".

Kaskadierung von Logikgleichungen in absteigender Reihenfolge

Kaskadierung in absteigender Reihenfolge bedeutet, dass das Ausgangssignal von "Logikgleichung \mathbf{n} " als Eingangssignal von "Logikgleichung \mathbf{k} ", $\mathbf{n} > \mathbf{k}$, rangiert wird.

Auf Grund der Auswertung in *aufsteigender* Reihenfolge verwendet allerdings die "Logikgleichung \mathbf{k} " immer das Auswertungsergebnis von "Logikgleichung \mathbf{n} " aus dem jeweils vorherigen Prozesszyklus.

Das in →Abb. 181 gezeigte Beispiel zeigt eine Konfiguration von "Logikgleichung 2", die den Ausgang von zwei weiteren Logikgleichungen, "Logikgleichung 1" und "Logikgleichung 3", als Eingangszustände verwendet. Hierbei ist der Ausgang von "Logikgleichung 1" in aufsteigender Reihenfolge verwendet, sodass der Wert in jeweils demselben Prozesszyklus ermittelt wird. Der Ausgang von "Logikgleichung 3" wird in absteigender Reihenfolge verwendet, sodass der Wert in dem jeweils vorherigen Prozesszyklus ermittelt wurde.

Programmierbare Logik via HMI

Eine Fehlprogrammierung von Logikgleichungen kann zu Personenschäden oder der Beschädigung oder Zerstörung von Betriebsmitteln führen.

Verwenden Sie die Programmierbare Logik nur dann, wenn Sie die einwandfreie Funktionalität sicherstellen können.

Konfiguration einer Logikgleichung

• Wechseln Sie ins Menü [Logik / LG x].

- Rangieren Sie die Eingangssignale (wenn erforderlich, invertieren Sie diese).
- Falls erforderlich, konfigurieren Sie die Zeitstufen (*»LGx.t-Ein Verz«* und *»LGx.t-Aus Verz«*).
- Wenn der selbsthaltende Ausgang verwendet wird, rangieren Sie ein entsprechendes Resetsignal.
- Wenn Logikgleichungen absteigend kaskadiert werden, dann müssen Signalverzögerungszeiten (Zykluszeiten) berücksichtigt werden .
- Im Menü [Betrieb / Zustandsanzeige] kann der Status der Ein- und Ausgänge der Logikgleichungen geprüft werden.

10 Selbstüberwachung

Die Schutzgeräte wenden verschiedene Prüfmechanismen sowohl während ihres Betriebs als auch während ihrer Startphase an, um sich selbst auf Fehlfunktionen zu überwachen.

Selbstüberwachung im Gerät		
Überwachung von	Überwachung durch	Aktion bei erkanntem Fehler
Startphase	Es wird überwacht, dass der Gerätestart eine maximal erlaubte Zeit nicht überschreitet.	Das Gerät wird neu gestartet.
Überwachung der Dauer eines Schutzumlaufs (Softwarezyklus)	Eine Timing-Analyse überwacht, dass die maximal erlaubte Zeit für einen Schutzumlauf nicht überschritten wird.	Bei Überschreitung der erlaubten Schutzumlaufzeit (erste Schwelle) fällt der Selbstüberwachungskontakt ab. Bei noch längerer Überschreitung der Schutzumlaufzeit (zweite Schwelle) erfolgt ein Neustart des Geräts.
Überwachung der Kommunikation zwischen Haupt- und Signalprozessor	Die zyklische Messwertverarbeitung des Signalprozessors wird vom Hauptprozessor überwacht.	Wird ein Fehler erkannt, dann wird ein Neustart des Geräts ausgelöst. Hierbei fällt der Selbstüberwachungskontakt ab.
Analog-Digital-Wandler	Der Signalprozessor macht eine Plausibilitätsprüfung der digitalisierten Messdaten.	Wird ein Fehler erkannt, so wird der Schutz blockiert um Fehlauslösungen zu vermeiden.
Überwachung der Datenkonsistenz nach einem Spannungsausfall (z.B. Spannungsausfall während der Durchführung von Parameteränderungen).	Eine interne Logik erkennt unvollständig abgespeicherte Daten nach einem Spannungsausfall.	Sind die neuen Daten unvollständig oder korrupt, werden sie beim Geräteneustart gelöscht. Es wird mit dem letzten gültigen Datensatz weitergearbeitet.
Datenkonsistenz allgemein	Bildung von Prüfsummen.	Werden inkonsistente Daten erkannt, die nicht von einem Spannungsausfall herrühren, dann wird das Gerät außer Betrieb gesetzt (schwerer interner Fehler).

Selbstüberwachung im Gerät		
Überwachung von	Überwachung durch	Aktion bei erkanntem Fehler
Geräteparametrierung	Absicherung der Parametrierung durch Plausibilitätsprüfungen.	Durch Plausibilitätsprüfungen können Implausibilitäten in der Parametrierung erkannt werden. Eine erkannte Implausibilität wird durch ein "Fragezeichensymbol" indiziert. Näheres hierzu im Kapitel Parametrierung.
Qualität der Messkreise	Spezielle Diagnose- Algorithmen prüfen fortlaufend die Messdaten auf ihre Plausibilität.	Diagnose-Daten sind einsehbar unter [Service / Diagnosedaten]. Es handelt sich um geräteinterne Daten, die unserem Service-Team bei Problemen weiterhelfen können.
Qualität der Versorgungsspannung	Die Hardware-Schaltung stellt sicher, dass das Gerät nur dann betrieben werden kann, wenn die Hilfspannungsversorgung innerhalb des Arbeitsbereichs des Weitbereichsnetzteils liegt.	Das Gerät startet bei zu niedriger Versorgungsspannung nicht auf bzw. wird außer Betrieb gesetzt.
Einbrüche der Versorgungsspannung	Kurzzeitige Einbrüche der Versorgungsspannung werden erkannt und können in der Regel durch einen im Netzteil integrierten Zwischenspeicher überbrückt werden. Dieser Zwischenspeicher dient auch dazu, Schreibvorgänge von Daten abschließen zu können.	Das Modul zur Überwachung der Systemauslastung erkennt, wenn sich kurzzeitige Einbrüche der Versorgungsspannung wiederholen.
Interne Daten des Geräts (Speicherauslastung, interne Ressourcen, etc.)	Ein internes Modul überwacht die Systemauslastung.	Das Modul zur Überwachung der Systemauslastung löst bei einem schwerwiegenden Fehler einen Neustart des Geräts aus. Bei geringfügigen Fehlern wechselt die System-LED auf rot/ grün blinkend (Details siehe <i>Troubleshooting Guide</i>). Das Ereignis wird als Systemmeldung aufgezeichnet.
Batteriezustand	Der Ladezustand der Pufferbatterie wird geräteintern überwacht.	Bei erschöpfter Batterie wechselt die System-LED auf rot/ grün blinkend (Details siehe <i>Troubleshooting Guide</i>).

Selbstüberwachung im Gerät Überwachung von... Überwachung durch... Aktion bei erkanntem Fehler... Hinweis: Die Batterie dient der Pufferung der Uhrzeit (Echtzeituhr). Ein Ausfall der Batterie hat keine Auswirkungen auf die Gerätefunktionalität außer auf die Pufferung der Uhrzeit im spannungslosen Zustand des Geräts. Status der Geräte-Das projektierte und aktivierte Unter <Betrieb/ SCADA-Modul überwacht die Zustandsanzeige/ Leittechnik> Kommunikation (SCADA) Verbindung zur Leittechnik. können Sie überprüfen, ob eine aktive Verbindung zur Leittechnik besteht. Sie können diesen Status auf eine LED und/ oder einen digitalen Ausgang legen, um diesen Zustand zu überwachen. Details zum Status der GOOSE-Verbindung

siehe Kapitel IEC 61850.

10.1 Gerätestart

Das Schutzgerät führt in folgenden Situationen einen Neustart durch:

- Es wird mit der Versorgungsspannung verbunden,
- Es wird ein gezielter Neustart durch den Benutzer durchgeführt,
- es wird auf die Werkseinstellungen zurückgesetzt,
- die interne Selbstüberwachung des Geräts erkennt einen schwerwiegenden Fehler.

Jeder Gerätestart des MCDLV4 erscheint als neue Meldung der Selbstüberwachung, →10.2 Meldungen der Selbstüberwachung. Zum Beispiel:

Abb. 182: Beispiel einer Gerätestart-Meldung.

Der Grund des Gerätestarts erscheint als "Wert". Der Wert "1" im abgebildeten Beispiel bedeutet einen normalen Startvorgang. Die nachfolgende Tabelle führt alle möglichen Werte auf.

Der Grund des Gerätestarts wird außerdem auch im Ereignisrekorder aufgezeichnet (Ereignis: Sys.Neustart).

Fehlercodes für Neustart 1. **Normaler Startvorgang** Neustart nach vorherigem sauberen Ausschalten der Versorgungsspannung. 2. Neustart durch den Bediener Bediener-Reset über die Bedieneinheit (HMI) oder via Smart view-Menü. 3. **Neustart durch Super Reset** Neustart durch Rücksetzen des Geräts in die Werkseinstellung. 4. -- (nicht mehr verwendet) 5. -- (nicht mehr verwendet) 6. Unbekannte Fehlerquelle

Fehlerc	odes für Neustart
	Neustart durch unbekannte Fehlerquelle.
7 .	Erzwungener Neustart (ausgelöst durch den Hauptprozessor)
	Durch den Hauptprozessor wurden ungültige Zustände oder Daten erkannt.
8.	Zeitüberschreitung im Schutzumlauf
	Die zyklische Abarbeitung der Schutzfunktionen wurde unerwartet unterbrochen.
9.	Erzwungener Neustart (ausgelöst durch den Signalprozessor)
	Durch den Signalprozessor wurden ungültige Zustände oder Daten erkannt.
10.	Zeitüberschreitung in der Messwertverarbeitung
	Zyklische Abarbeitung der Messwertverarbeitung wurde unerwartet unterbrochen.
11.	Einbruch der Versorgungsspannung
	Neustart nach kurzzeitigem Versorgungsspannungseinbruch oder -ausfall.
12.	Unzulässiger Speicherzugriff
	Neustart nach unzulässigem Speicherzugriff.

10.2 Meldungen der Selbstüberwachung

Über das Menu [Betrieb / Selbstüberwachung / Meldungen] kann auf die Meldungen der Selbstüberwachung zugegriffen werden. Es ist insbesondere ratsam, hier nachzuschauen, falls es irgendwelche Probleme geben sollte, die in direktem Zusammenhang mit der Funktionalität des MCDLV4 stehen.

Die Selbstüberwachung sammelt sicherheitsrelevante Meldungen (z. B. Eingabe eines falschen Passwortes), außerdem bestimmte MCDLV4-interne Statusmeldungen, Warnungen und Fehlermeldungen.

Alle Meldungen, die unter [Meldungen] möglicherweise erscheinen können, werden detailliert in einem separaten Dokument beschrieben, dem "HighPROTEC Troubleshooting Guide" (HPT-3.10-DE-TSG).

Wenn man direkt an der Bedieneinheit (HMI) des MCDLV4 arbeitet, gibt es natürlich Einschränkungen bezüglich dessen, was auf das Display "passt"; daher zeigt die Meldungsliste nur einen kurzen Eintrag für jede Meldung an. Man kann eine Meldung (über die Softkeys "▲"/Auf und "▼"/Ab) anwählen und dann mit dem Softkey "▶"/Enter eine Detailanzeige aufrufen. Dort gibt es dann auch einen Softkey "ד, um diese Meldung plus allen älteren zu löschen.

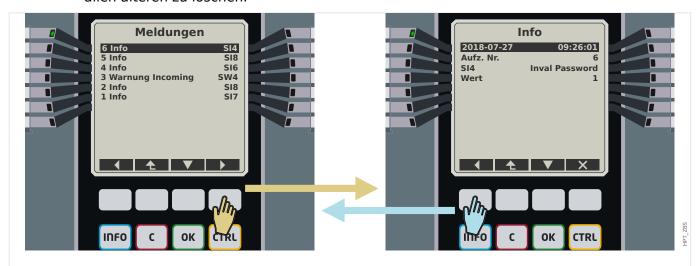


Abb. 183: Beispielanzeige der Meldungen der Selbstüberwachung.

Alle Meldungen werden mit einer ID angezeigt, z.B. "**\$18** Device Restart", oder "**\$14** Invalid Password"). Die ID erleichtert es, die Meldung im *Troubleshooting Guide* nachzuschlagen. Die ID beginnt immer mit einem "**\$**", dann kommt entweder ein "**I**" (für "Information"), ein "**W**" (für "Warnung"), oder ein "**E**" (für "Fehler (*Error*)").

Faustregel:

- **E** Fehler zeigen ein schwerwiegendes Problem an. Es ist empfohlen, die Meldung im *Troubleshooting Guide* nachzuschlagen.
- W Warnungen sollten vom Anwender geprüft werden. Möglicherweise handelt es sich um ein Problem, das man beheben sollte, es kann sich aber auch um etwas handeln, dass die jeweilige konkrete Anwendung nicht beeinflusst. (Ein Beispiel wäre die in der Abbildung gezeigte Meldung "SW4 Time Sync", die eine (zumindest zeitweise) Unterbrechung der Zeitsynchronisierung anzeigt. In den meisten Industrieanwendungen wird eine sauber synchronisierte Systemzeit erforderlich sein, sodass man sich um diese Meldung kümmern sollte. Allerdings erscheint diese Meldung auch in Fällen, bei denen der Anwender absichtlich gar keine Synchronisierung vorgesehen hat.

• I – Informationen können hilfreich sein bei der Analyse eines Problems, im Allgemeinen haben sie aber tatsächlich nur rein informativen Charakter, d. h. beeinflussen nicht den Betrieb des MCDLV4.

Es ist natürlich sehr viel übersichtlicher, sich die Meldungen über Smart view anzeigen zu lassen (siehe nachfolgendes Beispielfenster), anstatt an der Bedieneinheit: Alle Meldungen werden als Tabelle in einem Fenster aufgeführt. Dieses hat am oberen Rande Schaltflächen wirden man die Liste auf bestimmte Meldungsarten beschränken kann. Das heißt zum Beispiel, man kann alle "Informationen" ausblenden und sich nur "Warnungen" und "Fehler" anzeigen lassen.

Es gibt daneben auch eine Schaltfläche X mit der gleichen Funktion wie das "X" an der Bedieneinheit: Man löscht damit die aktuell ausgewählte Meldung mitsamt allen älteren.

Man beachte, dass es grundsätzlich nicht möglich ist – weder an der Bedieneinheit noch mit *Smart view* –, sich nur eine einzelne Meldung zum Löschen herauszusuchen. Das Löschen von Meldungen entfernt immer alle Meldungen mit einem Zeitstempel bis einschließlich zur aktuell ausgewählten Meldung.

10.3 Syslog

Es besteht die Möglichkeit, jede neue Meldung der Selbstüberwachung (⇔10.2 Meldungen der Selbstüberwachung) automatisch auf einen speziellen Server-Computer übertragen zu lassen. Dies ermöglicht ein zentrales Logging-System, das die geräteinternen Meldungen aller HighPROTEC-Geräte im Netzwerk registriert. Es muss also nicht für jedes Gerät eine eigene *Smart view*-Verbindung aufgebaut werden, um die Meldungen einzusehen.

Die Übermittlung basiert auf dem sogenannten **Syslog**-Kommunikationsprotokoll. Es handelt sich hierbei um ein vergleichsweise einfaches UDP/IP-basiertes Netzwerkprotokoll, das standardmäßig Textnachrichten von maximal 1024 Bytes Länge an den UDP-Port 514 überträgt. (Die Portnummer ist auf dem MCDLV4 konfigurierbar.)

Auf dem empfangenden Server-Computer muss entsprechend ein *Syslog-Daemon* laufen. Natürlich hängt die verfügbare Software zum Sichten der Meldungen von der Installation dieses Computers ab.

Das Syslog-Modul ist auf dem MCDLV4 standardmäßig inaktiv. Wenn es genutzt werden soll, muss zunächst das Modul aktiviert werden:

• [Projektierung / Projektierte Elemente] »Syslog . Modus« = "Aktiv"

Anschließend muss die Syslog-Übertragung eingeschaltet werden:

• [Geräteparameter / Security / Syslog] »Funktion« = "Aktiv".

Außerdem müssen die IP(v4)-Adresse und Portnummer des Server-Computers angegeben werden, damit das MCDLV4 "weiß", wohin die Meldungen zu senden sind:

- [Geräteparameter / Security / Syslog] »IP Port-Nummer« muss auf die korrekte Portnummer eingestellt werden.
 - Der Vorgabewert 514 kann beibehalten werden, wenn der Server-Computer auf dem Standard-Port empfängt.
- [Geräteparameter / Security / Syslog] »IP-Adresse, Teil 1« ... »IP-Adresse, Teil 4« Diese vier Parameter definieren die IP-Adresse des Server-Computers, d. h. jeder der vier Werte ist eine ganze Zahl von 0 bis 255.

10.4 Deaktiviertes Gerät "Device Stopped"

Befindet sich das Schutzgerät in einem ungültigen Zustand, der auch durch den dreimaligen automatisch durchgeführten Neustart des Geräts nicht beseitigt werden kann, so wird das Gerät automatisch deaktiviert.

In diesem Zustand ist die System-LED rot leuchtend oder rot blinkend. Im Display des Geräts wird "Device Stopped" angezeigt, gefolgt von einer 6-stelligen Fehlernummer, z.B. E01487.

Es sind ggf. noch Fehlerinformationen intern im Gerät gespeichert, die nur für das Service-Personal einsehbar sind. Diese ermöglichen dem Service-Personal erweiterte Diagnosemöglichkeiten.

HINWEIS!

Bitte wenden Sie sich in einem solchen Fall an unseren Support und teilen Sie ihm diese Fehlernummer mit.

Für weitere Hinweise zur Behandlung von Fehlern schlagen Sie bitte im separaten Dokument *Troubleshooting Guide* nach.

11 Inbetriebnahme

Vor der Arbeit an der geöffneten Schaltanlage ist unbedingt sicherzustellen, dass zuerst die gesamte Anlage spannungsfrei geschaltet wird, und die folgenden 5 Sicherheitsregeln stets eingehalten werden:

GEFAHR!

Vor Beginn jeder Arbeit:

- Freischalten
- Gegen Wiedereinschalten sichern
- · Spannungsfreiheit feststellen
- Erden und Kurzschließen
- · Benachbarte, unter Spannung stehende Teile abdecken oder abschranken

GEFAHR!

Während des Betriebs darf niemals der Sekundärkreis eines Stromwandlers geöffnet werden. Die dabei entstehenden Hochspannungen sind lebensgefährlich.

WARNUNG!

Auch bei ausgeschalteter Hilfsspannung können an den Geräteanschlüssen gefährliche Spannungen auftreten.

Alle nationalen und internationalen vor Ort gültigen allgemeinen Errichtungs- und Sicherheitsvorschriften für das Arbeiten an Starkstromanlagen sind stets zu beachten (z. B. VDE, EN, DIN, IEC)

WARNUNG!

Vor der ersten Spannungsaufschaltung ist Folgendes sicherzustellen:

- Korrekte Erdung des Gerätes
- Prüfung aller Meldekreise
- Prüfung aller Steuerkreise
- Korrekte Wandlerverdrahtung
- Die richtige Dimensionierung der Stromwandler
- Die richtige Bebürdung der Stromwandler
- Korrekte Auslegung der Absicherung der Wandler
- Funktion der Wandlersicherungen
- Die Betriebsbedingungen müssen den Technischen Daten entsprechen
- Korrekte Verdrahtung aller digitalen Eingänge
- · Polarität und Betrag der Versorgungsspannung
- Korrekte Verdrahtung der analogen Ein- und Ausgänge
- Korrekte Verdrahtung der Wirkschnittstelle (Lichtwellenleiter) für eine sichere Schutzkommunikation
- Korrekte Konfiguration aller Einstellungen gemäß dem zuvor auszuarbeitenden Schutzkonzept.

HINWEIS!

Die zulässigen Abweichungen der Messwerte und Geräteeinstellungen ergeben sich aus den Technischen Daten/Toleranzen.

11.1 Inbetriebnahme - Schutzprüfung

WARNUNG!

Die Inbetriebnahme/Schutzprüfung darf nur von entsprechend autorisiertem und qualifiziertem Fachpersonal durchgeführt werden. Vor der Inbetriebnahme muss die Dokumentation gelesen und verstanden werden.

WARNUNG!

Kontrollieren mit jeder Schutzfunktionsprüfung:

- Erfolgen alle Meldungen ordnungsgemäß?
- Arbeiten alle dauerhaften, parametrierten Blockadefunktionen ordnungsgemäß?
- Arbeiten alle temporären (über DI) parametrierten Blockadefunktionen ordnungsgemäß?
- Für die Kontrolle der LEDs und Relaisfunktionen sind diese mit entsprechenden Alarm und Auslösefunktionen der jeweiligen Schutzfunktionen/Stufe zu belegen und in der Praxis zu überprüfen.

WARNUNG!

Kontrolle aller temporären Blockaden (über digitale Eingänge):

Um Überfunktionen zu vermeiden, sind alle Blockaden, die im Zusammenhang mit einer Auslösung/Nichtauslösung von Schutzfunktion stehen, durch einen Test zu überprüfen. Da diese Tests sehr komplex sein können, sollten diese nur von denjenigen Personen durchgeführt werden, die das Schutzkonzept aufgestellt haben.

VORSICHT!

Kontrolle aller generellen Auslöseblockierungen:

Alle generellen Auslöseblockierungen sind durch einen Test zu überprüfen.

HINWEIS!

Alle in der Einstellliste dokumentierten Auslösezeiten und Werte müssen vor Inbetriebnahme des Schutzgeräts durch eine Sekundärprüfung bestätigt werden.

HINWEIS!

Sollten Funktionen, Parameter, Ein- oder Ausgänge beschrieben werden, die mit dem vorliegenden Gerät nicht übereinstimmen, so sind diese als gegenstandslos zu betrachten.

VORSICHT!

Es gibt in allen Ländern spezifische Richtlinien für regelmäßig durchzuführende Funktions- und Schutzprüfungen.

Unabhängig von den in ⇔12.1 Regelmäßig durchzuführende Funktionsprüfungen aufgeführten Prüfungen sind die jeweils gültigen Richtlinien und Vorschriften einzuhalten.

11.2 Hinweise zur Außerbetriebnahme - Ausbau des Relais

WARNUNG!

Warnung! Durch das Ausbauen des Relais ist dessen gesamte Schutzfunktionalität nicht mehr gegeben. Stellen Sie sicher, dass es einen Reserveschutz gibt. Wenn Sie sich nicht über die Konsequenzen des Relaisausbaus bewusst sind - Stopp! Beginnen Sie nicht mit der Arbeit.

WARNUNG!

Informieren Sie vor Beginn der Arbeiten die Leittechnik.

Schalten Sie die Versorgungsspannung aus.

Stellen Sie sicher, dass keine personengefährdenden Spannungen im Schaltschrank anliegen.

Ziehen Sie die Stecker von der Geräterückseite ab. Ziehen Sie keinesfalls an den Kabeln. Verwenden Sie ggf. ein Hilfsmittel wie einen Schraubendreher.

Befestigen Sie die Kabel und Stecker im Schaltschrank mit Kabelbindern, sodass sichergestellt ist, dass es nicht versehentlich zu ungewollten elektrischen Verbindungen kommen kann.

Halten Sie das Gerät von vorne fest während Sie die Befestigungsschrauben des Geräts lösen.

Entnehmen Sie das Gerät vorsichtig aus dem Schaltschrank.

Falls kein neues Gerät eingebaut wird decken (verschließen) Sie die Türöffnung ab.

Schließen Sie den Schaltschrank.

11.3 Service und Inbetriebnahmeunterstützung

Im Menü Service unterstützen zahlreiche Funktionen die Wartung und Inbetriebnahme des Schutzgerätes.

11.3.1 Allgemein

Im Menü [Service / Allgemein] kann ein Neustart des Schutzgerätes veranlasst werden.

Die »System«-LED leuchtet konstant grün, wenn – nach der Startphase, ⇔13.1.25 Bootphase – die Schutzfunktionen arbeiten. In jedem anderen Fall schlagen Sie bitte im Troubleshooting Guide nach.

11.3.2 Lichtbogen-Reduktions-Modus

Prinzip - Generelle Anwendung

HINWEIS!

Der Lichtbogen-Reduktions-Modus kann eingesetzt werden, um die von Lichtbögen freigesetzte Energie bei Auftritt eines Fehlers zu verringern.

GEFAHR!

Versuchen Sie nicht Geräte zu installieren oder zu warten, während diese in Betrieb sind. Der Kontakt mit spannungsführenden Teilen kann zu schweren Verletzungen oder zum Tod führen. Vergewissern Sie sich, dass keine Spannung anliegt, bevor Sie Schaltschränke öffnen.

GEFAHR!

Bei der Durchführung von Wartungsarbeiten an einem Gerät MÜSSEN spezielle Schutzkleidung- und ausrüstung verwendet sowie Industriestandardverfahren beachtet werden. Nichteinhaltung kann zu schweren Verletzungen oder zum Tod führen.

Der Lichtbogen-Reduktions-Modus kann die Sicherheit für Wartungspersonal erhöhen, indem er die Fehler-Abschaltzeit verkürzt und somit freigesetzte Energie durch Lichtbögen infolge eines Fehlers verringert. Der Modus erlaubt es dem Anwender, für die Dauer von Wartungsarbeiten, zu sensibleren Schutzeinstellungen zu wechseln. Die Umschaltung erfolgt via Bedienung am Gerät (HMI), über Kommunikation oder über Ansteuerung eines digitalen Eingangs. Die sensibleren Schutzeinstellungen erhöhen die Sicherheit für das Wartungspersonal und tragen dazu bei, die Verletzungsgefahr zu verringern.

Der Status des Lichtbogen-Reduktions-Modus (aktiv/inaktiv) wird dabei spannungsausfallsicher im Gerät gespeichert.

HINWEIS!

Manuelle Aktivierung ist nur am Gerät (HMI) möglich (nicht via Smart view).

Der Lichtbogen-Reduktions-Modus kann folgendermaßen aktiviert werden:

- manuell nur am Gerät (HMI);
- · via Kommunikation; oder
- via digitalem Eingang.

HINWEIS!

Die Umschaltung zu einem anderen Modus ist nur dann möglich, wenn kein Aktivierungs-Signal aktiv ist (z.B. wenn das Gerät im Betriebsmodus "Aktivierung über Eingang" ist und der rangierte digitale Eingang "Wahr" ist, kann der Benutzer nicht in den Betriebsmodus "Manuelle Aktivierung" wechseln.

Vor der Anwendung

GEFAHR!

Die sensibleren Einstellwerte des Lichtbogen-Reduktions-Modus müssen vom Anwender berechnet und im Gerät eingestellt werden, da diese nicht ab Werk voreingestellt sind.

