

Справочник MCA4-3.6-RU-MAN

MCA4

Направленная защита фидера

Версия: 3.6

Перевод оригинала · Русский

Revision: - (Мод_ 42229)

© 2019

Справочник (перевод оригинала)

Woodward Kempen GmbH

Krefelder Weg 47 • D-47906 Kempen (Germany)

Postfach 10 07 55 (P.O.Box) • D-47884 Kempen (Germany)

Телефон: +49 (0) 21 52 145 1

© 2019 Woodward Kempen GmbH

Содержание

1	МСА4 — направленная защита фидера10
1.1	Комментарии к руководству
1.1.1	Важные определения
1.1.2	Символы и определения
1.1.2.1	Символы на функциональных схемах
1.2	Сведения об устройстве
1.2.1	Бланк заказа устройства26
1.2.2	Навигация — работа устройства
1.2.2.1	Элементы передней панели
1.2.2.2	Обозначения программных кнопок
1.3	Модули, настройки, сигналы и значения
1.3.1	Настройки параметров
1.3.2	Наборы адаптивных параметров
1.3.3	Отображение состояния
1.3.4	Структура меню
1.3.5	Планирование устройства
1.3.6	Параметры участка
1.3.7	Параметры устройства
1.3.8	Счетчики сброса, значения и записи
1.4	Безопасность
1.4.1	Сетевая безопасность
1.4.2	Пароли
1.4.3	Пароли для подключения к Smart view
1.4.4	Пароли уровня доступа57
1.4.5	Уровни доступа
1.4.6	Возврат к заводским настройкам, сброс всех паролей
1.5	Подтверждения65
1.6	Измеряемые значения71
1.7	Статистика73
1.7.1	Настройка минимальных и максимальных значений
1.7.2	Конфигурация расчета среднего значения
1.7.2.1	Настройка расчета среднего значения на основе силы тока*
1.7.2.2	Настройка расчета среднего значения на основе напряжения*
1.7.2.3	Настройка расчета среднего значения на основе мощности*
1.8	Smart view
1.9	DataVisualizer
2	Оборудование
2.1	Размерные чертежи
2.2	Устройство МСА4 — установка и подключение
2.2.1	Заземление
2.2.2	Обзор слотов — группы сборки

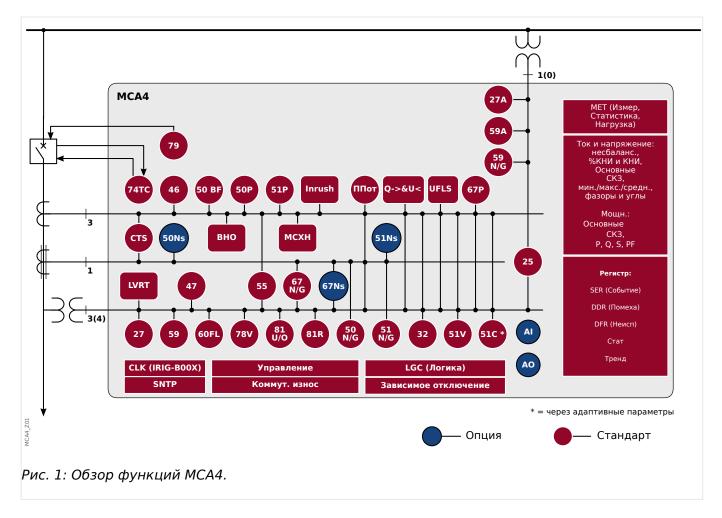
2.2.3	Коды протокола связи	84
2.2.4	Условные обозначения электрических схем	87
2.3	Слот Х1	89
2.3.1	DI8-X — питание и цифровые входы	90
2.4	Слот X2	94
2.4.1	BO-6 X — группа сборки с 6 выходными реле	95
2.5	Слот X3	97
2.5.1	TI — стандартная входная плата измерения токов фазы и замыкания на землю	98
2.5.2	Tls — плата измерения токов фазы и малых токов замыкания на землю	101
2.5.3	Трансформаторы тока (TT)	104
2.5.3.1	Измерение малого тока утечки на землю	104
2.5.3.2	Примеры подключения трансформаторов тока	105
2.5.3.3	Подключение круглых клемм	110
2.5.3.4	Требования ТТ	112
2.6	Слот X4	115
2.6.1	TU — измерительные входы напряжения	116
2.6.2	TU-OR5— группа сборки для измерения напряжения с 5 выходными реле	119
2.6.3	Трансформаторы напряжения	122
2.7	Слот X5	127
2.7.1	DI8-OR4 — группа сборки с 8 цифровыми входами и 4 выходными реле	128
2.7.2	AN-I02-OR4— группа сборки с 2 аналоговыми входами, 2 аналоговыми выходами и 4 выходными реле	
2.8	Слот Хб	134
2.8.1	DI8— группа сборки с 8 цифровыми входами	135
2.9	Слот X100: интерфейс Ethernet	138
2.9.1	Ethernet — RJ45	139
2.10	Слот X103: передача данных	140
2.10.1	Modbus® RTU/IEC 60870-5-103 через RS485	141
2.10.2	Profibus DP/Modbus® RTU/IEC 60870-5-103 через оптоволоконное соединение	145
2.10.3	Profibus DP через D-SUB	146
2.10.4	Modbus® RTU/IEC 60870-5-103 через разъем D-SUB	147
2.10.5	Ethernet/TCP/IP через оптоволоконный кабель	148
2.11	Слот X104: IRIG-B00X и контрольный контакт	149
2.11.1	Контакт самодиагностики (КС)/контакт под напряжением и IRIG-B00X	150
2.12	Интерфейс ПК — Х120	151
2.13	Настройка входа, выхода и СДИ	152
2.13.1	СДИ	152
2.13.2	Конфигурация цифровых входов	155
2.13.3	Настройки выходных реле	159
3	Коммуникационные протоколы	162
3.1	Общая настройка SCADA (связь)	162
3.2	Настройки ТСР/ІР	163

3.3	Profibus	164
3.4	IEC 61850	165
3.5	DNP3	168
3.5.1	Пример применения: настройка реле	171
3.5.2	Настройки зоны нечувствительности в DNP3	171
3.6	IEC60870-5-103	176
3.7	Настраиваемые протоколы связи	179
3.7.1	IEC 60870-5-104	180
3.7.2	Modbus®	184
3.7.3	High Tech Line 3 — сопоставление точки данных с совместимым модулем Modbus	
3.7.4	Сопоставление точек данных с помощью АДАПТЕР SC	190
3.8	Синхронизация по времени	192
3.8.1	SNTP.	196
3.8.2	IRIG-B00X	198
4	Элементы защиты	200
4.1	Модуль Защ: общая защита	200
4.1.1	Общие аварийные сигналы и общие команды отключения	202
4.1.2	Определение направления	207
4.1.2.1	Направление межфазного короткого замыкания	208
4.1.2.2	Направление замыкания на землю	211
4.1.3	Блокировки	222
4.1.3.1	Блокировка команды отключения	224
4.1.3.2	Временное включение, выключение и блокировка функций защиты	225
4.1.3.3	Включение, выключение и блокировка модулей фазного тока	226
4.1.3.4	Включение, выключение и блокировка модулей защиты от тока утечки на землю	227
4.1.3.5	Включение, выключение и блокировка защиты Q->&V<	229
4.1.4	Широкий частотный диапазон	230
4.2	Внутреннее соединение	231
4.3	Бросок тока ІН2	232
4.3.1	Ввод в эксплуатацию: Бросок тока	232
4.4	I — защита от превышения тока	234
4.4.1	Характеристики	236
4.4.2	Функциональные возможности	251
4.4.3	51V — защита от превышения тока с удерживающим напряжением	253
4.4.4	I2> — перегрузка по току отрицательной последовательности [51Q]	255
4.4.5	Защита по току с пуском по напряжению [51С]	257
4.4.6	Ввод в эксплуатацию: Защита по току — ненаправленная [50, 51]	
4.4.7	Ввод в эксплуатацию: Защита по току — направленная [67]	258
4.4.8	Ввод в эксплуатацию: защита от превышения тока, ненаправленная [ANSI 51V]	260
4.4.9	- Ввод в эксплуатацию: перегрузка по току отрицательной последовательности	261

4.5	ток на землю — защита от максимального тока замыкания на землю [50N/G, 51N/G, 67N/G]	203
4.5.1	Характеристики	265
4.5.2	Определение направления	281
4.5.3	Максимальный ток на землю — функции	282
4.5.4	Ввод в эксплуатацию: Защита по току замыкания на землю— ненаправленная [50N/G, 51N/G]	283
4.5.5	Ввод в эксплуатацию: Защита по току замыкания на землю— направленная [50N/G, 51N/G, 67N/G]	283
4.6	I2> и %I2/I1> — несбалансированная нагрузка [46]	284
4.6.1	Ввод в эксплуатацию: Модуль защиты от несимметрии токов	286
4.7	Модуль защиты ThR: Тепловая модель [49]	289
4.7.1	Ввод в эксплуатацию: Тепловая модель	290
4.8	V — защита по напряжению [27,59]	292
4.8.1	Ввод в эксплуатацию: Защита от повышенного напряжения [59]	297
4.8.2	Ввод в эксплуатацию: Защита от понижения напряжения [27]	298
4.9	HVRT — работа при повышенном напряжении	299
4.9.1	Ввод в эксплуатацию: Работа при повышенном напряжении	301
4.10	РПН — работа при пониженном напряжении [27(t)]	302
4.11	VG, VX — контроль напряжения [27A, 59A]	308
4.11.1	Ввод в эксплуатацию: Защита от остаточного напряжения — измеренное значение [59N]	
4.11.2	Ввод в эксплуатацию: Защита от остаточного напряжения — расчетное значение [59N]	311
4.12	V 012— несимметрия напряжений [47]	312
4.12.1	Ввод в эксплуатацию: Защита по напряжению обратной последовательности	313
4.13	f — частота [810/U, 78, 81R]	315
4.13.1	Режимы работы «f<», «f>»	317
4.13.2	Режим работы «df/dt»	319
4.13.3	Режимы работы «f< и df/dt», «f> и df/dt»	322
4.13.4	Режимы работы «f< и DF/DT», «f> и DF/DT»	324
4.13.5	Режим работы «дельта фи»	327
4.13.6	Ввод в эксплуатацию: повышенная частота [f>]	332
4.13.7	Ввод в эксплуатацию: пониженная частота [f<]	332
4.13.8	Ввод в эксплуатацию: df/dt — скорость изменения частоты (ROCOF)	333
4.13.9	Ввод в эксплуатацию: f< и -df/dt — пониженная частота и ROCOF	333
4.13.10	Ввод в эксплуатацию: f> и df/dt — повышенная частота и ROCOF	334
4.13.11	Ввод в эксплуатацию: f< и DF/DT — пониженная частота и DF/DT	334
4.13.12	Ввод в эксплуатацию: f> и DF/DT — повышенная частота и DF/DT	335
4.13.13	Ввод в эксплуатацию: дельта фи — выброс вектора напряжения	335
4.14	PQS — мощность [32, 37]	337
4.14.1	Настройка уставок	339
4.14.2	Примеры ввода в эксплуатацию модуля защиты мощности	340
4.15	КМ — коэффициент мощности [55]	349
4.15.1	Ввод в эксплуатацию: Коэффициент мощности [55]	350

4.16	Q->&U< — Реактивная мощность/защита от пониженного напряжения	352
4.17	Модуль повторного включения	357
4.18	UFLS — автоматическая частотная разгрузка	363
4.18.1	Примеры применения	364
4.18.2	Направление отключения при автоматической частотной разгрузке	368
4.18.3	Настройка параметров автоматической частотной разгрузки	368
4.18.4	Принцип работы модуля UFLS	372
4.19	АПВ — Автоматическое повторное включение [79]	373
4.19.1	Характеристики и особенности	373
4.19.1.1	Состояния АПВ	375
4.19.2	Цикл АПВ (срабатывание)	379
4.19.3	Временные диаграммы	382
4.19.4	Координация зон	385
4.20	Синх — проверка синхронизации [25]	388
4.21	УЗВВ — модуль ускорения защит при включении выключателя	394
4.21.1	Ввод в эксплуатацию: Ускорение при неисправности включения	396
4.22	МБПТ — модуль блокировки пусковых токов	398
4.22.1	Ввод в эксплуатацию модуля блокировки от пусковых токов	400
4.23	Зависимое выключение (удаленное)	403
4.23.1	Ввод в эксплуатацию: Зависимое выключение	404
4.24	ВншЗащ — внешняя защита	406
4.24.1	Ввод в эксплуатацию: Внешняя защита	406
4.25	Контроль	408
4.25.1	CBF — отказ силового выключателя [50BF*/62BF]	408
4.25.1.1	Принцип работы и основные области применения	408
4.25.1.2	Функциональные возможности	411
4.25.1.3	Пример использования: Схема контроля 50ВГ	411
4.25.2	КЦО — контроль цепи отключения [74ТС]	413
4.25.2.1	Ввод в эксплуатацию: Контроль цепи отключения [74ТС]	414
4.25.3	КТТ — контроль трансформатора тока [60L]	416
4.25.3.1	Ввод в эксплуатацию: Контроль отказов трансформатора тока	417
4.25.4	ППот — Падение потенциала [60]	419
4.25.4.1	Падение потенциала — оценка измеренных значений	419
4.25.4.2	Падение потенциала — неисправность предохранителя	420
4.25.4.3	Ввод в эксплуатацию: Падение потенциала	422
4.25.4.4	Ввод в эксплуатацию: Падение потенциала (НП с помощью ЦВХ)	423
4.25.5	Контроль последовательности фаз	424
5	Диспетчер систем управления /коммутационных устройств	425
5.1	Управление коммутационным устройством	426
5.1.1	Настройки, выполняемые на защитном устройстве	429
5.1.2	Переключатель	432
5.1.3	Скрытый переключатель	433
5.1.4	Выключатель	434

5.1.5	Выключатель 1	435
5.1.6	Размыкатель (изолятор)	436
5.1.7	Сочетание размыкателя с заземляющим переключателем	437
5.1.8	Заземляющий переключатель	438
5.1.9	Переключатель нагрузки с плавким предохранителем	439
5.1.10	Переключатель нагрузки с плавким предохранителем — размыкатель	440
5.1.11	Размыкатель с плавким предохранителем (изолятор)	441
5.1.12	Переключатель нагрузки	442
5.1.13	Переключатель нагрузки — размыкатель	443
5.1.14	Трехпозиционный переключатель	444
5.1.15	Съемный выключатель	446
5.1.16	Съемный переключатель нагрузки с плавким предохранителем	448
5.2	Конфигурация коммутационных устройств	449
5.3	Износ коммутационного устройства	460
5.4	Контроль, пример: переключение выключателя	463
6	Системные аварийные сигналы	466
7	Регистраторы	470
7.1	Аварийный осциллограф	471
7.2	Регистратор неисправностей	476
7.3	Регистратор событий	481
7.4	Регистратор выполнения	482
8	Программируемая логика	483
9	Самодиагностика	488
9.1	Запуск (перезагрузка) устройства	491
9.2	Сообщения о самодиагностике	493
9.3	Системный журнал	494
9.4	Устройство выведено из эксплуатации («Устройство остановлено»)	496
10	Ввод в эксплуатацию	
10.1	Ввод в эксплуатацию/проверка защиты	498
10.2	Вывод из эксплуатации — отключение реле	499
10.3	Поддержка обслуживания и ввода в эксплуатацию	500
10.3.1	Общие положения	500
10.3.2	Последовательность фаз	500
10.3.3	Принудительная настройка выходных контактов реле	500
10.3.4	Отключение выходных контактов реле	501
10.3.5	Устройство моделирования сбоев (генератор последовательностей)*	503
11	Сервисное и гарантийное обслуживание	506
12	Технические данные	508
12.1	Спецификации/погрешности	519


12.1.1	Технические характеристики часов реального времени	.519
12.1.2	Технические характеристики собираемых значений измерений	.521
12.1.3	Точность защитных элементов	.524
12.1.3.1	Защита от максимального фазового тока	.524
12.1.3.2	Защита от максимального тока замыкания на землю	.526
12.1.3.3	Определение направления	.527
12.1.3.4	Тепловая защита	.528
12.1.3.5	Защита по току	.529
12.1.3.6	Защита по напряжению	.530
12.1.3.7	Защита частоты	.533
12.1.3.8	Защита по мощности	.535
12.1.3.9	Прочие функции защиты и контроля	.539
13	Приложение	542
13.1	Стандарты	.542
13.1.1	Утверждения	.542
13.1.2	Конструкторские стандарты	.544
13.1.3	Электрические испытания	.545
13.1.4	Климатические испытания	.548
13.1.5	Механические испытания	.550
13.2	Функциональная совместимость по ІЕС 60870-104	.552
13.2.1	Система или устройство	.552
13.2.2	Конфигурация сети	.552
13.2.3	Физический уровень	.553
13.2.4	Канальный уровень	.553
13.2.5	Прикладной уровень	.554
13.2.6	Основные функции приложения	.561
13.3	Аббревиатуры и сокращения	.567
13.4	Перечень кодов ANSI	.574
13.5	История редакций	.578
13.5.1	Версия: 3.6	.579
13.5.2	Версия: 3.4	.583
13.5.3	Версия: 3.1	.586
13.5.4	Версия: 3.0.b	.587
13.5.5	Версия: 3.0	.588
14	Указатель	592

1 МСА4 — направленная защита фидера

МСА4 представляет собой высокоточное и надежное реле управления, наблюдения и защиты для фидеров, энергосистем и генераторов. В серии реле Woodward последнего поколения от компании МСА4 применены все концепции стандартов ANSI и IEC для обеспечения соответствия постоянно меняющимся требованиям к взаимодействию энергосистем. Благодаря гибким возможностям оборудования, программного обеспечения, областей применения, интерфейса пользователя и связи реле МСА4 можно адаптировать к современным и будущим требованиям.

Оборудование поддерживает все номинальные значения, а также функции защиты и контроля. Программное обеспечение для параметризации и анализа *Smart view* можно использовать одинаковым образом со всем семейством устройств.

Обзор функций

1.1 Комментарии к руководству

В настоящем руководстве описываются общие принципы планирования работы, настройки параметров, ввода в эксплуатацию и технического обслуживания устройств HighPROTEC.

Настоящее руководство предназначено в качестве рабочей документации для:

- инженеров РЗА;
- инженеров по проведению пусконаладочных работ;
- специалистов по установке, проверке и техническому обслуживанию защитной и контрольной аппаратуры;
- Прочего персонала, работающего с электрооборудованием и персонала электростанций.

В руководстве также приводятся определения всех функций, соответствующих коду типа устройства. Авторский коллектив рекомендует игнорировать информацию с описанием каких-либо функций, параметров или входов/выходов, которые не относятся к работе конкретного устройства.

Все подробные описания и ссылки приводятся по состоянию на текущий момент и основаны на нашем опыте и проведенных исследованиях.

Настоящее руководство описывает полнофункциональные модификации устройств (опция).

Вся техническая информация и данные, включенные в настоящее руководство, являлись верными на момент подготовки руководства к публикации. Мы сохраняем за собой право на внесение технических изменений в рамках постоянного развития и совершенствования оборудования без внесения изменений в текст настоящего руководства, а также предварительного уведомления. Претензии к содержанию информации и описаниям, включенным в настоящее руководство, не принимаются.

Текстовая информация, иллюстрации и формулы могут не соответствовать конкретному устройству, включенному в комплект поставки. Иллюстрации и графические изображения приведены без соблюдения масштаба. Мы не несем ответственности за ущерб или сбои в работе, вызванные ошибками операторов или невыполнением указаний, содержащихся в настоящем руководстве.

Категорически запрещается полное или частичное воспроизведение настоящего руководства, а также передача третьим лицам без письменного разрешения компании *Woodward*.

Настоящее руководство входит в комплект поставки при покупке устройства. В случае передачи (продажи) устройства третьим лицам или организациям, настоящее руководство также подлежит обязательной передаче.

Работы по ремонту устройства должны выполняться только квалифицированным техническим персоналом, ознакомленным с местными правилами техники безопасности и имеющим надлежащий опыт работы с электронными защитными устройствами и силовым оборудованием (требуется подтверждение квалификации).

Информация об обязательствах и гарантийных условиях

Компания *Woodward* не несет ответственности за ущерб, вызванный самостоятельной модернизацией или изменением устройства, или процедуры

планирования работы устройства (на этапе проектирования), настройку параметров или изменения регулировок персоналом пользователя.

Гарантийные обязательства аннулируются при вскрытии корпуса устройства лицами, не являющимися техническим персоналом компании *Woodward*.

Условия ответственности и гарантии, изложенные в Основных условиях, принятых компанией *Woodward*, не дополняются вышеуказанными разъяснениями.

Структура данного руководства

- Безопасность прежде всего! Ознакомьтесь с основными сообщениями по безопасности, которые используются в настоящем руководстве: > «Важные определения». Кроме того, здесь приводится общая информация о комплектности (> «Сведения об устройстве»), данном руководстве, а также условные обозначения и символы, в ней использующиеся (> «Символы и определения»).
- Общий обзор доступных для устройства МСА4 функций защиты приводится в виде функциональной схемы: > «1 Обзор функций». Обратите внимание, что наличие некоторых функций зависит от типа заказанного устройства. Список вариантов см. в разделе > «Бланк заказа устройства».
- В устройствах МСА4 применяется особая модульная концепция настроек, измеряемых значений и сигналов. Несмотря на то что данная концепция модулей и параметров проста и ясна, настоятельно рекомендуется, особенно начинающим, с ней ознакомиться: > «Модули, настройки, сигналы и значения»
- ПО Smart view это рабочая программа, которую можно установить на ПК с OC Windows. Компьютер можно подключить к устройству МСА4 и использовать для настройки и получения с устройства МСА4 данных (измеряемых и статистических значений, записей о сбоях и т. д.). Краткое вступление приводится здесь:

 «Smart view». При этом с подробным описанием можно ознакомиться в отдельном документе полном руководстве пользователя Smart view.
- Описание оборудования (например, схемы размеров и подключений) можно найти здесь: > «Оборудование»
- Возможно, необходимо будет задать некоторые настройки безопасности, так как устройство МСА4 поставляется без ограничений доступа и простейшим стандартным паролем, защиты не обеспечивающим. Даже при наличии абсолютной уверенности, что особых ограничений доступа не понадобится, настоятельно рекомендуется изучить главу «Безопасность»:

 «Безопасность»
- Ряд настроек относится к самому устройству МСА4:

 «Параметры устройства»
- Устройство МСА4 предлагает множество измеряемых значений и ведет статистику еще нескольких значений: в разделах > «Измеряемые значения» и > «Статистика» приводится описание соответствующих концепций и настроек.
- Протоколы связи, доступные для связи устройства МСА4 подстанцией описываются в разделе

 «Коммуникационные протоколы».
- Устройство МСА4 позволяет управлять 6 коммутационными устройствами. Обычно как минимум один из них используют для управления выключателями, отключаемыми функциями защиты при сбоях.

 □> «Диспетчер систем

управления /коммутационных устройств» описываются различные функции управления.

- Множество функций защиты описывается в подразделах главы «Функции защиты»: > «Элементы защиты». Следует иметь в виду, что существует один «основной» защитный модуль, управляющий всеми функциями защиты: > «Модуль Защ: общая защита». Более того, важно знать не только, как активируется защитный модуль, но и как его заблокировать: > «Блокировки»
- Устройство МСА4 предлагает использовать программируемые логические уравнения для программирования входов, выходов, блокировки функций защиты и создания собственных логических функций в реле:

 «Программируемая логика»
- Кроме функций защиты устройство МСА4 имеет и различные функции контроля. Основное их отличие от функций защиты в том, что функции контроля не выдают сигналов отключения, а в особых обстоятельствах генерируют аварийные сигналы. Такой аварийный сигнал можно использовать для блокировки функций защиты или назначить одному из СДИ или входов:

 «Контроль»
- Особенности ввода устройства МСА4 в эксплуатацию: «Ввод в эксплуатацию». Обратите внимание, что описание ввода в эксплуатацию конкретных функций защиты приводится в подразделах глав, посвященных соответствующим функциям защиты.
- Технические условия, допуски и применимые стандарты: 🛶 «Технические данные»
- В последней главе настоящего документа приводится предметный указатель. Он имеет одну особенность: В исходном поле «Ф» в нем перечисляются номерные сигналы «генерируемые» логическими схемами (см. раздел Комволы и определения»).

Связанные документы

- Справочное руководство к устройству MCA4 (MCA4-3.6-RU-REF): Здесь указываются все настройки, сигналы и значения, доступные в устройстве MCA4, а также соответствующие пути меню к ним, значения по умолчанию и диапазоны значений.
- Руководство к ПО Smart view (SMARTV-x.xx-RU-MAN): техническое руководство к рабочему программному обеспечению *Smart view*.
- Руководство по отладке устройств HighPROTEC (HPT-3.6-RU-TSG): описание всех внутренних сообщений (об ошибке или с предупреждением), которые могут поступить от устройства МСА4. (См. также >> «Сообщения о самодиагностике»).

Кроме того, к этому документу следует обращаться, если после фазы загрузки (⇒ «12 Этап загрузки») СДИ «Система ОК» («работает») не горит зеленым.

• Схемы проводки (HPT-3.6-EN-WDG) — [только на английском языке]: в этом документе для каждого доступного варианта устройства (заказ по коду типа) имеется соответствующая схема, на которой устройство МСА4 показано сзади со всеми установленными аппаратными модулями и подключениями проводов.

- Справочные документы SCADA
 - ∘ Список точек данных IEC 60870-5-103
 - Список точек данных Modbus
 - Список точек данных Profibus
 - Свидетельство соответствия реализации модели (MICS) IEC 61850 [только на английском языке]
 - Свидетельство соответствия реализации протокола (PICS) IEC 61850 [только на английском языке]
 - Дополнительные сведения о реализации протокола для испытаний (PIXIT) IEC 61850 [только на английском языке]
 - Свидетельство соответствия реализации технических проблем (TICS) IEC 61850 [только на английском языке]

1.1.1 Важные определения

Сообщения приведенных ниже типов предназначены для обеспечения безопасной для жизни и здоровья персонала эксплуатации устройства, а также обеспечения нормальной работы устройства в течение всего срока службы.

ОПАСНОСТЬ!

ОПАСНО! — указывает опасную ситуацию, которая может немедленно привести к тяжким телесным повреждениям или летальному исходу, если ее не предотвратить.

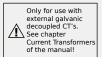
ПРЕДУПРЕЖДЕНИЕ!

ВНИМАНИЕ — указывает на опасную ситуацию, которая может привести к тяжким телесным повреждениям или летальному исходу, если ее не предотвратить.

осторожно!

ОСТОРОЖНО — указывает на возможную опасную ситуацию, которая может привести к повреждениям легкой или средней тяжести, если ее не предотвратить.

ПРИМЕЧАНИЕ!


ПРИМЕЧАНИЕ — описание ситуаций, не представляющих опасности для жизни и здоровья.

Данный символ обозначает полезные указания и рекомендации, а также содержит информацию для эффективной и бесперебойной работы.

Требования техники безопасности, напечатанные на корпусе МСА4

Эти требования техники безопасности напечатаны на корпусе МСА4 вместе со схемой соединений:



ОПАСНО!

Входы измерения тока могут подключаться исключительно к измерительным трансформаторам тока (с гальванической развязкой).

Более подробные инструкции по соблюдению техники безопасности см. в Б «ТІ — стандартная входная плата измерения токов фазы и замыкания на землю».

1.1 Комментарии к руководству

ВНИМАНИЕ!

Данный вариант МСА4 обладает высокой чувствительностью к сигналам, позволяющей измерять ток утечки на землю. (Входы для таких измерений отмечены звездочкой «*».)

Технические характеристики чувствительного входа измерения тока утечки на землю отличаются от технических характеристик входов измерения фазных токов. Если коэффициент трансформации трансформатора тока не соответствует требованиям (превышает нужное значение) то нормальные рабочие условия могут быть не распознаны.

Более подробные инструкции по соблюдению техники безопасности см. в главе «Технические характеристики» (\Longrightarrow «Технические данные») и \Longrightarrow «ТІ — стандартная входная плата измерения токов фазы и замыкания на землю».

Надлежащее использование устройства и данного руководства

осторожно!

Не вводите в эксплуатацию устройство МСА4, пока не будет выполнена его настройка и приемка.

Прочитайте данное руководство по эксплуатации.

Для настройки требуемых функций защиты прочитайте «Модуль Защ: общая защита» и соответствующие главы в «Элементы защиты».

Процедура приемки описана в

→ «Ввод в эксплуатацию» и соответствующих разделах глав, которые относятся к требуемым функциям защиты.

ПРЕДУПРЕЖДЕНИЕ!

СЛЕДУЙТЕ НАСТОЯЩИМ ИНСТРУКЦИЯМ

Перед началом установки, эксплуатации или технического обслуживания оборудования тщательно ознакомьтесь с настоящим руководством и всей прочей необходимой документацией, относящейся к конкретным операциям. Выполняйте все указания и предупреждения по технике безопасности, действующие на предприятии. Невыполнение этих инструкций может привести к телесным повреждениям и/или к имущественному ущербу.

ПРЕДУПРЕЖДЕНИЕ!

ЦЕЛЕВОЕ ПРИМЕНЕНИЕ

Несанкционированное внесение изменений в оборудование или в методику его применения, выходящее за установленные механические, электрические и прочие эксплуатационные ограничения, может повлечь за собой травмы и/или материальный ущерб, в том числе привести к повреждению самого оборудования. Любые подобные изменения: (1) являются «неправильным применением» и/или «небрежностью» в соответствии с терминологией, принятой в гарантийных документах; соответственно, предприятие-изготовитель не обеспечивает гарантийным обслуживанием все вытекающие повреждения, (2) отменяет действие сертификатов и разрешительных документов на данное оборудование.

Программируемые устройства, описанные в настоящем руководстве, предназначены для защиты и управления силовым оборудованием и рабочими устройствами с питанием от источников напряжения с фиксированной частотой, например фиксированной частотой 50 или 60 Гц. Они не предназначены для использования с приводами с переменной частотой. Эти устройства предназначены для установки в низковольтных отсеках панелей распределительных щитов среднего уровня напряжения или в панелях с децентрализованной защитой. Программирование и настройка параметров должны соответствовать требованиям концепции системы защиты (оборудования, защита которого осуществляется с помощью данных устройств). Необходимо запрограммировать устройство и настроить его параметры так, чтобы оно надлежащим образом распознавало рабочие условия (сбои) и управляло ими (например, путем выключения прерывателя). Правильное использование требует резервной защиты дополнительным защитным устройством. Перед началом работы и после внесения изменений в программу (изменения значений параметров), необходимо провести испытания и задокументировать результаты, подтверждающие соответствие новой программы и новых значений параметров концепции системы защиты.

В целях контроля работоспособного состояния программируемого защитного устройства контакт самодиагностики (контакт под напряжением) должен быть соединен с системой автоматики подстанции. Очень важно, чтобы с контакта самодиагностики (контакта под напряжением) программируемого защитного устройства поступало аварийное оповещение, требующее безотлагательного вмешательства при срабатывании. Аварийный сигнал указывает на то, что устройство больше не обеспечивает защиту цепи и системе требуется обслуживание.

Ниже перечислены типовые области применения модельного ряда устройств данного типа:

- Защита ввода
- Защита электросети
- Защита оборудования
- Защита трансформатора
- Защита генератора

Данные устройства не предназначены для иных целей. Это также относится к использованию частично укомплектованного оборудования. Предприятие-изготовитель не несет ответственности за ущерб, вызванный нецелевым применением оборудования. Всю ответственность в этом случае несет пользователь. В целях обеспечения надлежащего применения устройства: Следует соблюдать технические условия и допуски, установленные Woodward.

1.1 Комментарии к руководству

Устаревшая документация

С момента публикации данной версии руководства в его текст могли быть внесены изменения. Чтобы убедиться, что вы пользуетесь последней редакцией документа, посетите раздел загрузок нашего веб-сайта.

Последняя редакция настоящего технического руководства и обновленный список исправлений доступны на веб-сайте Woodward.

- Перейдите на веб-сайт компании (>> www.woodward.com) и выполните поиск необходимых документов. (Идентификатор каждого документа напечатан на его обложке.)
- Кроме того, на каждом устройстве HighPROTEC напечатан индивидуальный QRкод. Отсканируйте этот код, и откроется сетевая папка со всеми соответствующими документами в последней версии.

Важная информация

ПРЕДУПРЕЖДЕНИЕ!

В соответствии с требованиями заказчика устройства укомплектованы модульно (по кодам заказа). Обозначения соединительных разъемов устройства приводятся на верхней панели корпуса (электрическая схема).

осторожно!

Электростатический разряд

Все электронные компоненты в той или иной степени чувствительны к электростатическому разряду. Для защиты этих компонентов от повреждений необходимо принять специальные меры по снижению или исключению вероятности электростатического разряда. При работе с устройством или вблизи него соблюдайте следующие указания:

- 1. Перед началом технического обслуживания устройства снимите статическое электричество с тела, прикоснувшись к заземленному металлическому объекту (трубе, аппаратурному шкафу раме и т. п.).
- 2. Избегайте накопления статического электричества на теле не применяйте спецодежду из синтетических материалов. Используйте хлопковую или хлопчатобумажную спецодежду, поскольку она не задерживает электростатические заряды так, как синтетическая.
- 3. Храните пластмассу, винил, пенопласт и прочие материалы (например, посуду из пенополистирола, бутылки, корзины для бумаг, упаковки из-под сигарет, целлофановую обертку, книги в виниловых обложках и т. п.) вдали от оборудования и рабочей зоны.
- 4. Не извлекайте печатные платы из корпуса устройства без крайней необходимости. Если печатные платы необходимо извлечь, соблюдайте следующие правила:
 - Убедитесь в безопасности изолирования от источника питания. Все соединители должны быть отсоединены.
 - Прикасаться можно только к краям ППМ.
 - Не прикасайтесь руками к электрическим проводникам, клеммам или другим проводящим устройствам печатной платы.
 - При замене ППМ новая ППМ должна находиться в пластиковом неэлектризующемся защитном пакете, пока вы не будете готовы ее установить. Сразу после демонтажа старой ППМ со шкафа управления необходимо поместить ее в неэлектризующийся защитный пакет.

Для предотвращения повреждения электронных компонентов вследствие неправильного обращения обратитесь к технической инструкции компании *Woodward* (82715) «Руководство по обслуживанию и защите электронных управляющих устройств, печатных плат и модулей».

Woodward сохраняет за собой право в любой момент вносить изменения в текст настоящего документа. Информация, предоставленная Woodward, считается точной и надежной. Тем не менее, Woodward не несет ответственности за ее достоверность, за исключением специально оговоренных случаев.

© 2019 Woodward. Все права защищены.

1.1.2 Символы и определения

Схема подключения, напечатанная на корпусе

На корпусе устройства МСА4 закреплена схема подключения (проводки). На этой схеме показаны все разъемы данного конкретного варианта устройства.

Таблицу символов, которые могут отображаться на этой схеме, можно найти здесь: «Условные обозначения электрических схем»

Опорная система стрелок нагрузки

- Обычно используется «Опорная система стрелок нагрузки» для нагрузок (потребляемой энергии) или «Опорная система генератора» для генераторов (генерируемой энергии).
- Все устройства защиты HighPROTEC (кроме устройств защиты генератора) используют только элемент «Опорная система стрелок нагрузки». Устройства защиты генератора работают на основе элемента «Опорная система генератора».
- Это относится к направлениям и фазовым углам. Фазовый угол определяется как угол между фазором тока и фазором напряжения.
- Стрелки тока и напряжения должны считаться положительными в направлении стрелки.

Типографские обозначения

- «Параметры обозначаются двойными правыми и левыми стрелками и выделяются курсивом.»
- «СИГНАЛЫ обозначаются двойными правыми и левыми стрелками и выделяются малыми прописными буквами.»
- [Пути обозначаются скобками.]
- Названия программных продуктов и устройств выделяются курсивом.
- Названия модулей и экземпляров (элементов) выделяются курсивом и подчеркиванием.
- «Кнопки, режимы и записи меню обозначаются правыми и левыми стрелками.»
- 123 Опор изображ

Нумерованные сигналы на функциональных схемах

Сигналы, обозначенные цифрой в кружке, нужны для указания взаимосвязей между разными схемами. То есть, найдя такую цифру в кружке где-то слева на одной схеме, можно будет уточнить на другой схеме, где именно генерируется данный конкретный сигнал.

При этом все цифры в кружке, отображающиеся на той или иной схеме справа (например, как выходной сигнал), перечислены в главе «Указатель».

1.1.2.1 Символы на функциональных схемах

Значения настроек

В верхней рамке на схеме слева приведен обычный символ значения настройки, использующийся на функциональных схемах. Название настройки указывается по названиям модуля и параметра, разделенным точкой «•».

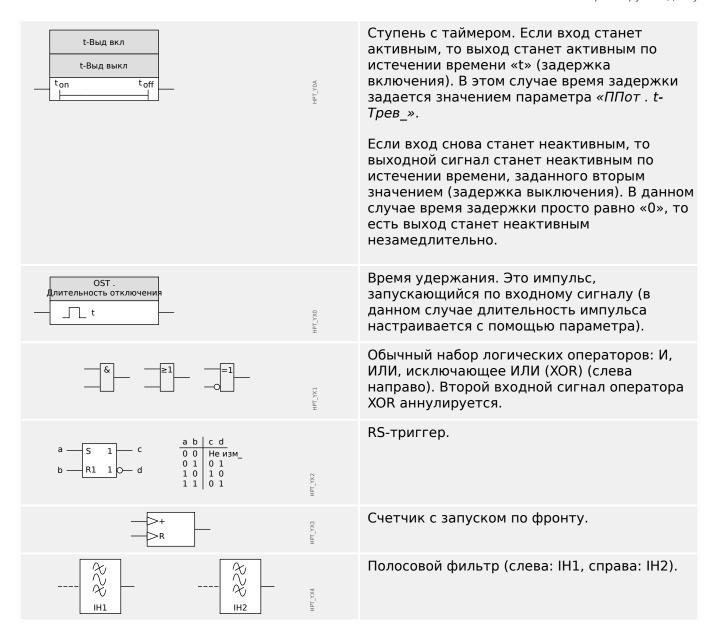
Второй пример. Из-за высокого уровня модульности защитных устройств HighPROTEC логика, описываемая в функциональных схемах, часто применяется в нескольких модулях. В таких случаях приводится только символическое название модуля, например, «Назв». В начале схемы значение «Назв» указывается в виде списка модулей, к которым применима данная схема.

В редких случаях необходимо также указать путь меню (или как минимум элемент меню верхнего уровня), поскольку указать конкретную настройку только по имени модуля и параметра было бы затруднительно. В третьем примере настройка *«дельта фи - режим»* обозначена как параметр участка (то есть искать ее следует в ветви меню [СистПар]).

Дополнительное примечание. На всех схемах, приведенных в этом документе, имеется обозначение, выполненное мелким шрифтом. В данном случае это «HPT_Y05». Так обозначается название схемы, то есть это ее уникальный идентификатор. Естественно, он не является ни названием параметра, ни каким-либо иным элементом описываемой логики. На всех функциональных схемах имеется идентификатор, включающий в себя символы «_Y».

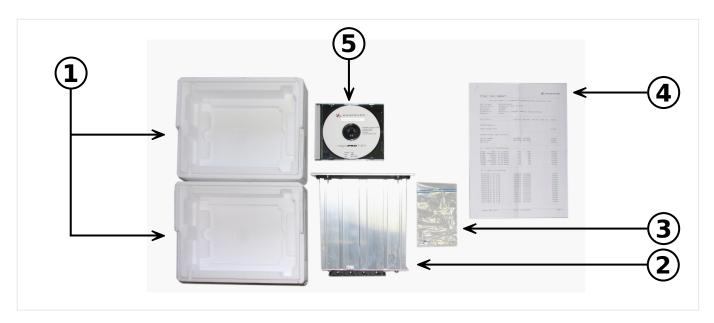
	Назв . Трев_ дельта фи
UA	
	Λ06
1 3ащ. акт	Назв . акт_ (2)

Входные и выходные сигналы


Сверху показан двоичный (выходной) сигнал.

Ниже пунктирной линией обозначено измеренное значение (то есть аналоговый сигнал).

Нижняя строка, слева: нумерованный входной сигнал; справа: нумерованный выходной сигнал. С технической точки зрения они ничем не отличаются от «обычных» (ненумерованных) сигналов. Однако эти сигналы отображаются на нескольких разных схемах, и нумерация


1.1 Комментарии к руководству

	помогает идентифицировать и находить их на страницах технического руководства. При этом все цифры в кружке, отображающиеся на той или иной схеме справа (например, как выходной сигнал), перечислены в главе «Указатель», что позволяет уточнить, где именно «генерируется» тот или иной конкретный сигнал.
Назв . Выбор UX измерено рассчитано	Если в качестве значения настройки параметра «Назв . Выбор UX» задано «измерено», то выход 1 активен, а выход 2 неактивен. Если в качестве значения настройки параметра «Назв . Выбор UX» задано «рассчитано», то выход 1 неактивен, а выход 2 активен.
Назв . ВнБлк1 нет присв_ 1п_ Спис_ назн_	Значение настройки параметра «Назв . ВнБлк1» является не одним из элементов простого неизменного списка настроек, а другим параметром (как правило, двоичным выходным сигналом), назначаемым из списка параметров. Это значит, что настраиваемый параметр принимает значение назначенного параметра. К примеру, в случае двоичного выходного сигнала это означает, что параметр «Назв . ВнБлк1» активен, пока активен назначенный выходной сигнал. Если сигналов не назначено, то выход постоянно неактивен (и активным будет только поле «нет присв_», которое в этом примере не подключено).
%(U2/U1) %(U2/U1) > 40% Iф.А I< Id. A TL	Два типа устройств сравнения («триггеры Шмитта») Верхняя строка. Если значение аналогового входного сигнала (здесь: коэффициент по напряжению %(U2/U1)) превышает указанное пороговое значение (здесь: 0,4) то выход становится активным (принимает логическое значение «1»). Нижняя строка. Функция этого типа противоположная: если значение аналогового сигнала Iф.А ниже порогового значения (здесь: значение настройки параметра «/<»), то выход становится активным.

1.2 Сведения об устройстве

Комплект поставки

Содержимое комплекта поставки:

(1)	Транспортная упаковка
(2)	Защитное устройство
(3)	Крепежные гайки
(4)	Тестовый отчет
(5)	Диск DVD с руководствами и необходимой документацией по устройству, а также программным обеспечением для параметризации и анализа Smart view.

Проверьте комплектность поставки при получении оборудования (в соответствии с транспортной накладной).

Убедитесь, что заводская табличка, соединительная схема, код типа и описание устройства соответствуют заказу.

В случае возникновения затруднений обратитесь в отдел обслуживания (адрес находится на задней странице обложки).

Хранение

Запрещается хранить устройство вне помещения. Устройство следует хранить в сухом, хорошо проветриваемом помещении (см. «Технические данные», Карактические данные»).

Батарея

Батарея предназначается для резервного питания часов реального времени при обесточивании устройства защиты.

Поскольку она не используется при нормальной работе устройства МСА4, ожидается, что при нормальных условиях эксплуатации ее замена не потребуется в

течение всего срока службы устройства МСА4. Если же замена батареи все-таки потребуется, то необходимо будет отправить устройство МСА4 производителю для сервисного обслуживания.

Удаление батареи по истечении срока службы устройства МСА4

Следует выпаять батарею или «перекусить» контакты.

Дополнительные сведения содержатся в паспорте безопасности продукта, предоставленном производителем батареи (Panasonic, тип батареи: BR2032 — \Longrightarrow http://panasonic.net/ec/). См. также раздел \Longrightarrow «1.2 Утилизация» ниже.

Утилизация

Данное защитное устройство содержит батарею и потому отмечено символом, утвержденным директивой EC 2006/66/EC.

Батареи могут нанести вред окружающей среде. Поврежденные или непригодные для использования батареи следует утилизировать в специально предназначенных для этого контейнерах.

Обычно утилизация электрических устройств и батарей регламентируется требованиями и нормами, действующими в стране пользователя.

1.2.1 Бланк заказа устройства

Направле	нная защит	га фидера									
MCA4						-2	#	#	#	#	#
Корпус	Дисплей	Циф- ровые входы	Релей- ные выходы	Аналого- вые входы	Аналого- вые выходы						
B2	ЖК- дисплей, 128 x 128 пикселей	8	7	-	-		A				
B2	ЖК- дисплей, 128 x 128 пикселей	16	13	-	-		D				
B2	ЖК- дисплей, 128 x 128 пикселей	24	19	_	_		E				
B2	ЖК- дисплей, 128 x 128 пикселей	16	14	2	2		F				
Версия об	орудовани	я 2									
Фазный ток 5 A/1 A, ток утечки на землю 5 A/1 A											
Фазный ток 5 А/1 А, чувствительный ток утечки на землю 5 А/1 А											
Корпус и крепление											
Дверное крепление							A				
Дверное крепление 19 дюймов (скрытое крепление)						В					
Коммуник	ационные	протоколы									
Без проток	кола									A	
Modbus RTI	U, IEC60870-	5-103, DNP3	.0 RTU <i>RS48</i>	35 /разъемы	*					В	
Modbus TCI	P, DNP3.0 TC	P/UDP Ethe	rnet 100 Μ6ν	ıт/с /RJ45*						С	
Profibus-DP	оптоволок	онное соеді	инение /разт	ьем ST*						D	
	RS485 / D-									E	
	U, IEC60870-		•		соединение	e /pa	зъеі	м ST	*	F	
	U, IEC60870-		·							G	
IEC61850, Modbus TCP, DNP3.0 TCP/UDP Ethernet 100 Μ6μτ/c /RJ45*							В				

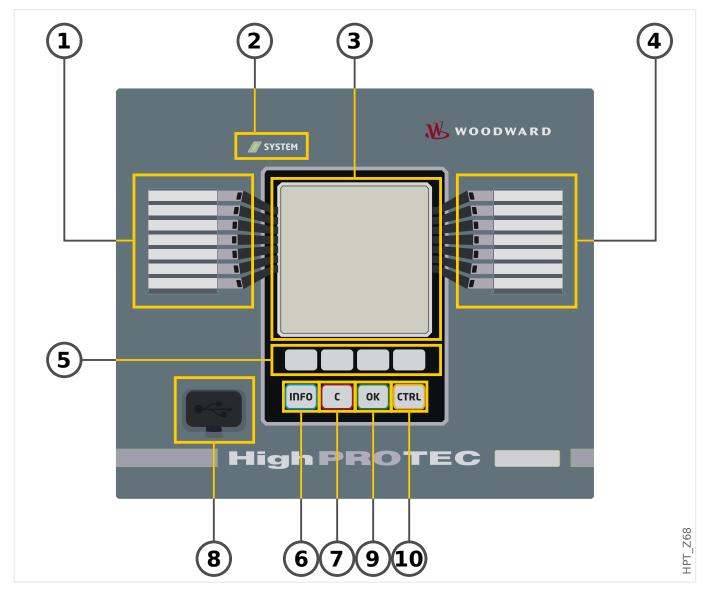
Направленная защита фидера						
MCA4	-2	#	#	#	#	#
IEC60870-5-103, Modbus RTU, DNP3.0 RTU <i>RS485 /разъемы</i>					1	
Modbus TCP, DNP3.0 TCP/UDP Ethernet 100 Мбит/c/RJ45*						
IEC61850, Modbus TCP, DNP3.0 TCP/UDP Оптический дуплексный разъем Ethernet 100 Мбит/с /LC*		K				
Modbus TCP, DNP3.0 TCP/UDP Оптический дуплексный разъем Ethernet 100 Мбит/ с /LC*		L				
IEC60870-5-103, Modbus RTU, DNP3.0 RTU <i>RS485 /разъемы</i>					T	
IEC61850, Modbus TCP, DNP3.0 TCP/UDP Ethernet 100 Μδиτ/c /RJ45*						
Опция для агрессивной среды						
Нет						A
Конформное покрытие						В
Доступные языковые настройки меню						
Английский (США)/немецкий/испанский/русский/польский/португальс	кий	(Бра	зилі	ия)/		

французский/румынский

(*) Для каждого варианта соединения можно использовать только один протокол связи.

Smart view можно использовать параллельно через интерфейс Ethernet (RJ45).

ПРИМЕЧАНИЕ!


Программное обеспечение для параметризации и анализа *Smart view* включено в комплект устройств HighPROTEC.

Все устройства оснащены интерфейсом IRIG-В для синхронизации времени.

С функцией управления (до 6 распределительных устройств) и логикой до 80 логических уравнений.

1.2.2 Навигация — работа устройства

Следующая информация относится к защитным устройствам с корпусом «B2» и большим дисплеем, в частности, MCA4:

1.2.2.1 Элементы передней панели

(1) Программируемые СДИ

Сообщения информируют пользователя о рабочем состоянии устройства, системных данных и прочих параметрах устройства. Они также выводят информацию о неполадках в работе устройства и о других состояниях устройства и оборудования.

Светодиодным индикаторам можно назначать различные сигналы из «списка назначений» (описание доступных сигналов можно найти в справочном руководстве).

(2) СДИ «Система ОК» («работает»)

СДИ «Система ОК» («работает») горит зеленым, если после фазы загрузки (>> «12 этап загрузки») функции защиты устройства МСА4 работают. В любом ином случае следует обратиться к руководству по отладке.

(3) Дисплей

На дисплее можно проверить рабочие данные и изменить параметры.

(4) Программируемые СДИ группы В (справа)

Сообщения информируют пользователя о рабочем состоянии устройства, системных данных и прочих параметрах устройства. Они также выводят информацию о неполадках в работе устройства и о других состояниях устройства и оборудования.

Светодиодным индикаторам можно назначать различные сигналы из «списка назначений» (описание доступных сигналов можно найти в справочном руководстве).

(5) Программные кнопки

Функции «ПРОГРАММНЫХ КНОПОК» зависят от контекста. В нижней строке дисплея отображаются текущие функции в виде символов. См. $\sqsubseteq >$ «Обозначения программных кнопок»

(6) Кнопка «INFO» (сигналы/сообщения)

Отображается текущее назначение СДИ. Эта кнопка прямого вызова может быть нажата в любое время.

Чтобы выйти из меню СДИ или подменю, нажмите программную кнопку «◀» (влево) один или два раза.

Дополнительные сведения: Ц «СДИ»

(7) Кнопка «С»

Отмена изменений параметров и подтверждение сигналов (в том числе проверка СДИ). Во время холодного перезапуска — сброс пароля и/или параметров.

Дополнительные сведения об отмене изменений во время обычной настройки: «Настройки параметров»

Дополнительные сведения о подтверждении сигналов: 🛶 «Подтверждения»

1.2 Сведения об устройстве

В частности, о подтверждении вручную и проверке СДИ: \Longrightarrow «1.5 Подтверждение вручную (нажатием кнопки С на панели управления)»

(8) Интерфейс USB (соединение с ПО Smart view)

Через этот интерфейс USB можно выполнить соединение с ПО *Smart view*, установленным на ПК.

(9) Кнопка «ОК»

При нажатии кнопки ОК временно сохраняются изменения параметров. При повторном нажатии кнопки «ОК» эти изменения будут сохранены на постоянной основе.

(10) Кнопка «CTRL»

Прямой доступ к меню управления.

1.2.2.2 Обозначения программных кнопок

Для обозначения функций программных кнопок используются следующие символы.

С помощью программной кнопки «вверх» можно выполнять прокрутку вверх. С помощью прокрутки вверх можно перейти к предыдущему пункту меню или параметру.

С помощью программной кнопки «вниз» можно выполнять прокрутку вниз. С помощью прокрутки вниз можно перейти к следующему пункту меню или параметру.

С помощью программной кнопки «влево» можно вернуться на один шаг назад. Можно выйти из подменю. Можно вернуться к предыдущей странице дерева меню.

С помощью программной кнопки «вправо» можно открыть выбранное подменю.

С помощью программной кнопки «Начало списка» можно сразу перейти в начало списка.

С помощью программной кнопки «Конец списка» можно сразу перейти в конец списка.

С помощью программной кнопки «+» увеличивается выбранная цифра (непрерывное нажатие: быстрый повтор).

С помощью программной кнопки «—» уменьшается выбранная цифра (непрерывное нажатие: быстрый повтор).

С помощью программной кнопки «влево» выбирается цифра, находящаяся слева от выбранной.

С помощью программной кнопки «вправо» выбирается цифра, находящаяся справа от выбранной.

С помощью кнопки с символом гаечного ключа можно изменить выбранный параметр (то есть перейти в режим настройки параметра).

С помощью кнопки с символом ключа можно будет получить запрос на ввод пароля, после чего изменить выбранный параметр.

С помощью программной кнопки «удалить» удаляются выбранные данные.

Программной кнопкой «Быстро вперед» осуществляется быстрая прокрутка вперед.

Программной кнопкой «Быстро назад» осуществляется быстрая прокрутка назад.

1.3 Модули, настройки, сигналы и значения

МСА4 — это цифровое защитное устройство, во внутренней памяти которого хранятся различные данные. Некоторые эти данные могут изменяться пользователем, чтобы адаптировать различные функции устройства к соответствующим целям применения. Другие данные задаются самим устройством в процессе работы и поэтому доступны пользователю только для чтения.

Все настройки, операции планирования устройства и проверки состояния сигналов во время работу могут выполняться следующим образом:

- Напрямую на устройстве
- В программном обеспечении Smart view

Модули

Микропрограммное обеспечение устройства МСА4 можно представить себе в виде нескольких отдельных независимых функциональных блоков. Во всей нашей технической документации речь идет о «модулях» (или иногда — «функциях»). Например, свой модуль есть у каждой защитной функции. Для устройств HighPROTEC они являются основным понятием: Например, функция подсчета статистических данных является модулем (называется «Статистика»), модулем является каждый протокол связи, а также общие функции управления выключателями (называются «Управление»). Имеется даже модуль общей защиты (называется «Защ»), который взаимодействует со всеми другими защитными модулями.

Важно знать, что каждый параметр, сигнал и значение всегда являются частью четко одного модуля (даже если ради большей простоты имя модуля не отображается на панели).

Модули могут взаимодействовать друг с другом — либо потому, что являются встроенным компонентом микропрограммного обеспечения, либо потому, что пользователь назначил определенному сигналу модуля тот или иной параметр (становится входом модуля). Примером встроенного взаимодействия является случай, когда сигнал отключения любого защитного модуля инициирует сигнал отключения общего модуля «Защ». И наоборот — если сигнал отключения «Защ» блокируется, будут заблокированы все защитные функции.

Некоторые модули существуют в виде нескольких (идентичных) экземпляров, которые могут активироваться и настраиваться независимо друг от друга. Их можно использовать, когда требуется несколько этапов защиты. Однако у МСА4 имеется одно фундаментальное отличие: функции всех экземпляров (определенного модуля) всегда идентичны (за исключением отличий, возникающих в результате разных значений настроек).

Применяется следующее соглашение об именовании: если существует несколько экземпляров модуля «Модуль», то имена этих экземпляров будут следующими — «Модуль[1]», «Модуль[2]», ... (то есть, схема «Модуль[x]»).

Типы настроек, сигналов и значений

Настройки (также называются параметрами)

• Параметры — это данные, которые могут изменяться пользователем для адаптации к конкретным сценариям использования.

Smart viewПользователи могут сохранять все настройки в какой-либо файл. Это должен быть файл с именем следующего формата: *.ErPara. Такой файл можно загрузить в любое другое время, а значения настроек, хранящиеся в файле, можно перенести на любое другое защитное устройство МСА4. (Подробнее см. в руководстве Smart view.)

(Примечание. Имеется ряд исключительных случаев, когда настройки всегда хранятся в памяти устройства и не могут быть сохранены в файл *.ErPara. Это ситуации, в которых нежелательно напрямую передавать значение настройки между устройствами. примером могут служить настройки TCP/IP.)

Существует несколько типов параметров, которые определяются типом соответствующих данных. Пользователю знать детали необязательно, однако следует знать, что существуют числовые параметры (например, пороги максимального тока) и параметры, подразумевающие выбор одного и доступных значений в списке. Это могут быть либо фиксированные значения (например, протокол связи), либо сигналы (чтобы во время работы устройства заданное значение параметра соответствовало состоянию назначенного сигнала). О назначении сигналов рассказывалось выше — «вход модуля».

• Некоторые свойства параметров зависят от значений других параметров. Например, параметры планирования устройства (в меню [Планир_ устр_]) не только активируют или деактивируют защитные функции, но и контролируют видимость соответствующих параметров.

Некоторые параметры зависят от других параметров не только из-за видимости, но и из-за значений по умолчанию и/или доступных диапазонов значений. (Например, диапазон значений некоторых параметров защиты зависит от коэффициента ТТ.)

• Имеются также параметры, существующие в одном экземпляре, которые называются «глобальными параметрами».

Обычно они находятся в меню [Глоб пар защ].

- Параметры группы уставок можно найти в ветвях меню [Набор 1] ... [Набор 4]. Это параметры защиты, включающие по четыре значения. То есть, пользователь может задать четыре значения, каждое из которых будет членом определенного «набора параметров» (с Набор 1 по Набор 4). В один момент времени активен только один из четырех наборов параметров, поэтому активно будет только значение из соответствующего набора. (Это всегда зависит от функции защиты: при переключении между наборами параметров затрагиваются одновременно все функции защиты.)
- Наборы адаптивных параметров позволяют динамически изменять отдельные параметры: определяемые значения настроек зависят от значения «Ист_/ Ложь» определенного булева сигнала. Можно определить до четырех булевых сигналов для переключения значений. Это означает, что вместе с базовым значением, такой адаптивный параметр может иметь до пяти альтернативных значений (в каждом наборе параметров, то есть, общая сумма составит до 20 значений). Какое из значений будет активно использоваться в определенный момент времени, зависит от рабочего значения (до четырех) соответствующих булевых параметров.

В отличие от параметров группы уставок, наборы адаптивных параметров имеют «локальный» характер, то есть, они воздействуют только на ту функцию защиты, для которой они были активированы.

Однако следует заметить, что не все функции защиты поддерживают наборы адаптивных параметров.

Пользователи, которые не знакомы с понятием «наборы адаптивных параметров», могут узнать об этих параметрах подробнее в соответствующей главе. См. раздел ⇒ «Наборы адаптивных параметров».

Прямые команды

• **Прямые команды**, как и параметры настроек, являются частью дерева меню, но только выполняются немедленно. Поэтому прямые команды **HE** являются частью файла параметров *. HtpPara.

Типичным примером прямых команд являются команды сброса счетчиков.

На панели (и в окне списка программы Smart view) прямые команды отмечены значком кнопки «⊙», поэтому узнать их легко.

Сигналы

• Сигналы — это рабочие состояния, то есть, они определяются результатом работы функций защиты или состоянием цифрового входа.

Сигналы являются частью дерева меню. Их можно найти в меню [Работа / Отображение состояния].

- Некоторые сигналы отражают состояние установленной системы или оборудования (например, индикаторы положения выключателя).
- Некоторые *сигналы* представляют собой результат анализа состояния электросети и оборудования (например, нормальная работа системы, обнаружена неполадка в работе трансформатора и т. п.).
- Некоторые сигналы представляют собой результаты действий, которые производятся с устройством (например, команда отключения) и зависят от настройки параметров.
- Многие сигналы можно назначать определенным параметрам. Это означает, что функционирование таких параметров зависит от рабочего состояния сигнала. Например, у каждой функции защиты имеется несколько параметров блокировки. (См. также > «Блокировки»). Если для параметра блокировки назначен сигнал, то соответствующая функция защиты блокируется, если назначенный сигнал переходит в рабочее состояние «Ист_».
- Таким же образом сигналы могут назначаться индикаторам устройства МСА4, при этом индикатор загорится, как только назначенный сигнал перейдет в состояние «Ист ». (См. также 🛶 «СДИ»).

Состояния входов (для входа модуля)

• Состояния входов — это специальные сигналы, которые являются частью дерева меню. Для каждого параметра, для которого может быть назначен сигнал, имеется соответствующее состояние входа. Во время работы состояние входа отражает текущее состояние назначенного сигнала. Это позволяет проследить взаимосвязи в работе любой функции защиты.

Применяется следующее соглашение об именовании: Если параметр, для которого может быть назначен сигнал, имеет имя «Имя», то соответствующее состояние входа будет иметь имя «Имя-Вх».

Счетчики, значения

• Значения — это более или менее изменяемые данные, которые во время работы постоянно хранятся в обновленном состоянии.

• Самый распространенный (и самый важный) тип значений — это набор измеренных значений (например, значения тока и/или напряжения, измеренные в ТТ/ТН, а также значения частоты). Термин измеренные значения будет также использоваться в отношении значений, полученных на основе измеренных значений путем вычислений. Например, значение мощности, полученное на основе значений тока и напряжения). Конечно, набор доступных измеренных значений зависит от возможностей определенного защитного устройства.

Более подробно об измеренных значениях см. в разделе Б> «Измеряемые значения».

• Статистическое значение — это специальный тип рассчитанных измеренных значений. Оно может быть максимальным, минимальным или средним и помогает анализировать изменения измеренного значения в течение некоторого времени. Для большинства статистических значений существуют прямые команды, которые можно использовать для сброса статистических значений.

Более подробно о статистических значениях см. в разделе 🖶 «Статистика».

• Еще один важный тип значений — это счетчики. В то время как измеренные значения — это обычно числа с плавающей запятой (и соответствующей единицей измерения), счетчики представляют собой целое число. Для большинства счетчиков имеются соответствующие прямые команды, с помощью которых можно сбросить значение счетчика до 0.

1.3.1 Настройки параметров

Установка параметров в ИЧМ

Каждый параметр принадлежит к определенной области доступа. Редактирование и изменение параметров требует достаточного высокого разрешения доступа. (подробное описание областей доступа см. в разделе ┡> «Пароли уровня доступа».

Пользователь может получить необходимые разрешения доступа к разблокированным областям доступа до изменения параметров или контекстнозависимо. В следующих разделах описываются оба варианта.

Вариант 1: Прямое разрешение на доступ в область

Откройте меню [Пар_ устр_ / Безопасность / Уровень доступа].

Выберите нужный уровень доступа с помощью перехода на необходимые разрешения доступа (уровень). Введите требуемый пароль. Если был введен правильный пароль, будут получены необходимые разрешения доступа. Для изменения параметров выполните следующие действия:

• С помощью программируемых клавиш перейдите к параметру, который необходимо изменить. Если выбран параметр, в правом нижнем углу экрана появится символ гаечного ключа.

Этот символ показывает, что параметр разблокирован и может быть изменен, поскольку пользователь имеет требуемые разрешения доступа. Подтвердите свое намерение с помощью программной клавиши с изображением гаечного ключа, чтобы изменить параметр. Измените значение параметра.

Теперь вы можете:

- сохранить сделанные изменения, чтобы они были введены в систему, или
- изменить значения других параметров и сохранить все измененные параметры, чтобы они были введены в систему.

Для немедленного сохранения изменений параметра

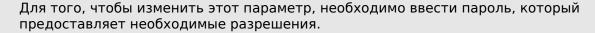
• нажмите кнопку ОК для сохранения измененных параметров напрямую и их применения на устройстве. Подтвердите изменения параметров нажатием программной клавиши «Да» или отмените их, нажав «Нет».

Для изменения значений других параметров и последующего их сохранения

• перейдите к другому параметру и измените его

Символ «звездочка» перед измененными параметрами показывает, что изменения сохранены временно, то есть они еще не сохранены в постоянном режиме и не применены на устройстве.

Для упрощения работы, особенно при сложных изменениях параметров, на каждом более высоком уровне меню планируемое изменение параметра помечается символом «звездочка». Это позволяет контролировать изменения и переходить к нужному уровню меню, на котором были произведены изменения параметров, в любое время, не сохраняя их окончательно.


В дополнение к звездочкам, которыми помечаются параметры с временными изменениями, в левом углу дисплея также отображается полупрозрачный общий символ редактирования параметра, поэтому, находясь в любом пункте меню, можно видеть временные изменения параметров (еще не активные).

При использовании Smart view для изменения параметров символ красной звездочки в дереве меню показывает, что изменения параметров еще не сохранены в файле параметров.

Для окончательного переноса измененных значений параметров в устройство нажмите кнопку ОК. Подтвердите изменение параметра нажатием кнопки «Да» или отмените изменения нажатием кнопки «Нет».

ПРИМЕЧАНИЕ!

Проверка правдоподобия параметров: Для предотвращения возможных неверных установок параметров устройство постоянно контролирует все временные изменения. Если устройство обнаружит неверный параметр, то перед ним будет установлен символ «вопросительный знак».

Для упрощения работы, особенно при сложных изменениях параметров, на каждом более высоком уровне меню временно сохраненные параметры с недопустимым значением помечаются вопросительным знаком (это функция отслеживания допустимости). Это позволяет контролировать изменения и переходить к нужному уровню меню, на котором имеются параметры с неправдоподобными значениями, в любое время, не сохраняя их окончательно.

Кроме символа «несколько вопросительных знаков», который устанавливается возле параметра с недопустимым значением, в левом углу дисплея также отображается в полупрозрачном виде общий символ «вопросительный знак», поэтому пользователь может, находясь в любом пункте меню, видеть, что некоторые параметры имеют недопустимые значения.

Символ «вопросительный знак» (символ недопустимого значения) всегда устанавливается поверх символа «звездочка» (символа редактирования).

Если устройство обнаруживает недопустимое значение параметра, оно отклонит действие по сохранению и принятию значения данного параметра.

Вариант 2: Контекстно-зависимые разрешения доступа

Перейдите к параметру, который должен быть изменен. Если выбрать этот параметр, в правом нижнем углу экрана появится символ «Ключ».

Данный символ указывает, что устройство по-прежнему находится на уровне «Read Only-Lv0» ($\buildrel >$ « $\buildrel \buildre >$ « $\buildrel =$ $\buildrel >$ « $\buildrel =$ $\buildrel >$ $\buildrel =$ $\buildre =$ $\buildrel =$ $\buildre =$ $\buildrel =$ $\buildre =$ \buildr

Нажмите эту программную кнопку и введите пароль, предоставляющий доступ к данному параметру. (На этой странице также указано, какой пароль/разрешение доступа требуется для внесения изменений в данный параметр.)

Измените настройки параметров.

Теперь вы можете:

- сохранить сделанные изменения, чтобы они были введены в систему, или
- изменить значения других параметров и сохранить все измененные параметры, чтобы они были введены в систему.