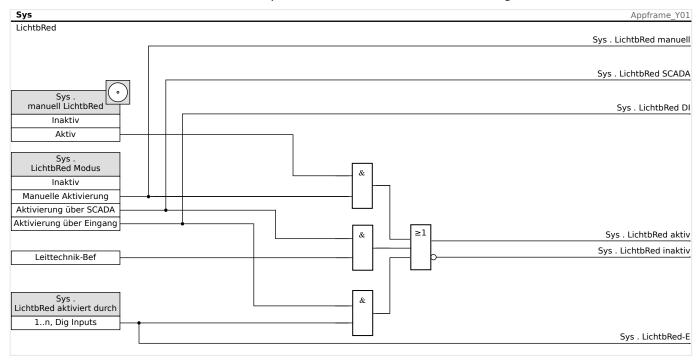
Wenn der Lichtbogen-Reduktions-Modus aktiv ist und durch einen Fehler-Strom getriggert wird, muss die Öffnungszeit des angeschlossenen Leistungsschalters ausreichend gering sein.

Die Einstellwerte können als Parametersatz oder als adaptive Parameter eingestellt werden (vgl. ⇔2.3 Module, Parameter, Meldungen, Werte).

Verwendung des Lichtbogen-Reduktions-Modus

Die Einstellung dieser Werte erfolgt als Parametersatz oder über adaptive Parameter (vgl. →2.3 Module, Parameter, Meldungen, Werte).

Der Lichtbogen-Reduktions-Modus verfügt über zwei verschiedene Ausgangssignale:»Sys . LichtbRed aktiv« and »Sys . LichtbRed inaktiv«.


Die Meldung »Sys . LichtbRed aktiv« sollte verwendet werden, um die sensibleren Parameter zu aktivieren, indem:

- zu dem entsprechenden Parametersatz gewechselt wird;
- die entsprechenden adaptiven Parameter aktiviert werden; und/oder
- durch Blockade oder Aktivierung von speziellen Funktionen.

Die Meldung »Sys . LichtbRed inaktiv« sollte verwendet werden, um:

 zum standardmäßigen Parametersatz zurückzuschalten wenn der Lichtbogen-Reduktions-Modus nicht mehr verwendet werden soll.

Für schnellen Zugriff kann der Lichtbogen-Reduktions-Modus einfach durch Betätigung der Taste »LichtbRed« vom Hauptbildschirm des Gerätes (HMI) aufgerufen werden.

11.3.3 Sperren der Ausgangsrelais

HINWEIS!

Siehe ⇔3.2.2 Übersicht über die Einbauplätze / Baugruppen für Informationen über prinzipiell verfügbare Ausgangsrelais. Die Parameter sowie ihre Werkseinstellungen und Einstellungsbereiche sind dem Referenzhandbuch zu entnehmen.

Allgemeine Bedienung

Innerhalb des Menüs [Service / Test - Schutz gesp / SPERREN / K Slot Xx] können komplette Baugruppen von Ausgangsrelais gesperrt (abgeschaltet) werden. Dadurch werden Schalttätigkeiten der Ausgangsrelais verhindert. Durch Sperren der Ausgangsrelais können Wartungsarbeiten durchgeführt werden, ohne dass durch unbeabsichtigte Schalthandlungen komplette Prozesse spannungslos geschaltet werden.

GEFAHR!

Der Betreiber muss sicherstellen, dass nach Abschluss der Wartungsarbeiten das Sperren der Ausgangsrelais wieder aufgehoben wird. Ansonsten kann das Schutzgerät den vorgesehenen Schutz NICHT erfüllen.

HINWEIS!

Die Ausgangskontakte des "Zone Interlockings" und der Selbstüberwachungskontakt können nicht gesperrt werden.

Für Inbetriebnahmen- oder Wartungsarbeiten können alle Ausgangsrelais einer Baugruppe gesperrt werden. Dies ist im Menü [Service / Test - Schutz gesp / SPERREN] möglich und kann entweder

- permanent (dauerhaft) oder
- zeitlich begrenzt mittels eines Timers erfolgen.

In der Einstellung »permanent« verbleiben die Ausgangsrelais im erzwungenen Zustand.

Bei Verwendung eines Timers verbleiben die Ausgangskontakte gesperrt, bis der Timer abgelaufen ist. Danach erhalten die Ausgangsrelais wieder ihre normale Funktion.

HINWEIS!

Ein Ausgangsrelais wird NICHT gesperrt solange:

- es in Selbsthaltung ist (und noch nicht zurückgesetzt wurde)
- eine laufende (t-Halte) Mindest-Haltezeit noch nicht abgelaufen ist
- das Sperren nicht auf AKTIV gesetzt wurde
- kein Direktkommando »Sperren« erteilt wurde.

HINWEIS!

Ein Ausgangsrelais wird gesperrt wenn:

- es nicht in Selbsthaltung ist
- es keine laufende (t-Halte) Verzögerungszeit gibt (Haltezeit eines Relais-Ausgangskontaktes)
- die Sperrung auf AKTIV gesetzt wurde und ein Direktkommando »Sperrung« erteilt wurde.

11.3.4 Erzwungener Schaltzustand der Ausgangsrelais

HINWEIS!

Siehe ⇔3.2.2 Übersicht über die Einbauplätze / Baugruppen für Informationen über prinzipiell verfügbare Ausgangsrelais. Die Parameter sowie ihre Werkseinstellungen und Einstellungsbereiche sind dem Referenzhandbuch zu entnehmen.

Allgemeine Bedienung

GEFAHR!

Der Betreiber muss sicherstellen, dass nach Abschluss der Wartungsarbeiten der erzwungene Schaltzustand der Ausgangsrelais wieder aufgehoben wird. Ansonsten kann das Schutzgerät den vorgesehenen Schutz NICHT erfüllen.

Für Inbetriebnahme- oder Wartungsarbeiten können die Ausgangsrelais in einen erzwungenen Schaltzustand gebracht werden. Dies ist im folgendem Menü [Service / Test - Schutz gesp / Erzwinge K / K Slot Xx] möglich und kann entweder

- permanent (dauerhaft) oder
- zeitlich begrenzt mittels eines Timers erfolgen.

Bei Verwendung eines Timers verbleiben die Ausgangskontakte im erzwungenen Zustand, bis der Timer abgelaufen ist. Danach wechselt das Relais wieder in die normale Betriebsart.

Bei der Einstellung »dauerhaft« verbleiben die Ausgangsrelais im erzwungenen Zustand.

Grundsätzlich sind zwei Einstellungen möglich:

- Schaltzustand eines einzelnen Ausgangsrelais erzwingen »Erzwinge Kx«; und
- Schaltzustand einer Gruppe von Ausgangsrelais erzwingen »Erzwinge alle Ausg«.

Das Erzwingen des Schaltzustandes einer kompletten Baugruppe hat Vorrang vor dem Erzwingen des Schaltzustandes eines einzelnen Ausgangsrelais!

HINWEIS!

Ein Ausgangsrelais wird einen »*Erzwingen*« Befehl NICHT befolgen, solange dieser Kontakt gesperrt ist.

HINWEIS!

Ein Ausgangsrelais wird einen »Erzwingen« Befehl befolgen:

- wenn es nicht »Gesperrt« ist und
- wenn ein Direkt-Kommando auf das/die Relais gelegt ist

Bitte beachten Sie, dass ein »Erzwingen« -Befehl an eine Gruppe von Ausgangsrelais (der gleichen Baugruppe) Vorrang hat vor einem »Erzwingen« -Befehl an nur einen einzelnen Ausgangsrelais.

11.3.5 Erzwingen eines Auslöse-Befehls

Für Inbetriebnahme- oder Testzwecke kann der Benutzer einen Auslöse-Befehl manuell erzwingen mittels [Service / Test - Schutz gesp / Erzwinge SG] . »Erzwinge Ausl.Bef.«.

HINWEIS!

Durch Erzwingen eines Auslöse-Befehls wird ein angeschlossener Leistungsschalter geöffnet. Bitte stellen Sie vor der Verwendung sicher, dass dies akzeptabel ist.

11.3.6 Abfallen des Selbstüberwachungskontaktes erzwingen

Für Inbetriebnahme- oder Testzwecke kann der Benutzer das Abfallen des Selbstüberwachungskontakes (SC) für eine Dauer von 5 Sekunden erzwingen mittels [Service / Test - Schutz gesp / Erzwinge SC] . »Erzwinge SC«.

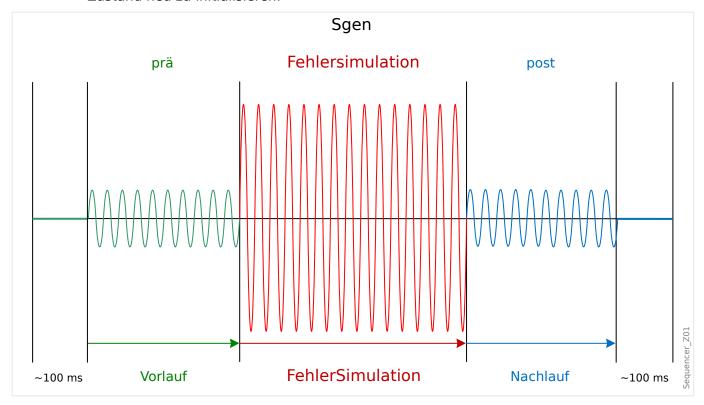
Eine Ausführung des Kommandos führt außerdem zu einem Eintrag in den Meldungen der Selbstüberwachung unter [Betrieb / Selbstüberwachung / Meldungen].

HINWEIS!

Je nach lokalem Schutzkonzept kann ein Abfallen des Selbstüberwachungskontaktes zu anderen Nebeneffekten führen wie z.B. einer Auslösung des Reserveschutzes. Machen Sie sich daher vorab mit den Auswirkungen vertraut und stellen Sie sicher, dass diese akzeptabel sind.

11.3.7 Fehlersimulator*

* = Nicht in allen Geräten verfügbar.


Zur Inbetriebnahmeunterstützung und Fehleranalyse verfügt das Gerät über die Möglichkeit, Messgrößen bzw. Messwerte zu simulieren.

Nachdem der Fehlersimulator über die Einstellung [Projektierung / Projektierte Elemente] »Sgen . Modus« = "verwenden" aktiviert wurde, befindet sich diese Funktionalität im Menüzweig [Service / Test - Schutz gesp / Sgen].

Der Simulationszyklus besteht aus drei Sequenzen:

- Simulation vor dem Fehler (Vorlauf),
- · Simulation des Fehlers.
- Simulation nach dem Fehler (Nachlauf).

Außerdem werden sowohl vor der Vorlaufsequenz und nach der Nachlaufsequenz für die Dauer von jeweils circa 100 ms alle Schutzfunktionen deaktiviert. Dies ist erforderlich, um die Schutzmodule mitsamt zugehörigen Filtern rückzusetzen und auf einen sauberen Zustand neu zu initialisieren.

Die Zyklen werden durch den Störschreiber und Ereignisrekorder wie folgt aufgezeichnet:

- **0** Normalbetrieb (ohne Fehlersimulator)
- 1 Vorlauf
- 2 Fehlersimulation
- 3 Nachlauf
- 4 Rücksetz- / Initialisierungssequenz

Im Menü [Service / Test - Schutz gesp / Sgen / Einstellungen / Zeiten] kann die Dauer der einzelnen Simulationssequenzen eingestellt werden. Ebenso können für jede simulierte Größe (Spannung und Strom) die Amplituden und Winkel für jede Phase getrennt eingestellt werden (inkl. Erdstrom).

HINWEIS!

Eine Simulation wird abgebrochen, wenn einer der Phasenströme $0.1 \cdot$ In übersteigt.

Eine neue Simulation kann erst fünf Sekunden, nachdem alle Ströme unter $0,1\cdot$ In gefallen sind, gestartet werden.

Außerdem können im Menü [Service / Test - Schutz gesp / Sgen / Ablauf] den Parametern »ExBlo1«, ExBlo2 Signale zugeordnet werden, die den Start des Fehlersimulators blockieren. Es kann zum Beispiel ratsam sein, aus Sicherheitsgründen den Fehlersimulator zu blockieren, wenn der Leistungsschalter geschlossen ist.

Weiterhin besteht die Möglichkeit, ein Signal auf den Parameter »Ex ErzwingeNachl« zu rangieren. Dann kann über dieses Signal die aktuelle Sequenz des Fehlersimulators (Vorlaufoder Fehlersequenz) abgebrochen und ein sofortiger Übergang in die Nachlaufsequenz erzwungen werden. Typischer Anwendungsfall ist, wenn geprüft werden soll, ob das Gerät korrekt einen Auslöse-Entscheid generiert und man nicht die gesamte eingestellte Zeitdauer für die Fehlersequenz abwarten möchte. Dann kann man das Aus-Signal auf »Ex ErzwingeNachl« rangieren, sodass unmittelbar nach korrekt generiertem Aus die Fehlersimulationssequenz beendet wird.

GEFAHR!

Im Simulationsmodus sind alle Schutzfunktionen des Gerätes für die Dauer der Simulation außer Kraft gesetzt!

Bei Verwendung des Simulationsmodus während des Betriebs der Anlage muss sichergestellt sein, dass im Fehlerfall ein Backup-Schutz die Schutzfunktionen des Gerätes übernimmt.

HINWEIS!

Während einer Fehlersimulation werden alle Energiezähler angehalten.

HINWEIS!

Die Simulationsspannungen sind stets Strangspannungen, unabhängig von der Anschlussart der Netzspannungswandler (Stern, Dreieck oder V-Schaltung).

HINWEIS!

Systembedingt ist die Frequenz des Simulationsmoduls um 0,16% größer als die eingestellte Nennfrequenz.

"Kalte" Simulation

Simulation ohne Schalterauslösung:

Auslösebefehle an den Leistungsschalter (»AuslBef«) werden blockiert. Die Schutzfunktionen generieren möglicherweise eine Auslösung, aber es wird kein Auslösebefehl generiert.

• Nehmen Sie folgende Einstellung vor: [Service / Test - Schutz gesp / Sgen / Ablauf] »Aus/Bef Modus« = "Kein Aus/Bef"

"Heiße" Simulation

Simulation mit Schalterauslösung:

Nehmen Sie folgende Einstellung vor: [Service / Test - Schutz gesp / Sgen / Ablauf]
 »Aus/Bef Modus« = "Mit Aus/Bef"

Start/Stopp-Optionen

Manueller Start, kein Stopp:

Kompletter Simulationsablauf: Vorlauf, Fehlersimulation, Nachlauf.

- Nehmen Sie folgende Einstellung vor: [Service / Test Schutz gesp / Sgen / Ablauf]
 »Ex ErzwingeNachl« = "Keine Rangierung"
- Anschließend klicken Sie folgendes Direktkommando an: [Service / Test Schutz gesp / Sgen / Ablauf] »Start Simulation«.

Manueller Start, Stopp durch externes Signal:

Nachlauf erzwingen: Sobald das externe Signal anliegt, wechselt die Fehlersimulation in den Nachlauf-Modus.

- Weisen Sie dem Parameter [Service / Test Schutz gesp / Sgen / Ablauf] »Ex ErzwingeNachl« das gewünschte Signal zu.
- Anschließend klicken Sie folgendes Direktkommando an: [Service / Test Schutz gesp / Sgen / Ablauf] »Start Simulation«.

Manueller Start, manueller Stopp:

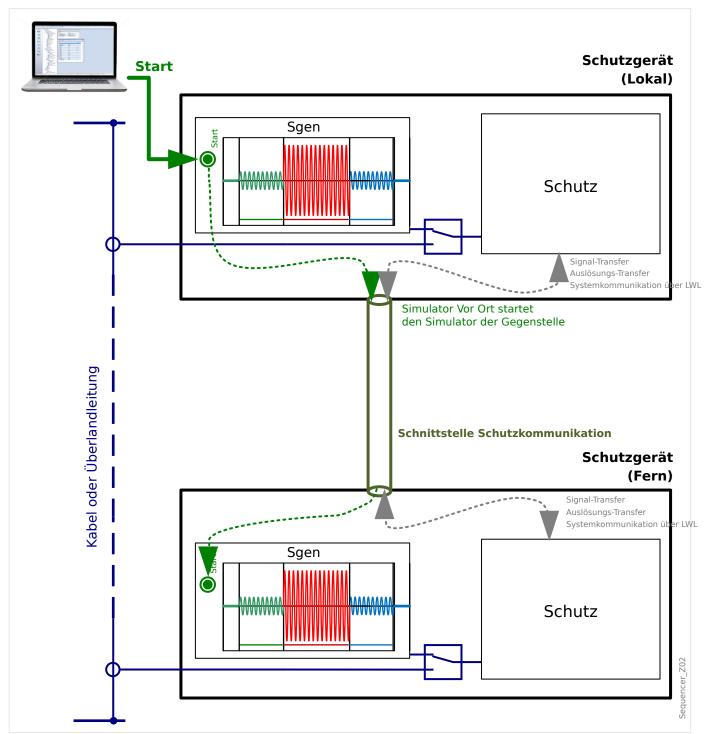
Sobald der Stoppbefehl anliegt, wechselt das Gerät in die normale Betriebsart (Schutzbetrieb).

- · Start: wie oben beschrieben.
- Stop: Klicken Sie folgendes Direktkommando an: [Service / Test Schutz gesp / Sgen / Ablauf] »Stopp Simulation«.

Start durch externes Signal:

Sobald das externe Signal anliegt, startet der Fehlersimulator (sofern dieser nicht blockiert wird).

(Außerdem, wie schon weiter oben erwähnt, →Kapitel 11.3.7, setzt die Verwendung des Fehlersimulators ganz allgemein voraus, dass keiner der Phasenströme 0,1 · In übersteigt.)


11 Inbetriebnahme

11.3.7 Fehlersimulator*

• Weisen Sie dem Parameter [Service / Test - Schutz gesp / Sgen / Ablauf] »Ex Start Simulation« das gewünschte Signal zu.

11.3.8 Besonderheiten beim Leitungsdifferentialschutz

Der Leitungsdifferentialschutz basiert auf zwei Schutzgeräten, die miteinander über einen speziellen Kommunikationskanal, die Wirkschnittstelle SchutzKom, in Verbindung stehen. Daher ist es möglich (und üblicherweise auch erwünscht), die Fehlersimulation auf beiden Geräten zugleich zu starten.

Das simultane Starten des Fehlersimulators berücksichtigt die Laufzeitverzögerungen der Schutzkommunikation, indem zuerst das Startsignal an die Gegenstelle gesandt wird und der lokale Fehlersimulator passend zeitverzögert gestartet wird.

Das gleiche Prinzip liegt vor, wenn ein Signal auf den Parameter »Ex ErzwingeNachl« rangiert wurde und dieses Signal während der Fehlersimulation aktiv wird: Sofern die Schutzkommunikation Aktiv ist, wird zuerst das "Erzwinge Nachlauf"-Signal an die

Gegenstelle übertragen, dann die passende Zeitverzögerung abgewartet, und erst dann bricht das lokale Gerät die Vorlauf- oder Fehlerphase ab und startet die Nachlaufphase.

HINWEIS!

Wenn die Schutzkommunikation Inaktiv ist (unabhängig von der Ursache wie z. B. unterbrochene LWL-Verbindung, schlechte Verbindungsqualität oder eine temporäre Blockade des SchutzKom-Moduls), dann wird grundsätzlich nur der lokale Fehlersimulator gestartet, d. h. es wird kein Startsignal an die Gegenstelle gesandt. (Somit entspricht das Verhalten des lokalen Schutzgerätes gerade demjenigen eines Einzelgerätes.)

Falls die Schutzkommunikation Inaktiv wird, während die Fehlersimulation läuft, laufen beide Fehlersimulatoren unabhängig voneinander weiter (d. h. ohne blockiert oder abgebrochen zu werden), wobei nur die jeweils lokalen Strommesswerte berücksichtigt werden (und die Strommesswerte der jeweiligen Gegenstelle als 0 A angenommen werden).

HINWEIS!

Wie zuvor schon erwähnt, wird eine Simulation abgebrochen, wenn einer der Phasenströme $0,1\cdot$ In übersteigt. Dieser Abbruch geschieht auf beiden Geräten unverzögert, also ohne Berücksichtigung von Signallaufzeiten. (Unter Umständen ergibt sich hierdurch für eine kurze Zeit ein falscher Differenzstromwert; da aber während der Rücksetzphase sowieso alle Schutzfunktionen für ca. 100 ms deaktiviert werden (siehe den Anfang von $\hookrightarrow 11.3.7$ Fehlersimulator*), besteht nicht die Gefahr eines falschen Auslöse-Entscheides.

12 Wartung und Instandhaltung

VORSICHT!

Es gibt in allen Ländern spezifische Richtlinien für regelmäßig durchzuführende Funktions- und Schutzprüfungen.

Unabhängig von den in ⇔12.1 Regelmäßig durchzuführende Funktionsprüfungen aufgeführten Prüfungen sind die jeweils gültigen Richtlinien und Vorschriften einzuhalten.

12.1 Regelmäßig durchzuführende Funktionsprüfungen

Im Rahmen der Wartung und Instandhaltung sind folgende Prüfungen der MCDLV4-Hardware durchzuführen.

Ausgangsrelais

Alle 1-4 Jahre, je nach Umgebungsbedingungen:

 Prüfen Sie die Ausgangsrelais mittels der Testmenüs [Service / Test - Schutz gesp / Erzwinge K] / [Service / Test - Schutz gesp / SPERREN], siehe →11.3 Service und Inbetriebnahmeunterstützung)

Digitale Eingänge

Alle 1-4 Jahre, je nach Umgebungsbedingungen:

• Beaufschlagen Sie die digitalen Eingänge mit Spannung. Kontrollieren Sie, ob die entsprechende Statusmeldung kommt.

Stromstecker und Strommesswerte

Alle 1-4 Jahre, je nach Umgebungsbedingungen:

• Beaufschlagen Sie die Strommesseingänge mit einem Prüfstrom und kontrollieren Sie die vom MCDLV4 angezeigten Messwerte

Spannungsstecker und Spannungsmesswerte

Alle 1-4 Jahre, je nach Umgebungsbedingungen:

• Beaufschlagen Sie die Spannungsmesseingänge mit einer Prüfspannung und kontrollieren Sie die vom MCDLV4 angezeigten Messwerte.

Kommunikation

Alle 1-4 Jahre für Geräte mit aktiver SCADA-Kommunikation:

• Prüfung der Kommunikationsverbindungen auf Funktionalität.

Batterie

Die Batterie hält in der Regel mindestens 10 Jahre. Wechsel durch SEG.

Hinweis: Die Batterie dient der Pufferung der Uhrzeit (Echtzeituhr). Ein Ausfall der Batterie hat keine Auswirkungen auf die Gerätefunktionalität außer auf die Pufferung der Uhrzeit im spannungslosen Zustand des Geräts.

 Das Gerät prüft den Batteriezustand im Rahmen der Selbstüberwachung, spezielle Prüfschritte sind daher nicht erforderlich. Bei erschöpfter Batterieladung blinkt die System-LED rot/grün, und ein Fehlercode wird generiert (siehe *Troubleshooting Guide*.)

Selbstüberwachungskontakt

Alle 1-4 Jahre, je nach Umgebungsbedingungen:

• Schalten Sie die Hilfsspannung des Geräts ab. Der Selbstüberwachungskontakt muss nun abfallen. Schalten Sie die Hilfsspannung wieder ein.

Mechanische Befestigung des Geräts in der Schaltschranktür

Bei jeder Wartung oder jährlich:

• Überprüfen Sie die Drehmomente entsprechend den Vorgaben des Installationskapitels (1,7 Nm [15 in·lb], →3.1 Maßzeichnungen).

Anschlussklemmen, Drehmomente

Bei jeder Wartung oder jährlich:

- Sichtkontrolle aller Klemmen und Anschlüsse.
- Überprüfen Sie die Drehmomente entsprechend den Vorgaben der Installationskapitel, in denen die Hardwarebaugruppen beschrieben werden (→3.2 MCDLV4 – Montage und Anschluss).

Schutzprüfung

Wir empfehlen generell im Turnus von 4 Jahren eine Schutzprüfung durchzuführen.
 Dieser Turnus kann auf 6 Jahre erhöht werden, wenn nach spätestens 3 Jahren eine Funktionskontrolle erfolgt.

13 Technische Daten, Spezifikationen, Toleranzen

13.1 Technische Daten

HINWEIS!

Es dürfen ausschließlich Kupferleiter verwendet werden, 75°C.

Leiterquerschnitt 2,5 mm² [AWG 14].

13.1.1 Klimatische Umgebungsbedingungen

Lagertemperatur:	-30°C to +70°C
Betriebstemperatur:	-20°C to +60°C
Zulässige Feuchte im Jahresmittel:	<75% rel. (an 56 Tagen bis zu 95% rel.)
Zulässige Höhe am Einsatzort:	<2000 m über NN
	Für 4000 m Höhe ist unter Umständen eine geänderte Klassifizierung der Betriebs- und Prüfspannungen erforderlich.

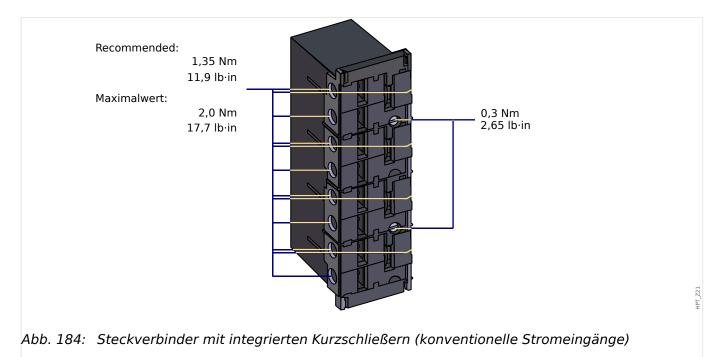
13.1.2 Verschmutzungsgrad und Schutzklasse

Verschmutzungsgrad:	2
Schutzklasse:	1

13.1.3 Schutzgrad EN 60529

Front bei Einsatz einer Dichtung	IP54
Front ohne Dichtung	IP50
Klemmenbereich	IP20

13.1.4 Stückprüfung


Isolationsprüfung nach IEC 60255-27	Alle Prüfungen gegen Erde und zu anderen Ein- und Ausgangskreisen
Hilfsspannungsversorgung, digitale Eingänge: Strommesseingänge, Melderelaisausgänge	2,5 kV (eff) / 50 Hz
Spannungsmesseingänge:	3,0 kV (eff) / 50 Hz

Alle drahtgebundenen Kommunikationsschnittstellen:	1,5 kVDC

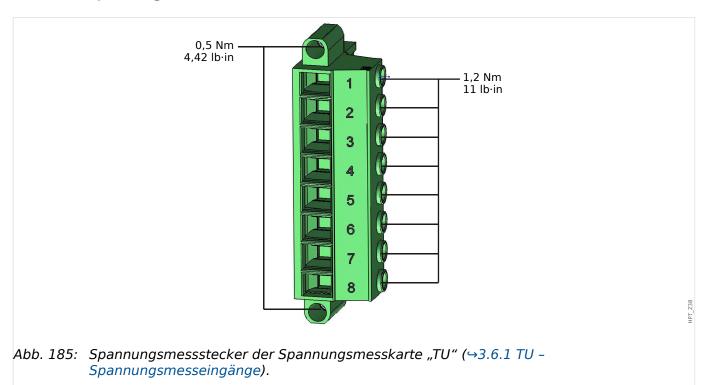
13.1.5 **Gehäuse**

Gehäuse B2: Höhe / Breite: (8 Tasten / Türeinbau)	183 mm / 212,7 mm
Gehäuse B2: Höhe / Breite: (8 Tasten / 19")	173 mm (4 HE) / 212,7 mm (42 TE)
Gehäusetiefe (inkl. Klemmen):	max. 209 mm – abhängig von der Gerätevariante
Material Gehäuse:	Aluminium-Stranggussprofile
Material Frontplatte:	Aluminium/Folienfront
Einbaulage:	waagerecht (±45° um die X-Achse sind zulässig)
Gewicht:	ca. 4,7 kg

13.1.6 Strommessung

Frequenzbereich:	50 Hz / 60 Hz ±10%
Klemmen:	Schraubklemmen mit integrierten Kurzschließern

Schrauben	M4, unverlierbar gemäß VDEW
Anschlussquerschnitt:	1 x oder 2 x 2,5 mm² (2 x AWG 14) mit Aderendhülse
	1 x oder 2 x 4,0 mm² (2 x AWG 12) mit Ringkabelschuh oder Kabelschuh
	1 x oder 2 x 6 mm² (2 x AWG 10) mit Ringkabelschuh oder Kabelschuh
	An den Stromsteckerblock dürfen wahlweise 1 oder 2 Kabel jeweils mit den Querschnitten 2,5 mm²; 4,0 mm²; 6 mm² [AWG 14,12,10] angeschlossen werden.