Для немедленного сохранения изменений параметра

• нажмите кнопку ОК для сохранения измененных параметров напрямую и их применения на устройстве. Подтвердите изменения параметров нажатием программной клавиши «Да» или отмените их, нажав «Нет».

Для изменения значений других параметров и последующего их сохранения

• перейдите к другому параметру и измените его

Символ «звездочка» перед измененными параметрами показывает, что изменения сохранены временно, то есть они еще не сохранены в постоянном режиме и не применены на устройстве.

Для упрощения работы, особенно при сложных изменениях параметров, на каждом более высоком уровне меню планируемое изменение параметра помечается символом «звездочка». Это позволяет контролировать изменения и переходить к нужному уровню меню, на котором были произведены изменения параметров, в любое время, не сохраняя их окончательно.

В дополнение к звездочкам, которыми помечаются параметры с временными изменениями, в левом углу дисплея также отображается полупрозрачный общий символ редактирования параметра, поэтому, находясь в любом пункте меню, можно видеть временные изменения параметров (еще не активные).

При использовании *Smart view* для изменения параметров символ красной звездочки в дереве меню показывает, что изменения параметров еще не сохранены в файле параметров.

Для окончательного переноса измененных значений параметров в устройство нажмите кнопку ОК. Подтвердите изменения параметров нажатием программной клавиши «Да» или же отмените их клавишей «Нет».

ПРИМЕЧАНИЕ!

Проверка правдоподобия параметров: Для предотвращения возможных неверных установок параметров устройство постоянно контролирует все временные изменения. Если устройство обнаружит неверный параметр, то перед ним будет установлен символ «вопросительный знак».

Для упрощения работы, особенно при сложных изменениях параметров, на каждом более высоком уровне меню временно сохраненные параметры с недопустимым значением помечаются вопросительным знаком (это функция отслеживания допустимости). Это позволяет контролировать изменения и переходить к нужному уровню меню, на котором имеются параметры с неправдоподобными значениями, в любое время, не сохраняя их окончательно.

Кроме символа «несколько вопросительных знаков», который устанавливается возле параметра с недопустимым значением, в левом углу дисплея также отображается в полупрозрачном виде общий символ «вопросительный знак», поэтому пользователь может, находясь в любом пункте меню, видеть, что некоторые параметры имеют недопустимые значения.

Символ «вопросительный знак» (символ недопустимого значения) всегда устанавливается поверх символа «звездочка» (символа редактирования).

Если устройство обнаруживает недопустимое значение параметра, оно отклонит действие по сохранению и принятию значения данного параметра.

Группы уставок

Параметр настройки [Парам_ защиты / Перекл_ НП] «Перекл_ НП» разрешает выполнять следующие действия:

• Активировать одну из четырех групп уставок («НП1» ... «НП4»).

• Назначать активирующий сигнал для каждой группы уставок (значение настройки «ПУП через ФункВх» и дополнительно назначать соответствующие сигналы для переключения:

Например, если определенный сигнал выполняет переключение на группу уставок НП2, то этот сигнал должен быть назначен параметру настройки [Парам защиты / Перекл НП] «НП2: акт через».

• Разрешать SCADA переключать группы уставок (значение настройки «ПНП через Scada».

Опция	Переключатель групп уставок
Ручной выбор	Если выбрана другая группа настроек, вручную выполните переключение с помощью параметра «Перекл_ $H\Pi$ ».
Через вход (например, через цифровой вход)	Переключение, если становится активным только один из четырех назначенных сигналов. Группа уставок не изменяется, если одновременно имеется несколько сигналов активации.
	Пример.
	Сигнал ЦВЗ назначен параметру «НПЗ: акт_ через«. ЦВЗ активен «1».
	Сигнал ЦВ4 назначен параметру <i>«НП4: акт_ через»</i> . ЦВ4 неактивен «0».
	Если требуется переключение с набора параметров 3 на набор параметров 4, сначала необходимо сделать неактивным сигнал ЦВ3. Тогда активным должен стать сигнал ЦВ4.
	Если даже после этого сигнал ЦВ4 станет неактивным, набор параметров 4 останется активным до тех пор, пока не будет инициирован новый четкий запрос (например, ЦВ3 становится активным, а все другие назначенные сигналы — неактивными)
Через SCADA	Переключение возможно только при наличии четкого запроса от SCADA.

ПРИМЕЧАНИЕ!

Переключатель групп уставок: При активации любой другой группы уставок, все значения, связанные с памятью (например, таймеры) будут сброшены для всех функций защиты.

Изменение конфигурации: Каждый раз при изменении настроек параметров защиты (планирование устройства, глобальные параметры или параметры для нескольких групп уставок) все функции защиты на некоторое время полностью деактивируются. Это означает, что некоторое время все защитные модули будут неактивны, поэтому их можно будет перезапустить с новыми настройками. Это позволяет обеспечить такие же возможности защиты, как при старых, так и при новых настройках.

Исключение составляет изменение конфигурации, которое ограничивается настройками из только одной группы уставок. В этом случае все функции защиты можно только сбросить (как в случае с переключателем групп уставок — см. выше).

Блокировка настроек

Блокировка настроек позволяет заблокировать настройки параметров от любых изменений, если назначенный сигнал имеет значение «истина» (активен). Включить блокировку настроек можно в меню [СистПар / Общие настройки] «Блок. настройки».

Обход блокировки настроек

Блокировку настроек можно временно отменить, если невозможно (или требуется) изменить статус сигнала, активирующего блокировку настроек.

Обойти блокировку настроек можно с помощью параметра прямого контроля: [СистПар / Общие настройки] «Обход блок парам»

Устройство защиты снова перейдет в режим блокировки настроек:

- Сразу после сохранения изменения параметра или
- через 10 минут после активации обхода блокировки настроек.

1.3.2 Наборы адаптивных параметров

С помощью наборов адаптивных параметров можно динамически изменять значения настроек в модуле защиты.

ПРИМЕЧАНИЕ!

Наборы адаптивных параметров доступны только для нескольких модулей защиты (и обычно — только для модулей защиты от превышения тока).

С практической точки зрения, у них имеется одно важное отличие от наборов обычных параметров (см. раздел \Longrightarrow «1.3 Типы настроек, сигналов и значений»): при переключении на другой набор параметров затрагиваются одновременно все функции защиты. Если требуется внести изменения только в одну конкретную функцию защиты, это может усложнить процедуры ввода в эксплуатацию и проверки.

Наборы адаптивных параметров, наоборот, действуют локально, то есть, они воздействуют только на ту функцию защиты, для которой они были активированы. (Как это сделать, см. ниже.)

Можно назначить цифровой сигнал для любого из параметров [Парам_ защиты / Глоб_ пар_ защ_ / I-защ_ / «module»] «Ад_Набор 1», ..., «Ад_Набор 4». («module» — это имя модуля защиты, для которого имеются наборы адаптивных параметров. Например, [I[1]]).

Эти четыре параметра назначения всегда являются общими параметрами (то есть, принадлежат ветви меню [Парам_ защиты / Глоб_ пар_ защ_]). Например, выполним следующее назначение: « $Aд_Hafop\ 1$ » = «KH[1] . Трев_». См. верхнее диалоговое окно ① на рисунке ниже.

Для этого назначения в диалоговом окне $Smart\ view\ для\ параметров\ группы\ уставок, например, ветви меню [Парам_ защиты / Набор 1 / І-защ_ / І[1]], появляется дополнительный столбец <math>@$, как показано в нижнем диалоговом окне на рисунке ниже.

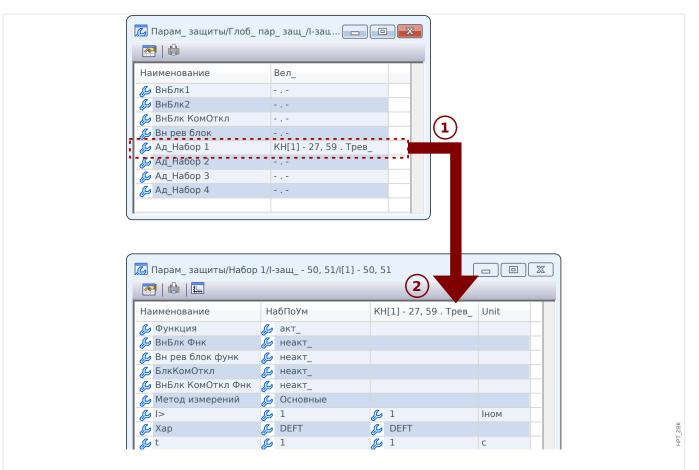


Рис. 2: При назначении параметра адаптивного набора для параметров группы уставок добавляются альтернативные значения.

При назначении адаптивного набора большинство параметров группы уставок получают дополнительное альтернативное значение. Сначала это новое значение идентично значению НабПоУм, однако его можно редактировать. (Дважды щелкните и измените, как требуется.)

Идея проста: для параметров защиты используется альтернативное значение $«Ад_Набор 1»$, когда назначенный сигнал «КН[1]. Трев_» принимает истинное значение.

Поскольку имеется четыре группы нормальных настроек, в каждой из которых имеется до четырех адаптивных наборов, а также настройка НабПоУм, это означает, что для параметров, поддерживающих адаптивные наборы, доступно до 20 различных настраиваемых значений.

ПРИМЕЧАНИЕ!

Адаптивные параметры автоматически принимают прежнее значение, как только примет прежнее значение сигнал подтверждения, который их активировал.

Если в конкретный момент времени активными окажутся несколько назначенных сигналов, будет работать следующее правило:

набор адаптивных параметров 1 имеет приоритет над набором адаптивных параметров 2; набор адаптивных параметров 2 имеет приоритет над набором адаптивных параметров 3; набор адаптивных параметров 3 имеет приоритет над набором адаптивных параметров 4.

Примеры применения наборов адаптивных параметров

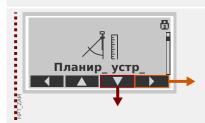
- АПВ: автоматическое повторное включение с 2 попытками
 - 1-я попытка: характеристика DEFT, стандартное отключение
 - 2-я попытка: характеристика INV, чувствительное отключение
- МСХН: блокировка от пусковых токов
 - Запуск двигателя, защита от десенсибилизации тока
- ВНО: ускорение при включении на короткое замыкание
 - Защита от десенсибилизации тока
- ANSI 51C: ток с пуском по напряжению
 - Генератор, двигатель, защита от десенсибилизации тока


1.3.3 Отображение состояния

В окне состояния в меню «Работа» отображается текущее состояние всех сигналов. Это означает, что можно видеть, находится конкретный сигнал в данный момент в активном или в неактивном состоянии. Можно видеть все сигналы в отсортированном по защитным элементам/модулям порядке.

Состояние входа модуля/сигнала	Состояние отображается на панели управления в виде
«неакт_» / Ложь / «0»	
«акт_» / Ист_ / «1»	\square

1.3.4 Структура меню


Структура меню имеет следующие элементы высшего уровня. Вход в ветвь меню осуществляется нажатием программной кнопки ▶. Программные кнопки ▲ и ▼ позволяют переходить к предыдущей или следующей ветви.

Работа

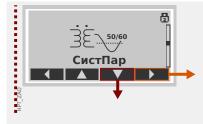
Здесь находятся данные режима работы.

- Измеренные значения
- Статистика
- Отображение состояния
- Данные о счетчике и версии
- Регистратор ошибок, Регистратор событий, Регистратор неисправн.
- Самодиагностика
- Подтвердить, Сброс

Планирование устройства

Обычно это первый этап ввода устройства в эксплуатацию.

Включаются необходимые и выключаются ненужные элементы.


Выбирается протокол (SCADA) связи с подстанцией.

Параметры устройства

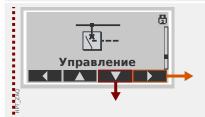
В этой ветви меню представлены все настройки, напрямую связанные с устройством, например,

- цифровые входы и выходы;
- СДИ;
- настройки регистраторов;
- настройки связи.

Системные параметры

Обычно это второй этап ввода в эксплуатацию — настройка свойств поля, например,

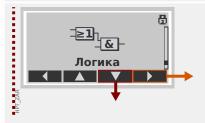
- номинальной частоты, напряжения, тока;
- коэффициентов ТТ и ТН;
- типа подключения ТН (Фазн напр, Лин напр).



Параметры защиты

Здесь находятся все настройки защиты, имеющие отношение к конкретным защитным функциям.

Настройки каждой защитной функции сгруппированы по следующим типам:


- Параметр общей защиты
- Набор 1 ... Набор 4
- Перекл_ НП (Переключение набора параметров)

Элемент управления

Настройки коммутационных устройств.

- Каждое устройство HighPROTEC с наименованием «MR...» позволяет управлять 1 коммутационным устройством.
- Каждое устройство HighPROTEC с наименованием «МС...» позволяет управлять 6 коммутационными устройствами.

Логика

- До 80 логических уравнений
- 4 шлюза на выбор
- 4 входа, 4 выхода на каждое уравнение
- Функции таймера и памяти

Сервис

Эта ветвь меню нужна в основном для проверки. Пример.

- Выходы «Принудительно»/«Отключение»
- Аналоговый вход и выходы «Принудительно»/ «Отключение»
- Использование внутреннего генератора сигналов/ сбоев
- Перезагрузка защитного устройства

1.3.5 Планирование устройства

Под планированием работы устройства понимается ограничение его функциональных возможностей до той степени, которая требуется для выполнения конкретной задачи по защите,т. е. устройство должно отображать только те функции, которые действительно нужны пользователю.

Так, например, если отключить функцию защиты напряжения, то соответствующие этой функции параметры не будут отображаться в древовидном каталоге параметров. Одновременно с этим будут также отключены все сопутствующие события, сигналы и т. п. Это способствует более понятному представлению древовидных каталогов параметров. Планирование также включает настройку основных системных данных (частоты и т. п.).

ПРЕДУПРЕЖДЕНИЕ!

Однако необходимо принимать во внимание, что отключение защитных функций изменяет список доступных функций устройства. Если пользователь отменит направленную функцию защиты от превышения допустимого значения тока, то устройство не будет срабатывать направленно, а только ненаправленно.

Предприятие-изготовитель не несет ответственность за телесные повреждения или материальный ущерб в результате неправильного планирования.

Услуги по планированию также оказываются компанией Woodward.

ПРЕДУПРЕЖДЕНИЕ!

Остерегайтесь непреднамеренного отключения защитных функций или модулей.

При отключении модулей в процессе планирования работы устройства все соответствующие этому модулю параметры примут значения по умолчанию.

При повторном включении одного из этих модулей все соответствующие этим модулям параметры примут значения по умолчанию.

1.3.6 Параметры участка

В параметрах участка можно настроить все параметры, имеющие отношение к первичной обмотке трансформатора и способу работы с электрической сетью, например частоту, а также основные и дополнительные величины.

Все параметры участка доступны в ветви меню [СистПар].

Подробные таблицы и описание всех параметров см. в справочном руководстве к устройству МСА4.

1.3.7 Параметры устройства

Дата и время

В меню [Пар_ устр_ / Время] «Дата и время» можно настроить дату и время (в том числе имеется подменю часового пояса и настроек перехода на летнее время).

Версия

В меню [Пар_ устр_ / Версия] можно получить информацию о версии программного и аппаратного обеспечения.

Отображение кодов ANSI

Включить отображение кодов ANSI на панели управления устройством (ИЧМ) можно в меню [Пар_ устр_ / ИЧМ] «Показать номер устр_ ANSI».

Smart viewOднако в ПО имеется свое меню управления отображением кодов ANSI, которое не зависит от панели управления устройством (см. руководство пользователя ПО Smart view).

1.3.8 Счетчики сброса, значения и записи

Ручной сброс

В меню [Работа / Сброс] можно:

- обнулять счетчики;
- удалять записи (например, записи о нарушениях);
- обнулять некоторые параметры (такие как статистика, тепловая модель и т. п.).

ПРИМЕЧАНИЕ!

Описания доступных команд сброса можно найти в отдельном документе под названием «МСА4 Справочное руководство».

1.4 Безопасность

Общие положения

осторожно!

Все настройки безопасности должны выполняться пользователем устройства MCA4! Настоятельно рекомендуется в конце процедуры ввода в эксплуатацию привести настройки безопасности в соответствие с местными предписаниями и требованиями.

На момент поставки устройства МСА4 максимальное число настроек находится в «открытом» состоянии, т. е. все ограничения доступа сняты. Это позволяет исключить ненужные сложности при вводе в эксплуатацию. Однако когда устройство МСА4 будет запущено, вероятно, потребуется несколько ограничить доступ. В частности необходимо будет учесть следующие аспекты.

По умолчанию подключение *Smart view* к MCA4 через USB-интерфейс разрешено (без пароля), однако сетевой доступ по TCP/IP отключен (см.

—> «Пароли для подключения к Smart view»). По соображениям безопасности рекомендуется изменить эти настройки сразу после ввода устройства в эксплуатацию.

осторожно!

Настоятельно рекомендуется заменить стандартные пароли (→ «1.4.2 Пароли по умолчанию») на новые, соответствующие уровню безопасности приложения (см. «1.4.4 Изменение паролей»), например задать разные пароли для разных областей /уровней доступа. Это обеспечивает возможность настройки индивидуального доступа для различных групп пользователей.

Обзор настроек, связанных с безопасностью

В ветви меню [Работа / Безопасность] содержатся сведения о настройках, связанных с безопасностью. В частности можно узнать следующее:

- оставлены стандартные пароли для подключения (см. \hookrightarrow «1.4.3 Пароли для подключения к Smart view») или изменены на пользовательские значения;
- разрешено ли подключение Smart view (см. Бу «1.4.3 Доступ через Smart view»);
- какое выбрано право на переключение (см. 🖶 «5.2 Право на переключение»);
- какой выбран охват при восстановлении заводских настроек (см. Возврат к заводским настройкам, сброс всех паролей»).

Полный список настроек, доступных на этой странице, см. в главе «Безопасность» справочного руководства к устройству МСА4.

Когда безопасность ИТ имеет принципиальное значение, рекомендуется проверить все эти настройки при вводе устройства в эксплуатацию, однако слепо полагаться на них не стоит. Если пользователь изменит пароль для подключения через USB, например, на « $\mathbf{1}$ », то на этой странице появится запись «Пароль для USB-подкл.» = «Опр. польз.», однако эффективность подобной защиты весьма сомнительна.

Сообщения по безопасности

Предусмотрен специальный регистратор самодиагностики, именуемый Сообщения о самодиагностике. Он собирает внутренние сообщения устройства различных типов, и в том числе о событиях, связанных с безопасностью (например, если был введен неверный пароль). Рекомендуется время от времени просматривать эти записи.

Сообщения по безопасности также можно просмотреть в ветке меню [Работа / Безопасность / Журнал безопасности].

1.4.1 Сетевая безопасность

Связь SCADA

Следует отметить, что использование протоколов SCADA всегда сопряжено с определенными рисками. Подробную информацию можно найти в технической литературе.

Безопасность интрасети

Если интерфейс Ethernet устройства МСА4 подключен к сети, то пользователь должен самостоятельно обеспечить все необходимые средства для защиты сети компании. В частности необходимо гарантировать, что внешний доступ (т.е. из Интернета) к устройству МСА4 невозможен. Ознакомьтесь с современными технологиями (межсетевыми экранами, VPN и т. п.)!

1.4.2 Пароли

Типы паролей

Пароли бывают двух типов:

- Пароли для подключения позволяют устанавливать соединение с рабочим программным обеспечением Smart view. (См. $\sqsubseteq >$ «Пароли для подключения к Smart view».)
- Пароли уровня доступа требуются для внесения изменений в настройки. (См. «Пароли уровня доступа».)

Примечание. **Пароли для подключения** впервые появились в версии HighPROTEC **3.6**. Причиной послужило то, что, начиная с версии 3.6, все соединения между MCA4 и *Smart view* стали полностью шифроваться с помощью современных криптографических алгоритмов. (См. также \Longrightarrow «1.4.3 Smart viewПодключение к »).

ПРИМЕЧАНИЕ!

Заданные пароли хранятся в постоянной памяти МСА4 и не удаляются при обновлении микропрограммы (это относится к паролям обоих типов).

Пароли по умолчанию

По умолчанию для **всех** паролей (подключения и уровня доступа) производителем устанавливаются стандартные значения, не обеспечивающие никакой защиты от несанкционированного доступа.

- Пароли для подключения, как правило, оставляют пустыми (т. е. они вообще не запрашиваются).
- Для всех паролей уровня доступа устанавливается стандартное значение «1234».

Штрафное время при неверном вводе пароля

Ввод неверного пароля (независимо от того, какой это пароль, пароль для подключения или пароль уровня доступа, и независимо от того, как осуществлялся ввод, через ИЧМ или Smart view) инициирует состояние «штрафное время». Программа МСА4 все большее время блокирует ввод пароля — до тех пор, пока не будет введен верный пароль. Об этой блокировке пользователя информирует специальное сообщение. В период блокировки этот таймер влияет только на ввод

паролей (то есть, кнопка на ИЧМ) и не блокирует другие действия пользователя, которые не требуют ввода пароля.

Забытый пароль

Если нажать клавишу «С» во время холодного перезапуска, откроется диалоговое окно сброса (при условии, что оно не было отключено). В нем можно сбросить все пароли и восстановить значения по умолчанию (см. \hookrightarrow «1.4.2 Пароли по умолчанию»).

Сведения о диалоговом окне общего сброса см. в разделе

⇒ «Возврат к заводским настройкам, сброс всех паролей».

1.4.3 Пароли для подключения к Smart view

Smart viewПодключение к

Одним из фундаментальных требований «*ИТ-безопасности»* является предотвращение несанкционированного доступа к данным, передаваемых оператором на устройство МСА4 и обратно.

Поэтому все соединения между MCA4 и *Smart view* полностью шифруются с помощью современных криптографических алгоритмов.

Woodward предоставляет для каждой установленной версии Smart view (начиная с версии 4.70) и для каждого устройства HighPROTEC (начиная с версии 3.6) криптографические сертификаты, которые автоматически передаются при подключении. Стороны (МСА4 и Smart view) проверяют полученные сертификаты, чтобы удостовериться в подлинности друг друга.

Данная функция защиты, основанная на криптографических алгоритмах, доступна по умолчанию: пользователям не надо ничего отдельно настраивать или проверять.

Доступ через Smart view

Еще одним фундаментальным требованием «ИТ-безопасности» является предотвращение несанкционированного доступа к личным системам пользователей, включая защитное устройство МСА4. К устройству МСА4 можно получить доступ с передней панели или через рабочее программное обеспечение Smart view.

Поскольку использование передней панели предполагает личное присутствие, риск несанкционированного доступа в этом случае относительно невысок — в отличие от другого способа, когда доступ осуществляется удаленно через *Smart view*, особенно если устройство MCA4 подключено к сети Ethernet / TCP/IP.

- В целях безопасности имеется возможность отключить доступ к *Smart view* через USB-интерфейс. Для этого необходимо настроить параметр [Пар_ устр_ / Безопасность / Связь] «*Smart View через USB*». По умолчанию этот тип доступа разрешен.
- Также имеется возможность отключить доступ к *Smart view* через Ethernet. Для этого необходимо настроить параметр [Пар_ устр_ / Безопасность / Связь] «*Smart View через Eth»*. По умолчанию этот тип доступа разрешен.

ПРИМЕЧАНИЕ!

Если для отключения доступа к *Smart view* используется само приложение *Smart view*, то текущий сеанс автоматически прерывается.

Пароли для подключения к Smart view

Есть два пароля для подключения. В начале сеанса устройство *Smart view* просит ввести пароль, и если он будет введен верно, то подключение установится. (Этот шаг пропускается, только если пароль вообще не задан.)

• Подключение через USB — для подключения к Smart view через USBинтерфейс нужно ввести «пароль для локального подключения» (по умолчанию он не задан). • Подключение к удаленной сети — для подключения к Smart view через Ethernet нужно ввести «пароль для подключения к удаленной сети» (по умолчанию он не задан, и этот тип доступа по умолчанию отключен, см. > «1.4.3 Доступ через Smart view».)

Изменить пароль для подключения можно в *Smart view*, открыв ветку меню [Пар_устр / Безопасность / Пароль] и дважды щелкнув пароль.

Обратите внимание, что пароли для подключения отличаются от паролей уровня доступа (см. \Longrightarrow «1.4.4 Ввод пароля с помощью панели») следующими характеристиками:

- Пароли для подключения можно вводить и изменять только в *Smart view* (а на панели ИЧМ устройства МСА4 нет).
 - Однако постоянно хранятся пароли на устройстве MCA4, а не в *Smart view*. Поэтому при необходимости для подключения к каждому реле HighPROTEC можно задать отдельный пароль.
- В отличие от паролей уровня доступа (⇒ «1.4.4 Изменение паролей») пароли для подключения могут содержать **не только** цифры 1, 2, 3, 4 и **не** имеют ограничения по длине в 8 символов (могут содержать 64 символа и больше). Пароль для подключения может представлять собой произвольную последовательность любых печатных символов (Юникод), включая пробелы.

ПРЕДУПРЕЖДЕНИЕ!

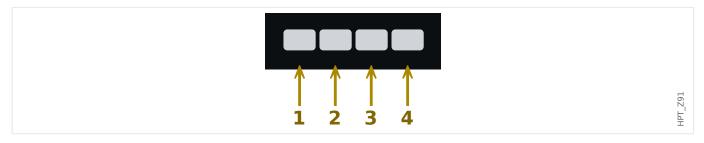
Пароли по умолчанию (см. Бу «1.4.2 Пароли по умолчанию») не обеспечивают должную защиту.

В целях безопасности настоятельно рекомендуется сразу изменить их в соответствии с местными нормами.

При необходимости, можно вообще удалить все пароли, если это допускает ваша политика безопасности. Тогда пароли не будут запрашиваться, и доступ станет полностью открытым. Однако мы настоятельно не рекомендуем отказываться от всех паролей, и особенно от сетевых.

1.4.4 Пароли уровня доступа

Пароли уровня доступа требуются при внесении изменений в настройки через Smart view и напрямую с панели ИЧМ.


Каждый настраиваемый параметр имеет уровень безопасности (или иначе — область/уровень доступа). Описание уровней доступа см. в разделе

—> «Уровни доступа».

Прежде чем изменить настройку, надо ввести пароль, чтобы войти на соответствующий уровень доступа. (Затем изменения можно вносить без пароля, поскольку уровень для вас будет разблокирован.)

Ввод пароля с помощью панели

На панели ИЧМ устройства MCA4 можно вводить *пароль уровня доступа* с помощью программных кнопок.

Пример. Для ввода пароля **«3244»** последовательно нажимайте следующие клавиши:

- Клавиша 3
- Клавиша 2
- Клавиша 4
- Клавиша 4

При активном подключении к *Smart view* приложение *Smart view* запрашивает пароли. Вводить их следует с клавиатуры компьютера.

Изменение паролей

Пароли уровня доступа можно изменить в меню [Пар_ устр_ / Безопасность / Пароль].

ПРИМЕЧАНИЕ!

Пароль уровня доступа должен представлять собой комбинацию цифр 1, 2, 3 и 4 и иметь длину не более 8 цифр. Пароль не должен содержать других символов и при его вводе не могут использоваться другие клавиши.

Подтверждение без ввода пароля

Для получения общей информации о подтверждениях см. раздел «Подтверждения». Сведения об областях/уровнях доступа можно найти в разделе «Уровни доступа». Начиная с HighPROTEC версии 3.6, подтвердить СДИ можно нажатием клавиши «С» в течение 1 секунды. Подробнее см. в разделе \Longrightarrow «1.5 Подтверждение вручную (нажатием кнопки C на панели управления)».

Деактивация паролей при вводе в эксплуатацию

При вводе устройства в эксплуатацию можно временно отключить пароли. Использование этой функции для других целей, кроме ввода в эксплуатацию, не допускается. Для того, чтобы отключить парольную защиту для соответствующих областей доступа, замените существующий пароль пустым. Все уровни/области доступа, для которых пароль не задан, являются постоянно разблокированными. Это означает, что все параметры и настройки в этих областях можно свободно менять.

осторожно!

Вы должны убедиться, что после ввода в эксплуатацию все пароли снова активированы. Это означает, что все области доступа должны быть защищены надежными паролями.

Woodward не несет никакой ответственности за любые травмы или повреждения, вызванные отключением парольной защиты.

Общие соображения

Необходимо убедиться, что разрешения доступа находятся под защитой надежных паролей. Эти пароли должны быть известны только уполномоченным лицам и храниться в тайне. Пароли по умолчанию не обеспечивают защиту от несанкционированного доступа.

Символ замка в правом верхнем углу дисплея показывает, активны ли в настоящий момент какие-либо разрешения доступа. В режиме «Read Only-Lv0» в правом верхнем углу дисплея будет отображаться символ закрытого (запертого) замка. Если активировать любое разрешение доступа (выше уровня «Read Only-Lv0»), в правом верхнем углу появится символ открытого замка.

Если при настройке потребуется отменить изменение параметра, нажмите клавишу «С». В связи с этим подтверждение (светодиодов, выходных реле...) будет невозможным до тех пор, пока существуют несохраненные (только кэшированные) параметры.

Меню подтвержденных параметров будет недоступно до тех пор, пока измененные параметры не будут применены к устройству (обозначаются символом «звездочка» в правом верхнем углу).

Существующие пароли являются постоянными (они назначены устройству). Если созданный в автономном режиме файл параметров передается на устройство или если файл параметров передается с одного устройства на другое, это не влияет на существующие пароли устройства.

1.4.5 Уровни доступа

Уровни доступа имеют двухчастную иерархическую структуру.

Пароль руководителя (администратор) обеспечивает доступ ко всем параметрам и настройкам.

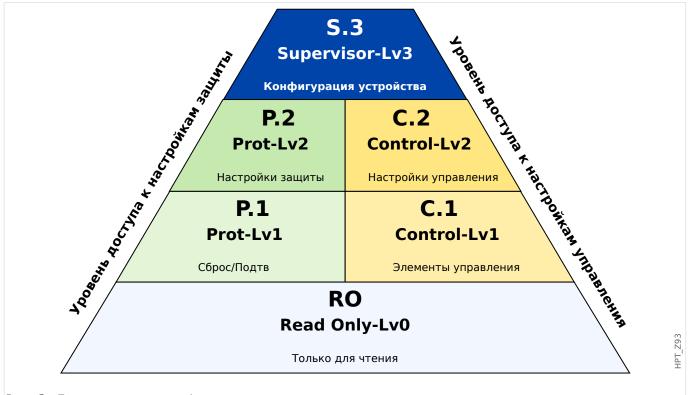


Рис. 3: Доступные уровни/разрешения доступа.

В следующей таблице показаны области доступа. Обратите внимание, что каждая область доступа требует отдельного пароля авторизации. (Однако при возврате к заводским настройкам на устройстве МСА4 для всех паролей устанавливается единое стандартное значение, см. \sqsubseteq > «1.4.6 Сброс всех паролей».)

Символ области	Область доступа	Доступ к:
G	Название уровня доступа (панель / Smart view):	Уровень 0 обеспечивает доступ только для чтения ко всем настройкам и параметрам устройства. Устройство возвращается на этот уровень автоматически после настройки или бездействия.
	Read Only-Lv0	, in the second
	Название уровня доступа в справочном руководстве:	
	«RO»	
đ	Запрос пароля на панели / Smart view:	Этот пароль обеспечивает доступ к сбросу и функциям подтверждения. Кроме того, он позволяет выполнять ручные сигналы триггеров.
	Prot-Lv1	

Символ области	Область доступа	Доступ к:
	Название уровня доступа в справочном руководстве: « P.1 »	
đ	Запрос пароля на панели / Smart view: Prot-Lv2 Название уровня доступа в справочном руководстве: «P.2»	Этот пароль обеспечивает доступ к сбросу и функциям подтверждения. В дополнение к этому, он позволяет изменять настройки защиты и конфигурацию диспетчера отключения.
đ	Запрос пароля на панели / Smart view: Control-Lv1 Название уровня доступа в справочном руководстве: «C.1»	Данный пароль дает разрешение на операции переключения (переключение коммутационных устройств)
đ	Запрос пароля на панели / Smart view: Control-Lv2 Название уровня доступа в справочном руководстве: «C.2»	Данный пароль дает разрешение на операции переключения (переключение коммутационных устройств). В дополнение к этому, он предоставляет доступ к настройкам коммутационных устройств (переключению, блокировке, общим параметрам, износу выключателей).
đ	Запрос пароля на панели / Smart view: Supervisor-Lv3 Название уровня доступа в справочном руководстве: «S.3»	Этот пароль обеспечивает неограниченный доступ ко всем параметрам и настройкам устройства (конфигурации устройства). Это включает в себя планирование устройства, параметры устройства (например, дата и время), параметры участка, параметры обслуживания и параметры логики.

Если устройство остается неактивным в режиме настройки параметров в течение определенного времени, заданного пользователем (от 20 до 3600 секунд), то оно автоматически переходит в режим «Read Only-Lv0». Все несохраненные изменения теряются.

Поиск областей с открытым доступом

Меню [Пар_ устр_ / Уровень доступа] содержит информацию о том, какие области/ уровни доступа (разрешения) в настоящее время открыты (разблокированы). В этом меню также можно войти в любую область (разблокировать ее).

Однако при повседневной эксплуатации устройства МСА4 данное меню [Уровень доступа] используется редко. Как правило, просто указывается путь к нужному параметру и вводится новое значение. Прежде чем изменение будет сохранено, появляется запрос на ввод пароля. Если верно указать его, соответствующая область доступа разблокируется.

Если имеются разблокированные области доступа (разрешения) выше уровня «Read Only-Lv0», то в правом верхнем углу дисплея отображается символ открытого замка.

Чтобы заблокировать область доступа (выйти из нее), не дожидаясь окончания таймаута *«t-макс ред/доступ»*, перейдите в режим *«Read Only-Lv0»*.

Разблокирование области доступа на панели

В меню [Пар_ устр_ / Уровень доступа] можно разблокировать или заблокировать любую область доступа (разрешение). После разблокирования области доступа все изменения параметров или операции, назначенные для этого (или нижнего) уровня, можно выполнять без повторного ввода пароля. Однако разрешение доступа действительно только для панели; доступ через Smart view необходимо разблокировать отдельно.

Если в течение времени, которое можно задать в меню [Пар_ устр_ / ИЧМ / Безопасность] *(t)-макс ред/доступ», не будет нажата ни одна клавиша, область доступа автоматически понизится до *(R)-ступа автоматически понизится до *(R)-ступа автоматически понизится до *(R)-ступа все несохраненные изменения параметров будут отменены.

осторожно!

Не оставляйте устройство МСА4 без присмотра, если имеются разблокированные области доступа (на дисплее отображается символ открытого замка). Если доступ больше не требуется, вернитесь на уровень «Read Only-Lv0».

Разблокирование области доступа с помощью Smart view

После разблокирования области доступа (разрешения) путем ввода пароля все изменения параметров или операции, назначенные для этого (или нижнего) уровня, можно выполнять без повторного ввода пароля. Однако разрешение доступа действует только для текущего экземпляра Smart view; доступ с панели или с другого экземпляра Smart view следует разблокировать отдельно.

Если в течение некоторого времени, устанавливаемого внутри *Smart view*, не будет нажата ни одна клавиша, область доступа будет автоматически сброшена.

1.4 Безопасность

осторожно!

Не оставляйте устройство МСА4 без присмотра, если в *Smart view* имеются разблокированные области доступа. Блокируйте компьютер на время своего отсутствия или хотя бы сбрасывайте настройки доступа. Для этого дважды щелкните символ замка в строке состояния рядом с нижней границей окна *Smart view* или откройте меню [Устройство / Восстановить для параметров значение «Только чтение»].

1.4.6 Возврат к заводским настройкам, сброс всех паролей

Имеется специальное диалоговое окно «Сброс», в котором можно выбрать любой из следующих параметров:

- Возврат к заводским настройкам или
- Сброс всех паролей.

Диалоговое окно сброса можно открыть только с панели ИЧМ (и **нельзя** в *Smart view*).

Нажмите клавишу «С» во время холодного запуска и удерживайте ее, пока не появится диалоговое окно «Сброс».

ПРИМЕЧАНИЕ!

По техническим причинам это диалоговое окно «Сброс» доступно только **на английском языке** (независимо от региональной настройки языка, которая будет использоваться позже, после запуска устройства).

Имейте в виду, что данное диалоговое окно может совсем не отображаться, если оно было специально отключено (см. ниже) или если был отключен параметр для сброса всех паролей.

Возврат к заводским настройкам

ПРЕДУПРЕЖДЕНИЕ!

Будут сброшены все настройки параметров. Все записи будут удалены, а статистические значения и счетчики — сброшены.

Исключение: счетчик часов работы сохраняется.

- 1. В диалоговом окне «Сброс» выберите «Возврат к заводским настройкам».
 - ⇒ Появится диалоговое окно с вопросом «Вернуть заводские настройки устройства и перезагрузить?»
- 2. Подтвердите, нажав «Да».
 - ⇒ Будут восстановлены заводские настройки по умолчанию, и устройство перезагрузится.

Сброс всех паролей

Можно удалить этот параметр из диалогового окна «Сброс» по соображениям безопасности (см. ниже).

- 1. В диалоговом окне «Сброс» выберите «Сброс всех паролей».
 - \Rightarrow Появится диалоговое окно с запросом подтверждения «Сбросить все пароли?»
- 2. Подтвердите, нажав «Да».
 - \Rightarrow Устройство запустится со стандартными паролями (см. \Longrightarrow «1.4.2 Пароли по умолчанию»).

ПРЕДУПРЕЖДЕНИЕ!

Стандартные пароли (см. \Longrightarrow «1.4.2 Пароли по умолчанию») не обеспечивают никакой защиты.

В целях безопасности настоятельно рекомендуется сразу изменить их в соответствии с местными нормами.

Настройки безопасности

Доступ к диалоговому окну «Сброс» может быть ограничен по соображениям безопасности. С помощью параметра [Пар_ устр_ / Безопасность / Прочее] «Настр. сброса устр.» можно выбрать доступные варианты сброса.

- "Завод. настр.", "Сброс пар.": доступны оба параметра «Возврат к заводским настройкам» и «Сброс паролей».
- *Только* "*Завод. настр.*": доступен только один параметр «Возврат к заводским настройкам».
- Деактив. сброса: диалоговое окно «Сброс» отключено.

осторожно!

Если пароль утрачен и параметр «Сброс всех паролей» недоступен, то единственный способ вернуть возможность управления — восстановить заводские настройки устройств МСА4 по умолчанию. Если и этот параметр отключен, то устройство МСА4 необходимо отправить в компанию Woodward с запросом на обслуживание.

1.5 Подтверждения

Термин «подтверждение» означает сброс того или иного замкнутого состояния.

Замыкание можно настроить для объектов и состояний следующих типов.

- СДИ
- Релейные выходы
- Сигналы SCADA
- Отложенные команды отключения

Подтвердить можно состояние отдельного объекта или сигнал (посредством предварительно заданного внешнего сигнала). Кроме того, подтвердить можно несколько замкнутых состояний вместе, например, сразу всех СДИ.

Доступны перечисленные ниже типы подтверждения.

• **Индивидуальное подтверждение** означает назначение внешнего сигнала параметру, характерному для одного конкретного замкнутого состояния (например, СДИ 3, который остался на дисплее).

Если назначенный сигнал активируется, замыкание подтверждается (См. раздел \Longrightarrow «1.5 Индивидуальное подтверждение замкнутых состояний» ниже).

• **Внешнее подтверждение** означает назначение внешнего сигнала параметру, имеющему отношение к нескольким состояниям (например, всех СДИ).

Если назначенный сигнал активируется, подтверждается связанное множество состояний. (См. раздел \Longrightarrow «1.5 Внешнее подтверждение» ниже).

• **Автоматическое подтверждение** означает, что состояние всех замкнутых СДИ подтверждается автоматически новым аварийным сигналом любой функции защиты или *общим аварийным сигналом*, «Защ . Трев_». (эта функция распространяется только на СДИ; автоматическое подтверждение двоичных выходов, сигналов SCADA и команд отключения отсутствует).

(См. раздел Б> «1.5 Автоматическое подтверждение» ниже).

• Совокупное подтверждение означает подтверждение вручную сразу нескольких замкнутых состояний.

Существует несколько разных прямых команд, каждая из которых относится к конкретному множеству состояний, которое нужно подтвердить (см. раздел «1.5 Совокупное подтверждение (с помощью ПО Smart view или панели управления)» ниже).

• **Подтверждение вручную** — особый способ осуществить совокупное подтверждение путем простого нажатия кнопки «С» на панели управления.

Обратите внимание на то, что подтвердить замкнутое состояние можно, только если сигнал, включивший эту настройку, более не активен. Это правило является общим для всех типов подтверждения.

Другое общее правило состоит в том, что при настройке [Пар_ устр_ / Подтвердить] «Дист сброс» = «неакт_» работают только прямые подтверждения вручную (> «1.5 Подтверждение вручную (нажатием кнопки С на панели управления)») с панели управления. Подтверждения других типов, в том числе совокупные подтверждения с помощью ПО Smart view (> «1.5 Совокупное подтверждение (с помощью ПО Smart view или панели управления)»), просто игнорируются.

Во всяком случае, сброс замыкания двоичных выходов можно выполнить только по окончании отсчета таймера *«t-Выд выкл»*.

Индивидуальное подтверждение замкнутых состояний

[Пар_ устр_ / СД / ИНД группа А / СД 17] « Сигн Подт »				
[Пар_ устр_ / СД / ИНД	группа В / СД 17] « Си	гн Подт»		
 ✓ Назначенный сигнал подтверждает состояние отдельного СДИ. 				
[Пар_ устр_ / Двоичн_ в	вых_ / РелВых Раз Х х / Ц	Вых у] «Подтвержден	ne»	
	✓ Назначенный сигнал подтверждает состояние двоичного выхода «у» в отсеке «х».			
[Управление / Распределительный щит / Распределительный щит [x] / Дисп откл] « <i>ПодКомОткл</i> »				
			✓ Назначенный сигнал подтверждает команду отключения коммутатора «Распределительный щит [x]».	

Примечание. В ветви меню абстрактное имя модуля «Распределительный щит [x]» не отображается. Вместо него показывается обозначение коммутационного устройства, назначенное на странице управления (однолинейная схема), то есть нечто вроде «QA1» (См. ⇒ «5 Однолинейная схема».)

Внешнее подтверждение

Внешнее подтверждение отключается, если для параметра [Пар_ устр_ / Подтвердить] «Дист сброс» задано значение «неакт». При этом блокируется и

подтверждение через канал обмена данными SCADA (например, по протоколу Modbus).

[Пар_ устр_ / Подтвердить] » Подт СД «			
✓ Назначенный сигнал подтверждает состояние всех СДИ.			
10 /0	1		
[Пар_ устр_ / Подтверд	ить] »ПОДТ Релвых «		
	 ✓ Назначенный сигнал подтверждает состояние всех релейных выходов. 		
[Пар_ устр_ / Подтверд	ить] »Подт Скд «		
		✔ Назначенный сигнал подтверждает замкнутое состояние сигналов SCADA.	

Автоматическое подтверждение

При автоматическом подтверждении все СДИ, для которых оно включено, подтверждаются по аварийному сигналу одной из функций защиты или *общему аварийному сигналу*, «Защ . Трев ».

Это означает, что автоматическое подтверждение следует настраивать отдельно для каждого СДИ, состояние которого будет подтверждаться таким образом.

[Пар_ устр_ / СД / ИНД группа А / СД 17] « <i>Замкн_»</i> = «акт.,подтв.по аварийн.сиг.»				
[Пар_устр_/СД/ИНД группа В/СД 17] « <i>Замкн_»</i> = «акт.,подтв.по аварийн.сиг.»				
✓ Состояние каждого СДИ с таким значением настройки подтверждается аварийным сигналом одной из функций защиты.				

Совокупное подтверждение (с помощью ПО Smart view или панели управления)

Примечание. Как уже говорилось выше, для подтверждения с помощью ПО *Smart view* необходимо, чтобы для настройки [Пар_ устр_ / Подтвердить] *«Дист сброс»* было задано значение «акт ».

Далее приводятся доступные прямые команды подтверждения.

[Работа / Подтвердить] « СД . СДИ сис-мы подтв. »			
 ✓ Подтвердить состояние предупреждения по 			

[Работа / Подтвердить] « СД . СДИ сис-мы подтв. »			
сигналу системного СДИ.			

Примечание. Все возможные сигналы системного СДИ приводятся в руководстве по отладке.

отладке.			
[Работа / Подтвердить] «Сис . Подт СД»		
✔ Все СДИ			
[Работа / Подтвердить] «Сис . Подт РелВых»		
	✓ Все релейные выходы		
[Работа / Подтвердить] «Сис . Подт Скд»		
		✓ Все сигналы SCADA	

[Работа / Подтвердить] « Распределительный щит [x] . Сбрс КомОткл »			
	✓ Подтвердить команду отключения коммутатора «Распределительный щит [x]».		

Примечание. В ветви меню абстрактное имя модуля «Распределительный щит [x]» не отображается. Вместо него показывается обозначение коммутационного устройства, назначенное на странице управления (однолинейная схема), то есть нечто вроде «QA1» (См. ⊫> «5 Однолинейная схема».)

[Работа / Подтвердить] « Сис . Подт РелВ Инд Скд КомОт »			
 ✓ Подтвердить все СДИ, 	✓ все релейные выходы,	✓ все сигналы SCADA	✓ и все команды отключения.

С панели управления можно получить прямой доступ к меню [Работа / Подтвердить] с помощью кнопки «С» (см. раздел \Longrightarrow «1.5 Подтверждение вручную (нажатием кнопки С на панели управления)» ниже).

Подтверждение вручную (нажатием кнопки «С» на панели управления)

ПРИМЕЧАНИЕ!

Подтверждение вручную с помощью кнопки «С» будет доступно только после выхода из режима настройки параметров (поскольку в этом режиме у данной кнопки другая функция).

Но выйти в меню [Работа / Подтвердить] по-прежнему можно.

Подтверждать состояния системных, назначенных СДИ, сигналов SCADA, релейных выходов и/или отложенных команд отключения можно нажатием кнопки «С» на панели управления.

Существует два способа подтверждения нажатием кнопки «С».

- **Краткое нажатие** *с* промежуточным выбором: (кратким) нажатием кнопки «С» выполняется вход в меню [Работа / Подтвердить]. Там с помощью программных кнопок выбираются элементы для подтверждения (СДИ, сигналы SCADA, релейные выходы, команда отключения или все вместе, см. раздел > «1.5 Совокупное подтверждение (с помощью ПО Smart view или панели управления)»). Затем следует нажать кнопку с символом «Гаечный ключ».
- **Долгое нажатие** *с немедленным подтверждением:* элементы подтверждаются простым нажатием кнопки «С» (в течение 1 секунды).

Более того, можно настроить, какие именно элементы будут подтверждаться «долгим нажатием» (см. ниже).

Параметром [Пар_ устр_ / Подтвердить] *«Пдт. клавишей С»* определяется, элементы каких именно категорий будут подтверждаться «долгим нажатием» кнопки «С».

- «Ничего» будет работать только «краткое нажатие», то есть пользователь будет всегда указывать конкретные элементы для подтверждения.
- «Пдт. СДИ без пароля» «долгим нажатием», притом *без* ввода пароля, будут подтверждаться все СДИ (это заводская настройка по умолчанию).
- «Пдт. СДИ» «долгим нажатием» будут подтверждаться все СДИ (только будет поступать запрос пароля, см. ниже).
- «Пдт. СДИ и реле» «долгим нажатием» будут подтверждаться все СДИ и релейные выходы (только будет поступать запрос пароля, см. ниже).
- «Пдт. все» «долгим нажатием» будут подтверждаться все замкнутые элементы (только будет поступать запрос пароля, см. ниже):
 - ∘ все СДИ,
 - ∘ релейные выходы,
 - ∘ замкнутые сигналы SCADA и
 - ∘ команда отключения.

При подтверждении индикаторов всегда выполняется проверка индикаторов. Все индикаторы в течение секунды мигают красным, затем в течение секунды — зеленым.

Обратите внимание, что для типов (вручную и совокупного) подтверждения (кроме «Ничего» и «Пдт. СДИ без пароля») может поступить запрос на ввод действующего пароля для уровня доступа.

На случай возникновения необходимости подтверждать состояния релейных выходов, сигналов SCADA и команды отключения без ввода пароля предусмотрена возможность оставить пустым поле пароля для уровня «Prot-Lv1». Естественно, это может представлять потенциальную угрозу безопасности, так что пользуйтесь этой возможностью с осторожностью. Общие сведения о паролях и соображениях безопасности см. в главе \Longrightarrow «Безопасность».

1.6 Измеряемые значения

Считывание значений измерений

В меню [Работа / Измеренные значения] можно просматривать и измеренные, и расчетные значения. Измеренные значения разбиты на две категории: стандартные значения и специальные значения (в зависимости от типа устройства).

Параметры дисплея

В меню [Пар_ устр_ / Индик_ измер_] можно изменить отображение измеренных значений.

Масштабирование измеренных значений

С помощью параметра [Пар_ устр_ / Индик_ измер_ / Общие настройки] *«Масшт_»* можно задать способ отображения измеренных значений в ИЧМ и *Smart view*:

- Удельные величины
- Первичные величины
- Вторичные величины

Единицы мощности (применимо только к устройствам с возможностью измерения энергопотребления)

С помощью параметра [Пар_ устр_ / Индик_ измер_ / Общие настройки] *«Ед-цы мощн.»* можно задать способ отображения измеренных значений в ИЧМ и *Smart view*:

- Автом.масштаб мощн Выбор префикса единиц (к, М, Г) и количества знаков после запятой для значений мощности в зависимости от основных параметров трансформаторов тока и напряжения.
- кВт, кВАр или кВА Выбрать префикс «к» для единиц (кВт, кВАр или кВА)
- МВт, МВАр или МВ·А Выбрать префикс «М» для единиц (МВт, МВАр или МВ·А)
- ГВт, ГВАр или ГВА Выбрать префикс «Г» для единиц (ГВт, ГВАр или ГВА)

Единицы энергии (применимо только к устройствам с возможностью измерения энергопотребления)

С помощью параметра [Пар_ устр_ / Индик_ измер_ / Общие настройки] *«Ед-цы энерг»* можно задать способ отображения измеренных значений в ИЧМ и Smart view:

- Автом.масштаб энерг Выбор префикса единиц (к, М, Г) и количества знаков после запятой для значений мощности в зависимости от основных параметров трансформаторов тока и напряжения.
- кВт*ч, кВАр*ч или кВА*ч Выбрать префикс «к» для единиц (кВт*ч, кВАр*ч или кВА*ч)
- МВт*ч, МВ·Ар*ч или МВ·А*ч Выбрать префикс «М» для единиц (МВт*ч, МВ·Ар*ч или МВ·А*ч)
- ГВт*ч, ГВАр*ч или ГВА*ч Выбрать префикс «Г» для единиц (ГВт*ч, ГВАр*ч или ГВА*ч)

Если счетчик переполнится, то отсчет вновь начнется с нуля. Переполнение счетчика будет показано соответствующим сигналом.

	Переполнение счетчика:
• Автом.масштаб энерг	Зависит от настроек трансформаторов тока и напряжения
• кВт*ч, кВАр*ч или кВА*ч	999 999,99
• МВт*ч, МВ·Ар*ч или МВ·А*ч	999 999,99
• ГВт*ч, ГВАр*ч или ГВА*ч	999 999,99

Уровень отсечки

Для подавления шума в измеренных значениях, близких к нулю, можно задать уровень отсечки. Уровень отсечки позволяет отображать измеренные значения, близкие к нулю, как ноль. Эти параметры не влияют на записываемые значения.

Фазовые углы

Фазовые углы векторов тока и напряжения определяются из основной составляющей и всегда относятся к определенному контрольному вектору.

Контрольный вектор обычно является первым каналом напряжения, например UA или UAB (в зависимости от того, который из них измеряется напрямую — см. также настройку параметра [СистПар / TH] «TH соед».)

Однако если амплитуда контрольного вектора становится слишком малой, то в качестве контрольного вектора используется следующий возможный канал измерения, например UB или UBC) и т.д.

Если напряжения всех трех фаз станут очень низкими или, если в защитном устройстве нет функции измерения напряжения, то первый вход для измерения тока Іф.А (первой платы для измерения тока, например слот X3) используется в качестве контрольного вектора. Если он также неисправен, МСА4 переключается на Іф.В, затем на Іф.С, после этого на первый вход измерения тока второй платы измерения тока, если она существует, и т. д.

По определению контрольный вектор имеет фазовый угол 0°.

1.7 Статистика

В меню [Работа / Статистика] отображаются минимальные, максимальные и средние измеренные и расчетные значения.

1.7.1 Настройка минимальных и максимальных значений

Расчет минимальных и максимальных значений начинается сразу после любого из перечисленных далее событий:

- если станет активным сигнал сброса (мин./макс.),
- при перезапуске устройства,
- после изменения настроек.

Сброс минимальных и максимальных значений (пиковых значений/курсоров)

Меню [Пар устр / Статистика / Мин/макс]

«КвиФн мин» — сброс всех минимальных значений

«КвиФн макс» — сброс всех максимальных значений

Сигнал сброса (например, цифровой входной сигнал) можно назначить каждому из этих двух параметров.

Минимальные и максимальные значения сбрасываются при росте фронта импульса соответствующего сигнала сброса.

Просмотр минимальных значений

в меню [Работа / Статистика / Мин]

Просмотр максимальных значений

в меню [Работа / Статистика / Мкс]

1.7.2 Конфигурация расчета среднего значения

1.7.2.1 Настройка расчета среднего значения на основе силы тока*

* = доступность зависит от заказанного кода устройства.

Настройка периода времени для расчета средних и пиковых значений

[Пар устр / Статистика / Нагрузка / Нагрузка по току] *«Интервал І-нагр»* =

- «скольз»: расчет среднего значения на основе скользящего периода.
- «фикс»: расчет среднего значения сбрасывается в конце периода, то есть в начале следующего периода.

Варианты запуска по средним и пиковым значениям на основе силы тока

[Пар устр / Статистика / Нагрузка / Нагрузка по току] «Пуск І-нагр по » =

- «Длит-ть»: фиксированный или скользящий период. Длительность периода настраивается в меню *«Длит І-нагр»*.
- «ПускФнк»: Средние значения рассчитываются на основе периода времени между двумя растущими фронтами импульса сигнала, назначенного для параметра «Пуск І-нагр Фн».

Сброс средних и пиковых значений на основе силы тока

Мгновенный сброс путем прямого управления:

[Работа / Сброс] «КвитФн I Нагр» — сброс всех значений

Можно также назначить сигнал сброса (например, цифровой входной сигнал) параметру [Пар устр / Статистика / Нагрузка / Нагрузка по току] «КвитФн I Нагр».

В этом случае значения будут сбрасываться при росте фронта импульса данного сигнала сброса.

Просмотр средних и пиковых значений на основе силы тока

в меню [Работа / Статистика / Нагрузка]

Вариант (команда) отключения для ограничения средней токовой нагрузки

См. раздел Ч⇒ «Системные аварийные сигналы».

1.7.2.2 Настройка расчета среднего значения на основе напряжения*

* = доступность зависит от заказанного кода устройства.

Настройка периода времени для расчета средних значений

[Пар устр / Статистика / V скольз. ср. контр.] »Интервал Vavg« =

- «скольз»: расчет среднего значения на основе скользящего периода.
- «фикс»: расчет среднего значения сбрасывается в конце периода, то есть в начале следующего периода.

Варианты запуска по средним значениям на основе напряжения

[Пар_ устр_ / Статистика / V скольз. ср. контр.] «Пуск Vavg через:» =

- «Длит-ть»: фиксированный или скользящий период. Длительность периода настраивается в меню *«Длительность Vavg»*.
- «ПускФнк»: Средние значения рассчитываются на основе периода времени между двумя растущими фронтами импульса сигнала, назначенного для параметра «Запуск Фн Vavg».

Сброс средних значений на основе напряжения

Мгновенный сброс путем прямого управления:

[Работа / Сброс] «СбрФнк Vavg» — сброс всех значений

Можно также назначить сигнал сброса (например, цифровой входной сигнал) параметру [Пар_ устр_ / Статистика / V скольз. ср. контр.] « $Cбp\Phi hk\ Vavg$ ».

В этом случае значения будут сбрасываться при росте фронта импульса данного сигнала сброса.

Просмотр средних значений на основе напряжения

в меню [Работа / Статистика]

1.7.2.3 Настройка расчета среднего значения на основе мощности*

* = доступность зависит от заказанного кода устройства.

Настройка периода времени для расчета средних и пиковых значений

[Пар устр / Статистика / Нагрузка / Нагрузка по мощности] «Интервал Р-нагр» =

- «скольз»: расчет среднего значения на основе скользящего периода.
- «фикс»: расчет среднего значения сбрасывается в конце периода, то есть в начале следующего периода.

Варианты запуска по средним и пиковым значениям на основе мощности

[Пар_ устр_ / Статистика / Нагрузка / Нагрузка по мощности] *«Пуск Р-нагр по_»* =

- «Длит-ть»: фиксированный или скользящий период. Длительность периода настраивается в меню *«Длит Р-нагр»*.
- «ПускФнк»: Средние значения рассчитываются на основе периода времени между двумя растущими фронтами импульса сигнала, назначенного для параметра «Пуск Р-нагр Фн».

Сброс средних и пиковых значений на основе мощности

Мгновенный сброс путем прямого управления:

[Работа / Сброс] «КвитФн Ф Нагр» — сброс всех значений

Можно также назначить сигнал сброса (например, цифровой входной сигнал) параметру [Пар_ устр_ / Статистика / Нагрузка / Нагрузка по мощности] «Квит Φ н Φ Нагр».

В этом случае значения будут сбрасываться при росте фронта импульса данного сигнала сброса.

Просмотр средних и пиковых значений на основе мощности

в меню [Работа / Статистика / Нагрузка]

Вариант (команда) отключения для ограничения средней токовой нагрузки

См. раздел Б «Системные аварийные сигналы».

1.8 Smart view

Smart view — это программное обеспечение для настройки и оценки параметров. У данной программы есть собственное техническое руководство.

- Установка параметров с помощью меню и проверка правильности значений параметров.
- Конфигурация типов реле в автономном режиме.
- Считывание и оценка статистических данных и измеренных величин.
- Включение режима помощи.
- Отображение статуса устройства.
- Анализ неисправностей с помощью регистратора событий, неисправностей и сигналов

Для полной настройки MCA4 рекомендуется использовать программное обеспечение *Smart view* для настройки и оценки, поскольку настройка с помощью панели устройства выполняется сложно и требует длительного времени.

Для Smart view требуется ПК с операционной системой Windows (7, 8.х или 10).

Требуется также соединительный кабель для прямого подключения МСА4 к ПК. Этот кабель подключается к разъему USB и разъему «Mini B» на МСА4 (см. также > «Интерфейс ПК — X120»). Соединение можно также установить через Ethernet (TCP/IP), если это допускается характеристиками сети, если заказанное устройство МСА4 оснащено интерфейсом Ethernet (> «Коды протокола связи», > «Бланк заказа устройства») и если на панели уже были заданы необходимые настройки TCP/IP (IP-адрес, маска подсети, шлюз).

Защищенная связь

В целях безопасности возможности связи между *Smart view* и МСА4 могут быть ограничены. Более того, подключение устанавливается только после ввода пароля для подключения. Более подробно см. в главе «Безопасность» (> «Пароли для подключения к Smart view»).

1.9 DataVisualizer

DataVisualizer — программа для просмотра форм сигналов и записей о событиях. Она автоматически устанавливается вместе с программой Smart view. Ее можно использовать и как стандартное средство просмотра файлов COMTRADE.

- Открытие и просмотр загруженных сигналов
- Настройка канала сигналов и видов, в том числе наложения каналов и приближения
- Последовательный анализ точек данных и выстраивание каналов отображаемых аналоговых сигналов в соответствии с записанной логической схемой внутреннего реле.
- Сохранение настроек окон (снимки) и печать для отчета

- Открытие стандартных отраслевых файлов COMTRADE, полученных с других интеллектуальных электронных устройств
- Преобразование загруженных файлов сигналов в формат COMTRADE с помощью функции экспорта

2 Оборудование

2.1 Размерные чертежи

Внешний вид — 19 дюймов

ПРИМЕЧАНИЕ!

Объем (глубина) свободного пространства, необходимого для системы SCADA, зависит от способа ее подключения. Так, например, если используется разъем D-Sub, необходимо учесть длину соответствующей вилки при определении глубины.

ПРИМЕЧАНИЕ!

Внешний вид, приведенный в данном разделе, относится только к 19-дюймовым устройствам.

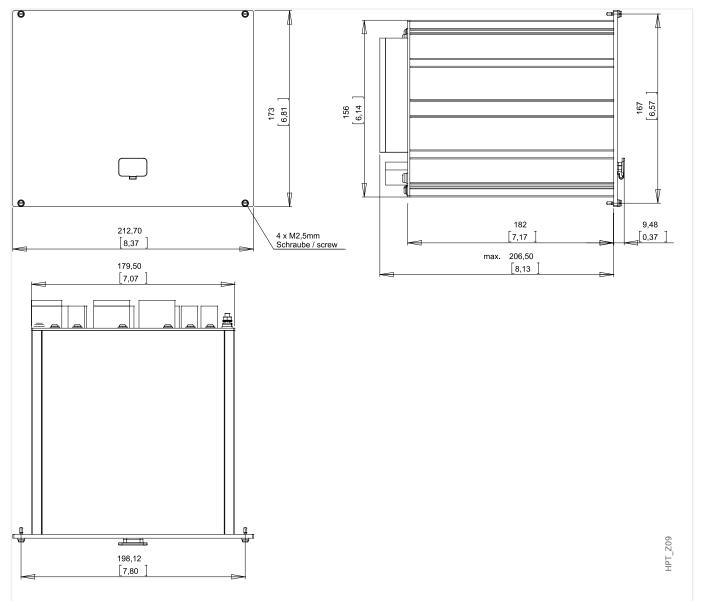


Рис. 4: Корпус В2: внешний вид (19-дюймовые устройства). (Все размеры указаны в миллиметрах, за исключением размеров в квадратных скобках — [дюймы].)

Внешний вид — версия с 8 кнопками

ПРИМЕЧАНИЕ!

В зависимости от способа подключения, свободное пространство (глубина), которое требуется для системы SCADA, различается. Так, например, если используется разъем D-Sub, необходимо учесть длину соответствующей вилки при определении глубины.

ПРИМЕЧАНИЕ!

Схема установки, приведенная в данном разделе, относится только к устройствам с 8 кнопками на передней панели ИЧМ. (Кнопки «INFO», «C», «OK», «CTRL» и 4 программные кнопки).

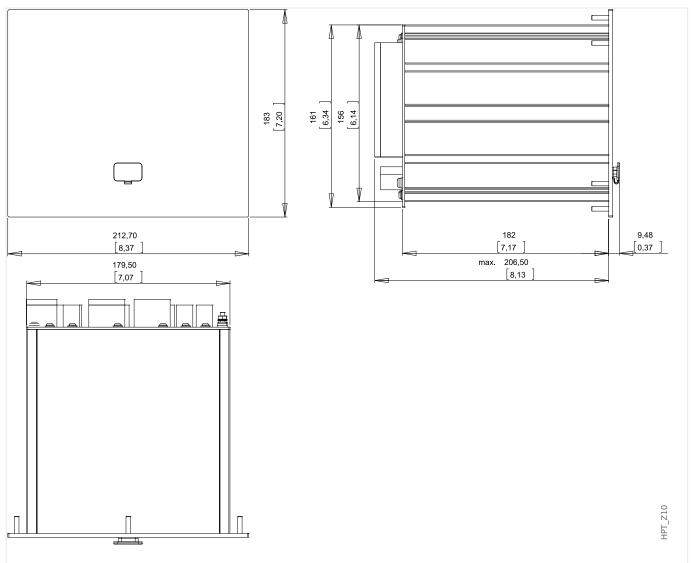


Рис. 5: Корпус В2: внешний вид (устройства с 8 кнопками). (Все размеры указаны в миллиметрах, за исключением размеров в квадратных скобках — [дюймы].)

Схема установки — версия с 8 кнопками

ПРЕДУПРЕЖДЕНИЕ!

Даже если вспомогательное напряжение отключено, на соединительных приспособлениях может сохраняться опасное напряжение.

ПРИМЕЧАНИЕ!

Схема установки, приведенная в данном разделе, относится исключительно к устройствам с 8 кнопками в передней части ИЧМ. (Кнопки «INFO», «С», «ОК», «СTRL» и 4 программные кнопки).

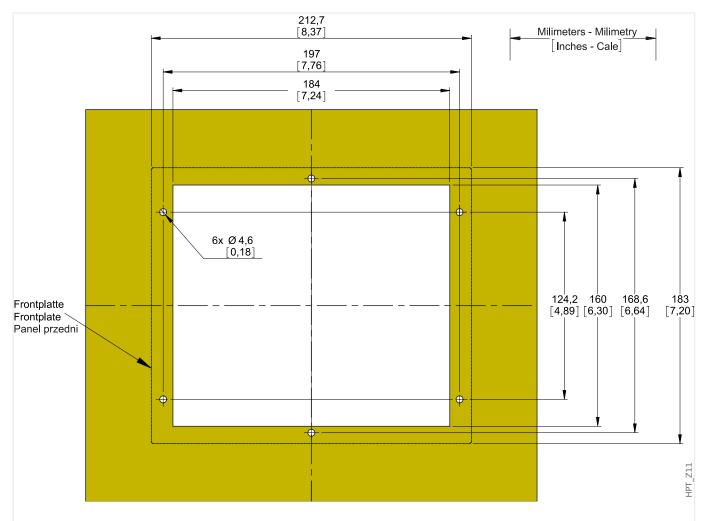


Рис. 6: Вырез дверцы в корпусе В2 (версия с 8 кнопками). (Все размеры указаны в миллиметрах, за исключением размеров в квадратных скобках — [дюймы].)

осторожно!

Соблюдайте осторожность. Не затягивайте крепежные гайки реле (гайки М4, 4 мм) слишком сильно. Проверяйте момент затяжки с помощью динамометрического ключа (1,7 Нм [15 фунт-дюймов]). Чрезмерная затяжка крепежных гаек может привести к телесным повреждениям или к поломке реле.

2.2 Устройство МСА4 — установка и подключение

2.2.1 Заземление

ПРЕДУПРЕЖДЕНИЕ!

Корпус следует тщательно заземлить. Подсоедините заземляющий кабель (защитное заземление: площадь сечения 4-6 мм2 [AWG 11-9], момент затяжки 1,7 Нм [15 фунт-дюймов]) к корпусу винтом, помеченным символом заземления (на задней панели устройства).

Кроме того, отдельное заземление (рабочее заземление: мин. 2,5 мм2 [\leq AWG 13], момент затяжки 0,56-0,79 Нм [5-7 фунт-дюймов]) требуется для платы питания. Для определения соответствующего разъема см. таблицу «Обозначение разъемов» в разделе «DI-4 X — питание и цифровые выходы».

Все системы заземления (защитное и рабочее заземления) должны быть низкоиндуктивными (т. е. быть максимально короткими) и (если применимо) соответствовать государственным стандартам.

осторожно!

Эти устройства очень восприимчивы к воздействию электростатических разрядов.

2.2.2 Обзор слотов — группы сборки

ПРЕДУПРЕЖДЕНИЕ!

В соответствии с требованиями заказчика устройства укомплектованы модульно (по кодам заказа). В каждый из разъемов может встраиваться группа сборки. Ниже показаны обозначения клемм и разъемов, соответствующие отдельным группам сборки. Точное место установки отдельных модулей определяется по схеме соединения, которая закреплена на верхней панели устройства.

Передняя панель

На передней панели MCA4 имеется интерфейс USB, который можно использовать для установки соединения с ПО Smart view для настроек.

• слот X120

Задняя панель

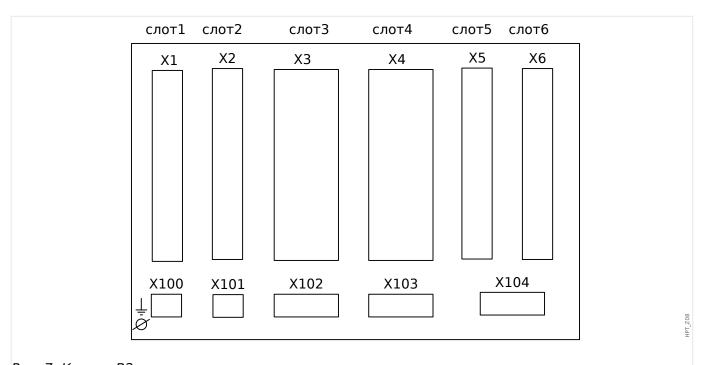


Рис. 7: Корпус В2 — принципиальная схема

слот Х1	слот Х2	слот ХЗ	слот Х4	слот Х5	слот Х6
слот Х100			слот Х103	слот Х104	

2.2.3 Коды протокола связи

В следующей таблице перечислены буквы «Параметров связи» из кода заказа (см. «Бланк заказа устройства»), а также соответствующие интерфейсы и протоколы связи, которые доступны с данным вариантом заказа.

#	Интерфейс	Доступные протоколы связи	
A	_	Без протокола	
В	RS485 / разъемы	Modbus RTU, IEC 60870-5-103, DNP3.0 RTU	
	Щ⇒ «Modbus® RTU/IEC 60870-5-103 через	└ > «Modbus®»	
	RS485»	⊫⊳ «IEC60870-5-103»	
	1 2 3 4 5 6	⊫⊳ «DNP3»	
С	Ethernet 100 Мбит/с / RJ45	Modbus TCP, DNP3.0 TCP/UDP, IEC 60870-5-104	
	⊫⊳ «Ethernet — RJ45»	└ > «Modbus®»	
		□ > «DNP3»	
		⊫⊳ «IEC 60870-5-104»	
D	оптоволоконное соединение / разъем ST	Profibus-DP	
		└ ⊳ «Profibus»	
	RXD TXD		
E	RS485 / D-SUB	Profibus-DP	
	⊫⊳ «Profibus DP через D-SUB»	└ ⊳ «Profibus»	
	• ::::•		
F	оптоволоконное соединение / разъем ST	Modbus RTU, IEC 60870-5-103, DNP3.0 RTU	
		└ > «Modbus®»	
	60870-5-103 через оптоволоконное соединение»	⊫⊳ «IEC60870-5-103»	
	RXD TXD	⊫⊳ «DNP3»	
G	RS485 / D-SUB	Modbus RTU, IEC 60870-5-103, DNP3.0 RTU	
	Щ⇒ «Modbus® RTU/IEC 60870-5-103 через	└ > «Modbus®»	
	разъем D-SUB»	⊫⊳ «IEC60870-5-103»	

#	Интерфейс	Доступные протоколы связи
	O::::O	
В	Ethernet 100 Μ6μτ/c / RJ45 «Ethernet — RJ45»	IEC 61850, Modbus TCP, DNP3.0 TCP/UDP, IEC 60870-5-104 □> «IEC 61850» □> «Modbus®» □> «DNP3» □> «IEC 60870-5-104»
I	RS485 / разъемы WModbus® RTU/IEC 60870-5-103 через RS485» 1 2 3 4 5 6 Ethernet 100 Мбит/с / RJ45 WEthernet — RJ45»	IEC 60870-5-103, Modbus RTU, DNP3.0 RTU Modbus TCP, DNP3.0 TCP/UDP, IEC 60870-5-104 □> «IEC60870-5-103» □> «Modbus®» □> «DNP3» □> «IEC 60870-5-104»
K	Оптический разъем Ethernet 100 Мбит/с/ дуплексный разъем LC □ ≪Ethernet/TCP/IP через оптоволоконный кабель» RXD TXD	IEC 61850, Modbus TCP, DNP3.0 TCP/UDP, IEC 60870-5-104 □> «IEC 61850» □> «Modbus®» □> «DNP3» □> «IEC 60870-5-104»
L	Оптический разъем Ethernet 100 Мбит/с/ дуплексный разъем LC «Ethernet/TCP/IP через оптоволоконный кабель» RXD TXD	Modbus TCP, DNP3.0 TCP/UDP, IEC 60870-5-104
Т	<i>RS485 / разъемы</i> Щ> «Modbus® RTU/IEC 60870-5-103 через RS485»	IEC 60870-5-103, Modbus RTU, DNP3.0 RTU IEC 61850, Modbus TCP, DNP3.0 TCP/UDP, IEC 60870-5-104

#	Интерфейс	Доступные протоколы связи
		└─> «IEC60870-5-103»
	1 2 3 4 5 6	└ ⇒ «Modbus®»
	Ethernet 100 Мбит/с / RJ45	□ ⊳ «DNP3»
	⊫⊳ «Ethernet — RJ45»	⊫> «IEC 60870-5-104»
		□ > «IEC 61850»

2.2.4 Условные обозначения электрических схем

Здесь приведены условные обозначения различных типов устройств, например защиты трансформатора, двигателя, генератора и т. п. Поэтому на конкретной электрической схеме для устройства могут присутствовать не все обозначения.

- FE подключение к рабочему заземлению (см. раздел 🛶 «Заземление»)
- Питание подключение к вспомогательному источнику питания
- Іф.А Вход фазного тока ф.А (в некоторых странах обозначается как L1)
- Іф.В Вход фазного тока ф.В (в некоторых странах обозначается как L2)
- Iф.C Вход фазного тока ф.С (в некоторых странах обозначается как L3)
- 3Іо Вход тока утечки на землю
- Iф.A W1 ... Iф.C W1 Вход фазного тока ф.А...ф.С, сторона обмотки 1
- Iф.A W2 ... Iф.C W2 Вход фазного тока ф.А...ф.С, сторона обмотки 2
- 3lo W1, 3lo W2 вход тока утечки на землю, сторона обмотки 1/2
- UA напряжение между фазой L1 и нейтралью (в некоторых странах обозначается как «UA»)
- UB напряжение между фазой L2 и нейтралью (в некоторых странах обозначается как «UB»)
- UC напряжение между фазой L3 и нейтралью (в некоторых странах обозначается как «UC»)
- UAB линейное напряжение U12 (в некоторых странах обозначается как «UAB»)
- UBC линейное напряжение U23 (в некоторых странах обозначается как «UBC»)
- UCA линейное напряжение U31 (в некоторых странах обозначается как «UCA»)
- VX четвертый измерительный вход для измерения остаточного напряжения или проверки синхронизации
- ЦВых выходное реле (цифровые сигналы)
- HET / NC нормально разомкнутый / замкнутый контактный выход
- ЦВх цифровой вход
- СОМ общее подключение цифровых входов
- Out+, Аналог вых аналоговый выход + (0/4...20 мА или 0...10 В)
- In-, Аналог вх аналоговый вход (0/4...20 мА или 0...10 В)
- н з не соединено
- НЕ ИСПОЛЬЗОВАТЬ не использовать

- КС контакт самодиагностики
- GND заземление
- Экран ВЧ экран соединительного кабеля
- Опт_ кабель оптоволоконное соединение

Only for use with external galvanic decoupled CT's.
See chapter
Current Transformers of the manual!

2.3 Слот Х1

• плата питания с цифровыми входами

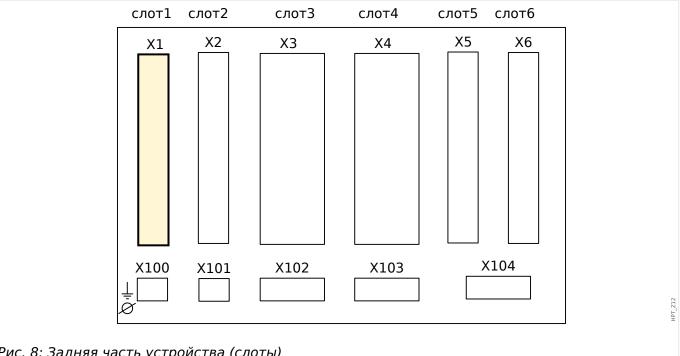


Рис. 8: Задняя часть устройства (слоты)

Тип платы питания и количество цифровых входов, используемых в данном слоте, зависит от типа заказанного устройства. Объем функций в различных вариантах отличается.

Доступные группы сборки в данном слоте:

• ЦВх-8 Х1: данная группа сборки состоит из широкодиапазонного блока питания, двух незаземленных цифровых входов и 6 цифровых входов (сгруппированных).

ПРИМЕЧАНИЕ!

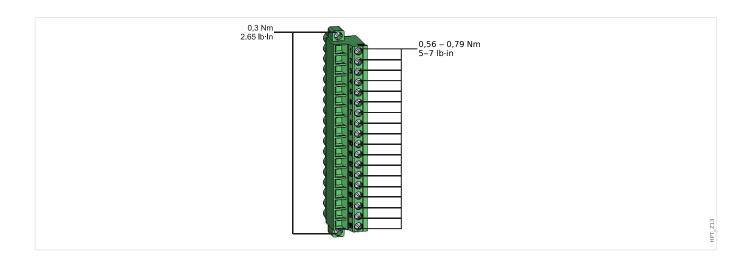
Доступные комбинации можно получить по коду заказа.

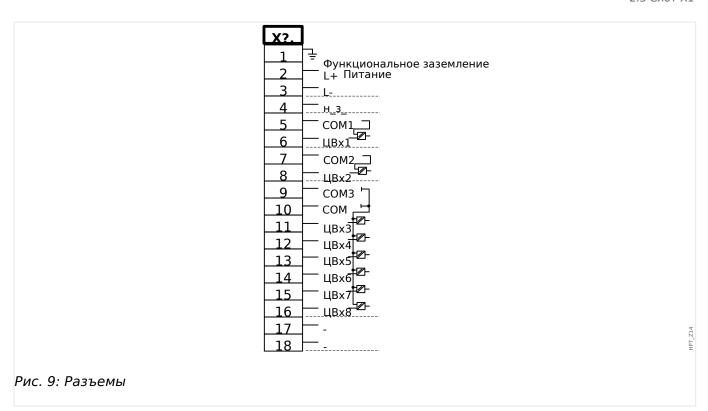
2.3.1 DI8-X — питание и цифровые входы

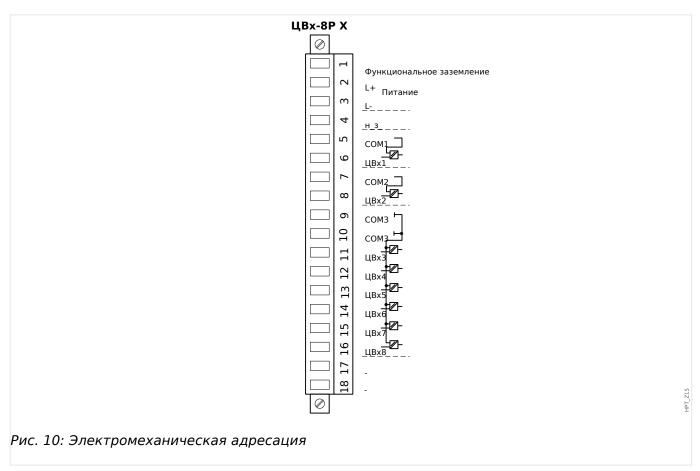
ПРЕДУПРЕЖДЕНИЕ!

Помимо кабеля заземления на корпус (защитное заземление, см. раздел «Заземление») следует подсоединить дополнительный кабель заземления к плате питания (рабочее заземление: мин. 2,5 мм2 [≤ AWG 13], момент затяжки 0,56–0,79 Нм [5–7 фунт-дюймов]).

Данный кабель заземления подключается к разъему № 1, см. « Рис. 9» ниже.


Все системы заземления (защитное и рабочее заземления) должны быть низкоиндуктивными (т. е. быть максимально короткими) и (если применимо) соответствовать государственным стандартам.


ПРЕДУПРЕЖДЕНИЕ!



Обеспечьте надлежащий момент затяжки (см. схему).

Поперечное сечение соединений: мин. 0,25 мм 2 (AWG 23) ... макс. 2,5 мм 2 (AWG 14) с обжимной втулкой или без нее.

Эта группа сборки включает в себя:

- широкодиапазонный блок питания;
- шесть цифровых входов, сгруппированных;

- два цифровых входа, не сгруппированных.
- разъем для рабочего заземления (**обязательный** для подключения, см. «Предупреждение» выше).

Вспомогательный источник напряжения

- Вспомогательные входы напряжения (широкодиапазонного блока питания) являются неполяризованными. Устройство может комплектоваться источниками постоянного или переменного напряжения.
- Вспомогательное напряжение: 24 ... 270 Впост. / 48 ... 230 Впер. (-20/+10%)
- Предохранитель (встроенный в широкодиапазонный блок питания): 6.3 А с отставанием по времени.

(Данный предохранитель не подлежит замене, он необходим для безопасной работы.)

В блок питания необходимо установить предохранитель:

- 2,5 A, миниатюрный, с отставанием по времени, 5 x 20 мм (ок. 1/5 x 0,8 дюйма) в соответствии с IEC 60127
- 3,5 A, миниатюрный, с отставанием по времени, 6,3 x 32 мм (ок. 1/4 x $1\frac{1}{4}$ дюйма) в соответствии с UL 248-14

Цифровые входы

Модуль имеет 8 сгруппированных цифровых входов.

Процедура назначения цифровых выходов описывается в разделе «Конфигурация цифровых входов».

Перечень доступных назначений для сигналов см. в отдельном документе под названием «Справочное руководство к устройству МСА4» (МСА4-3.6-RU-REF.

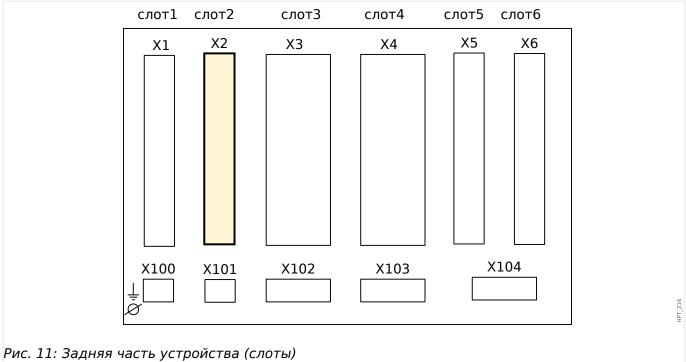
осторожно!

При использовании питания постоянного тока отрицательный потенциал должен быть подключен к общей клемме (COM1, COM2, COM3 — см. маркировку разъемов).

осторожно!

Для каждой группы цифровых входов следует установить параметр соответствующего диапазона входного напряжения. Неверная установка пороговых значений переключения может вызвать неправильную работу или неправильные интервалы передачи сигнала.

Цифровые входы имеют различные пороговые значения переключения (которые можно настроить с помощью параметра [Пар_ устр_ / Цифровые входы / ЦВх Слот Xx / \Gammap_y] « Hom_hanp_s). Для каждой группы могут устанавливаться следующие пороговые значения переключения:


- «24 В пост. тока»
- «48 В пост. тока»

- «60 В пост. тока»
- «110 В пост. тока»
- «230 В пост. тока»
- «110 В пер. тока»
- «230 В пер. тока»

Если напряжение превышает 80% от установленного порогового значения переключения, происходит физическое распознавание изменения состояния (физический сигнал «1»). Если напряжение составляет менее 40% от установленного порогового значения переключения, устройство регистрирует физический «ноль».

2.4 Слот Х2

• плата выходов реле

Тип карты в данном слоте зависит от типа заказанного устройства. Объем функций в различных вариантах отличается.

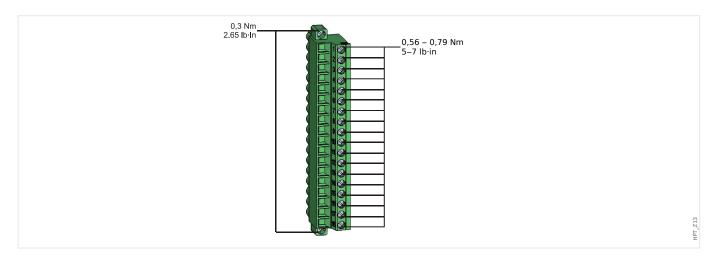
Доступные группы сборки в данном слоте:

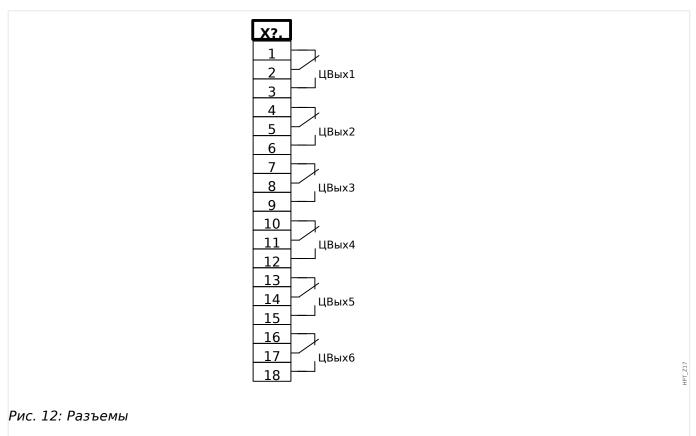
• OR6: Группа сборки с 6 выходными реле.

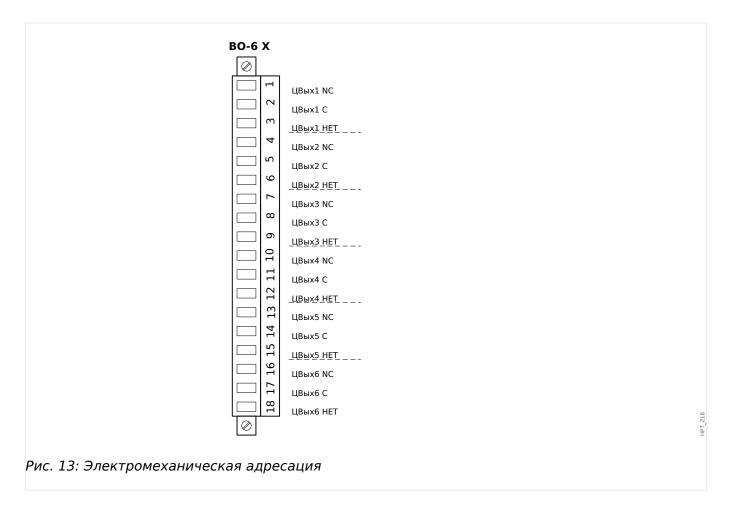
Все выходные реле имеют переключающие контакты (форм С).

ПРИМЕЧАНИЕ!

Доступные комбинации можно получить по коду заказа.


2.4.1 ВО-6 X — группа сборки с 6 выходными реле

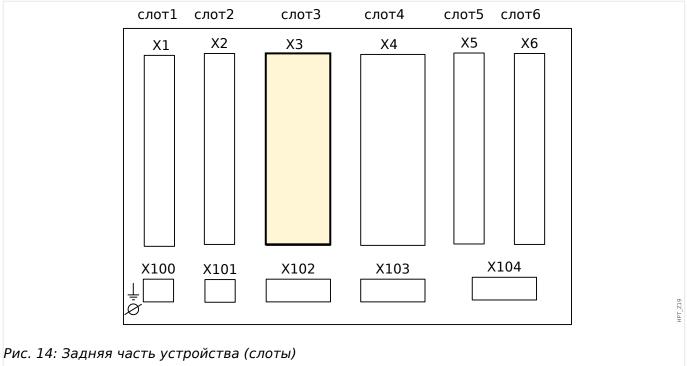

ПРЕДУПРЕЖДЕНИЕ!



Обеспечьте надлежащий момент затяжки (см. схему).

Поперечное сечение соединений: мин. 0,25 мм 2 (AWG 23) ... макс. 2,5 мм 2 (AWG 14) с обжимной втулкой или без нее.

Релейные выходы


осторожно!

Настоятельно рекомендуется учитывать допустимую нагрузку по току для выходных реле. Обратитесь к техническим данным (╚⇒> «Технические данные»).

2.5 Слот ХЗ

• ТТ — измерительные входы трансформатора тока

Доступные группы сборки в данном слоте:

- TI: Входная плата измерения токов фазы и замыкания на землю, стандартная чувствительность.
- TIs: Входная плата измерения токов фазы и замыкания на землю с входами для измерения тока утечки на землю. Технические характеристики чувствительного входа измерения тока утечки на землю отличаются от технических характеристик входов измерения фазных токов. Обратитесь к главе технических данных (> «Технические данные»).

2.5.1 TI — стандартная входная плата измерения токов фазы и замыкания на землю

Эта измерительная плата оснащена 4 входами для измерения тока: три из них предназначены для измерения фазных токов и один — для измерения тока утечки на землю. Каждый из входов измерения тока имеет измерительный вход для силы тока 1 A и 5 A.

Вход для измерения тока нулевой последовательности 3Io может подключаться к трансформатору тока нулевой последовательности или к суммирующей линии тока трансформатора фазного тока (соединение Холмгрина).

ОПАСНОСТЬ!

Вторичные обмотки трансформаторов тока необходимо заземлить.

ОПАСНОСТЬ!

Отключение вторичных цепей трансформатора тока может привести к возникновению опасных напряжений.

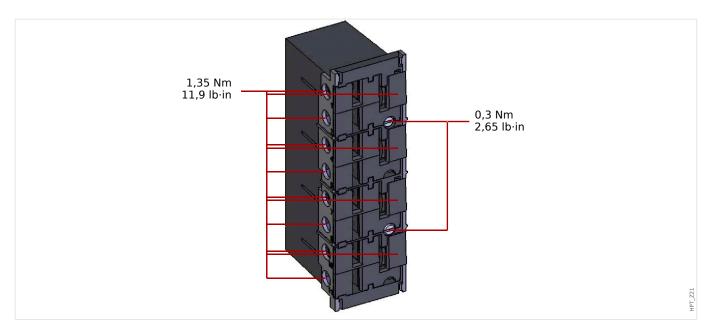
Вторичная обмотка трансформатора тока должна быть соединена накоротко перед отключением цепи тока, идущего к этому устройству.

ОПАСНОСТЬ!

Входы измерения тока могут подключаться исключительно к измерительным трансформаторам тока (с гальванической развязкой).

ПРЕДУПРЕЖДЕНИЕ!

- Запрещается менять эти входы местами (1 А/5 А)
- Убедитесь, что коэффициент трансформации и мощность ТТ рассчитаны правильно. Если коэффициент трансформации трансформатора тока не соответствует требованиям (превышает нужное значение) то нормальные рабочие условия могут быть не распознаны. Значение срабатывания измерительного блока составляет примерно 3% от номинального тока устройства. Кроме того, для обеспечения необходимой точности для ТТ нужен ток, превышающий 3% от номинала. Пример. Для токового трансформатора на 600 А токи силой менее 18 А не будут обнаруживаться.
- Перегрузка может вызвать разрушение измерительных входов или выдачу ошибочных сигналов. Перегрузка означает, что в случае короткого замыкания допустимая нагрузка измерительных входов по току может быть превышена.


ПРЕДУПРЕЖДЕНИЕ!

Обеспечьте надлежащий момент затяжки (см. схему).

Поперечное сечение соединений:

- 1 или 2 по 2,5 мм² (2 шт., AWG 14) с обжимной втулкой, или
- 1 или 2 х 4,0 мм 2 (2 шт., AWG 12) с кольцевой или обычной кабельной муфтой, или
- 1 или 2 x 6 мм 2 (2 шт., AWG 10) с кольцевой или обычной кабельной муфтой.

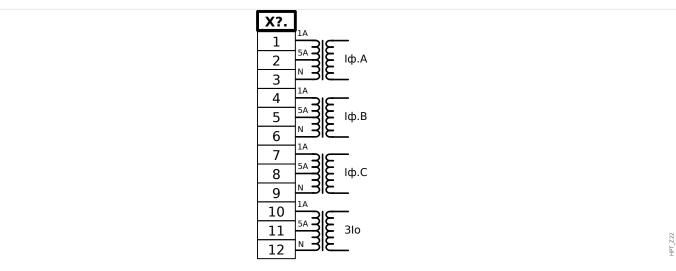
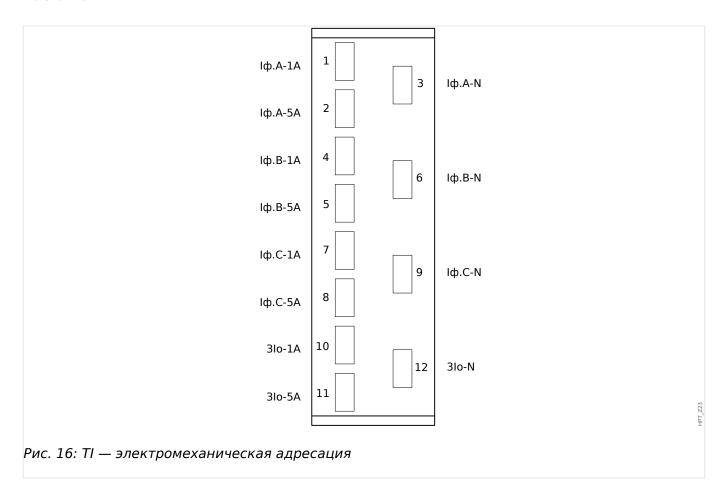



Рис. 15: TI — обозначение разъемов

2.5.2 Tls — плата измерения токов фазы и малых токов замыкания на землю

Измерительная плата малых токов замыкания на землю «Tls» оснащена 4 входами для измерения тока: три из них предназначены для измерения фазных токов и один — для измерения тока утечки на землю.

Технические характеристики чувствительного входа измерения тока утечки на землю отличаются от технических характеристик входов измерения фазных токов. Обратитесь к главе технических данных ($\mathrel{\sqsubseteq}$ «Технические данные»).

Вход для измерения тока нулевой последовательности 3Io может подключаться к трансформатору тока нулевой последовательности или к суммирующей линии тока трансформатора фазного тока (соединение Холмгрина).

ОПАСНОСТЬ!

Вторичные обмотки трансформаторов тока необходимо заземлить.

ОПАСНОСТЬ!

Отключение вторичных цепей трансформатора тока может привести к возникновению опасных напряжений.

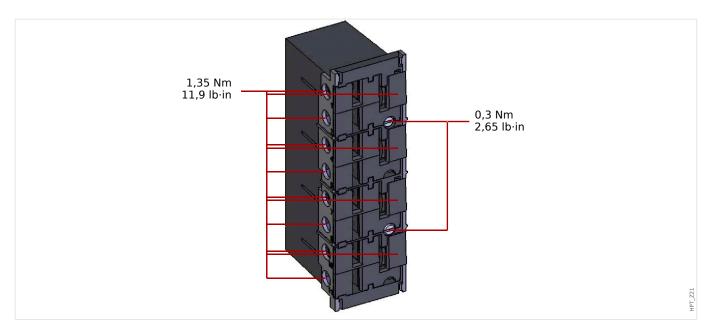
Вторичная обмотка трансформатора тока должна быть соединена накоротко перед отключением цепи тока, идущего к этому устройству.

ОПАСНОСТЬ!

Входы измерения тока могут подключаться исключительно к измерительным трансформаторам тока (с гальванической развязкой).

ПРЕДУПРЕЖДЕНИЕ!

- Запрещается менять эти входы местами (1 А/5 А)
- Убедитесь, что коэффициент трансформации и мощность ТТ рассчитаны правильно. Если коэффициент трансформации трансформатора тока не соответствует требованиям (превышает нужное значение) то нормальные рабочие условия могут быть не распознаны. Значение срабатывания измерительного блока составляет примерно 3% от номинального тока устройства. Кроме того, для обеспечения необходимой точности для ТТ нужен ток, превышающий 3% от номинала. Пример. Для токового трансформатора на 600 А токи силой менее 18 А не будут обнаруживаться.
- Перегрузка может вызвать разрушение измерительных входов или выдачу ошибочных сигналов. Перегрузка означает, что в случае короткого замыкания допустимая нагрузка измерительных входов по току может быть превышена.


ПРЕДУПРЕЖДЕНИЕ!

Обеспечьте надлежащий момент затяжки (см. схему).

Поперечное сечение соединений:

- 1 или 2 по 2,5 мм² (2 шт., AWG 14) с обжимной втулкой, или
- 1 или 2 х 4,0 мм 2 (2 шт., AWG 12) с кольцевой или обычной кабельной муфтой, или
- 1 или 2 x 6 мм 2 (2 шт., AWG 10) с кольцевой или обычной кабельной муфтой.

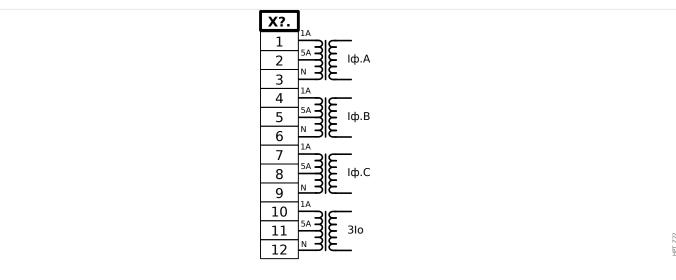
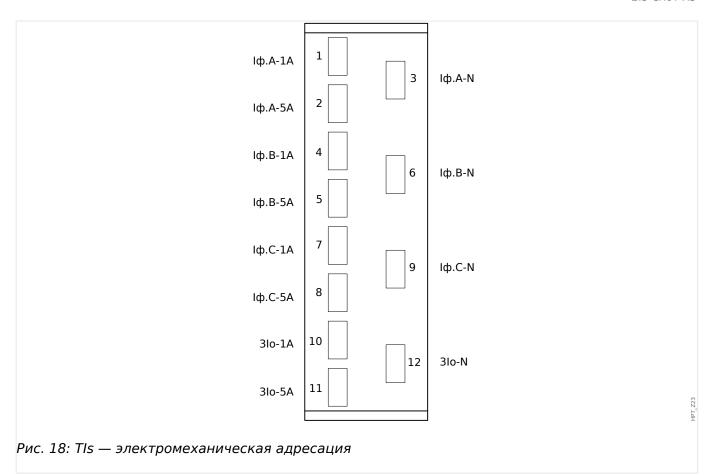



Рис. 17: TIs — разъемы

2.5.3 Трансформаторы тока (ТТ)

Проверьте направление установки.

ОПАСНОСТЬ!

Вторичные обмотки измерительных трансформаторов должны быть заземлены.

ОПАСНОСТЬ!

Входы измерения тока могут подключаться исключительно к измерительным трансформаторам тока (с гальванической развязкой).

ПРЕДУПРЕЖДЕНИЕ!

Во время работы вторичные цепи TT всегда должны иметь малую нагрузку или быть замкнуты накоротко.

ПРИМЕЧАНИЕ!

Для работы функций измерения тока и напряжения необходимо использовать внешний трансформатор тока и напряжения, подключенный надлежащим образом и соответствующий требуемым величинам измерений. Эти устройства обеспечивают необходимую изоляцию.

Все входы для измерения тока должны быть рассчитаны на номинал 1 А или 5 А. Убедитесь в правильности схемы подключения.

2.5.3.1 Измерение малого тока утечки на землю

Входы измерения малых токов используются для измерения малых токов, которые могут возникать в изолированных заземленных сетях с высоким сопротивлением.

Из-за чувствительности этих входов не используйте их для измерения токов короткого замыкания на землю, которые возникают в непосредственно заземленных сетях.

Если требуется использование чувствительного измерительного входа для измерения токов короткого замыкания на землю, необходимо убедиться, что измеряемые токи преобразуются соответствующим трансформатором согласно техническим данным защитного устройства.

2.5.3.2 Примеры подключения трансформаторов тока

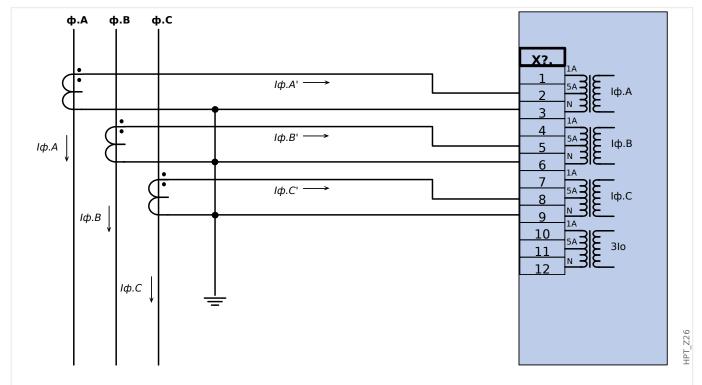


Рис. 19: Измерение фазных токов по схеме «полной» звезды; In вторичн. = 5 A.

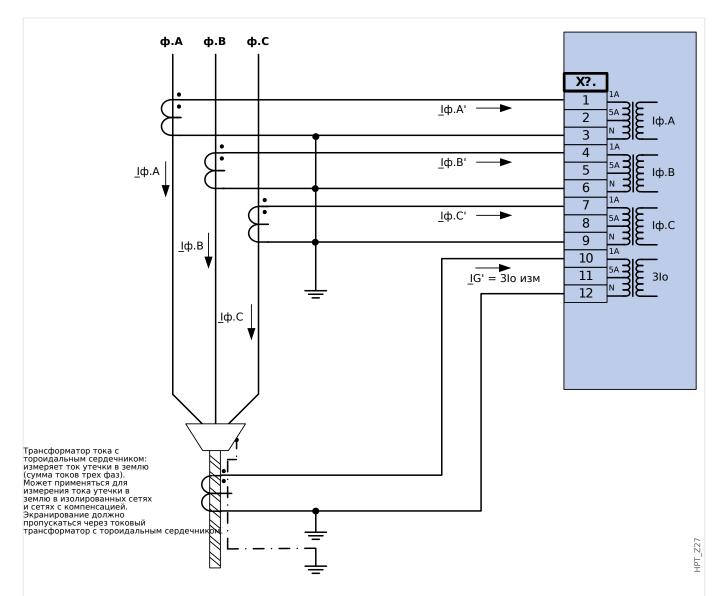


Рис. 20: Измерение фазных токов по схеме «полной» звезды; In вторичн. = 1 А. Ток на землю, измеряемый через трансформатора тока нулевой последовательности 3Io.ном.втор. = 1 А.

ПРЕДУПРЕЖДЕНИЕ!

Экранирующую оплетку на разобранном конце линии необходимо пропустить через трансформатор напряжения тока нулевой последовательности и заземлить с кабельной стороны.

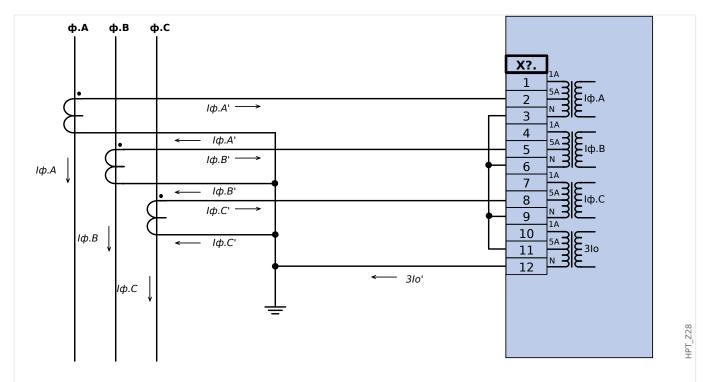


Рис. 21: Измерение фазных токов по схеме «полной» звезды; In вторичн. = 5 А. Ток на землю, измеряемый через соединение по схеме Холмгрина ЗІо.ном.втор. = 5 А.



Рис. 22: Измерение фазных токов по схеме «полной» звезды; In вторичн. = 1 А. Ток на землю, измеряемый через соединение по схеме Холмгрина ЗІо.ном.втор. = 1 А.

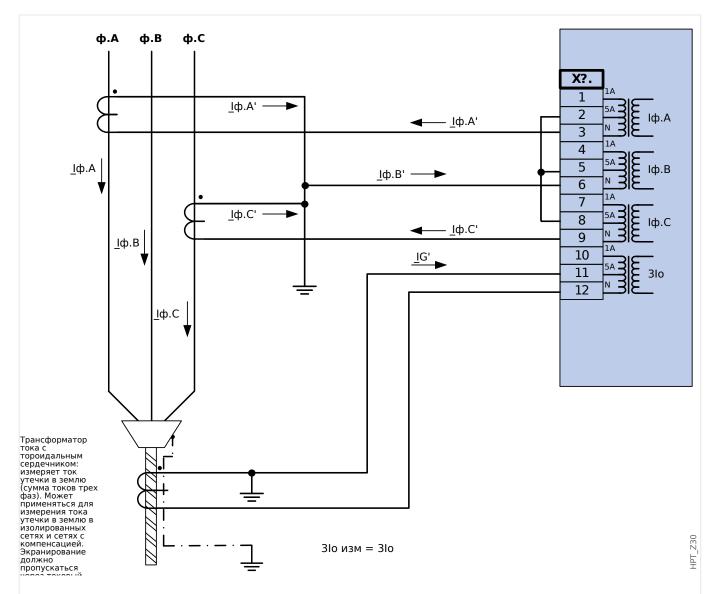


Рис. 23: Измерение двухфазного тока («соединение открытым треугольником»); In вторичн. = 5 А. Ток на землю, измеряемый через трансформатора тока нулевой последовательности 3Io.ном.втор. = 5 А.

ПРЕДУПРЕЖДЕНИЕ!

Экранирующую оплетку на разобранном конце линии необходимо пропустить через трансформатор напряжения тока нулевой последовательности и заземлить с кабельной стороны.

- Не использовать 31о расч! Вместо этого используйте 31о изм.
- Измеренный ток Іф.В является неверным при несимметричной схеме.

Поэтому функции защиты, использующие Iф.В (или значения, полученные из Iф.В, например I1, I2), могут работать неправильно.

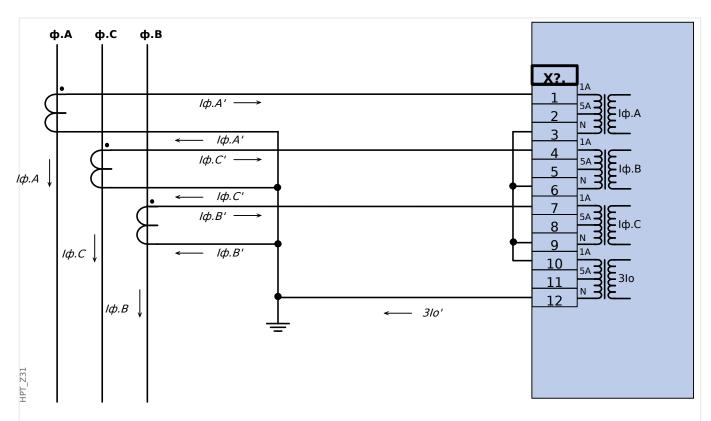
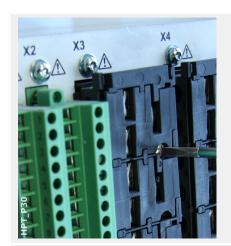


Рис. 24: Измерение фазных токов по схеме «полной» звезды; Іп вторичн. = 1 А. Ток на землю, измеряемый через соединение по схеме Холмгрина 3Io.ном.втор. = 1 А.


2.5.3.3 Подключение круглых клемм

Входная плата измерения токов фазы и замыкания на землю поддерживает подключение как штырьковых разъемов, так и круглых клемм.

осторожно!

Необходимо следовать национальным стандартам и директивам. В отдельных странах некоторые типы разъемов могут быть запрещены.

Какой бы ни использовался тип разъема, сначала необходимо отсоединить их от устройства, отвернув винты.

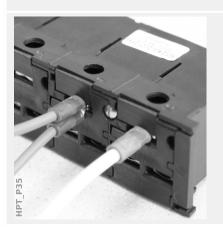
Примечание. Эта съемная деталь представляет собой перемычку.

Для штекерных объемов необходимо вставить кабели и закрепить их винтами, которые находятся сбоку на входной плате.

Обратите внимание на момент затяжки, \blacktriangleright Рис. .

Для кольцевой клеммы необходимо выполнить один промежуточный шаг.

Передвиньте задвижку в сторону, чтобы винты и металлические контакты стали полностью доступными.



Каждый вывод состоит из винта и неподвижного металлического контакта. Винт (вместе с контактной пластиной) можно полностью отвернуть.

После удаления винта и контактной пластины можно вставить кольцо. Затем вставьте обратно винт вместе с контактной пластиной так, чтобы винт прошел через кольцо. Затяните винт.

Обратите внимание на момент затяжки, b Рис. .

Под конец передвиньте задвижку обратно в «закрытое» положение.

Примечание. Если поперечные сечения кабелей находятся в пределах, приведенных в главе технических характеристик (>> «Технические данные», >> Табл.), к одному разъему можно подключить две кольцевые клеммы, как показано на этом рисунке. Это удобно для подключения нейтральной точки.

2.5.3.4 Требования ТТ

ПРЕДУПРЕЖДЕНИЕ!

Кроме тех моментов, которые изложены в данной главе, а также упомянутых требований, необходимо соблюдать все национальные и международные стандарты и требования.

Символы

В следующей таблице приводится обзор символов, используемых в разделе требований к ТТ.

K _{ssc}	Номинальный коэффициент тока симметричного короткого замыкания
K _{td}	Переходный масштабный коэффициент, учитывающий постоянную составляющую тока короткого замыкания
K	Коэффициент общей мощности
I _{psc,max}	Максимальный ток симметричного короткого замыкания в первичной обмотке
I _{pr}	Номинальный ток первичной обмотки TT
I _{sr}	Номинальный ток вторичной обмотки TT
R _{ct}	Внутреннее сопротивление проводов вторичной обмотки ТТ
R _b	Номинальная активная нагрузка
R' _b	Подключенная активная нагрузка TT
S _{nom,ct}	Номинальная полная мощность ТТ
ALF	Номинальная предельная кратность
ALF'	Эффективная номинальная предельная кратность, учитывающая подключенную нагрузку
E _k	Номинальная ЭДС в точке излома
U_{c}	Напряжение на вторичных выводах
$U_{s,t,max}$	Максимальное напряжение на вторичных выводах

При выборе мощности трансформаторов тока необходимо учитывать переходные эффекты, такие как постоянную составляющую токов короткого замыкания. Для этого требования к ТТ делятся на две части: для симметричного тока короткого замыкания и переходного постоянного тока.

Расчет начинается с K_{SSC} для максимального симметричного тока короткого замыкания на стороне первичной обмотки трансформатора тока.

$$K_{\rm ssc} = \frac{I_{\rm psc,max}}{I_{\rm pr}}$$

Значение $I_{psc,max}$, а также переходный коэффициент мощности K_{td} зависят от главной активной функции защиты. Эти параметры можно определить по следующим данным:

Защита от перегрузки по току

Рекомендуемый класс по стандарту IEC 61869-100 (2017-01)	10P, 5P
K _{td}	1
K _{ssc}	В соответствии с уравнением выше и ≥20
I _{psc,max}	Настройка максимального порогового значения I>

Для большинства классов TT необходимо убедиться в том, что выполняются следующие требования. Для этого требуется коэффициент общей мощности:

$$K = K_{ssc} \cdot K_{td}$$

Класс TT	Требование
P, PR	<i>K</i> ≤ ALF', где:
	$ALF' = ALF \cdot \frac{R_{ct} + R_b}{R_{ct} + R_b'}$
PX, PXR	$E_k \ge \frac{K}{1,2} \cdot I_{\rm sr} \cdot \left(R_{\rm ct} + R_b' \right)$
IEEE / ANSI C- класс	$U_s \ge K \cdot I_{\rm sr} \cdot \left(R_{\rm ct} + R_b' \right)$
	Закажите TT с номинальным напряжением, следующим после U_S .
TPX, TPY, TPZ	Закажите TT с определенными минимальными K_{ssc} и K_{td} .

Остаточная индукция пока не учитывает. Тем не менее, она может привести к проблемам, особенно для внешних замыканиях, когда используется дифференциальная защита. Чтобы учесть остаточную индукцию, необходимо выбрать больший коэффициент мощность и/или класс защиты ТТ от остаточной индукции, например PR, TPY и PXR.

Требования для дистанционно защиты применяются для классов замыканий 3 и 4 по стандарту IEC 60255-121 (2014). Тем не менее, в соответствии данным руководство для расчета требований ТТ пользователем учитывается только замыкание класса 3.

Если ток короткого замыкания увеличивается, ТТ может оказаться недостаточно мощным для поддержания соответствующих функций защиты. При планировании новой установки имеет смысл использовать ТТ с большим коэффициентом полной мощности, чем нужно, чтобы обеспечить некоторый резерв на будущее.

Пример. Защита от перегрузки по току

Трансформатор тока:	$I_{pr} = 500 \text{ A}$
	$I_{Sr} = 1 \text{ A}$
	$R_{ct} = 1.5 \Omega$

Уставка защиты от перегрузки по току:	$I_{>} = 25 I HOM = 25.500 A = 12 500 A$
Номинальная активная нагрузка:	$R_b = S_{\text{nom,ct}} / I_{\text{sr}^2} = 5 \text{ BA} / (1 \text{ A})^2 = 5 \Omega$
Подключенная нагрузка:	$R'_b = 2,5 \Omega$

Начните с вычисления K_{SSC} с пороговым значением уставки для максимального симметричного тока короткого замыкания:

$$K_{\rm ssc} = \frac{I_{\rm psc,max}}{I_{\rm pr}} = \frac{25 \cdot 500 \text{ A}}{500 \text{ A}} = 25$$

При этом выполняется дополнительное условие для защиты от перегрузки по току $K_{ssc} \ge 20$ и $K_{td} = 1$ (см. таблицу требований выше, \Longrightarrow Табл.).

Отсюда определяется коэффициент общей мощности:

$$K = K_{SSC} \cdot K_{td} = 25 \cdot 1 = 25$$

Этих данных уже достаточно для выбора ТТ класса ТРХ.

Однако для TT класса P требуются дополнительные расчеты. Выполним проверку 5P20 5 BA, подходит ли он для приложения защиты:

$$ALF = 20$$

$$R_b = 5 \Omega$$

$$\text{ALF'} = \text{ALF} \cdot \frac{R_{\text{ct}} + R_b}{R_{\text{ct}} + R_b'} = 20 \cdot \frac{1.5 \ \Omega + 5 \ \Omega}{1.5 \ \Omega + 2.5 \ \Omega} = 32.5 \ge K = 25$$

Выбранный TT подходит для данной области применения.

Слот Х4 2.6

• ТН — измерительные входы трансформатора напряжения, дополнительно с выходными реле (в зависимости от типа заказанного устройства)

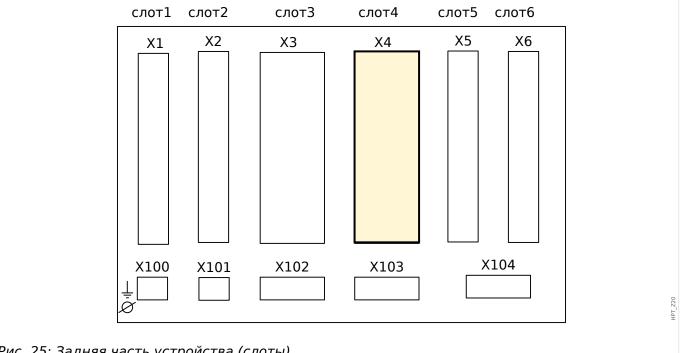


Рис. 25: Задняя часть устройства (слоты)

Тип карты в данном слоте зависит от типа заказанного устройства. Объем функций в различных вариантах отличается.

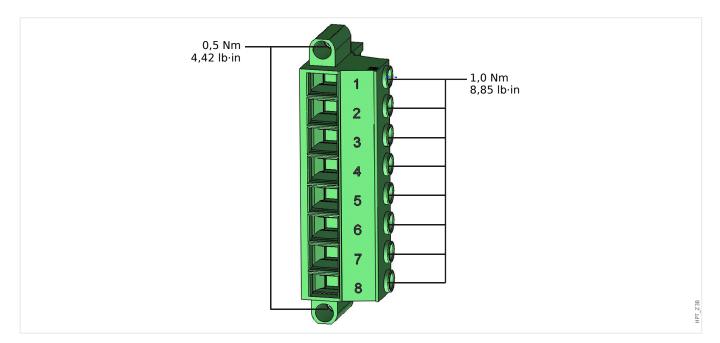
Доступные группы сборки в данном слоте:

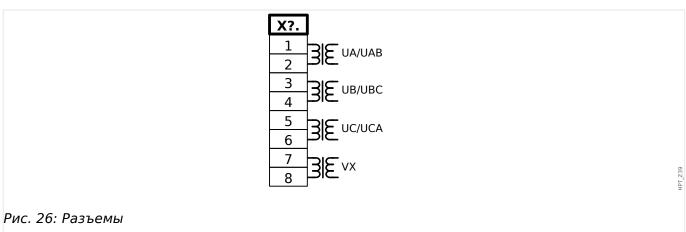
- TI: стандартная плата измерения тока на землю.
- ТІ: чувствительная плата измерения тока на землю. Технические характеристики чувствительного входа измерения тока утечки на землю отличаются от технических характеристик входов измерения фазных токов. Обратитесь к главе технических данных (> «Технические данные»).
- ТU: Группа сборки для измерения напряжения.
- TU-OR5: Группа сборки для измерения напряжения с 5 дополнительными выходными реле.

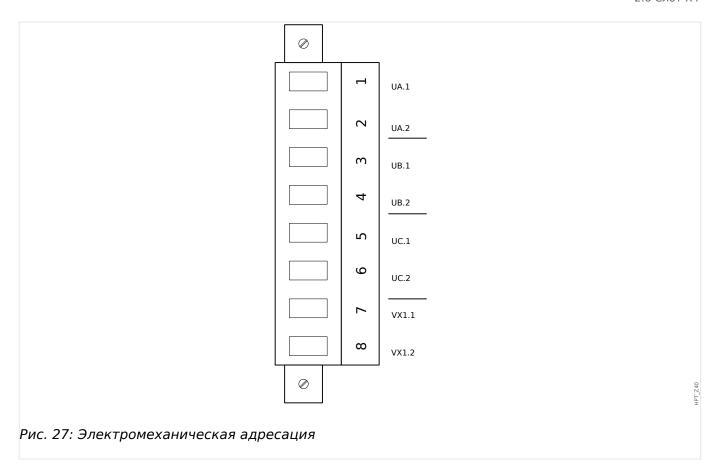
Все выходные реле имеют нормально разомкнутые (форма А) контакты.

ПРИМЕЧАНИЕ!

Доступные комбинации можно получить по коду заказа.


2.6.1 TU — измерительные входы напряжения


ПРЕДУПРЕЖДЕНИЕ!



Обеспечьте надлежащий момент затяжки (см. схему).

Поперечное сечение соединений: мин. 0,5 мм 2 (AWG 20) ... макс. 6,0 мм 2 (AWG 10) с обжимной втулкой или без нее.

Входы измерения напряжения

Плата «TU» оснащена 4 входами для измерения напряжения.

- Диапазон измерения напряжения составляет **от 0 до 800 В** (для каждого входа).
- Три входа предназначены для фазного напряжения:
 - ∘ междуфазное напряжение (UAB, UBC, UCA),
 - напряжение между фазой и нейтралью (UA, UB, UC).
- $4^{-\check{\mathsf{n}}}$ вход предназначен для остаточного напряжения VX.

Правильное подключение входов измерения напряжения устанавливается в меню [СистПар]:

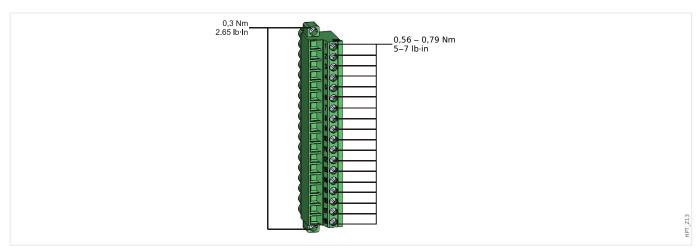
- параметр [СистПар / ТН] «ТН соед» = «Фазн напр» фаза-нейтраль (звезда);
- параметр [СистПар / ТН] «ТН соед» = «Лин. напряж.» фаза-фаза (разомкнутый треугольник, V-образное соединение).

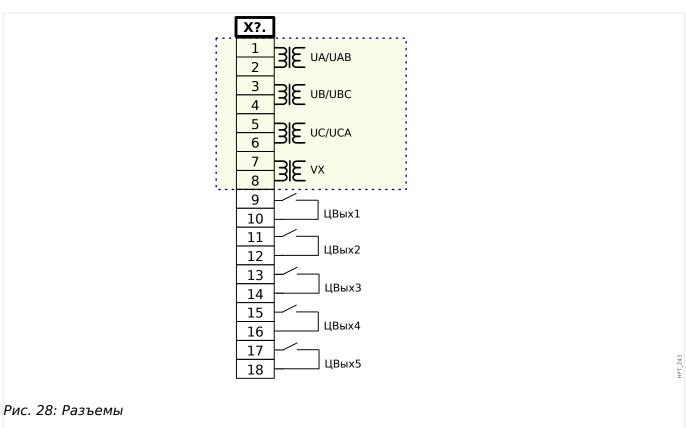
осторожно!

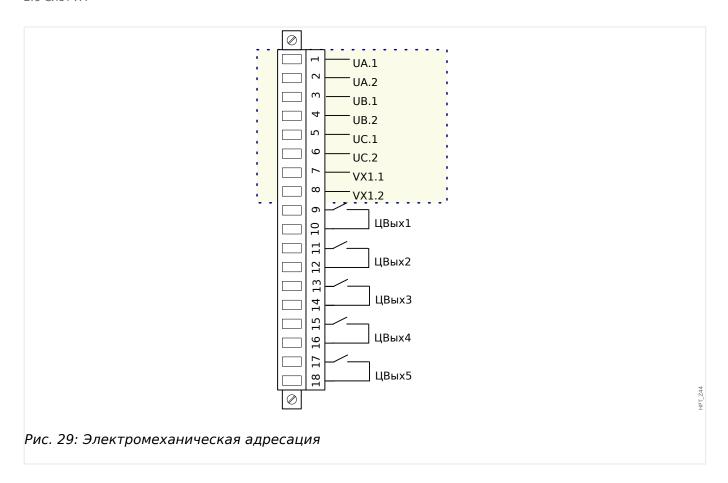
Следует учесть последовательность фаз (вращающееся поле) источника питания. Убедитесь в правильности подключения трансформатора напряжения и измерительных входов.

Для параметра V-образного соединения *«ТН соед»* следует задать значение «Лин. напряж.».

Обратитесь к техническим данным (Ц> «Технические данные»).


2.6.2 TU-OR5 — группа сборки для измерения напряжения с 5 выходными реле


ПРЕДУПРЕЖДЕНИЕ!



Обеспечьте надлежащий момент затяжки (см. схему).

Поперечное сечение соединений: мин. 0,25 мм 2 (AWG 23) ... макс. 2,5 мм 2 (AWG 14) с обжимной втулкой или без нее.

Входы измерения напряжения

Плата «TU-OR5» оснащена 4 входами для измерения напряжения.

- Диапазон измерения напряжения составляет от **0 до 300 В** (для каждого входа).
- Три входа предназначены для фазного напряжения:
 - ∘ междуфазное напряжение (UAB, UBC, UCA),
 - напряжение между фазой и нейтралью (*UA*, *UB*, *UC*).
- $4^{-\check{\mathsf{n}}}$ вход предназначен для остаточного напряжения VX.

Правильное подключение входов измерения напряжения устанавливается в меню [СистПар]:

- параметр [СистПар / ТН] «ТН соед» = «Фазн напр» фаза-нейтраль (звезда);
- параметр [СистПар / ТН] *«ТН соед»* = «Лин. напряж.» фаза-фаза (разомкнутый треугольник, V-образное соединение).

осторожно!

Следует учесть последовательность фаз (вращающееся поле) источника питания. Убедитесь в правильности подключения трансформатора напряжения и измерительных входов.

Для параметра V-образного соединения *«ТН соед»* следует задать значение *«*Лин. напряж.».

Обратитесь к техническим данным (Ц⇒ «Технические данные»).

Выходные реле

Выходные реле имеют беспотенциальные контакты. Процедура назначения выходных реле описывается в разделе ⇒ «Настройки выходных реле». Перечень сигналов, которые можно назначить, см. в отдельном документе под названием «Справочное руководство к устройству МСА4» (МСА4-3.6-RU-REF).

осторожно!

Настоятельно рекомендуется учитывать допустимую нагрузку по току для выходных реле. Обратитесь к техническим данным (⇒ «Технические данные»).

2.6.3 Трансформаторы напряжения

Проверьте правильность подключения трансформаторов напряжения.

ОПАСНОСТЬ!

Вторичные обмотки измерительных трансформаторов должны быть заземлены.

ПРИМЕЧАНИЕ!

Для работы функций измерения тока и напряжения необходимо использовать внешний трансформатор тока и напряжения, подключенный надлежащим образом и соответствующий требуемым величинам измерений. Эти устройства обеспечивают необходимую изоляцию.

Проверка значений измерения напряжения

Подключите трехфазное измерительное напряжение, равное номинальному напряжению, к реле.

ПРИМЕЧАНИЕ!

Принимайте во внимание схему соединения измерительных трансформаторов (звезда или открытый треугольник).

Учитывайте технические характеристики входов трансформатора напряжения.

Теперь произведите регулировку значений напряжения в диапазоне номинального напряжения в соответствии с номинальной частотой, которая не должна привести к отключению по причине превышения или понижения напряжения.

Сравните значения, указанные на дисплее устройства, с показаниями измерительных приборов. Отклонения не должны превышать значения, указанные в технических данных.

ПРИМЕЧАНИЕ!

При использовании измерительных приборов, определяющих среднеквадратичные значения, по причине большой гармонической составляющей в подаваемом напряжении могут возникнуть отклонения большей величины. Поскольку устройство оборудовано фильтром для защиты от гармоник, измерение производится только для основного колебания (исключение составляют функции тепловой защиты). Однако при использовании прибора для измерения среднеквадратичного значения гармоники также будут измеряться.

Подключение измерительных входов трансформатора напряжения

ОПАСНОСТЬ!

Неисправная электропроводка измерительных входов трансформатора напряжения: Существует три разных варианта платы измерения напряжения:

- «TU» стандартная плата для измерения напряжения, где входы для измерения напряжения необходимо подключать к выводам 1-8.
- «TU K4» плата измерения напряжения с дополнительными выходными реле. Входы для измерения напряжения необходимо подключать к **выводам 1-8**.
- «TU DI8» плата измерения напряжения с дополнительными цифровыми входами. Входы для измерения напряжения необходимо подключать к выводам 11-18.

В примерах подключения, приведенных далее, всегда показана стандартная плата для измерения напряжения «TU». Однако на вашем устройстве может быть установлен другой вариант платы.

Подача измерительного напряжения к цифровым входам может привести к их поломке. Устройство нельзя будет использовать для измерения напряжения. Данное устройство не выполняет функции защиты, зависящие от напряжения.

На схеме электропроводки в верхней части устройства представлено правильное подключение трансформатора напряжения к измерительным клеммам. (Электрическую схему также можно найти в документе «Схемы проводки» DOK-WD-MCA4-2E на странице с вашим индивидуальным кодом.) Трансформаторы напряжения следует всегда подключать к устройству в соответствии с индивидуальной схемой!

Примеры электрических схем трансформаторов напряжения

Рис. 30: VT Wye: Измерение трехфазного напряжения по схеме «звезда»

Рис. 31: VT Wye с соединением разомкнутого треугольника.

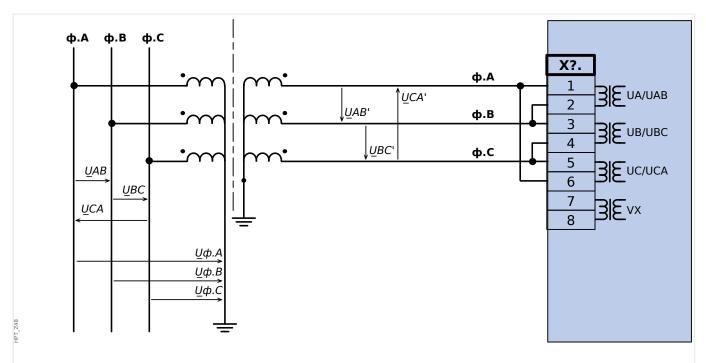
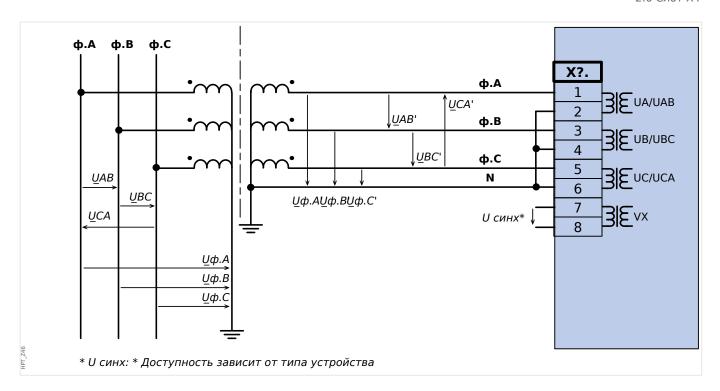



Рис. 32: Измерение трехфазного напряжения - схема измерительных входов: "соединение треугольником"

ПРЕДУПРЕЖДЕНИЕ!

Расчет напряжения нулевой последовательности VG невозможен

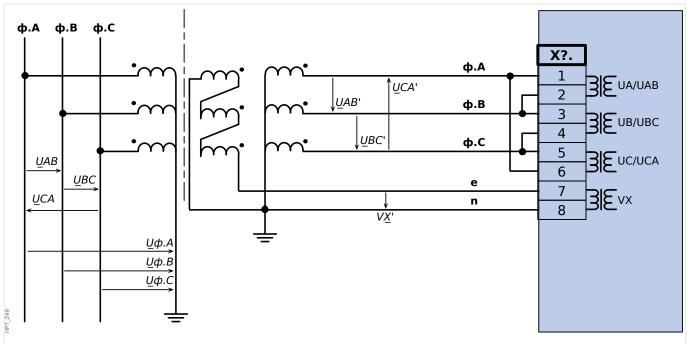


Рис. 33: Измерение трехфазного напряжения - схема измерительных входов: "соединение треугольником"Измерение напряжения нулевой последовательности VG через вспомогательные обмотки (e-n) («открытый треугольник»)

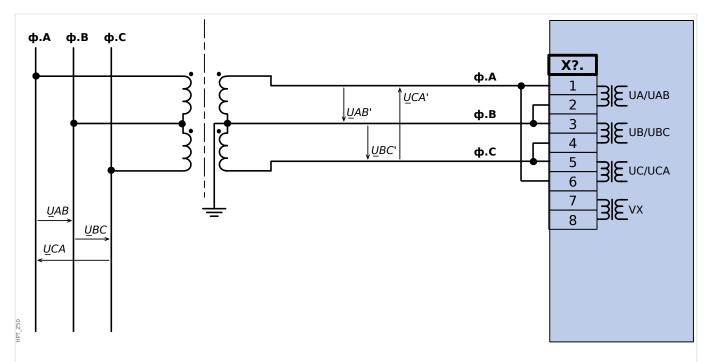
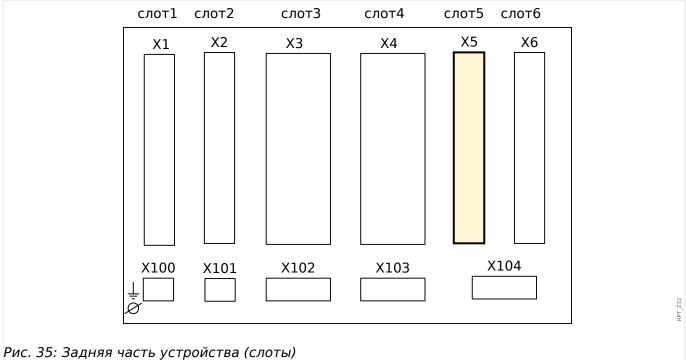



Рис. 34: Измерение двухфазного напряжения - электрическая схема измерительных входов: «соединение открытым треугольником»

2.7 Слот Х5

• Плата с несколькими входами-выходами

Тип карты в данном слоте зависит от типа заказанного устройства. Объем функций в различных вариантах отличается.