Phasenströme und Erdstrom Standard:	
Nennströme:	1 A / 5 A
Maximaler Messbereich:	Bis 40 x In (Phasenströme)
	Bis 25 x In (Erdstrom Standard)
Dauerbelastbarkeit:	4 x In/dauernd
Überstromfestigkeit:	30 x ln / 10 s
	100 x ln / 1 s
	250 x In / 10 ms (1 Halbwelle)
Leistungsaufnahme:	Phasenstromeingänge:
	Bei In = 1 A: S ≤ 25 mVA
	Bei In = 5 A: S ≤ 0,1 VA
	Erdstromeingang:
	Bei In = 1 A: S ≤ 25 mVA
	Bei In = 5 A: S ≤ 0,1 VA

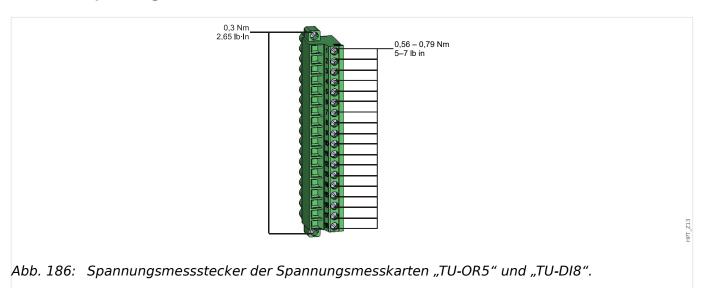
Erdstrom empfindlich:	
Nennströme:	1 A / 5 A
Maximaler Messbereich:	Bis 2.5 x In
Dauerbelastbarkeit:	2 x In/dauernd
Überstromfestigkeit:	10 x ln / 10 s
	25 x ln / 1 s
	100 x In / 10 ms (1 half-wave)

Bei 1 A: S = 550 mVA
Bei 0,1 A: S = 7 mVA
Bei 5 A: S = 870 mVA
Bei 0,5 A: S = 10 mVA

13.1.7 Leiter- und Verlagerungsspannungsmessung ("TU")

Spannungsmesskarte "TU"

Die folgenden Technischen Daten gelten für 8-polige (große) Spannungsmessstecker.


Nennspannungen (Un):	60 - 520 V (parametrierbar)
Maximaler Messbereich:	800 VAC
	(für UL: 600 VAC)
Thermische Dauerbelastbarkeit:	800 VAC
	(für UL: 600 VAC)
Leistungsaufnahme:	Bei Un = 100 V: S = 22 mVA
	Bei Un = 110 V: S = 25 mVA
	Bei Un = 230 V: S = 110 mVA

	Bei Un = 400 V: S = 330 mVA
Frequenzbereich:	50 Hz oder 60 Hz ±10%
Klemmen:	Schraubklemmen
Anschlussquerschnitt:	 Anschlussquerschnitt ohne Aderendhülse: min. 0,75 mm² max. 6,0 mm² Anschlussquerschnitt mit Aderendhülse (mit oder ohne Kunststoffhülse): min. 0,5 mm² max. 6,0 mm²

Die Spannungsmesseingänge müssen mittels einer Schmelzsicherung oder einen Leitungsschutzschalter abgesichert werden, zum Beispiel:

- Sicherung NEOZED D01 6 A träge, oder ein anderer vergleichbarer Typ, oder:
- Leitungsschutzschalter 6 A Typ C (zum Beispiel: ABB Typ S271C6), oder ein anderer vergleichbarer Typ.

Spannungsmesskarten "TU-OR5" und "TU-DI8"

Die folgenden Technischen Daten gelten für die kombinierten Spannungsmessstecker.

• Spannungsmesskarte "TU-OR5" (→3.6.2 TU-OR5 – Spannungsmesskarte mit 5 Melderelais) stellt zusätzlich zu den Spannungsmesseingängen fünf Ausgangsrelais zur Verfügung (siehe →13.1.16 Ausgangsrelais).

Nennspannungen (Un):	60 - 200 V (parametrierbar)
Maximaler Messbereich:	300 VAC
Thermische Dauerbelastbarkeit:	300 VAC
Leistungsaufnahme:	Bei Un = 100 V: S = 22 mVA
	Bei Un = 110 V: S = 25 mVA
Frequenzbereich:	50 Hz oder 60 Hz ±10%

Klemmen:	Schraubklemmen
Anschlussquerschnitt:	min. $0,25~\text{mm}^2~\dots$ max. $2,5~\text{mm}^2$ mit oder ohne Aderendhülse

Die Spannungsmesseingänge müssen mittels einer Schmelzsicherung oder einen Leitungsschutzschalter abgesichert werden, zum Beispiel:

- Sicherung NEOZED D01 6 A träge, oder ein anderer vergleichbarer Typ, oder:
- Leitungsschutzschalter 6 A Typ C (zum Beispiel: ABB Typ S271C6), oder ein anderer vergleichbarer Typ.

13.1.8 Frequenzmessung

13.1.9 Spannungsversorgung

Hilfsspannung:	$24 - 270 \text{ VDC} / 48 - 230 \text{ VAC} (-20 / +10\%) \approx$
Pufferzeit bei Versorgungsausfall:	≥ 50 ms bei minimaler Hilfsspannung.
	Nach Ablauf dieser Pufferzeit schaltet das Gerät ab.
	Hinweis: Kommunikation kann gestört werden
Maximaler zulässiger Einschaltstrom:	18 A Scheitelwert für eine Dauer < 0,25 ms
	12 A Scheitelwert für eine Dauer < 1 ms
Sicherung (im Weitbereichsnetzteil fest verbaut):	6,3 A träge
verbauty.	(Diese Sicherung kann nicht vom Anwender ausgetauscht werden, ist aber für den sicheren Betrieb erforderlich.)

Die Versorgungsspannung des Geräts muss folgendermaßen abgesichert werden:

- 2,5 A träge G-Sicherung 5x20 mm nach IEC 60127
- 3,5 A träge G-Sicherung 6,3x32 mm nach UL 248-14

13.1.10 Leistungsaufnahme

Spannungsbereich der	Leistungsaufnahme im	Maximale
Versorgungsspannung	Ruhezustand	Leistungsaufnahme
24 - 270 VDC:	ca. 8 W	ca. 13 W

Spannungsbereich der Versorgungsspannung	Leistungsaufnahme im Ruhezustand	Maximale Leistungsaufnahme
48 - 230 VAC	ca. 8 W / 16 VA	ca. 13 W / 21 VA
(für Frequenzen von 50-60 Hz):		

13.1.11 Anzeige (Display)

Display-Typ:	LCD mit LED-Hinterleuchtung
Resolution - Graphics Display:	128 x 128 Pixel

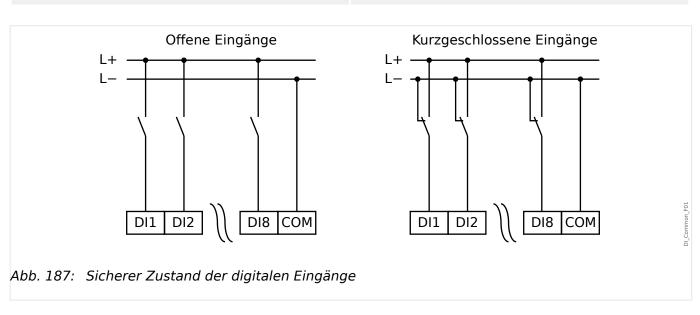
13.1.12 Leuchtanzeigen (LEDs)

LED-Typ:	zweifarbig rot / grün
Anzahl der LEDs, Gehäuse B2:	15

13.1.13 Front-Schnittstelle USB

Typ: Mini	В
-----------	---

13.1.14 Echtzeituhr


Gangreserve der Echtzeituhr:	Mindestens 1 Jahr
------------------------------	-------------------

13.1.15 Digitale Eingänge

Die Digitalen Eingänge sind (über Optokoppler) vom Gehäuse und von der internen Elektronik galvanisch isoliert. Allerdings liegen die gewurzelten, d.h. in einer gemeinsamen Gruppe zusammengefassten, Digitalen Eingänge auf einem jeweils gemeinsamen Potenzial. (Das separate Dokument "Wiring Diagrams" stellt dar, welche Digitalen Eingänge gruppiert sind.)

maximale Eingangsspannung:	300 VDC / 259 VAC
Eingangsstrom:	DC <4 mA
	AC <16 mA
Ansprechzeit:	<20 ms
Rückfallzeit:	
Kurzgeschlossene Eingänge	<30 ms

Schaltschwellen:	24 VDC, 48 VDC, 60 VDC, 110 VDC, 230 VDC, 110 VAC, 230 VAC
Un = 24 VDC	
Schaltschwelle 1 EIN:	Min. 19,2 VDC
Schaltschwelle 1 AUS:	Max. 9,6 VDC
Un = 48 V / 60VDC	
Schaltschwelle 2 EIN:	Min. 42,6 VDC
Schaltschwelle 2 AUS:	Max. 21,3 VDC
Un = 110 / 120 VAC / DC	
Schaltschwelle 3 EIN:	Min. 88,0 VDC / 88,0 VAC
Schaltschwelle 3 AUS:	Max. 44,0 VDC / 44,0 VAC
Un = 230 / 240 VAC / DC	
Schaltschwelle 4 EIN:	Min. 184 VDC / 184 VAC
Schaltschwelle 4 AUS:	Max. 92 VDC / 92 VAC
Klemmen:	Schraubklemmen

13.1.16 Ausgangsrelais

Dauerstrom:	5 A AC/DC
Max. Einschaltstrom:	25 A AC/DC für 4 s

	30 A AC/DC für 0,5 s
	1000 W (VA) bei L/R = 40 ms
	30 A / 230 VAC entsprechend ANSI IEEE Std C37.90-2005
	30 A / 250 VDC entsprechend ANSI IEEE Std C37.90-2005
Max. Abschaltstrom:	5 A AC bis 240 VAC
	4 A AC bei 230 V und $\cos \phi = 0.4$
	5 A DC bis 30 V (ohmsch)
	0,3 A DC bei 250 V (ohmsch)
	0,1 A DC bei 220 V und L/R = 40 ms
Max. Schaltspannung:	250 VAC / 250 VDC
Schaltleistung:	3000 VA
Ansprechzeit: (*)	typ. 7 ms
Rückfallzeit: (*)	typ. 3 ms
Kontaktart:	1 Wechselkontakt oder Schließer oder Öffner
Klemmen:	Schraubklemmen

^(*) Die angegebenen Zeiten sind die "nackten" hardwareseitigen Schaltzeiten (Verzögerungen Spule – Kontaktgabe), insbesondere ohne die Zeit, die die Schutz-Software benötigt, bis die Schalt-Entscheidung getroffen ist.

13.1.17 Supervision Contact (SC)

5 A AC/DC
15 A AC/DC für 4 s
5 A AC bis 250 VAC
5 A DC bis 30 V (ohmsch)
0,25 A DC bei 250 V (ohmsch)
250 VAC / 250 VDC
1250 VA
1 Wechselkontakt
Schraubklemmen

13.1.18 Zeitsynchronisierung IRIG-B00X

Nenn-Eingangsspannung:	5 V
Anschluss:	Schraubklemmen (Twisted Pair)

13.1.19 RS485 *

* (Slot X103, Verfügbarkeit hängt vom Bestellschlüssel ab.)

Anschluss:	9pol. D-Sub Buchse (Abschlusswiderstände extern/im D-Sub)
	oder 6 Schraubklemmen RM 3,5 mm (Abschlusswiderstände intern)

VORSICHT!

Wenn die RS485-Schnittstelle als Klemme zur Verfügung steht, dann muss das Kommunikationskabel geschirmt sein.

13.1.20 LWL-Modul mit ST-Anschluss für die SCADA-Kommunikation *

* (Slot X103, Verfügbarkeit hängt vom Bestellschlüssel ab.)

Hinweis: Für Profibus beträgt die maximale Übertragungsgeschwindigkeit 3 MBaud.

Anschluss:	ST-Port
Kompatible Glasfasern:	Multimode; 50/125 μm, 62,5/125 μm, 100/140 μm und 200 μm HCS
Wellenlänge:	820 nm
Minimale Optische Eingangsleistung:	-24,0 dBm
Minimale Optische Ausgangsleistung:	–19,8 dBm mit 50/125 μm Glasfaser
	$-16,0$ dBm mit 62,5/125 μ m Glasfaser
	–12,5 dBm mit 100/145 μm Glasfaser
	–8,5 dBm mit 200 μm HCS Glasfaser
Maximale Verbindungslänge:	ca. 2,7 km (abhängig von der Dämpfung)

13.1.21 Optisches Ethernet-Modul mit LC-Anschluss *

* (Slot X103, Verfügbarkeit hängt vom Bestellschlüssel ab.)

Anschluss:	LC-Port; 100BASE-FX
Kompatible Glasfasern:	Multimode; 50/125 μm und 62,5/125 μm
Wellenlänge:	1300 nm
Minimale Optische Eingangsleistung:	-30,0 dBm
Minimale Optische Ausgangsleistung:	–22.5 dBm mit 50/125 μm Glasfaser
	$-19,0$ dBm mit 62,5/125 μ m Glasfaser
Maximale Verbindungslänge:	ca. 2 km (abhängig von der Dämpfung)

13.1.22 LWL-Modul für die Schutzkommunikation

(Slot X102)

VORSICHT!

Es ist dringend empfohlen, die beiden MCDLV4 direkt miteinander zu verbinden, um Übertragungszeiten und Latenzen zu minimieren.

Mit anderen Worten, wir müssen aus unserer Sicht von der Verwendung eines Switches für die Schutzkommunikation abraten, weil eine Verschlechterung der Übertragungsqualität droht, die die sichere Erkennung von Differenzströmen beeinträchtigen kann.

HINWEIS!

Es gibt zwei Typen der Schutzkommunikation, siehe den Bestellschlüssel und die Technischen Daten:

- Typschlüssel MCDLV4-2xxx1xx, ST-Anschluss, 820 nm multi mode, normale Reichweite,
- Typschlüssel MCDLV4-2xxx**0**xx, LC-Anschluss, 1310 nm mono mode, erhöhte Reichweite.

Es muss beachtet werden, dass diese zwei Typen nicht *miteinander* verbunden werden können, weil sie für die Schutzkommunikation zwei verschiedene (proprietäre) Kommunikationsprotokolle verwenden, die nicht miteinander kompatibel sind. Da diese Inkompatibilität software-bedingt ist, lässt sie sich nicht durch Hardware-Maßnahmen (etwa Einfügen eines optischen Konverters) beheben.

Sie müssen also sicherstellen, dass die beiden miteinander zu verbindenden MCDLV4 entweder beide eine ST-Schutzkommunikations-Schnittstelle oder beide eine LC-Schutzkommunikations-Schnittstelle aufweisen!

(Die zwei Ausführungen von LC-Modulen sind – mit Ausnahme unterschiedlicher Sendeund Empfangsstärken – miteinander kompatibel.)

13.1.22.1 LWL-Modul für die Schutzkommunikation mit ST-Anschluss (*)

(*) Verfügbarkeit hängt vom Gerätetyp ab

Anschluss:	ST-Port
Kompatible Glasfasern:	Multimode; 50/125 μm, 62,5/125 μm, 100/140 μm und 200 μm HCS
Wellenlänge:	820 nm
Minimale Optische Eingangsleistung:	-24,0 dBm
Minimale Optische Ausgangsleistung:	–19,8 dBm mit 50/125 μm Glasfaser
	$-16,0$ dBm mit 62,5/125 μ m Glasfaser
	–12,5 dBm mit 100/145 μm Glasfaser

13.1.22.1 LWL-Modul für die Schutzkommunikation mit ST-Anschluss (*)

	–8,5 dBm mit 200 μm HCS Glasfaser
Maximale Verbindungslänge:	ca. 2,7 km (abhängig von der Dämpfung)

13.1.22.2 LWL-Modul mit LC-Anschluss für die Schutzkommunikation mit erhöhter Reichweite (*)

(*) Verfügbarkeit hängt vom Gerätetyp ab

Je nach Herstellungsjahr sind im MCDLV4 unterschiedliche LC-Kommunikationsmodule verbaut. Welcher Typ eingebaut ist, lässt sich problemlos durch Herausziehen prüfen, siehe die Beschreibung im Kapitel zum Schutzkommunikations-Modul. Abgesehen von der optischen Eingangs- und Ausgangsleistung sind diese beiden Typen miteinander kompatibel.

LC-Kommunikationsmodul Avago AFCT-5765ATPZ

Anschluss:	LC-Port
Kompatible Glasfasern:	9 μm single mode
Wellenlänge:	1310 nm
Minimale Optische Eingangsleistung:	-31,0 dBm
Maximale Optische Eingangsleistung:	-8,0 dBm
Minimale Optische Ausgangsleistung:	-15,0 dBm
Maximale Optische Ausgangsleistung:	-8,0 dBm
Maximale Verbindungslänge:	ca. 20 km (abhängig von der Leitungsdämpfung)

LC-Kommunikationsmodul II-IV (Finisar) FTLF1323P1BTL

Anschluss:	LC-Port
Kompatible Glasfasern:	9 μm single mode
Wellenlänge:	1310 nm
Minimale Optische Eingangsleistung:	-34,0 dBm
Maximale Optische Eingangsleistung:	-10,0 dBm
Minimale Optische Ausgangsleistung:	-5,0 dBm
Maximale Optische Ausgangsleistung:	0,0 dBm
Maximale Verbindungslänge:	ca. 40 km (abhängig von der Leitungsdämpfung und vorausgesetzt, dass beide MCDLV4 diesen Modultyp verwenden)

HINWEIS!

Speziell beim II-IV (Finisar) FTLF1323P1BTL kann es bei Verwendung mit *kurzen* Leitungslängen erforderlich sein, ein Dämpfungsglied in die Lichtwellenleiterverbindung einzufügen.

13.1.23 Kommunikation mit Smart view

Das MCDLV4 kann sich folgendermaßen mit der Betriebs-Software Smart view verbinden:

- USB-Verbindung (über die USB-Schnittstelle vorne am Gehäuse des MCDLV4).
- TCP/IP-Verbindung (über die Ethernet-Schnittstelle* an der Gehäuserückseite des MCDLV4).

(*Verfügbarkeit hängt vom Gerätetyp ab.)

 Mittels Schutzkommunikation (über die optische Schnittstelle in Slot X102 des MCDLV4).

Es sind maximal 3 gleichzeitige *Smart view-*Sessions mit demselben MCDLV4-Gerät möglich.

13.1.24 Meldungen der Selbstüberwachung

Die Speicherkapazität für Selbstüberwachungsmeldungen (siehe →10.2 Meldungen der Selbstüberwachung) ist wie folgt:

- **E** Fehler max. 500 Meldungen. Jede neue Fehlermeldung darüber hinaus löscht die jeweils älteste Fehlermeldung.
- **W** Warnungen max. 500 Meldungen. Jede neue Warnmeldung darüber hinaus löscht die jeweils älteste Warnmeldung.
- I Informationen max. 500 Meldungen. Jede neue Informationsmeldung darüber hinaus löscht die jeweils älteste Informationsmeldung.

13.1.25 Bootphase

Nach Aufschalten der Versorgungsspannung ist der Schutz nach ca. 9 Sekunden verfügbar.

Nach ca. 28 Sekunden arbeitet die Schutzkommunikation (sofern Verkabelung und Konfiguration beider Geräte korrekt ist).

Nach ca. 2 Minuten (abhängig von der Konfiguration) ist die Bootphase abgeschlossen (HMI und Kommunikation initialisiert).

HINWEIS!

Die Schutzkommunikation ist erst einige Sekunden nach Aktivierung des Schutzes aktiv, daher ist während dieser Zeit die für den Not-UMZ vorgesehene Überstromstufe aktiv.

13.2 Einstellbereiche

Alle Einstellungen sind mit den jeweiligen Einstellbereichen und Vorgabewerten im Referenzhandbuch (separates Dokument) tabellarisch aufgeführt.

Zum Beispiel:

Messprinzip, Schwellwert-Bereich im Phasenüberstrom-Schutz:

• Siehe Referenzhandbuch, "Schutzparameter" → "Phasenstromschutz-Stufe" → "Satz-Parameter", Tabellen »Messprinzip«, »I>«.

Messprinzip, Schwellwert-Bereich im Erdüberstrom-Schutz:

- Erdstrom Standard: Siehe Referenzhandbuch, "Schutzparameter" →
 "Erdstromschutz-Stufe" → "Satz-Parameter", Tabellen »Messprinzip«, »IE>«.
- Empfindlicher Erdstrom: Referenzhandbuch, "Schutzparameter" → "Erdstromschutz-Stufe" → "Satz-Parameter", Tabellen »Messprinzip«, »IEs>«.

Messprinzip im Unter- / Überspannungs-Schutz:

Siehe Referenzhandbuch, "Schutzparameter" → "Spannungsschutz-Stufe" → "Satz-Parameter", Tabellen »Mess-Modus«, »Messprinzip«.

Schwellwert-Bereich im Überspannungs-Schutz:

• Siehe Referenzhandbuch, "Schutzparameter" → "Spannungsschutz-Stufe" → "Satz-Parameter", Tabelle »U>«.

Schwellwert-Bereich im Unterspannungs-Schutz:

• Siehe Referenzhandbuch, "Schutzparameter" → "Spannungsschutz-Stufe" → "Satz-Parameter", Tabelle »U<«.

13.3 Toleranzen

13.3.1 Toleranzen der Echtzeituhr

Auflösung:	1 ms
Toleranz:	<1 Minute / Monat (+20°C [68°F])
	<±1ms bei Synchronisierung über IRIG-B

Toleranzen der Zeitsynchronisation

Die Protokolle zur Zeitsynchronisation unterscheiden sich in Bezug auf ihre Genauigkeit:

Verwendetes Protokoll	Uhrzeitdrift über einen Monat	Abweichung zur Generatoruhr
Ohne Zeitsynchronisation	<1 min (+20°C)	Uhrzeit driftet
IRIG-B	abhängig von der Uhrzeitdrift des Zeitgenerators	<±1 ms
SNTP	abhängig von der Uhrzeitdrift des Zeitgenerators	<±1 ms, wenn der Zustand der Netzwerkverbindung <i>gut</i> ist (siehe Zustandsanzeige zu SNTP)
IEC60870-5-103	abhängig von der Uhrzeitdrift des Zeitgenerators	<±1 ms
IEC60870-5-104	abhängig von der Uhrzeitdrift des Zeitgenerators	abhängig von der Auslastung des Netzwerks
Modbus TCP	abhängig von der Uhrzeitdrift des Zeitgenerators	abhängig von der Auslastung des Netzwerks
Modbus RTU	abhängig von der Uhrzeitdrift des Zeitgenerators	<±1 ms
DNP3 TCP	abhängig von der Uhrzeitdrift des Zeitgenerators	abhängig von der Auslastung des Netzwerks
DNP3 UDP	abhängig von der Uhrzeitdrift des Zeitgenerators	abhängig von der Auslastung des Netzwerks
DNP3 RTU	abhängig von der Uhrzeitdrift des Zeitgenerators	<±1 ms
Zeitsynchronisation über die Schutzkommunikation	abhängig von der Uhrzeitdrift des Zeitgenerators	abhängig vom verwendeten Protokoll auf dem anderen Gerät. Zusätzl. Abweichung: <±0,2 ms

13.3.1 Toleranzen der Echtzeituhr

Die Verfügbarkeit der Protokolle hängt von der bestellten Variante des MCDLV4 ab (siehe \hookrightarrow 2.2.1 Bestellschlüssel).

13.3.2 Toleranzen der Messwerterfassung

Phasen- und Erdstrommessung

Frequenzbereich:	50 Hz / 60 Hz ± 10%
Genauigkeit:	Klasse 0,5
Amplitudenfehler für I < In:	±0,5% vom Nennwert *3)
Amplitudenfehler für I > In:	±0,5% vom Messwert *3)
Amplitudenfehler für I > 2 In:	±1,0% vom Messwert *3)
Oberschwingungen:	bis 20% 3. Harmonische ±2%
	bis 20% 5. Harmonische ±2%
Frequenzeinfluss:	$<\pm2\%$ / Hz im Bereich von ±5 Hz um die eingestellte Nennfrequenz
Temperatureinfluss:	<±1% im Bereich von 0°C bis +60°C (+32°F bis +140°F)

 $^{^{*3)}}$ Die Genauigkeit wird bei der empfindlichen Erdstrommessung nicht auf den Nennwert, sondern auf 100 mA (bei In =1 A) bzw. 500 mA (bei In = 5 A) bezogen.