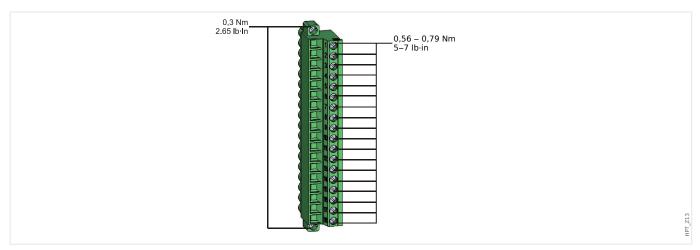
Доступные группы сборки в данном слоте:

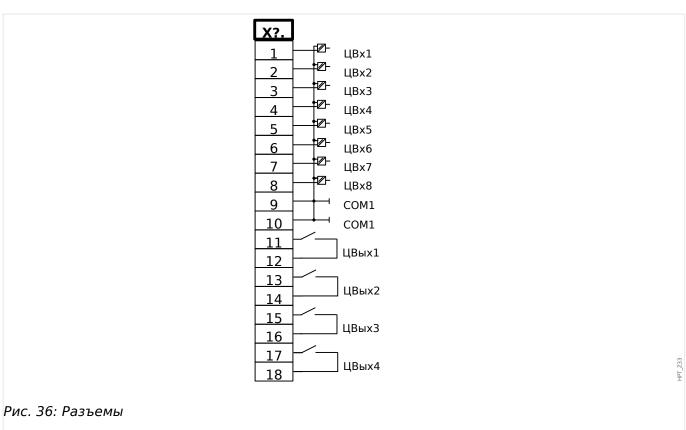
- OR6: Группа сборки с 6 выходными реле.
 - Все выходные реле имеют переключающие контакты (форм С).
- DI8-OR4: Группа сборки с 8 цифровыми входами и 4 выходными реле Все выходные реле имеют нормально разомкнутые (форма А) контакты.
- AnIO2-OR4: Группа модулей с 2 аналоговыми входами, 2 аналоговыми выходами и 4 выходными реле.

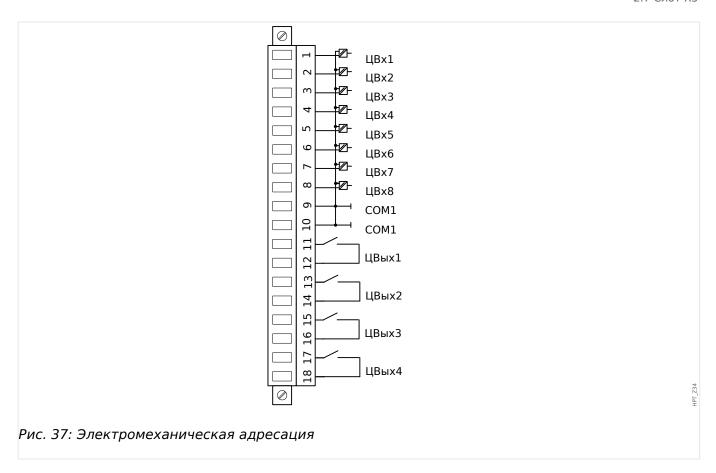
Все выходные реле имеют нормально разомкнутые (форма А) контакты.

ПРИМЕЧАНИЕ!

Доступные комбинации можно получить по коду заказа.


2.7.1 DI8-OR4 — группа сборки с 8 цифровыми входами и 4 выходными реле


ПРЕДУПРЕЖДЕНИЕ!



Обеспечьте надлежащий момент затяжки (см. схему).

Поперечное сечение соединений: мин. 0,25 мм 2 (AWG 23) ... макс. 2,5 мм 2 (AWG 14) с обжимной втулкой или без нее.

Цифровые входы

Модуль имеет 8 сгруппированных цифровых входов.

Процедура назначения цифровых выходов описывается в разделе «Конфигурация цифровых входов».

Перечень доступных назначений для сигналов см. в отдельном документе под названием «Справочное руководство к устройству MCA4» (MCA4-3.6-RU-REF.

осторожно!

При использовании питания постоянного тока отрицательный потенциал должен быть подключен к общей клемме (COM1, COM2, COM3 — см. маркировку разъемов).

осторожно!

Для каждой группы цифровых входов следует установить параметр соответствующего диапазона входного напряжения. Неверная установка пороговых значений переключения может вызвать неправильную работу или неправильные интервалы передачи сигнала.

Цифровые входы имеют различные пороговые значения переключения (которые можно настроить с помощью параметра [Пар_ устр_ / Цифровые входы / ЦВх Слот Xx / \Gammap_y] « Hom_hanp_s »). Для каждой группы могут устанавливаться следующие пороговые значения переключения:

• «24 В пост. тока»

- «48 В пост. тока»
- «60 В пост. тока»
- «110 В пост. тока»
- «230 В пост. тока»
- «110 В пер. тока»
- «230 В пер. тока»

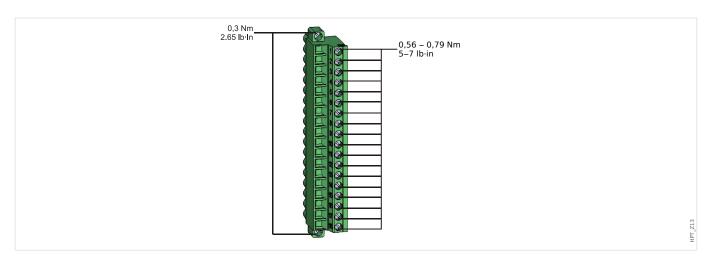
Если напряжение превышает 80% от установленного порогового значения переключения, происходит физическое распознавание изменения состояния (физический сигнал «1»). Если напряжение составляет менее 40% от установленного порогового значения переключения, устройство регистрирует физический «ноль».

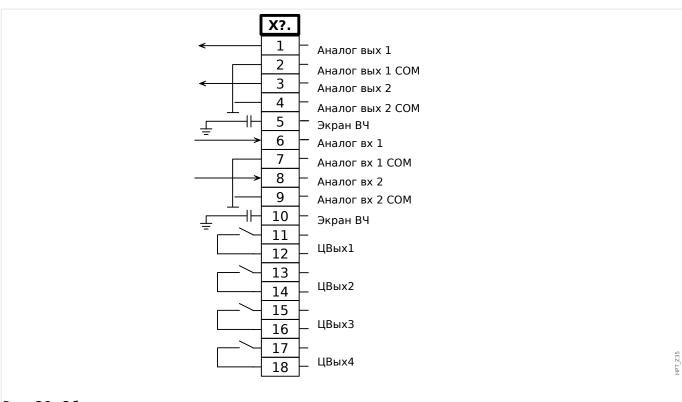
Выходные реле

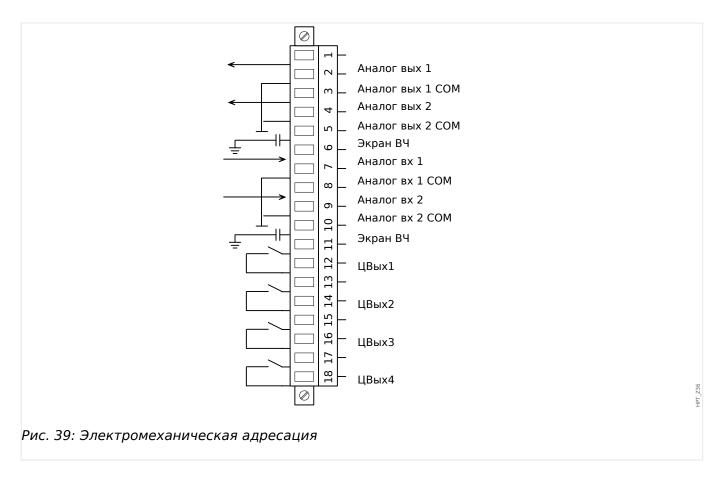
Выходные реле имеют беспотенциальные контакты. Процедура назначения выходных реле описывается в разделе > «Настройки выходных реле». Перечень сигналов, которые можно назначить, см. в отдельном документе под названием «Справочное руководство к устройству МСА4» (D0K-TD-MCA4).

осторожно!

Настоятельно рекомендуется учитывать допустимую нагрузку по току для выходных реле. Обратитесь к техническим данным (╚⇒> «Технические данные»).


2.7.2 AN-I02-OR4 — группа сборки с 2 аналоговыми входами, 2 аналоговыми выходами и 4 выходными реле


ПРЕДУПРЕЖДЕНИЕ!



Обеспечьте надлежащий момент затяжки (см. схему).

Поперечное сечение соединений: мин. 0,25 мм 2 (AWG 23) ... макс. 2,5 мм 2 (AWG 14) с обжимной втулкой или без нее.

Релейные выходы

Выходные реле имеют беспотенциальные контакты. Процедура назначения выходных реле описывается в разделе ⇒ «Настройки выходных реле». Перечень сигналов, которые можно назначить, см. в отдельном документе под названием «Справочное руководство к устройству МСА4» (МСА4-3.6-RU-REF).

осторожно!

Настоятельно рекомендуется учитывать допустимую нагрузку по току для выходных реле. Обратитесь к техническим данным (→ «Технические данные»).

Аналоговые входы и аналоговые выходы

Имеется 2 входных и 2 выходных аналоговых каналов, которые можно настроить на $0-20\,$ мА, $4-20\,$ мА или $0-10\,$ В. Для каждого из каналов можно независимо запрограммировать один из этих трех режимов входа/выхода.

Подробные сведения об аналоговых входах/выходах см. в технических данных, \Longrightarrow «Технические данные».

Проводка

• Рекомендуется использовать экранированный кабель.

Экран ВЧ

• Если подключить экран к заземлению с обеих сторон кабеля невозможно, следует использовать клеммы для ВЧ-экрана. С одной стороны кабеля экран должен быть непосредственно соединен с заземлением.

2.8 Слот Х6

• Плата с несколькими входами-выходами

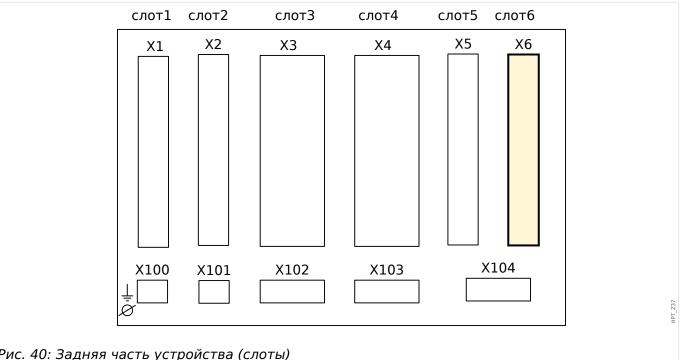


Рис. 40: Задняя часть устройства (слоты)

Тип карты в данном слоте зависит от типа заказанного устройства. Объем функций в различных вариантах отличается.

Доступные группы сборки в данном слоте:

- TU: Группа сборки для измерения напряжения.
- TU-OR5: Группа сборки для измерения напряжения с 4 дополнительными выходными реле (нормально разомкнутые).

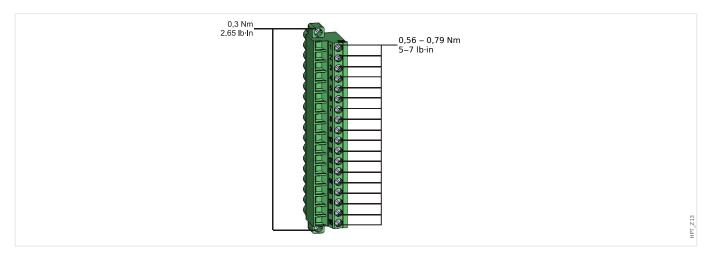
Все выходные реле имеют нормально разомкнутые (форма А) контакты.

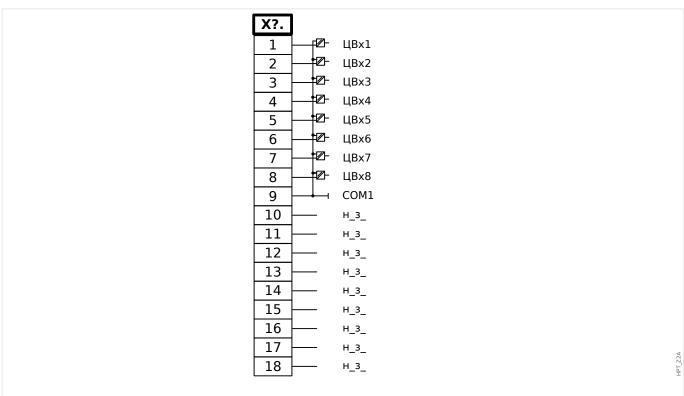
- DI8: Группа сборки с 8 цифровыми входами
- DI8-OR4: Группа сборки с 8 цифровыми входами и 4 выходными реле Все выходные реле имеют нормально разомкнутые (форма А) контакты.
- OR6: Группа сборки с 6 выходными реле.

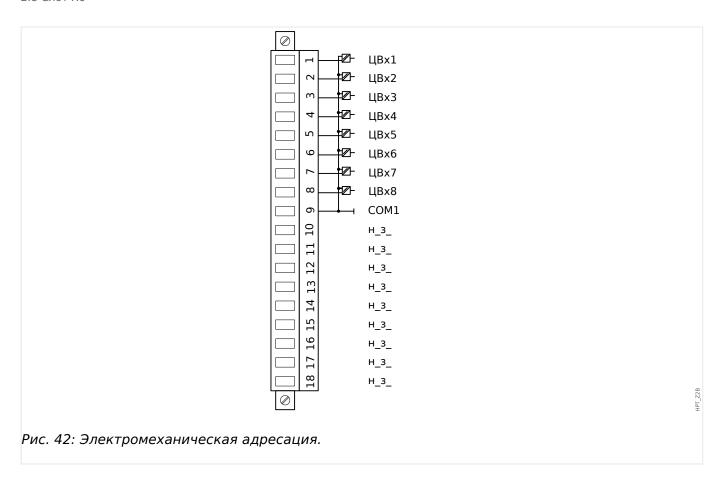
Все выходные реле имеют переключающие контакты (форм С).

ПРИМЕЧАНИЕ!

Доступные комбинации можно получить по коду заказа.


2.8.1 DI8 — группа сборки с 8 цифровыми входами


ПРЕДУПРЕЖДЕНИЕ!



Обеспечьте надлежащий момент затяжки (см. схему).

Поперечное сечение соединений: мин. 0,25 мм 2 (AWG 23) ... макс. 2,5 мм 2 (AWG 14) с обжимной втулкой или без нее.

Цифровые входы

Модуль имеет 8 сгруппированных цифровых входов.

Процедура назначения цифровых выходов описывается в разделе «Конфигурация цифровых входов».

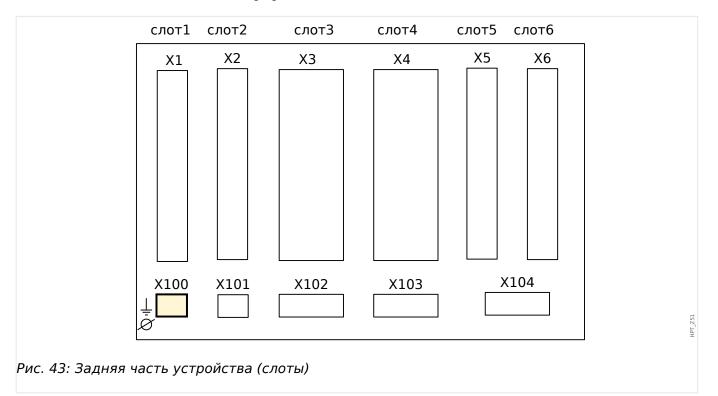
Перечень доступных назначений для сигналов см. в отдельном документе под названием «Справочное руководство к устройству MCA4» (MCA4-3.6-RU-REF.

осторожно!

При использовании питания постоянного тока отрицательный потенциал должен быть подключен к общей клемме (COM1, COM2, COM3 — см. маркировку разъемов).

осторожно!

Для каждой группы цифровых входов следует установить параметр соответствующего диапазона входного напряжения. Неверная установка пороговых значений переключения может вызвать неправильную работу или неправильные интервалы передачи сигнала.

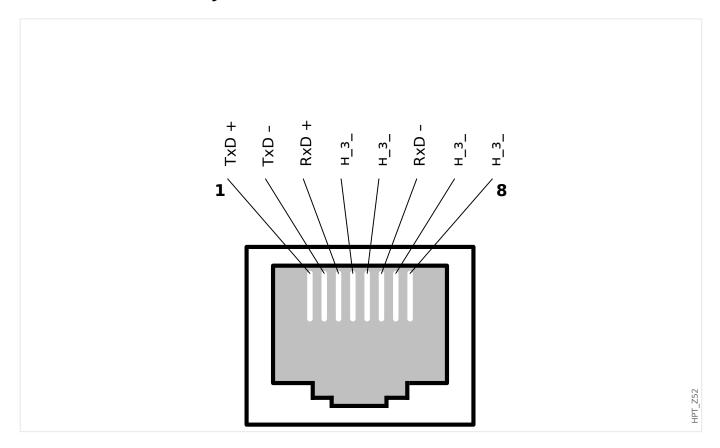

Цифровые входы имеют различные пороговые значения переключения (которые можно настроить с помощью параметра [Пар_ устр_ / Цифровые входы / ЦВх Слот $Xx / \Gammap_y] «Hom_ напр_»$). Для каждой группы могут устанавливаться следующие пороговые значения переключения:

• «24 В пост. тока»

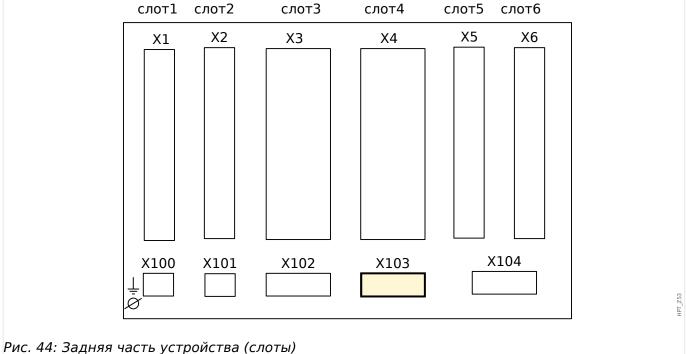
- «48 В пост. тока»
- «60 В пост. тока»
- «110 В пост. тока»
- «230 В пост. тока»
- «110 В пер. тока»
- «230 В пер. тока»

Если напряжение превышает 80% от установленного порогового значения переключения, происходит физическое распознавание изменения состояния (физический сигнал «1»). Если напряжение составляет менее 40% от установленного порогового значения переключения, устройство регистрирует физический «ноль».

2.9 Слот X100: интерфейс Ethernet


Интерфейс Ethernet может быть доступен в зависимости от типа заказанного устройства.

ПРИМЕЧАНИЕ!



Доступные комбинации можно получить по коду заказа.

2.9.1 Ethernet — RJ45

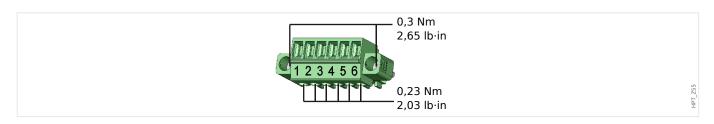
Слот Х103: передача данных 2.10

Интерфейс передачи данных в слоте **X103** зависит от типа заказанного устройства. Объем функций зависит от типа интерфейса передачи данных.

Доступные группы сборки в данном слоте:

- Разъемы RS485 для Modbus, DNP и IEC
- Интерфейс оптоволоконного кабеля для Profibus, Modbus, DNP и IEC
- Интерфейс D-SUB для Modbus, DNP и IEC
- Интерфейс D-SUB для Profibus
- Интерфейс оптоволоконного кабеля для Ethernet

ПРИМЕЧАНИЕ!


Доступные комбинации можно получить по коду заказа.

2.10.1 Modbus® RTU/IEC 60870-5-103 через RS485

ПРЕДУПРЕЖДЕНИЕ!

Проверьте правильность моментов затяжки.

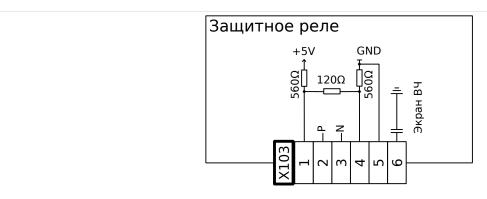


Рис. 45: Разъемы

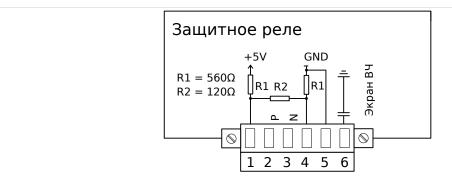


Рис. 46: Электромеханическая адресация

ПРИМЕЧАНИЕ!

Соединительный кабель Modbus®/IEC 60870-5-103 должен быть экранированным. Экранирующую оплетку следует подключить к винтовому разъему под интерфейсом на задней панели устройства.

Тип связи — полудуплекс.

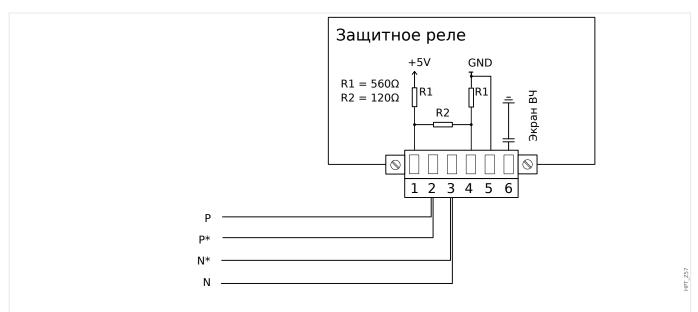


Рис. 47: Пример соединения: устройство находится в средней части системы шин

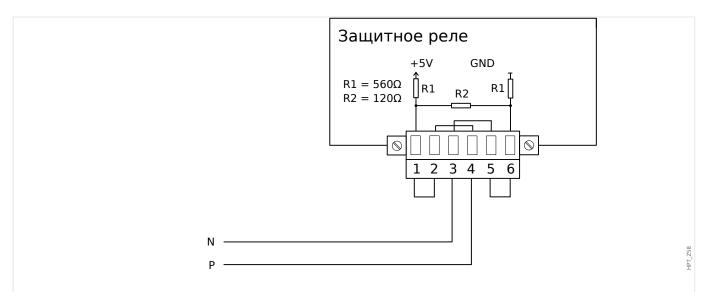
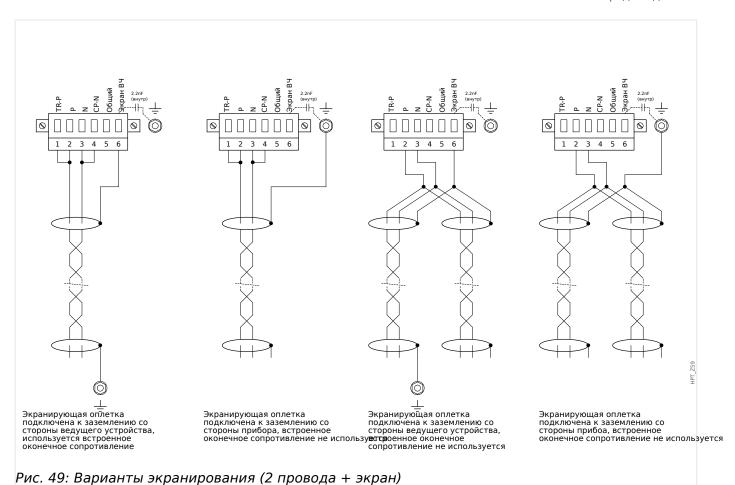



Рис. 48: Пример соединения: устройство находится в конце системы шин (устанавливаются проволочные перемычки для активации встроенного оконечного резистора).

MCA4-3.6-RU-MAN MCA4 143

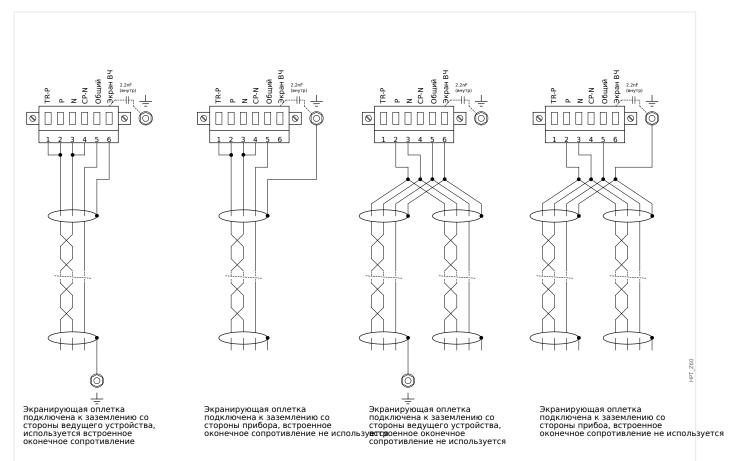


Рис. 50: Варианты экранирования (3 провода + экран)

2.10.2 Profibus DP/Modbus® RTU/IEC 60870-5-103 через оптоволоконное соединение

RXD TXD

Рис. 51: Оптоволоконное соединение — FO, разъем ST

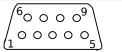
ПРЕДУПРЕЖДЕНИЕ!

Не смотрите непосредственно на луч света, исходящий из оптоволоконного разъема!

Проигнорировав данное предупреждение, можно получить тяжелую травму глаз.

2.10.3 Profibus DP через D-SUB

Разъем D-SUB


- 1: Заземл_/экранир_
- 3: RxD TxD P: Выс_ ур_
- 4: Сигнал RTS
- 5: DGND: Заземл_ отр_ пот вспом_ ист_ пит
- 6: ПН: полож_ потенц_ всп_ ист_ пит
- 8: RxD TxD N: Низк_ ур_

ПРИМЕЧАНИЕ!

Соединительный кабель должен быть экранирован. Экранирующая оплетка должна быть присоединена в винтовому разъему с символом «заземление», расположенному на задней панели устройства.

2.10.4 Modbus® RTU/IEC 60870-5-103 через разъем D-SUB

PT_Z62

Разъем D-SUB

- 1: Заземл_/экранир_
- 3: RxD TxD P: Выс_ ур_
- 4: Сигнал RTS
- 5: DGND: Заземл_ отр_ пот вспом_ ист_ пит
- 6: ПН: полож_ потенц_ всп_ ист_ пит
- 8: RxD TxD N: Низк_ ур_

ПРИМЕЧАНИЕ!

Соединительный кабель должен быть экранирован.

2.10.5 Ethernet/TCP/IP через оптоволоконный кабель

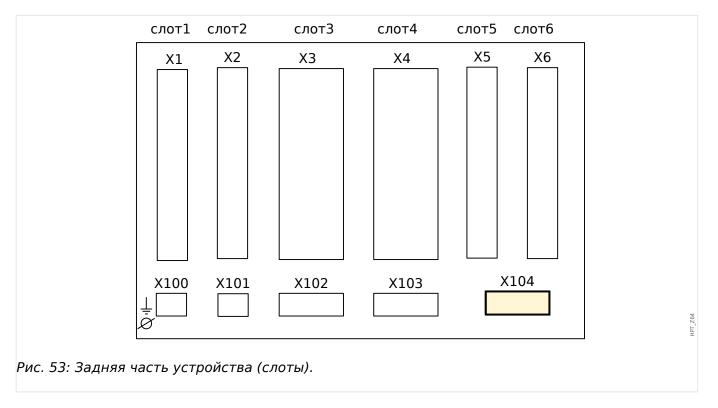
RxD TxD

Рис. 52: Оптоволоконный кабель — FO, дуплексный разъем LC.

осторожно!

После вставки разъема LC затяните металлическую заглушку.

Момент затяжки винта равен 0,3 Нм [2,65 фунт∙дюйма].


ПРЕДУПРЕЖДЕНИЕ!

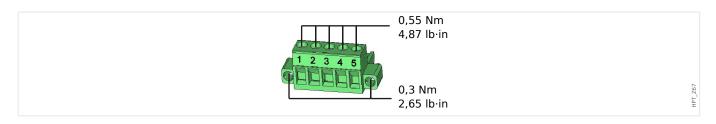
Не смотрите непосредственно на луч света, исходящий из оптоволоконного разъема!

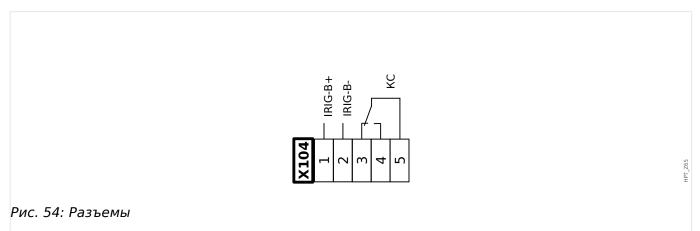
Проигнорировав данное предупреждение, можно получить тяжелую травму глаз.

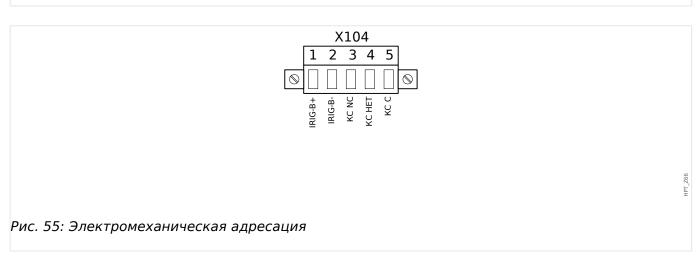
2.11 Слот X104: IRIG-B00X и контрольный контакт

Этот слот состоит из IRIG-B00X с контрольного контакта.

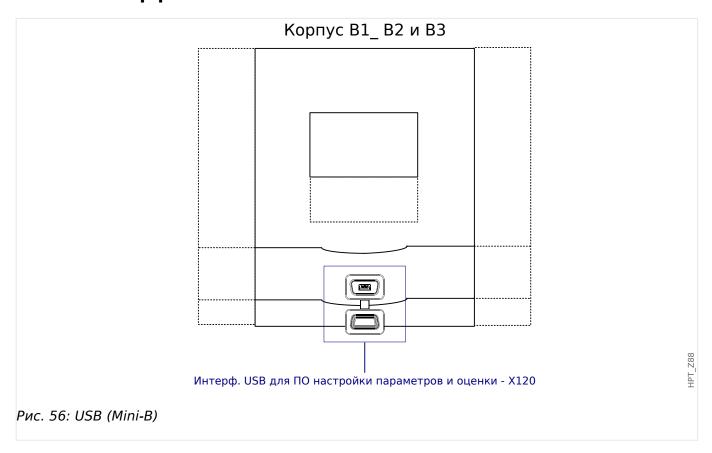
Доступные группы сборки в данном слоте:


• IRIG-B00X, включая контрольный контакт


2.11.1 Контакт самодиагностики (КС)/контакт под напряжением и IRIG-B00X


ПРЕДУПРЕЖДЕНИЕ!

Проверьте правильность моментов затяжки.



Контакт самодиагностики

Настроить контакт самодиагностики («КС») невозможно. Это переключающий контакт (формы С), который срабатывает при отсутствии внутренних сбоев в устройстве. Пока устройство загружается, реле «КС» остается отключенным (обесточенным). После полной загрузки системы (и активации защиты) он срабатывает, и назначенный светодиодный индикатор соответствующим образом активируется (см. главу «Самодиагностика»).

2.12 Интерфейс ПК — X120

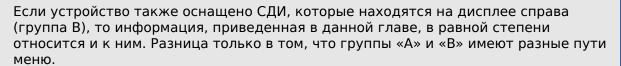
2.13 Настройка входа, выхода и СДИ

2.13.1 СДИ

Настройка СДИ

СДИ можно настроить в ветвях меню [Пар_ устр_ / СД / ИНД группа А] (столбец СДИ слева от дисплея) и [Пар_ устр_ / СД / ИНД группа В] (столбец СДИ справа от дисплея).

осторожно!



Следует обеспечить отсутствие наложения функций из-за назначения одному СДИ двух или более функций по цвету и кодировке включения.

ПРИМЕЧАНИЕ!

В этой главе содержится информация об СДИ, что находятся на дисплее слева (группа A).

Каждый СДИ, кроме СДИ для функции «System OK» (функция которого неизменна), можно настроить при помощи перечисленных ниже параметров.

- «Назначенные сигналы». Параметры с [Пар_ устр_ / СД / СД х] *«Распред_ 1»* по *«Распред_ 5»* можно использовать, чтобы назначить «СДИ № х» до 5 триггерных сигналов.
- «Инверсия». Параметры с «Инверсия 1» по «Инверсия 5», если задано значение «акт_», можно использовать, чтобы инвертировать соответствующий триггерный сигнал.

Обратите внимание, что для **неназначенных** триггерных сигналов (то есть «Инверсия n» = «-») инверсия не работает, так что триггерный сигнал всегда воспринимается как двоичный ноль (Ложь/неакт_).

• «Функция замыкания/самоудержания». Если для параметра *«Замкн_»* задано значение «акт_», то состояние, заданное триггерными сигналами, сохраняется постоянно (см. раздел «Замыкание» ниже,

□> «2.13.1 Замыкание»).

Если для параметра «Замкн_» задано значение «неакт_», то СДИ всегда принимает состояние назначенных сигналов.

- «Сигн Подт»: Эта настройка будет доступна, только если для параметра «Замкн_» задано значение «акт_». Так назначается сигнал, сбрасывающий замкнутое состояние СДИ (но это работает, только если сброшены все назначенные триггерные сигналы).
- «Акт цвет диода»: СДИ горит таким цветом, только если активен хотя бы один из назначенных триггерных сигналов. Доступные значения настроек: «-» (Нет присвоения), «зел », «красн », «красн миг », «зел миг ».

• «Неакт цвет диода»: СДИ горит таким цветом, если не активна ни одна из назначенных функций (доступны те же параметры, что и для вышеупомянутого «активного» цвета).

Кнопка «INFO»

С помощью кнопки «INFO» всегда можно отобразить текущее состояние назначенных триггерных сигналов.

Основной обзор СДИ

Если нажать кнопку «INFO» один раз, то отобразится основной обзор СДИ, которые находятся слева.

Если нажать кнопку «INFO» еще раз, то отобразится основной обзор СДИ, которые находятся справа (при наличии).

Нажатие программной кнопки «влево» (или кнопки «INFO» в третий раз) позволит выйти из основного меню СДИ.

На экране основного обзора отображаются первые функции, назначенные СДИ. Время от времени отображаются доступные программные кнопки.

Страница СДИ с несколькими назначениями

На странице основного обзора выберите один из СДИ с помощью программных кнопок «вверх» и «вниз».

С этого экрана, нажав программную кнопку «вправо», можно будет перейти на страницу СДИ с несколькими назначениями.

На этой странице отображается подробная информация обо всех состояниях, назначенных данному СДИ. Символ «стрелка» будет указывать на тот индикатор, для которого отображаются назначенные сигналы.

С помощью программных кнопок «вверх» и «вниз» можно перейти к следующему или предыдущему СДИ.

Нажатие программной кнопки «влево» позволит вернуться в основное меню СДИ.

Замыкание

Если для параметра «Замкн_» того или иного СДИ задано значение «акт_», его состояние сохранится, что бы ни произошло, пока не будет подтверждено (см. раздел «Варианты подтверждения» ниже).

Замкнутый СДИ сбрасывается только в одном из следующих случаев и только после сброса всех назначенных триггерных сигналов.

- Его состояние подтверждается (либо пользователем с помощью интерфейса ИЧМ, либо посредством SCADA), см. ниже.
- Его состояние сбрасывается (подтверждается) с помощью сигнала, назначенного параметру *«Сигн Подт»*.
- Для него снова задается настройка «Замкн » = «неакт ».
- Если не назначено никакого триггерного сигнала, то есть **для всех параметров** «Распред п» задано значение «-».

Обратите внимание, что замкнутый СДИ **не** сбрасывается при перезапуске устройства МСА4. После (горячего или холодного) перезапуска каждый замкнутый СДИ возвращается в свое (ранее назначенное) состояние.

Варианты подтверждения

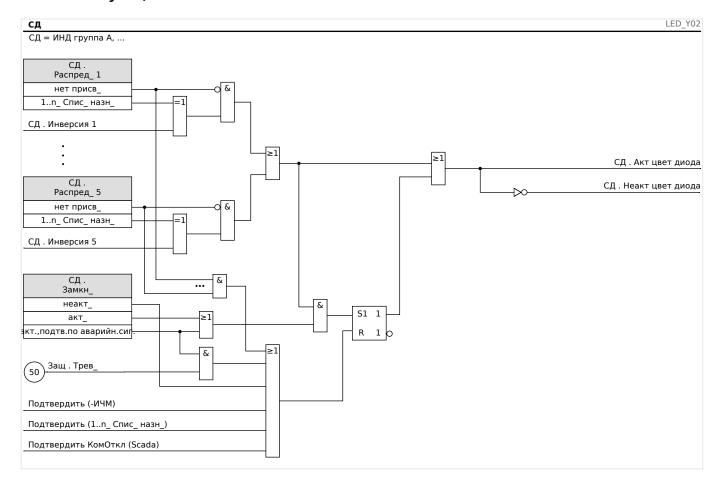
Для сброса замкнутого СДИ всегда требуется подтверждение (подробное описание см. в разделе \Longrightarrow «Подтверждения»).

СДИ могут быть подтверждены:

- С помощью кнопки «С» на панели управления.
- Состояние СДИ можно подтвердить с помощью сигнала, назначенного параметру «Сигн Подт».
- Состояние всех замкнутых СДИ сразу можно подтвердить с помощью сигнала, назначенного параметру [Пар_ устр_ / Подтвердить] «Подт СД».
- Состояние сразу всех СДИ можно подтвердить по каналу связи (SCADA).
- Состояние сразу всех СДИ можно подтвердить автоматически при поступлении аварийного сигнала одной из функций защиты.

Примечание. Варианты, позволяющие сбросить состояние сразу всех СДИ с помощью сигнала или SCADA, доступны, только если для параметра [Пар_ устр_ / Подтвердить] «Дист сброс» задано значение «акт ».

Последний вариант, позволяющий сбросить сразу все СДИ по сигналу одной из функций защиты, следует активировать с помощью параметра: [Пар_ устр_ / СД / ИНД группа A / СД 1...n] «Замкн » = «акт.,подтв.по аварийн.сиг.».


Для получения дополнительной информации см. также раздел «Подтверждения».

ПРИМЕЧАНИЕ!

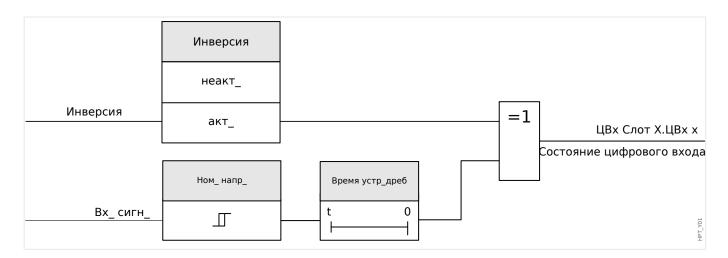
На компакт-диске, который входит комплект устройства, имеется шаблон в формате PDF для создания и распечатки на лазерном принтере самоклеящихся пленок с текстом, соответствующим назначенным СДИ функциям (наклеек на лицевой панели). Рекомендация: (артикул 3482 AVERY Zweckform)

Функциональные возможности

СДИ «System OK»

Данный СДИ мигает зеленым цветом при загрузке устройства. По завершении загрузки СДИ для функции System OK (нормальная работа системы) загорится зеленым цветом, показывая, что защита (функция) активирована. См. раздел «Самодиагностика» и внешний документ *Руководство по отладке*, чтобы найти дополнительные сведения о кодах включения СДИ System OK.

Параметризовать СДИ «System OK» невозможно.


2.13.2 Конфигурация цифровых входов

Состояние цифровых входов можно проверить в меню [Работа / Отображение состояния / имя группы узлов (например, «ЦВх-8 X»)]

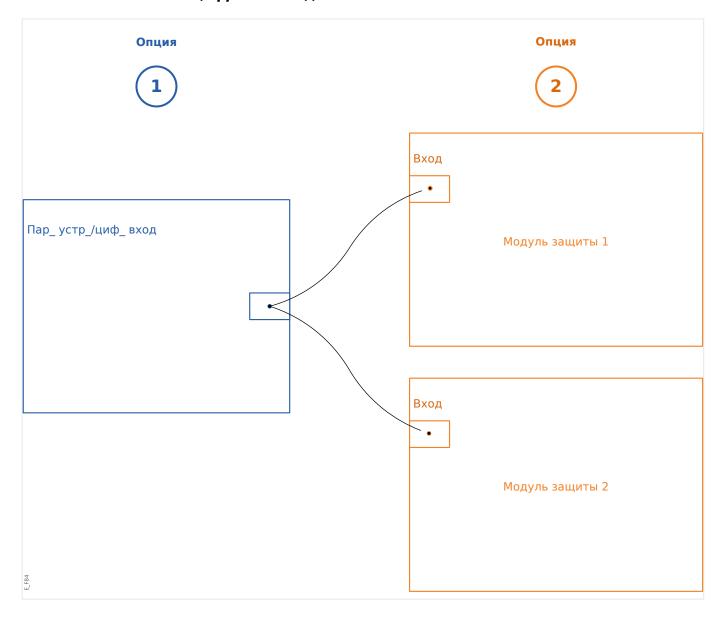
Цифровые входы можно настроить в меню [Пар_ устр_ / Цифровые входы / имя группы узлов (например, «ЦВх-8 X») / Γ p_ X]

Для каждого из цифровых входов установите следующие параметры:

- «Номинальное напряжение»
- «Время устранения дребезга»: Изменение состояния цифрового входа будет принято только по окончании времени устранения дребезга.
- «Инверсия» (если необходимо)

осторожно!

Время устранения дребезга начинает отсчитываться при каждом изменении состояния входного сигнала.


осторожно!

Кроме времени устранения дребезга, которое можно задать в программном обеспечении, всегда имеется аппаратное время устранение дребезга (около 12 мс), отключить которое невозможно.

Существует два возможных варианта определения, чему должен быть назначен цифровой вход.

Назначение цифровых входов

Вариант 1: Назначение цифрового входа одному или нескольким модулям.

Добавление назначения

В меню [Пар_ устр_ / Цифровые входы] цифровые входы можно назначать для одного или нескольких целевых устройств.

Откройте цифровой вход (нажмите для него стрелку вправо). Нажмите программную кнопку «Установка параметра/гаечный ключ». Нажмите «Добавить» и назначьте целевой объект. Назначьте дополнительные целевые объекты, где необходимо.

Удаление назначения:

Выберите в ИЧМ, как описано выше, цифровой вход, который нужно отредактировать.

Откройте назначения цифрового входа (нажмите для него стрелку вправо) и выберите назначение, которое нужно удалить (обратите внимание, что это делается с помощью курсора). Теперь назначение можно удалить в интерфейсе

ИЧМ, нажав программную кнопку «Установка параметра» и выбрав элемент «Удалить». Подтвердите обновление настройки параметров.

Вариант 2: Подключение входа модуля и цифрового входа

Откройте модуль. В этом модуле назначьте цифровой вход входу модуля.

Пример: необходимо заблокировать модуль защиты при определенном состоянии цифрового входа. Для этого назначьте для входа блокировки в глобальных параметрах соответствующий цифровой вход (например, »ВнБлк1«).

Проверка назначений цифрового входа

Чтобы проверить объекты, которым назначен какой-либо цифровой вход, выполните следующие действия.

Откройте меню [Пар_ устр_ / Цифровые входы].

Перейдите к тому цифровому входу, который нужно проверить.

в ичм

Множественное назначение, то есть когда один из цифровых входов используется несколько раз (если назначен нескольким целевым объектам), обозначается отображающимся рядом с таким входом многоточием «...». Выведите данный цифровой вход на экран с помощью программной кнопки «стрелка вправо», чтобы просмотреть список целевых объектов этого входа.

2.13.3 Настройки выходных реле

Состояние релейных выходов можно проверить в меню: [Работа / Отображение состояния / Имя группы узлов (например, ВО-3 X)]

Релейные выходы можно настроить в меню: [Пар_ устр_ / Двоичн_ вых_ / Имя группы узлов (например, ВО-3 X)]

Состояния на выходе модуля и сигналов/защитных функций (таких как обратная блокировка) могут передаваться при помощи реле аварийных сигналов. Реле аварийных сигналов имеют беспотенциальные контакты (которые могут использоваться как замыкающий или размыкающий контакт). Для каждого реле аварийного сигнала при помощи «Списка назначений» может быть назначено до 7 функций.

Для каждого из реле цифровых выходов установите следующие параметры:

- «Назначенные сигналы». Параметры с «Назнач_ 1» по «Назнач_ 7» можно использовать, чтобы назначить 7 триггерных сигналов (объединенных логической функцией «ИЛИ»).
- «Инверсия». Параметры с «Инверсия 1» по «Инверсия 7», если задано значение «акт_», можно использовать, чтобы инвертировать соответствующий триггерный сигнал.

Обратите внимание, что для **неназначенных** триггерных сигналов (то есть $«Назнач_n» = «-»)$ инверсия не работает, так что триггерный сигнал всегда воспринимается как двоичный ноль (Ложь/неакт_).

• При использовании настройки «Инверсия» = «акт_» (коллективное) состояние релейных выходов может быть инвертировано (по принципу тока замкнутой или разомкнутой цепи).

Обратите внимание, что если **ни одного сигнала не** назначено (то есть **все** $«Назнач_n» = «-»)$ инверсия не работает, поэтому это (коллективное) состояние всегда воспринимается как двоичный ноль (Ложь/неакт).

- В «Режим работы» можно определить подается ли на выход реле рабочий ток или замкнута ли цепь.
- Если для параметра *«Замкн_»* установлено значение «неакт_», контакт реле непрерывно принимает состояние назначенных сигналов.
- Если для параметра *«Замкн_»* установлено значение «акт_», состояние контакта реле сохраняется постоянно. (См. также раздел «Замыкание» ниже, «2.13.3 Замыкание».)
- «Подтверждение»: Эта настройка будет доступна, только если для параметра «Замкн_» задано значение «акт_». Так назначается сигнал, который сбрасывает замыкание контакта реле (но это работает, только если сброшены все назначенные триггерные сигналы).

Состояние контакта реле может быть подтверждено только после сброса всех сигналов, которые инициировали настройку реле, и по истечении минимального времени задержки *«t-Выд выкл»*.

• «*t-уд_*»: При изменении сигнала минимальное время блокировки обеспечивает поддержание реле во включенном или выключенном состоянии в течение этого минимального периода времени.

ПРИМЕЧАНИЕ!

Невозможно настроить реле аварийной сигнализации System OK (SC) (защитное устройство).

Замыкание

Если для параметра «Замкн_» двоичного выхода установлено значение «акт_», его состояние сохранится, что бы ни произошло, пока не будет подтверждено (см. раздел «Варианты подтверждения» ниже).

Замкнутый двоичный вход сбрасывается только в одном из следующих случаев и только после сброса всех назначенных триггерных сигналов:

- Его состояние подтверждается (либо пользователем с помощью интерфейса ИЧМ, либо посредством SCADA), см. ниже.
- Она сбрасывается (подтверждается) с помощью сигнала, который был назначен параметру *«Подтверждение»*.
- Для нее снова задается настройка «Замкн_» = «неакт_».
- Если не назначено никакого триггерного сигнала, то есть **для всех параметров** «*Назнач п*» задано значение «-».

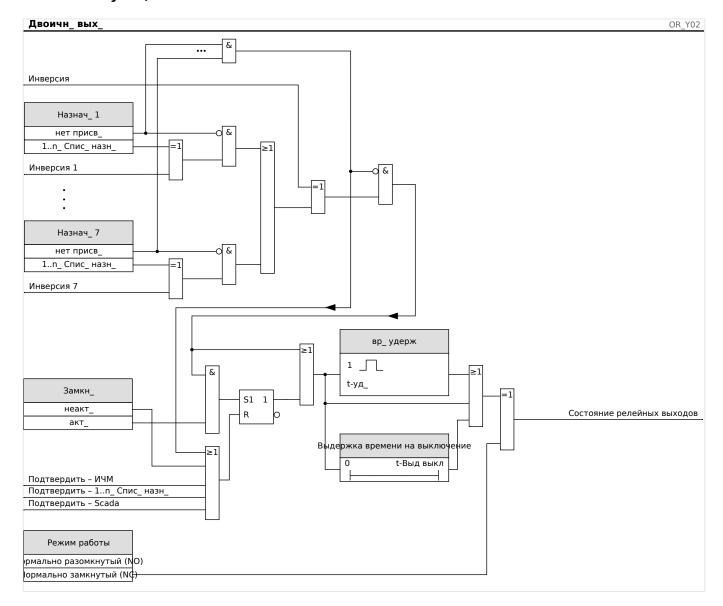
Обратите внимание, что замкнутый двоичный выход **не** сбрасывается при перезапуске устройства МСА4: После (горячего или холодного) перезапуска каждый замкнутый выход возвращается в свое (ранее назначенное) состояние.

Варианты подтверждения

Сброс релейного выхода в замкнутом положении всегда требует подтверждения. (подробное описание см. в разделе Ч⇒ «Подтверждения»).

Подтверждение релейных выходов может осуществляться:

- С помощью кнопки «С» на панели управления.
- Состояние СДИ можно подтвердить с помощью сигнала, назначенного параметру *«Подтверждение»*.
- Состояние всех релейных выходов сразу можно подтвердить с помощью сигнала, назначенного параметру [Пар_ устр_ / Подтвердить] «Подт РелВых».
- С помощью SCADA все релейные выходы могут быть подтверждены одновременно.


Примечание. Последние два варианта, позволяющие сбросить состояние всех выходов, доступны, только если для параметра [Пар_ устр_ / Подтвердить] «Дист сброс» установлено значение «акт_».

ПРЕДУПРЕЖДЕНИЕ!

Контакты релейного выхода можно настроить принудительно или отключить для ввода в эксплуатацию (см. следующие главы: > «Отключение выходных контактов реле», > «Принудительная настройка выходных контактов реле»).

Функциональные возможности

Реле самодиагностики

Реле аварийного сигнала «System OK» (КС) представляет собой устройства типа «контакт под напряжением». Место его установки зависит от типа корпуса. Обратитесь к электрической схеме устройства (контакт WDC).

3 Коммуникационные протоколы

3.1 Общая настройка SCADA (связь)

Набор доступных протоколов SCADA зависит от типа заказанного оборудования (см. разделы

—> «Бланк заказа устройства»,

—> «Коды протокола связи»).

Необходимо определить, какой из доступных протоколов SCADA будет использовать устройство МСА4. Делается это путем настройки необходимого протокола связи для [Планир устр] «Протокол».

Затем для выбранного протокола потребуется задать ряд дополнительных настроек.

3.2 Настройки ТСР/ІР

ПРИМЕЧАНИЕ!

Установка соединения с устройством через TCP/IP возможна только в том случае, если устройство снабжено интерфейсом сети Ethernet (RJ45).

Для установления соединения с сетью обратитесь к системному администратору.

Настройки TCP/IP устанавливаются в меню [Пар устр / TCP/IP / Конф-я TCP/IP].

Необходимо настроить следующие параметры.

• «TCP/IP» — для этого параметра можно задать значение «акт_» (по умолчанию задано значение «неакт », и протокол не используется).

ПРИМЕЧАНИЕ!

Остальные параметры TCP/IP (см. ниже) можно будет настроить только после того, как для параметра *«TCP/IP»* будет задано значение «акт_».

- «IP-адрес» адрес IPv4 устройства MCA4.
- «Маска подс_» маска подсети, определяющая диапазон IP-адресов локальной сети пользователя.
- «Шлюз по умолч_» шлюз по умолчанию. На этот адрес направляются запросы обо всех подключениях к IP-адресам вне локальной сети пользователя (то есть к IP-адресам, которые не совпадают с адресами в диапазоне, определенном маской подсети).

Первоначальную настройку параметров TCP/IP можно выполнить с панели управления (ИЧМ) или с помощью ПО Smart view через соединение USB.

Более того, в меню [Пар_ устр_ / TCP/IP / Расширенные настройки] имеется ряд специальных параметров, см. справочное руководство. Изменять заданные по умолчанию значения этих параметров требуется очень редко.

3.3 Profibus

Конфигурирование устройств

Выбрав Profibus в качестве протокола SCADA (настроив [Планир_ устр_] «Протокол» = «Profibus»), войдите в ветвь меню [Пар_ устр_ / Profibus] и установите следующий параметр связи:

• «ID п_у_» для точной идентификации устройства. Это будет номер от 2 до 125, который должен быть уникальным среди всех устройств Profibus в сети.

Помимо этого, в главном устройстве необходимо указать файл GSD (OOC). Этот файл находится на диске, поставляемом в комплекте с устройством.

О некоторых других параметрах (связанных с Profibus) говорится в справочном руководстве.

Подключение аппаратных средств

- Подключение аппаратуры к системе контроля зависит от типа заказанного оборудования (см. разделы > «Бланк заказа устройства», > «Коды протокола связи»): На задней панели устройства МСА4 имеется либо интерфейс RS485 (D-SUB), либо оптоволоконный интерфейс (разъем ST), которые можно использовать для подключения Profibus.
- Подключите шину и МСА4.
- Можно подключить до 123 подчиненных устройств.
- При использовании интерфейса D-SUB установите оконечный резистор на конец шины.

Обработка ошибок

Информация по физическим ошибкам связи (например, по скорости передачи данных в бодах) можно получить с помощью регистратора событий (см. раздел ⊌> «Регистратор событий») или дисплея состояний (ветвь меню [Работа / Отображение состояния]).

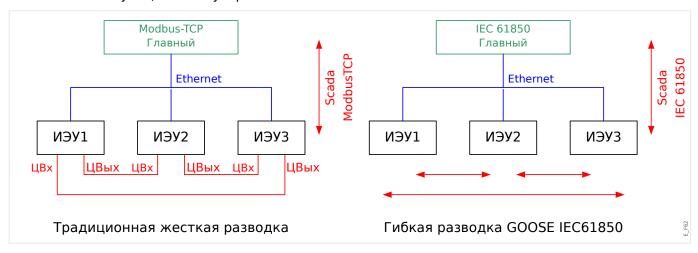
Обработка ошибок — светодиодный индикатор состояния D-SUB

Интерфейс Profibus D-SUB, расположенный на задней панели устройства, снабжен светодиодным индикатором состояния.

- Поиск передачи данных СДИ мигает красным цветом
- Передача данных обнаружена СДИ мигает зеленым цветом
- Обмен данными СДИ горит зеленым цветом
- Протокол Profibus не выбран в [Планир_ устр_] *«SCADA . Протокол»* СДИ горит красным цветом

3.4 IEC 61850

Введение


Чтобы понять особенности функционирования и режим работы подстанции в среде автоматизации IEC 61850, полезно сравнить этапы ввода ее в эксплуатацию с теми, что используются для обычных подстанций в среде Modbus TCP.

В обычной подстанции отдельные интеллектуальные электронные устройства (IED) взаимодействуют с центром управления более высокого уровня в вертикальном направлении с помощью ПО SCADA. Горизонтальная связь используется исключительно для соединения друг с другом выходных реле (OR) и цифровых входов (DI).

В среде IEC 61850 для связи между IED используется цифровой канал (Ethernet) и служба общих объектно-ориентированных событий подстанции под названием GOOSE. С помощью данной службы IED обмениваются информацией о событиях. Таким образом, каждому IED нужно знать о функциональных возможностях всех других связанных с ним IED.

Для каждого устройства с поддержкой IEC 61850 имеется описание его функций и возможностей связи (описание возможностей IED, *.ICD).

С помощью инструмента конфигурации подстанции, содержащего описание структуры подстанции, может быть выполнено назначение устройств к основному оборудованию, виртуальное подключение IED друг к другу и другим коммуникационным устройствам подстанции и т. д. Имеется описание конфигурации подстанции, которое генерируется в виде файла *.SCD. Данный файл нужно отправить на каждое устройство. После этого IED смогут взаимодействовать друг с другом, реагировать на блокировки и управлять коммутационным устройством.

Этапы ввода стандартной подстанции в эксплуатацию в среде Modbus TCP:

- настройка параметров IED;
- установка сети Ethernet;
- настройка для IED параметров TCP/IP;
- подключение согласно схеме электрических соединений.

Этапы ввода подстанции в эксплуатацию в среде IEC 61850:

• настройка параметров IED;

- установка сети Ethernet;
- настройка ТСР/ІР для ІЕD;

Настройка ІЕС 61850 (программное соединение):

- экспорт файла ICD каждого устройства;
- настройка подстанции (создание файла SCD);
- передача файла SCD на каждое устройство.

Создание/экспорт особого файла ICD устройства

См. главу «IEC 61850» руководства к ПО Smart view.

Создание/экспорт файла SCD

См. главу «IEC 61850» руководства к ПО Smart view.

Настройка подстанции, создание файла .SCD (описание конфигурации станции)

Конфигурация подстанции, т. е. соединение всех логических узлов защитных, контрольных и коммутационных устройств, выполняется с помощью инструмента конфигурации подстанции. Поэтому должны быть доступны файлы ICD всех подключенных IED в среде IEC 61850. Результат «программного соединения» станции можно экспортировать в виде файла описания конфигурации подстанции SCD.

Нужный инструмент настройки подстанции SCT имеется в перечисленных ниже компаниях.

- Applied Systems Engineering Inc. (⇒> www.ase-systems.com)
- Kalki Communication Technologies Limited (⇒> www.kalkitech.com)

Импорт файла .SCD в устройство

См. главу «IEC 61850» руководства к ПО Smart view.

Виртуальные выходы ІЕС 61850

Кроме стандартной информации о состоянии логических узлов для 64 виртуальных выходов можно назначить до 64 свободно настраиваемых значений состояния. Сделать это можно в меню [Пар_ устр_ / IEC 61850 / Вирт. вых. 1...4].

Виртуальные входы ІЕС 61850

Если в файле SCD определен BXOД, то состояние входа можно проверить в меню [Работа / Отображение состояния / IEC 61850 / Вирт. вх. 1...4] «GOSINGGIO[1...4].Ind1...32.stVal». На каждый бит состояния в меню [Работа / Отображение состояния / IEC 61850 / Вирт. вх. 1...4] «GOSINGGIO[1...4].Ind1...32.q» приходится соответствующий бит качества.

Состояние GOOSE

Состояние соединения GOOSE можно проверить в меню [Работа / Отображение состояния / IEC 61850 / Coct_] «Все подпис_ GOOSE акт_». Этот сигнал содержит сводные данные о качестве всех виртуальных входов (см. выше).

3.5 DNP3

Протокол DNP (протокол распределенной сети) предназначен для обмена данными и информацией между SCADA (основным устройством) и устройствами IED (интеллектуальными электронными устройствами). Первые выпуски протокола DNP были разработаны для последовательной связи. Благодаря дальнейшему развитию протокола DNP сейчас он также позволяет использовать возможности обмена данными TCP и UDP через Ethernet.

Планирование устройств DNP

В зависимости от аппаратного обеспечения защитного устройства в разделе «Планирование устройств» может быть доступно до трех вариантов обмена данными по протоколу DNP.

Войдите в меню [Планир_ устр_] и выберите подходящий протокол SCADA в соответствии с кодом устройства.

- ДТБ DNP3 (через последовательный порт)
- DNP3 TCP (yepe3 Ethernet)
- DNP3 UDP (yepe3 Ethernet)

Общие настройки протокола DNP

ПРИМЕЧАНИЕ!

Обратите внимание, что незапрошенные сообщения недоступны для последовательного канала связи, если через последовательный канал подключено несколько подчиненных устройства (из-за возможных конфликтов). В этих случаях не используйте незапрошенные сообщения для ДТБ DNP.

Незапрашиваемая отчетность доступна и для последовательного канала связи, если каждое подчиненное устройство подключено к основной системе отдельно. Это означает, что главная система оборудована отдельным последовательным интерфейсом для каждого подчиненного устройства (несколько плат последовательного доступа).

Войдите в меню [Пар устр / DNP3 / Связь].

Настройки обмена данными (общие) нужно задавать в соответствии с потребностями системы SCADA (главной).

Для DNP-TCP доступна самоадресация. Это означает, что идентификаторы главной и подчиненной систем определяются автоматически.

ПРИМЕЧАНИЕ!

Некоторые выходные сигналы, активные только в течение короткого времени (например, сигналы отключения), необходимо подтверждать отдельно с помощью системы связи.

Точечное преобразование

ПРИМЕЧАНИЕ!

Обратите внимание, что назначения входов и выходов задаются с точки зрения основной системы. Этот способ выбора назначений связан с определением в стандарте DNP. Это означает, например, что двоичные входы, которые можно настраивать в параметрах устройства для протокола DNP, являются двоичными входами главной системы.

Войдите в меню [Пар_ устр_ / DNP3 / Точечное отображение]. Когда заданы общие настройки протокола DNP, на следующем этапе нужно настроить точечное преобразование.

• Двоичные входные сигналы (сигналы состояний, отправляемые на основное устройство)

Назначьте нужный сигнал состояния (например, »Защ . Откл» одному из доступных параметров [Пар_ устр_ / DNP3 / Точечное отображение / Двоичные входы] «Двоич. вход 0...63».

• Двухбитовые входные сигналы (сигналы состояний выключателя, отправляемые на основное устройство)

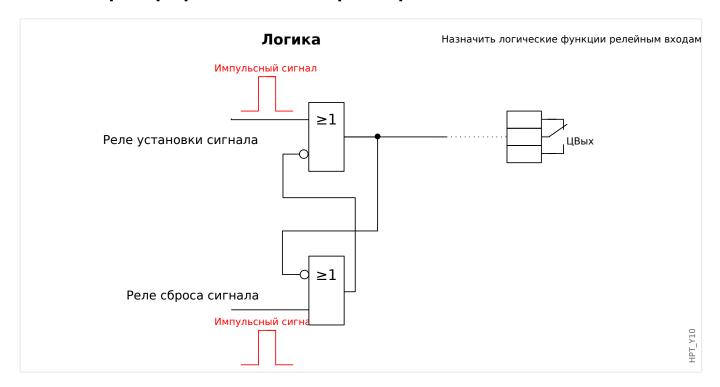
Назначьте нужный сигнал (например, положения выключателя «Распределительный щит[1]. Поз» одному из доступных параметров [Пар_устр / DNP3 / Точечное отображение / Двоичные входы] «Двоичный вход 0...5».

• Счетчики (сигналы счетчиков, отправляемые на основное устройство)

Назначьте нужный счетчик (например, количества рабочих часов «Сис . Сч_ вр_ работы» одному из доступных параметров [Пар_ устр_ / DNP3 / Точечное отображение / Двоич. счетчик] «Двоичный вход 0...7».

• Аналоговые входные сигналы (например, отправляемые на основное устройство измеренные значения). Обратите внимание на то, что значения с плавающей запятой нужно передавать как целые числа. Это означает, что их нужно умножать на коэффициент масштабирования, чтобы привести их в формат целых чисел.

Назначьте нужное значение (например, фазового тока «ТТ . Іф.А» одному из доступных параметров [Пар_ устр_ / DNP3 / Точечное отображение / Аналоговый вход] «Аналоговое значение 0...31».


Затем определите масштаб для этого параметра в меню [Пар_ устр_ / DNP3 / Точечное отображение / Аналоговый вход] «Коэффициент масштабирования 0...31».

Наконец, задайте для этого параметра значение зоны нечувствительности в меню [Пар_ устр_ / DNP3 / Точечное отображение / Аналоговый вход] «Зона нечувствительности 0...31». Так определяется изменение значения этого объекта данных (как процент от максимальной величины), которое вызовет повторную отправку защитным устройством изменившегося значения, что всегда является процентом от максимального значения. См. также примеры из раздела \Longrightarrow «Настройки зоны нечувствительности в DNP3».

Используйте двоичные выходные сигналы, чтобы контролировать, к примеру, СДИ или реле защитного устройства (с помощью логических элементов).

Старайтесь избегать пропусков, которые будут замедлять обмен данными по протоколу DNP. То есть не оставляйте неиспользуемых входов/выходов между используемыми (например, не используйте двоичные выходы 1 и 3, если не используется выход 2).

3.5.1 Пример применения: настройка реле

Сигналы двоичных выходов DNP нельзя напрямую использовать для переключения реле, поскольку они являются импульсными (по определению протокола DNP: неустановившимися). Установившиеся состояния можно создавать средствами логических функций. Логические функции можно назначать релейным входам.

Необходимо помнить: Можно использовать логический элемент (реле) «Установка/ сброс».

3.5.2 Настройки зоны нечувствительности в DNP3

Настройка зоны нечувствительности [Пар_ устр_ / DNP3 / Точечное отображение / Аналоговый вход] «Зона нечувствительности 0...31» указывается для измеренных (или статистических) значений. Обновленное значение этого изменения передается повторно. Значение для зоны нечувствительности следует указывать в процентах от максимальной величины.

Примеры настройки зоны нечувствительности

Для описания настройки зоны нечувствительности следует привести несколько примеров.

Напряжение (с помощью платы измерения напряжения «TU»)

- Плата трансформатора напряжения «TU» поддерживает диапазон значений 0-800 В. (См. главу «Технические данные» в этом руководстве.) Другими словами, максимальное поддерживаемое значение составляет 800 В.
- Номинальное значение (вторичное) составляет 100 В.
- Поэтому коэффициент преобразования процентного значения номинального напряжения в настройку зоны нечувствительности будет следующим:

q = 100 B / 800 B = 0,125

- Например, требуется значение зоны нечувствительности **10**%, представленное как процент от *номинального* напряжения.
- В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$10\% \cdot q = 0.0125 = 1.25\%$$

Tok (1 A TT)

- Трансформаторы тока 1 А поддерживают диапазон значений 0-40 А.
- Значение номинального тока (вторичное) составляет 1 А.
- Поэтому коэффициент преобразования процентного значения номинального тока в настройку зоны нечувствительности будет следующим:

$$q = 1 A / 40 A = 0,025$$

- Например, требуется значение зоны нечувствительности **10**%, представленное как процент от *номинального* тока.
- В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$10\% \cdot q = 0.0025 = 0.25\%$$

Τοκ (5 A TT)

- Трансформаторы тока 5 А поддерживают диапазон значений 0-200 А.
- Значение номинального тока (вторичное) составляет 5 А.
- Поэтому коэффициент преобразования процентного значения номинального тока в настройку зоны нечувствительности будет следующим:

$$q = 5 A / 200 A = 0,025$$

- Например, требуется значение зоны нечувствительности **10**%, представленное как процент от *номинального* тока.
- В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$10\% \cdot q = 0.0025 = 0.25\%$$

Ток утечки на землю (1 А ТТ)

- Плата стандартного трансформатора тока «TI» поддерживает диапазон значений 0-25 A.
- Значение номинального тока (вторичное) составляет 1 А.
- Поэтому коэффициент преобразования процентного значения номинального тока в настройку зоны нечувствительности будет следующим:

$$a = 1 A / 25 A = 0.04$$

• Например, требуется значение зоны нечувствительности **10**%, представленное как процент от *номинального* тока.

• В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$10\% \cdot q = 0.004 = 0.4\%$$

Малый ток утечки на землю (1 A TT)

- Плата чувствительного трансформатора тока «TIs» поддерживает диапазон значений 0-2,5 A.
- Значение номинального тока (вторичное) составляет 1 А.
- Поэтому коэффициент преобразования процентного значения номинального тока в настройку зоны нечувствительности будет следующим:

$$q = 1 A / 2,5 A = 0,4$$

- Например, требуется значение зоны нечувствительности **1**%, представленное как процент от *номинального* тока.
- В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$1\% \cdot q = 0.004 = 0.4\%$$

Мощность (1 A TT и плата измерения напряжения «TU»)

- Поддерживаемый диапазон значений составляет 0-32000 ВА.
- Значение **номинальной** мощности (вторичное) основано на значениях номинального напряжения и номинального тока (вторичных): $100 \text{ B} \cdot 1 \text{ A} \cdot \sqrt{3} = 173,21 \text{ BA}.$
- Поэтому коэффициент преобразования процентного значения номинальной мощности в настройку зоны нечувствительности будет следующим:

$$q = 173,21 BA / 32000 BA = 0,00541$$

- Например, требуется значение зоны нечувствительности **10**%, представленное как процент от *номинальной* мощности.
- В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$10\% \cdot q = 0.000541 = 0.0541\%$$

Мощность (5 A TT и плата измерения напряжения «TU»)

- Поддерживаемый диапазон значений составляет 0-160000 ВА.
- Значение **номинальной** мощности (вторичное) основано на значениях номинального напряжения и номинального тока (вторичных): $100 \text{ B} \cdot 5 \text{ A} \cdot \sqrt{3} = 866,05 \text{ BA}$.
- Поэтому коэффициент преобразования процентного значения номинальной мощности в настройку зоны нечувствительности будет следующим:

$$q = 866,05 BA / 160000 BA = 0,00541$$

• Например, требуется значение зоны нечувствительности **10**%, представленное как процент от *номинальной* мощности.

• В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$10\% \cdot q = 0.000541 = 0.0541\%$$

Частота (сеть 50 Гц)

- Поддерживаемый диапазон значений составляет 40-70 Гц.
- Значение номинальной частоты: 50 Гц.
- Поэтому коэффициент преобразования процентного значения номинальной частоты в настройку зоны нечувствительности будет следующим:

$$q = 50 \Gamma \mu / 70 \Gamma \mu = 0,714$$

- Например, требуется значение зоны нечувствительности **0,1%**, представленное как процент от *номинальной* частоты.
- В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$0.1\% \cdot q = 0.000714 = 0.0714\%$$

Частота (сеть 60 Гц)

- Поддерживаемый диапазон значений составляет 40-70 Гц (то есть, такой же, как для сети 50 Гц).
- Значение номинальной частоты: 60 Гц.
- Поэтому коэффициент преобразования процентного значения номинальной частоты в настройку зоны нечувствительности будет следующим:

$$q = 60 \Gamma \mu / 70 \Gamma \mu = 0.857$$

- Например, требуется значение зоны нечувствительности **0,1%**, представленное как процент от *номинальной* частоты.
- В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$0.1\% \cdot q = 0.000857 = 0.0857\%$$

Коэффициент мощности (f)

Это значение особенное, поскольку не имеет номинального значения.

- Максимальное значение составляет 1,0.
- Например, требуется значение зоны нечувствительности **0,01**. (Нет необходимости выражать его в процентах.)
- В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$0.01 / 1.0 = 1\%$$
.

φ

• Все значения угла представлены в градусах, то есть, максимальное значение составляет 360°.

- Например, требуется значение зоны нечувствительности ${f 1}^\circ$. (Нет необходимости выражать его в процентах.)
- В этом случае настройка значения зоны нечувствительности должна быть следующей:

$$1^{\circ} / 360^{\circ} =$$
0,278%

3.6 IEC60870-5-103

Чтобы использовать протокол IEC60870-5-103, его необходимо присвоить интерфейсу X103 при планировании работы устройства. После установки этого параметра произойдет перезагрузка устройства.

Более того, протокол IEC103 следует включить, установив для параметра [Пар_устр / IEC103] « Φ ункция» значение «акт ».

ПРИМЕЧАНИЕ!

Параметр X103 доступен только в том случае, если на задней панели устройства имеется интерфейс RS485 или оптоволоконный разъем.

ПРИМЕЧАНИЕ!

Если устройство оборудовано оптоволоконным интерфейсом, то необходимо установить параметр устройства «Оптическая исходная координата».

Протокол IEC60870-5-103 с управлением по времени основан на принципе работы, установленном для главных и подчиненных устройств. Это означает, что система защиты и управления подстанции посылает запрос или инструкцию на некоторое устройство (подчиненное устройство), которое затем выдает на этот запрос соответствующий ответ или исполняет его.

Данное устройство соответствует требованиям режима совместимости 2. Режим совместимости 3 не поддерживается.

Поддерживаются следующие функции протокола IEC60870-5-103.

- Инициализация (сброс)
- Синхронизация по времени
- Считывание мгновенных сигналов с меткой времени
- Общие запросы
- Циклические сигналы
- Общие команды
- Передача данных об аварийных нарушениях

Инициализация

Каждый раз при включении устройства или после изменения параметров связи необходимо выполнить сброс связи при помощи команды сброса. Команда сброса — «Сброс БУ». Реле реагирует на обе команды сброса («Сброс БУ» и «Сброс БУФ»).

Реле реагирует на команду сброса путем идентификации сигнала прикладного сервисного блока данных (ASDU 5). Основанием (причиной передачи, ПП) для передачи ответа «Сброс БУ» или «Сброс БУФ» будет тип команды сброса. Эта информация может являться частью блока данных сигнала ASDU (ПСБД).

Название производителя

Раздел для идентификации программы содержит трехразрядный код устройства, предназначенный для идентификации типа устройства. Помимо вышеуказанного идентификационного номера устройство генерирует событие начала связи.

Синхронизация по времени

Время и дата реле может устанавливаться при помощи функции синхронизации времени протокола IEC60870-5-103. В случае отправки сигнала синхронизации с запросом на подтверждение устройство выдаст ответ с сигналом подтверждения.

Спонтанные события

Такие события генерируются устройством и пересылаются на главное устройство с номерами для стандартных типов функций/стандартной информации. Список исходных данных содержит все события, которые могут генерироваться устройством.

Циклическое измерение

Устройство генерирует значения, измеряемые циклически, при помощи сигнала ASDU 9. Они могут считываться при помощи запроса класса 2. Необходимо принять во внимание то, что измеренные значения будут пересылаться как кратные (в 1,2 или в 2,4 раза больше номинального значения). Установка множителя 1,2 или 2,4 для значения определяется списком исходных данных.

Параметр «Transm priv meas val» определяет, следует ли передавать дополнительные значения измерений в закрытом фрагменте сообщения, Открытые и закрытые значения измерений передаются сигналом ASDU9. то есть, будет ли передаваться «закрытый» или «открытый» сигнал ASDU9. Если этот параметр установлен, то ASDU9 будет содержать измеренные значения, являющиеся улучшенным вариантом стандартных значений. «Закрытый» сигнал ASDU9 пересылается с функцией фиксированного типа и информационным номером, не зависящим от типа устройства. Обратитесь к списку исходных данных.

Команды

Список исходных данных содержит список поддерживаемых команд. Устройство реагирует на любую команду положительным или отрицательным подтверждением. Если команда может быть исполнена, то ее исполнение вместе с соответствующей причиной передачи (ПП) будет поставлено первым номером в очереди, а затем исполнение будет подтверждено сигналом СОТ1 (ПП1) внутри сигнала ASDU9.

Запись аварийных нарушений

Аварийные нарушения, записанные устройством, можно считывать с помощью средств, описанных в стандарте IEC60870-5-103. Данное устройство совместимо с системой управления VDEW по передаче ASDU 23 без записей аварийных нарушений в начале цикла GI.

Запись о нарушении содержит следующую информацию:

- аналоговые измеренные значения la, lв, lс, lN, напряжения Ua, Uв, Uc, UEN;
- Цифровые значения состояний, передаваемые как метки, например, аварийные сигналы и сигналы отключения.
- Коэффициент передачи не поддерживается. Коэффициент передачи уже включен в «множитель».

Блокировка направления передачи

Реле поддерживает функцию блокировки в направлении мониторинга. Существует два способа активации такой блокировки.

- Активация вручную через параметр прямого управления «Активация режима блокировки»
- Внешняя активация путем назначения сигнала для параметра настройки «Внеш. акт_ режима блок_»

Режим проверки

Реле поддерживает режим проверки (причина передачи 7). Существует два способа включить режим проверки.

- Активация вручную через параметр прямого управления *«Активация тестового режима»*
- Внешняя активация путем назначения сигнала для параметра настройки «Внеш. акт_ режима тест_»

3.7 Настраиваемые протоколы связи

В некоторых протоколах SCADA, поддерживаемых МСА4, доступна функция адаптации сопоставления объектов данных с внутренними адресами протоколов, применяемая при необходимости. Сделать это можно с помощью установленного на ПК отдельного программного инструмента *АДАПТЕР SC*.

На данный момент подобное повторное сопоставление поддерживают следующие протоколы:

Подробнее см. в документации *АДАПТЕР SC*, а также в главах руководства к устройству, посвященных соответствующим протоколам связи. Передача нового сопоставления в МСА4 также описана в \Longrightarrow «Сопоставление точек данных с помощью АДАПТЕР SC».

3.7.1 IEC 60870-5-104

Протокол IEC 60870-5-104 — это стандартный протокол связи. Он доступен для устройств HighPROTEC, оснащенных интерфейсом Ethernet.

Ожидается, что, несмотря на наличие в устройстве MCA4 стандартной функции сопоставления точек данных, большинство пользователей захочет адаптировать ее к собственным потребностям. Сделать это можно с помощью установленного на ПК отдельного программного инструмента *АДАПТЕР SC*.

ПРИМЕЧАНИЕ!

Протокол IEC104 доступен, только если устройство оснащено интерфейсом Ethernet (разъемом RJ45 или оптоволоконным дуплексным разъемом LC на задней панели).

ПРИМЕЧАНИЕ!

Сведения о совместимости и стандартных способах реализации см. в главе \Longrightarrow «Функциональная совместимость по IEC 60870-104».

Настройка

Сначала необходимо выбрать в качестве используемого протокола SCADA протокол IEC104.

Задайте для параметра [Планир_ устр_] «Протокол» значение «IEC104».

Определите общий адрес ASDU, чтобы устройство определялось однозначно: [Пар_устр / IEC104 / Общие настройки] »Общий адрес«.

(Данная настройка является прямой командой и никогда не сохраняется как элемент файла настроек параметров (*.HptPara), поэтому определить ее следует явно.)

Затем необходимо будет включить протокол IEC104, установив для параметра [Пар устр / IEC104 / Общие настройки] «Функция» значение «акт ».

Обратите внимание, что некоторые настройки в меню [Пар_ устр_ / IEC104 / Расширенный] намеренно оставлены только для чтения, чтобы администратор сети мог проверить, но не мог изменить их значения.

Однако для параметра [Пар_ устр_ / IEC104 / Расширенный] «Время обновления» можно указать время в диапазоне от 1 с до 60 с. При циклической передаче измеренных значений этим параметром определяется длительность цикла (то есть время, по истечении которого передаются обновленные значения).

То, служит ли измеренное значение элементом циклической передачи, является индивидуальным свойством точки данных. При пользовательском сопоставлении точек данных данное свойство можно настроить (подробнее см. в документации к инструменту АДАПТЕР SC).

Адрес объекта данных

Инструмент настройки *АДАПТЕР SC* позволяет создать и редактировать таблицы сопоставлений, в которых объектам данных назначаются соответствующие адреса.

По сопутствующему стандарту IEC104 адрес объекта данных состоит из трех байтов. Инструмент *АДАПТЕР SC* позволяет определить каждый байт отдельно, чтобы пользователь мог назначить такой адрес каждому объекту данных в соответствии с конкретными требованиями.

Сопоставление точек данных измеренных значений

В инструменте настройки *АДАПТЕР SC* параметр *«Зона нечувствительности»* имеется для каждого измеренного (или статистического) значения. Он определяет изменение значения, которое приведет к повторной передаче обновленного значения.

Цикличность передачи для измеренных значений определяется путем указания процента Зона нечувствительности для таких значений по отношению к нулю.

Ненулевой процент Зона нечувствительности всегда указывает на *максимальную* величину соответствующего измеренного значения, см. примеры в документации к инструменту *АДАПТЕР SC*.

Для каждого измеренного значения можно выбрать один из трех режимов представления в соответствии с сопутствующим стандартом IEC104:

- «Короткое плавающее значение» значение представляет собой число с плавающей запятой.
- «Масштабированный» значение включает в себя неизменное количество десятичных знаков; можно настроить масштаб.
- «Нормализованный» значение представляется относительно номинального значения.

Счетчики энергии

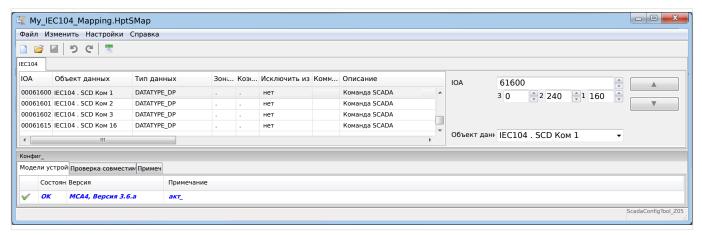
Все показатели энергии всегда обрабатываются как объекты данных типа «Интегральное целое».

Счетчики сбоев

Показания всех счетчиков сбоев всегда обрабатываются как объекты данных типа «Строка битов».

Двоичные состояния

Для всех состояний двоичного выхода можно выбрать один из двух режимов представления в соответствии с сопутствующим стандартом IEC104:


- Одноэлементный Одноэлементная информация (М SP TB 1),
- Двухэлементный Двухэлементная информация (М DP ТВ 1),
- Строка битов Строка из 32 битов (М ВО ТВ 1).

Команды IEC

Протокол IEC104 насчитывает 16 свободно настраиваемых команд. Эти команды можно использовать в различных целях, например, для подтверждения СДИ, состояний выходных реле и замкнутых команд отключения или для управления работой выключателя.

Использование команд IEC104 включает в себя двухэтапную настройку.

Один из этапов состоит в определении протокольных свойств соответствующей команды с помощью инструмента *АДАПТЕР SC*.

Второй связан с настройкой устройства МСА4 — команды настраиваются как значения, которые можно назначить соответствующим параметрам.

Если, к примеру, команда 2 протокола IEC104 будет подтверждать (сброс замыкания) СДИ 1 устройства МСА4, то необходимо указать следующую настройку:

 $[\Pi ap_yctp_/CД/ИНД группа А/СД 1]$ «Распред_ 1» = «IEC104 . SCD Ком 2»

Если, к примеру, эта команда будет *управлять работой* выходного реле 1 в отсеке X2:

[Пар_ устр_ / Двоичн_ вых_ / РелВых Раз X2 / ЦВых 1] «Назнач_ 1» = «IEC104 . SCD Ком 2»

Если, к примеру, эта команда будет *подтверждать* (сброс замыкания) выходного реле 1 в отсеке X2:

[Пар_ устр_ / Двоичн_ вых_ / РелВых Раз X2 / ЦВых 1] «Подтверждение» = «IEC104 . SCD Ком 2»

Если, к примеру, эта команда будет *управлять работой* (отключением) выключателя Распределительный щит[1]:

[Управление / Распределительный щит / Распределительный щит[1] / Вн кмд ВК/ ВЫК] «Kмд BЫКJ» = «IEC104 . SCD Koм 2»

Естественно, для управления выключателем нужно будет настроить еще несколько параметров. В частности необходимо будет установить для параметра [Управление / Общие настройки] «Право на переключение» значение «Удаленный» или «Локальный и удаленный». Подробнее см. в разделе > «Диспетчер систем управления /коммутационных устройств».

Пример использования — настройка выходного реле

Правило использования программируемой логики состоит в том, чтобы настроить устойчивое состояние, соответствующее описанному для протокола DNP3: ╚─> «Пример применения: настройка реле»

Активация пользовательского сопоставления точек данных

Сведения о создании файла сопоставления и загрузке или выгрузке его на устройство МСА4 см. в документации к инструменту *АДАПТЕР SC* и разделе КОПОСТАВЛЕНИЕ ТОЧЕК ДАННЫХ С ПОМОЩЬЮ АДАПТЕР SC» (так как сопоставление

3.7 Настраиваемые протоколы связи

точек данных является функцией общего порядка и одинаково используется в нескольких протоколах связи, то описывается отдельно).

3.7.2 Modbus®

Конфигурация протокола Modbus®

Протокол связи $Modbus^{\otimes}$ доступен для устройств HighPROTEC, оснащенных либо последовательным интерфейсом («Modbus RTU») или интерфейсом Ethernet («Modbus TCP»).

Стандартное описание протокола (сопоставление точек данных), которое поставляется с MCA4, подходит для большинства приложений, поэтому достаточно сделать всего лишь несколько настроек (см. ниже).

Только в особом случае, когда внутреннее сопоставление точек данных необходимо адаптировать к существующей связи подстанции, отдельные сопоставления можно определить с помощью отдельного программного инструмента на компьютере, *АДАПТЕР SC*.

Протокол Modbus® с управлением по времени основан на принципе работы, установленном для главных и подчиненных устройств. Это означает, что система защиты и управления подстанции посылает запрос или инструкцию на некоторое устройство (подчиненное устройство), которое затем выдает на этот запрос соответствующий ответ или исполняет его. Если ответ или исполнение запроса или инструкции невозможно (например, по причине неверно указанного адреса подчиненного устройства), главному устройству пересылается сообщение о неполадке.

ПРИМЕЧАНИЕ!

Некоторые сигналы (являющиеся активными только в течение короткого времени) необходимо подтверждать отдельно (например, сигналы отключения) с помощью системы связи.

Главное устройство (система управления и защиты подстанции) может запрашивать следующую информацию от устройства:

- версию блока и тип;
- измеренные значения/статистические измеренные значения;
- рабочее положение переключателя;
- состояние устройства;
- время и дату;
- состояние цифровых входов устройства;
- аварийные сигналы состояния и защиты.

Главное устройство (система управления) может подавать команды/инструкции на устройство, такие как:

- управление распределительным щитом (где применимо, в зависимости от версии используемого устройства);
- перенастройку набора параметров;
- сброс и подтверждение аварийных и рабочих сигналов;

- настройку даты и времени;
- управление реле аварийных сигналов.

Для получения более подробной информации о списках исходных данных и обработке ошибок обратитесь к документации по работе с протоколом Modbus®.

Для того чтобы разрешить конфигурирование устройств для работы по протоколу $Modbus^{@}$, необходимо иметь некоторые данные контрольной системы, устанавливаемые по умолчанию.

Настройка

Сначала необходимо выбрать в качестве используемого протокола SCADA протокол Modbus.

Настроить [Планир_ устр_] «Протокол»

- = «ModbusRTU» использовать протокол Modbus $^{\circledR}$ для последовательного соединения
- = «ModbusTCP» использовать протокол Modbus $^{\$}$ для соединений Ethernet (TCP/IP)
- = «ModbusTCP/RTU» использовать Ethernet (TCP/IP) и последовательный интерфейсы для сообщений Modbus

Затем продолжите выполнять настройки, описанные далее для Modbus RTU или Modbus TCP, в зависимости от варианта использования.

Modbus RTU

Часть 1. Конфигурирование устройств

Войдите в меню [Пар_ устр_ / Modbus / Связь / RTU] и установите следующие параметры связи:

- «ID п_у_» адрес подчиненного устройства, который требуется для точной идентификации устройства.
- «Скор_ пер_ дан_» скорость передачи данных в бодах, который должен использовать последовательный интерфейс.

Также необходимо выбрать указанные ниже специфические параметры интерфейса RS485, такие как:

- количество битов данных.
- Один из указанных ниже поддерживаемых вариантов передачи данных: количество битов данных, четный, нечетный, парный или непарный, количество стоповых битов.
- «t-пауза»: ошибки связи будут распознаны только после истечения времени контроля «t-пауза».
- Время реагирования (определение периода, в течение которого необходимо обработать запрос от главного устройства).

Часть 2. Подключение аппаратных средств

- Для подключения аппаратуры к системе контроля используется интерфейс RS485, установленный на задней панели устройства (RS485, оптоволоконный или через разъемы).
- Подключите устройство к шине (см. электрическую схему).

Обработка ошибок — ошибки аппаратного обеспечения

Информация по физическим ошибкам связи, таким как:

- ошибка скорости передачи данных;
- ошибка четности ...

может быть получена с помощью регистратора событий.

Обработка ошибок — ошибки уровня протокола

Если, например, запрос содержит несуществующий адрес памяти, то в ответ на запрос от устройства поступит сообщение об ошибке с кодами ошибок, которые необходимо интерпретировать соответствующим образом.

Modbus TCP

ПРИМЕЧАНИЕ!

Установка соединения с устройством через TCP/IP возможна только в том случае, если устройство снабжено интерфейсом сети Ethernet (RJ45).

Для установления соединения с сетью обратитесь к системному администратору.

Часть 1. Установка параметров ТСР/ІР

Выведите меню [Пар_ устр_ / ТСР/ІР / Конф-я ТСР/ІР] на панели ИЧМ и установите следующие параметры:

- aдpec TCP/IP;
- маска подсети;
- шлюз.

Часть 2. Конфигурирование устройств

Войдите в меню «Параметр устройства/Modbus» и установите следующие параметры связи:

- Установка идентификатора устройства требуется только в том случае, если сеть TCP подлежит сопряжению с сетью RTU.
- Если необходимо использовать порт, отличный от 502, выполните следующие действия:
 - В настройках порта ТСР выберите опцию «Частный».
 - ∘ Установите номер порта.
- Установите максимально допустимое «время бездействия связи». После истечения этого времени (времени, в течение которого связь отсутствует) устройство регистрирует неисправность в главной системе или систем связи.

• Разрешить или запретить блокировку команд SCADA.

Часть 3. Подключение аппаратных средств

- Для подключения аппаратуры к системе контроля используется интерфейс RS485, установленный на задней панели устройства.
- Подключение устройства осуществляется кабелем Ethernet надлежащего типа.

АДАПТЕР SC

АДАПТЕР SC является отдельным компьютерным инструментом, поэтому его использование подробно описано в руководстве АДАПТЕР SC.

Если необходимо загрузить предыдущее заданное пользователем сопоставление из MCA4, чтобы его можно было использовать в качестве шаблона для дальнейших адаптаций, то это можно сделать с помощью *Smart view*. Эту программу также можно использовать для передачи измененных сопоставлений в MCA4. См. раздел «Сопоставление точек данных с помощью АДАПТЕР SC».

Затем запустите АДАПТЕР SC. После выбора команд меню [Файл / Создать] или [Файл / Открыть] необходимо выбрать модель устройства и протокол связи (в данном случае «Modbus»). После этого отобразятся шесть вкладок: «ФНК1» ... «ФНК6». На каждой из этих вкладок отображается таблица сопоставленных объектов данных.

ΦНК

- Номером функционального кода определяется тип объектов данных, которые он может содержать.
 - ФНК1, ФНК2 содержат состояния (но не измеренные значения).
 - ФНК3, ФНК4 могут содержать все типы, кроме команд.
 - ФНК5, ФНК6 предназначены для команд.
 - ФНК16 предназначен для особых сообщений из нескольких слов (в основном, для синхронизации по времени).

Дополнительную информацию см. в спецификации Modbus!

Адрес, Положение бита

- Это адрес Modbus, с которым будет сопоставлен объект данных.
- Положение бита отображается, только если есть смысл ее выбрать (в частности, для двоичных состояний длиной в 1 бит).

Объект данных, Описание, Комментарий

- Объект данных, который будет сопоставлен, и текст описания. Тип информации, которую представляет объект данных, должен поддерживаться МСА4, и поэтому в списке выбора отображаются поддерживаемые элементы из списка моделей устройств.
- В качестве комментария отображается определенный пользователем текст без какого-либо технического значения. Его можно использовать при архивировании справочных сведений о сопоставлении.

Формат, Размер бита, Замкнут

- Выберите формат объекта данных:
 - ∘ «Int16» Целое число длиной 16 бит
 - «Int32» Целое число длиной 32 бита
 - «Uint32» Беззнаковое (то есть неотрицательное) целое число длиной 32 бита
 - «Плавающее значение» Число с плавающей запятой (согласно IEEE 754)
- Размер бита автоматически задается согласно формату объекта данных.
- С помощью флажка «Замкнут» определяется, следует ли заблокировать данные Modbus (до явного подтверждения).

Коэффициент, Масштабирование

- Укажите коэффициент и уровень масштабирования данных (если эти поля ввода отображаются). Масштаб может быть следующим.
 - «Первичный» Масштабирование объекта данных до первичного значения
 - «Вторичный» Масштабирование объекта данных до вторичного значения
 - «Относительный» Масштабирование объекта данных относительно номинального значения

Сведения о передаче измененного сопоставления на устройство МСА4 см. в документации к инструменту *АДАПТЕР SC* и \longrightarrow «Сопоставление точек данных с помощью АДАПТЕР SC» (так как сопоставление точек данных является функцией общего порядка и одинаково используется в нескольких протоколах связи, то описывается отдельно).

3.7.3 High Tech Line 3 — сопоставление точки данных с совместимым модулем Modbus

Можно создать сопоставления точек данных Modbus, которые имитируют связь с некоторым другим устройством. Это включает создание файла *. HptSMap и загрузку его в MCA4, как описано в \Longrightarrow «Сопоставление точек данных с помощью AДАПТЕР SC».

Можно (с некоторым ограничением, которое указано ниже) создать сопоставление *. HptSMap, чтобы сделать связь Modbus MCA4 совместимым с устройством *High Tech Line* 3.

В качестве шаблона для отдельных адаптаций в Woodward предлагается два готовых файла Modbus-*. HptSMap (ModbusMRI3_IER. HptSMap и ModbusMRU3. HptSMap), что делает MCA4 совместимым с **MRI3** или **MRU3** (если возможно). Эти файлы сопоставления можно найти на DVD-диске продукта, который входит в комплект поставки. Или же ее можно загрузить с веб-адреса, который напечатан как QR-код на этикетке MCA4.

Эти два файла Modbus-*. HptSMap представляют всю информацию, которая предоставляется соответствующим устройством *High Tech Line 3* со следующими исключениями, которые остаются вследствие технических ограничений:

- Значения настройки МСА4 нельзя изменить с помощью SCADA. Поэтому регистры Modbus 0x40 ... 0x7F, которые относятся к настройке параметров, не представлены в файлах *. HptSMap. Единственная поддерживаемая функция переключение наборов параметров, адрес Modbus 0x3F: Активный набор параметров можно считывать и изменять.
- Записи замыкания невозможно считать с помощью Modbus. Однако можно считать запись замыкания, связанную с HighPROTEC, по адресу 0x80, которая содержит номер замыкания, причину отключения и временную отметку замыкания.
- В сигналах состояния аварийного сигнала и состояниях замыкания всегда отображается некоторое заблокированное состояние. Заблокированные состояния можно подтвердить (сбросить) на МСА4 или с помощью определенной команды Modbus. Подобное поведение соответствует поведению устройства High Tech Line 3 в том, что посредством Modbus всегда считывается только последняя запись неисправности.
- Все состояния определены как заблокированные в этих двух файлах *. HptSMap. Если это нежелательно, можно изменить файлы *. HptSMap с помощью инструмента *АДАПТЕР SC* и снять блокировку. (См. руководство пользователя *АДАПТЕР SC*, главу «Создание сопоставления протокола, шаг 2».)
- Невозможно прочитать версию программного обеспечения. В этом адресе Modbus MCA4 всегда возвращает постоянное значение. Однако эту константу можно задать вручную с помощью *АДАПТЕР SC*.

3.7.4 Сопоставление точек данных с помощью АДАПТЕР SC

Программные инструменты

ПРИМЕЧАНИЕ!

Сопоставление, заданное по умолчанию, нельзя загрузить для дальнейшего редактирования.

Задание сопоставления точек данных

Для параметра [Пар_ устр_ / Имя протокола / Настр. объекта данных] *«Тип сопоставления SCADA»* можно задать значение «Стандарт» или «Пользовательский».

- «Стандарт» означает, что защитное устройство использует сопоставление точек данных по умолчанию (даже если в МСА4 уже было загружено пользовательское сопоставление).
- «Пользовательский» означает, что защитное устройство использует пользовательское сопоставление точек данных. (Если не было загружено ни одного допустимого файла сопоставления, то устройство сообщит об этом, выдав следующее значение: [Пар_устр_/Имя протокола / Расширенный] «Время обновления» = «Ошибка 1/2».)

Передача сопоставления точек данных

Если на защитном устройстве уже имеется пользовательское сопоставление точек данных, его можно загрузить и использовать для дальнейшего редактирования. (Сопоставление по умолчанию загрузить нельзя.)

В зависимости от значения параметра *«Тип сопоставления SCADA»*, активное сопоставление является либо сопоставлением по умолчанию, либо ранее загруженным допустимым файлом сопоставления.

И загрузку файла сопоставления, и (позднее) выгрузку отредактированного файла сопоставления необходимо выполнять в программе *Smart view*, к которой должно быть подключено защитное устройство.

После подключения к *Smart view* и получения всех данных устройства дважды щелкните элемент меню [Пар устр / Имя протокола / Настр. объекта данных].

Откроется диалоговое окно, в котором имеется кнопка «Передача конфигурации SCADA» (см. **(1)** на приведенном ниже рисунке).

При нажатии этой кнопки откроется другое диалоговое окно — «Настройка сопоставления точек SCADA». В этом окне имеются две кнопки, (2) и (a), как показано на рисунке ниже.

При выборе кнопки (a) выполняется загрузка. Защитное устройство отправляет сопоставление определенных пользователем протоколов SCADA в окно «Настройка сопоставления точек SCADA», а затем отображается диалоговое окно «Сохранить как», в котором из этих определений протокола можно создать новый файл *. HptSMap (при стандартном сопоставлении (с заводскими настройками) такая загрузка невозможна).

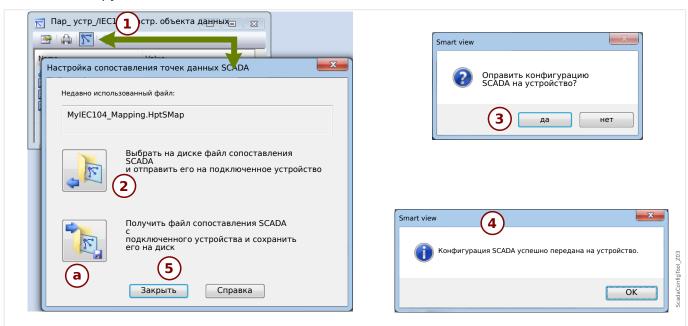


Рис. 58: Пример использования Smart view для передачи файла * . HptSMap на защитное устройство.

При выборе кнопки **(2)**, «Выбрать на диске файл сопоставления SCADA и отправить его на подключенное устройство», начинается выгрузка отредактированного файла сопоставления. При нажатии этой кнопки открывается диалоговое окно выбора файлов.

Затем необходимо перейти к файлу *. HptSMap, в котором содержатся необходимые определения SCADA, и нажать кнопку «Открыть».

Smart view откроет и проверит файл *. HptSMap. Если окажется, что файл совместим с подключенным защитным устройством, в диалоговом окне появится запрос подтвердить, что определения протокола следует передать на защитное устройство [см. (3) на рисунке].

После нажатия кнопки «да» (и ввода пароля для уровня доступа «Supervisor-Lv3») данные будут переданы, а пользователь получит сообщение об успешном выполнении операции: **(4)**.

Можно будет нажать кнопку «Закрыть» **(5)** в диалоговом окне «Настройка сопоставления точек SCADA», чтобы вернуться в главное окно *Smart view*.

Наконец, пользовательское сопоставление следует активировать, задав для параметра [Пар_ устр_ / имя протокола / Настр. объекта данных] *«Тип сопоставления SCADA»* значение «Пользовательский».

Не забудьте перенести все (или все измененные) настройки (из ПО *Smart view*) на защитное устройство. Более того, рекомендуется включить функцию автоматического обновления ПО *Smart view*, чтобы надлежащим образом обновлялись все записи в диалоговом окне [Настр. объекта данных].

3.8 Синхронизация по времени

Устройство можно синхронизировать с центральным времязадающим генератором. Это дает следующие преимущества.

- Время не отклоняется от эталонного времени. Таким образом, постоянно накапливающееся отклонение от эталонного времени будет компенсироваться. См. также раздел «Спецификации» (допуски часов реального времени).
- Во всех синхронизированных устройствах используется одинаковое время. Поэтому внесенные в журнал события, имевшие место на отдельных устройствах (отдельные события регистратора событий, записи сигналов), можно сравнивать и оценивать.

Время устройства можно синхронизировать с помощью перечисленных далее протоколов.

- IRIG-B
- SNTP
- Протокол связи Modbus (RTU или TCP)
- Протокол связи IEC 60870-5-103
- Протокол связи IEC 60870-5-104
- Протокол связи DNP3

Эти протоколы используют различные аппаратные интерфейсы и отличаются по точности. Дополнительные сведения см. в разделе «Спецификации/ погрешности».

Без синхронизации времени

Это возможно, но не рекомендуется для стандартных отраслевых вариантов применения.

IRIG-B

Аппаратный интерфейс	Рекомендуемое применение
Разъем IRIG-B	Рекомендуется, если интерфейс доступен.

SNTP

Аппаратный интерфейс	Рекомендуемое применение	
RJ45 (Ethernet)	Рекомендуется как альтернатива IRIG-B, особенно при использовании IEC 61850 или Modbus TCP.	

Modbus RTU

Аппаратный интерфейс	Рекомендуемое применение	
RS485, D-SUB или оптоволоконный	Рекомендуется при использовании протокола связи Modbus RTU и отсутствии часов реального времени IRIG-B.	

Modbus TCP

Аппаратный интерфейс	Рекомендуемое применение	
RJ45 (Ethernet)	Ограниченная рекомендация: если используется протокол связи Modbus TCP, отсутствуют часы реального времени IRIG-В или недоступен сервер SNTP.	

IEC 60870-5-103

Аппаратный интерфейс	Рекомендуемое применение	
RS485, D-SUB или оптоволоконный	Рекомендуется при использовании протокола связи IEC 60870-5-103 и отсутствии часов реального времени IRIG-B.	

IEC 60870-5-104

Аппаратный интерфейс	Рекомендуемое применение	
RJ45 (Ethernet)	Рекомендуется при использовании протокола связи IEC 60870-5-104 и отсутствии часов реального времени IRIG-B.	

DNP3

Аппаратный интерфейс	Рекомендуемое применение	
RS485 или RJ45 (Ethernet)	Ограниченная рекомендация: если используется протокол связи, отсутствуют часы реального времени IRIG-В или недоступен сервер SNTP.	

Точность синхронизации времени

Точность синхронизации системного времени на устройствах зависит от нескольких факторов:

- точность подключенного времязадающего генератора;
- использующийся протокол синхронизации;
- при использовании Modbus TCP, SNTP, IEC 60870-5-104 или DNP3 TCP/UDP сетевая нагрузка и время передачи пакетов данных.

ПРИМЕЧАНИЕ!

Необходимо учитывать точность времязадающего генератора. Отклонения времени генератора вызовут такие же отклонения системного времени устройства.

Выбор часового пояса и протокола синхронизации

Реле защиты контролирует всемирное координированное (UTC) и местное время. Это означает, что устройство можно синхронизировать с временем UTC, а на дисплее будет отображаться местное время.

Синхронизация с всемирным координированным временем (рекомендуется)

Обычно время синхронизируется с всемирным координированным временем (UTC). Это означает, например, что времязадающий генератор IRIG-В отправляет на реле защиты данные о всемирном координированном времени. Рекомендуется использовать именно этот способ, поскольку он гарантирует непрерывную синхронизацию времени. При этом отсутствуют «скачки во времени», связанные с переходом на летнее время.

Чтобы на устройстве отображалось текущее местное время, можно настроить часовой пояс и переход на летнее время (то есть изменение между летним и зимним временем).

Выполните следующие этапы настройки в ветви меню [Пар_ устр_ / Время / Час пояс].

- Задайте для параметра «Час_ пояса» данные местного часового пояса.
- Затем настройте переход на летнее время.

После этого выполните следующее в ветви меню [Пар_ устр_ / Время / Синх. вр. / Синх. вр.].

- Настройте параметр *«Синх. вр.»* на использующийся протокол синхронизации времени (например, «IRIG-B»).
- Задайте значения параметров протокола синхронизации (см. соответствующий раздел).

Синхронизация с использованием местного времени

Если необходимо выполнить синхронизацию с использованием местного времени, оставьте часовой пояс «UTC+0 Лондон» и не используйте переход на летнее время.

ПРИМЕЧАНИЕ!

Синхронизация системного времени реле выполняется исключительно с помощью протокола синхронизации, выбранного в меню [Пар_ устр_ / Время / Синх. вр. / Синх. вр.].

Без синхронизации времени

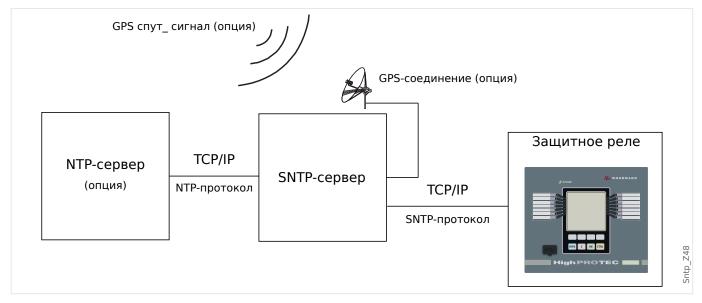
Чтобы на устройстве отображалось текущее местное время, можно настроить часовой пояс и переход на летнее время.

Выполните следующие этапы настройки.

- В ветви меню [Пар_ устр_ / Время / Синх. вр. / Синх. вр.] задайте для параметра «Синх. вр.» значение «-».
- Затем в ветви меню [Пар_ устр_ / Время / Час_пояс] задайте для параметра «Час_ пояса» данные местного часового пояса.
- Затем настройте переход на летнее время.
- Установите дату и время в меню [Пар устр / Время] «Дата и время».

3.8.1 SNTP

ПРИМЕЧАНИЕ!



Важное предварительное условие: Устройству необходим доступ к серверу SNTP через подсоединенную сеть. Предпочтительно, чтобы этот сервер был установлен локально.

Принцип работы и основные области применения

SNTP — это стандартный протокол для синхронизации времени через сеть. Для этого в сети должен быть доступен, по крайней мере, один сервер SNTP. Устройство можно настроить для работы с одним или двумя серверами SNTP.

Системное время защитного реле будет синхронизироваться с подключенным сервером SNTP 1-4 раза в минуту. Сервер SNTP, в свою очередь, синхронизирует собственное время с помощью протокола NTP с другими серверами NTP. Это нормальная ситуация. В качестве альтернативы он может синхронизировать время с помощью GPS, радиоуправляемых часов или аналогичного устройства.

Точность

На точность часов защитного реле влияют точность используемого сервера SNTP и совершенство его опорного сигнала синхронизации. Дополнительные сведения о точности:

□> «Спецификации/погрешности»

Дополнительные сведения о точности см. в главе «Спецификации».

Каждый раз при отправке информации о времени сервер SNTP отправляет информацию о точности.

- Слой: слой указывает, через сколько взаимодействующих серверов NTP используемый сервер SNTP подключен к атомным или радиоуправляемым часам.
- Точность: точность системного времени, предоставляемого сервером SNTP.

Кроме того, на точность синхронизации времени влияют характеристики подключенной сети (трафик и время передачи пакетов данных).

Рекомендуется использовать установленный локально сервер SNTP с точностью ≤200 мкс. Если добиться этого невозможно, совершенство подключенного сервера можно проверить в меню [Работа / Отображение состояния / Синх. вр. / SNTP].

- Качество сервера свидетельствует о точности используемого сервера. Качество должно быть ХОРОШИМ или ДОСТАТОЧНЫМ. Не следует использовать сервер ПЛОХОГО качества, так как это может привести к нарушению синхронизации времени.
- Качество сети свидетельствует о сетевой нагрузке и времени передачи пакетов данных. Качество должно быть ХОРОШИМ или ДОСТАТОЧНЫМ. Не следует использовать сеть ПЛОХОГО качества, так как это может привести к нарушению синхронизации времени.

Использование двух серверов SNTP

При использовании двух серверов SNTP устройство по умолчанию всегда выполняет синхронизацию с сервером 1.

При отказе сервера 1 устройство автоматически переключается на сервер 2.

После восстановления сервера 1 после сбоя устройство снова переключается на сервер 1.

Ввод SNTP в эксплуатацию

Синхронизация времени SNTP активируется в меню [Пар устр / Время / Синх. вр.].

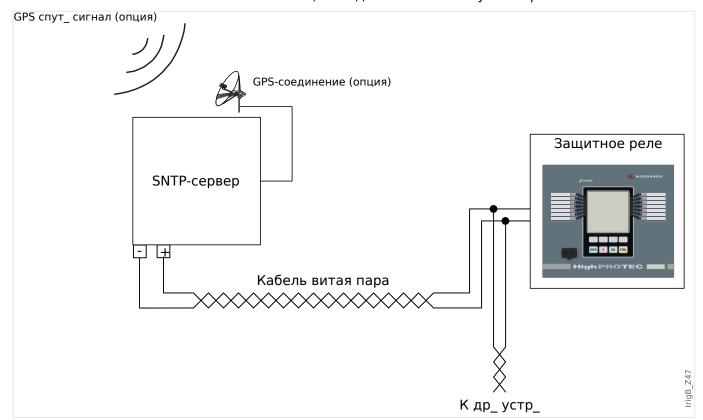
- Установите для параметра «Синх. вр.» значение «SNTP».
- Задайте IP-адрес первого сервера в меню SNTP.
- Задайте IP-адрес второго сервера, если он существует.
- Задайте для всех настроенных серверов значение «активный».

3.8.2 IRIG-B00X

ПРИМЕЧАНИЕ!

Требование. Необходим генератор кода времени IRIG-B00X. IRIG-B004 и выше поддерживает/передает «информацию о годе».

Если используется код времени IRIG, не поддерживающий информацию о годе (IRIG-B000, IRIG-B001, IRIG-B002, IRIG-B003), то задать год в устройстве необходимо вручную. В таких случаях правильная информация о годе будет предварительным условием правильной работы IRIG-B.


Принцип — основное применение

IRIG-B — самый распространенный стандарт синхронизации времени средневольтных защитных устройств.

Защитное устройство поддерживает IRIG-B согласно стандарту IRIG STANDARD 200-04.

Это значит, что поддерживаются все форматы синхронизации времени IRIG-B00X (IRIG-B000/B001/B002/B003/B004/B005/B006/B007). Рекомендуется использовать коды IRIG-B004 или выше, передающие «информацию о годе».

Системное время защитного устройства синхронизируется с подключенным генератором кода IRIG-B раз в секунду. Точность используемого генератора кода IRIG-B можно повысить с помощью подключения к нему GPS-приемника.

Местоположение интерфейса IRIG-В зависит от типа устройства. См. электрическую схему, входящую в комплект защитного устройства.

Ввод IRIG-В в эксплуатацию

Активируйте синхронизацию IRIG-В в меню [Пар устр / Время / Синх. вр.].

- Выберите «IRIG-В» в меню синхронизации времени.
- Задайте для синхронизации времени в меню [IRIG-B] значение «акт ».
- Выберите тип IRIG-B (B000-B007).

Анализ сбоев

Если устройство не принимает код времени IRIG-B более 60 с, состояние IRIG-B меняется с активного на неактивное, и в регистратор событий вносится запись.

Проверьте состояние IRIG-B в меню [Работа / Отображение состояния / Синх. вр. / IRIG-B].

Если окажется, что состояние IRIG-B не «акт_», выполните следующее.

- Сначала проверьте проводку IRIG-B.
- Убедитесь, что настроен правильный тип IRIG-B00X.

Команды управления IRIG-B

Кроме информации о дате и времени, код IRIG-В может передавать до 18 команд управления, которые защитное устройство может обрабатывать. Их должен устанавливать и подавать генератор кода IRIG-В.

В защитном устройстве предусмотрено до 18 вариантов назначения команд управления IRIG-В для выполнения назначенного действия. Если действию присвоена команда управления, оно будет выполнено, как только передаваемая команда управления будет иметь истинное значение. Например, можно начать запуск статистики или включить с помощью реле уличное освещение.

ПРИМЕЧАНИЕ!

Команды управления IRIG-В не регистрируются ни регистратором событий, ни аварийным осциллографом.

Лучший способ записать сигналы управления (при необходимости) — использовать логическое уравнение (1 шлюз), так как схемы программируемой логики всегда регистрируются.

4 Элементы защиты

4.1 Модуль Защ: общая защита

Модуль «Модуль общей защиты» («Защ») служит внешней оболочкой для всех других модулей защиты, то есть все они входят в этот модуль.

ПРЕДУПРЕЖДЕНИЕ!

Если в модуле «Защ» задать для параметра [Парам_ защиты / Глоб_ пар_ защ_ / Защ] «Функция» значение «неакт_» или заблокировать этот модуль, то **ни одна** из функций защиты устройства МСА4 работать не будет.

Постоянная блокировка всех защитных элементов

Чтобы полностью отключить всю защиту, перейдите в меню [Парам_ защиты / Глоб_ пар_ защ_ / Защ]:

• Задайте для параметра «Функция» значение «неакт ».

Временная блокировка всех защитных элементов

Чтобы разрешить временную блокировку всей защиты, перейдите в меню [Парам_ защиты / Глоб пар защ / Защ]:

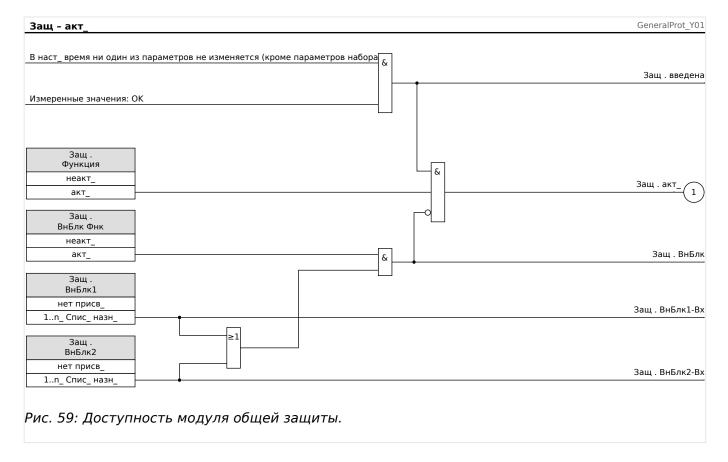
- Задайте для параметра «ВнБлк Фнк» значение «акт ».
- Назначьте сигнал блокировки элементу «ВнБлк1».
- Можно также назначить сигнал блокировки элементу «ВнБлк2».

Если любой их назначенных сигналов примет значение «Истина», то вся защита будет заблокирована (пока любой из этих сигналов будет истинным).

Постоянная блокировка всех команд отключения

Чтобы полностью блокировать все команды отключения, перейдите в меню [Парам_ защиты / Глоб_ пар_ защ_ / Защ]:

• Задайте для параметра «Блк КомОткл» значение «акт_».

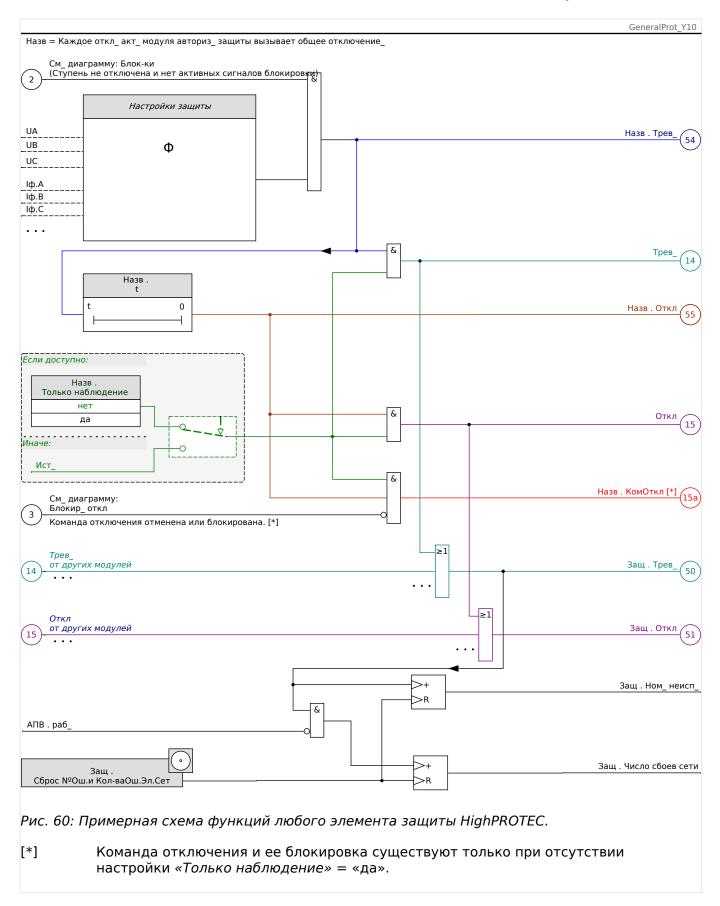

Временная блокировка всех команд отключения

Чтобы разрешить временную блокировку всех команд отключения, перейдите в меню [Парам_ защиты / Глоб_ пар_ защ_ / Защ]:

- Задайте для параметра «ВнБлкКомОтклФнк» значение «акт_».
- Назначьте сигнал блокировки элементу «ВнБлкКомОткл».

Если назначенный сигнал примет значение «Истина», то все команды отключения будут заблокированы (пока этот сигнал будет истинным).

Доступность функции защиты


4.1.1 Общие аварийные сигналы и общие команды отключения

Каждый защитный элемент генерирует собственные аварийные сигналы и сигналы отключения. В целом, все аварийные сигналы и команды отключения передаются на главный модуль «Защ» за одним важным исключением.

Если элемент защиты имеет настройку *«Только наблюдение»* (в ветви меню [Планир_ устр_]), то аварийные сигналы и сигналы отключения передаются в главный модуль «Защ», только если для параметра *«Только наблюдение»* задано значение «нет».

Если «Только наблюдение» = «да», то модуль работает только как контрольный элемент. Аварийные сигналы и сигналы отключения сохраняются как свойственные данному элементу состояния (то есть эти состояния можно проверить в ветви меню [Работа / Отображение состояния] и назначить как варианты выбора), но в модуле отсутствует команда отключения, и аварийные сигналы/сигналы отключения не приводят к подаче общего аварийного сигнала или общему отключению.

На этой схеме представлен основной принцип работы защитных элементов. (Тем не менее, следует помнить, что возможно наличие характерных для устройств и элементов защиты отклонений. Некоторые устройства не имеют функций измерения напряжения, другие — функций измерения силы тока, для некоторых

элементов защиты требуются другие таймеры и/или фазоспецифические алгоритмы и т. д. Точные сведения о функциональных возможностях того или иного модуля защиты см. в соответствующих главах.)

Аварийный сигнал

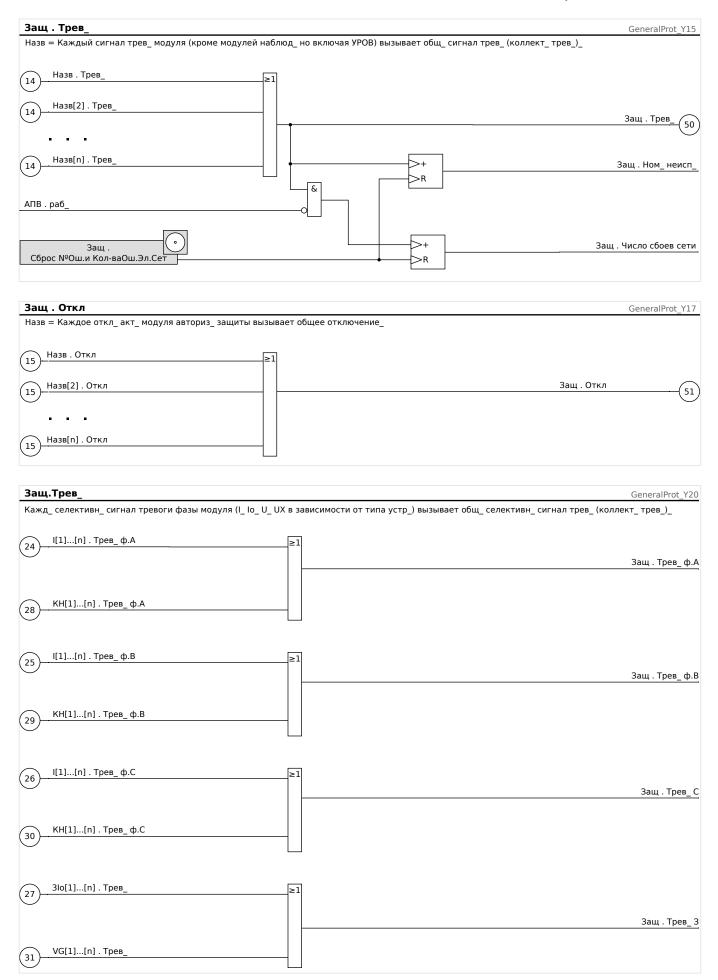
- Если модуль защиты под названием «Назв» обнаружит сбой, то подаст аварийный сигнал: «Назв . Трев_» «(54)» на схеме.
 - При отсутствии настройки «Назв. Только наблюдение» = «да» аварийный сигнал будет передан на «(14)» на схеме главный модуль «Защ» и запустит Общий аварийный сигнал: «Защ. Трев » «(50)» на схеме.
 - Поскольку запустить общий аварийный сигнал могут и другие защитные элементы, можно сказать, что общий аварийный сигнал является коллективным сигналом всех элементов защиты, объединенным логической функцией «ИЛИ».

Отключение

- Если сбой будет обнаруживаться и по истечении времени таймера конкретной ступени защиты «Hase . t», что модуль подаст сигнал отключения: «Hase . Откл» «(55)» на схеме.
 - При отсутствии настройки «Назв . Только наблюдение» = «да» сигнал отключения будет передан на «(15)» на схеме главный модуль «Защ» и запустит общее отключение: «Защ . Откл» «(51)» на схеме.
 - Поскольку запустить общее отключение могут и другие защитные элементы, можно сказать, что общее отключение является коллективным сигналом всех элементов защиты, объединенным логической функцией «ИЛИ».

Команда отключения (и ее блокировка существуют только при отсутствии настройки «Только наблюдение» = «да»)

• В случае *общего отключения* модуль защиты подаст *команду отключения*: «Назв . КомОткл» — «(15а)» на схеме, если не заблокирована команда отключения данного модуля (см. раздел ⊨> «Блокировки»).


Поскольку запустить команду отключения могут и другие защитные элементы, устройство МСА4 оснащено так называемым диспетчером отключения каждого выключателя, что позволяет назначать ему команды отключения (см. раздел \$\bullet\$ \sim \sim \sim \sim \sim \sim \sim \neg \text{0.2} Диспетчер отключения — назначение команд отключения»).

Сигналы избирательной защиты фаз

Кроме общего аварийного сигнала и сигнала общего отключения модуль «Защ» имеет и соответствующие фазоспецифические сигналы. Эти сигналы также может запустить любой из модулей защиты «Назв», если сможет обнаружить замыкания 1р и в отсутствие настройки «Назв . Только наблюдение» = «да».

Примеры: «Защ . Трев_ ф.А» — коллективный сигнал (объединенный логической функцией «ИЛИ») для всех аварийных сигналов, подаваемых любым из элементов защиты в отношении фазы ф.А.

«Защ . Откл ф.А» — коллективный сигнал (объединенный логической функцией «ИЛИ») для всех сигналов отключения, подаваемых любым из элементов защиты в отношении фазы ф.А.

4 Элементы защиты

4.1 Модуль Защ: общая защита

Защ.Откл	GeneralProt_Y19
Каждый селективн_ сигнал откл_ авториз_ модуля (I_ IG_ V_ VX	в зависимости от типа устр_) вызывает общ_ селективн_ откл_
[16][п] . Откл ф.А ≥1	
	Защ . Откл ф.А
20 KH[1][n] . Откл ф.А	
17[n] . Откл ф.В	
	Защ . Откл ф.В
21 KH[1][n] . Откл ф.В	
	Защ . Откл ф.С
3Io[1][п] . Откл≥]	
	Защ . Откл З
VG[1][n] . КомОткл	

4.1.2 Определение направления

Устройство МСА4 отслеживает направление фазных сбоев и замыканий на землю.

Функция определения направления устройства МСА4 является встроенной функцией модуля «Защ».

Все основные настройки находятся в ветви меню [СистПар / Направление].

Результаты определения направления отображаются в следующих ветвях меню:

- [Работа / Измеренные значения / Направление]
 - Направление фазы
 - При нормальной работе и сбоях
- [Работа / Отображение состояния / Защ]
 - Направление фазы и замыкания за землю
 - Только при сбоях

Если фазоры напряжения и тока слишком малы для того, чтобы определить направление, то для направления отображается значение «невозможно».

Определение направления используется в сверхтоковых модулях I[n], если они настроены на работу в направленном режиме (ANSI 67). То же верно в отношении направленного режима модулей защиты по измеренному и рассчитанному току замыкания на землю (3lo[n], ANSI 67N). В таких случаях направленные элементы срабатывают только при сбоях в расчетном направлении.

Определения

- Поляризующее количество количество, которое используется как опорное значение.
- Операционное количество угол между этим и поляризующим количеством (опорным значением) есть доля неопределенности при определении направления.
- Угол направления угол, применяемый для определения характеристики направления по отношению к поляризующему количеству.
- **Характеристика направления** прямая, перпендикулярная *углу направления* и отсекающая область сбоев в *прямом* направлении от области сбоев в *обратном* направлении (*назад*).

4.1.2.1 Направление межфазного короткого замыкания

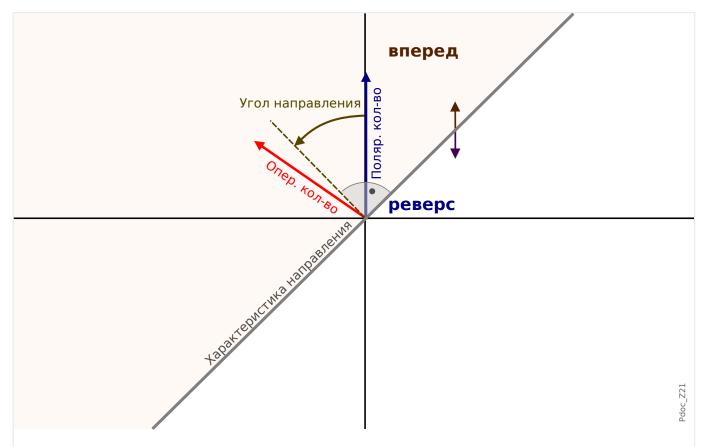
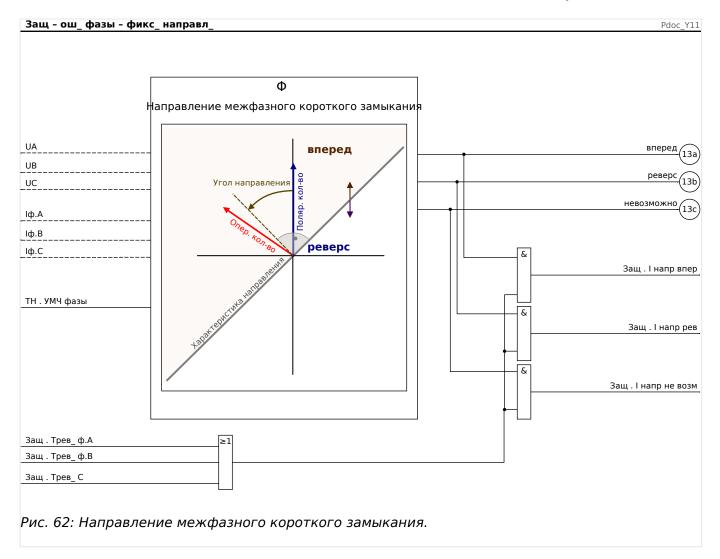



Рис. 61: Принцип определения направления межфазного короткого замыкания.

Метод определения	Операционное	Поляризующее	Угол направления
направления	количество	количество	
Фазный ток	Наивысший фазный ток	Линейное напряжение других фаз	»УМЧ фазы«

Устройство МСА4 оценивает угол между током фазы с наивысшим показателем тока (Операционное количество) и линейным напряжением других фаз (Поляризующее количество). Для трехфазных замыканий, когда линейное напряжение слишком низкое, используется память напряжения.

Настройка *угла направления* зависит от значения параметра [СистПар / Направление] «УМЧ фазы». Характеристика направления определяется как линия, перпендикулярная *углу направления*.

осторожно!

• Если [СистПар / Общие настройки] «Черед_ фаз» = «АВС», то для угла направления задается значение «УМЧ фазы».

Следовательно, характеристика направления определяется как «УМЧ фазы» \pm 90°.

• Если [СистПар / Общие настройки] «Черед_ фаз» = «АСВ», то для угла направления задается значение («УМЧ фазы» + 180°).

Следовательно, характеристика направления определяется как «УМЧ фазы» \pm 270°.

4 Элементы защиты

4.1 Модуль Защ: общая защита

- Если фазовый угол операционного количества меньше, чем («УМЧ фазы» \pm 90°), то принимается решение *прямое*.
- Если фазовый угол операционного количества больше, чем («УМЧ фазы» \pm 90°), то принимается решение обратное (назад).

4.1.2.2 Направление замыкания на землю

Определения

- 3Іо изм это измеренное значение тока утечки на землю, то есть значение тока, измеренное на $4^{\rm om}$ TT.
- ЗІо расч это расчетное значение тока утечки на землю, то есть сумма (Iф.A +Iф.B+Iф.C).
- (См. также определения в разделе 🛶 «4.1.2 Определения».)

4.1.2.2.1 Методы определения направления

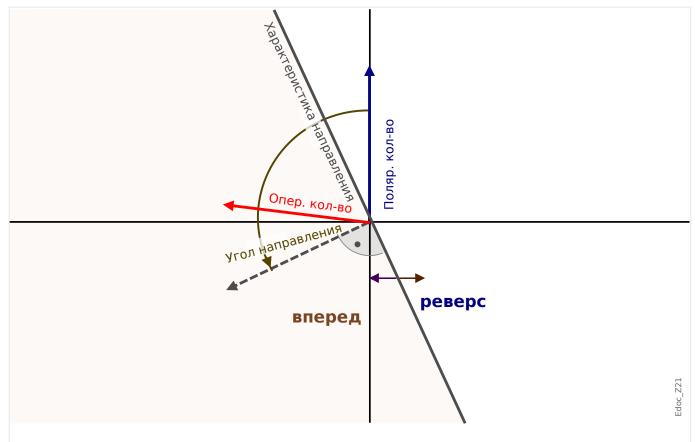
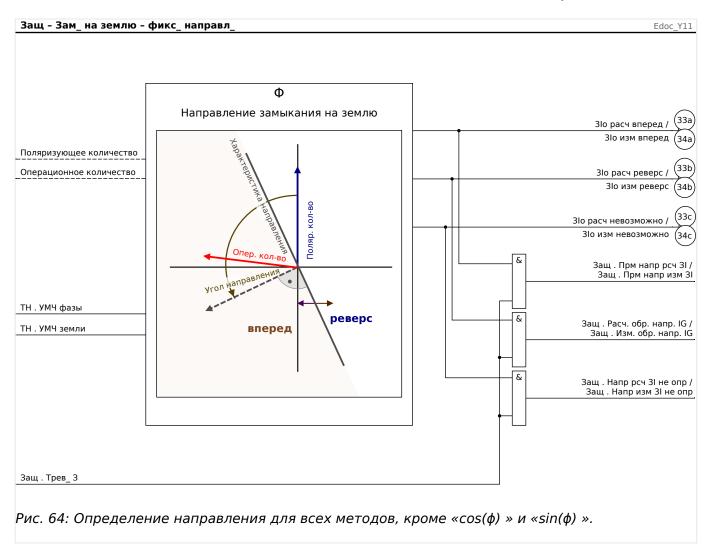
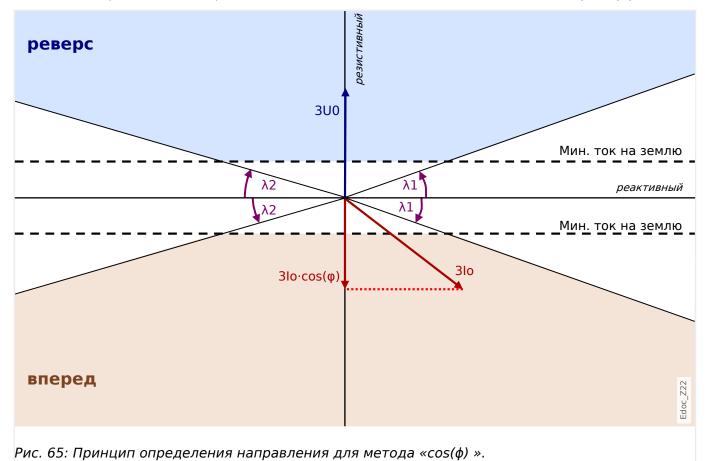
- Значения поляризующих и операционных количеств для параметра 3Iо изм указываются в меню [СистПар / Направление / Общий] «Прм напр изм 3I». Доступны следующие варианты:
 - = «ЗІ изм 3U0» при определении направления 3U0 используется как поляризующее, a3lo изм как операционное количество. См. раздел «Методы на основе 3U0, U2, 3lo изм, 3lo расч».
 - «I2,U2» напряжение с обратной последовательностью фаз U2 используется как поляризующее, а I2 — как операционное количество. См. раздел ⇒ «Методы на основе 3U0, U2, 3Io изм, 3Io расч».
 - = «Двойной» если доступны значения обратной последовательности I2 и U2, то данный метод работает так же, как метод определения направления «I2,U2». Иначе используются значения ЗIо изм и 3U0, как в методе определения направления «ЗI изм 3U0». См. раздел → «Методы на основе 3U0, U2, ЗIо изм, ЗIо расч».
 - = «соѕ(ф)» данный метод используется для определения направления замыкания на землю в компенсированных сетях. Иногда его называют методом обнаружения замыканий на землю по мощности. 3U0 поляризующее, а 3lo изм — операционное количество. См. раздел ⇒ «Определение направления замыкания на землю по мощности/малому току утечки».
 - «sin(ф)» данный метод используется для определения направления замыкания на землю в изолированных сетях. 3U0 — поляризующее, а 3Iо изм — операционное количество. См. раздел ⇒ «Определение направления замыкания на землю по мощности/малому току утечки».
- Значения поляризующих и операционных количеств для параметра 3lo расч указываются в меню [СистПар / Направление / Общий] «Пар выч напр 3l». Доступны следующие варианты:
 - «ЗІ рсч 3U0» при определении направления 3U0 используется как поляризующее, a3lo расч — как операционное количество. См. раздел «Методы на основе 3U0, U2, 3lo изм, 3lo расч».
 - = «IR отр» напряжение с обратной последовательностью фаз U2 используется как поляризующее, а I2 как операционное количество. См. раздел ⇒ «Методы на основе 3U0, U2, 3Io изм, 3Io расч».