Leiter- und Verlagerungsspannungsmessung

Frequenzbereich:	50 Hz / 60 Hz ± 10%
Genauigkeit für gemessene Werte:	Klasse 0,5
Amplitudenfehler für U < Un:	±0,5% vom Nennwert Un oder ±0,5 V
Amplitudenfehler für U > Un:	$\pm 0.5\%$ vom Messwert oder ± 0.5 V *2)
Genauigkeit für berechnete Werte:	Klasse 1.0
Amplitudenfehler für U < Un:	±1.0% vom Nennwert Un oder ±1 V
Amplitudenfehler für U > Un:	±1.0% der berechneten Spannung oder ±1 V
Oberschwingungen:	bis 20% 3. Harmonische ±1%
	bis 20% 5. Harmonische ±1%
Frequenzeinfluss:	$<\pm2\%$ / Hz im Bereich von ±5 Hz um die eingestellte Nennfrequenz
Temperatureinfluss:	<±1% im Bereich von 0°C bis +60°C

Frequenzmessung

Nennfrequenzen:	50 Hz / 60 Hz
Genauigkeit:	$\pm 0.05\%$ von fN im Bereich von 40 – 70 Hz ab Spannungen >50 V
Spannungsabhängigkeit:	Frequenzerfassung von 5 V – 800 V
	Frequenzerfassung ab 0,15 x Un

Energiemessung *)

Fehler der Energiezählung: 1,5% vom Messwert oder 1,5% SN·1h	Fehler der Energiezählung:	1,5% vom Messwert oder 1,5% SN·1h
--	----------------------------	-----------------------------------

 $^{^{*)}}$ Toleranz bei 0,8 ... 1,2 x Un (bei Un=100V) , |LF|>0,5, bei Nennfrequenz fN, Strom und Spannungen symmetrisch eingespeist

$$SN = 1.73 \cdot Un \cdot In$$

Leistungsmessung *)

Fehler der Leistungsmessung S, P, Q:	<±1% vom Messwert oder 0,1% SN (für Leistungen der Grundschwingung) <±2% vom Messwert oder 0,2% SN (für Leistungen der Effektivwerte)
P1, Q1	±2% vom Messwert oder 0,2% SN

 $^{^{*)}}$ Toleranz bei 0,8 ... 1,2 x Un (bei Un=100V) , |LF|>0,5, bei Nennfrequenz fN, Strom und Spannungen symmetrisch eingespeist

 $SN = 1,73 \cdot Un \cdot In$

Leistungsfaktormessung *)

Fehler des Leistungsfaktors	$<\pm 0.01$ vom gemessenen Leistungsfaktor oder 1°
LF:	I > 30% In und S > 2% SN

 $^{^{*)}}$ Toleranz bei 0,8 ... 1,2 x Un (bei Un=100V) , |LF|>0,5, bei Nennfrequenz fN, Strom und Spannungen symmetrisch eingespeist

$$SN = 1,73 \cdot Un \cdot In$$

13.3.3 Toleranzen der Schutzstufen

HINWEIS!

Die Auslöseverzögerung bezieht sich auf die Zeit zwischen Anregung und Auslösung. Die Toleranz der Kommandozeit/Anregezeit bezieht sich auf die Zeit zwischen Fehlereintritt und der Anregung der Schutzstufe.

Referenzbedingungen für alle Schutzstufen: Sinusförmige Messgrößen bei Nennfrequenz, Klirrfaktor THD < 1%, Messprinzip Grundwelle

13.3.3.1 Phasen-Überstromschutz

Überstromschutz-Stufen I[x]	Toleranz *2)
Ansprechwert (Schwellwert) »/>«	±1,5% vom Einstellwert oder ±1% In.
Rückfallverhältnis	97% oder 0,5% In

Überstromschutz-Stufen I[x] Unabhängige Zeit »Kennl« = "DEFT"	Toleranz *2)
Auslöseverzögerung »t«	±1% oder ±10 ms
Auslösezeit (für $>t < = 0$ ms) bei einem Teststrom $\geq 2 \cdot I >$	<36 ms (gerichtete Stufe: <40ms)
Transiente Überreichweite	 <8% bei X/R = 10 120 (Messverfahren: Grundwelle) <7% bei X/R = 10 <3% bei X/R = 40 <1% bei X/R = 120

Überstromschutz-Stufen I[x]	Toleranz *2)
Abhängige Zeit / Kennlinie	
Ansprechzeit	<36 ms
bei einem Teststrom ≥ 2·I>	
Auslöseverzögerung t(I, I>, tChar)	±5% (entsprechend gewählter Kurve, siehe ⇔5.10.1 Kennlinien (Phasenstrom))
bei einem Teststrom im Bereich 2 20 ·/>	Reminier (Fridsenstrom))
Auslösezeit	= Ansprechzeit + Auslöseverzögerung
Rückfallzeit	<55 ms
tReset (»Rücksetz Modus«= "unabhängig")	±1% oder ±10 ms

• $^{*2)}$ Für gerichtete Stufen gilt für MTA: $\pm 3^{\circ}$ bei I >20% In und U >20% Un.

Überstromschutz-Stufen	Toleranz
<pre>I[x] mit der Einstellung: »Messprinzip« = "I2"</pre>	
(Gegensystemstrom)	
Ansprechwert (Schwellwert) »I>«	±2,0% vom Einstellwert oder ±1% In.
Rückfallverhältnis	97% oder 0,5% In
Unabhängige Zeit (»Kennl« = "DEFT"):	
Auslöseverzögerung »t«	±1% oder ±10 ms
Auslösezeit (für $*t$ « = 0 ms)	<60 ms
bei einem Teststrom ≥ 2·I>	
Rückfallzeit	<45 ms

• $^{*2)}$ Für gerichtete Stufen gilt für MTA: $\pm 3^{\circ}$ bei I >20% In und U >20% Un.

13.3.3.2 Erd-Überstromschutz

Erdstromschutz-Stufen IE[x]	Toleranz *2) *3)
Ansprechwert (Schwellwert) »IE>«	±1,5% vom Einstellwert oder ±1% In.
Rückfallverhältnis	97% oder 0,5% In

Erdstromschutz-Stufen IE[x]	Toleranz *2) *3)
Unabhängige Zeit	
»Kennl« = "DEFT"	
Auslöseverzögerung »t«	±1% oder ±10 ms
Auslösezeit (für » t « = 0 ms) bei einem Teststrom $\geq 2 \cdot l >$	<45 ms
Transiente Überreichweite	<8% bei $X/R = 10 \dots 120$ (Messverfahren: Grundwelle)

Erdstromschutz-Stufen IE[x] Abhängige Zeit / Kennlinie	Toleranz *2) *3)
Ansprechzeit bei einem Teststrom ≥ 2·I>	<45 ms
Auslöseverzögerung t(IE, IE>, tChar) bei einem Teststrom im Bereich 2 20 ·l>	±5% (entsprechend gewählter Kurve, siehe ⇔5.12.1 Kennlinien (Erdstrom))
A 1"	A 1 1 1 1 A 1 1 1 1 1 1
Auslösezeit	= Ansprechzeit + Auslöseverzögerung
Rückfallzeit	<55 ms
tReset (»Rücksetz Modus«= "unabhängig")	±1% oder ±10 ms
UE>	±1,5% vom Einstellwert oder ±1% Un.
Rückfallverhältnis	97% oder 0,5% Un

[•] $^{*2)}$ Für gerichtete Stufen gilt für MTA: $\pm 3^{\circ}$ bei I >20% In und U >20% Un.

13.3.3.2 Erd-Überstromschutz

• $^{*3)}$ Die Genauigkeit wird bei der empfindlichen Erdstrommessung nicht auf den Nennwert, sondern auf 100 mA (bei In =1 A) bzw. 500 mA (bei In = 5 A) bezogen.

13.3.3.3 Richtungserkennung

HINWEIS!

Weil die Richtungserkennung auf Grundschwingungswerten (DFT) basiert, funktionieren diese nur im Bereich der Nennfrequenz (fN \pm 5 Hz) zuverlässig.

Richtungskennlinie	Toleranz
MTA / Richtungswinkel	±3°

Empfindlichkeit der Phasenstrom-Rich- tungserkennung:	Messwert	Freigabewert In = 1 A (5 A)	Blockadewert In = 1 A (5 A)
I[x]			
I – U (3-phasig)	I	10 mA (50 mA)	5 mA (25 mA)
	U	0,35 V	0,25 V

Empfindlichkeit der Erdstrom-Richtungs-	Messwert	Freigabewert	Blockadewert
erkennung:		In = 1 A (5 A)	In = 1 A (5 A)
IE[x]			
IE gem - 3U0	IE gem	10 mA (50 mA)	5 mA (25 mA)
cos(IE gem)	IE (empfindl.)	1 mA (5 mA)	0,5 mA (2,5 mA)
sin(IE gem)	3U0	0,35 V	0,25 V
IE err - 3U0	IE err	18 mA (90 mA)	11 mA (55 mA)
cos(IE err)	3U0	1 V	0,8 V
sin(IE err)			
IE err IPol (IE gem)	IE err	18 mA (90 mA)	11 mA (55 mA)
	IE gem	10 mA (50 mA)	5 mA (25 mA)
	IE (empfindl.)	1 mA (5 mA)	0.5 mA (2,5 mA)
IE gem - I2, U2	12	10 mA (50 mA)	5 mA (25 mA)
IE err - I2, U2	U2	0,35 V	0,25 V

13.3.3.4 Phasen-Differentialschutz

Phase Differential Protection:	Toleranz
Id	
ld>	±5% vom Einstellwert oder 2% In
Rückfallverhältnis	einstellbar, mindestens 1% In
Kommandozeit / Anregezeit	
Id > 2 x Anregewert	<40 ms
(Sprung von Null auf 200% der Kennlinie)	
Typische Auslösezeit	35 ms
Kürzeste Auslösezeit	23 ms

Unstabilisierte Hochstromdifferential- stufe:	Toleranz
IdH	
ld>>	±5% vom Einstellwert oder 2% In
Rückfallverhältnis	90% oder 1% In
Kommandozeit / Anregezeit	
Id > 1.1 x Anregewert	<30 ms
Typische Auslösezeit	23 ms
Kürzeste Auslösezeit	19 ms

13.3.3.5 Erd-Differentialschutz

Erdstrom-Differential-Schutzstufen: IdE[x]	Toleranz
IdE>	±3% vom Einstellwert oder 2% In
Rückfallverhältnis	95% oder 1% In
Kommandozeit / Anregezeit	
IdE > 2 x Anregewert	<40 ms
(Sprung von Null auf 200% der Kennlinie)	
Typische Auslösezeit	30 ms
Kürzeste Auslösezeit	18 ms

Unstab. Erdstrom-Differential-Schutz- stufen:	Toleranz
IdEH[x]	
IdE>>	±3% vom Einstellwert oder 2% In
Rückfallverhältnis	90% oder 1% In
Kommandozeit / Anregezeit	
IdE > 1.1 x Anregewert	<30 ms
Typische Auslösezeit	19 ms
Kürzeste Auslösezeit	13 ms

13.3.3.6 Thermische Schutzfunktionen

Thermisches Abbild:	Toleranz *1)
ThA	
K·Ib	±5% vom Einstellwert oder 1% In
Auslöseverzögerung (gemäß der Gleichung in ⇔"Auslösezeit") in kaltem Zustand (d. h. keine vorherige Erwärmung)	±5% des errechneten Wertes oder ±1 s
Rückfallverhältnis	97%

 $^{^{*1)}}$ Toleranz gilt für die folgenden Einstellungen:

- $K \cdot lb \ge 0.1 ln$
- τ -erw ≤ 30000 s
- τ -abk ≤ 30000 s

13.3.3.7 Strombezogene Schutzfunktionen

Inrush-Überwachung:	Toleranz
IH2	
IH2 / IH1	±1% In
Rückfallverhältnis	5% IH2 oder 1% In
Rückfallzeit	<30 ms*1)

• $^{*1)}$ Inrush-Überwachung ist möglich, wenn die Grundschwingungsamplitude (IH1) > 0,1 In und die zweite Harmonische (IH2) > 0,01 In ist.

Schieflast-Schutzstufen:	Toleranz *1)
I2>[x]	
12>	±2% vom Einstellwert oder 1% In
Rückfallverhältnis	97% oder 0,5% In
%(I2/I1)	±1%
t	DEFT
	±1% oder ±10 ms
Kommandozeit / Anregezeit	<70 ms
Rückfallzeit	<50 ms
K	±5% INV
τ-abk	±5% INV

^{• *1)} Gilt, sofern der Gegensystemstrom I2 \geq 0.01 x In und der Mitsystemstrom I1 \geq 0.1 x In ist.

13.3.3.8 Spannungsbezogene Schutzfunktionen

Spannungsschutz-Stufen:	Toleranz *1)
U[x]	
Anregewert	±1,5% vom Einstellwert oder 1% Un
Rückfallverhältnis	einstellbar, mindestens 0,5% Un
t	DEFT
	±1% oder ±10 ms
Kommandozeit / Anregezeit	<40 ms
	typisch: 35 ms
Ab U größer als 1.2 x Anregewert für U>- Stufen oder	
ab U kleiner als 0.8 x Anregewert für U<- Stufen	
Rückfallzeit	<45 ms

ullet *1) Die angegebene Toleranz gilt für Anregewerte >2.5 V.

Verlagerungsspannungsüberwa- chung:	Toleranz *1)
UE[x]	
Anregewert	±1,5% vom Einstellwert oder 1% Un *2)
Rückfallverhältnis	einstellbar, mindestens 0,5% Un
t	DEFT
	±1% oder ±10 ms
Kommandozeit / Anregezeit	<40 ms
	typisch: 35 ms
Ab UE größer als 1.2 x Anregewert für UE>-Stufen oder	
ab UE kleiner als 0.8 x Anregewert für UE<-Stufen	
Rückfallzeit	<45 ms

ullet *1) Die angegebene Toleranz gilt für Anregewerte >2,5 V.

• *3) Die angegebene Toleranz gilt für eine einfache Spannungsmessung. Für die Einstellung »UX Quelle« = "berechnet" ergibt sich die Toleranz allerdings aus den Amplituden und Phasenwinkeln aller drei Leiter-Erde-Phasoren und kann bis zu 2% der maximalen Leiter-Erde-Spannung betragen.

Netzstützung bei Netzausfall:	Toleranz
LVRT	
Anregewert (Start)	±1,5% vom Einstellwert oder 1% Un
Rückfallverhältnis (Wiederherstellung)	einstellbar, mindestens 0,5% Un
Auslöseverzögerung	±1% vom Einstellwert oder ±10 ms
Kommandozeit / Anregezeit	<35 ms
Ab U kleiner als 0.9 x Anregewert	
Rückfallzeit	<45 ms

Übererregungsschutz: U/f>[x]	Toleranz
Anregewert	$\pm 1\%$ *1) (20 – 70 Hz / 0,1 – 1,5 Un (mit Un = 120 V) / 100 – 150%)
t	DEFT ±1% oder ±10 ms
t-Multiplikator	±5% oder ±10 ms (U/f größer als 1.1 x Anregewert) Inv A Inv B Inv C
t-Rücksetz	±1% oder ±10 ms Inv A Inv B Inv C
Kommandozeit / Anregezeit Ab U/f größer als 1.1 x Anregewert	<60 ms (bei fN) oder < 4 Perioden
Rückfallzeit	<85 ms (bei fN) oder < 5 Perioden

 $^{^{*1)}}$ Die U/f>-Funktion liefert im Frequenzbereich 5–70 Hz zuverlässige Messungen für V/Hz bis 200%, solange die Spannungen größer 15% Un und < 800 V sind und U/f < 48 V/Hz ist.

Asymmetrie-Schutzstufen: U012[x]	Toleranz *1)
Ansprechwert	±2% vom Einstellwert oder 1% Un
Rückfallverhältnis	einstellbar, mindestens 0,5% Un
%(U2/U1)	±1%
t	DEFT ±1% oder ±10 ms
Kommandozeit / Anregezeit	<60 ms
Rückfallzeit	<45 ms

• *1) Gilt, sofern die Gegensystemspannung U2 \geq 0.01 Un und die Mitsystemspannung U1 \geq 0.1 Un ist.

13.3.3.9 Frequenzschutz

Frequenzschutz:	Toleranz *1)
f>, f<	
f> bzw. f<	±20 mHz
	Typisch \sim 5 mHz, sofern alle drei Phasen im Bereich fN \pm 0.2 Hz liegen $^{*3)}$
Rückfall	Vorgabe 20 mHz
	(einstellbar im Bereich 10 mHz 100 mHz)
t	±1% oder ±10 ms
Rückfallzeit	<120 ms *2)
Kommandozeit / Anregezeit (quasi-kontinuierlicher Anstieg) *4)	<100 ms, typisch 65 ms *2)
Kommandozeit / Anregezeit (schrittweise Frequenzänderung)	<170 ms, typisch 90 ms *2)

- \bullet *1) Toleranz für die Nennfrequenz fN $\pm 10\%$ sofern alle drei Spannungen mit einbezogen werden.
- *2) Die angegebenden Toleranzen gelten für die folgende Einstellung: [Feldparameter / Frequenz] »Stab.-Fenster f« = 0.

Für den Vorgabewert »Stab.-Fenster f« = 4 sind die Zeiten um ca. 70 ms höher.

Man beachte, dass generell die Anrege- und Rückfallzeiten größer werden, wenn der Einstellwert von »Stab.-Fenster f« vergrößert wird.

- *3) Eine Genauigkeit von ≤ ±10 mHz kann mit der Einstellung »Stab.-Fenster f« ≥ 5 erreicht werden. Allerdings verschlechtert (d. h. vergrößert) ein größerer Wert von »Stab.-Fenster f« grundsätzlich die Anrege- und Rückfallzeiten.
- *4) Für kontinuierliche Frequenzänderungen (und ohne Sprünge im Phasenwinkel und ohne Spannungsvektorsprünge).

Bei Prüfungen mittels schrittweiser Frequenzänderung ist die Anregezeit geringfügig größer (zusätzlich ca. +40 ms), weil ein zusätzlicher Stabilisierungsschritt durchgeführt wird.

Frequenzgradient:	Toleranz *1)
df/dt	
df/dt	±2,5% or ±0,025 Hz/s *2) *3)
Rückfall	0,070 Hz/s
t	±1% oder ±10 ms
Kommandozeit / Anregezeit	<300 ms, typisch ~200 ms *2)
	<200 ms für die folgenden Einstellwerte: *3)
	»StabFenster f für df/dt« = 3
	»Fenster df/dt« = 2
	»StabFenster df/dt« = 2
Rückfallzeit	<300 ms, typically \sim 160 ms $^{*2)*3)$

- $^{*1)}$ Genauigkeit gilt für die Nennfrequenz fN $\pm 10\%$, sofern alle drei Spannungen verwendet werden.
- *2) Genauigkeit gilt für die Vorgabewerte [Feldparameter / Frequenz] »Stab.-Fenster f für df/dt« = 3, »Fenster df/dt« = 4, »Stab.-Fenster df/dt« = 5.
- *3) Die Genauigkeit kann verbessert werden, indem größere Werte für »Stab.-Fenster f für df/dt«, »Fenster df/dt« und »Stab.-Fenster df/dt« eingestellt werden, dies geht dann allerdings auf Kosten der Anrege- und Rückfallzeiten.

Umgekehrt lassen sich durch kleinere Einstellwerte von »Stab.-Fenster f für df/dt«, »Fenster df/dt« und »Stab.-Fenster df/dt« die Anrege- und Rückfallzeiten verringern, wodurch sich allerdings die Genauigkeit verschlechtert.

Frequenzgradient:	Toleranz
DF/DT	
DF	±20 mHz bei fN
DT	±1% oder ±10 ms

Vektorsprung:	Toleranz
delta phi	
delta phi	±0,5° [1 – 30°] bei Un und fN
Kommandozeit / Anregezeit	<40 ms

Automatische Frequenzentlastung:	Toleranz
UFLA	
I1 min	±1% In
Rückfallverhältnis	95% oder 0.5% In
ULL min	±1.5% vom Einstellwert oder ±1% Un
Rückfallverhältnis	98% oder 0.5% Un
Leistungswinkel	±2°
P min	±5% vom Einstellwert oder ±0.1% Sn
Rückfallverhältnis	95% oder 0.5% W
f<	±10 mHz at fN
Rückfall	< 0.05% fN
t-UFLA	±1% oder ±10 ms
Kommandozeit / Anregezeit:	Ab f kleiner als: • $f < -0.02 \text{ Hz}$: $< 120 \text{ ms}^{*1}$ • $f < -0.1 \text{ Hz}$: typisch 70 ms *1 • $f < -2.0 \text{ Hz}$: typisch 50 ms *1
Rückfallzeit	< 120 ms *1)

• *1) Die angegebenden Toleranzen gelten für die folgende Einstellung: [Feldparameter / Frequenz] »Stab.-Fenster f« = 1.

Für den Vorgabewert »Stab.-Fenster f« = 4 sind die Zeiten um ca. 70 ms höher.

Man beachte, dass generell die Anrege- und Rückfallzeiten größer werden, wenn der Einstellwert von »Stab.-Fenster f« vergrößert wird.

13.3.3.10 Leistungsschutzfunktionen

Leistungsfaktor-Schutz:	Toleranz
LF	
Trigger-LF	± 0.01 (absolut) oder ±1°
Reset-LF	± 0.01 (absolut) oder ±1°
t	±1% oder ±10 ms
Kommandozeit / Anregezeit	*1)
»Messprinzip« =	
 "Grundwelle" "Effektivwert"	<130 ms<200 ms

 $^{^{*1)}}$ Die Leistungsfaktorberechnung ist ca. 300 ms, nachdem die notwendigen Messgrößen (I > 2,5% In und V > 20% Un) an den Messeingängen anliegen, möglich.

Leistungsrichtungs-Schutz: PQS[x] für »Modus« = "S>" oder "S<"	Toleranz *1)
Anregewert	±3% oder ±0,1% SN
Rückfallverhältnis	97% oder 1 VA für "S>"103% oder 1 VA für "S<"
t	±1% oder ±10 ms
Kommandozeit / Anregezeit	75 ms
Rückfallzeit	100 ms

Leistungsrichtungs-Schutz: PQS[x] für »Modus« = "P>", "P<", "Pr<", "Pr>"	Toleranz *1)
Anregewert	±3% oder ±0,1% SN
Rückfallverhältnis	 97% oder 1 VA für "P>" und "Pr>" 103% oder 1 VA für "P<" und "Pr<" für Einstellwerte ≤ 0,1 SN: 58% oder 0,5 VA für "P>" und "Pr>" 142% oder 0,5 VA für "P<" und "Pr<" für Einstellwerte ≤ 0,01 SN 58% oder 0,2 VA für "P>" und "Pr>" 142% oder 0,2 VA für "P>" und "Pr>" 142% oder 0,2 VA für "P<" und "Pr<"
t	±1% oder ±10 ms
Kommandozeit / Anregezeit	75 ms
Rückfallzeit	100 ms

PAV,E - Überwachung der vereinbarten Anschlussleistung: PQS[x] für »Modus« = "PAV,E P1>", "PAV,E P1<", "PAV,E P1r>"	Toleranz *1) *3)
Anregewert	±3% oder ±0,2% SN
Rückfallverhältnis	 97% oder 1 VA für "PAV,E P1>" und "PAV,E P1r>" 103% oder 1 VA für "PAV,E P1<" und "PAV,E P1r<" für Einstellwerte ≤ 0,1 SN: 58% oder 0,5 VA für "PAV,E P1>" und "PAV,E P1r>" 142% oder 0,5 VA für "PAV,E P1<" und "PAV,E P1r<"
t	±1% oder ±10 ms
Kommandozeit / Anregezeit	75 ms + 200 ms Mittelwert-Filterzeit
Rückfallzeit	150 ms + 200 ms Mittelwert-Filterzeit

Leistungsrichtungs-Schutz:	Toleranz *1)
PQS[x] für	
<pre>»Modus« = "Q>", "Q<", "Qr<", "Qr>"</pre>	
Anregewert	±3% oder ±0,1% SN
Rückfallverhältnis	 97% oder 1 VA für "Q>" und "Qr>" 103% oder 1 VA für "Q<" und "Qr<" für Einstellwerte ≤ 0,1 SN: 58% oder 0,5 VA für "Q>" und "Qr>" 142% oder 0,5 VA für "Q<" und "Qr<" für Einstellwerte ≤ 0,01 SN 58% oder 0,2 VA für "Q>" und "Qr>" 142% oder 0,2 VA für "Q<" und "Qr<"
t	±1% oder ±10 ms
Kommandozeit / Anregezeit	75 ms
Rückfallzeit	100 ms

• $^{*1)}$ Die Angaben gelten für: |LF|>0,5, bei Nennfrequenz fN und 0.8 - 1.3 x Un (Un = 100 V), Strom und Spannungen symmetrisch eingespeist

$$SN = 1,73 \cdot Un \cdot In$$

• *3) Die Angaben gelten für: »Modus« = "PAV,E P1>", "PAV,E P1<", "PAV,E P1r<", "PAV,E P1r>" > 0,02 SN.

13.3.3.11 Weitere Schutz- und Überwachungsfunktionen

Synch-Check:	Toleranz
Sync	
Spannungsmessung	±1,5% vom Einstellwert oder 1% Un
Frequenzmessung	±20 mHz bei fN
Winkelmessung	±2°
Winkelkorrektur	±4°
t (alle Zeitstufen)	±1% oder ±10 ms

Q->&U< / Entkupplung	Toleranz
I1 min QU	±1,5% vom Einstellwert oder 1% In
Rückfallverhältnis	95% oder 0,5% In
ULL< QU	±1,5% vom Einstellwert oder 1% Un
Rückfallverhältnis	102% oder 0,5% Un
Phi-Leistungswinkel	±1°
Q min QU	±3% vom Einstellwert oder ±0,1% SN
Rückfallverhältnis	95%
t-EZE	±1% oder ±10 ms
t-NAP	±1% oder ±10 ms
Kommandozeit / Anregezeit	<40 ms
Rückfallzeit	<40 ms

Wiederzuschaltung	Toleranz
WZS[x]	
ULL max Freigabe,	±1,5% vom Einstellwert oder 1% Un
ULL min Freigabe	
Rückfallverhältnis	98% oder 0,5% Un für ULL>
	102% oder 0,5% Un für ULL<
f min Freigabe,	±20 mHz at fN
f max Freigabe	
Rückfall	<0,05% fN
t-Freigabe Blo	±1% oder ±10 ms
Kommandozeit / Anregezeit	<100 ms

Automatische Wiedereinschaltung:	Toleranz
AWE	
t (alle Zeitstufen)	±1% oder ±20 ms

Fehleraufschaltung:	Toleranz
FAS	
Kommandozeit / Anregezeit	<35 ms
l<	±1,5% vom Einstellwert oder1% In
t-wirksam	±1% oder ±20 ms

Kalte-Last-Alarm:	Toleranz
KLA	
Schwellwert	±1,5% vom Einstellwert oder 1% In
Kommandozeit / Anregezeit	<35 ms
l<	±1,5% vom Einstellwert oder 1% In
t-Last AUS	±1% oder ±15 ms
t-Max Block	±1% oder ±15 ms
Beruhigungszeit	±1% oder ±15 ms

Leistungsschalter-Versagerschutz:	Toleranz
LSV	
t-LSV	±1% oder ±10 ms
I-LSV >	±1,5% vom Einstellwert oder 1% In
Ansprechzeit	<40 ms
Ab I größer als 1.3 x I-LSV >	
Rückfallzeit	<40 ms

Auslösekreisüberwachung:	Toleranz
AKÜ	
t-AKÜ	±1% oder ±10 ms

Stromwandlerüberwachung:	Toleranz
StWÜ	
ΔΙ	±2% vom Einstellwert oder 1,5% In
Rückfallverhältnis	94%
Alarmverzögerung	$\pm 1\%$ oder ± 10 ms

Erweiterte Spannungsüberwachung:	Toleranz
SPÜ	
t-Alarm	±1% oder ±10 ms

14 Anhang

14.1 Standards

14.1.1 Zertifizierungen

CE	
	UL File Nr.: E217753 certified regarding UL508 (Industrial Controls) (Note: UL does generally not approve the use of voltage measuring inputs above 600 VAC.)
SP ®	CSA File Nr.: 251990 certified regarding CSA-C22.2 No. 14 (Industrial Controls)
	EAC certified by EAC (Eurasian Conformity)
KEMA	KEMA Laboratories — Type tested and certified in accordance with the complete type test requirements of IEC 60255-1:2009.
TOW MORE Komponentenestifikat Tamasa and an	TÜV Nord — Komponentenzertifikat nach VDE-AR-N 4110 TÜV Nord — Komponentenzertifikat nach VDE-AR-N 4120

- Complies with ANSI C37.90-2005
- Complies with "Engineering Recommendation G99 Issue 1 Amendment 6 März 2020"
- Complies with "DIN EN 50549-2:2020-10"

14.1.2 Allgemeine Vorschriften

Fachgrundnorm	EN 61000-6-2 [2019]
	EN 61000-6-3 [2022]
Produktnorm	IEC 60255-1 [2009]
	IEC 60255-26 [2013]
	IEC 60255-27 [2013]
	UL 508 (Industrial Control Equipment) [2005]
	CSA C22.2 No. 14-95 (Industrial Control Equipment) [1995]
	ANSI C37.90 [2005]

14.1.3 Elektrische Prüfungen

Hochspannungsprüfungen

Hochfrequenzprüfung			
IEC 60255-22-1	Innerhalb eines Stromkreises	1 kV / 2 s	
IEC 60255-26			
IEEE C37.90.1			
IEC 61000-4-18			
	Stromkreis gegen Erde	2.5 kV / 2 s	
Klasse 3	Stromkreis gegen Stromkreis	2.5 kV / 2 s	

Spannungsprüfung		
IEC 60255-27 EN 50178	Alle Stromkreise gegen andere Stromkreise und berührbare Oberflächen	2.5 kV (eff.) / 50Hz, 1 min.
	Außer Schnittstellen	1.5 kV DC, 1 min.
	und Spannungsmesseingängen	3 kV (eff.)/50 Hz, 1 min.

Stoßspannungsprüfung	
IEC 60255-27	5 kV / 0.5J, 1.2 / 50 μs

Isolationswiderstandsprüfung			
IEC 60255-27	Innerhalb eines Stromkreises	500V DC , 5s	
EN 50178			
	Stromkreis gegen Stromkreis	500V DC , 5s	

EMV-Prüfungen zur Störfestigkeit

Störfestigkeit gegen schnelle transiente Störgrößen (Burst)		
IEC 60255-22-4	Stromversorgung, Netzeingänge	±4 kV, 2.5 kHz
IEC 60255-26	Andere Ein- und Ausgänge	±2 kV, 5 kHz
IEC 61000-4-4		
Klasse 4		

Störfestigkeit gegen Stoßspannungen (Surge)		
IEC 60255-22-5	Innerhalb eines Stromkreises	2 kV
IEC 60255-26	Stromkreis gegen Erde	4 kV
IEC 61000-4-5		
Klasse 4		
Klasse 3	Kommunikationsleitungen gegen Erde	2 kV

Störfestigkeit gegen die Entladung statischer Elektrizität (ESD)		
IEC 60255-22-2	Luftentladung	8 kV
IEC 60255-26	Kontaktentladung	6 kV
IEC 61000-4-2		
Klasse 3		

Störfestigkeit gegen hochfrequente elektromagnetische Felder		
IEC 60255-22-3	26 MHz - 80 MHz	10 V/m
IEC 60255-26	80 MHz - 1 GHz	30 V/m
IEC 61000-4-3	1 GHz - 3 GHz	10 V/m

Störfestigkeit gegen leitungsgeführte Störgrößen induziert durch hochfrequente Felder		
IEC 61000-4-6	150kHz - 80MHz	10 V
IEC 60255-26		
Klasse 3		

Störfestigkeit gegen Magnetfelder mit energietechnischen Frequenzen		
IEC 61000-4-8	dauernd	30 A/m
IEC 60255-26	3 sec	300 A/m
Klasse 4		

EMV-Prüfungen zur Störaussendung

Messung der Funkstörspannung		
IEC/CISPR 22	150kHz - 30MHz	Grenzwert Klasse B

Messung der Funkstörspa	nnung	
IEC60255-26		

Messung der Funkstörstrahlung			
IEC/CISPR 11	30MHz - 1GHz	Grenzwert Klasse A	
IEC60255-26			

14.1.4 Umweltprüfungen

14.1.4 Oniweitprurungen		
Klassifizierung:		
IEC 60068-1	Klimakategorie	20/060/56
IEC 60721-3-1	Klassifizierung der	1K5/1B1/1C1L/1S1/1M2
	Umweltbedingungen (Langzeitlagerung)	aber min30°C (-22°F)
IEC 60721-3-2	Klassifizierung der Umweltbedingungen (Transport)	2K2/2B1/2C1/2S1/2M2
	Onweitbedingungen (nansport)	aber min30°C (-22°F)
IEC 60721-3-3	Klassifizierung der Umweltbedingungen (Ortsfester	3K6/3B1/3C1/3S1/3M2
	Einsatz, wettergeschützt)/	aber min20°C (-4°F) / max 60°C (140°F)
Test Ad: Kälte		
IEC 60068-2-1	Temperatur	-20°C
IEC 60255-27	Beanspruchungsdauer	16 h
Test Bd: Trockene Wärme		
IEC 60068-2-2	Temperatur	60°C
IEC 60255-27	Relative Feuchte	<50%
	Beanspruchungsdauer	72 h
Test Cab: Feuchte Wärme	(konstant)	
IEC 60255-27	Temperatur	60°C
IEC 60068-2-78	Relative Feuchte	95%
	Beanspruchungsdauer	56 days
Test Db: Feuchte Wärme (zyklisch)		
	_	600.6
IEC 60068-2-30	Temperatur	60°C
IEC 60255-27	Relative Feuchte	95%
	Zyklen (12 + 12-hour)	2

Test Nb: Temperaturwechsel		
IEC 60068-2-14	Temperatur	60°C/-20°C
	Zyklen	5

Test Nb: Temperaturwechsel		
	Beanspruchungsdauer	1°C / 5min
Test BD: Trockene Wärme:	Transport und Lagerung	
IEC 60255-27	Temperatur	70°C
IEC 60068-2-2	Beanspruchungsdauer	16 h
Test AB: Kälte: Transport und Lagerung		
IEC 60255-27	Temperatur	-30°C
IEC 60068-2-1	Beanspruchungsdauer	16 h

14.1.5 Mechanische Prüfbeanspruchungen

Test Fc: Schwingprüfung auf Funktionsfähigkeit				
IEC 60068-2-6	(10 Hz - 59 Hz)	0.035 mm		
IEC 60255-27	Amplitude			
IEC 60255-21-1	(59Hz - 150Hz)	0.5 gn		
Klasse 1	Beschleunigung			
	Anzahl der Zyklen in jeder Achse	1		

Test Fc: Dauerschwingprüfung				
IEC 60068-2-6	(10 Hz - 150 Hz)	1.0 gn		
IEC 60255-21-1	Beschleunigung			
Klasse 1	Anzahl der Zyklen in jeder Achse	20		

Test Ea: Schockprüfungen				
IEC 60068-2-27		5 gn, 11 ms, 3 Impulse in jeder Richtung		
IEC 60255-21-2 Klasse 1	Schockprüfung auf Widerstandsfähigkeit	15 gn, 11 ms, 3 Impulse in jeder Richtung		

Test Eb: Dauerschockprüfung		
IEC 60068-2-29	Dauerschockprüfung	10 gn, 16 ms, 1000 Impulse in jeder
IEC 60255-21-2		Richtung
Klasse 1		

Test Fe: Erdbebenprüfung					
IEC 60068-3-3	Einachsige Erdbebenschwingprüfung	1 – 9 Hz horizontal: 7.5 mm			
IEC 60255-27		1 - 9 Hz vertikal: 3.5 mm			
IEC 60255-21-3		1 Zyklus pro Achse			
Klasse 2		9 – 35 Hz horizontal: 2 gn,			
		9 - 35 Hz vertikal : 1 gn,			

Test Fe: Erdbebenprüfung	
	1 Zyklus pro Achse

14.2 Kompatibilität mit IEC 60870-5-103

Die ausgewählten Parameter sind in den weißen Kontrollfeldern wie folgt markiert:

	Funktion oder ASDU wird nicht benutzt
\boxtimes	Funktion oder ASDU wird wie genormt benutzt (Vorzugswert)

Die mögliche Auswahl (blank "□" / X "⊠") ist für jeden Abschnitt oder Parameter festgelegt.

14.2.1 Physikalische Schicht

Elektrische Schnittstelle

\boxtimes	EIA RS-485	\boxtimes	Anzahl Lasten für ein Gerät: 32
	Optische Schnittstelle		
\boxtimes	Glasfaser		F-SMA-Stecker
\boxtimes	Kunststofffaser	\boxtimes	BFOC/2,5-Stecker
	Übertragungsgeschwindigkeit:		
\boxtimes	9600 bit/s	\boxtimes	19200 bit/s
		\boxtimes	38400 bit/s

14.2.2 Verbindungsschicht

Für die Verbindungsschicht bestehen keine Auswahlmöglichkeiten.

14.2.3 Anwendungsschicht

Nach dieser anwendungsbezogenen Norm wird ausschließlich Mode 1 (niederwertigstes Oktett zuerst) nach 4.10 von IEC 60870-5-4 eingesetzt.

14.2.3.1 Gemeinsame Adresse der ASDU

\boxtimes	Eine GEMEINSAME ADRESSE der ASDU (identisch mit der Stationsadresse)	Mehr als eine GEMEINSAME ADRESSE der ASDU
	·	

14.2.3.2 Auswahl von Norm-Informationsnummern in Überwachungsrichtung

Systemfunktionen in Überwachungsrichtung:

\boxtimes	INF = 0 — Ende der Generalabfrage	\boxtimes	INF = 0 — Zeitsynchronisierung
×	INF = 2 — Rücksetzen FCB	\boxtimes	INF = 3 — Rücksetzen CU
\boxtimes	INF = 4 — Anlauf / Wiederanlauf	\boxtimes	INF = 5 — Erstanlauf

Betriebsmesswerte in Überwachungsrichtung:

	INF = 144 — Betriebsmesswert I	INF = 145 — Betriebsmesswerte I, U
	INF = 146 — Betriebsmesswerte I, U, P, Q	$INF = 147$ — Betriebsmesswerte I_N , U_{EN}
X	INF = 148 — Betriebsmesswerte $I_{L1,2,3}$, $U_{L1,2,3}$, P, Q, f	

Generische Funktionen in Überwachungsrichtung:

INF = 240 — Bezeichnung aller festgelegten Gruppen lesen	INF = 241 — Werte oder Attribute aller Einträge einer Gruppe lesen
INF = 243 — Verzeichnis eines einzelnen Eintrags lesen	INF = 244 — Werte oder Attribute eines einzelnen Eintrags lesen
INF = 245 — Ende Generalabfrage Generische Daten	INF = 249 — Eintrag schreiben (mit Bestätigung)
INF = 250 — Eintrag schreiben (mit Ausführung)	INF = 251 — Eintrag schreiben (mit Abbruch)

14.2.3.3 Auswahl von Norm-Informationsnummern in Steuerungsrichtung

Systemfunktionen in Steuerungsrichtung:

\boxtimes	INF = 0 — Generalabfrage-Abstoß	\boxtimes	INF = 0 — Zeitsynchronisierung			
Alleranseine Defelie in Chausemanneichtung.						

Allgemeine Befehle in Steuerungsrichtung:

\boxtimes	INF = 16 — Wiedereinschaltung EIN/AUS	\boxtimes	INF = 17 — Schutzsignalübertragung EIN/AUS
×	INF = 18 — Schutz EIN/AUS	\boxtimes	INF = 19 — Rückstellung der Anzeigen
×	INF = 20 — Sperre der Überwachungsrichtung	\boxtimes	INF = 21 — Testbetrieb
×	INF = 23 — Aktivieren der Kennlinie 1	\boxtimes	INF = 24 — Aktivieren der Kennlinie 2
\boxtimes	INF = 25 — Aktivieren der Kennlinie 3	\boxtimes	INF = 26 — Aktivieren der Kennlinie 4

Generische Daten in Steuerungsrichtung:

INF = 240 — Bezeichnung aller festgelegten Gruppen lesen	INF = 241 — Werte oder Attribute aller Einträge einer Gruppe lesen
INF = 243 — Verzeichnis eines einzelnen Eintrags lesen	INF = 244 — Werte oder Attribute eines einzelnen Eintrags lesen
INF = 245 — Ende Generalabfrage Generische Daten	INF = 248 — Eintrag schreiben
INF = 249 — Eintrag schreiben (mit Bestätigung)	INF = 250 — Eintrag schreiben (mit Ausführung)
INF = 251 — Eintrag schreiben (mit Abbruch)	

Grundlegende Anwendungsfunktionen:

\boxtimes	Testbetrieb	\boxtimes	Sperre der Überwachungsrichtung
\boxtimes	Stördaten		Generische Dienste
\boxtimes	Private Daten		

14.2.3.4 Verschiedenes

Messwert	max. Wert Nennwert	
	1,2	2,4
Strom L ₁		\boxtimes
Strom L ₂		\boxtimes
Strom L ₃		\boxtimes
Spannung L _{1-E}		\boxtimes
Spannung L _{2-E}		\boxtimes
Spannung L _{3-E}		\boxtimes
Spannung L ₁ -L ₂		\boxtimes
Wirkleistung P		\boxtimes
Blindleistung Q		\boxtimes
Frequenz f	×	

14.3 Kompatibilität mit IEC 60870-5-104

Die Norm IEC 60870-5-104 gibt Parametersätze und Alternativen vor, aus denen Untermengen auszuwählen sind, um bestimmte Fernwirksysteme zu erstellen. Bestimmte Parameter, wie die Auswahl von "strukturierten" oder "unstrukturierten" Feldern der ADRESSE DES INFORMATIONSOBJEKTS von ASDU, schließen sich gegenseitig aus. Das bedeutet, dass nur ein Wert des festgelegten Parameters je System zulässig ist. Andere Parameter, wie der aufgelistete Satz unterschiedlicher Prozessinformation in Befehls- und Überwachungsrichtung, erlauben die Festlegung von Gesamt- oder Untermengen, die für die gegebene Anwendung geeignet sind. Dieser Abschnitt fasst die Parameter der vorstehenden Abschnitte zusammen, um eine geeignete Auswahl für eine bestimmte Anwendung zu ermöglichen. Wird ein System aus mehreren Systemkomponenten unterschiedlicher Hersteller zusammengesetzt, ist es erforderlich, dass alle Partner den ausgewählten Parametern zustimmen.

Die Kompatibilitätsliste ist wie in IEC 60870-5-101 festgelegt und um Parameter ergänzt, die in dieser Norm angewendet werden. Die zugehörigen Beschreibungen in dieser anwendungsbezogenen Norm nicht zulässiger Parameter sind durchgestrichen und das zugehörige Kontrollfeld ist geschwärzt.

ANMERKUNG: Für die vollständige Festlegung eines Systems kann zusätzlich die individuelle Auswahl bestimmter Parameter für bestimmte Teile eines Systems erforderlich sein, z. B. die individuelle Auswahl von Skalierungsfaktoren für individuell adressierbare Messwerte.

Die ausgewählten Parameter sollten in den weißen Kontrollfeldern wie folgt markiert werden:

	Funktion oder ASDU wird nicht benutzt
[X]	Funktion oder ASDU wird wie genormt benutzt (Vorzugswert)
[R]	Funktion oder ASDU wird im Umkehrmodus benutzt
[B]	Funktion oder ASDU wird im Regel- und Umkehrmodus benutzt

Die mögliche Auswahl (leer, X, R oder B) ist für jeden Abschnitt oder Parameter festgelegt.

14.3.1 System oder Gerät

(systembezogener Parameter, die Festlegung System oder Gerät ist durch Markieren eines der folgenden Kontrollfelder mit "X" anzuzeigen)

	Systemfestlegung
	Festlegung für die Zentralstation (Master)
[X]	Festlegung für die Unterstation (Slave)

14.3.2 Netzkonfiguration

(netzbezogener Parameter, alle angewendeten Konfigurationen sind mit "X" zu markieren)

Point-to-point	Multipoint
Multiple point-to-point	Multipoint-star

14.3.3 Physikalische Schicht

(netzbezogener Parameter, alle angewendeten Schnittstellen und Datenraten sind mit "X" zu markieren)

Übertragungsgeschwindigkeit (Steuerungsrichtung)

100 bit/s	2400 bit/s	2400 bit/s
200 bit/s	4800 bit/s	4800 bit/s
300 bit/s	9600 bit/s	9600 bit/s
600 bit/s		19200 bit/s
1200 bit/s		38400 bit/s
		64000 bit/s

Übertragungsgeschwindigkeit (Überwachungsrichtung)

100 bit/s	2400 bit/s	2400 bit/s
200 bit/s	4800 bit/s	4800 bit/s
300 bit/s	9600 bit/s	9600 bit/s
600 bit/s		19200 bit/s
1200 bit/s		38400 bit/s
		64000 bit/s

14.3.4 Verbindungsschicht

(Netzbezogener Parameter, alle angewendeten Auswahlen sind mit "X" zu markieren. Die maximale Telegrammlänge ist festzulegen. Ist für unsymmetrische Übertragungsdienste eine von der Regel abweichende [en. non-standard] Zuweisung von Anwenderdaten zur Datenklasse 2 eingeführt, sind Typkennung und Übertragungsursache aller der Datenklasse 2 zugewiesenen Anwenderdaten anzugeben.)

Nach dieser anwendungsbezogenen Norm werden ausschließlich Telegrammformat FT 1.2, Einzelzeichen 1 und das feste Zeitüberwachungsintervall benutzt.

Übertragungsprozedur der Verbindungsschicht			Adressfeld der Verbindungsschicht		
•	Symmetrische Übertragung	-	Nicht vorhanden (nur symmetrische Übertragung)		
	Unsymmetrische Übertragung		Ein Oktett		
			Zwei Oktette		
			Strukturiert		
			Unstrukturiert		

■ Maximale Länge L (Anzahl der Oktette)

Wird unsymmetrisch übertragen, werden die folgenden ASDU als Anwenderdaten mit den angegebenen Übertragungsursachen mit der Datenklasse 2 (niedrige Priorität) zurückübertragen:

■ Die genormte Zuweisung von ASDU zur Datenklasse 2 wird wie folgt angewendet:

Typkennung	Übertragungsursache
9, 11, 13, 21	<1>

■ Eine spezielle Zuweisung von ASDU zur Datenklasse 2 wird nicht angewendet.

Anmerkung: (Als Antwort auf eine Anforderung nach Daten der Klasse 2 darf eine Unterstation Daten der Datenklasse 1 übertragen, wenn keine Daten der Datenklasse 2 vorhanden sind).

14.3.5 Anwendungsschicht

Übertragungsmode für Anwendungsdaten

Nach dieser Norm wird ausschließlich Modus 1 (niedrigstwertiges Oktett zuerst) nach 4.10 von IEC 60870-5-4 benutzt.

Gemeinsame Adresse der ASDU

(systembezogener Parameter, alle angewendeten Konfigurationen sind mit "X" zu markieren)

Adresse des Informationsobjekts

(systembezogener Parameter, alle angewendeten Konfigurationen sind mit "X" zu markieren)

	Ein Oktett	[X]	Strukturiert
	Zwei Oktette	[X]	Unstrukturiert
[X]	Drei Oktette		

Übertragungsursache

(systembezogener Parameter, alle angewendeten Konfigurationen sind mit "X" zu markieren)

Ein Oktett	[X]	Zwei Oktette (mit Herkunftsadresse).
		Mit 0 vorbesetzt, falls Herkunftsadresse nicht vorhanden

Länge der APDU

(systembezogener Parameter, die maximale Länge der APDU je System ist festzulegen)

Die maximale Länge der APDU beträgt in beiden Übertragungsrichtungen 253. Dies ist ein fester Systemparameter.

Maximale Länge der APDU je System

Auswahl genormter ASDU

Prozessinformation in Überwachungsrichtung

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit, "B" falls in beiden Richtungen angewendet).

[X]	<1>	:= Einzelmeldung	M_SP_NA_1
	<2>	:= Einzelmeldung mit Zeitmarke	M_SP_TA_1
[X]	<3>	:= Doppelmeldung	M_DP_NA_1
	<4>	:= Doppelmeldung mit Zeitmarke	M_DP_TA_1
	<5>	:= Stufenstellungsmeldung	M_ST_NA_1
	<6>	:= Stufenstellungsmeldung mit Zeitmarke	M_ST_TA_1
[X]	<7>	:= Bitmuster von 32 bit	M_BO_NA_1
	<8>	:= Bitmuster von 32 bit mit Zeitmarke	M_BO_TA_1
[X]	<9>	:= Messwert, normierter Wert	M_ME_NA_1
	<10>	:= Messwert, normierter Wert mit Zeitmarke	M_ME_TA_1
[X]	<11>	:= Messwert, skalierter Wert	M_ME_NB_1
	<12>	:= Messwert, skalierter Wert mit Zeitmarke	M_ME_TB_1
[X]	<13>	:= Messwert, verkürzte Gleitkommazahl	M_ME_NC_1
	<14>	:= Messwert, verkürzte Gleitkommazahl mit Zeitmarke	M_ME_TC_1
[X]	<15>	:= Zählwerte	M_IT_NA_1
	<16>	:= Zählwerte mit Zeitmarke	M_IT_TA_1
	<17>	:= Schutzereignis mit Zeitmarke	M_EP_TA_1
	<18>	:= Geblockte Anregungen des Schutzes mit Zeitmarke	M_EP_TB_1
	<19>	:= Geblockte Auslösungen des Schutzes mit Zeitmarke	M EP TC 1
	<20>	:= Geblockte Einzelmeldungen mit Zustandsanzeige	M_SP_NA_1
	<21>	:= Messwert, normierter Wert ohne Qualitätskennung	M_ME_ND_1
[X]	<30>	:= Einzelmeldung mit Zeitmarke CP56Time2a	M_SP_TB_1
[X]	<31>	:= Doppelmeldung mit Zeitmarke CP56Time2a	M_DP_TB_1
	<32>	:= Stufenstellungsmeldung mit Zeitmarke CP56Time2a	M_ST_TB_1

[X]	<33>	:= Bitmuster von 32 bit mit Zeitmarke CP56Time2a	M_BO_TB_1
[X]	<34>	:= Messwert, normierter Wert mit Zeitmarke CP56Time2a	M_ME_TD_1
[X]	<35>	:= Messwert, skalierter Wert mit Zeitmarke CP56Time2a	M_ME_TE_1
[X]	<36>	:= Messwert, verkürzte Gleitkommazahl mit Zeitmarke CP56Time2a	M_ME_TF_1
[X]	<37>	:= Zählwerte mit Zeitmarke CP56Time2a	M_IT_TB_1
	<38>	:= Schutzereignis mit Zeitmarke CP56Time2a	M_EP_TD_1
	<39>	:= Geblockte Anregungen des Schutzes mit Zeitmarke CP56Time2a	M_EP_TE_1
	<40>	:= Geblockte Auslösungen des Schutzes mit Zeitmarke CP56Time2a	M_EP_TF_1

In dieser Norm ist nur die Benutzung des ASDU-Satzes <30> bis <40> für ASDU mit Zeitmarke erlaubt.

Prozessinformation in Steuerungsrichtung

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit, "B" falls in beiden Richtungen angewendet).

[X]	<45>	:= Einzelbefehl	C_SC_NA_1
[X]	<46>	:= Doppelbefehl	C_DC_NA_1
	<47>	:= Stufenstellbefehl	C_RC_NA_1
	<48>	:= Sollwert-Stellbefehl, normierter Wert	C_SE_NA_1
	<49>	:= Sollwert-Stellbefehl, skalierter Wert	C_SE_NB_1
	<50>	:= Sollwert-Stellbefehl, verkürzte Gleitkommazahl	C_SE_NC_1
	<51>	:= Bitmuster von 32 bit	C_BO_NA_1
	<58>	:= Einzelbefehl mit Zeitmarke CP56Time2a	C_SC_TA_1
	<59>	:= Doppelbefehl mit Zeitmarke CP56Time2a	C_DC_TA_1
	<60>	:= Stufenstellbefehl mit Zeitmarke CP56Time2a	C_RC_TA_1
	<61>	:= Sollwert-Stellbefehl mit Zeitmarke CP56Time2a, normierter Wert	C_SE_TA_1
	<62>	:= Sollwert-Stellbefehl mit Zeitmarke CP56Time2a, skalierter Wert	C_SE_TB_1
	<63>	:= Sollwert-Stellbefehl mit Zeitmarke CP56Time2a, verkürzte Gleitkommazahl	C_SE_TC_1
	<64>	:= Bitmuster von 32 bit mit Zeitmarke CP56Time2a	C_BO_TA_1

Es wird entweder der ASDU-Satz <45> bis <51> oder der Satz <58> bis <64> angewendet.

Systeminformation in Überwachungsrichtung

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit, "B" falls in beiden Richtungen angewendet)

[X]	<70>	:= Initialisierungsende	M_EI_NA_1
-----	------	-------------------------	-----------

Systeminformation in Steuerungsrichtung

((stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit, "B" falls in beiden Richtungen angewendet).

[X]	<100>	:= (Stations-)Abfragebefehl	C_IC_NA_1
	<101>	:= Zähler-Abfragebefehl	C_CI_NA_1
	<102>	:= Abfragebefehl	C_RD_NA_1
[X]	<103>	:= Uhrzeit-Synchronisationsbefehl (wahlweise)	C_CS_NA_1
	<104>	:= Prüfbefehl	C_TS_NA_1
[X]	<105>	:= Prozess-Rücksetzbefehl	C_RP_NA_1
	<106>	:= Befehl zur Telegrammlaufzeit-Erfassung	C_CD_NA_1
	<107>	:= Prüfbefehl mit Zeitmarke CP56time2a	C_TS_TA_1

Parameter in Steuerungsrichtung

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit, "B" falls in beiden Richtungen angewendet).