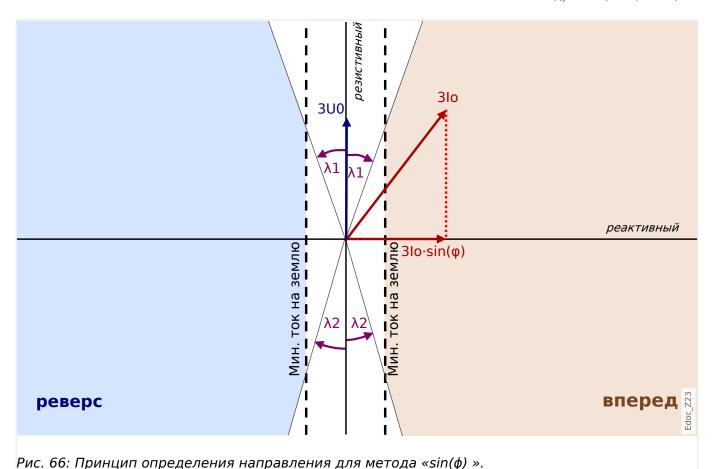
 - «ЗІ расч Іпол (ЗІ изм)» при определении направления ЗІо изм используется как поляризующее, аЗІо расч — как операционное количество. См. раздел ⇒ «Методы на основе ЗИО, U2, ЗІо изм, ЗІо расч».
 - «соѕ(ф)» данный метод используется для определения направления замыкания на землю в компенсированных сетях. Иногда его называют методом обнаружения замыканий на землю по мощности. 3U0 поляризующее, а ЗІо расч — операционное количество. См. раздел «Определение направления замыкания на землю по мощности/малому току утечки».

Направление рассчитывается с учетом угла между значениями поляризующего и операционного количества. Направляющий угол — это критерий, позволяющий устройству МСА4 отличать прямое направление от обратного. Этот угол определяется внутренними средствами и зависит от параметра «УМЧ фазы» или «УМЧ земли» ветви меню [СистПар / Направление / Общий].

Если значение параметра 3U0 используется как поляризующее количество, то для параметра [СистПар / Направление / Общий] «Источ 3U0» следует задать значение «измерено» или «рассчитано». В качестве измеренного значения 3U0 используются значения, полученные через $4^{\rm M}$ измерительный вход TH. Расчетное значение 3U0 представляет собой сумму (UAB+UBC+UCA).

4.1.2.2.2 Методы на основе 3U0, U2, 3lo изм, 3lo расч

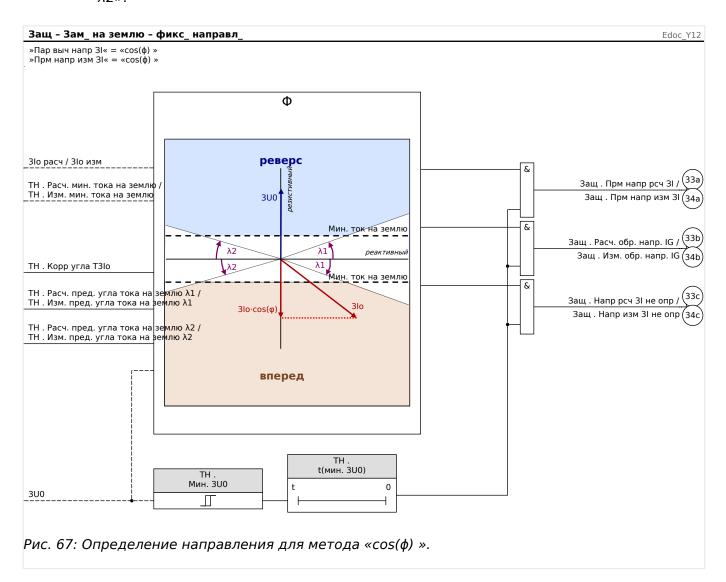




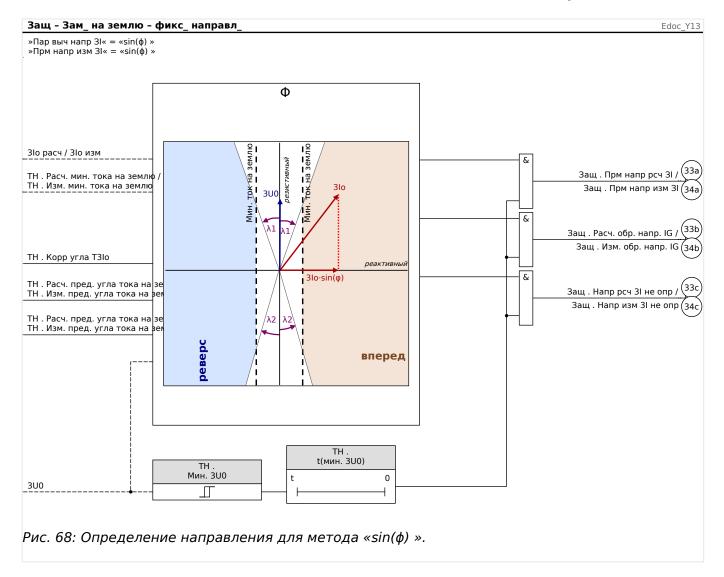

Рис. 63: Принцип определения направления для всех методов, кроме «cos(ф) » и «sin(ф) ».

Метод определения направления	Операцион- ное ко- личество	Поляри- зующее ко- личество	Угол направления
3I изм 3U0	ЗІо изм	3U0	УМЧ земли
3I рсч 3U0	31о расч		
IR отр	12	U2	90° + «УМЧ фазы»
Двойной для <i>«Прм напр</i>	12,	U2,	90° + »УМЧ фазы«
изм 3 <i>l</i> »	если доступны значения U2 и I2; иначе:		
(то есть для 3lo изм)	ЗІо изм	3U0	УМЧ земли
Двойной для «Пар выч	31о расч	ЗIo изм	0°
напр 3I»	если доступно значение 3lo изм; иначе:		
(то есть для 3lo расч)	31о расч	3U0	УМЧ земли
3І расч Іпол (3І изм)	31о расч	ЗIo изм	0°

4.1.2.2.3 Определение направления замыкания на землю по мощности/малому току утечки

В методах определения направления по мощности используются дополнительные настройки.


- [СистПар / Направление / Общий] «Мин. 3U0» ведущим критерием для определения направления замыкания на землю в компенсированных/ изолированных сетях является напряжение нейтрали. По этой причине результат определения направления замыкания на землю получается, только если напряжение нейтрали превышает пороговое значение «Мин. 3U0».
- [СистПар / Направление / Общий] «t(мин. 3U0)» для стабильного определения направления по переходным состояниям рекомендуется использовать дополнительную задержку. Если значение 3U0 превысит пороговое значение «Muh. 3U0», таймер запустится, и по его истечении будут получены результаты определения направления. При использовании в сочетании с элементом защиты от направленного замыкания на землю 3lo[n] эта задержка добавляется к задержке защиты 3lo[n].
- [СистПар / Направление / По мощности] «Изм. мин. тока на землю» пороговое значение для активной («cos(ф) ») или реактивной («sin(ф) ») составляющей тока.


Если для измерения 3Io изм используется плата «TIs» с чувствительными входами, то диапазон значений параметра «Изм. мин. тока на землю» зависит от значения на входе измерения тока, подключенного к 4^{My} измерительному входу TH на стороне источника 3U0.

— Для стандартных входов измерения тока используется заданное значение в диапазоне от 0,02 до 2,00 Іном.

- Для чувствительных входов измерения тока используется заданное значение в диапазоне от 0,002 до 2,00 Іном.
- [СистПар / Направление / По мощности] «Изм. пред. угла тока на землю $\lambda 1$ » и «Изм. пред. угла тока на землю $\lambda 2$ » ограничивающие углы, сокращающие размер зоны, в которой определяется направление (см. диаграммы на Рис. 67 ниже). Их рекомендуется настраивать аккуратно, поскольку таким образом можно будет сократить число решений, ошибочных из-за расхождения углов.

Если используется значение параметра 3lo расч, то же справедливо для соответствующих настроек [СистПар / Направление / По мощности] «Расч. мин. тока на землю», «Расч. пред. угла тока на землю $\lambda 1$ » и «Расч. пред. угла тока на землю $\lambda 2$ ».

Рекомендации по обеспечению точности

Для большей точности рекомендуется предпочесть параметр 3Io изм параметру 3Io расч и настройку «Источ 3U0» = «измерено» настройке «Источ 3U0» = «рассчитано».

Более того, рекомендуется проверить значение [СистПар / Направление / Общий] «Корр угла T3lo». Оно определяет величину коррекции угла, и позволяет откорректировать измеренное значение угла утечки на землю для трансформаторов тока. В частности, рекомендуется использовать его в расчетах по методу « $cos(\phi)$ ».

Точное измерение угла очень важно при определении направления методом $(\cos(\phi))$ ». Поэтому рекомендуется использовать трансформатор тока нулевой последовательности. У них выше точность определения угла, чем у трансформаторов, работающих по схеме Холмгрина.

Для компенсированных и изолированных сетей предпочтительнее использовать устройство МСА4 с чувствительными входами измерения тока, то есть с платой «TIs» (см. Раздел ⇒ «TIs — плата измерения токов фазы и малых токов замыкания на землю»), а не со стандартной платой измерения тока утечки на землю.

4.1.2.2.4 Указания по настройке

Данное указание относится только к настройке определения направления замыкания на землю в компенсированных сетях. Подробное описание особых настроек защиты (пороговое значение, таймеры и т. д.) см. в главе о защите от максимального тока на землю (\Longrightarrow «Ток на землю — защита от максимального тока замыкания на землю [50N/G, 51N/G, 67N/G]»).

Определение направления замыкания на землю методом cos(f) — метод определения 3Io изм и 3UO (измерено) (по мощности)

Ток утечки на землю 3 Io изм измеряется на 4^{om} измерительном входе TT с помощью трансформаторов тока нулевой последовательности, а значение 3 U0 измеряется на 4^{om} измерительном входе TH через соединение по схеме разомкнутого треугольника.

Войдите в ветвь меню [СистПар / Направление / Общий].

• Выберите для измерения тока замыкания на землю метод определения направления cos(f):

```
«Прм напр изм 3I» = «cos(\phi) »
```

• Выберите для использования измеренное напряжение нейтрали:

```
«Источ 3U0» = «измерено»
```

Войдите в ветвь меню [СистПар / Направление / По мощности].

• Необходимо будет настроить выбранный метод определения направления. При этом значения настроек будут зависеть от области применения устройства, и пользователю необходимо будет определить их самому.

```
«Мин. 3U0»
«t(мин. 3U0)»
«Изм. мин. тока на землю»
```

• Кроме того, можно будет скорректировать ограничивающие углы:

```
«Изм. пред. угла тока на землю \lambda 1» «Изм. пред. угла тока на землю \lambda 2»
```

После этого в случае замыкания на землю направление будет определено и отображено на экране [Работа / Отображение состояния / Защ].

Для использования результата определения направления в сочетании с элементом токовой защиты от замыканий на землю «ЗIo[n]» потребуются дополнительные настройки.

Войдите в ветвь меню [Планир устр].

• Включите один из элементов защиты от замыкания на землю в нужном направлении:

```
«3Io[n] . Реж_» = «вперед» или

«3Io[n] . Реж_« = «реверс»
```

• Если элемент защиты от замыканий на землю будет работать только как контрольная функция (то есть без общего аварийного сигнала, общего отключения и команды отключения), то необходимо будет задать следующую настройку:

```
«ЗІо[n] . Только наблюдение» = «да»
```

Войдите в ветвь меню [Парам защиты / Набор 1...4 / I-защ / 3lo[n]].

• Включите элемент и выберите в качестве входного сигнала результат измерения направления замыкания на землю:

```
»Функция« = «акт »
```

• «ЗІ источ» = «измерено» или

```
»31 источ« = «чувствительное измерение»
```

• Задайте пороговое значение тока и время задержки:

```
«3Io>» или
»IGs>«
»t«
```

Имейте в виду, что время задержки срабатывания элемента защиты от замыкания на землю добавляется ко времени задержки определения направления.

4.1.3 Блокировки

Устройство снабжено функциями кратковременной и постоянной блокировки всей системы защиты или отдельных ступеней защиты.

ПРЕДУПРЕЖДЕНИЕ!

Убедитесь, что блокировки не нарушают логику работы системы и не представляют опасности для персонала и оборудования.

Убедитесь, что вы не отключили ошибочно какую-либо защитную функцию, которая должна быть включена в соответствии с концепцией работы системы.

Постоянная блокировка

Включение или выключение всех защитных функций системы

С помощью модуля «Защ» можно полностью включить или отключить защитную функцию устройства. Задайте для параметра [Парам_ защиты / Глоб_ пар_ защ_ / Защ] «Функция» значение «акт » или «неакт » с помощью модуля «Защ».

ПРЕДУПРЕЖДЕНИЕ!

Защита включается, только если в модуле «Защ» для параметра «Функция» задано значение «акт_», то есть при значении параметра «Функция» = «неакт_» функции защиты работать не будут. В этом случае устройство не будет защищать компоненты схемы.

Включение и выключение модулей

Каждый модуль можно включить и выключить (бессрочно). Для этого необходимо задать для параметра « Φ ункция» соответствующего модуля значение «акт_» или «неакт ».

Постоянная активация или деактивация команды отключения ступени защиты

Команда отключения выключателя цепи каждой из ступеней защиты может быть заблокирована постоянно. С этой целью для параметра *«БлкКомОткл»* необходимо задать значение «акт_».

Временная блокировка

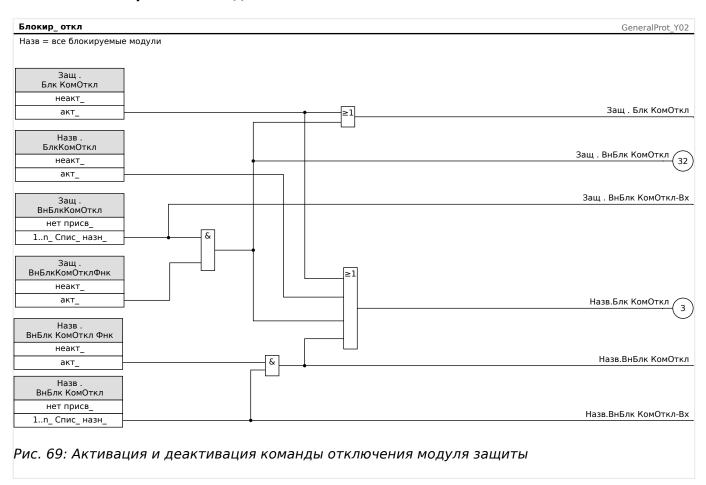
Временная блокировка защиты устройства по сигналу

С помощью модуля «Защ» можно временно заблокировать защитную функцию устройства подачей сигнала. Это при условии, что разрешена внешняя блокировка модуля: «ВнБлк Фнк» = «акт_». Кроме того, необходимо предварительно назначить соответствующий сигнал блокировки из списка назначений. Модуль будет заблокирован в течение всего времени, пока сигнал блокировки будет активен.

ПРЕДУПРЕЖДЕНИЕ!

Если модуль «Защ» заблокирован, функция защиты работать не будет. Пока сигнал блокировки активен, устройство не будет защищать никакие компоненты.

Временная блокировка модуля защиты назначением активного сигнала

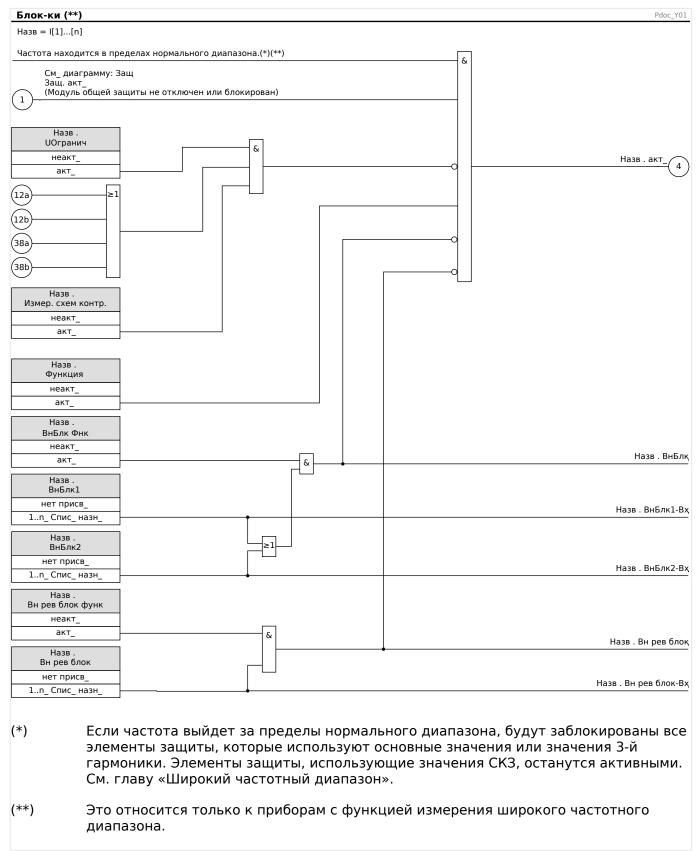

- Для включения временной блокировки модуля защиты для параметра «ВнБлк Фнк« модуля необходимо задать значение «акт_». Система выдает разрешающее сообщение: «Этот модуль может быть заблокирован».
- Параметру «ВнБлк1» или «ВнБлк2» из группы общих параметров необходимо назначить сигнал. Блокировка становится активной только если назначенный сигнал активен.

Временная блокировка команды отключения ступени защиты назначением активного сигнала

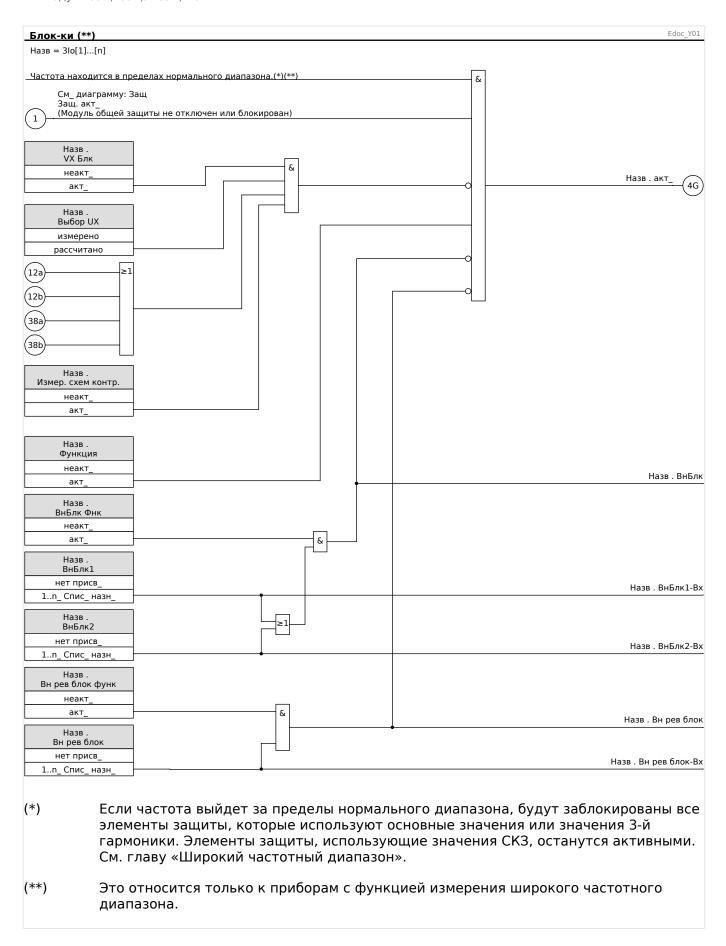
Команда отключения любого модуля защиты может быть заблокирована внешним сигналом. В этом случае «внешний» не означает, что сигнал поступает не только от других элементов, находящихся вне устройства но и от других модулей устройства. В качестве сигналов блокировки могут использоваться не только действительные внешние сигналы (такие как состояние цифрового входа), но также сигналы, выбранные из «Списка назначений».

- Для включения временной блокировки модуля защиты для параметра «ВнБлк КомОткл Фнк» модуля необходимо задать значение «акт_». Система выдает разрешающее сообщение: «Команда отключения этой ступени может быть заблокирована».
- В группе общих параметров защиты необходимо дополнительно выбрать из списка назначений сигнал и назначить его параметру «ВнБлк КомОткл». Если выбранный сигнал активирован, то временная блокировка становится активной.

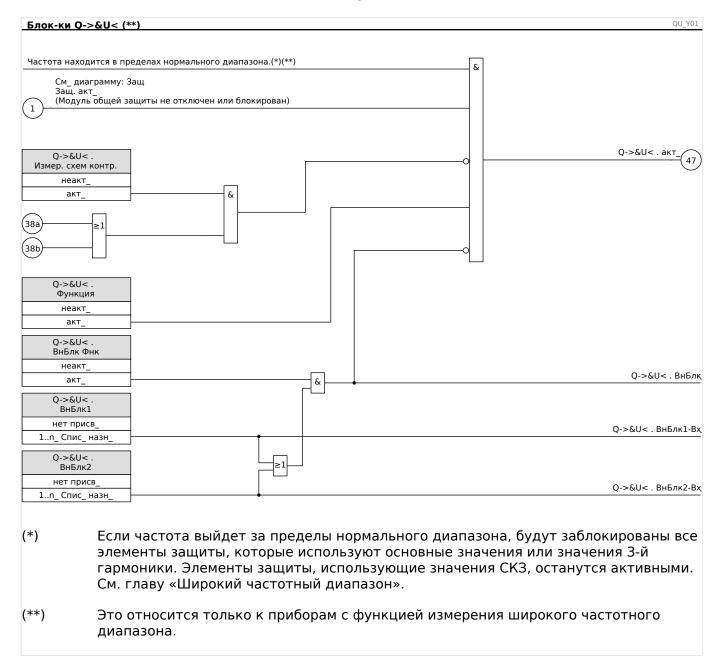
4.1.3.1 Блокировка команды отключения


4.1.3.2 Временное включение, выключение и блокировка функций защиты

Следующая схема относится ко всем защитным элементам, за исключением тех, для которых ниже представлена схема для конкретных модулей.


4.1.3.3 Включение, выключение и блокировка модулей фазного тока

Функции защиты по току могут быть заблокированы постоянно ($*\Phi$ ункция» = *неакт_») или временно не только любым сигналом блокировки из списка назначений, но и *обратной блокировкой».



4.1.3.4 Включение, выключение и блокировка модулей защиты от тока утечки на землю

Функции защиты по току заземления могут быть заблокированы постоянно ($«Функция» = «неакт_»$) или временно не только любым сигналом блокировки из списка назначений, но и «обратной блокировкой».

4.1.3.5 Включение, выключение и блокировка защиты Q->&V<

4.1.4 Широкий частотный диапазон

Частота рассчитывается на основании трехфазного напряжения и четвертого входа измерения напряжения.

Некоторые защитные элементы используют дискретное преобразование Фурье (ДПФ) для получения фундаментальных величин и фазовых углов из измеренных значений. Другие защитные элементы используют истинные среднеквадратичные значения (СКЗ). Для некоторых защитных элементов можно указать работу на основании ДПФ или истинного СКЗ.

Расчет измеренных значений с помощью ДПФ происходит очень быстро. Значения рассчитываются несколько раз за цикл. По некоторым техническим причинам расчет значения ДПФ возможен, только если частота близка к номинальной (\pm 10% f_N). Если частота находится вне пределов номинального диапазона, значения ДПФ будут неточными. Поэтому защитные элементы (и характеристики направления), работающие на основании ДПФ (фиксировано или по назначению пользователем), будут блокироваться, как только частота выйдет за пределы номинального диапазона (\pm 10% f_N).

Защитные элементы, работающие на основании истинных среднеквадратичных значений (СКЗ), могут работать в широком частотном диапазоне (5–70 Гц). По техническим причинам расчет измеренных значений на основании истинного СКЗ выполняется один раз за цикл. Чем ниже частота, тем длиннее цикл, и тем медленнее выполняется расчет. Это значит, что расчет на основании истинного СКЗ имеет более длительное время установления (<2 циклов). Особенно это относится к низкой частоте.

Продолжительность цикла рассчитывается на основании каналов измерения напряжения. Продолжительность цикла для истинного СКЗ можно определить, если величина напряжения превышает 10 В. Если продолжительность цикла определить невозможно, для расчетов ДПФ и истинного СКЗ принимается номинальная частота. Если окажется, что частота находится вне пределов номинального диапазона, то как только на реле будет подано напряжение достаточной величины, через несколько циклов (по прошествии заданного времени) активируется широкий частотный диапазон.

$ f - f_N < 10\% \cdot f_N$	$ f - f_N > 10\% \cdot f_N$
ДПФ доступно: Измеренные значения рассчитываются несколько раз за цикл.	ДПФ неточное: защитные элементы будут заблокированы.
Истинное СКЗ доступно: Измеренные значения рассчитываются несколько раз за цикл.	Истинное СКЗ доступно 5–70 Гц: измеренные значения обновляются после каждого цикла.

Коэффициент падения на 1 Гц ниже 5 Гц.

4.2 Внутреннее соединение

Для устройств HighPROTEC было разработано несколько новейших элементов защиты. В связи с возрастающей ролью распределенных энергоресурсов защита внутренних соединений становится все более и более важной. Новый усовершенствованный пакет защитных функций включает в себя все защитные элементы для внутренних соединений. Пакет доступен в меню [Внутреннее соединение].

Использование этих защитные элементы является гибким. С помощью настроек параметров они могут быть легко адаптированы для различных международных и местных кодов энергосети.

Далее следует обзоре этого меню. Подробнее об этих защитных элементам см. в соответствующих главах.

Меню внутренних соединений включает в себя следующие компоненты.

Подменю с элементами расцепления сети. В зависимости от кодов энергосети, которые следует учитывать, обязательными (или запрещенными) являются различные элементы расцепления сети. В этом меню можно получить доступ к следующие элементам расцепления сети:

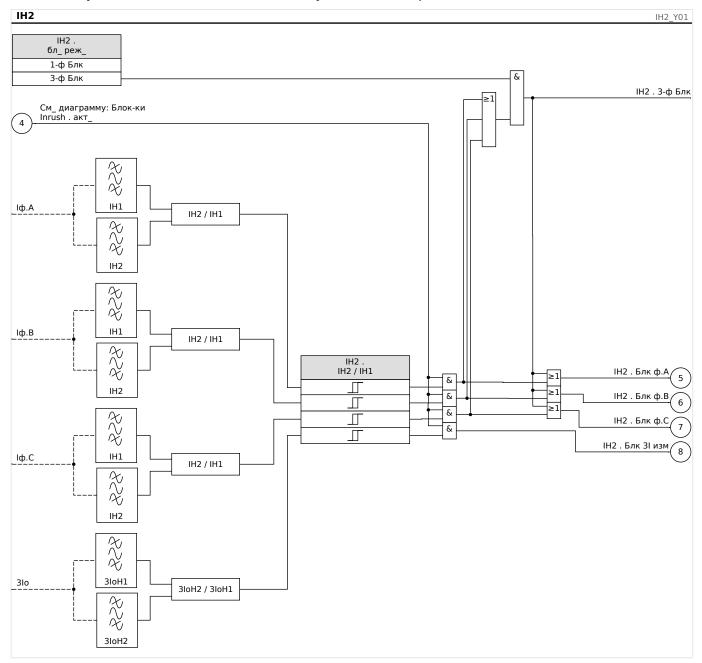
- Смещение вектора (дельта фи) (см. главу о защите по частоте, ⇒ «f частота [810/U, 78, 81R]»). Этот элемент аналогичен элементу защиты частоты, значение которого в планировании устройства установлено как delta phi.
- Pr (см. главу о защите мощности). Этот элемент аналогичен элементу защиты мощности, значение которого в планировании устройства установлено как Pr>.
- Qr (см. главу о защите мощности). Этот элемент аналогичен элементу защиты мощности, значение которого в планировании устройства установлено как Qr>.
- Дистанционное отключение (см. раздел > «Зависимое выключение (удаленное)»).

Подменю для работы при пониженном напряжении (см. главу о РПН, \Longrightarrow «РПН — работа при пониженном напряжении [27(t)]»).

Подменю защиты Q->&V< (см. главу о Q->&V<, \Longrightarrow «Q->&U< — Реактивная мощность/защита от пониженного напряжения»).

Подменю синхронизации (см. главу о синхронизации,

—> «Синх — проверка синхронизации [25]»).


ПРИМЕЧАНИЕ!

Кроме того, устройство также предлагает другие функции для систем с пониженным напряжением, среди которых наблюдение за качеством напряжения, основанное на измерение 10-минутного среднеквадратичного скольжения. (см. главу о защите по напряжению, \searrow «V — защита по напряжению [27,59]»).

4.3 Бросок тока ІН2

Модуль защиты от бросков тока позволяет предотвратить ложные срабатывания реле, вызванные включением насыщенных индуктивных нагрузок. Здесь учитывается отношение амплитуд $2^{\text{ой}}$ и $1^{\text{ой}}$ гармоники.

ПРИМЕЧАНИЕ!

Не используйте элемент защиты от бросков тока в сочетании с защитой от мгновенного максимального тока (для предотвращения ошибочных отключений).

4.3.1 Ввод в эксплуатацию: Бросок тока

Процедура проверки зависит от настроек режима блокировки бросков тока:

• [Парам_ защиты / Набор x / І-защ_ / ІН2] «бл_ реж_» = «1-ф Блк».

В этом режиме проверка должна проводиться сначала для каждой фазы по отдельности, а затем для трех фаз вместе.

• [Парам_ защиты / Набор x / І-защ_ / ІН2] *«бл_ реж_»* = «3-ф Блк».

В этом режиме проводится проверка для трех фаз.

Тестируемый объект

Проверка блокировки бросков тока.

Необходимые средства

- Трехфазный источник тока с регулируемой частотой
- Трехфазный источник тока (для первой гармоники)

Описание процедуры (зависит от параметров режима блокировки)

- Подайте ток на вторичную обмотку с номинальной частотой.
- Внезапно подайте на вторичную сторону ток с частотой, превышающей номинальную в два раза. Амплитуда должна превышать предустановленный коэффициент/пороговое значение «IH2/IN».
- Убедитесь, что генерируется аварийный сигнал броска тока.

Результат успешной проверки

Генерируется аварийный сигнал броска тока, а регистратор событий регистрирует блокировку ступени токовой защиты.

4.4 I — защита от превышения тока

Модуль защиты от превышения тока «I» имеет следующие защитные функции по ANSI.

- ANSI 50
- ANSI 51
- ANSI 51C
- ANSI 51Q
- ANSI 51V
- ANSI 67

ПРЕДУПРЕЖДЕНИЕ!

При использовании блокировки от бросков тока намагничивания для предотвращения ошибочного отключения задержка отключения, используемая функциями максимальной токовой защиты, должна составлять не менее 30 мс.

осторожно!

Для обеспечения правильной работы функции определения направления после однофазных коротких замыканий необходимо использовать следующее опорное напряжение: Для фазового тока Іф.А оно равно напряжению между линиями UBC, для фазового тока Іф.В оно равно напряжению между линиями UCA, а для фазового тока Іф.С оно равно напряжению между линиями UAB.

В случае если неисправность произошла вблизи точки измерения, и для нее отсутствует опорное напряжение, которое можно использовать для определения направления (как измеренного, так и хранящегося в архиве памяти напряжений), то модуль сработает не направленно или будет блокирован — в зависимости от установки значения соответствующего параметра.

ПРИМЕЧАНИЕ!

Все элементы максимальной токовой защиты имеют идентичную структуру.

ПРИМЕЧАНИЕ!

Данный модуль может работать с наборами адаптивных параметров.

Изменение значений параметров, входящих в наборы параметров, происходит динамически при помощи наборов адаптивных параметров. См. раздел \Longrightarrow «Наборы адаптивных параметров».

ANSI 50, 51 — защита от максимального тока /короткого замыкания, ненаправленная

Этот вариант применения настраивается в меню [Планир устр].

• [Планир_ устр_] «Реж_» = «ненаправленн_»

Если элемент защиты по току определен как «ненаправленн_», данные о направлении в расчет не принимаются.

Варианты:

- [Парам защиты / Набор 1...4 / І-защ / І[х]] «Метод измерений» =
 - Основные
 - ∘ Ист СКЗ
 - · 12

ANSI 67 — защита от превышения тока/короткого замыкания, направленная

Этот вариант применения настраивается в меню [Планир_ устр_].

- [Планир_ устр_] «Реж_» =
 - ∘ «вперед»
 - «реверс»

Варианты:

- [Парам защиты / Набор 1...4 / І-защ / І[х]] «Метод измерений» =
 - Основные
 - ∘ Ист СКЗ
 - 。 I2

Прямое или обратное направление определяется характеристическим углом направления фазы, который, в свою очередь, определяется параметром [СистПар / Направление] «УМЧ фазы».

Подробное описание определения направления приводится здесь:

«Определение направления», и, в частности, для направления межфазного короткого замыкания:

«Направление межфазного короткого замыкания».

ANSI 51V — защита от превышения тока с ограничением напряжения

Этот вариант применения активируется следующим образом:

Варианты:

- [Парам_ защиты / Набор 1...4 / І-защ_ / І[x]] «Метод измерений» =
 - Основные
 - ∘ Ист СКЗ
 - ° 12

- «Канал измерения» =
 - ∘ Лин напр
 - Фаза-земля

Если для параметра «*UOгранич*» задано значение «акт_», элементом защиты от максимального тока используется удерживающее напряжение. Это значит, что уставка максимального тока будет снижена при падении напряжения. Таким образом обеспечивается более чувствительная защита от превышения тока. Для порогового напряжения *«UOгранич макс»* также можно определить *«Канал измерения»*.

С помощью параметра [Парам_ защиты / Набор 1...4 / І-защ_ / І[x]] «Канал измерения» можно определить, какое напряжение измерено: «Лин_ напр_» или «Фаза-земля».

ANSI 51Q — защита от превышения тока отрицательной последовательности фаз

Этот вариант применения активируется следующим образом:

ANSI 51С — защита по току с пуском по напряжению

Этот вариант применения активируется с помощью адаптивных параметров; см. «Наборы адаптивных параметров».

Варианты:

- [Парам защиты / Набор 1...4 / І-защ / І[х]] «Метод измерений» =
 - Основные
 - ∘ Ист СКЗ
 - 。 **12**
- [Парам_ защиты / Набор n / U-защ_ / КН[x]] «Реж_ изм_» =
 - ∘ Лин напр
 - Фазн напр

Метод измерений

Для каждого защитного элемента настройкой параметра *«Метод измерений»* можно определить, будет ли измерение выполняться на основе «Основные» или «Ист СКЗ» значения.

Или же можно задать для параметра *«Метод измерений»* значение «I2». В этом случае будет измеряться ток отрицательной последовательности фаз. Это позволит выявлять несбалансированные сбои.

4.4.1 Характеристики

Для каждого элемента можно настраивать следующие характеристики:


• DEFT — определенное время — максимальный ток

- Нормально инверсная характеристика [NINV] (IEC) IEC, стандартная обратнозависимая характеристика
- Характеристика большой обратной зависимости времени отключения от тока [VINV] (IEC) *IEC, большая обратнозависимая характеристика*
- Характеристика длительной зависимости времени отключения от тока [LINV] (IEC) *IEC, длительная обратнозависимая характеристика выдержки времени*
- Характеристика очень большой обратной зависимости времени отключения от тока [EINV] (IEC) *IEC*, очень большая обратнозависимая характеристика
- Характеристика умеренной обратной зависимости времени отключения от тока [MINV] (ANSI) ANSI, умеренная обратнозависимая характеристика
- Характеристика большой обратной зависимости времени отключения от тока [VINV] (ANSI) ANSI, большая обратнозависимая характеристика
- Характеристика очень большой обратной зависимости времени отключения от тока [EINV] (ANSI) ANSI, очень большая обратнозависимая характеристика
- RINV обратнозависимая характеристика R
- Пологая термическая характеристика пологая термическая характеристика
- Характеристика IT
- Характеристика I2Т
- Характеристика І4Т

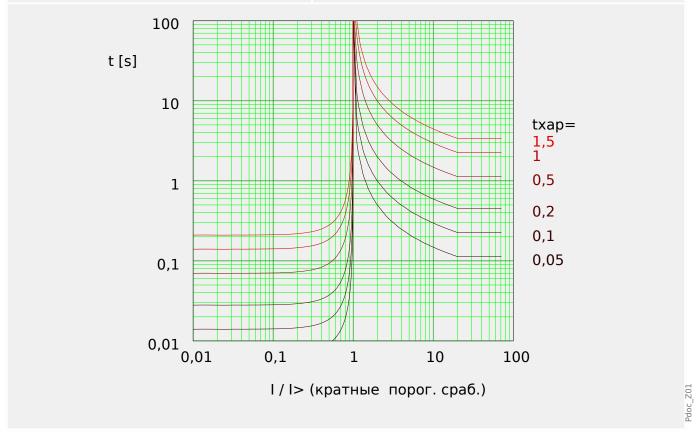
Объяснение

- t = Выдержка времени на отключение
- txap = Множитель времени/коэффициент характеристики отключения. Диапазон значений зависит от выбранной кривой отключения устройства.
- І = Ток короткого замыкания
- I> = При превышении величины срабатывания начинается отсчет паузы до отключения.

DEFT — определенное время — максимальный ток

IEC Нормально инверсная характеристика [NINV]

«Xap» = IEC NINV


ПРИМЕЧАНИЕ!

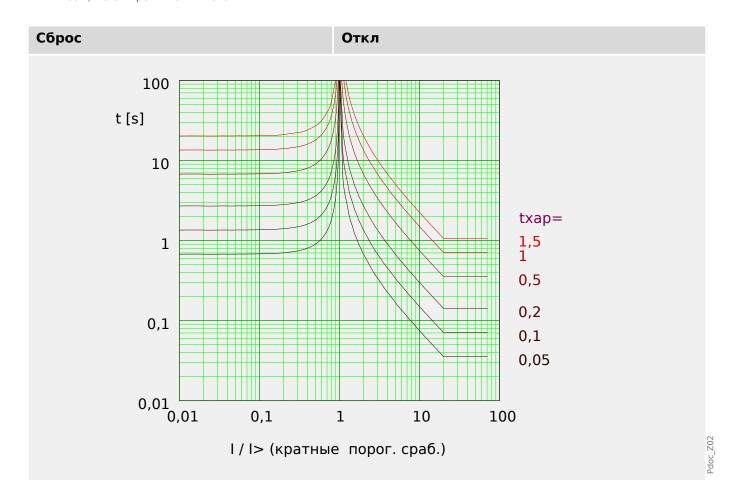
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{0.14}{1 - \left(\frac{I}{I}\right)^2} \cdot \text{txap}$	$t = \frac{0.14}{\left(\frac{I}{I>}\right)^{0.02} - 1} \cdot \text{txap}$
Если: $\frac{I}{I>}$ < 1	Если: $1 < \frac{I}{I} \le 20$

IEC Характеристика большой обратной зависимости времени отключения от тока [VINV]

x Xap» = IEC VINV


ПРИМЕЧАНИЕ!

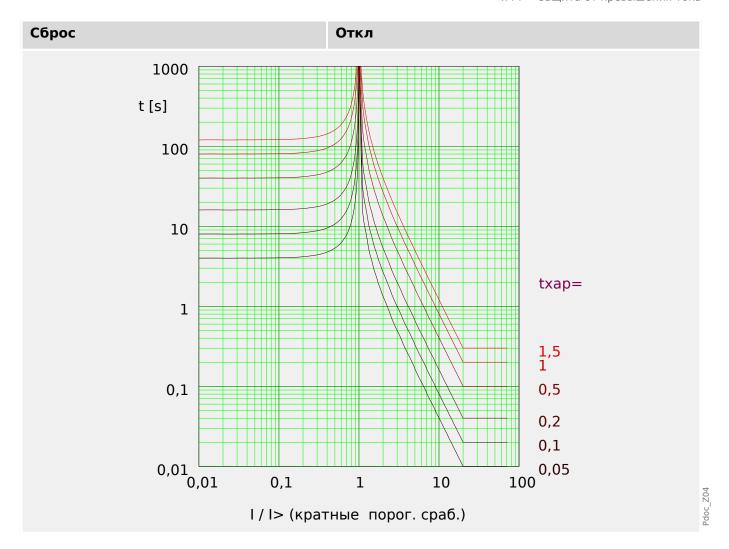
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{13.5}{1 - \left(\frac{I}{I}\right)^2} \cdot \text{txap}$	$t = \frac{13.5}{\frac{I}{I>} - 1} \cdot \text{txap}$
Если: $\frac{I}{I>}$ < 1	Если: $1 < \frac{I}{I} \le 20$

IEC Характеристика очень большой обратной зависимости времени отключения от тока [EINV]

«Xap» = IEC EINV


ПРИМЕЧАНИЕ!

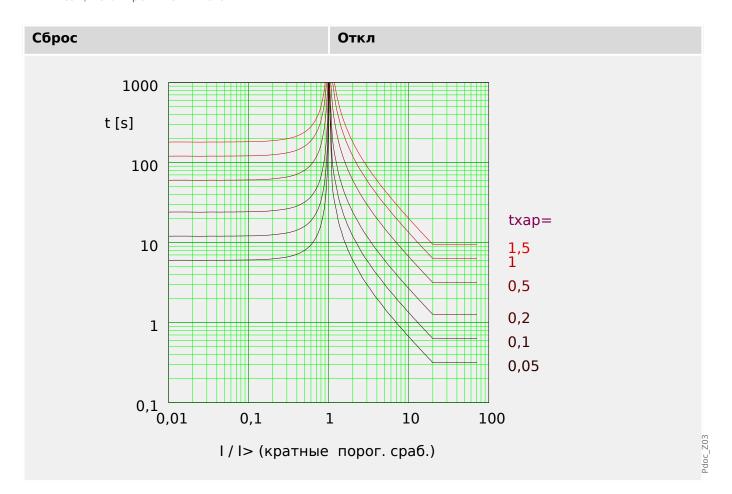
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{80}{1 - \left(\frac{I}{I}\right)^2} \cdot \text{txap}$	$t = \frac{80}{\left(\frac{I}{I>}\right)^2 - 1} \cdot txap$
Если: $\frac{I}{I>}$ < 1	Если: $1 < \frac{I}{I} \le 20$

IEC Характеристика длительной зависимости времени отключения от тока [LINV]

«Xap» = IEC LINV


ПРИМЕЧАНИЕ!

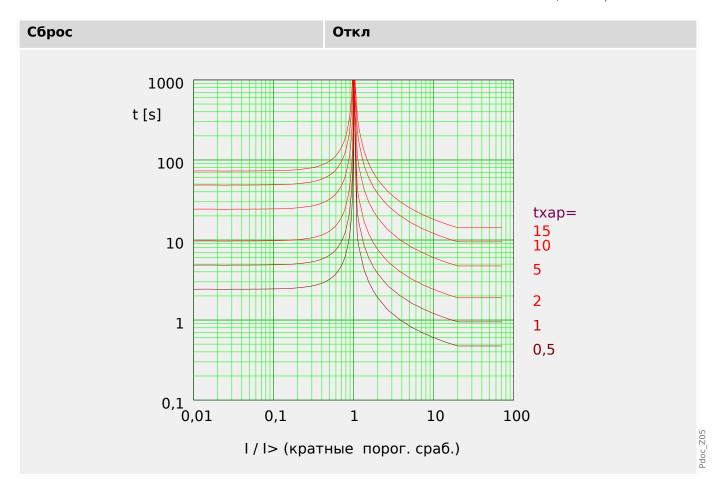
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{120}{1 - \left(\frac{I}{I}\right)^2} \cdot \text{txap}$	$t = \frac{120}{\frac{I}{I>} \cdot 1} \cdot txap$
Если: $\frac{I}{I>}$ < 1	Если: $1 < \frac{I}{I} \le 20$

ANSI Характеристика умеренной обратной зависимости времени отключения от тока [MINV]

«Xap» = IEC MINV


ПРИМЕЧАНИЕ!

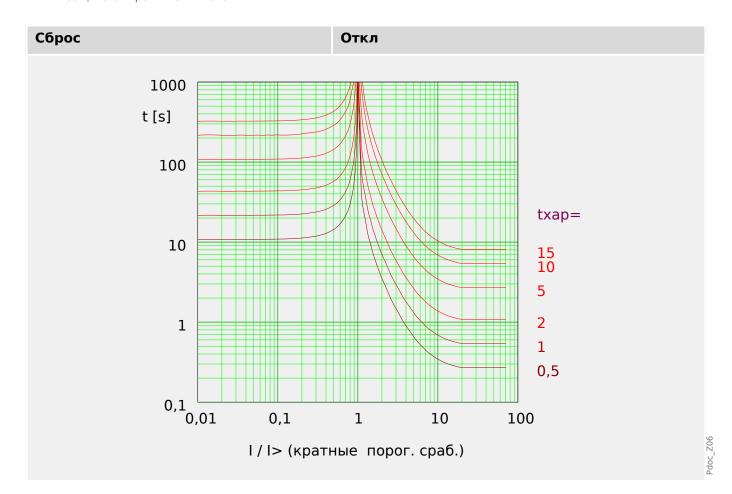
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{4.85}{1 - \left(\frac{I}{I}\right)^2} \cdot \text{txap}$	$t = \left(\frac{0,0515}{\left(\frac{I}{I>}\right)^{0,02}-1} + 0,1140\right) \cdot \text{txap}$
Если: $\frac{I}{I>}$ < 1	Если: $1 < \frac{I}{I} \le 20$

ANSI Характеристика большой обратной зависимости времени отключения от тока [VINV]

«Xap» = ANSI VINV


ПРИМЕЧАНИЕ!

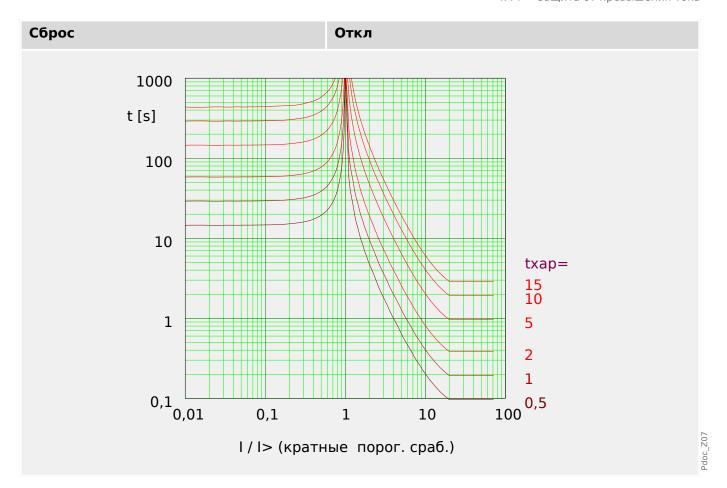
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{21.6}{1 - \left(\frac{I}{I>}\right)^2} \cdot \text{txap}$	$t = \left(\frac{19,61}{\left(\frac{L}{1>}\right)^{2} - 1} + 0,491\right) \cdot \text{txap}$
Если: $\frac{I}{I>}$ < 1	Если: $1 < \frac{I}{I} \le 20$

ANSI Характеристика очень большой обратной зависимости времени отключения от тока [EINV]

«Xap» = ANSI EINV


ПРИМЕЧАНИЕ!

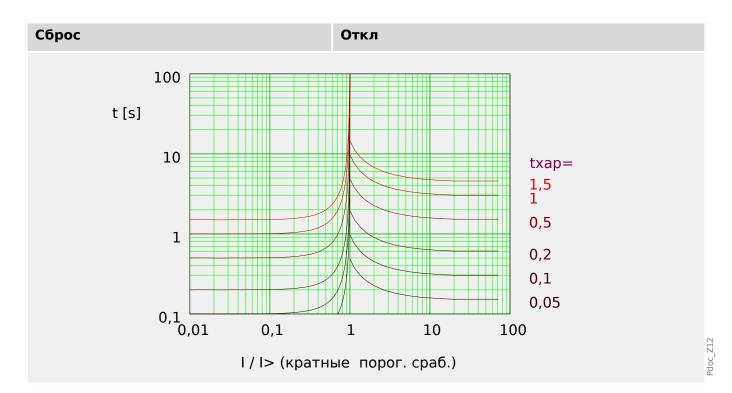
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{29.1}{1 - \left(\frac{I}{I>}\right)^2} \cdot \text{txap}$	$t = \left(\frac{28,2}{\left(\frac{I}{1>}\right)^{2} - 1} + 0,1217\right) \cdot \text{txap}$
Если: $\frac{I}{I>}$ < 1	Если: $1 < \frac{I}{I} \le 20$

R Inverse [RINV] - Характеристика

xxap = RINV

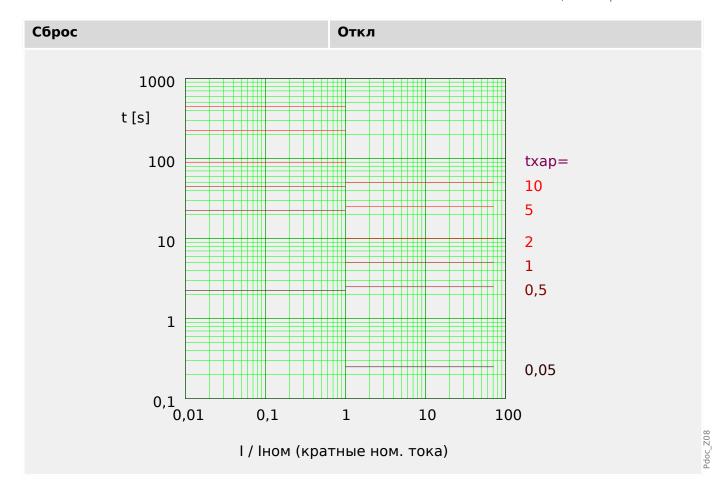

ПРИМЕЧАНИЕ!

Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{1.0}{1 - \left(\frac{I}{I>}\right)^2} \cdot \text{txap}$	$t = \frac{1.0}{0.339 - \frac{0.236}{\left(\frac{I}{I>}\right)}} \cdot \text{txap}$
Если: $\frac{I}{I>} < 1$	Если: $1 < \frac{I}{I} \le 20$

Пологая термическая характеристика

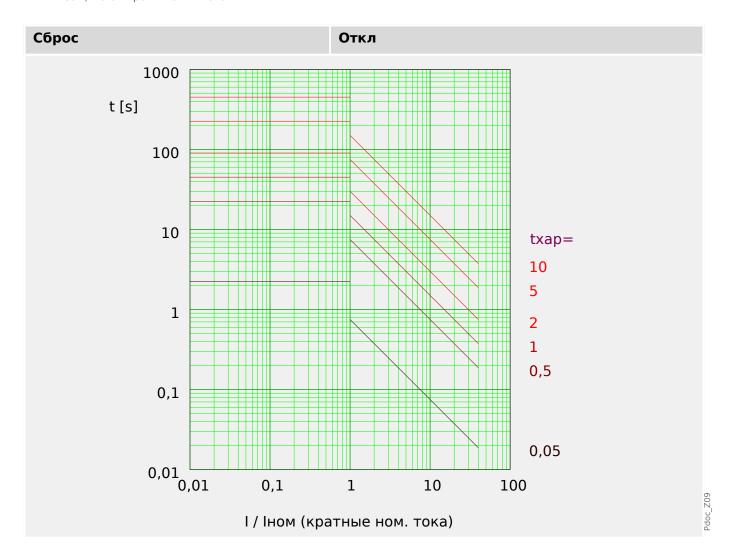

«Xap» = Thermal Flat

ПРИМЕЧАНИЕ!

Доступны различные режимы сброса:

Сброс	Откл
$t = (5 \cdot 3^2) \cdot \text{txap}$	$t = (5 \cdot 3^0) \cdot \text{txap}$
Если: $\frac{I}{\text{Іном}} < 1$	Если: $1 < \frac{I}{\text{Іном}}$

Характеристика IT


$$«Xap» = IT$$

ПРИМЕЧАНИЕ!

Доступны различные режимы сброса:

Сброс	Откл
$t = (5 \cdot 3^2) \cdot txap$	$t = \frac{5 \cdot 3^{1}}{\left(\frac{I}{I_{\text{HOM}}}\right)^{1}} \cdot \text{txap}$
Если: $\frac{I}{I\text{HOM}} < 1$	Если: $1 < \frac{I}{I_{\text{HOM}}}$

Характеристика І2Т

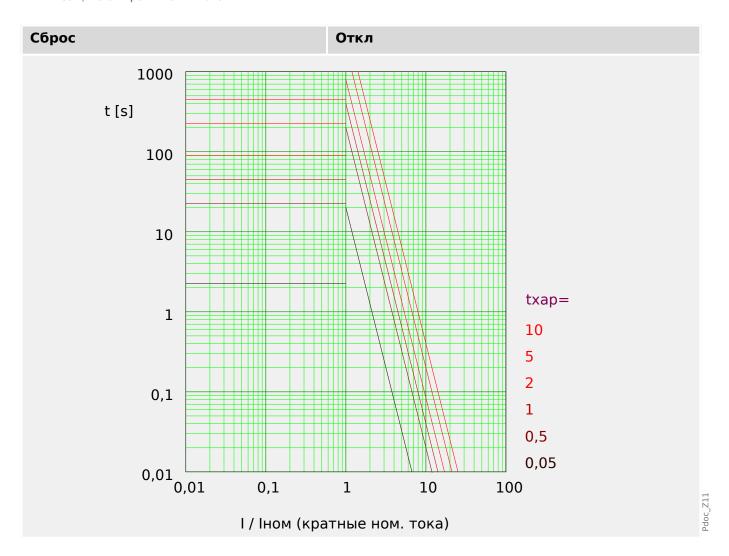
$$xx = 12T$$

ПРИМЕЧАНИЕ!

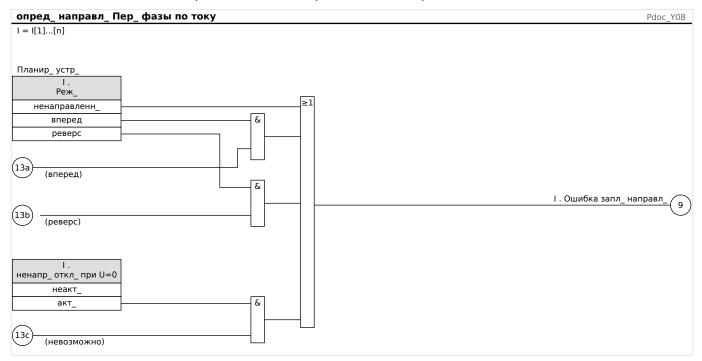
Доступны различные режимы сброса:

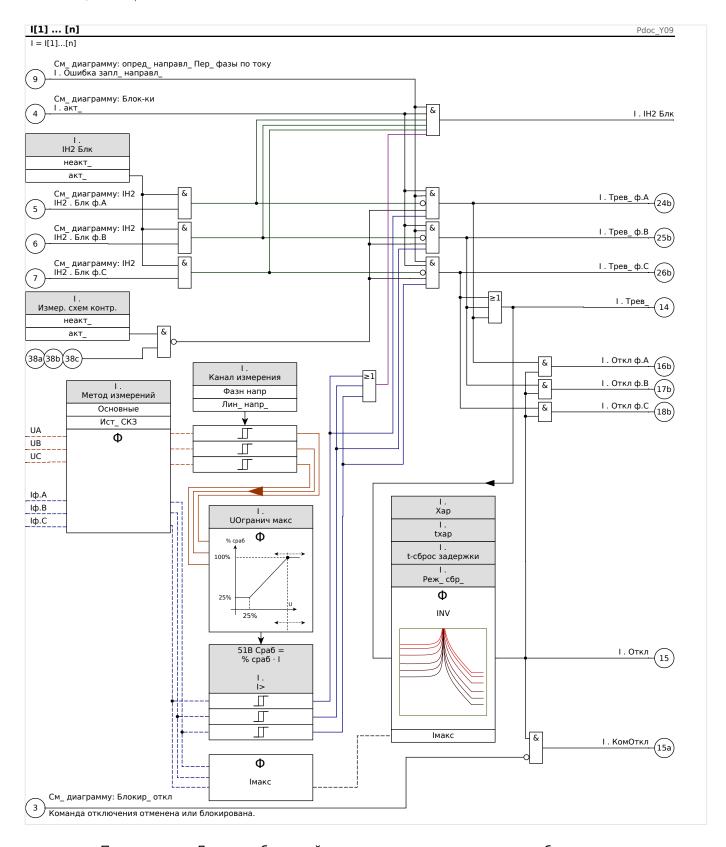
Сброс	Откл
$t = (5 \cdot 3^2) \cdot txap$	$t = \frac{5 \cdot 3^2}{\left(\frac{I}{\text{IHOM}}\right)^2} \cdot \text{txap}$
Если: $\frac{I}{\text{Іном}} < 1$	Если: $1 < \frac{I}{I_{\text{HOM}}}$

Характеристика І4Т


$$«Xap» = I4T$$

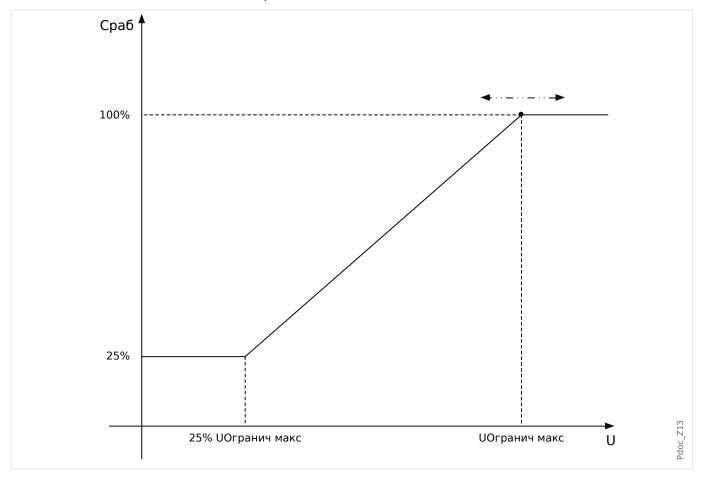
ПРИМЕЧАНИЕ!


Доступны различные режимы сброса:


Сброс	Откл
$t = (5 \cdot 3^2) \cdot \text{txap}$	$t = \frac{5 \cdot 3^4}{\left(\frac{I}{\text{IHOM}}\right)^4} \cdot \text{txap}$
Если: $\frac{I}{\text{Іном}} < 1$	Если: $1 < \frac{I}{I_{\text{HOM}}}$

4.4.2 Функциональные возможности

Определение направления основано на модуле «Защ». Дополнительные сведения см. в разделе \Longrightarrow «Определение направления».


Примечание. Для еще большей простоты в схеме выше не отображено, что при выборе [СистПар / ТН] «TH соед» = «Лин. напряж.» значение параметра «I[x]». Канал измерения будет изменено на «Лин_ напр_», независимо от того, какое значение было настроено в начале (см. примечание в разделе \sqsubseteq Глава 4.4.3).

4.4.3 51V — защита от превышения тока с удерживающим напряжением

Чтобы активировать данную функцию, нужно для параметра [Парам_ защиты / Набор 1...4 / I-защ_ / I[x]] «*UOгранич*» задать значение «акт_» в наборе параметров соответствующего элемента перегрузки по току I[x].

Функция защиты 51В ограничивает работу, что снижает значения срабатывания. Это позволяет понизить значение срабатывания защитной функции 51В при соответствующем входном фазовом напряжении («Лин_ напр_» bkb «Фаза-земля», в зависимости от значения параметра [Парам_ защиты / Набор 1...4 / І-защ_ / І[х]] «Канал измерения»). Если минимальный фазовый ток короткого замыкания близок к току нагрузки, это может усложнить координацию максимальной токовой защиты фазы с выдержкой времени. В этом случае использовать для улучшения ситуации функцию защиты от понижения напряжения не следует. При низком напряжении пороговое значение срабатывания при превышении фазового тока можно задать соответственно низким, чтобы защита от максимального фазового тока стала достаточно чувствительной и лучше скоординированной. Устройство использует простую линейную модель для определения эффективного срабатывания путем оценки отношения между напряжением и уставкой срабатывания защита от превышения фазного тока.

Когда активировано ограничение напряжения, эффективная уставка срабатывания при превышении фазового тока будет вычислен следующим образом: Срабатывание% * настройка срабатывания при превышении фазового тока. Эффективное пороговое значение срабатывания должно находиться в пределах допустимого диапазона настройки. Если оно окажется ниже, будет использоваться минимальное значение срабатывания.

Это означает:

- $U_{min} = 0.25 \cdot U_{Makc}$;
- % cpa6_{min} = 25%;
- % сраб = 25%,если U ≤ U_{min};
- % сраб = 1 / U_{Makc} ·(U U_{min}) + 25%, если U_{min} < U < U_{Makc} ;
- % сраб = 100%, если U ≥ U_{макс};

Функция ограничения напряжения на кривые отключения (характеристики) не влияет.

Если включен контроль трансформатора напряжения, то во избежание ошибочных отключений при размыкании выключателя элемент защиты от максимального тока с ограничением напряжения блокируется.

ПРИМЕЧАНИЕ!

Определение Un:

Un зависит от типа подключения TH и настройки режима измерения в модулях текущей защиты:

Если [СистПар / ТН] «ТН соед» = «Фазн напр» **и** [Парам_ защиты / Набор n / І-защ_ / І[х]] «Канал измерения» = «Фаза-земля», то:

$$Un = \frac{TH \text{ BTOP}}{\sqrt{3}}$$

Если [СистПар / ТН] «ТН соед» = «Фазн напр» **и** [Парам_ защиты / Набор n / І-защ_ / І[x]] «Канал измерения» = «Лин напр », то:

Un = TH втор

Если [СистПар / ТН] «ТН соед» = «Лин. напряж.», то:

Un = TH втор

(Примечание. Это означает, что если *«ТН соед»* = «Лин. напряж.», то настройка *«Канал измерения»* в модулях текущей защиты будет игнорироваться.)

4.4.4 I2> — перегрузка по току отрицательной последовательности [51Q]

Чтобы активировать данную функцию, нужно для параметра [Парам_ защиты / Набор n / I-защ_ / I[x]] «Метод измерений» задать значение «I2» в наборе параметров соответствующего элемента перегрузки по току I[x].

Функция защиты от максимального тока обратной последовательности (I2>) рассматривается как эквивалент функции защиты от максимального фазового тока (I2>) с тем лишь исключением, что вместо трехфазных токов, используемых функцией защиты от максимального фазового тока, в качестве измеряемых значений используется ток обратной последовательности (I2>). Значение тока обратной последовательности, используемое функцией I2>, получается при помощи следующего хорошо известного симметричного преобразования составляющих:

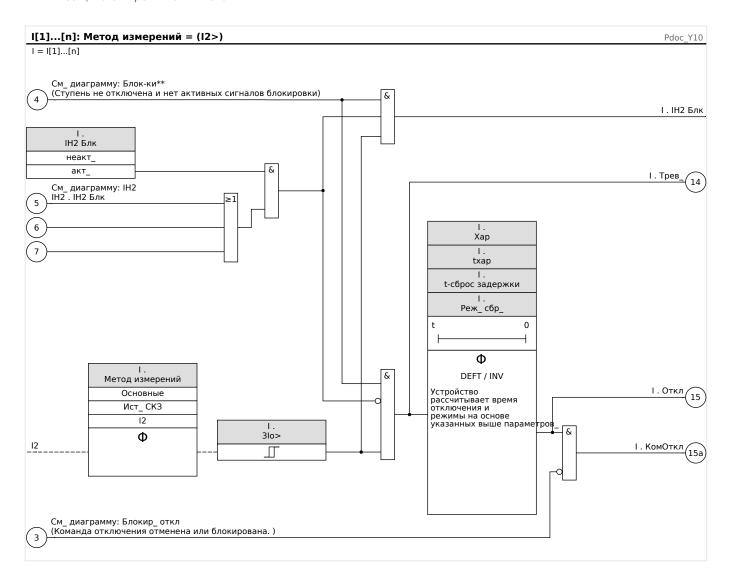
$$I_2 = \frac{1}{3}(I_{L1} + a^2I_{L2} + aI_{L3})$$

Значение настройки срабатывания функции защиты I2> должно соответствовать току обратной последовательности в защищаемом объекте.

Кроме того, для функции защиты от максимального тока обратной последовательности (I2>) используются такие же параметры, что и для функции защиты от максимального фазового тока — характеристики отключения и сброса из стандартов IEC/ANSI, множитель времени и т. д.

Функцию защиты от максимального тока обратной последовательности (I2>) можно использовать для защиты линий, генераторов, трансформаторов и двигателей, то есть, для защиты систем от несбалансированных сбоев. Так как I2> защитная функция работает с компонентом тока отрицательной последовательности, который обычно отсутствует в условиях нагрузки, I2> можно настроить более тонко, чем функцию защиты от максимального фазового тока. С другой стороны, координация функций защиты от перегрузки по току отрицательной последовательности в радиальной электрической сети не означает автоматически очень большое время устранения сбоя для защитных устройств, расположенных выше в цепи, так как время отключения соответствующей функции защиты от перегрузки по току отрицательной последовательности должно быть координировано со следующим устройством, расположенным ниже в цепи, которое имеет функцию защиты от перегрузки по току отрицательной последовательности. Это во множестве случаев делает I2> выгодной концепцией защиты в дополнение к функции защиты от максимального фазового тока.

ПРЕДУПРЕЖДЕНИЕ!



Чтобы предотвратить ошибочное отключение, при использовании блокировки от бросков тока задержка отключения, используемая функциями максимальной токовой защиты, должна составлять не менее 30 мс.

ПРИМЕЧАНИЕ!

В момент замыкания выключателя в результате переходных процессов может возникнуть ток отрицательной последовательности.

4.4.5 Защита по току с пуском по напряжению [51C]

Если короткое замыкание произошло вблизи генератора, величина напряжения может резко уменьшиться. С помощью **адаптивных параметров** (см. главу Наборы адаптивных параметров») время отключения и характеристики отключения можно изменить по выходному сигналу элемента защиты по напряжению (в зависимости от уставки). Это устройство может переключиться с кривой нагрузки на кривую сбоя (в зависимости от времени отключения, кривых отключения и режимов сброса).

Выполните следующие действия.

- Ознакомьтесь с разделом «Наборы адаптивных параметров» (> «Наборы адаптивных параметров»).
- Проведите планирование работы устройства и установите все необходимы элементы защиты от пониженного напряжения.
- Проведите планирование работы устройства и установите все необходимы элементы защиты от повышенного напряжения.
- Установите **адаптивные параметры** элемента защиты от максимального тока в соответствующих наборах параметров (например, множитель кривой, тип кривой и т. п.).
- Произведите назначение аварийного сигнала пониженного напряжения в **глобальных параметрах** таким образом, чтобы он служил сигналом активации соответствующего **набора адаптивных параметров** элемента защиты от максимального тока, который необходимо изменить.
- Проведите проверку работы устройства путем пусконаладочных испытаний.

4.4.6 Ввод в эксплуатацию: Защита по току— ненаправленная [50, 51]

Тестируемый объект

• Сигналы, которые должны измеряться для каждого элемента токовой защиты, уставки, общее время отключения (рекомендованное) или наоборот, задержки отключения и уставки на возврат; каждый раз трижды для каждой фазы и 1 раз для трех фаз.

ПРИМЕЧАНИЕ!

В случае соединения по схеме Холмгрина часто случаются ошибки соединения, которые безопасно обнаруживаются. Измерение общего времени отключения позволяет убедиться, что схема вторичной цепи (то есть, цепи от разъемов до рабочей катушки выключателя) исправна.

ПРИМЕЧАНИЕ!

Рекомендуется измерять общее время отключения вместо измерения задержки отключения. Задержка отключения устанавливается заказчиком. Общее время отключения измеряется на сигнальном контакте выключателя (не на релейном выходе).

Общее время отключения = задержка отключения (см. погрешности и допуски ступеней защиты) + время срабатывания выключателя (около 50 мс).

Информация о времени срабатывания выключателя приводится в технических характеристиках и прочей технической документации, выпускаемой предприятиемизготовителем выключателя.

Необходимые средства

- Источник тока
- Возможно, амперметры
- таймер.

Описание процедуры

Проверка уставок (3 однофазных и 1 трехфазное)

При каждом измерении подавайте ток, превышающий уставку для активации функции, приблизительно на 3–5%. После этого проверяйте пороговые значения.

Проверка общего времени задержки отключения (рекомендация)

Измерьте общее время отключения на вспомогательных контактах выключателя (отключение выключателя).

Измерьте задержку отключения (измерение производится на релейном выходе)

Измерьте задержку отключения на релейном выходе.

Измерение порога отпускания

Уменьшите силу тока до 97% от величины срабатывания функции отключения и измерьте порог отпускания.

Результат успешной проверки

Значения измерений общего времени задержки отключения и отдельных значений времени задержки, уставок и уставки на возврат, должны соответствовать значениям, указанным в списке настроек. Допустимые отклонения и допуски указаны в технических данных.

4.4.7 Ввод в эксплуатацию: Защита по току — направленная [67]

Тестируемый объект

Для каждого направленного элемента защиты от максимального тока следует измерить: общее время отключения (рекомендуется) или же коэффициенты задержки отключения и выпадения; каждый раз трижды для каждой фазы и 1 раз для трех фаз.

ПРИМЕЧАНИЕ!

В случае соединения по схеме Холмгрина часто случаются ошибки соединения, которые безопасно обнаруживаются. Измерение общего времени отключения позволяет убедиться, что схема вторичной цепи (то есть, цепи от разъемов до рабочей катушки выключателя) исправна.

ПРИМЕЧАНИЕ!

Рекомендуется измерять общее время отключения вместо измерения задержки отключения. Задержка отключения устанавливается заказчиком. Общее время отключения измеряется на сигнальном контакте выключателя (не на релейном выходе!).

Общее время отключения: = задержка отключения (см. погрешности и допуски ступеней защиты) + время срабатывания выключателя (около 50 мс).

Информация о времени отключения выключателя приводится в технических характеристиках и прочей технической документации, выпускаемой предприятиемизготовителем автоматического выключателя.

Необходимые средства

- Синхронизируемые источники тока и напряжения
- Возможно, амперметры
- таймер.

Описание процедуры

Произведите взаимную синхронизацию 3-фазных источников тока и напряжения. После этого необходимо смоделировать направления отключения, которые необходимо проверить при помощи угла между током и напряжением.

В меню МСА4 теперь отображается определенное направление фазовых токов и измеренного и рассчитанного тока замыкания на землю [Работа / Измеренные значения / Направление], см. > «Определение направления». Рекомендуется выполнять проверку направления тока на основе этих значений.

Проверка уставок (3 однофазных и 1 трехфазное)

При каждом измерении подавайте ток, превышающий уставку для активации функции, приблизительно на 3-5%. После этого проверяйте уставки.

Проверка общего времени задержки отключения (рекомендация)

Измерьте общее время отключения на вспомогательных контактах выключателя (отключение выключателя).

Измерьте задержку отключения (измерение производится на выходных контактах реле)

Измерьте задержку отключения на релейном выходе.

Измерение порога отпускания

Уменьшите силу тока до 97% от величины срабатывания функции отключения и измерьте порог отпускания.

Результат успешной проверки

Значения измерений общего времени задержки отключения и отдельных значений времени задержки, уставок и уставки на возврат, должны соответствовать значениям, указанным в списке настроек. Допустимые отклонения и допуски указаны в технических данных.

4.4.8 Ввод в эксплуатацию: защита от превышения тока, ненаправленная [ANSI 51V]

Тестируемый объект

Сигналы, которые необходимо измерить для функции защиты с ограничением напряжения: пороговые значения, общее время отключения (рекомендуется) или же коэффициенты задержки отключения и падения; каждый раз трижды для каждой фазы и 1 раз для трех фаз.

ПРИМЕЧАНИЕ!

Рекомендуется измерять общее время отключения вместо измерения задержки отключения. Задержка отключения устанавливается заказчиком. Общее время отключения измеряется на сигнальном контакте выключателя (не на релейном выходе!).

Общее время отключения: = задержка отключения (см. погрешности и допуски ступеней защиты) + время срабатывания выключателя (около 50 мс).

Информация о времени отключения выключателя приводится в технических характеристиках и прочей технической документации, выпускаемой предприятиемизготовителем автоматического выключателя.

Необходимые средства

- Источник тока
- источник напряжения;
- амперметр и вольтметр;
- Таймер.

Описание процедуры

Проверка уставок (3 однофазных и 1 трехфазное)

Подайте напряжение %срабатывания. При каждой проверке подавайте ток, превышающий порог для активации функции, приблизительно на 3-5 %. Затем проверьте, являются ли настройки срабатывания процентным значением от настройки срабатывания стандартной функции защиты от максимального тока.

Проверка общего времени задержки отключения (рекомендация)

Измерьте общее время отключения на вспомогательных контактах выключателя (отключение выключателя).

Измерение задержки отключения (измерение производится на релейном выходе)

Измерьте задержку отключения на контакте релейного выхода.

Проверка коэффициента падения

Уменьшите силу тока до 97% от величины срабатывания функции отключения и измерьте коэффициент падения.

Результат успешной проверки

Значения измерений общего времени задержки отключения и индивидуальные значения времени задержки, пороговые значения и коэффициенты падения должны соответствовать значениям, указанным в списке настроек. Допустимые отклонения и допуски указаны в технических данных.

4.4.9 Ввод в эксплуатацию: перегрузка по току отрицательной последовательности

Тестируемый объект

Сигналы, которые необходимо измерить для каждой функции токовой защиты: пороговые значения, общее время отключения (рекомендуется) или же коэффициенты задержки отключения и падения.

ПРИМЕЧАНИЕ!

Рекомендуется измерять общее время отключения вместо измерения задержки отключения. Задержка отключения устанавливается заказчиком. Общее время отключения измеряется на сигнальном контакте выключателя (не на релейном выходе!).

Общее время отключения: = задержка отключения (см. погрешности и допуски ступеней защиты) + время срабатывания выключателя (около 50 мс).

Информация о времени отключения выключателя приводится в технических характеристиках и прочей технической документации, выпускаемой предприятиемизготовителем автоматического выключателя.

Необходимые средства

- Источник тока
- Амперметры
- таймер.

Описание процедуры

Проверка пороговых значений

Чтобы получить ток обратной последовательности, измените последовательность фаз на разъемах источника тока (последовательность ABC — на последовательность ACB; последовательность ACB — на последовательность ABC).

При каждой проверке подавайте ток, превышающий порог для активации функции, приблизительно на 3–5%. После этого проверяйте пороговые значения.

Проверка общего времени задержки отключения (рекомендация)

Измерьте общее время отключения на вспомогательных контактах выключателя (отключение выключателя).

Измерение задержки отключения (измерение производится на релейном выходе)

Измерьте задержку отключения на контакте релейного выхода.

Проверка коэффициента падения

Уменьшите силу тока до 97% от величины срабатывания функции отключения и измерьте коэффициент падения.

Результат успешной проверки

Значения измерений общего времени задержки отключения и индивидуальные значения времени задержки, пороговые значения и коэффициенты падения должны соответствовать значениям, указанным в списке настроек. Допустимые отклонения и допуски указаны в технических данных.

4.5 Ток на землю — защита от максимального тока замыкания на землю [50N/G, 51N/G, 67N/G]

Модуль защиты от максимального тока при замыкании на землю «ЗІо» имеет следующие защитные функции по ANSI.

- ANSI 50N/G
- ANSI 51N/G
- ANSI 67N/G

ПРЕДУПРЕЖДЕНИЕ!

Чтобы предотвратить ошибочное отключение, при использовании блокировки от бросков тока задержка отключения, используемая функциями максимальной токовой защиты, должна составлять не менее 30 мс.

ПРИМЕЧАНИЕ!

Все элементы токов утечки на землю имеют идентичную структуру.

ПРИМЕЧАНИЕ!

Данный модуль может работать с наборами адаптивных параметров.

Изменение значений параметров, входящих в наборы параметров, происходит динамически при помощи наборов адаптивных параметров. См. раздел
«Наборы адаптивных параметров».

ANSI 50N/G — защита от максимального тока на землю, ненаправленная

Этот вариант применения настраивается в меню [Планир устр].

• [Планир устр] »Реж « = «ненаправленн »

Если элемент защиты по току определен как «ненаправленн_», данные о направлении в расчет не принимаются.

Варианты:

- [Парам защиты / Набор 1...4 / І-защ / ЗІо[х]] «Метод измерений» =
 - Основные
 - ∘ Ист СКЗ

ANSI 51N/G — защита от короткого замыкания на землю, ненаправленная

Этот вариант применения настраивается в меню [Планир устр].

• [Планир устр] »Реж « = «ненаправленн »

Если элемент защиты по току определен как «ненаправленн_», данные о направлении в расчет не принимаются.

Варианты:

- [Парам защиты / Набор 1...4 / І-защ / ЗІо[х]] «Метод измерений» =
 - Основные
 - ∘ Ист СКЗ

ANSI 67N/G — защита от максимального тока на землю/короткого замыкания на землю, направленная

Этот вариант применения настраивается в меню [Планир_ устр_].

- [Планир_ устр_] «Реж_» =
 - ∘ «вперед»
 - ∘ «реверс»
- [СистПар / Направление] «Источ 3U0» =
 - ∘ «измерено»
 - «рассчитано»
- [СистПар / Направление] «Источ 310» =
 - «измерено»
 - «рассчитано»

Варианты:

- [Парам защиты / Набор 1...4 / І-защ / ЗІо[х]] «Метод измерений» =
 - «Основные»
 - ∘ «Ист СКЗ»
- [Парам защиты / Набор 1...4 / І-защ / ЗІо[х]] «ЗІ источ» =
 - ° «измерено»
 - «рассчитано»
- [Парам_ защиты / Набор 1...4 / І-защ_ / ЗІо[х]] «Выбор UX» =
 - «измерено»
 - ∘ «рассчитано»

Определение направления

Подробное описание определения направления приводится здесь:

«Определение направления», а описание методов его определения — здесь:

«Направление замыкания на землю».

В меню [СистПар / Направление] с помощью параметров *«Источ 310»* и *«Источ 3U0»* можно указать, следует ли определять направление тока утечки на землю на

основе измеренных или рассчитанных значений тока и напряжения. Данная настройка влияет на все элементы токов замыкания на землю.

ПРЕДУПРЕЖДЕНИЕ!

Расчет остаточного напряжения возможен, только если на входы измерения напряжения подается фазное напряжение.

При настройке «измеренное» значения следует изменить, т. е. остаточное напряжение и измеренный ток утечки на землю следует подать на соответствующий 4^{ij} измерительный вход.

Все элементы токовой защиты от утечки на землю можно (независимо один от другого) настроить как ненаправленные или направленные ступени.

Для каждого доступного экземпляра защиты от максимального тока на землю «ЗIo[n]» следует отдельно указать, какой именно метод определения направления (из описанных в разделе > «Направление замыкания на землю») будет применяться.

• [Парам защиты / Набор 1...4 / І-защ / ЗІо[n]] «ЗІ источ» = «ТТ . рассчитано":

Пороговое значение максимального тока на землю и определение направления будет основываться на 3lo расч, а поляризующее количество будет определяться значением параметра «Пар выч напр 3l».

• [Парам защиты / Набор 1...4 / І-защ / ЗІо[n]] «ЗІ источ» = «ТТ . измерено":

Пороговое значение максимального тока на землю и определение направления будет основываться на 3lo изм, а поляризующее количество будет определяться значением параметра «Прм напр изм 3l».

• [Парам_ защиты / Набор 1...4 / І-защ_ / 3Io[n]] «ЗІ источ» = «ТТ . чувствительное измерение":

Пороговое значение максимального тока на землю и определение направления будет основываться на величине 3lo изм, измеренной по входному сигналу малого тока утечки на землю. (См. \Longrightarrow «Tls — плата измерения токов фазы и малых токов замыкания на землю».) Поляризующее количество будет определяться значением параметра «Прм напр изм 3l».

Метод измерений

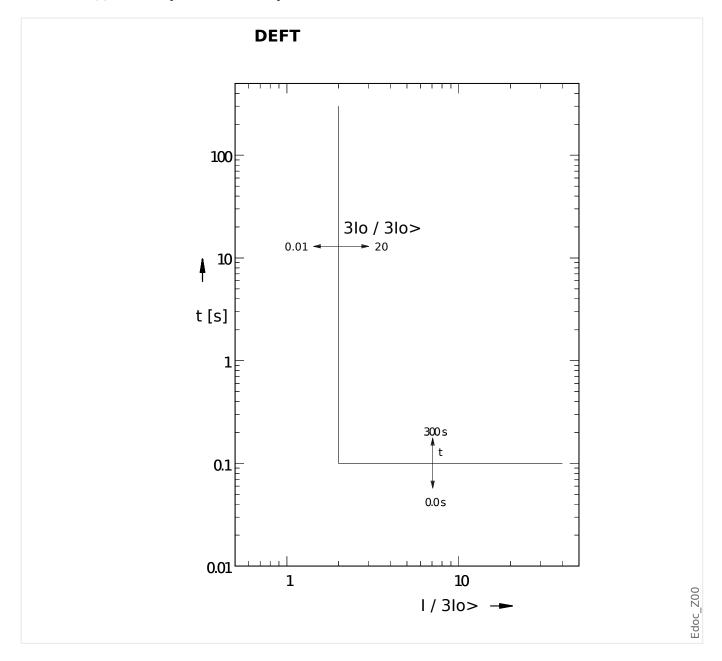
Для каждого защитного элемента настройкой параметра «Mетод измерений» можно определить, будет ли измерение выполняться на основе «Основные» или « $Ист_{CK3}$ » значения.

Источник IG/источник VG

Параметрами «31 источ» и «Выбор UX» определяется, являются ли ток утечки на землю и остаточное напряжение «измерено» или «рассчитано».

4.5.1 Характеристики

Для каждого элемента можно настраивать следующие характеристики:


• DEFT — определенное время — максимальный ток

- Нормально инверсная характеристика [NINV] (IEC) *IEC, стандартная* обратнозависимая характеристика
- Характеристика большой обратной зависимости времени отключения от тока [VINV] (IEC) *IEC*, большая обратнозависимая характеристика
- Характеристика длительной зависимости времени отключения от тока [LINV] (IEC) *IEC, длительная обратнозависимая характеристика выдержки времени*
- Характеристика очень большой обратной зависимости времени отключения от тока [EINV] (IEC) *IEC*, очень большая обратнозависимая характеристика
- Характеристика умеренной обратной зависимости времени отключения от тока [MINV] (ANSI) ANSI, умеренная обратнозависимая характеристика
- Характеристика большой обратной зависимости времени отключения от тока [VINV] (ANSI) ANSI, большая обратнозависимая характеристика
- Характеристика очень большой обратной зависимости времени отключения от тока [EINV] (ANSI) ANSI, очень большая обратнозависимая характеристика
- RINV обратнозависимая характеристика R
- RXIDG
- Пологая термическая характеристика пологая термическая характеристика
- Характеристика IT
- Характеристика I2Т
- Характеристика І4Т

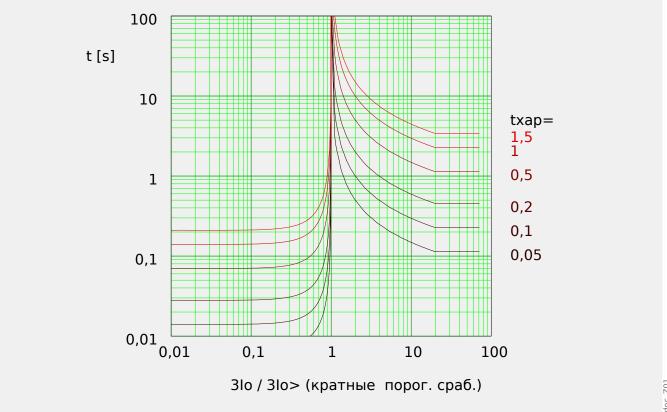
Объяснение

- t = Выдержка времени на отключение
- txap = Множитель времени/коэффициент характеристики отключения. Диапазон значений зависит от выбранной кривой отключения устройства.
- 3Іо = Ток короткого замыкания
- 3lo> = При превышении величины срабатывания происходит пуск модуля/ ступени.

ДБП — определенное время — максимальный ток

IEC Нормально инверсная характеристика [NINV]

«Xap» = IEC NINV


ПРИМЕЧАНИЕ!

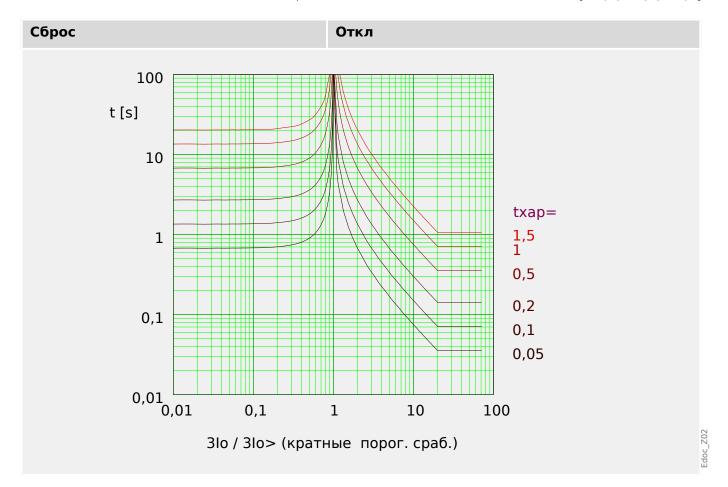
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{0.14}{1 - \left(\frac{3\text{Io}}{3\text{Io}}\right)^2} \cdot \text{txap}$	$t = \frac{0.14}{\left(\frac{3\text{Io}}{3\text{Io}}\right)^{0.02} - 1} \cdot \text{txap}$
$\frac{3Io}{3Io} < 1$	Если: $1 < \frac{3Io}{3Io} \le 20$

IEC Характеристика большой обратной зависимости времени отключения от тока [VINV]

«Xap» = IEC VINV


ПРИМЕЧАНИЕ!

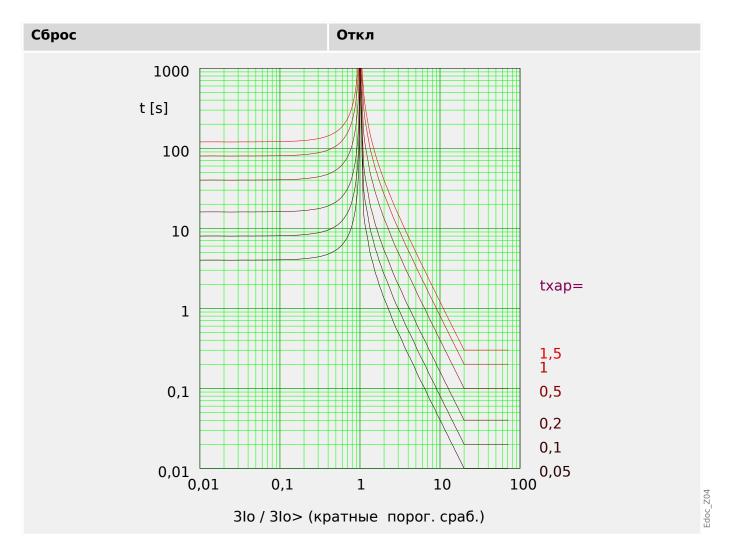
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{13.5}{1 - \left(\frac{3\text{Io}}{3\text{Io}}\right)^2} \cdot \text{txap}$	$t = \frac{13.5}{\frac{3\text{Io}}{3\text{Io}} - 1} \cdot \text{txap}$
$\frac{3Io}{3Io} < 1$	Если: $1 < \frac{3Io}{3Io} \le 20$

IEC Характеристика очень большой обратной зависимости времени отключения от тока [EINV]

«Xap» = IEC EINV


ПРИМЕЧАНИЕ!

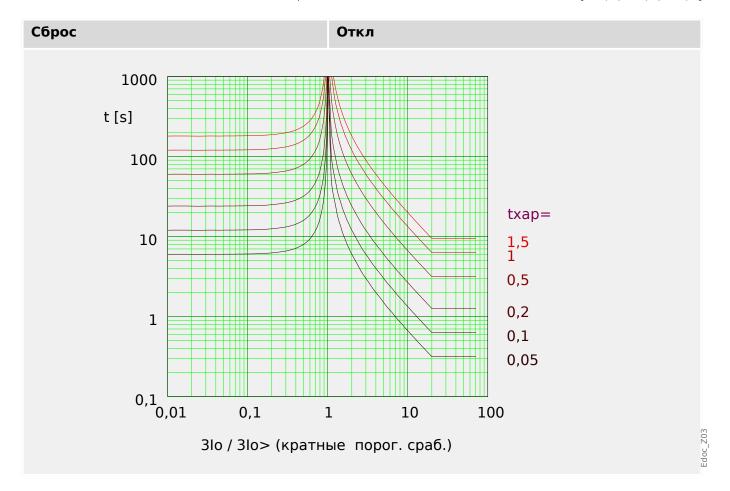
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{80}{1 - \left(\frac{3\text{Io}}{3\text{Io}}\right)^2} \cdot \text{txap}$	$t = \frac{80}{\left(\frac{3\text{Io}}{3\text{Io}}\right)^2 - 1} \cdot \text{txap}$
$\frac{3Io}{3Io} < 1$	Если: $1 < \frac{3Io}{3Io} \le 20$

IEC Характеристика длительной зависимости времени отключения от тока [LINV]

«Xap» = IEC LINV


ПРИМЕЧАНИЕ!

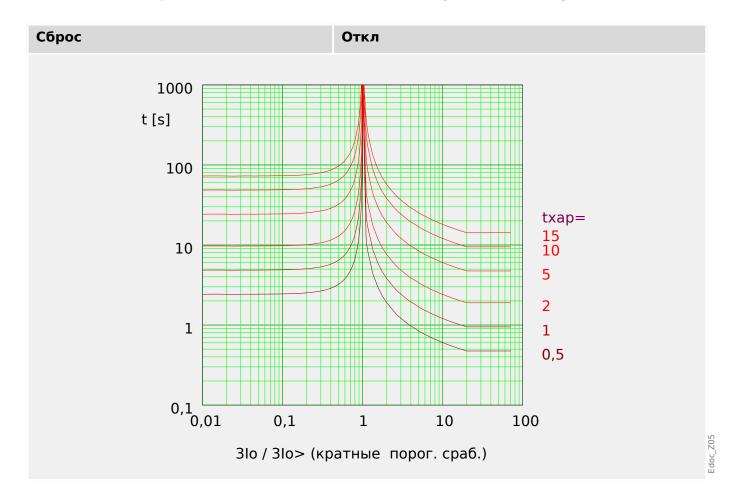
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{120}{1 - \left(\frac{3\text{Io}}{3\text{Io}}\right)^2} \cdot \text{txap}$	$t = \frac{120}{\frac{3\text{Io}}{3\text{Io}} - 1} \cdot \text{txap}$
$\frac{3Io}{3Io} < 1$	$1 < \frac{3Io}{3Io} \le 20$

ANSI Характеристика умеренной обратной зависимости времени отключения от тока [MINV]

«Xap» = ANSI MINV


ПРИМЕЧАНИЕ!

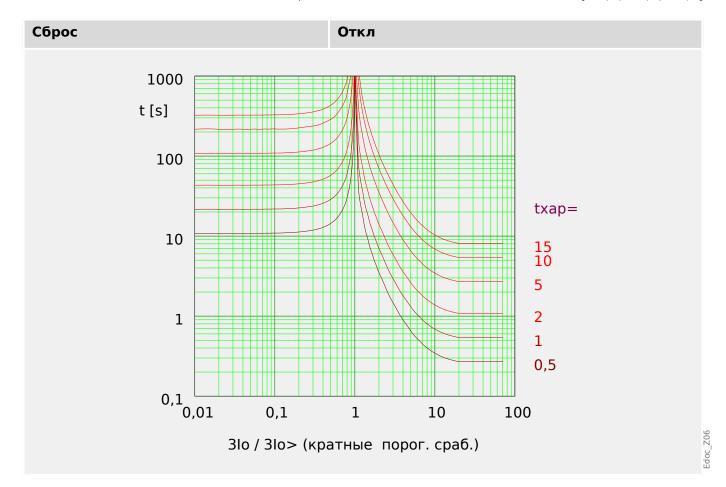
Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{4,85}{1 - \left(\frac{3\text{Io}}{3\text{Io}}\right)^2} \cdot \text{txap}$	$t = \left(\frac{0,0515}{\left(\frac{3\text{Io}}{3\text{Io}}\right)^{0,02} - 1} + 0,1140\right) \cdot \text{txap}$
$\frac{3Io}{3Io} < 1$	Если: $1 < \frac{3Io}{3Io} \le 20$

ANSI Характеристика большой обратной зависимости времени отключения от тока [VINV]

«Xap» = ANSI VINV


ПРИМЕЧАНИЕ!

Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{21.6}{1 - \left(\frac{3\text{Io}}{3\text{Io}}\right)^2} \cdot \text{txap}$	$t = \left(\frac{19,61}{\left(\frac{3\text{Io}}{3\text{Io}}\right)^{2} - 1} + 0,491\right) \cdot \text{txap}$
$\frac{3Io}{3Io} < 1$	Если: $1 < \frac{3Io}{3Io} \le 20$

ANSI Характеристика очень большой обратной зависимости времени отключения от тока [EINV]

«Xap» = ANSI EINV

ПРИМЕЧАНИЕ!

Доступны различные режимы сброса:

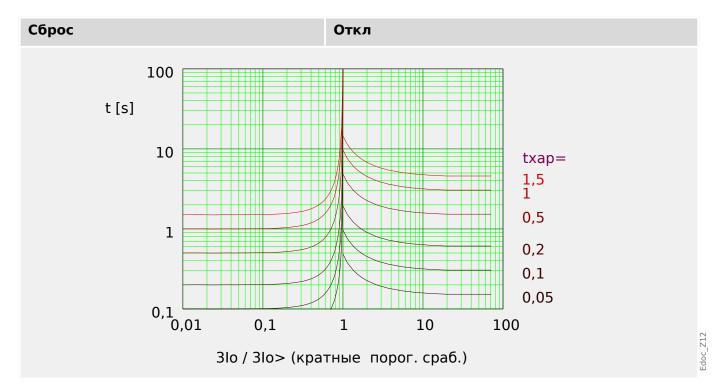
сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{29.1}{1 - \left(\frac{3\text{Io}}{3\text{Io}}\right)^2} \cdot \text{txap}$	$t = \left(\frac{28.2}{\left(\frac{3\text{Io}}{3\text{Io}}\right)^{2} - 1} + 0.1217\right) \cdot \text{txap}$
$\frac{3Io}{3Io} < 1$	Если: $1 < \frac{3Io}{3Io} \le 20$

R Inverse [RINV] - Характеристика

xx = RINV

ПРИМЕЧАНИЕ!



Доступны различные режимы сброса:

сброс по характеристике, выдержке времени или мгновенному значению.

Сброс	Откл
$t = \frac{1.0}{1 - \left(\frac{3\text{Io}}{3\text{Io}}\right)^2} \cdot \text{txap}$	$t = \frac{1.0}{0.339 - \frac{0.236}{\left(\frac{310}{310>}\right)}} \cdot \text{txap}$
$\frac{3Io}{3Io} < 1$	Если: $1 < \frac{3Io}{3Io} \le 20$

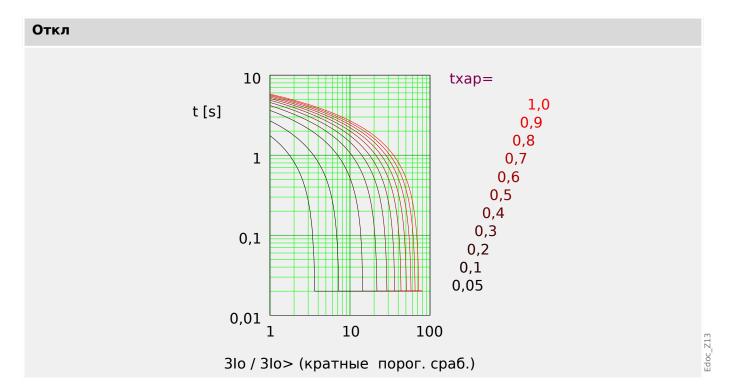
275

RXIDG

xxap = RXIDG

ПРИМЕЧАНИЕ!

Доступны различные режимы сброса:


сброс по характеристике, выдержке времени или мгновенному значению.

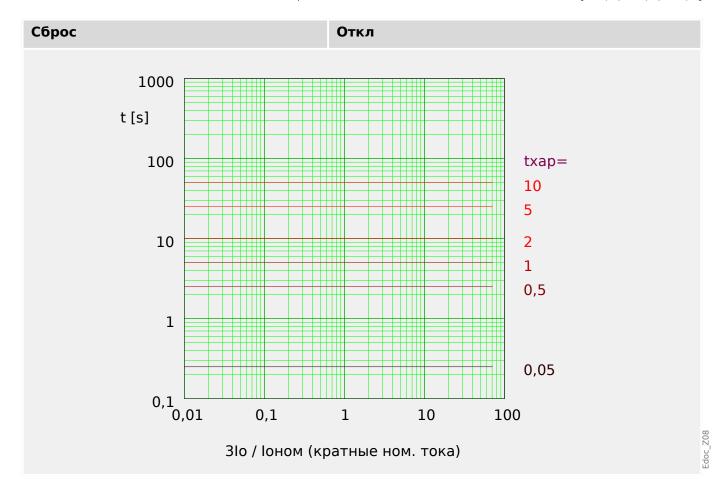
Примечание. При t=0.02 с убывание кривой прекращается, то есть значениеt для больших значений 3Io постоянно.

Откл

$$t = 5.8 - 1.35 \cdot \ln \left(\frac{3\text{Io}}{3\text{Io} > \cdot \text{txap}} \right)$$

Если:
$$1 < \frac{3Io}{3Io}$$
 И $t \ge 0.02s$

Пологая термическая характеристика

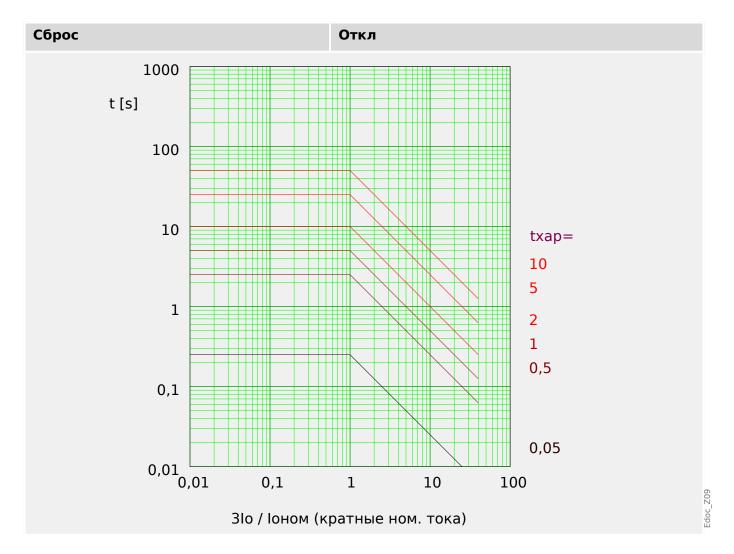

«Xap» = Thermal Flat

ПРИМЕЧАНИЕ!

Доступны различные режимы сброса:

Сброс	Откл
$t = (5 \cdot 1^2) \cdot txap$	$t = (5 \cdot 1^0) \cdot txap$
$\frac{3Io}{Iohom} < 1$	Если: $1 < \frac{3Io}{Iohom}$

Характеристика IT

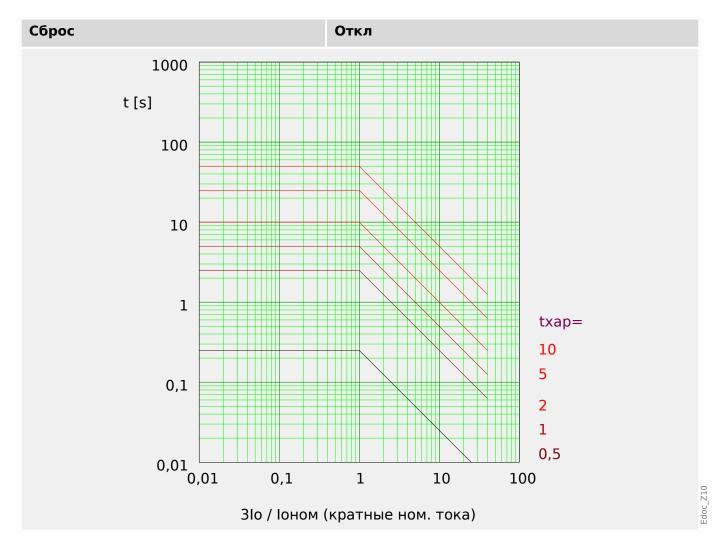

$$«Xap» = IT$$

ПРИМЕЧАНИЕ!

Доступны различные режимы сброса:

Сброс	Откл
$t = (5 \cdot 1^2) \cdot txap$	$t = \frac{5 \cdot 1^{1}}{\left(\frac{3\text{Io}}{\text{Iohom}}\right)^{1}} \cdot \text{txap}$
$\frac{3Io}{Iohom} < 1$	Если: $1 < \frac{3Io}{Iohom}$

Характеристика І2Т

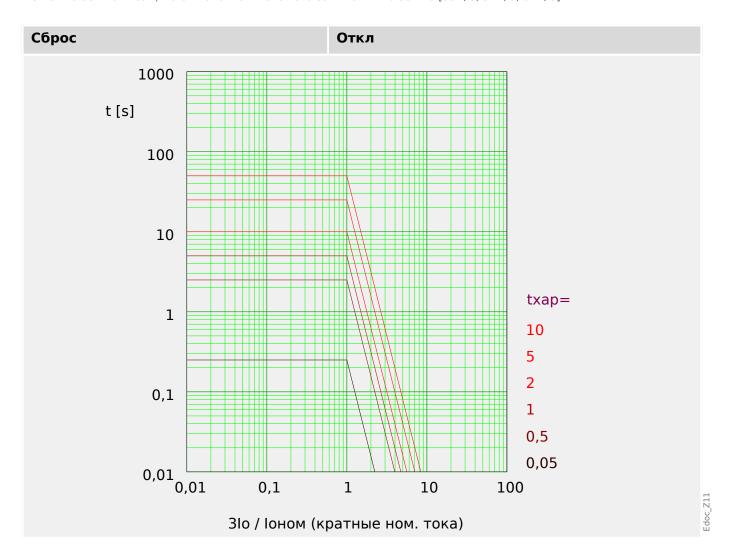

$$xx = 12T$$

ПРИМЕЧАНИЕ!

Доступны различные режимы сброса:

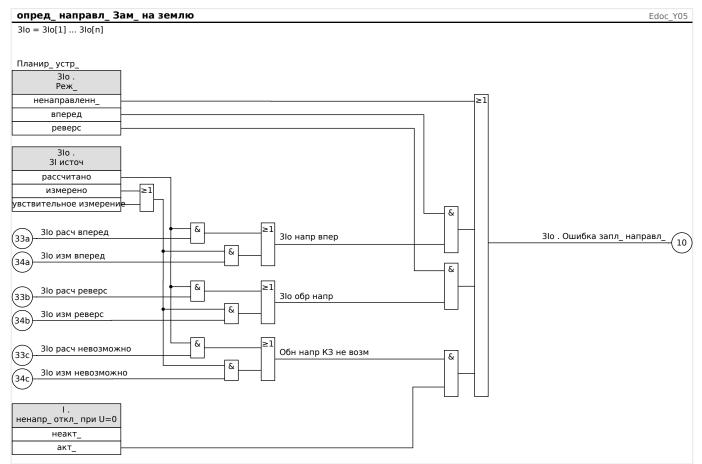
Сброс	Откл
$t = (5 \cdot 1^2) \cdot txap$	$t = \frac{5 \cdot 1^2}{\left(\frac{3\text{Io}}{\text{Iohom}}\right)^2} \cdot \text{txap}$
$\frac{3Io}{Iohom} < 1$	Если: $1 < \frac{3Io}{Iohom}$

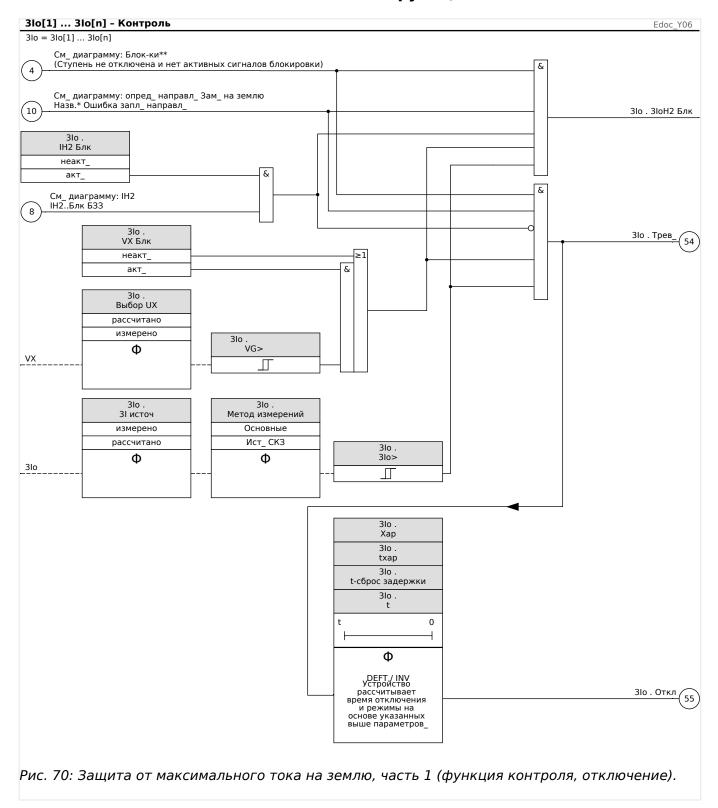
Характеристика І4Т

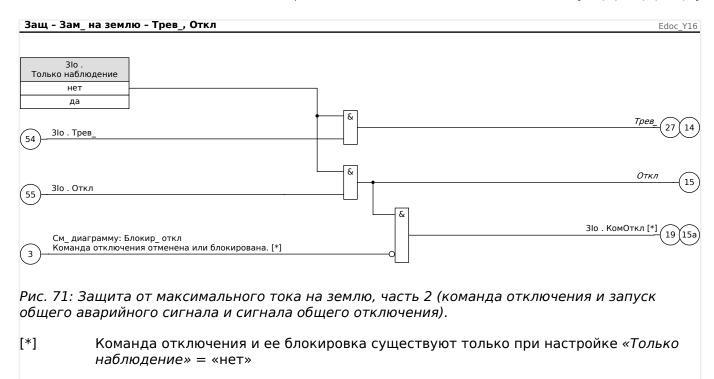

$$«Xap» = I4T$$

ПРИМЕЧАНИЕ!

Доступны различные режимы сброса:


Сброс	Откл
$t = (5 \cdot 1^2) \cdot txap$	$t = \frac{5 \cdot 1^4}{\left(\frac{3\text{Io}}{\text{Iohom}}\right)^4} \cdot \text{txap}$
$\frac{3Io}{Iohom} < 1$	$1 < \frac{3Io}{Iohom}$


4.5.2 Определение направления


Определение направления основано на модуле «Защ». Дополнительные сведения см. в разделе

—> «Определение направления».

4.5.3 Максимальный ток на землю — функции

4.5.4 Ввод в эксплуатацию: Защита по току замыкания на землю — ненаправленная [50N/G, 51N/G]

Проведите проверку модуля ненаправленной максимальной токовой защиты аналогично модулю направленной защиты от максимального фазового тока, см. раздел ⊫> «Ввод в эксплуатацию: Защита по току — ненаправленная [50, 51]».

4.5.5 Ввод в эксплуатацию: Защита по току замыкания на землю — направленная [50N/G, 51N/G, 67N/G]

Проведите проверку модуля направленной максимальной токовой защиты аналогично модулю направленной защиты от максимального фазового тока, см. раздел

Ввод в эксплуатацию: Защита по току — направленная [67]».

4.6 I2> и %I2/I1> — несбалансированная нагрузка [46]

Модуль защиты от несимметрии токов «I2>» работает подобно модулю защиты от несимметрии напряжений «U 012». Токи положительной и отрицательной последовательности рассчитываются из 3-фазных токов. Уставка («I2>» или «I2/ $T\Pi H$ ») определяет минимальную рабочую величину тока I2, необходимую для работы функции ANSI 46. Это гарантирует, что у реле будет достаточное основание инициировать отключение реле при несимметрии токов. Параметр «%(I2/I1)» — это настройка для определения несимметрии токов. Она определяется отношением тока отрицательной последовательности к току положительной последовательности «%(I2/I1)».

(Примечание. «ТПН» = ТПН: ток полной нагрузки.)

ПРИМЕЧАНИЕ!

Все модули защиты от несимметрии токов «I2>» имеют одинаковую структуру.

Условием для отключения этого модуля является то, что ток отрицательной последовательности I2 выше заданного порогового значения \mathbf{u} (если настроено) — процентное значение несимметрии токов выше заданного значения «%(I2/I1)». Модуль инициирует отключение, если данное условие выполняется в течение конкретного времени задержки отключения.

Допустимая непрерывная несимметрия токов нагрузки: [Парам_ защиты / Набор 1... 4 / І-защ / I2>», и ее указывают как Іном.

Для настройки времени задержки отключения доступны два параметра:

- Если «Xap» = «DEFT»: Задержкой отключения является значение настройки, доступное как параметр «t».
- Если «Хар» = «INV»: Задержка отключения рассчитывается с помощью МСА4.

Принцип работы обратной характеристики времени (INV) следующий. Защитным устройством постоянно рассчитывается тепловая энергия θ защищаемого объекта. Это происходит всегда, независимо от аварийных сигналов и сигналов отключения. Модуль отключится, если в течение времени задержки отключения $t_{\rm trip}$ (которое зависит от θ) будут выполнены **все** следующие условия.

- Ток отрицательной последовательности l2 будет выше заданного порогового значения («l2>»), **и**
- процентное значение несимметрии токов выше заданного значения «%(I2/I1)» (если настроено) **и**
- рассчитанное значение тепловой энергии θ превысит максимальное значение θ_{max} , рассчитанное с учетом уставки «K» в качестве функции тепловой нагрузки.

Для $\theta = 0$ время задержки отключения рассчитывается следующим образом:

$$t_{\text{Откл}} = \frac{K \cdot I_n^2}{I_2^2 - I_{2>}^2}$$

где:

t_{OTKJ}	= задержка отключения в секундах.
K	= тепловая нагрузка объекта при работе при $100%$ несимметрии токов нагрузки. Это внутреннее свойство защищаемого объекта, следовательно, его нужно указать как уставку (параметр из группы уставок « K »). Информацию об этом значении можно найти в спецификациях генератора.
In	= номинальный ток, если <i>«Баз. ток»</i> = «Номин_ значения устр_»
12	= токи несимметричной нагрузки $I2$ (рассчитанные на основе измеренных значений тока)
12>	= значение настройки «I2>»

При наличии остаточного нагрева ($\theta > 0$) задержка отключения $t_{\rm trip}$ соответственно сокращается, чтобы отключение происходило раньше.

Если токи несимметричной нагрузки I_2 **превышают** пороговое значение «I2>», предполагается, что объект *нагревается*. Для расчета тепловой энергии на этом этапе вводится значение тока I_2 :

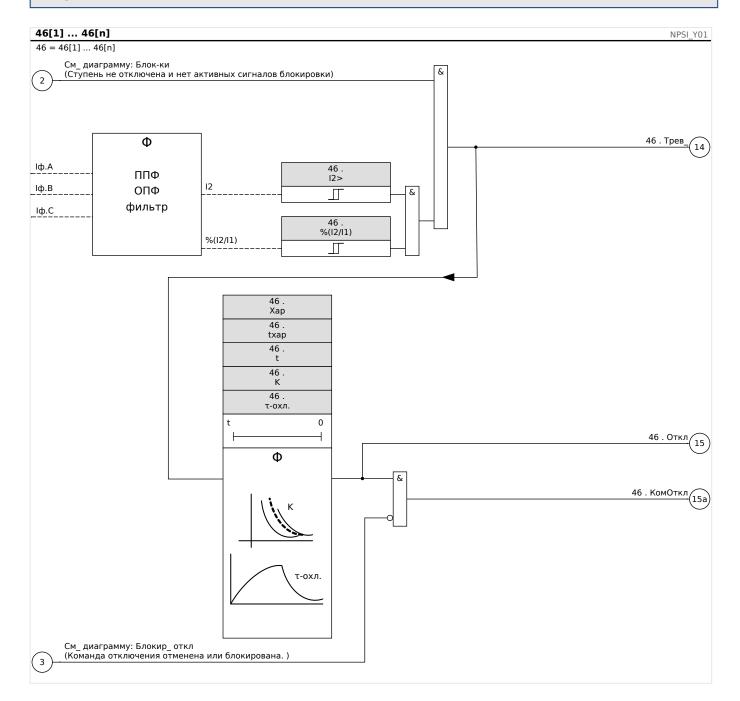
$$\Theta(t) = \Theta_{0,\text{OXJL}} + f \cdot \left| \begin{array}{ccc} I & I & 2 \end{array} \right|^2 dt$$

$\theta(t)$	= фактическая величина тепловой энергии.
θ _{0, охл.}	= исходное значение в начале фазы нагрева, то есть, тепловая энергия в конце последней фазы охлаждения (или = 0 , если завершилась последняя фаза охлаждения, см. ниже, или если фазы охлаждения еще не было).
f	= коэффициент масштабирования.

Если токи несимметричной нагрузки 12 **меньше** порогового значения (<*I*2>>), предполагается, что объект *охлаждается*.

Расчет тепловой энергии на этом этапе проводится с учетом константы охлаждения. Данная константа является еще одним внутренним свойством защищаемого объекта, следовательно, его нужно указать как уставку (параметр из группы уставок $*\tau$ -охл.»):

$$\theta(t) = \theta_{0,\text{\tiny Hasp.}} \cdot e^{-\frac{t}{t_{oxs.}}}$$


$\theta(t)$	= фактическая величина тепловой энергии,
$ heta_0$, нагр.	= исходное значение в начале фазы охлаждения, то есть, тепловая энергия в конце последней фазы нагревания,
$t_{ОХЛ.}$	= свойство объекта, уставка « <i>т-охл.</i> ».

Фаза охлаждения всегда продолжается, пока значение I2 ниже порогового значения, т. е, показатель $\theta(t)$ рассчитывается постоянно. (только после того, как значение показателя $\theta(t)$ опустится ниже $0.01 \cdot \theta_{\text{max}}$, расчет прекратится и показатель θ сбрасывается до 0, то есть, последующая фаза нагревания начинается при исходном значении $\theta_{0, \text{ охл.}} = 0.$)

ПРИМЕЧАНИЕ!

Тепловая энергия представляет собой вспомогательный показатель, и ее значение рассчитывается и поддерживается внутренней системой, то есть, она не отображается ИЧМ, и ее невозможно извлечь ни через один протокол связи.

4.6.1 Ввод в эксплуатацию: Модуль защиты от несимметрии токов

Тестируемый объект

Проверка функции защиты от тока обратной последовательности.

Необходимые средства

- Источник трехфазного тока с регулируемой несимметрией токов
- Таймер.

Описание процедуры

Проверка последовательности фаз

- Убедитесь, что последовательность чередования фаз соответствует заданной в параметрах участка.
- Подайте на устройство трехфазный ток номинальной величины.
- Войдите в меню «Значения измерений».
- Проверьте значение измерений несбалансированного тока «I2». Значение измерений для величины «I2» должно быть равно нулю (с учетом точности физических измерений).

ПРИМЕЧАНИЕ!

Если отображаемая величина I2 соответствует величине для симметричных номинальных токов, подаваемых на реле, это значит, что такая последовательность чередования фаз является обратной.

- Теперь отключите фазу ф.А.
- Повторно произведите измерение несимметричного тока «I2» в меню «Значения измерений». Измеренное значение несимметричного тока «I2» теперь должно составлять 33%.
- Включите фазу ф.А и отключите фазу ф.В.
- Повторно произведите измерение несимметричного тока I2 в меню «Значения измерений». Измеренное значение несимметричного тока «I2» опять должно составлять 33%.
- Включите фазу ф.В и отключите фазу ф.С.
- Повторно произведите измерение несимметричного тока «I2» в меню «Значения измерений». Измеренное значение несимметричного тока «I2» должно составлять 33%.

Проверьте задержку отключения:

- Подайте симметричный трехфазный ток на устройство (номинальной величины).
- Отключите ток фазы la (уставка для величины «I2» должна быть менее 33%).
- Измерьте время отключения.

Существующая несимметрия токов «I2» соответствует 1/3 от существующего фазового тока, отображаемого на экране.

Проверка пороговых значений

- Задайте минимальное значение «%I2/I1» (2 %) и произвольную уставку «Уставка» (I2).
- Для проверки уставок необходимо подать ток на фазу А. Величина тока должна быть в три раза меньше, чем заданная «Уставка» (I2).
- Подача питания только фазы A дает результат «%I2/I1» = 100 %, поэтому первое условие «%I2/I1» >= 2% выполняется всегда.
- Теперь увеличьте ток фазы ф.А до активации реле.

Проверка коэффициента падения уставок

При отключении реле в предыдущей проверке уменьшите ток фазы А. Порог отпускания не должен быть выше, чем 0,97 от уставки.

Проверка %/2//1

- Задайте минимальное значение «Порог» (I2) (0,01 x ln) и задайте значение «% (I2/I1)» большим или равным 10%.
- Подайте симметричный трехфазный ток на устройство (номинальной величины). Измеренное значение «%I2/I1» должно составлять 0%.
- Теперь увеличьте ток фазы L1. При такой конфигурации уставка «Порог» (I2) должна быть достигнута до того, как показатель «%I2/I1» достигнет заданного значения коэффициента «%(I2/I1)».
- Продолжайте увеличивать ток фазы А до активации реле.

Проверка коэффициента падения %12/11

Отключив реле в ходе предыдущей проверке, уменьшите ток фазы L1. Значение «%I2/I1» должно упасть на 1% ниже уставки «%I2/I1».

Результат успешной проверки

Измеренные значения задержки отключения, уставки и коэффициенты падения должны находиться в пределах допустимых отклонений и погрешностей, указанных в технических характеристиках устройства.

4.7 Модуль защиты ThR: Тепловая модель [49]

Максимально допустимая тепловая нагрузка и, как следствие, задержка размыкания компонента зависят от величины тока, протекающего в определенное временя, от «прежнего значения токовой нагрузки» и от некой постоянной величины, зависящей от компонента.

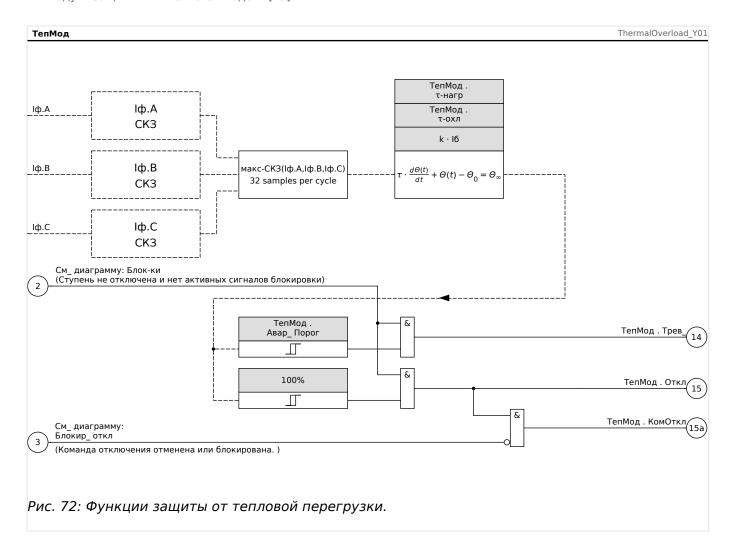
Полностью функция тепловой модели реализована в устройстве как модель однородного тела, соответствующего тому оборудованию, которое подлежит защите, с учетом прежнего значения нагрузки. Функция защиты имеет одношаговую схему с предупреждающим предельным значением.

Для этого устройство рассчитывает тепловую нагрузку оборудования, используя имеющиеся значения измерений и настройки параметров. Зная тепловые константы, можно смоделировать (определить) температуру оборудования.

The thermal state is reset in any of the following cases:

- a (warm or cold) restart of the MCA4;
- a change of the configuration (i. e. changed settings / parameters);
- a change of the active parameter set.

Время отключения ступени защиты


Общее время отключения функции защиты от тепловой перегрузки можно получить из следующего уравнения.

$$t = \tau$$
-нагр · $\ln \left(\frac{I^2 - \operatorname{Im}^2}{I^2 - (K \cdot \operatorname{Id})^2} \right)$

Условные обозначения:

- t задержка отключения
- т-нагр константа времени разогрева
- т-охл константа времени охлаждения
- Іб базовый ток: максимально допустимое значение непрерывного теплового тока
- К коэффициент перегрузки: максимальный тепловой предел определяется как $K \cdot I6$, т. е. произведение коэффициента перегрузки и базового тока.
- І измеренный ток (в единицах Іном)
- Іп ток предварительной нагрузки

Функции защиты от тепловой перегрузки

4.7.1 Ввод в эксплуатацию: Тепловая модель

Тестируемый объект

Защитная функция: ThR

Необходимые средства

- Трехфазный источник тока
- Таймер

Описание процедуры

ПРИМЕЧАНИЕ!

Чтобы гарантировать оптимальную защиту, необходимо знать значение параметра роста температуры компонента « t_w ».

Проверка пороговых значений

Приложите к устройству ток, значение которого лежит в основе математических расчетов.

Проверка задержки отключения

ПРИМЕЧАНИЕ!

Перед началом проверки тепловая мощность должна быть равна нулю. См. [Работа / Измеренные значения / ТепМод] «Исп теплов емк ».

Для проверки задержки отключения необходимо подключить таймер к контактам соответствующего реле отключения.

Приложите к устройству ток, значение которого лежит в основе математических расчетов. Таймер включится сразу после подачи тока и остановится после отключения тока с помощью реле.

Результат успешной проверки

Расчетное время отключения и порог возврата должны соответствовать измеренным значениям. Допустимые отклонения и допуски указаны в технических данных.

4.8 V — защита по напряжению [27,59]

осторожно!

Если точка измерения трансформатора напряжения находится не со стороны сборной шины, а со стороны выхода, то необходимо принять во внимание следующее:

При отсоединении линии необходимо убедиться, что при внешней блокировке отключение элементов V< при пониженном напряжении не произойдет. Это осуществляется путем определения положения выключателя (через цифровые входы).

Когда вспомогательное напряжение включено, а измерительное напряжение еще не подано, предотвратить отключение при пониженном напряжении можно посредством внешней блокировки.

осторожно!

В случае выхода из строя предохранителя необходимо заблокировать U<-ступени таким образом, чтобы предотвратить нежелательную работу.

Для этого установите для параметра «Измер. схем контр.» значение «акт_» и активируйте необходимый модуль контроля ТН (например, ППот, КТН).

Следует также задать время задержки отключения защиты от понижения напряжения «t», выбрав значение, превышающее время обнаружения модуля контроля TH. Необходимо учитывать следующие временные показатели:

- КТН, определение неисправности предохранителя с помощью цифрового входа: **20 мс**
- КТН, определение с помощью измерений и внутреннего расчета: 20 мс
- ППот, определение неисправности предохранителя с помощью цифрового входа: **20 мс**
- ППот, определение с помощью измерений и внутреннего расчета: 30 мс

ПРЕДУПРЕЖДЕНИЕ!

(Для устройств с модулем ППот:)

Обратите также внимание на то, что для модуля ППот (Падение потенциала) определено встроенное фиксированное пороговое значение понижения напряжения, равное $0.03 \cdot Un$. Поэтому, несмотря на наличие защиты «U<-ступени», не следует использовать значение срабатывания «U<» ниже $0.03 \cdot Un$, поскольку в этом случае модуль защиты от пониженного напряжения будет всегда блокироваться еще до выключения.

ПРИМЕЧАНИЕ!

Все элементы защиты по напряжению имеют идентичную структуру и по желанию могут быть спроектированы как элемент с защитой от пониженного или повышенного напряжения.

Если к измерительным входам устройства будут приложены фазовые напряжения, и местному параметру «ТН соед» присвоено значение «Фазн напр», то модуль защиты по напряжению при срабатывании или отключении будет выдавать сообщения, которые необходимо интерпретировать следующим образом:

- «Трев_ ф.А» или «Откл ф.А» аварийный сигнал или размыкание вызвано фазовым напряжением UA.
- «Трев_ ф.В» или «Откл ф.В» аварийный сигнал или размыкание вызвано фазовым напряжением UB.
- «Трев_ ф.С» или «Откл ф.С» аварийный сигнал или размыкание вызвано фазовым напряжением UC.

Однако, если на измерительные входы будет подано напряжение между фазами и местному параметру «*TH соед*» присвоено значение «Лин. напряж.», то сообщения необходимо интерпретировать следующим образом:

- «Трев_ ф.А» или «Откл ф.А» аварийный сигнал или размыкание вызвано напряжением между линиями UAB.
- «Трев_ ф.В» или «Откл ф.В» аварийный сигнал или размыкание вызвано напряжением между линиями UBC.
- «Трев_ ф.С» или «Откл ф.С» аварийный сигнал или размыкание вызвано напряжением между линиями UCA.

Следующая таблица содержит варианты применения элемента защиты по напряжению.

Применение модуля защиты по напряжению	Настройка:	Варианты значений
ANSI 27 Защита от пониженного напряжения	[Планир_ устр_] <i>«Реж_»</i> , Зад_ знач_: U<	«Критерий»:
10 минут скользящего среднего контроля U<	[Планир_ устр_] <i>«Реж_»</i> , Зад_ знач_: U<	«Критерий»: • V скольз. ср. контр. «Реж_ изм_»: • Фазн напр, Лин_ напр_
ANSI 59 Защита от повышенного напряжения	[Планир_ устр_] <i>«Реж_»</i> , Зад_ знач_: U>	«Критерий»:

Применение модуля защиты по напряжению	Настройка:	Варианты значений
Контроль скользящего среднего значения V>	[Планир_ устр_] <i>«Реж_»</i> , Зад_ знач_: U>	«Критерий»: • V скольз. ср. контр. «Реж_ изм_»: • Фазн напр, Лин_ напр_

Метод измерений

Для всех элементов защиты по напряжению настройка «Критерий» определяет, выполняется ли измерение на основе «Основные» или используется измерение «Ист_ СКЗ». В дополнение к этому можно настроить параметры контроля скользящего среднего значения «V скольз. ср. контр.».

ПРИМЕЧАНИЕ!

Необходимые настройки для расчета «среднего значения» по «контролю скользящего среднего значения» должны задаваться в меню [Пар_ устр_ / Статистика / V скольз. ср. контр.].

Режим измерения

Если на измерительные входы платы измерения напряжения поступает напряжение «Фазн напр», то для параметра участка «*TH соед»* необходимо задать значение «Фазн напр». В этом случае можно установить значение параметра «*Реж_изм_»* для каждого элемента защиты от фазного напряжения как «Фазн напр» или «Лин_ напр_». Это значит, что можно указать для каждого элемента защиты способ определения Un:

- «Реж_ изм_» = «Фазн напр» $Un = TH \ \mathrm{втор}/\sqrt{3}$
- «Реж_ изм_» = «Лин_ напр_» $Un = TH \ втор = TH \ втор$

Однако если на измерительные входы платы измерения напряжения поступает напряжение «Лин_ напр_» (« $TH\ coeд$ » = «Лин. напряж.»), то настройка параметра « $Pex_{_}\ usm_{_}$ » игнорируется, и ему внутренними средствами присваивается значение «Лин_ напр_», так что $Un=TH\ втор$.

Минимальное пороговое значение тока для защиты от понижения напряжения

Критерий минимального тока доступен в виде новой функции для защиты по напряжению в режиме «пониженное напряжение» $-«Peж__» = «U<» —$ можно активировать критерий минимального тока. Это «проверка по минимальному току», которая заключается в том, что защита от понижения напряжения блокируется, как только **все** фазовые токи падают ниже определенного порогового значения. И наоборот, если после такого падения фазовые токи снова доступны, защита от понижения напряжения снова активируется только по истечении настроенного времени задержки.

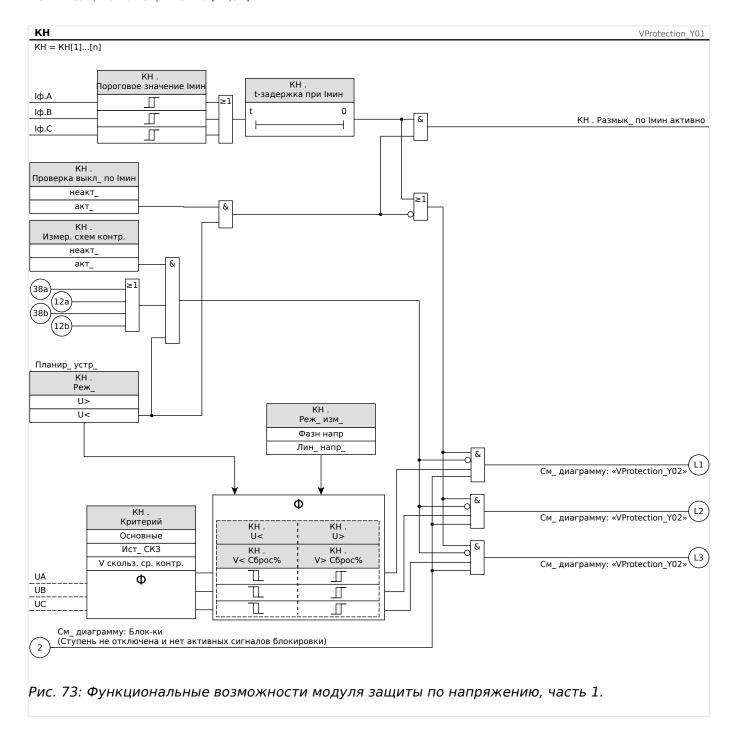
Эта функция полезна тем, что ситуация, когда отсутствует фазовые токи, может указывать на разомкнутый выключатель, и нежелательно, чтобы средства защиты от понижения напряжения реагировали на это событие. Цель времени задержки —

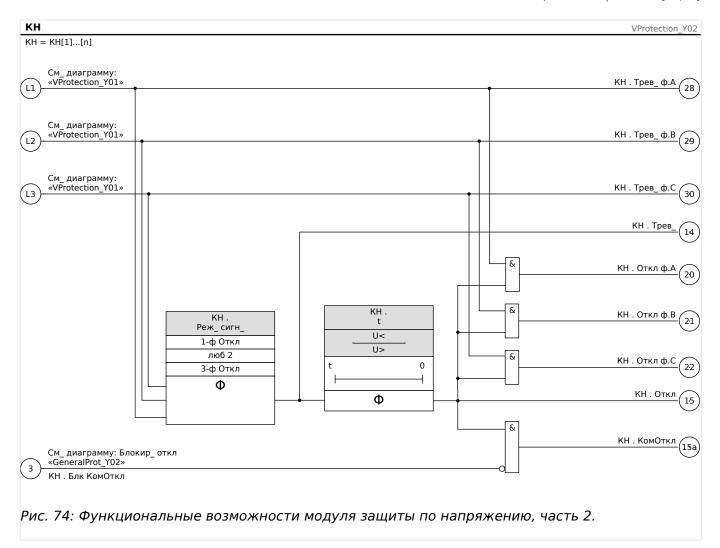
исключить немедленное отключение при повторном замыкании выключателя: Без этой задержки существует риск мгновенного отключения защиты от понижения напряжения, поскольку напряжение еще не поднялось выше порога отключения «U<» (хотя фазовые токи могут уже превышать минимальное пороговое значение тока).

Проверка по минимальному току является необязательной, она активируется с помощью настройки «Проверка выкл_ по Iмин» = I акт_).

После активации проверки по минимальному току пороговое значение можно будет задать с помощью параметра «Пороговое значение Імин», то есть защита от понижения напряжения будет блокироваться, как только все фазные токи упадут ниже этого значения.