<110>	:= Parameter für Messwerte, normierter Wert	P_ME_NA_1
<111>	:= Parameter für Messwerte, skalierter Wert	P_ME_NB_1
<112>	:= Parameter für Messwerte, verkürzte Gleitkommazahl	P_ME_NC_1
<113>	:= Parameter für Aktivierung	P_AC_NA_1

Dateiübertragung

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit, "B" falls in beiden Richtungen angewendet).

<120>	:= Datei bereit	F_FR_NA_1
<121>	:= Abschnitt bereit	F_SR_NA_1
<122>	:= Abfrage Dateiverzeichnis, -auswahl, -abfrage, Abschnittsabfrage	F_SC_NA_1
<123>	:= Letzter Abschnitt, letztes Segment	F_LS_NA_1
<124>	:= Dateibestätigung, Abschnittsbestätigung	F_AF_NA_1
<125>	:= Segment	F_SG_NA_1
<126>	:= Dateiverzeichnis [leer oder X, nur in Überwachungsrichtung verfügbar (genormt)]	F_DR_TA_1
<127>	:= QueryLog - Anforderung einer Archiv-Datei	F_SC_NB_1

Zuweisungen der Übertragungsursachen zu den Typkennungen

(stationsbezogene Parameter)

- Schattierte Felder: werden nicht benötigt.
- Schwarze Felder stellen in dieser Norm nicht zulässige bzw. nicht unterstützte Kombinationen dar.
- ☐ Weiße Felder: Funktion oder ASDU wird nicht angewendet.

Markierung der Kombinationen Typkennung /Übertragungsursache mit:

- "X", falls nur in der Normrichtung angewendet;
- "R", falls nur in der entgegengesetzten Richtung angewendet;
- "B", falls in beiden Richtungen angewendet.

Typke	ennung	Üb	ertr	agu	ngs	urs	ache	•												
		1	2	3	4	5	6	7	8	9	10	11	12	13	20	37	44	45	46	47
															36	41				
<1>	M_SP_NA_1			[X]											[X]					
<2>	M_SP_TA_1																			
<3>	M_DP_NA_1			[X]								[X]	[X]		[X]					
<4>	M_DP_TA_1																			
<5>	M_ST_NA_1																			
<6>	M_ST_TA_1																			
<7>	M_BO_NA_1			[X]											[X]					
<8>	M_BO_TA_1																			
<9>	M_ME_NA_1	[X]		[X]											[X]					
<10>	M_ME_TA_1																			
<11>	M_ME_NB_1	[X]		[X]											[X]					
<12>	M_ME_TB_1																			
<13>	M_ME_NC_1	[X]		[X]											[X]					
<14>	M_ME_TC_1																			
<15>	M_IT_NA_1			[X]																
<16>	M_IT_TA_1																			
<17>	M_EP_TA_1																			
<18>	M_EP_TB_1																			
<19>	M_EP_TC_1																			

Typkennung	Üb	ertr	agu	ngs	ursa	ache	•												
	1	2	3	4	5	6	7	8	9	10	11	12	13	20	37	44	45	46	47
														 36	 41				
<20> M_PS_NA_1																			
<21> M_ME_ND_1																			
<30> M_SP_TB_1			[X]																
<31> M_DP_TB_1			[X]																
<32> M_ST_TB_1																			
<33> M_BO_TB_1			[X]																
<34> M_ME_TD_1			[X]																
<35> M_ME_TE_1			[X]																
<36> M_ME_TF_1			[X]																
<37> M_IT_TB_1			[X]																
<38> M_EP_TD_1																			
<39> M_EP_TE_1																			
<40> M_EP_TF_1																			
<45> C_SC_NA_1						[X]	[X]	[X]	[X]	[X]									
<46> C_DC_NA_1						[X]	[X]	[X]	[X]	[X]									
<47> C_RC_NA_1																			
<48> C_SE_NA_1				Ħ															
<49> C_SE_NB_1																			
<50> C_SE_NC_1																			
<51> C_BO_NA_1																			
<58> C_SC_TA_1																			
<59> C_DC_TA_1																			
<60> C_RC_TA_1																			
<61> C_SE_TA_1																			
<62> C_SE_TB_1																			
<63> C_SE_TC_1																			
<64> C_BO_TA_1																			
<70> M_EI_NA_1*																			
<100>C_IC_NA_1																			
<101>C_CI_NA_1																			

Typkennung	Übertragungsursache																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	20 36	37 41	44	45	46	47
<102>C_RD_NA_1																			
<103>C_CS_NA_1																			
<104>C_TS_NA_1																			
<105>C_RP_NA_1						[X]	[X]												
<106>C_CD_NA_1																			
<107>C_TS_TA_1																			
<110>P_ME_NA_1																			
<111>P_ME_NB_1																			
<112>P_ME_NC_1																			
<113>P_AC_NA_1																			
<120>F_FR_NA_1																			
<121>F_SR_NA_1																			
<122>F_SC_NA_1																			
<123>F_LS_NA_1																			
<124>F_AF_NA_1																			
<125>F_SG_NA_1																			
<126>F_DR_TA_1*																			
* Leer oder nur "X"																			

14.3.6 Grundlegende Anwendungsfunktionen

Stationsinitialisierung

(stationsbezogener Parameter, bei Anwendung mit "X" markieren)

[X] Stationsinitialisierung

Zyklische Datenübertragung

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit, "B" falls in beiden Richtungen angewendet)

[X] Zyklische Datenübertragung

Abrufprozedur

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit "B", falls in beiden Richtungen angewendet)

□ Abrufprozedur

Spontane Übertragung

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit "B", falls in beiden Richtungen angewendet)

[X] Spontane Übertragung

Doppelübertragung von Informationsobjekten mit der Übertragungsursache spontan

(stationsbezogener Parameter, jeder Informationstyp ist mit "X" zu markieren, falls bei einer einzigen spontanen Änderung eines Informationsobjekts eine Typkennung ohne Zeitmarke und die zugehörige Typkennung mit Zeitmarke übertragen werden)

Die folgenden Typkennungen dürfen nacheinander in Folge eines einzigen Zustandswechsels eines Informationsobjekts übertragen werden. Die einzelnen Adressen der Informationsobjekte, die für die Doppelübertragung vorgesehen sind, werden in einer projektspezifischen Liste festgelegt.

Einzelmeldung M_SP_NA_1, M_SP_TA_1, M_SP_TB_1 und M_PS_NA_1
Doppelmeldung M_DP_NA_1, M_DP_TA_1 und M_DP_TB_1
Stufenstellungsmeldung M_ST_NA_1, M_ST_TA_1 und M_ST_TB_1
Bitmuster von 32 bit M_BO_NA_1, M_BO_TA_1 und M_BO_TB_1 (falls für ein bestimmtes Projekt festgelegt)
Messwert, normierter Wert M_ME_NA_1, M_ME_TA_1, M_ME_ND_1 und M_ME_TD_1
Messwert, skalierter Wert M_ME_NB_1, M_ME_TB_1 und M_ME_TE_1
Messwert, verkürzte Gleitkommazahl M_ME_NC_1, M_ME_TC_1 und M_ME_TF_1

Stationsabfrage

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R" falls nur in entgegengesetzter Richtung und mit "B" falls in beiden Richtungen angewendet).

[X]	Global		
	Gruppe 1	Gruppe 7	Gruppe 13
	Gruppe 2	Gruppe 8	Gruppe 14
	Gruppe 3	Gruppe 9	Gruppe 15
	Gruppe 4	Gruppe 10	Gruppe 16
	Gruppe 5	Gruppe 11	Die Zuweisung der Adressen der Informationsobjekte zu jeder

	Gruppe 6		Gruppe 12		einzelnen Gruppe muss in einer getrennten Tabelle festgelegt werden.
--	----------	--	-----------	--	--

Uhrzeitsynchronisation

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R" falls nur in entgegengesetzter Richtung und mit "B" falls in beiden Richtungen angewendet).

[X] Uhrzeitsynchronisation

Befehlsübertragung

(objektbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit "B", falls in beiden Richtungen angewendet)

[X]	Direkte Befehlsübertragung
	Direkte Sollwert-Befehlsübertragung
[X]	Befehl "Anwahl und Ausführung"
	Sollwertbefehl "Anwahl und Ausführung"
[X]	C_SE_ACTTERM angewendet
	Keine zusätzliche Festlegung
[X]	Kurze Befehlsausführungsdauer (Ausführungsdauer durch einen Systemparameter in Unterstation bestimmt)
	Lange Befehlsausführungsdauer (Ausführungsdauer durch einen Systemparameter in Unterstation bestimmt)
	Dauerbefehl
[X]	Überwachung der maximalen Verzögerung von Befehlen und Sollwertbefehlen in Befehlsrichtung

Übertragung von Zählwerten

[einstellbar]

(stations- oder objektbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit "B", falls in beiden Richtungen angewendet).

Maximal zulässige Verzögerung von Befehlen und Sollwertbefehlen

Modus A: Örtliches Umspeichern mit spontaner Übertragung
Modus B: Örtliches Umspeichern mit Zählerabfrage
Modus C: Umspeichern und Übertragen durch Zähler-Abfrage bei Umspeichern und Übertragen durch Zähler-Abfragebefehle
Modus D: Umspeichern durch Zähler-Abfragebefehl, umgespeicherte Werte werden spontan übertragen

[X]	Zählerabfrage
	Zähler umspeichern ohne Rücksetzen
	Zähler umspeichern mit Rücksetzen
	Zähler rücksetzen
	Allgemeine Zählerabfrage
	Zählerabfrage Gruppe 1
	Zählerabfrage Gruppe 2
	Zählerabfrage Gruppe 3
	Zählerabfrage Gruppe 4
	Laden eines Parameters
	(objektbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit "B", falls in beiden Richtungen angewendet).
	Schwellenwert
	Glättungsfaktor
	Unterer Grenzwert für Messwertübertragung
	Oberer Grenzwert für Messwertübertragung
	Parameter für Aktivierung
	(objektbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit "B", falls in beiden Richtungen angewendet).
	Act/deact der zyklischen oder periodischen Übertragung des adressierten Objekts
	Prüfprozedur
	(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit "B", falls in beiden Richtungen angewendet).
	Prüfprozedur
	Dateiübermittlung
	(stationsbezogener Parameter, bei Anwendung mit "X" markieren).
	Dateiübermittlung in Überwachungsrichtung
	Transparente Datei
	Übermittlung von Störfalldaten aus Schutzeinrichtungen
	Übermittlung von Ereignisfolgen

□ Übermittlung von Folgen aufgezeichneter Analogwerte

Dateiübermittlung in Steuerungsrichtung

Transparente Datei

Hintergrundabfrage

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit "B", falls in beiden Richtungen angewendet).

☐ Hintergrundabfrage

Telegrammlaufzeit-Erfassung

(stationsbezogener Parameter, jede nur in regulärer Richtung angewendete Typkennung ist mit "X" zu markieren, mit "R", falls nur in entgegengesetzter Richtung, und mit "B", falls in beiden Richtungen angewendet).

■ Telegrammlaufzeit-Erfassung

Festlegungen für Zeitüberwachungen

Parameter	Norm- Vorgabe	Bemerkungen	Eingestellter Wert
t ₀	30 s	Zeitüberwachung für die Verbindungsherstellung	30 s (fest)
t ₁	15 s	Zeitüberwachung für gesendete APDU oder Test- APDU	15 s (fest)
t ₂	10 s	Zeitüberwachung für Quittierungen, falls keine Datentelegramme übertragen werden $t_2 < t_1$	10 s (fest)
t ₃	20 s	Zeitüberwachung für gesendete Testtelegramme im Falle langer Ruhezustände	20 s (fest)

Maximale Anzahl k der unquittierten APDU im I Format und späteste APDU-Quittierung (w)

Parameter	Norm- Vorgabe	Bemerkungen	Eingestellter Wert
k	12 APDUs	Maximale Differenz Anzahl der Empfangsfolgen zur Anzahl der Sendefolgen	12 (fest)
W	8 APDUs	Späteste Quittierung nach Empfang von w APDU im I-Format	8 (fest)

Die Parameterwerte k und w sind vorgegeben, d. h. sind nicht einstellbar.

Port number

Parameter	Wert	Bemerkungen
Portnummer	2404	einstellbar, Vorgabewert = 2404

RFC-2200-Sammlung

RFC 2200 ist ein offizieller Internet-Standard, der den Stand der Normung im Internet angewendeter Protokolle beschreibt, wie sie durch das Internet Architecture Board (IAB) festgelegt sind. Es bietet ein breites Spektrum aktueller, im Internet angewendeter Standards. Die geeignete Auswahl in der vorliegenden Norm festgelegter Dokumente aus RFC 2200 für vorgegebene Projekte ist durch den Anwender dieser Norm auszuwählen.

[X]	Ethernet 802.3
	Serielle Schnittstelle X.21
	Andere Auswahl aus RFC 2200

14.4 Abkürzungen und Akronyme

Folgende Abkürzungen und Akronyme werden in diesem Handbuch verwendet.

°C	Grad Celsius
°F	Grad Fahrenheit
A	Ampere
AC	Wechselstrom
Ack.	Quittierung
AKÜ	Auslösekreisüberwachung
ANSI	American National Standards Institute
Anz	Anzahl
AuslBef	Auslösebefehl
AuslBef.	Auslösebefehl
AWG	American wire gauge (Kablequerschnitt)
BF	Schalterversager (Breaker Failure)
Blo	Blockade(n)
Buchholz	Buchholz
CD	Compact Disk
CMN	Common input
COM	Common input
Comm	Communication
CSA	Canadian Standards Association
d	Tag
D-Sub-Stecker	Kommunikationsschnittstelle
DC	Gleichstrom
DEFT	Die Auslöseverzögerung ist unabhängig von der Höhe des Stromes (Definite time characteristic)
delta phi	Vektorsprung
df/dt	Frequenzänderungsgeschwindigkeit
DI	Digitaleingang
Diag-Z	Diagnosezähler
Diag.	Diagnose
DIN	Deutsche Industrie Norm
EINV	Extremely inverse tripping characteristic

EMV	Elektromagnetische Verträglichkeit
EN	Europäische Norm
err	errechnet
EspW Beh	Dieser Parameter legt fest ob die Verlagerungsspannung berechnet oder gemessen wird.
Ex	Extern(e)
Ex Öl Temp	Externe Öltemperatur
ExBlo	Externe Blockade(n)
ExS	Externer Schutz - Modul
ExS	Externer Schutz
Ext Temp Überw	Externe Temperatur Überwachung
f	Frequenzschutz - Modul
FAS	Fehleraufschaltung - Modul
feh	Fehler
FIFO	First in first out
FIFO Principal	First in first out
Fk	Funktion (Erlauben von Funktionalität = aktiv oder inaktiv).
gem	gemessen
gn	Erdbeschleunigung in vertikaler Richtung (9.81 m/s2)
GND	Ground
grund	Grundwelle
h	Stunde
HMI	Bedienpanel (Human Machine Interface)
HTL	Werksinterne Produktbezeichnung
Hz	Hertz
1	Phasenstromschutz-Stufe
1	Fehlerstrom
1	Strom
I-LSV	Schwellwert
10	Nullstrom (Symmetrische Komponenten)
I1	Strom im Mitsystem (Symmetrische Komponenten)

12	Strom im Gegensystem (Symmetrische Komponenten)
12>	Schieflast-Stufe
12>G	Generator-Schieflastschutz
I2T	Thermische Auslösekennlinie
14T	Thermische Auslösekennlinie
IC's	Werksinterne Produktbezeichnung
Id	Differentialschutz-Modul
IdE	Restricted Earth Fault - Modul
IdEH	Restricted Earth Fault Hochstrom - Modul
IdH	Hochstrom-Differentialschutz-Modul
IE	Erdstromschutz-Stufe
IE	Erdstrom
IE	Erdfehlerstrom
IE err	Errechneter Erdstrom
IEC	International Electrotechnical Commission
IEC61850	IEC61850
IEEE	Institute of Electrical and Electronics Engineers
IEn	Nennerdstrom
IH1	Erste Harmonische
IH2	Modul Inrush
IH2	Zweite Harmonische
IL1	Strom in Leiter1
IL2	Strom in Leiter2
IL3	Strom in Leiter3
in.	Zoll
Info.	Information
inkl.	inklusive
INV	Von der Höhe des Stromes abhängige Stromauslösekennlinie
IRIG	Eingang zur Zeitsynchronisierung
IRIG-B	IRIG-B-Modul
IT	Thermische Auslösekennlinie
J	Joule

K	Melderelais
K1	Erstes Melderelais
K2	Zweites Melderelais
K3	Drittes Melderelais
Kennl	Kennlinie
kg	Kilogram
kHz	Kilohertz
KLA	Kalte Last Alarm - Modul
kV	Kilovolt
kVdc or kVDC	Kilovolt Gleichstrom
I/In	Verhältnis von Strom zu Nennstrom.
L1	Phase A
L2	Phase B
L3	Phase C
lb-in	Pound-inch
LED	Leuchtdiode(n)
LF	Leistungsfaktor - Modul
LINV	Long time inverse tripping characteristic
Logik	Logik
LS	Leistungsschalter
LS	Leistungsschalter
LS-Mitnahme	LS-Mitnahme
LSV	Modul Leistungsschalterversagerschutz
LV	Niederspannung
LVRT	Low Voltage Ride Through
m	Meter
mA	Milliampere
man.	manuell
max.	Maximalwert
min.	Minimalwert
min.	Minute
MINV	Moderately Inverse Tripping Characteristic
mit	Mittelwert

mm	Millimeter
MMU	Memory mapping unit
ms	Millisekunden
MV	Mittelspannung
mVA	Milli Volt Ampere (Scheinleistung)
N.C.	Nicht verbunden oder Normal geschlossen (Kontakt)
N.O.	Normal geöffnet (Kontakt)
Nenn	Nenngröße / Nennwert
NINV	Normal inverse tripping characteristic
Nm	Newton-meter
NT	Werksinterne Produktbezeichnung
P	Wirk-Rückleistung
Para.	Parameter
PC	Personalcomputer
PCB	Leiterplatte
PE	Schutzleiter (Protected Earth)
p.u.	per unit
Ph	Phase
PQS	Leistungsüberwachungs - Modul
pri	Primärseite
PS1	Parametersatz1
PS2	Parametersatz2
PS3	Parametersatz3
PS4	Parametersatz4
PSet	Parametersatz
PSU	Parametersatzumschaltung
Q	Blind-Rückleistung
Q->&U<	Unterspannungs-Blindleistungsrichtungsschutz
Rch	Richtung
rek	Aufzeichnung
rel	Relative

Res	Reset
res	Reset
ResetFklt	Rücksetzfunktion
RevDat	Revisionsdaten
RMS	Echte Effektivwerte / Root mean square
Rst	Reset
RTD	Temperaturschutz-Modul
rückw Verr	Rückwärtige Verriegelung
S	Sekunde(n)
Sca	SCADA
SCADA	Kommunkation (Leittechnik)
Schutz	Schutzmodul (Master Modul)
sek	Sekundärseite
Sgen	Sinusgenerator
Sig.	Signal
SK	Selbstüberwachungskontakt (Synonyme: Life- Kontakt, Watchdog, State of Health Kontakt)
SNTP	SNTP-Modul
SPÜ	Erweiterte Spannungswandlerüberwachung
StartFkt	Startfunktion
Strg	Steuerung
StW	Stromwandler
StWÜ	Stromwandlerüberwachung
StWÜ	Stromwandlerüberwachung
Sum	Summe
SW	Software
Sync	Synchrocheck
Sys.	System
SysA	Alarme auf Systemebene
t	Zeit
t	Auslöseverzögerung
TCP/IP	Kommunikationsprotokoll
ThA	Thermisches Abbild-Modul

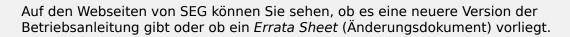
TI	Werksinterne Produktbezeichnung
txt	Text
U	Spannungsschutz-Stufe
U/f>	Übererregung
U012	Symmetrische Komponenten: Überwachung des Mit- oder Gegensystems
UE	Verlagerungsspannungs-Stufe
Uerreg<-Z1	Untererregung
Uerreg<-Z2	Untererregung
UL	Underwriters Laboratories
UMZ	DEFT (Definite Time Tripping Characteristic)
UND	Logikgatter (Der Ausgang wird wahr, wenn alle Eingangssignale wahr sind.)
USB	Universal serial bus
V	Volts
Vac / V ac	Volts alternating current
Vdc / V dc	Volts direct current
VDE	Verband Deutscher Elektrotechnik
VDEW	Verband der Elektrizitätswirtschaft
VE	Residual voltage
VINV	Very inverse tripping characteristic
VTS	Voltage transformer supervision
W	Watt(s)
WDC	Watch dog contact (supervision contact)
www	World wide web
XCT	4th current measuring input (ground or neutral current)
XInv	Inverse characteristic
Z	Zähler
ZSS	Zuschaltschutz

14.5 Liste der ANSI-Codes

IEEE C37.2 / ANSI	MCDLV4	Funktionen
14		Drehzahlüberwachung
21		Distanzschutz
21P		Phasendistanzschutz
24	U/f>	Übererregungsschutz (Volt pro Hertz)
25	Sync	Synchronitäts-Test (über den vierten Messkanal der Spannungsmesskarte)
26		Temperaturschutz
27	U	Unterspannungsschutz
27(t)		Unterspannungsschutz (zeitabhängig)
27A		Unterspannungsschutz (über den vierten Messkanal der Spannungsmesskarte)
27N	UE	Verlagerungsunterspannungsüberwachung (über den vierten Messkanal der Spannungsmesskarte)
27TN		Sternpunktunterspannungsüberwachung (über den vierten Messkanal der Spannungsmesskarte)
32	P, Q	Leistungsrichtungsschutz
32F		Vorwärtsleistung
32R		Rückleistung
37		Unterlast- oder Unterstromschutz
38		Temperaturschutz (optional über Schnittstelle/externe Box)
40		Untererregungsschutz / Erregerfeldausfall
46	12>	Schieflastschutz
46G		Generator-Schieflastschutz
47	U012	Spannungsasymmetrie (Drehfeldüberwachung)
48		Anlaufüberwachung (unvollständige Startsequenz)
49	ThA	Thermisches Abbild
49M		Thermisches Abbild des Motors
49R		Thermisches Abbild des Rotors
495		Thermisches Abbild des Stators
50BF	LSV	Leistungsschalterversager
50	1	Unabhängigger / unverzögerter Überstromschutz

IEEE C37.2 / ANSI	MCDLV4	Funktionen
50P	50P	Unabhängigger / unverzögerter Phasenüberstromschutz
50N/G	IE	Unabhängigger / unverzögerter Erdschlussschutz
50Ns	IE	Unabhängigger / unverzögerter Erdschlussschutz mit empfindlichem Messeingang
51	T	Abhängiger Überstromzeitschutz
51P		Abhängiger Phasenstromzeitschutz
51N/G	IE	Abhängiger Erdstromzeitschutz
51Ns	IE	Abhängiger Erdstromzeitschutz mit empfindlichem Messeingang
51LR		Festsitzschutz / Rotorblockade
51LRS		Festsitzschutz / Rotorblockade (während der Startphase)
51C	(über adaptive Parameter)	Spannungsgesteuerter Überstromzeitschutz (über adaptive Parameter)
51Q	1	Gegensystem-Überstromzeitschutz (diverse Auslösekennlinien)
51V	1	Spannungsbeherrschter Überstromschutz
55	LF	Leistungsfaktorüberwachung
56		Erregerfeldüberwachung
59	U	Überspannungsschutz
59TN	UE	Überspannungsüberwachung für die dritte Harmonische (über den vierten Messkanal der Spannungsmesskarte)
59A		Überspannungsschutz (über den vierten Messkanal der Spannungsmesskarte)
59N		Verlagerungsspannungsschutz
60FL	SPÜ	Spannungswandlerüberwachung
60L	StWÜ	Stromwandlerüberwachung
64R		Rotor-Erdfehler-Schutz
64REF	IdE	Restricted Ground Fault Protection (Erdfehler innerhalb des Schutzobjekts)
66		Schutz gegen zu viele Anläufe
67	1	Gerichteter Überstromzeitschutz
67N	IE	Gerichteter Erdüberstromzeitschutz
67Ns	IE	Gerichteter Erdüberstromzeitschutz mit empfindlichem Messeingang
68		Pendelsperre

IEEE C37.2 / ANSI	MCDLV4	Funktionen
74TC	AKÜ	Auslösekreisüberwachung
78		Außertrittfallschutz (engl.: Out of Step Tripping)
78V	Freq.schutz-Be- triebsart delta phi	Vektorsprungüberwachung
79	AWE	Automatische Wiedereinschaltung
81	f	Frequenzschutz
81U		Unterfrequenzschutz
810		Überfrequenzschutz
81R	df/dt	Fequenzgradientenschutz (df/dt)
86		Wiedereinschaltsperre (Lock Out)
		Generator-Erddifferentialschutz (siehe auch 64REF)
87	Id	Differentialschutz (Generator / Transformator / Sammelschiene / Kabel / Leitungen)
87B		Sammelschienen-Differentialschutz
87G	Id	Generator-Differentialschutz
87GN	IdE	Generator-Erddifferentialschutz
87M		Motor-Differentialschutz
87SV		Stromwandler-Überwachung (siehe auch 87 / 87B)
87T	Id	Transformator-Differentialschutz
87TN	IdE	Transformator-Erddifferentialschutz (siehe auch 64 REF)
CLK	IRIG-B,	Uhrzeitsynchronisierung (z. B. über IRIG-B)
DDR	Störschreiber	Störschreiber (Non-fault disturbance recording)
DFR	Fehlerrekorder	Digitale Fehler-Auszeichnung (Digital fault recording)
LGC	Logik	Logik
MET	Messwerte	Betriebsmesswerte (Energie, Stromstärke, Spannung, Leistung,)
SER	Ereignisrekorder	Ereignisaufzeichnung (Time-tagged event data)
TCM	AKÜ	Auslösekreisüberwachung (Trip circuit monitor / supervision)


14.6 Änderungsübersicht

HINWEIS!

Alle **3.x**-Hardware- und -Software-Versionen sind prinzipiell miteinander kompatibel. Für detaillierte Informationen und spezielle Probleme wenden Sie sich bitte an den Support von SEG.

Dokumentation aktuell?

14.6.1 Version: 3.10

Software

Verbessertes Entprellen der digitalen Eingänge

Für Entprellzeiten > 0 kann der verbesserte Entprell-Mechanismus zu geringeren Ansprechzeiten führen.

Frequenz-basierter Schutz Mindestspannung

Der Standardeinstellwert der Mindestspannung [Feldparameter / Frequenz] »U Block f«, unterhalb welcher frequenz-basierte Schutzfunktionen blockiert werden, wurde von "0,15 Un" auf "0,60 Un" angehoben.

Siehe auch ⇔"Frequenz - Messprinzip".

Definition als Schutz- oder Überwachungs-Funktion (»Nur Überw.«)

Für die meisten Schutzstufen ist es möglich bei der Einstellung festzulegen, ob die Stufe für Schutzzwecke verwendet wird, so dass der Leistungsschalter im Fehlerfall geöffnet werden, oder ob die Stufe ausschließlich für Überwachungszwecke verwendet wird, ohne dass der Leistungsschalter betätigt wird.

Siehe → "Verfügbarkeit des Schutzes".

PAV,E - Monitoring of the maximum power infeed

Die **VDE-AR N 4110/4120** legt fest, dass der Netzbetreiber berechtigt ist eine Überwachung der Einspeiseleistung zu fordern. Diese soll verhindern, dass die am Netzanschlusspunkt vereinbarte Einspeiseleistung (PAV,E) der Erzeugungsanlage überschritten wird, indem für diesen Fall eine Trennung vom Netzanschlusspunkt erfolgt. Das PAV,E-Modul ist implementiert gemäß des FNN-Hinweises "**PAV, E - Überwachung bei Anschlüssen am Mittel- & Hochspannungsnetz**".

Synchrocheck mit Transformator-Modus

Mit dem Transformator-Modus ist es möglich die Synchronisierung zweier elektrischer Netze, die über einen Transformator miteinander verbunden sind, zu überwachen. Dazu unterstützt der Modus Amplituden- und Winkel-Korrekturen, um die Unterschiede auf beiden Seiten des Transformators herauszurechnen.

StW-Sättig.-Stab. für den Erdstrom-Differentialschutz [87GD]

Die Stromwandler-Sättigungsstabilisierung für den Phasenstrom-Differentialschutz wurde erweitert und unterstützt nun auch den Erdstrom-Differentialschutz. Dazu ist die Funktion in ein separates Modul (StW-Sättig.-Stab.) ausgelagert worden. Sobald das Modul aktiviert ist, kann die Stabilisierung selektiv für einzelne Instanzen von Id und IdE[n] aktiv geschaltet werden.

Hinweis: Es ist nicht mehr ausreichend, die Stabilisierung ausschließlich in der Id-Instanz zu aktivieren, sondern zusätzlich auch das separate Sättigungs-Stabilisierungsmodul (StW-Sättig.-Stab.) zu konfigurieren..

Id [87] - Zeitverzögerung für den Phasenstrom-Differentialschutz

Die Auslösung des Phasenstrom-Differentialschutzes kann verzögert werden, indem eine Zeitverzögerung eingestellt wird mit Hilfe des Parameters [Schutzparameter / Satz \times / Diff-Schutz / Id] \times / \times .

Id [87] - Nullkokmponenten-Kompensierung mit gemessenem Erdstrom

Die Nullkomponenten-Kompensierung verwendet standardmäßig den berechneten Erdstrom. Mit R3.10 werden zuzsätzliche Optionen hinzugefügt, um stattdessen den gemessenen Erdstrom zu verwenden oder die Kompensierung ganz abzuschalten (Achtung: Dies kann unter bestimmten Bedingungen bei externen Fehlern zu Fehlauslösungen führen!).

Wiederzuschaltung-Modul Update für VDE-AR N 4110/4120

Die Konfiguration des Moduls für **VDE-AR N 4110/4120** wurde vereinfacht und benötigt keine separate Logik mehr, siehe ⇔Abb. 148.

Die Trigger- und Freigabe-Logik des Wiederzuschaltungs-Vorgangs wurde verbessert. Zusätzlich wurde der Text einiger Parameter angepasst (nur Text, die Parameter bleiben unverändert).

Die untere Grenze des Einstellbereiches des Parameters [Schutzparameter / Satz \times / NA-Schutz / WZS / Freigabe Para] »*ULL min Freigabe*« wurde herabgesetzt von "0,7 Un" auf "0,5 Un".

Inrush-Erkennung für den Erdstrom

Vor R3.10: Der Anteil 2. Harmonischer im Erdstrom wird überwacht für die Inrush-Erkennung.

Ab R3.10: Ein Inrush im Erdstrom wird dann detektiert, wenn Inrush in einer der drei Phasen erkannt wurde. Diese Änderung betrifft berechneten und gemessenen Erdstrom (»IH2 . Blo IE gem« und »IH2 . Blo IE err«).

Rücksetzen aller Überstrom-basierten Schutzfunktionen erzwingen

Für Inbetriebnahmeprüfungen wurde ein Direktkommando [Betrieb / Rücksetzen/Bestätigen / Reset] . »Reset I-Schutz« hinzugefügt, welches alle Überstrom-basierten Schutzfunktionen (ANSI 50/51/46) zurücksetzt. Dies kann verwendet werden, um hohe Rücksetzzeiten zu unterbrechen und somit die Funktion für den nächsten Test vorzubereiten.

Einstellbare, minimale Auslöseverzögerung für Phasen- und Erdüberstromschutz [50,51]

»tMinimum« ist eine vom Anwender einstellbare, minimale Auslöseverzögerung. Diese Zeitstufe wird unabhängig von der inversen Strom-Zeit-Charakteristik gestartet und muss abgelaufen sein, bevor es zur Auslösung der Schutzstufe (ANSI 50/51) kommen kann.

Siehe ↔ "Legende für alle folgenden Diagramme" und ↔ "Legende für alle folgenden Diagramme".

Unabhängiger Rücksetz-Modus für alle Überstrom-Kennlinien

Die Option »Rücksetz Modus« . "unabhängig" ist jetzt für alle Kennlinien aktiviert, inklusive "DEFT".

Siehe ↔ "Legende für alle folgenden Diagramme" and ↔ "Legende für alle folgenden Diagramme".

UE/UX [27A,59A], U012 [47] - einstellbares Rückfallverhältnis

Das Rücksetzverhältnis für den Verlagerungsspannungsschutz sowie den Spannungs-Asymmetrie-Schutz ist jetzt einstellbar.

Umbenennung: AFE-Modul heißt jetzt UFLA-Modul

Das AFE-Modul (automatische Frequenz-Entlastung) wurde umbenannt zu UFLA-Modul (Unterfrequenzabhängiger Lastabwurf). Darüber hinaus wurde das Kapitel im Handbuch überarbeitet.

Lichtbogen-Reduktions-Modus

Der Lichtbogen-Reduktions-Modus kann die Sicherheit für Wartungspersonal erhöhen, indem er die Fehler-Abschaltzeit verkürzt und somit freigesetzte Energie durch Lichtbögen infolge eines Fehlers verringert. Der Modus erlaubt es dem Anwender, für die Dauer von Wartungsarbeiten, zu sensibleren Schutzeinstellungen zu wechseln.

Siehe

11.3.2 Lichtbogen-Reduktions-Modus.

Erzwingen eines Auslöse-Befehls

Für Inbetriebnahme- oder Testzwecke kann der Benutzer einen Auslöse-Befehl manuell erzwingen.

Siehe

11.3.5 Erzwingen eines Auslöse-Befehls.

Abfallen des Selbstüberwachungskontaktes erzwingen

Für Inbetriebnahme- oder Testzwecke kann der Benutzer das Abfallen des Selbstüberwachungskontakes (SC) für eine Dauer von 5 Sekunden erzwingen.

Siehe →11.3.6 Abfallen des Selbstüberwachungskontaktes erzwingen.

Trendrekorder mit "1 min" Auflösungs-Einstellwert

Der kleinste Einstellwert für die Auflösung des Trendrekorders ist jetzt "1 min" ("5 min" vorher).

14.6.1 Version: 3.10

Start der Störschreiber-Aufzeichnungen

Vor R3.10: Alle Startsignale müssen zurückfallen, bevor die nächste Störschreiber-Aufzeichnung gestartet werden kann.

Ab R3.10: Mit jeder steigenden Flanke eines der Startsignale wird eine Störschreiber-Aufzeichnung gestartet (falls der Rekorder bereit ist).

IEC 61850

Edition 2: Das MCDLV4 unterstützt neben Edition 1 jetzt auch Edition 2 des SCADA-Protokolls IEC 61850.

Datei-Transfer: Dateien können vom Gerät übertragen werden (z.B. Störschriebe).

Parametersatzumschaltung: Eine Umschaltung zwischen den verschiedenen Parametersätzen ist jetzt möglich.

Single Point Controle: SPC mit »Pulse Config« = "Pulse" oder "Persistent".

IEC60870-5 103 Standard-Konfiguration

Erweiterung der Standard-Konfiguration des 103er-Protokolls: Die Alarm- und Trip-Signale der Schutzmodule wurden hinzugefügt.

Die Standard-Konfiguration sowie die Dokumentation lassen sich direkt vom Download-Bereich herunterladen, der über den QR-Code auf dem Gerätegehäuse erreichbar ist.

Modbus®: Störfall-Messwerte in Datenpunkt-Zuordnung

Die Störfall-Messwerte des Fehlerrekorders wurden in die Standard-Konfiguration aufgenommen (ab Adresse 50000).

Die Standard-Konfiguration sowie die Dokumentation lassen sich direkt vom Download-Bereich herunterladen, der über den QR-Code auf dem Gerätegehäuse erreichbar ist.

Smart view: Verbindung mittels Modbus® Tunnel (Gateway)

Smart view kann über einen Modbus $^{\mathbb{R}}$ Tunnel (Gateway) nun eine Fernverbindung zu einem Gerät herstellen.

Siehe → "Zugriff über Smart view" oder im Smart view Handbuch.

Software Fixes

In R3.10 sind folgende Software Fixes implementiert:

• AnaP - Analoges Schutzmodul:

Auftritt nur unter Verwendung des Analogen Schmutzmoduls, wenn dessen Auslösung im Schaltgeräte Modul rangiert war. In dem Fall, dass das Analoge

Schutzmodul einen Fehler erkannte, konnte der Auslösebefehl unterdrückt werden. (Ref. R0161)

• ThA - Thermisches Abbild [49]:

Bei Inaktivierung oder Blockade des Moduls, wurde der thermische Wert nicht korrekt zurückgesetzt. Bei einer Reaktivierung des Moduls konnte es deshalb dazu kommen, dass der thermische Wert nicht wieder bei Null startete und es somit zu einer Überfunktion kam.

• IEC 60870-5-104:

In seltenen Fällen konnte es zu einem Geräte-Neustart kommen. (Ref. R0156)

• SNTP:

Die Zeit-Synchronisation via SNTP konnte einen Versatz von mehreren Sekunden haben. (Ref. R0162)

• Id - Phasenstrom-Differentialschutz:

Auftritt nur bei Applikationen mit Linksdrehfeld ([Feldparameter / Allg Einstellungen] »Drehfeldrichtung« = "ACB") und einem Transformator (nur ungerade Vektorgruppen) innerhalb der Zone des Phasenstrom-Differentialschutzes. In diesem Fall konnte die Berechnung der Differentialströme beeinträchtigt sein und somit zu einer Überfunktion führen. (Ref. R0163)

14.6.2 Version: 3.7

• Datum: 2020-Mai-19 (bis Firmware-Build-Nummer 47460)

• Datum: 2020-Juli-21 (ab Firmware-Build-Nummer 48830)

Lieferumfang

Motiviert durch Umwelt-Aspekte und verbesserte Effizienz ist die Produkt-DVD nicht mehr im Lieferumfang von HighPROTEC-Geräten.

Unsere Erfahrung legt den Schluss nahe, dass die meisten Anwender es bevorzugen, alle Technische Dokumentation (Handbuch, Referenz-Handbuch, etc.) sowie die Installationsdatei für die Windows-Anwendungen (Smart view, DataVisualizer, Page Editor, SCADApter) direkt von unserem Download-Bereich https://docs.SEGelectronics.de/mcdlv4-2 herunterzuladen. Diese Download-Adresse ist übrigens auch weiterhin als QR-Code auf dem Gehäuse des Gerätes angebracht.

Die Produkt-DVD kann nun separat bestellt werden, sodass sie bei Bedarf weiterhin allen Anwendern zur Verfügung steht, zum Beispiel wenn das Schutzgerät in einem Bereich in Betrieb genommen werden soll, der nicht mit dem Internet verbunden ist.

(Siehe auch ⇔"Lieferumfang".)

Hardware

HighPROTEC-Schutzgeräte mit großem (128 x 128 Pixel) Display werden mit einem LCD-Display eines anderen Herstellers ausgeliefert. Dieses Display ist aus Sicht des Anwenders absolut identisch mit dem bisherigen, benötigt allerdings eine Geräte-Firmware mit passendem Grafik-Treiber.

Ab 2021 wird ein anderes LC-Kommunikationsmodul für die Schutzkommunikation mit erhöhter Reichweite eingebaut. Abgesehen von der optischen Eingangs- und Ausgangsleistung sind die Module miteinander kompatibel Siehe →13.1.22.2 LWL-Modul mit LC-Anschluss für die Schutzkommunikation mit erhöhter Reichweite (*).

Software

Es wurde ein neuer Grafiktreiber hinzugefügt, passend zu dem neuen LCD-Display.

• Dies bedeutet, dass die aktuelle Version alle Treiber für jedwede HighPROTEC-Hardware (inclusive älteren Geräten) beinhaltet. Ein Upgrade ist also auch für frühere HighPROTEC-Geräte möglich (mit Ausnahme der Version-2.x-Geräte, d. h. Schutzgeräten mit serieller RS232-Schnittstelle).

Einige Benennungen für Parameter und Werte wurden überarbeitet, um eine bessere Verständlichkeit und einheitliche Terminologie zu erreichen.

Hierbei sei folgendes hervorgehoben:

- Die Benennungen der Statistikwerte und System-Alarme des Bezugsmanagements wurden geändert, um ihre jeweilige Bedeutung besser verständlich zu machen.
- Für die Einstellparameter »I . Rücksetz Modus« und »IE . Rücksetz Modus« wurde die zu den abhängigen Kennlinien gehörige Option umbenannt von "exponentiell" nach "abhängig (aus Kennl.)".

Fehlerbehebung:

• Die Versionen ab Firmware-Build-Nummer 48830 beheben einen Fehler in den Start-Routinen der Schutzmodule »ThA« und »f[x]«, der bewirkte, dass es in seltenen Fällen im Laufe eines Geräteneustarts (Kalt- oder Warmstart) zu einer ungewollten Auslösung des Leistungsschalters kommen konnte.

Frequenzmessung

Der Vorgabewert für den Einstellparameter [Feldparameter / Frequenz] »Stab.-Fenster f« wurde von 0 auf 4 Netzperioden vergrößert.

Siehe $\Rightarrow 5.21 \text{ f}$ - Frequenz [810/U, 78, 81R].

Frequenzschutz, Frequenzänderungsgeschwindigkeit

Die Frequenzschutzfunktionen wurden hinsichtlich der Anforderungen von IEC 60255-181:2019 überarbeitet.

Ein neuer Einstellparameter [Feldparameter / Frequenz] »Stab.-Fenster f für df/dt« erlaubt eine Justierung der Stabilisierung der für die df/dt-Berechnung zugrunde gelegten Frequenzwerte.

Der kleinste einstellbare Wert von [Feldparameter / Frequenz] »Fenster df/dt« (Messfenster df/dt) wurde auf 1 Netzperiode reduziert.

Der kleinste einstellbare Wert von [Feldparameter / Frequenz] »Stab.-Fenster df/dt« (Stabilisierung der df/dt-Werte) wurde auf 0 reduziert (wobei 0 bedeutet, die Stabilisierung auszuschalten).

Differentialschutz-Modul - Id

Eine zusätzliche Verbesserung der Stabilisierungsfunktion für den Phasen-Differentialschutz bei externen Fehlern mit Wandlersättigung wurde implementiert.

(Siehe → "Stabilisierung bei Stromwandlersättigung".)

Profibus, IEC 60870-5-103

Für die Kommunikationsprotokolle Profibus und IEC 60870-5-103 besteht nun die Möglichkeit, die Datenpunkte zu konfigurieren, sodass es wesentlich einfacher ist, das MCDLV4 in ein bestehendes Leitsystem zu integrieren.

Die Windows-Anwendung *SCADApter*, über die man die Datenpunkte nach Bedarf den gewünschten Protokolladressen zuweist, wurde entsprechend um diese zwei Leittechnikprotokolle erweitert. (Die Protokolle Modbus und IEC 60870-5-104 sind ja schon seit Version 3.6 frei konfigurierbar).

Als Konsequenz hieraus wird das separate Dokument "**Datenpunktliste IEC 60870-5-103**" nicht mehr weiter veröffentlicht:

- Die Deklaration der Kompatibilität mit IEC 60870-5-103, die bislang bestandteil dieses Dokuments war, gibt es nun als ein neues Kapitel im Anhang dieses Handbuches. Siehe

 14.2 Kompatibilität mit IEC 60870-5-103.
- Da die Datenpunktliste nun mittels *SCADApter* editierbar ist, steht die ab Werk standardmäßig vorgegebene Zuordnung jetzt als Datei IEC103_Default_IU.HptSMap zur Verfügung. Diese Datei kann unmittelbar in *SCADApter* geöffnet und an die jeweilige Anwendung angepasst werden und

ersetzt nun also die bislang als Kapitel festgeschriebene Liste im Dokument "Datenpunktliste IEC 60870-5-103".

Die Datei lässt sich direkt (und kostenlos) von unserem Download-Bereich https://docs.SEGelectronics.de/mcdlv4-2 herunterladen, befindet sich aber auch auf der Produkt-DVD. (Die DVD muss nun allerdings separat bestellt werden, siehe "Lieferumfang" weiter oben.)

• In gleicher Weise stehen auch Dateien mit Datenpunktlisten IEC104_Default_IU.HptSMap und Profibus_Default_IU.HptSMap als Grundlagen für die SCADA-Protokolle IEC 60870-5-104 bzw. Profibus zur Verfügung.

Siehe

4.5.5 Datenobjekte zuweisen mit dem SCADApter und die separate SCADApter
Dokumentation für allgemeine Informationen zu konfigurierbaren SCADA-Protokollen.

IEC 60870-5-103

Störschriebe sind nun ebenfalls im SCADApter verfügbar.

Die »Slave ID« ist nicht mehr ein Einstellparameter, sondern ein Direktkommando und wird daher grundsätzlich nicht als Teil einer *. HptPara-Parameterdatei abgespeichert.

Energiemesswerte stehen nun mit Typ 41 zur Verfügung. (Die Übertragung der Energiemesswerte ist damit nun kompatibel zu der Implementierung in Geräten der System Line.)

Profibus

Measurement values can now be configured as Big Endian values in SCADApter.

Smart view, DataVisualizer, Page Editor, SCADApter

Die Benutzeroberfläche dieser Verwaltungs-Applikationen für Windows-PCs wurde neu gestaltet. Das neue Aussehen ist modern, übersichtlich und fügt sich harmonisch in das Standard-Design-Konzept von Windows 10 ein.

SCADA-Dokumentation

Die SCADA-Dokumentation wurde hinsichtlich Gestaltung an das Handbuch (d. h. das vorliegende Dokument) angepasst.

14.6.3 Version: 3.6.b

• Datum: 2019-März-07

• [Geräteparameter / Version] »Build« = 42138

Software

Fehlerbehebung:

Versionen 3.4.a (Build 41920 oder 42139) und 3.6.b (Build 42138) beheben einen Fehler in der Programmierung der "24 km"-Wirkschnittstelle, der nach einem Dauerbetrieb von ca. 2 Monaten auftreten konnte. Alle MCDLV4-Firmware-Versionen vor Builds 41920 waren betroffen, allerdings nur bei Geräten mit der "24 km"-Wirkschnittstelle, Typschlüssel MCDLV4-2xxx0x. Geräte mit der "2 km"-Wirkschnittstelle (ST-Stecker) waren nicht betroffen.

Der Effekt des Software-Fehlers bestand darin, dass die "24 km"-Wirkschnittstelle nach 62 Tagen (bei 50 Hz Nennfrequenz) bzw. nach 50 Tagen (bei 60 Hz) inaktiv wurde.

Da der Datenaustausch über diese Schnittstelle aber für die Differentialschutzfunktion (ANSI 87) zwingend erforderlich ist, aktivierten beide MCDLV4 automatisch den Backup-Schutz (sofern konfiguriert).

Der Datenaustausch wurde nach einem Neustart (Kalt- oder Warmstart) beider MCDLV4 wieder aufgenommen, jedoch wiederum nur bis zum Ablauf der erwähnten Zeit.

Weitere Details finden sich im Service Bulletin CAC_53_0164.

14.6.4 Version: 3.6

• Datum: 2019-Januar-31

Software

Die Schutzfunktionen des MCDLV4 wurden dahingehend erweitert, dass sie die Anforderungen der VDE-AR-N-4110:2018 erfüllen.

Frequenzschutz, Frequenzänderungsgeschwindigkeit

Die Algorithmen zur Frequenzmessung wurden hinsichtlich Genauigkeit und Stabilität verbessert.

Die Hysterese, die beim Frequenzschutz eingesetzt wird, lässt sich über den neuen Parameter »Freq.-Rückfallwert« einstellen.

Neue Parameter [Feldparameter / Frequenz] »Stab.-Fenster f« und »Stab.-Fenster df/dt« ermöglichen, die Werte gegen kurzzeitige Fluktuationen zu stabilisieren.

Wattmetrische Erdschluss-Richtungserkennung

Der Erdfehlerschutz »IE[x]« wurde um eine wattmetrische Erdschlusserkennung erweitert.

Phasen-Richtungserkennung

Fehlerbeseitigung: Es wurde ein Fehler in der Programmierung der Richtungserkennung beseitigt. Durch diesen Fehler konnte es zu einer falschen Richtungs-Entscheidung bei Linksdrehfeldern ("ACB" bzw. "L1–L3–L2") kommen. (Rechtsdrehfelder, also Systeme mit der Phasenfolge "ABC" bzw. "L1–L2–L3", waren nicht betroffen.)

»Nur Überw.«

Ein neuer Projektierungsparameter »Nur Überw.« wurde für die folgenden Schutzfunktionen zur Verfügung gestellt:

- IE[x] Erdfehlerschutz (siehe →5.12.3 Erdstrom Funktionalität)
- UE[x] Spannungsüberwachung (siehe → "UE/UX Spannungsüberwachung -Funktionalität")

Mit der Einstellung »Nur Überw.« = "ja" wird die Funktionalität des Moduls auf eine Überwachungsfunktion reduziert, das heißt: Die Alarm- und Auslöse-Entscheide existieren dann immer noch als modulspezifische Zustände (d. h. sie erscheinen als Zustände unterhalb des Menüzweiges [Betrieb / Zustandsanzeige] sowie in Auswahllisten), aber sie führen weder zu Generalalarm bzw. Generalauslösung noch wird ein Aus-Befehl an einen Leistungsschalter gegeben. (Siehe ⇔5.1.1 Grundlagen eines Schutzmodules.)

IT-Security-Menü

Viele Neuerungen dieser HighPROTEC-Version betreffen das Thema IT-Security.

Es gibt einen neuen Menüpfad [Betrieb / Security / Security-Status], der Informationen über verschiedene Einstellungen zum Thema IT-Sicherheit aufführt. Zum Beispiel wird dort für die Verbindungspasswörter angezeigt, ob diese auf anwenderspezifische Werte eingestellt wurden oder noch in der Werkseinstellung sind. Wenn also IT-Sicherheit für Ihre jeweilige Anwendung ein wichtiges Thema darstellt, ist es empfehlenswert, die Einträge

auf dieser Seite im Rahmen der Inbetriebnahme zu prüfen. (Siehe ↔ "Übersicht über sicherheitsrelevante Einstellungen".)

Außerdem gibt es nun einen "Security Logger", den man über den Menüpfad [Betrieb / Security / Security-Logger] einsehen kann. Es handelt sich hierbei um eine Einschränkung der Liste der *Selbstüberwachungs-Meldungen* (siehe unten) auf die sicherheitsrelevanten Meldungen. (Siehe ↔ "Sicherheitsrelevante Meldungen".)

Verbindungen mit Smart view

Eine weitere sicherheitsbezogene Neuerung ist, dass das MCDLV4 nur noch Verbindungen mit aktuellen Versionen von *Smart view* akzeptiert.

Man kann nun Verbindungspasswörter für Verbindungen mit Smart view einrichten, nämlich wahlweise ein »USB-Verbindung« für Direktverbindungen (d. h. Verbindungen über die USB-Schnittstelle) und/oder ein »Fernzugriff Netzverbindung« für Verbindungen über die Netzwerkschnittstelle. Smart view verlangt dann die Eingabe des entsprechenden Passwortes für den Verbindungsaufbau. (Allerdings sind die Verbindungspasswörter ab Werk nicht gesetzt, sodass keine Passworteingabe erforderlich ist).

Die Verbindungen sind nun grundsätzlich verschlüsselt, und Zertifikate stellen die korrekte Identität der Kommunikationspartner sicher.

(Siehe →2.4.3 Verbindungspasswörter, Smart view-Zugriff.)

Passwörter

Passwörter werden nun so abgespeichert, dass sie auch einen Firmware-Update "überleben". (Siehe ⇔2.4.2 Passwörter.)

Zeitstrafe für falsche Passworteingaben

Wenn mehrmals hintereinander ein falsches Passwort eingegeben wurde, blockiert das MCDLV4 erneute Passworteingaben für eine immer größer werdende Zeitdauer, bis schließlich ein korrektes Passwort eingegeben wurde. Ein spezieller Info-Dialog informiert den Anwender über diese "Zeitstrafe". Dieser Sicherheitsaspekt betrifft alle Arten Passwörter (auch die oben erwähnten Verbindungspasswörter), aber es ist tatsächlich nur die Passworteingabe betroffen. Das heißt, es ist während einer solchen "Strafzeit" immer noch möglich, am Gerät andere, "passwort-freie" Aktivitäten durchzuführen.

Siehe → "Zeitstrafe für falsche Passworteingaben".

Selbstüberwachung , Syslog

Der Rekorder für Selbstüberwachungs-Meldungen, den man über den Menüzweig [Betrieb / Selbstüberwachung / Meldungen] erreicht, wurde erweitert, sodass nun auch sicherheitsrelevante Meldungen (z. B. falsche Passworteingaben) und MCDLV4-interne Statusmeldungen, Warnungen und Fehlermeldungen aufgeführt werden.

Es gibt nun ein Syslog-Modul, das automatisch jede neue interne (Selbstüberwachungs-)Meldung auf einen speziellen Server-Computer überträgt. Hierfür wird das "Syslog"-Protokoll eingesetzt, ein weithin bekannter Standard für die Übertragung von Log-Meldungen.

Siehe

10.2 Meldungen der Selbstüberwachung,

10.3 Syslog.

SCADA-»Slave ID«

Die »Slave ID« ist für alle SCADA-Protokolle nicht mehr ein Einstellparameter, sondern ein Direktkommando.

14.6.4 Version: 3.6

Da ein Direktkommando grundsätzlich nicht als Teil einer *.HptPara-Parameterdatei abgespeichert wird, besteht nicht länger das Risiko, die Anforderung, dass jede Geräteadresse pro Anlage nur einmal vergeben werden darf, zu verletzen, indem eine bestimmte *.HptPara-Datei in mehrere HighPROTEC-Schutzgeräte geladen wird. Dieses zusätzliche Sicherheitsmerkmal bringt natürlich einen Nachteil mit sich, nämlich dass während der Inbetriebnahme die »Slave ID« immer explizit eingestellt werden muss, auch wenn man eine vorab erstellte *.HptPara-Datei für die Einstellwerte verwendet.

Neues Kommunikationsprotokoll IEC 60870-5-104

Das Kommunikationsprotokoll nach IEC 60870-5-104 ist nun neu verfügbar.

Konfigurierbare Datenpunkte für Modbus und IEC 60870-5-104

Für die Kommunikationsprotokolle Modbus und IEC 60870-5-104 besteht nun die Möglichkeit, die Datenpunkte zu konfigurieren, sodass es wesentlich einfacher ist, das MCDLV4 in ein bestehendes Leitsystem zu integrieren. Es gibt eine neue Windows-Anwendung *SCADApter*, über die man die Datenpunkte nach Bedarf den gewünschten Protokolladressen zuweist.

Siehe \hookrightarrow 4.5.5 Datenobjekte zuweisen mit dem SCADApter und die separate *SCADApter*-Dokumentation.

Kommunikationsprotokoll IEC 61850

Die Parameter für Virtuelle Eingänge und Ausgänge wurden umbenannt.

Die Anzahl verfügbarer Virtueller Eingänge und Ausgänge wurde (von 32) auf 64 verdoppelt.

LED-Quittierung

Es ist nun möglich, LEDs in Selbsthaltung ohne Passworteingabe manuell zu quittieren, indem die »C«-Taste am Panel für längere Zeit (etwa 1 Sekunde) gedrückt wird. Diese Möglichkeit besteht standardmäßig, weil ab Werk der Parameter [Geräteparameter / Quittierung] » $Quit \ddot{u}ber »C«-Taste« = "Quit LEDs o. Passw" einstellt ist.$

Siehe → "Manuelle Quittierung am Bedienfeld".

Ausgangsrelais, LEDs, Ausl Manager

Für LEDs und Ausgangsrelais wurde die Invertierung eines (Aktivierungs-)Eingangssignals abgeändert.

Die Selbsthaltung wurde für LEDs, Ausgangsrelais und den Auslösebefehlsmanager abgeändert, indem es nun weitere Situationen gibt, die einen Zustand in Selbsthaltung zurücksetzen.

(Siehe →3.14.3 Rangierung der Ausgangsrelais, →3.14.1 Leuchtanzeigen (LEDs), →"Auslösebefehlsmanager – Befehlsausgabe rangieren".)

Differentialschutz-Modul - Id

Die Stromwandler-Sättigungsüberwachung wurde hinsichtlich Zuverlässigkeit wesentlich verbessert. Im Zuge dessen wurden die bisherigen Einstellungen »StW Sättig Überw«, StW Sättig Empf durch neue Parameter »StW-Sättig.-Stab.«, Id ersetzt.

(Siehe → "Stabilisierung bei Stromwandlersättigung".)

Handbuch

Die technische Dokumentation besteht nun aus zwei unabhängigen Dokumenten:

- Das Handbuch (dieses Dokument, MCDLV4-3.10-DE-MAN) beschreibt alle Eigenschaften und möglichen Anwendungen des MCDLV4.
 - Im Vergleich zur vorherigen HighPROTEC-Version wurden alle Kapitel des Handbuches gründlich hinsichtlich Lesbarkeit und Korrektheit überarbeitet.
- Das Referenzhandbuch MCDLV4-3.10-DE-REF enthält alle implementierten Einstellungen, Messwerte und binären Zustände, wobei für jeden Eintrag eine Tabelle mit allen Eigenschaften (Menüzweig, Modulname, Vorgabewert, Wertebereich) mitsamt einem kurzen Hilfetext vorhanden ist.
- Das Bezeichnungsschema für die Technische Dokumentation wurde geändert. Insbesondere ist die Version nun Teil der Dokumenten-ID. Prinzipiell wird nun für die Bezeichnung aller Dokumente das Schema "<Gerät>-<Version>-<Sprache>-<Dokumententyp> angewandt. (Siehe auch ↔2.1 Hinweise zum Handbuch.)

Dieses Handbuch, zum Beispiel, hatte bisher (d. h. bis Revision 3.4) die Bezeichnung D0K-HB-MCDLV4-2D. Ab der vorliegenden Version 3.6 lautet die Dokumenten-ID: MCDLV4-3.10-DE-MAN.

Ein Kapitel über Anforderungen an Stromwandler wurde hinzugefügt, siehe $\leftrightarrow 3.5.3$ Anforderungen an Stromwandler.

14.6.5 Version: 3.4.a

• Datum: 2019-März-07

• [Geräteparameter / Version] »Build« = 41920 oder 42139

Software

Fehlerbehebung:

• Siehe

14.6.3 Version: 3.6.b.

14.6.6 Version: 3.4

• Datum: 2017-Oktober-01

• Revision: A

Hardware

- Der LC-Stecker für die Schutzkommunikation mit erhöhter Reichweite sowie für die Ethernet-TCP/IP-Kommunikation über Lichtwellenleiter ist nun ab Werk mit einer Schutzkappe aus Metall versehen. Da hierdurch die EMV-Schutzfestigkeit verbessert wird, ist empfohlen, diese Schutzkappe sorgfältig wieder zu befestigen, nachdem die Verbindungsleitung angeschlossen wurde.
- Es gibt eine neue Bestelloption "T" für die Kommunikationsschnittstellen:

RS485 (IEC 60870-5-103, MODBUS RTU, DNP3.0 RTU) + RJ45 Ethernet 100 Mbit/s (IEC 61850, Modbus TCP, DNP3.0 TCP/UDP)

Software

- Die Firmware steht nun auch in rumänischer Sprache zur Verfügung.
- Bei einer Verbindung mit Smart view ab Version 4.50 berücksichtigt die Synchronisierung von Datum und Zeit nun automatisch, dass eventuell unterschiedliche Zeitzonen auf PC und MCDLV4 eingestellt sein können.

Kommunikation

Im Menü [Geräteparameter / Bedieneinheit / Security] gibt es nun neue Parameter:

- » Smart view über Eth « aktiviert bzw. deaktivert den Zugriff von Smart view über Ethernet.
- » Smart view über USB « aktiviert bzw. deaktivert den Zugriff von Smart view über die USB-Schnittstelle.
- » Sm.view ü. SchutzKom « aktiviert bzw. deaktivert den Zugriff von Smart view auf das ferne Leitungsdifferentialschutzgerät über die Schutzkommunikation.

(Siehe →2.4.3 Verbindungspasswörter, Smart view-Zugriff .)

IEC 60870-5-103

Das IEC103-Kommunikationsprotokoll unterstützt nun die Blockierung der Überwachungsrichtung und den Testbetrieb. (Siehe ↔4.5.1 IEC60870-5-103.)

Modbus

Die Übertragung von Fehlerwerten über das Modbus-Protokol wurde hinzugefügt. Für das jeweils letzte Fehler-Ereignis sind die Fehlerwerte über Adressen oberhalb von 50000 auslesbar. Hierbei entspricht für jeden Wert die Modbus-Adresse der um 30000 verschobenen Adresse der jeweiligen Laufzeitgröße. (Beispiel: Die Stromstärke IN1 hat die Adresse 20100, somit hat der entsprechende Fehlerwert die Adresse 50100.) Eine detaillierte Liste findet sich in der SCADA-Dokumentation.

Für Geräte mit RS485- und Ethernet-Schnittstelle (Bestelloptionen "I" oder "T") steht nun in der Projektierung die Einstellung "Modbus RTU/TCP" (Parameter [Projektierung] Leittechnik . Protokoll«)zur Verfügung. Hierdurch kommuniziert das Gerät über die serielle Schnittstelle (RTU) und Ethernet (TCP) gleichzeitig. Hierbei gilt insbesondere folgendes:

- Alle Master sehen denselben Satz Zustände.
- Alle Master können selbsthaltende Zustände rücksetzen.
- Alle Master können denselben Leistungsschalter steuern, rückstellen und quittieren.

Geräteparameter

Der Rücksetz-Dialog, der geöffnet wird, wenn während eines Kaltstarts die »C«-Taste gedrückt wird, wurde an erweiterte Sicherheitskonzepte angepasst: Es gibt nun einen Einstellparameter » Konfig. Geräte-Reset « , der es erlaubt, Optionen von diesem Dialog zu entfernen. (Siehe ⇔2.4.6 Rücksetzen auf Werkseinstellungen, Rücksetzen aller Passwörter .)

Überstrom - I [n], IE [n]

Alle ANSI- und IEC-Kennlinien für den Abhängigen Überstromzeitschutz haben nun eine Zeitbegrenzung gemäß IEC 60255-151. (Siehe $\hookrightarrow 5.10.1$ Kennlinien (Phasenstrom), $\hookrightarrow 5.12.1$ Kennlinien (Erdstrom).)

Die Kennlinie "RINV" steht nun für den Abhängigen Überstromzeitschutz neu zur Verfügung. (Siehe $\hookrightarrow 5.10.1.2.2$ R Inverse [RINV] - Kennlinie (Phasenstrom) , $\hookrightarrow 5.12.1.2.2$ R Inverse [RINV] - Kennlinie .)

Schutz, Überstrom

Das MCDLV4 zeigt nun unter dem Menüpfad [Betrieb / Messwerte / Richtung] die Richtung der Phasenströme sowie des gemessenen und errechneten Erdstromes als Messwerte an. Es ist empfohlen, während der Inbetriebnahme mittels dieser Werte die Stromrichtungen zu verifizieren.

Unterspannung - U [n]

Für das Spannungsschutzmodul in der Betriebsart "Unterspannung" – » Modus « = " U < " – steht nun ein Unterstromkriterium neu zur Verfügung.

Die prinzipielle Funktionsweise dieser "Mindeststromprüfung" besteht darin, den Unterspannungsschutz zu blockieren, sobald alle Phasenströme unter einen bestimmten Schwellwert fallen. Die Motivation hinter einer solchen Funktionalität ist, dass eine Situation, in der alle Phasenströme "tot" sind, normalerweise auf einen offenen Leistungsschalter hinweist, und es ist eventuell nicht wünschenswert, dass hierauf der Unterspannungsschutz reagiert. (Siehe $\hookrightarrow 5.19$ U - Spannungsschutz [27,59], \hookrightarrow "Mindeststromprüfung für den Unterspannungsschutz" .)

Thermisches Abbild-Modul - ThA

Der verfügbare Einstellbereich des Überlastfaktors » K« wurde (von 0,80–1,20) auf 0,80–1,50 erweitert (IEC 60255-149).

Erweiterte Spannungswandlerüberwachung - SPÜ

Die (geräteintern festgelegte) Unterspannungsschwelle wurde von 0,01 Un auf 0,03 Un angehoben (FNN 2015). (Siehe ⇔5.35.4 SPÜ – Erweiterte Spannungswandlerüberwachung [60] .)

Selbstüberwachung

Geräteinterne Meldungen (insbesondere Fehlermeldungen) sind nun über den Menüpunkt [Betrieb / Selbstüberwachung / Meldungen] abrufbar.

Alle Meldungen, die hier möglich sind, werden in einem separaten Dokument beschrieben, dem "HighPROTEC Troubleshooting Guide" (DOK-HB-TS).

Überwachung

Das MCDLV4 überwacht nun die Phasenfolge und vergleicht diese mit der Einstellung, die unter [Feldparameter / Allg Einstellungen] » Drehfeldrichtung « konfiguriert wurde (d. h. "ACB" oder "ABC").

Unterhalb des Menüs [Betrieb / Zustandsanzeige / Überwachung / Drehfeldrichtung] gibt es für jeden Strom- und Spannungswandler eine zugeordnete Meldung, die aktiv wird, sobald die Überwachung des jeweils zugeordneten Strom- bzw. Spannungswandlers eine Phasenfolge ermittelt, die von der unter [Feldparameter] gemachten Einstellung abweicht. (Siehe →5.35.5 Überwachung der Phasenfolge .)

LEDs

Es gibt nun eine automatische Quittierung für alle LEDs: Die Selbsthaltung aller LEDs wird quittiert (rückgesetzt), sobald eine Anregung von irgendeiner Schutzfunktion oder ein *Generalalarm*, »Schutz . Alarm«, kommt.

Die automatische Quittierung muss durch folgende Einstellung aktiviert werden:

[Geräteparameter / LEDs / LEDs Gruppe A / LED 1...n] » Selbsthaltung « = " aktiv, Quit. bei Alarm "

(Siehe → "Manuelle Quittierung am Bedienfeld".)

Manuelle Quittierung

Es ist möglich, LEDs, SCADA, Ausgangsrelais und / oder einen eventuell noch anstehenden Auslösebefehl manuell zu quittieren, indem die »C«-Taste am Panel gedrückt wird.

Nachdem (im Rahmen der Inbetriebnahme) die zu quittierenden Punkte der »Quit über »C«-Taste« zugeordnet wurden, können diese einfach durch Drücken der »C«-Taste (ca. eine Sekunde lang) quittiert werden.

Hinweis: Wenn es gewünscht wird, dass jederzeit ohne die Eingabe eines Passworts quittiert werden kann, so stellen Sie ein leeres Passwort für den Level »Schutz-Lv1« ein. (Siehe ↔ "Manuelle Quittierung am Bedienfeld"; für allgemeine Informationen über Passwörter und weitere sicherheitsrelevante Einstellungen siehe ↔2.4 Sicherheitsrelevante Einstellungen (Security).)

14.6.7 Version: 3.3

14.6.7 Version: 3.3

• Datum: 2017-März-14

• Revision: NEW (nur für ausgewählte Kunden als Pilotprojekt)

• Datum: 2017-April-19

• Revision: NEW

Hardware

Erste Lieferversion eines HighPROTEC-Leitungsdifferentialschutzgerätes.

Software

Erste Lieferversion.

VORSICHT!

Anwender eines MCDLV4 mit "24 km"-Wirkschnittstelle (LC-Stecker) und einer der folgenden Firmware-Versionen sind aufgerufen, die Firmware zu aktualisieren. Siehe →14.6.3 Version: 3.6.b.

- Version 3.3, Build 33257, 33475: Aktualisieren auf 3.4.a Build 42139.
- Version 3.4, Build 35594: Aktualisieren auf 3.4.a Build 42139.
- Version 3.6, Build 40922, 41591, 41812: Aktualisieren auf 3.6.b Build 42138.

Stichwortverzeichnis

A

ΑN	SI	
	25	426
	27	389
	27(t)	453
	27A	400
	27U1	423
	32	461
	37	461
	46	355
	47	423
	49	361
	50	293
	50BF	486
	50N/G	330
	51	
	51C	
	51N/G	
	51Q	
	51V	
	55	
	59	
	59A	
	59N	
	59U1	
	60	497
	60L	494
	62BF	486
	64REF	280
	67	293
	67N/G	330

/8
79
810/U
81R
87L
87N
87T
AWE
Abzweigsteuerbild (Single Line)
Adaptive Parameter
Adaptive Parametersätze
Anzeige der Auslöse-Ursache
Anzeige der LED-Konfiguration
Asymmetrie (Spannung)
Ausl-Trans
Ausl-Transfer über Schutzkommunikation
Auslöse-Manager508
Auslösebefehlsmanager
Auslöseverzögerung (Erdüberstrom)
Auslöseverzögerung (Phasenüberstrom)
Automatische Fehleranzeige
Automatische Wiedereinschaltung
В
Bedieneinheit
Berechtigungspasswort
Bereiche (Zugriffsbereiche)
RO, P.1, P.2, C.1, C.2, S.3
Bestellschlüssel
Bezugsmanagement
Netzleistung
Netzstrom
Bitte wartenSystem verriegelt

Blindleistungs-Unterspannungsschutz	434
Buchholz	484
Bypass der Parametriersperre	55
C	
control	540
D	
D-SUB	165
DEFT (Erdüberstrom-Kennlinie)	335
DEFT (Phasenüberstrom-Kennlinie)	298
DNP3	185
Device Stopped	574
Diagnosedaten	566
Differentialschutz-Modul	253
Direktkommando	. 46
E	
E Einschaltstromerkennung (IH2)	328
Einschaltstromerkennung (IH2)	85
Einschaltstromerkennung (IH2)	85 231
Einschaltstromerkennung (IH2) Energieeinheit Erdfehler-Richtung Erdstromschutz-Stufe	85 231 330 497
Einschaltstromerkennung (IH2) Energieeinheit Erdfehler-Richtung Erdstromschutz-Stufe Erweiterte	85 231 330 497
Einschaltstromerkennung (IH2) Energieeinheit Erdfehler-Richtung Erdstromschutz-Stufe Erweiterte Spannungswandlerüberwachung	85 231 330 497
Einschaltstromerkennung (IH2) Energieeinheit Erdfehler-Richtung Erdstromschutz-Stufe Erweiterte Spannungswandlerüberwachung Erzeugerzählpfeilsystems	85 231 330 497
Einschaltstromerkennung (IH2) Energieeinheit Erdfehler-Richtung Erdstromschutz-Stufe Erweiterte Spannungswandlerüberwachung Erzeugerzählpfeilsystems Ethernet 37, 154,	85 231 330 497 29 166
Einschaltstromerkennung (IH2) Energieeinheit Erdfehler-Richtung Erdstromschutz-Stufe Erweiterte Spannungswandlerüberwachung Erzeugerzählpfeilsystems Ethernet 37, 154, 154, 154, 155, 155, 155, 155, 155	85 231 330 497 29 166
Einschaltstromerkennung (IH2) Energieeinheit Erdfehler-Richtung Erdstromschutz-Stufe Erweiterte Spannungswandlerüberwachung Erzeugerzählpfeilsystems Ethernet 37, 154, 154, 154, 155, 155, 155, 155, 155	85 231 330 497 29 166 236 507
Einschaltstromerkennung (IH2) Energieeinheit Erdfehler-Richtung Erdstromschutz-Stufe Erweiterte Spannungswandlerüberwachung Erzeugerzählpfeilsystems Ethernet 37, 154, 154, 154 empfindliche Erdfehlerrichtung externe Ein-/Aus-Kommandos	85 231 330 497 29 1166 236 507

Fehlercodes für Neustart
Fehlermesswert
Fehlerstromrichtung
Freigabeschwelle (Nullschwelle)
Frequenzschutz
f[x]
fiber optic
G
Globale Parameter
Н
HMI
HptPara
HptPara-Datei
harmonische Verzerrungen (THD)
1
12>
12>[x]
I2T (Erdüberstrom-Kennlinie)
I2T (Phasenüberstrom-Kennlinie)
I4T (Erdüberstrom-Kennlinie)
I4T (Phasenüberstrom-Kennlinie)
IEC EINV (Erdüberstrom-Kennlinie)
IEC LINV (Erdüberstrom-Kennlinie)
IEC NINV (Erdüberstrom-Kennlinie)
IEC VINV (Erdüberstrom-Kennlinie)
IEC EINV (Phasenüberstrom-Kennlinie)
IEC LINV (Phasenüberstrom-Kennlinie)
IEC NINV (Phasenüberstrom-Kennlinie)
IEC VINV (Phasenüberstrom-Kennlinie)
IEC 60870-5-103

IEC 60870-5-104
IEC 61850
IEEE EINV (Erdüberstrom-Kennlinie)
IEEE MINV (Erdüberstrom-Kennlinie)
IEEE VINV (Erdüberstrom-Kennlinie)
IEEE EINV (Phasenüberstrom-Kennlinie)
IEEE MINV (Phasenüberstrom-Kennlinie)
IEEE VINV (Phasenüberstrom-Kennlinie)
IE[x]330
IH2
INFO-Taste
IT (Erdüberstrom-Kennlinie)
IT (Phasenüberstrom-Kennlinie)
IT-Security
I[x]
ld
IdE
K
Kennlinie (Erdüberstrom)
Kennlinie (Phasenüberstrom)
keys
CTRL
kryptographische Algorithmen
L
LC connector
LC-Anschluss
LED »System«
LED-Test
LEDs
Anzeige der Konfiguration
Konfiguration

Quittier-/Rücksetzmöglichkeiten
Selbsthaltung
System-OK-LED
LF
LS-Mitnahme
LSV
LVRT
Leistungseinheit
Leistungsfaktor - Modul
Leistungsschalterversagerschutz-Modul
Leistungsüberwachungs - Modul
Leitungsdifferentialschutz
Lichtwellenleiter (LWL)
Logik
Low Voltage Ride Through
М
Meldungen der Selbstüberwachung
Menüstruktur60
Messwerte
Minimal- und Maximalwerte
Modbus
Modul Inrush
Moduleingang
N
Netzwerkzugriff
Neustart (des Gerätes)
Neustartgründe
Nullstromeliminierung
P
PAV,E

PQS[x]	. 461
Page Editor	. 503
Param-Verriegelung	55
Passwort	
(Zugriffs-)Bereiche	. 74
Berechtigungspasswort	68
Eingabe am Gerät	72
RO, P.1, P.2, C.1, C.2, S.3	74
Verbindungspasswort	8, 70
Werkseinstellung	68
deaktivieren	. 73
zurücksetzen	68
zurücksetzen auf Werkseinstellungen	78
Phasenfolge (Überwachung)	. 502
Phasenstromschutz-Stufe	. 293
Phasenwinkel (Berechnung)	86
Polarisationsgröße	, 229
Profibus	, 206
Q	
Q->&U<	. 434
Quittierung	73
von LEDs / Ausg.relais / SCADA- Signalen / AuslBef. in Selbsthaltung	80
R	
RINV (Erdüberstrom-Kennlinie)	. 342
RINV (Phasenüberstrom-Kennlinie)	. 305
RJ45	, 154
RS485	, 159
RXIDG (Erdüberstrom-Kennlinie)	. 346
Reboot	. 569
Rekorder	. 547

(Motor-)Historie
Ereignisrekorder
Fehlerrekorder
Motorstartrekorder
Motorstatistikrekorder
Selbstüberwachungsmeldungen
Störschreiber
Trendrekorder
sicherheitsrelevante Meldungen
Restricted Earth Fault - Modul
Richtungsbestimmung
Erdfehler
Phasenfehler
Richtungserkennung
Richtungskennlinie
Richtungswinkel
Ringkabelschuh
Rückfallverzögerung (Erdüberstrom)
Rückfallverzögerung (Phasenüberstrom)
Rücksetz-Dialog
Rückwärts
S
SCADA
SK
SPÜ
ST connector
ST-Anschluss
Satzparameter
Schieflast-Stufe
Schutzkommunikation
Avago AFCT-5765ATPZ 606
II-IV (Finisar) FTLF1323P1BTL

LC / erhöhte Reichweite
ST / normale Reichweite
erhöhte Reichweite
normale Reichweite
Security
Security-Logger
Security-Status
Selbsthaltung zurücksetzen 8 (= quittieren)
Selbstüberwachungskontakt
Selbstüberwachungsmeldungen
Sicherheitsrelevante Einstellungen
Sig-Trans
Signal-Transfer über 28 Schutzkommunikation
Signale
Single Line (Abzweigsteuerbild)
Skalierung (von Messwerten)
Softkeys
Spannungs-Asymmetrie-Schutz
Spannungsschutz-Stufe
Spitzenbezugswerte
StW-SättigStab
StWÜ
Standard-Passwörter
Statistische Werte
Stiftkabelschuh
Stromwandlersättigung-Stabilisierungs- 25 Modul
Stromwandlerüberwachung
Störschreiber
Sync
Synchrocheck
Synchronisierpflicht

Syslog
System-LED
sicherheitsrelevante Meldungen
single-line
switchgear
switching authority
local
remote
Τ
THD (Total Harmonic Distortion)
ThA
Therm Flat (Phasenüberstrom-Kennlinie)
Therm Flat (Erdüberstrom-Kennlinie)
Thermisches Abbild-Modul
Typenschlüssel
U
U012
UE[x]
UFLA
U[x]
V
Verbindungspasswort
Verbraucherzählpfeilsystem
Verlagerungsspannungs-Stufe
Verriegelungen
Verschlüsselung
Vorwärts
W
WZS

Werkseinstellungen (zurücksetzen auf)
Rücksetz-Dialog
Werte
Wiederzuschaltung
wattmetrische Erdfehlerrichtungsbestimmung
wattmetrische Richtungsbestimmung
z
Zertifikate
Zugriffsbereiche
RO, P.1, P.2, C.1, C.2, S.3
Zurücksetzen auf Werkseinstellung
Zurücksetzen von Selbsthaltung 80 (= quittieren)
Zähler
Ü
Überwachungszeiten (für Schaltgeräte)
Φ
© Signalreferenzen in Funktionsdiagrammen
(10)
(11)
(13a)
(13b)
(13c)
(14)
(14*)
(15)

(15a)	394,	399,	405,	408,	410,	412,	358, 3 418, 4 481, 4	124,
(16b)								315
(17b)								315
(18b)								315
(19)								354
(20)							. 394,	457
(21)							. 394,	457
(22)							. 394,	457
(23)								399
(24b)								315
(25b)								315
(26b)								315
(27)								354
(28)							. 394,	457
(29)							. 394,	457
(30)							. 394,	457
(31)								399
(32)								243
(33a)							. 234,	237
(33b)							. 234,	237
(33c)							234,	237
(34a)							. 234,	237
(34b)							. 234,	237
(34c)							. 234,	237
(38a)								499
(38b)								499
(38c)								499
(39)								438
(40)								495
(41)								531
(42)								531

(48)		248
(50)	21,	222
(51)	21,	223
(54)	53,	398
(55)	53,	398
(PuA)		260
(PuB)		260
(PuC)		260
(Sat1)		251
(Sat2)		251
(Sat3)		251
(Sat4)		251
(1R)		219
(1)		219
(2)		244
(3)		243
(4G)		247
(4R)		249
(4)	45,	249
(5)		328
(6)		328
(7)		328
(8)		328
(9)		314

High PROTEG

MCDLV4

HANDBUCH

docs.SEGelectronics.de/mcdlv4-2

SEG Electronics GmbH behält sich das Recht vor, jeden beliebigen Teil dieser Publikation jederzeit zu verändern und zu aktualisieren.

Alle Informationen, die durch SEG Electronics GmbH bereitgestellt werden, wurden auf ihre Richtigkeit nach bestem Wissen geprüft.

SEG Electronics GmbH übernimmt jedoch keinerlei Haftung für die Inhalte, sofern SEG Electronics GmbH dies nicht explizit zusichert.

SEG Electronics GmbH

Krefelder Weg 47 • D-47906 Kempen (Germany)

Telefon: +49 (0) 21 52 145 0 Internet: www.SEGelectronics.de

Vertrieb

Telefon: +49 (0) 21 52 145 331 Telefax: +49 (0) 21 52 145 354 E-Mail: sales@SEGelectronics.de

Service

Telefon: +49 (0) 21 52 145 600 Telefax: +49 (0) 21 52 145 354 E-Mail: support@SEGelectronics.de

Für eine komplette Liste aller Anschriften / Telefon- / Fax-Nummern / E-Mail-Adressen aller Niederlassungen besuchen Sie bitte unsere Homepage.