Время задержки для повторной активации защиты от понижения напряжения (после того, как снова появится любой из фазных токов) можно задать с помощью параметра *«t-задержка при Імин»*.


осторожно!



Если данная проверка по минимальному току активна, следует знать, что без тока защита от понижения напряжения отключена не будет. Поэтому, в зависимости от выполняемой задачи, эту функцию иногда использовать не следует.

Логическая схема работы и отключения

Для каждого из элементов защиты по напряжению можно определить, будет ли он срабатывать, когда повышенное или пониженное напряжение обнаружится в одной из трех, двух из трех или во всех трех фазах. Коэффициент выключения является устанавливаемым.

4.8.1 Ввод в эксплуатацию: Защита от повышенного напряжения [59]

Тестируемый объект

Проверка элементов защиты от повышенного напряжения, 3 однофазных и 1 трехфазного (для каждого из элементов).

осторожно!

При проверке ступеней защиты от повышенного напряжения необходимо также убедиться в правильности схемы подключения устройства к входам распределительного щита. Ошибки в электрической схеме подключения измерительных входов напряжения могут привести к:

- Неправильное срабатывание направленной токовой защиты.
 - Пример. Устройство внезапно переключается в обратном направлении, но оно не переключается в прямом направлении.
- Неправильной индикации или отсутствию индикации коэффициента мощности.
- Ошибкам направления мощности и т. п.

Необходимые средства

- Источник трехфазного переменного напряжения
- Таймер для измерения времени отключения
- Вольтметр

Процедура (3 однофазных, 1 трехфазное для каждого из элементов)

Проверка пороговых значений

Для проверки пороговых значений и значений порога отпускания испытательное напряжение необходимо повышать до тех пор, пока реле не включится. При сравнении отображаемых значений с показаниями вольтметра отклонение должно находиться в допустимых пределах.

Проверьте задержку отключения

Для проверки задержки отключения необходимо подключить таймер к контактам соответствующего реле отключения.

Таймер включится сразу после того, как будет превышено предельное значение напряжения отключения, и остановится после срабатывания реле.

Измерение порога отпускания

Уменьшайте измеряемую величину до значения мен ее (к примеру) 97% от напряжения отключения. При достижении 97% от значения, необходимого для отключения, реле должно перейти в исходное положение.

Результат успешной проверки

Измеренные уставки, задержки отключения и уставки на возврат должны находиться в пределах допустимых отклонения и погрешностей, указанных в списке настроек. Допустимые отклонения и допуски указаны в технических данных.

4.8.2 Ввод в эксплуатацию: Защита от понижения напряжения [27]

Эту проверку проводят аналогично проверке защиты от повышенного напряжения (с помощью соответствующих величин пониженного напряжения).

Примите к сведению следующие различия:

- Для проверки уставок испытательное напряжение должно понижаться до тех пор пока реле не включится.
- Для определения порога отпускания измеряемая величина должна увеличиваться до тех пор, пока она не превысит (к примеру) 103% от значения, необходимого для отключения. При достижении 103% от значения, необходимого для отключения, реле должно перейти в исходное положение.

4.9 HVRT — работа при повышенном напряжении

ПРИМЕЧАНИЕ!

Bce «HVRT[x]» имеют идентичную структуру.

Этот модуль обеспечивает защиту Работа при повышенном напряжении в соответствии с требованиями директив VDE-AR-N-4110/4120/4130. МСА4 использует специальные модули защиты от перенапряжения, чтобы сделать эту схему защиты доступной.

Если к измерительным входам устройства будут приложены фазовые напряжения, и местному параметру «*TH соед»* присвоено значение «Фазн напр», то модуль «HVRT» при срабатывании или отключении будет выдавать сообщения, которые необходимо интерпретировать следующим образом:

- «Трев_ ф.А» или «Откл ф.А» аварийный сигнал или размыкание вызвано фазовым напряжением UA.
- «Трев_ ф.В» или «Откл ф.В» аварийный сигнал или размыкание вызвано фазовым напряжением UB.
- «Трев_ ф.С» или «Откл ф.С» аварийный сигнал или размыкание вызвано фазовым напряжением UC.

Однако, если на измерительные входы будет подано напряжение между фазами и местному параметру «*TH соед*» присвоено значение «Лин. напряж.», то сообщения необходимо интерпретировать следующим образом:

- «Трев_ ф.А» или «Откл ф.А» аварийный сигнал или размыкание вызвано напряжением между линиями UAB.
- «Трев_ ф.В» или «Откл ф.В» аварийный сигнал или размыкание вызвано напряжением между линиями UBC.
- «Трев_ ф.С» или «Откл ф.С» аварийный сигнал или размыкание вызвано напряжением между линиями UCA.

Работа при повышенном напряжении

Модуль «HVRT[x]» включается в настройках:

• [Планир устр] «HVRT[x] . Реж » = «U>»

После этого HVRT активируется защитная функция в настройках:

• [Парам_ защиты / Набор 1...4 / Внутр_соед-Защ / HVRT[x]] «Функция» = «акт_»

Варианты:

- [Парам защиты / Набор 1...4 / Внутр соед-Защ / HVRT[x]] «Критерий» =
 - Основные
 - ∘ Ист_СКЗ
- [Парам_ защиты / Набор 1...4 / Внутр_соед-Защ / HVRT[x]] «Реж_ изм_» =

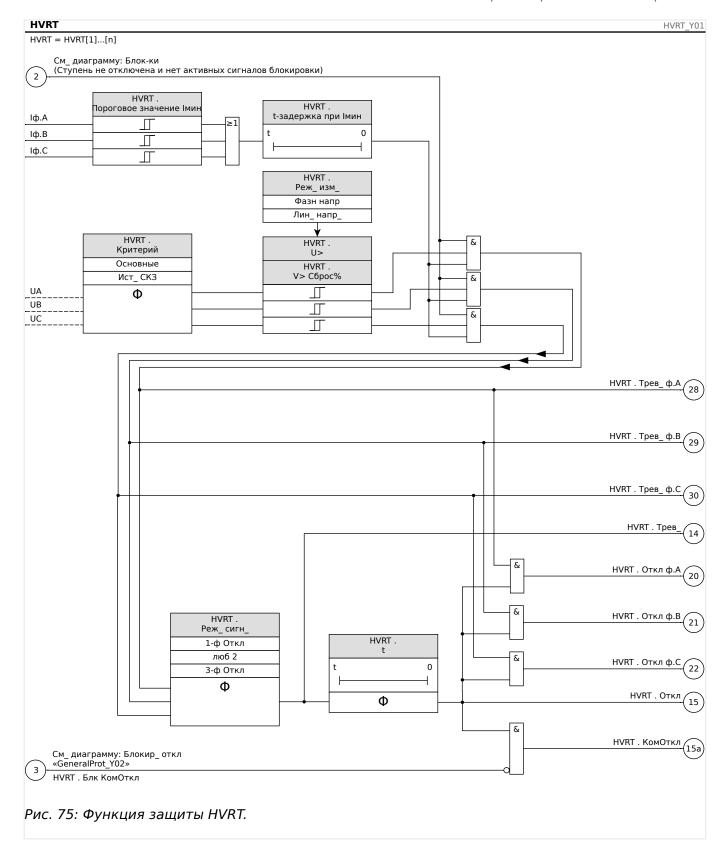
4.9 HVRT — работа при повышенном напряжении

- Фазн напр
- ∘ Лин напр

Метод измерений

Для всех защитных элементов HVRT с настройкой «Критерий» указывется выполнение измерения на основе «Основные» или «Ист СКЗ».

Режим измерения


Если на измерительные входы платы измерения напряжения поступает напряжение «Фазн напр», то для параметра участка «*TH соед»* необходимо задать значение «Фазн напр». В этом случае можно установить значение параметра «*Реж_изм_»* для каждого элемента защиты от фазного напряжения как «Фазн напр» или «Лин_ напр_». Это значит, что можно указать для каждого элемента защиты способ определения Un:

- «Реж_ изм_» = «Фазн напр» $Un = TH \ \mathrm{втор} / \sqrt{3}$
- «Реж изм » = «Лин напр » $Un = TH \ втор = TH \ втор$

Однако если на измерительные входы платы измерения напряжения поступает напряжение «Лин_ напр_» («TH соед» = «Лин. напряж.»), то настройка параметра « $Pex_{_}$ изм_» игнорируется, и ему внутренними средствами присваивается значение «Лин_ напр », так что Un = TH втор.

Логическая схема работы и отключения

Для каждого из элементов защиты можно определить, будет ли он срабатывать, когда повышенное напряжение обнаружится в одной из трех, двух из трех или во всех трех фазах. Коэффициент выключения является устанавливаемым.

4.9.1 Ввод в эксплуатацию: Работа при повышенном напряжении

Пожалуйста, ознакомьтесь с вводом в эксплуатацию защиты от повышенного напряжения:

—> «Ввод в эксплуатацию: Защита от повышенного напряжения [59]»

4.10 РПН — работа при пониженном напряжении [27(t)]

Стремительное развитие распределенных ресурсов (PP), основанных на использовании возобновляемых источников энергии, таких как ветер, энергия солнца и другие, изменило электроэнергетическую систему и концепции ее управления, защиты, измерения и связи.

Одной из важных задач для обеспечения взаимодействия между PP и локальной электроэнергетической системой (ЛОС) является поведение PP во время помех в электроэнергетической системе. Большинство помех в электросистеме характеризуется в основном периодическими спадами напряжения (падениями напряжения) с различной продолжительностью.

Согласно традиционной концепции защиты, в случае очень низкого значения напряжения распределенные энергетические ресурсы должны как можно быстрее отключаться от энергетической системы. Данный подход из-за непрерывного роста доли распределенных источников энергии на энергетическом рынке более не является приемлемым. Неконтролируемые отключения значительной части электроэнергии во время помех в энергетической системе угрожают стабильности энергосистемы.

На основе подобных примеров, многие электроэнергетические компании и государственные коммунальные предприятия выпустили стандарты взаимодействия, которые включают в себя возможность работы при пониженном напряжении (РПН) во время помех в ЛОС.

Что именно подразумевается под РПН?

РПН не разрешает отделять/отключать PP от энергетической системы только из-за возникновения периодических падений напряжения. Это должны учитывать защитные реле и блоки управления.

Вместо этого, при таких нарушениях распределенный ресурс должен быть в состоянии продолжить работу в соответствии с профилем РПН. Согласно нормам для разных стран и локальных сетей, параметры профиля РПН являются очень схожими. Но они могут различаться в деталях.

С помощью РПН повышается стабильность системы в ситуациях, когда вклад распределенных ресурсов в ее работу наиболее необходим. С ростом доли распределенных ресурсов в системах электроснабжения важность РПН будет расти.

На основании упомянутых выше технических требований была разработана защитная функция LVRT для устройств MCA4, охватывающая профили (возможности) LVRT, определенные во всех соответствующих национальных и местных стандартах взаимодействия энергосистем.

На рисунке ниже приводится подробная информация о стандартах LVRT, принятых в разных странах. Обратите внимание, что стандарты и, следовательно, коды энергосистем в некоторых странах находятся в стадии разработки.

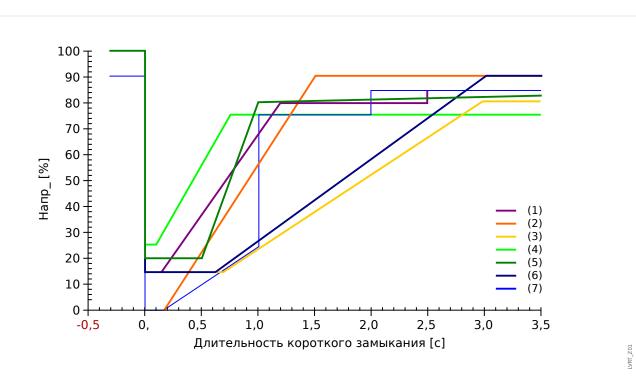


Рис. 76: Стандарты РПН; источник: eBWK Bd. 60 (2008 г.), № 4. Авторы: дипломированный инженер Томас Смолка, д. т. н. Карл-Хайнц Век, центр сертификации FGH e.V., Мангейм, а также дипломированный инженер (FH) Матиас Барч, Enercon GmbH, Аурих.

- (1) Электросетевой кодекс (Великобритания)
- (2) Е-on (Германия)
- (3) Vattenfall, VDN (Германия)
- (4) TF 3.2.5, TF 3.2.6 (Дания)
- (5) НОМЕР ЗАКАЗА 1.2.3 (Испания)
- (6) Awea (США) и Aeso (Канада)
- (7) Hydro-Quebec (Канада)

Принцип работы РПН

С точки зрения операторов энергетических систем профиль LVRT определяет параметры напряжения, которым должен соответствовать распределенный энергоресурс, подключенный к сети, чтобы продолжить работу в случае падения напряжения.

Отключение распределенного энергетического ресурса от сети допускается, только если напряжение в точке общего подключения упадет ниже границы LVRT. Иначе говоря, защитная функция LVRT обеспечивает зависящий от времени контроль напряжения в соответствии с предопределенными параметрами напряжения.

Функция контроля напряжения с временной зависимостью запускается, как только напряжение в точке общего подключения опустится ниже начального уровня [Парам_ защиты / Набор 1...4 / Внутр_соед-3ащ / LVRT[x] / Параметры РПН] «Uпуск<».

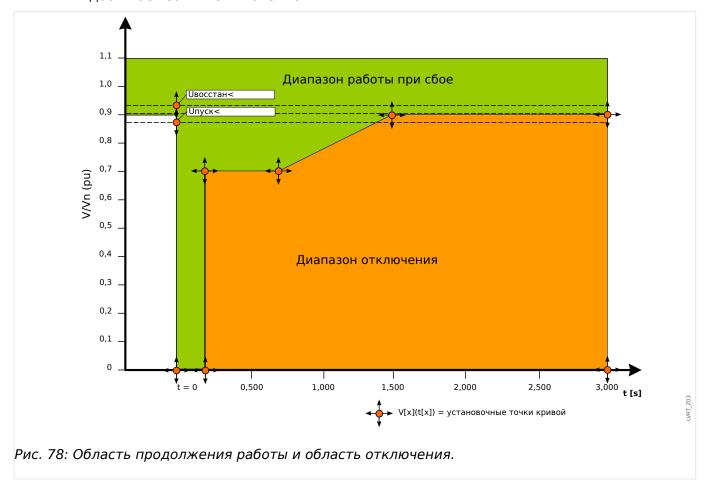
Работа функции LVRT прекращается, как только напряжение превысит уровень восстановления напряжения [Парам_ защиты / Набор 1...4 / Внутр_соед-3ащ / LVRT[x] / Параметры РПН] «Uвосстан<».

Автоматическое повторное включение управляемой РПН

Как уже говорилось, целью LVRT является сохранение подключения распределенного ресурса к сети в случае периодического падения напряжения. Для сбоев в электрической энергосистеме, которые используют функцию автоматического повторного включения для координации с защитой от короткого замыкания, такой как защита от избыточного тока или дистанционная защита, предполагается, что в течение одного периода времени, который определяется заданным временем простоя для автоматического повторного включения и временем срабатывания защитного реле, возникает более одного падения напряжения. Падения напряжения, которые вызваны временем простоя для автоматического повторного включения, не являются постоянными. Таким образом, защитное устройство должно обнаружить падения напряжения, связанные с автоматическим повторным включением, и активировать команды отключения в том случае, если напряжение падает ниже установленного параметра, или, когда все параметризованные попытки автоматического повторного включения не были успешными.

На рисунке ниже показано отклонение напряжения, вызванное двумя неудачными попытками автоматического повторного включения.

Согласно некоторым электросетевым стандартам, для обеспечения работы во время нескольких временных падений напряжения подряд следует обеспечить распределенную генерацию энергии, но в случае устойчивого отказа сети генераторы могут быть незамедлительно отключены от энергосистемы. Это можно без труда реализовать с помощью компонента «LVRT с AПВ» функции защиты LVRT.

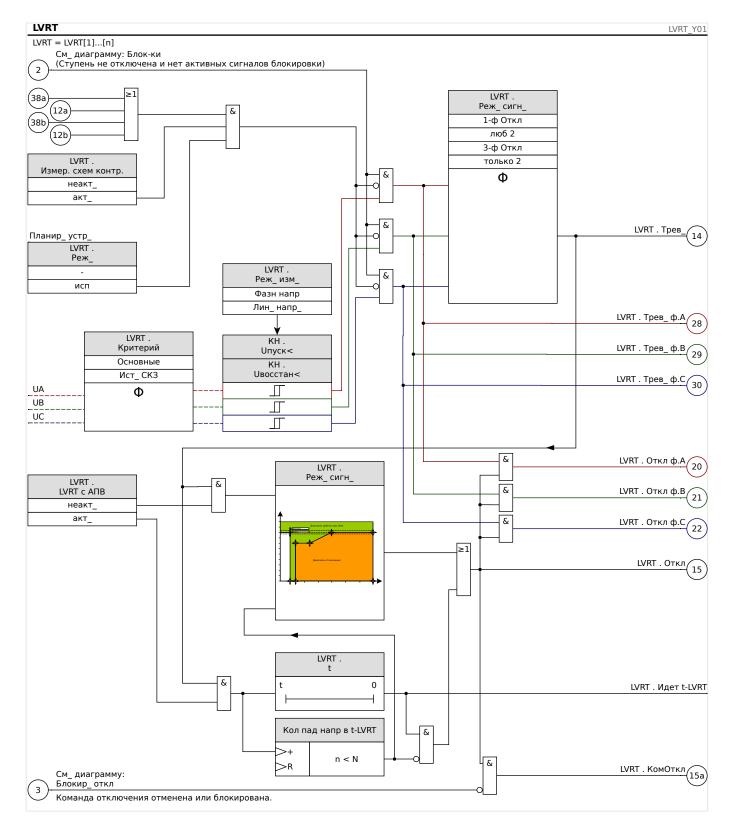

Рис. 77: Кривая напряжения во время двух неудачных попыток автоматического повторного включения; источник: Technische Richtlinie, Erzeugungsanlagen am Mittelspannungsnetz, Ausgabe Juni 2008, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. (стр. 89.).

Описание работы функции LVRT

Модуль «LVRT» предназначен для распределенной генерации ресурсов, которые работают параллельно сети. Он контролирует аварийные нарушения напряжения в системе, сравнивая их с настраиваемыми профилями напряжения, которые запускаются, когда напряжение в системе падает ниже настраиваемого начального значения «*Uпуск*<».

Сразу после запуска модуль «LVRT» последовательно контролирует напряжение в системе и определяет, выше или ниже отклонение напряжения по сравнению с

текущим профилем напряжения. Сигнал отключения активируется только тогда, когда отклонение напряжение выходит из зоны «Продолжение работы» и достигает зоны «Отключение».



Модуль «LVRT» снова перейдет в режим ожидания, как только напряжение в сети восстановится, то есть поднимется выше заданного напряжения восстановления «Ubocctaн<».

Управляемая функция LVRT с автоматическим повторным включением

Если необходимо, чтобы функция РПН продолжала работу по время автоматических повторных включений, то для параметра [Парам_ защиты / Набор 1...4 / Внутр_соед-Защ / LVRT[x] / Общие настройки] «LVRT с $A\Pi B$ » следует задать значение «акт ».

Для контроля событий работы при пониженном напряжении во время повторного включения следует настроить для таймера наблюдения [Парам_ защиты / Набор 1... 4 / Внутр_соед-Защ / LVRT[x] / Общие настройки] «t-LVRT» значение, равное или большее, чем полное время осуществления нескольких попыток автоматического повторного включения. Кроме того, нужно задать число разрешенных экземпляров РПН, которое обычно равно числу попыток автоматического повторного включения. Фактически работа функции LVRT будет контролироваться, что позволит продолжить работу при предварительно заданных параметрах напряжения LVRT. По достижении заданного числа событий LVRT [Парам_ защиты / Набор 1...4 / Внутр_соед-Защ / LVRT[x] / Общие настройки] «Коли.пад.напр, пос.кот.прои.отк.» функция контроля LVRT определит, что обнаруженный сбой в системе является устойчивым отказом, проигнорирует параметры профиля напряжения и мгновенно подаст команду отключения, чтобы отсечь распределенный ресурс от энергосистемы.

Общие указания по применению и настройке функции РПН

Кроме прочего, меню LVRT включает в себя перечисленные далее параметры.

- С помощью параметра [Парам_ защиты / Набор 1...4 / Внутр_соед-Защ / LVRT[x] / Параметры РПН] «*Uпуск*<» функция LVRT включается (запускается).
- С помощью параметра [Парам_ защиты / Набор 1...4 / Внутр_соед-Защ / LVRT[x] / Параметры РПН] «*Ивосстан*«» функция LVRT определяет момент завершения аварийного нарушения.

- Обратите внимание, что значение «*Uвосстан*<» должно быть выше значения «*Uпуск*<». В противном случае внутренняя функция проверки правдоподобия установит значение параметра «*Uвосстан*<» как 103% от значения «*Uпуск*<».
- [Парам_ защиты / Набор 1...4 / Внутр_соед-Защ / LVRT[x] / Параметры РПН] «V(tk)», «tk» уставки для настройки профиля LVRT.

Особые указания по применению и настройке профиля LVRT

- Во многих случаях для создания профиля LVRT требуются не все доступные уставки.
- В случае, если не все имеющиеся параметры используются, для неиспользованные параметры можно установить в то же значение, что и последний параметр.
- Выбирать уставки следует слева направо, а начальная настройка времени t=0 (*(tk+1)*)*).
- Уставки напряжения следует выбирать по возрастающей ((V(tk+1)) > (V(tk))).
- Значение напряжения для последнего использованного параметра должно быть больше исходного напряжения. В противном случае значение напряжения восстановления «*Ubocctaн*<» будет внутренними средствами изменено на максимальное заданное значение напряжения.

Как правило, заводская настройка профиля LVRTпо умолчанию предварительно устанавливается на основе кривой типа I из немецкого электросетевого кодекса (Technische Richtlinie «Erzeugungsanlagen am Mittelspannungsnetz — Richtlinie für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Mittelspannungsnetz», июнь 2008 г., BDEW, Берлин).

Это отображено на следующем рисунке.

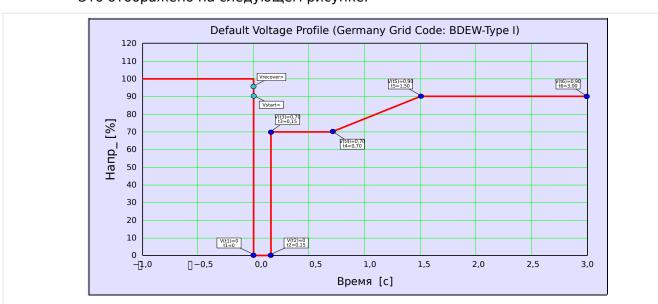
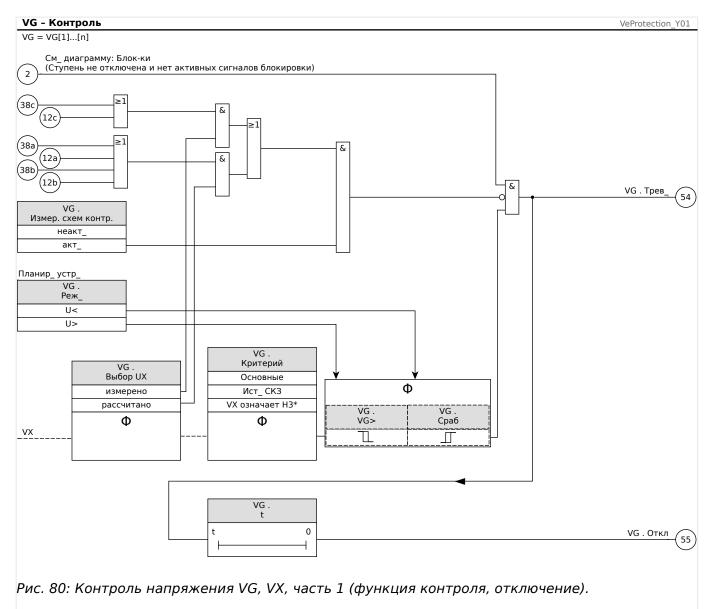


Рис. 79: Профиль LVRT по умолчанию (BDEW, тип I).

4.11 VG, VX — контроль напряжения [27A, 59A]

ПРИМЕЧАНИЕ!



Все элементы контроля напряжения четвертого измерительного входа имеют идентичную структуру.

Данный защитный элемент может использоваться для следующих целей (в зависимости от планирования и настроек устройства):

- Контроль расчетного или измеренного остаточного напряжения. Напряжение нулевой последовательности может рассчитываться только в случае если фазовые напряжения (соединение звездой) соединены с измерительными входами устройства.
- Контроль другого (вспомогательного) напряжения на повышенное и пониженное напряжение.

Функция контроля напряжения VG, VX

ANSI 59N — защита от остаточного напряжения (измеренного или расчетного)

Этот вариант применения настраивается в меню [Планир_ устр_].

• [Планир устр] «Реж » = «U>»

Варианты:

- [Парам защиты / Набор 1...4 / U-защ / VG[x]] «Выбор UX» =
 - измерено
 - рассчитано

ANSI 59A — контроль повышенного вспомогательного напряжения

Этот вариант применения настраивается следующим образом:

- [Планир_ устр_] «Реж_» = «U>»
- [Парам_ защиты / Набор 1...4 / U-защ_ / VG[x]] «Выбор UX» = «измерено»

Варианты:

- [Парам защиты / Набор 1...4 / U-защ / VG[x]] «Метод измерений» =
 - Основные
 - ∘ Ист СКЗ

ANSI 27A — контроль пониженного вспомогательного напряжения

Этот вариант применения настраивается следующим образом:

• [Планир устр] «Реж » = «U<»

• [Парам защиты / Набор 1...4 / U-защ / VG[x]] «Выбор UX» = «измерено»

Варианты:

- [Парам защиты / Набор 1...4 / U-защ / VG[x]] «Метод измерений» =
 - Основные
 - ∘ Ист СКЗ

4.11.1 Ввод в эксплуатацию: Защита от остаточного напряжения — измеренное значение [59N]

Тестируемый объект

Ступени защиты по напряжению нулевой последовательности.

Необходимые компоненты

- Источник однофазного переменного напряжения
- Таймер для измерения времени отключения
- Вольтметр

Процедура (для каждого элемента)

Проверка пороговых значений

Для проверки пороговых значений и значений порога отпускания напряжение нулевой последовательности, подаваемое на измерительный вход, необходимо повышать до тех пор, пока реле не включится. При сравнении отображаемых значений с показаниями вольтметра отклонение должно находиться в допустимых пределах.

Проверка задержки отключения

Для проверки задержки отключения необходимо подключить таймер к контактам соответствующего реле отключения.

Таймер включится сразу после того, как будет превышено предельное значение напряжения отключения, и остановится после срабатывания реле.

Измерение порога отпускания

Уменьшайте измеряемую величину до значения менее 97% от напряжения отключения. При достижении 97 % от значения, необходимого для отключения, реле должно перейти в исходное положение.

Результат успешной проверки

Измеренные уставки, задержки отключения и уставки на возврат должны находиться в пределах допустимых отклонения и погрешностей, указанных в списке настроек. Допустимые отклонения и допуски указаны в технических данных.

4.11.2 Ввод в эксплуатацию: Защита от остаточного напряжения — расчетное значение [59N]

Тестируемый объект

Проверка элементов защиты по напряжению нулевой последовательности

Необходимые средства

• Источник трехфазного напряжения

ПРИМЕЧАНИЕ!

Расчет остаточного напряжения возможен, только если на измерительные входы напряжения будет подано фазное напряжение (звезда) и если в соответствующем наборе параметров задан «Источник VX = расчетный».

Описание процедуры

- Подайте трехфазное симметричное напряжение (Un) на входы измерения напряжения реле.
- Установите предельное значение величины VX[x], равное 90 % от Vn.
- Отсоедините фазовое напряжение от двух измерительных входов (симметричность подачи напряжения на вторичную обмотку должна сохраняться).
- Теперь значение измерения «VX расч» должно равняться примерно 100% от Un.
- Убедитесь, что генерируется сигнал «VX.Alarm» или «VX.Trip».

Результат успешной проверки

Генерируется сигнал «VX.Alarm» или «VX.Trip».

4.12 V 012 — несимметрия напряжений [47]

В меню планирования устройства можно настроить модуль «U 012» для контроля повышенного или пониженного фазового напряжения положительной последовательности или повышенного фазового напряжения отрицательной последовательности. Работа данного модуля основана на трехфазном напряжении.

Модуль подает аварийный сигнал при превышении уставки. Модуль выполнит отключение, если измеренные значения будут постоянно сохраняться в течение времени задержки.

В этом случае будет отслеживаться напряжение отрицательной последовательности фаз (настройка [Планир_ устр_] »U 012 . Pew.» = «U 2>»), пороговое значение [Парам_ защиты / Набор х / U-защ_ / U 012[n]] «U 2>» можно комбинировать с дополнительным процентным критерием «W(UB/UA)» (объединение логической функцией «V») для предотвращения ошибочного отключения в случае недостаточного напряжения в системе положительной последовательности.

ANSI 47 — контроль фазовой системы отрицательной последовательности

Этот вариант применения настраивается следующим образом:

• [Планир устр] »U 012 . Реж.« = «U 2>»

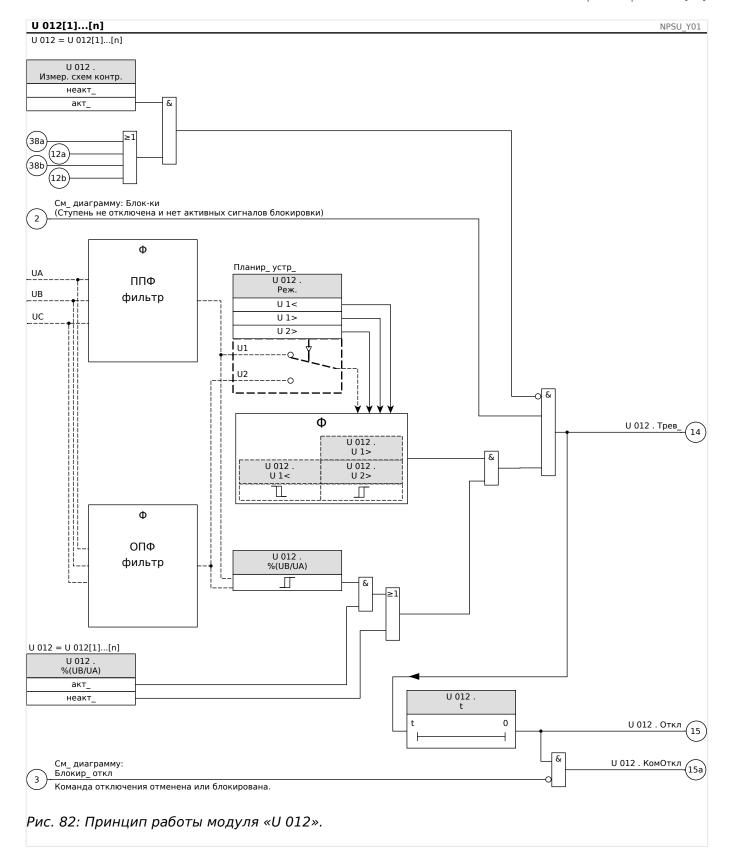
Варианты:

• [Парам_ защиты / Набор 1...4 / U-защ_ / U 012[x]] «%(UB/UA)» = настройка для определения несимметрии токов, выраженная в процентах.

Модуль выполняет отключение, если превышена уставка «U 2>» **и** коэффициент фазового напряжения положительной последовательности «% (UB/UA)» (по истечении времени задержки «t»).

ANSI 59U1 — повышенное напряжение в фазовой системе положительной последовательности

Этот вариант применения настраивается следующим образом:


• [Планир устр] «U 012 . Реж.» = «U 1>»

ANSI 27U1 — пониженное напряжение в фазовой системе положительной последовательности

Этот вариант применения настраивается следующим образом:

• [Планир устр] «U 012 . Реж.« = «U 1<»

Функциональные возможности

4.12.1 Ввод в эксплуатацию: Защита по напряжению обратной последовательности

Тестируемый объект

Проверка элементов защиты по напряжению обратной последовательности

Необходимые средства

- Источник трехфазного переменного тока
- Таймер для измерения времени отключения
- Вольтметр

Проверка значений отключения (пример)

Установите измеренную величину напряжения отрицательной последовательности чередования фаз таким образом, чтобы она была равна $0,5\ Vn$. Установите задержку отключения $1\ c$.

Для генерирования напряжения с отрицательной последовательностью чередования фаз поменяйте местами проводники фаз Uв и Uc.

Проверьте задержку отключения

Запустите таймер и резко измените (включите) напряжение, составляющее 1,5 от значения отключения. Измерьте задержку отключения.

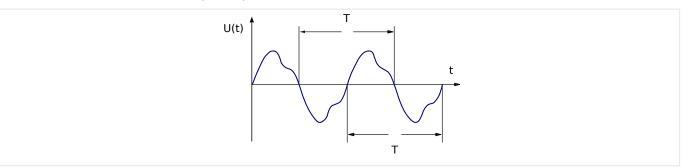
Результат успешной проверки

Измеренные уставкии задержки отключения должны соответствовать данным, указанным в списке настроек. Допустимые отклонения и допуски указаны в технических данных.

4.13 f — частота [810/U, 78, 81R]

ПРИМЕЧАНИЕ!

Все элементы защиты по частоте имеют идентичную структуру.


Частота — принцип измерения

ПРИМЕЧАНИЕ!

Частота рассчитывается как среднее значение от измеренных значений трех фазовых частот. В расчет принимаются только допустимые значения частоты. Если фазовую частоту больше не удается измерить, то эта фаза исключается из расчета среднего значения.

Принцип измерения при контроле частоты основывается на измерении времени полных циклов, когда значение частоты обновляется при каждом прохождении через нулевое значение фазного напряжения. Влияние на результат измерения гармоник $2^{\text{го}}$ и более высоких уровней сводится к минимуму путем использования низкочастотного фильтра.

Если частотное отключение нежелательно при низких значениях напряжения, то измерение частоты, а также все функции защиты, зависящие от частоты, можно блокировать. Порог понижения напряжения для такой блокировки можно настроить в меню [СистПар / Частота] «U блок f».

После того как напряжение снова превысит данное пороговое значение, блокировка будет активна еще как минимум 0.5 с и, более того, значение частоты будет удерживаться на уровне 0 Гц еще как минимум 0.3 с, а значение параметра df/dt будет удерживаться на уровне 0 Гц/с примерно 1 с.

Стабилизировать значение частоты от кратковременных колебаний поможет временной интервал усреднения. Его можно настроить в меню [СистПар / Частота] «Стабил. окна f». Как правило, измерения частоты устойчивы к скачкам фаз до 90° , то есть скачки фаз свыше 1° и броски напряжения (>2%) почти полностью игнорируются. В таком случае значение частоты останется неизменным в течение как минимум 2 периодов, а параметр df/dt будет иметь значение 0 Гц/с, пока не исчезнет нестабильность и не будут пройдены окна измерения и стабилизации.

ПРИМЕЧАНИЕ!

При увеличении окна стабилизации (то есть значения параметра *«Стабил. окна f»*) увеличивается продолжительность измерения и, следовательно, время выполнения операции. (См. также \Longrightarrow «Точность защитных элементов»).

Частотные функции

Устройство является очень гибким вследствие различных частотных функций. Это позволяет использовать его для различных операций, где контроль частоты является важным критерием.

В меню «Планирование устройства» можно указать, как следует использовать каждый из шести частотных элементов.

Элементы от f[1] до f[6] можно назначить следующим образом:

- «f<» пониженная частота (см. раздел ⊨> «Режимы работы «f<», «f>»»);
- «f>» повышенная частота (см. раздел ⊨> «Режимы работы «f<», «f>»»);
- «df/dt» скорость изменения частоты (см. раздел ⊨> «Режим работы «df/dt»»);
- «f< и df/dt» пониженная частота и скорость изменения частоты (см. раздел «Режимы работы «f< и df/dt», «f> и df/dt»»);
- «f> и df/dt» повышенная частота и скорость изменения частоты (см. раздел «Режимы работы «f< и df/dt», «f> и df/dt»»);
- «f< и DF/DT» пониженная частота и абсолютное изменение частоты за определенный интервал времени (см. раздел

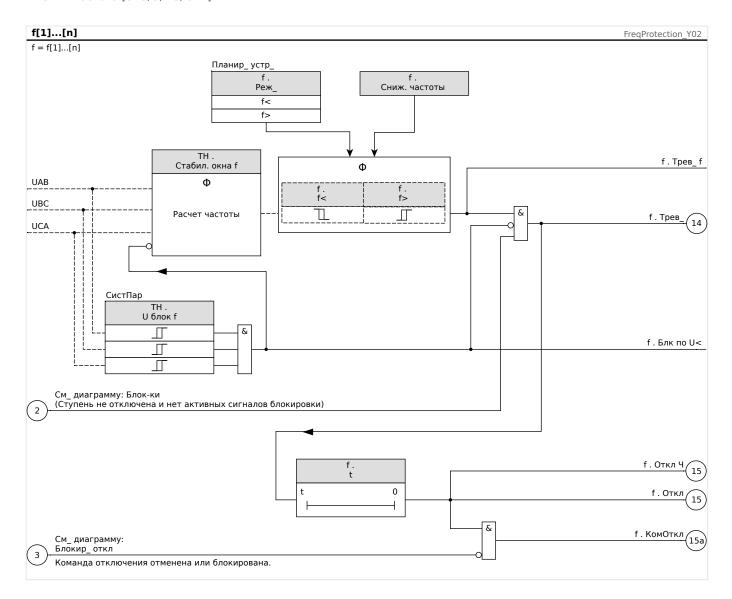
 → «Режимы работы «f< и DF/DT», «f> и DF/DT»»);
- «f> и DF/DT» повышенная частота и абсолютное изменение частоты за определенный интервал времени (см. раздел

 → «Режимы работы «f< и DF/DT», «f> и DF/DT»»);
- «дельта фи» выброс вектора (см. раздел 🖶 «Режим работы «дельта фи»»).

4.13.1 Режимы работы «f<», «f>»

f< — пониженная частота.

Данный защитный элемент обеспечивает уставку срабатывания и задержку отключения. Если частота упадет ниже уставки срабатывания, немедленно будет подан аварийный сигнал. Если частота остается ниже уставки срабатывания, то по истечении задержки отключения подается команда отключения.


f> — повышенная частота.

Данный защитный элемент обеспечивает уставку срабатывания и задержку отключения. Если частота превысит уставку срабатывания, немедленно будет подан аварийный сигнал. Если частота остается ниже уставки срабатывания, то по истечении задержки отключения подается команда отключения.

Принципы работы

Данный частотный элемент контролирует трехфазное напряжение UAB, UBC и UCA. Если окажется, что все три фазных напряжения ниже конкретного порогового значения, то расчет частоты будет заблокирован (пороговое значение можно настроить, см. раздел о принципах измерения \Longrightarrow «4.13 Частота — принципимамерения»).

В соответствии с режимом контроля частоты, заданным в меню [Планир_ устр_] (${\it «f[x]}$. ${\it Реж}_{\it »}={\it «f<»}$ или = ${\it «f>»}$), оцениваемые фазные напряжения сравниваются с пороговым значением срабатывания, заданным для повышенной или пониженной частоты. Если в любой из фаз частота превысит пороговое значение срабатывания или опустится ниже него и при этом не последует команд блокировки частотного элемента, будет немедленно подан аварийный сигнал и включится таймер задержки отключения. Если по истечении времени таймера задержки отключения частота по-прежнему будет выше или ниже порогового значения отключения, то будет подана команда отключения.

4.13.2 Режим работы «df/dt»

df/dt — скорость изменения частоты

Электрогенераторы, работающие параллельно с электросетью (например, в промышленных внутренних электростанциях), должны быть отделены от электросети, если во внутренней системе произойдет сбой, по следующим причинам:

- Необходимо предотвратить повреждение электрогенераторов, если напряжение в электросети восстанавливается асинхронно (например, после кратковременного прерывания энергоснабжения).
- необходимо сохранить внутреннюю промышленную подачу питания.

Надежным критерием обнаружения перебоев в электросети является измерение скорости изменения частоты (df/dt). Предварительным состоянием для этого является поток нагрузки в точке подсоединения электросети. Изменение потока нагрузки при сбое в электросети приведет к внезапному повышению или понижению частоты. При нехватке активной мощности внутренней электростанции возникает линейное падение частоты. При чрезмерной мощности возникает линейное увеличение. При применении «развязки сети» градиент частоты обычно составляет от 0,5 Гц/с до 2 и более Гц/с.

Устройство МСА4 определяет мгновенное изменение частоты (df/dt) для каждого периода напряжения электросети. При этом значение градиента частоты обновляется при каждом прохождении через нулевое значение фазного напряжения.

Точность определения градиента частоты можно повысить путем настройки величины окна измерения. Эта настройка выполняется с помощью параметра [СистПар / Частота] «Окно df/dt». Минимальная величина окна составляет 2 периода номинальной частоты, и ее можно увеличить до 10 периодов (к примеру, если fN = 50 Γ Ц, то максимальная величина окна составит 10.20 мс, то есть 200 мс).

Определение градиента частоты основывается на измеренном значении частоты (до усреднения/стабилизации, см. раздел \Longrightarrow «4.13 Частота — принцип измерения»). Кроме того, точность определения градиента частоты можно дополнительно повысить путем настройки величины окна стабилизации. Эта настройка выполняется с помощью параметра [СистПар / Частота] «Стабил. окна df/dt». (См. раздел \Longrightarrow «Точность защитных элементов».)

ПРИМЕЧАНИЕ!

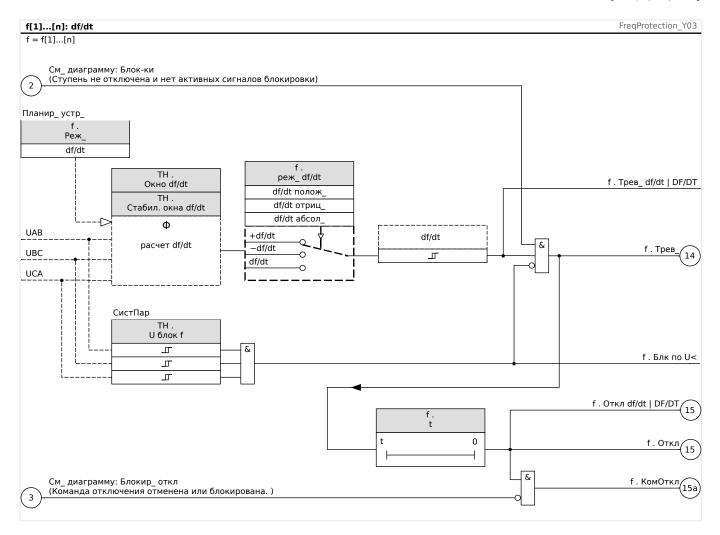
При увеличении окна измерения или окна стабилизации увеличивается продолжительность измерения и, следовательно, время выполнения операции.

Такая особая процедура измерения позволяет достичь высокой степени безопасности отключения и устойчивости к переходным процессам (например, к процедуре переключения).

Частотный градиент (скорость изменения частоты [df/dt]) может иметь положительный или отрицательный знак в зависимости от того, увеличивается (положительный знак) или уменьшается (отрицательный знак) частота.

В наборе частотных параметров можно указать тип режима df/dt:

• Положительный df/dt = частотный элемент регистрирует повышение частоты


- Отрицательный df/dt = частотный элемент регистрирует понижение частоты
- Абсолютный df/dt (положительный и отрицательный) = частотный элемент регистрирует повышение и понижение частоты.

Данный защитный элемент обеспечивает уставку и задержку отключения. Если частотный градиент df/dt превысит уставку отключения или упадет ниже нее, немедленно будет подан аварийный сигнал. Если частотный градиент все еще остается выше/ниже заданной уставки отключения, то по истечении задержки отключения подается команда отключения.

Принципы работы

Данный частотный элемент контролирует трехфазное напряжение UAB, UBC и UCA. Если окажется, что все три фазных напряжения ниже конкретного порогового значения, то расчет частоты будет заблокирован (пороговое значение можно настроить, см. раздел о принципах измерения \Longrightarrow «4.13 Частота — принципимамерения»).

В соответствии с режимом контроля частоты, заданным в меню [Планир_ устр_] (${\it «f[x]}$. ${\it Реж}_{\it »}={\it «df/dt»}$), оцениваемые фазные напряжения сравниваются с заданным пороговым значением градиента частоты (${\it df/dt}$). Если в любой из фаз частотный градиент превысит пороговое значение срабатывания или опустится ниже него (согласно заданному режиму ${\it df/dt}$) и при этом не последует команд блокировки частотного элемента, будет немедленно подан аварийный сигнал и запустится таймер задержки отключения. Если по истечении времени таймера задержки отключения градиент частоты по-прежнему будет выше или ниже порогового значения отключения, то будет подана команда отключения.

4.13.3 Режимы работы «f< и df/dt», «f> и df/dt»

f< и df/dt — пониженная частота и скорость изменения частоты

Данная настройка позволяет частотному элементу одновременно контролировать падение частоты ниже заданной уставки срабатывания и превышение частотным градиентом уставки.

В выбранном наборе параметров частоты f[X] можно задать уставку срабатывания при пониженной частоте f<, частотный градиент df/dt и задержку отключения.

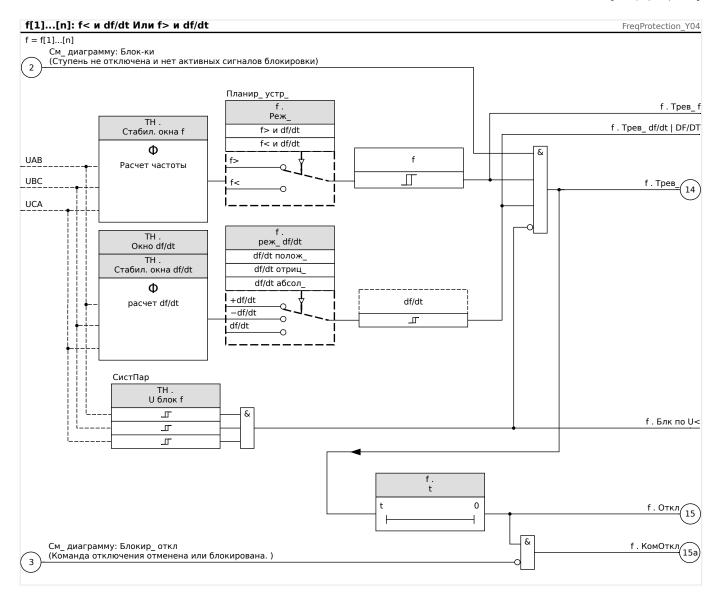
При этом:

- Положительный df/dt = частотный элемент регистрирует повышение частоты
- Отрицательный df/dt = частотный элемент регистрирует понижение частоты
- Абсолютный df/dt (положительный и отрицательный) = частотный элемент регистрирует повышение и понижение частоты.

f> и df/dt — повышенная частота и скорость изменения частоты

Данная настройка позволяет частотному элементу одновременно контролировать превышение частоты выше заданной уставки срабатывания и превышение частотным градиентом уставки.

В выбранном наборе параметров частоты f[X] можно задать уставку срабатывания при повышенной частоте f>, частотный градиент df/dt и задержку отключения.


При этом:

- Положительный df/dt = частотный элемент регистрирует повышение частоты
- Отрицательный df/dt = частотный элемент регистрирует понижение частоты
- Абсолютный df/dt (положительный и отрицательный) = частотный элемент регистрирует повышение и понижение частоты.

Принципы работы

Данный частотный элемент контролирует трехфазное напряжение UAB, UBC и UCA. Если окажется, что все три фазных напряжения ниже конкретного порогового значения, то расчет частоты будет заблокирован (пороговое значение можно настроить, см. раздел о принципах измерения \Longrightarrow «4.13 Частота — принципимамерения»).

В соответствии с режимом контроля частоты, заданным в меню [Планир_ устр_] (${\it «f[x]}$. ${\it Реж}_{\it »}={\it «f}<$ и ${\it df/dt}$ » или = ${\it «f}>$ и ${\it df/dt}$ »), оцениваемые фазные напряжения сравниваются с заданными пороговыми значениями срабатывания по частоте и градиента частоты (${\it df/dt}$). Если в любой из фаз и частота, и градиент частоты превысят пороговые значения или опустятся ниже них и при этом не последует команд блокировки частотного элемента, будет немедленно подан аварийный сигнал и включится таймер задержки отключения. Если по истечении времени таймера задержки отключения и частота и градиент частоты по-прежнему будут выше или ниже порогового значения отключения, то будет подана команда отключения.

4.13.4 Режимы работы «f< и DF/DT», «f> и DF/DT»

f< и DF/DT — пониженная частота и DF/DT

Данная настройка позволяет частотному элементу контролировать частоту и абсолютную разницу частот в течение определенного интервала времени.

В выбранном наборе параметров частоты f[X] можно задать уставку срабатывания при пониженной частоте f <, уставку абсолютной разницы частот (понижение частоты) DF и интервал контроля DT.

f> и DF/DT — повышенная частота и DF/DT

Данная настройка позволяет частотному элементу контролировать частоту и абсолютную разницу частот в течение определенного интервала времени.

В выбранном наборе параметров частоты f[X] можно задать уставку срабатывания при повышенной частоте f>, уставку абсолютной разницы частот (повышения частоты) DF и интервал контроля DT.

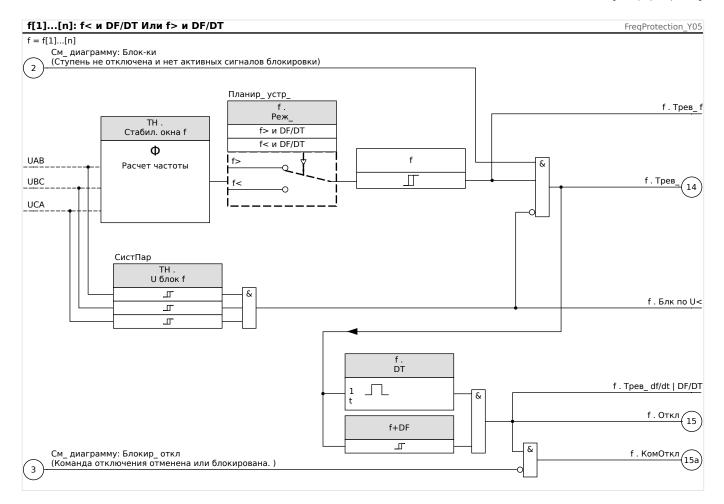
Принципы работы

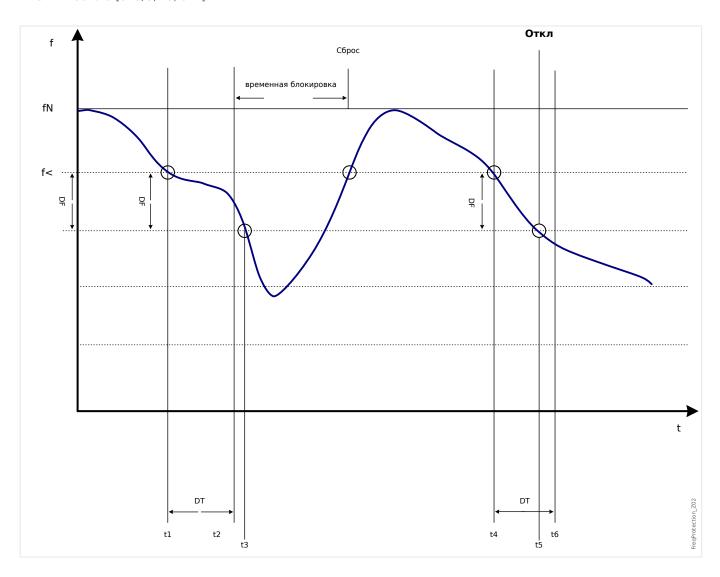
Данный частотный элемент контролирует трехфазное напряжение UAB, UBC и UCA. Если окажется, что все три фазных напряжения ниже конкретного порогового значения, то расчет частоты будет заблокирован (пороговое значение можно настроить, см. раздел о принципах измерения \Longrightarrow «4.13 Частота — принципимизмерения»).

В соответствии с режимом контроля частоты, заданным в меню [Планир_ устр_] (${\it wf[x]}$. ${\it Pew_}$ » = ${\it wf}$ и DF/DT» или = ${\it wf}$ и DF/DT»), оцениваемые фазные напряжения сравниваются с заданными пороговыми значениями срабатывания по частоте и понижения или повышения частоты DF.

Если при отсутствии команд блокировки частотного элемента в любой из фаз частота превысит уставку срабатывания или упадет ниже нее, немедленно подается аварийный сигнал. В это же время запускается таймер интервала контроля DT. Если в течение интервала контроля DT частота все еще выше или ниже заданной уставки срабатывания, и понижение/повышение частоты достигнет уставки DF, подается команда отключения.

Принцип работы функции DF/DT:


(см. диаграмму f(t) на **□** Рис. .)


Случай 1.

Когда частота падает ниже заданной уставки f < g t1, включается элемент DF/DT. Если разница частот (понижение) не достигнет заданного значения DF до истечения временного интервала DT, отключение не произойдет. Частотный элемент остается блокированным до тех пор, пока частота опять не упадет ниже уставки пониженной частоты f < g.

Случай 2.

Когда частота падает ниже заданной уставки f< в t4, включается элемент DF/DT. Если разница частот (понижение) достигнет заданного значения DF до истечения временного интервала DT (t5), подается команда отключения.

4.13.5 Режим работы «дельта фи»

Дельта фи — выброс вектора напряжения

Контроль выброса вектора напряжения защищает синхронные генераторы, работающие параллельно с электросетью, благодаря очень быстрому разъединению при сбое электросети. Для синхронных генераторов очень опасным является автоматическое повторное замыкание сети. Напряжение электросети, которое обычно возвращается через 300 мс, может выбить генератор в асинхронное положение. Очень быстрое отключение также требуется в случае продолжительных сбоев электросети.

Существует два варианта применения.

Только параллельная работа с электросетью без отдельных операций

В этом случае контроль выброса вектора напряжения защищает генератор путем отключения

его выключателя при сбое сети.

Параллельная с электросетью работа и отдельная работа:

В этом режиме контроль выброса вектора размыкает выключатель электросети. При этом гарантируется, что генераторная установка не будет заблокирована, если понадобится в качестве аварийной.

Очень быстрого отключения синхронных генераторов в случае сбоя сети достаточно трудно добиться. Устройства контроля напряжения нельзя использовать, так как сопротивление синхронного генератора, как и потребителя способствует понижению напряжения.

В такой ситуации напряжение электросети падает ниже уставки срабатывания только приблизительно через 100 мс, и поэтому безопасная регистрация автоматического повторного замыкания сети только с помощью контроля напряжения невозможна.

Контроль частоты не вполне подходит для этой цели, поскольку только генератор с высокой нагрузкой уменьшает скорость в течение 100 мс. Реле тока регистрируют сбой только при наличии токов короткого замыкания, но они не могут предотвратить развития этой ситуации. Реле мощности способны сработать в течение 200 мс, но также не могут предотвратить повышение мощности до значений короткого замыкания. Поскольку изменение мощности также вызывает внезапная нагрузка генераторов, использование реле мощности может быть проблематичным.

Контроль же выброса вектора напряжения устройства регистрирует сбой электросети в течение 60 мс без приведенных выше ограничений, так как он специально разработан для областей применения, где требуется очень быстрое отключение от электросети. Если прибавить стандартное время срабатывания выключателя или замыкателя, общее время отключения остается меньше 150 мс.

Основным требованием системы контроля к отключению генератора/электросети является изменение нагрузки больше чем на 15-20~% от номинальной. Медленные изменения частоты системы, например, в процессе регулировки (регулировка скорости генератора), не влияют на отключение реле.

Отключения также могут быть вызваны коротким замыканием в сети, так как может возникнуть выброс вектора напряжения с превышением предварительно установленного значения. Величина выброса вектора напряжения зависит от

расстояния между точкой короткого замыкания и генератором. Данная функция также может быть полезной в энергоснабжающей компании, так как мощность короткого замыкания в электросети и, следовательно, подача энергии ограничены коротким замыканием.

Во избежание потенциального ложного отключения контроль выброса вектора при низком входном напряжении заблокирован, см. описание принципа измерения в разделе \Longrightarrow «4.13 Частота — принцип измерения». Блокировка пониженного напряжения срабатывает быстрее, чем измерение выброса вектора.

Отключение при выбросе вектора блокируется обрывом фазы, поэтому сбой ТН (например, из-за неисправного предохранителя) не вызывает ошибочного отключения.

Принцип измерения контроля выброса вектора

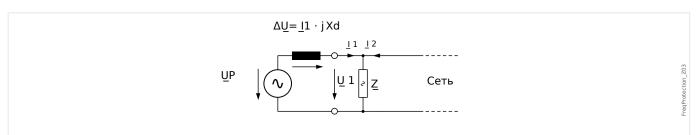
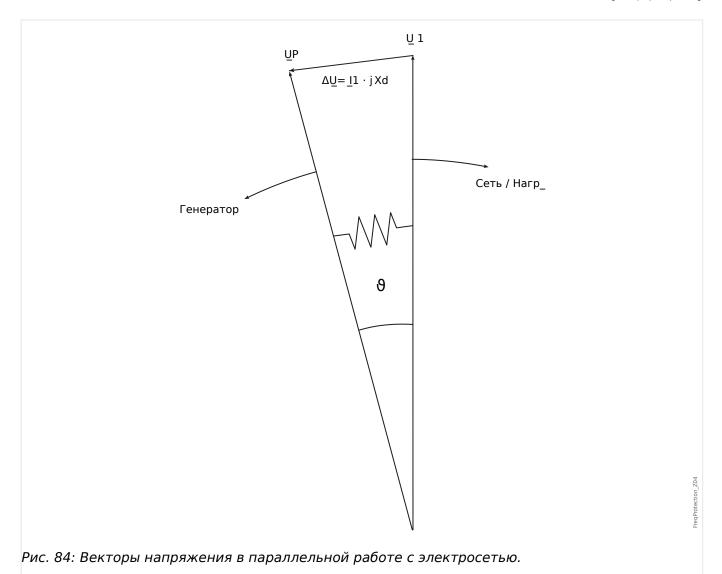
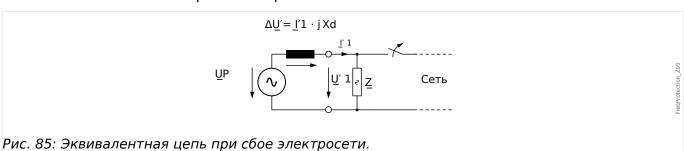
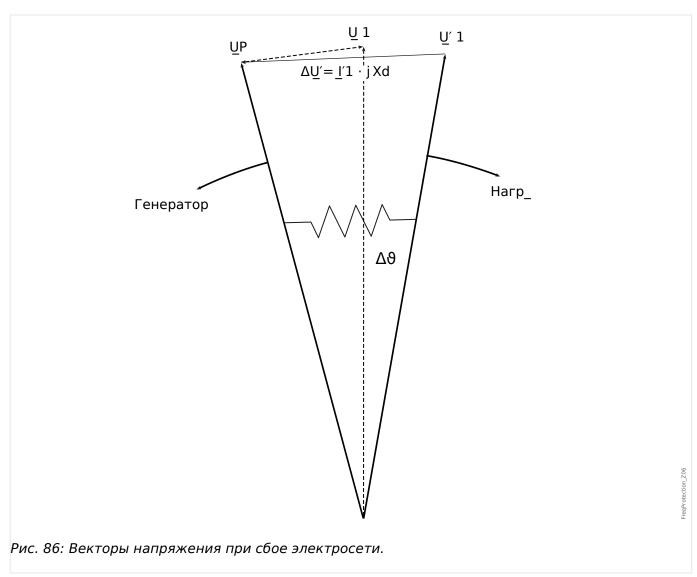
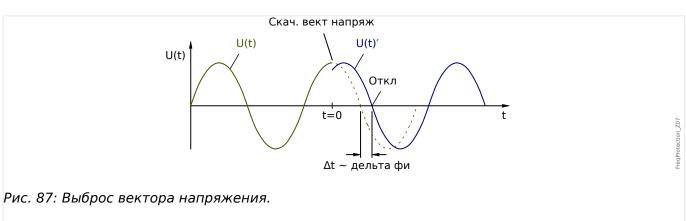




Рис. 83: Эквивалентная цепь синхронного генератора, параллельного электросети.




Угол смещения ротора между статором и ротором зависит от момента механического вращения генератора. Механическая мощность вала

механического вращения генератора. Механическая мощность вала сбалансирована с мощностью питающей электросети, поэтому поддерживается постоянная синхронная скорость.

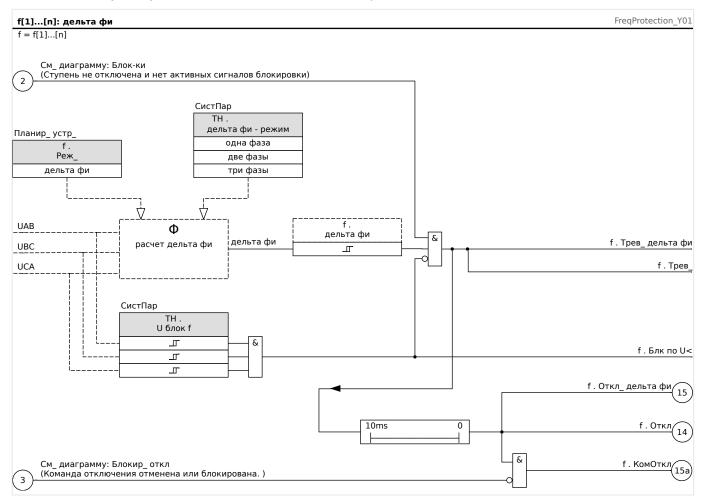
В случае сбоя электросети или автоматического повторного включения генератор внезапно подает очень высокую нагрузку потребителя. Угол смещения ротора многократно уменьшается, и вектор V1 изменяет направление (V1').

Как показано на схеме напряжения/времени, значение напряжения моментально изменяется, и меняется фазовое положение. Это называется фазой или выбросом вектора.

Реле измеряет продолжительность цикла. Новое измерение начинается при каждом прохождении через нулевое значение. Измеренная продолжительность цикла внутренне сравнивается с эталонным временем. Это отклонение определяет продолжительность цикла сигнала напряжения. В случае выброса вектора, приведенном на рисунке выше, прохождение через нулевое значение происходит

раньше или позже. Образовавшееся отклонение продолжительности цикла соответствует углу выброса вектора.

Если угол выброса вектора превышает заданное значение, реле немедленно отключается.


Отключение при выбросе вектора блокируется в случае обрыва одной или нескольких фаз измерения

напряжения.

Принципы работы

Элемент выброса вектора контролирует трехфазное напряжение UAB, UBC и UCA. Если окажется, что все три фазных напряжения ниже конкретного порогового значения, то расчет частоты будет заблокирован (пороговое значение можно настроить, см. раздел о принципах измерения \Longrightarrow «4.13 Частота — принципимизмерения»).

Если в зависимости от настройки параметров во всех трех, в двух или в одной фазе выброс вектора превышает уставку, а команды блокировки частотного модуля отсутствуют, немедленно подается аварийный сигнал и команда отключения.

4.13.6 Ввод в эксплуатацию: повышенная частота [f>]

Тестируемый объект

Все настраиваемые ступени защиты от повышения частоты.

Необходимые средства

- Источник трехфазного напряжения с регулируемой частотой и
- таймер.

Процедура: проверка пороговых значений

- Увеличивайте частоту до тех пор, пока не будет активирован соответствующий элемент защиты частоты.
- Запишите значение частоты и
- Отключите тестовое напряжение.

Процедура: проверка задержки отключения

- Установите номинальную частоту тестового напряжения и
- Теперь произведите скачок частоты (до значения активации) и запустите таймер. Измерьте время отключения на выходных контактах реле.

Измерение порога отпускания

Уменьшайте измеряемую величину до значения менее 99,95 % от значения отключения (0,05 % от номинальной частоты fn). При достижении значения, равного 99,95 % от значения, необходимого для отключения (или 0,05 % fn), реле должно перейти в исходное положение.

Результат успешной проверки

Допустимые отклонения и допуски имеются в технических данных (⊫> «Точность защитных элементов»).

4.13.7 Ввод в эксплуатацию: пониженная частота [f<]

Для всех настроенных элементов защиты от понижения частоты эту проверку проводят аналогично проверке защиты от повышения частоты (с использованием соответствующих величин пониженной частоты).

Примите к сведению следующие различия:

- Для проверки уставок частоту необходимо увеличивать до тех пор, пока не будет активирован защитный элемент.
- Для определения порога отпускания измеряемая величина должна увеличиваться до тех пор, пока она не превысит 100,05 % от значения, необходимого для отключения (или 0,05 % fn). По достижении значения, равного 100,05% от значения, необходимого для отключения (или 0,05% fn), реле должно перейти в исходное состояние.

4.13.8 Ввод в эксплуатацию: df/dt — скорость изменения частоты (ROCOF)

Тестируемый объект

Все ступени защиты частоты, которые запрограммированы с использованием параметра df/dt.

Необходимые средства

- Источник трехфазного напряжения и
- Генератор частоты, способный генерировать и измерять линейное изменение частоты с заданной крутизной.

Процедура: проверка пороговых значений

- Продолжайте увеличивать скорость изменения частоты до тех пор, пока не будет активирован соответствующий элемент защиты.
- Запишите значение скорости изменения частоты.

Процедура: проверка задержки отключения

- Установите номинальную частоту тестового напряжения.
- Теперь произведите быстрое (скачкообразное) изменение частоты, превышающее установленное значение в 1,5 раза (пример: при установленном значении 2 Гц/с изменяйте частоту со скоростью 3 Гц/с).
- Измерьте время отключения на выходных контактах реле. Сравните измеренное время отключения с заданным временем отключения.

Результат успешной проверки

Допустимые отклонения/допуски и коэффициенты падения имеются в технических данных ($\mathrel{\sqsubseteq}$ > «Точность защитных элементов»).

4.13.9 Ввод в эксплуатацию: f< и -df/dt — пониженная частота и ROCOF

Тестируемый объект

Все ступени защиты частоты, которые запрограммированы с использованием параметров f < u - df/dt.

Необходимые средства

- Источник трехфазного напряжения и
- Генератор частоты, способный генерировать и измерять линейное изменение частоты с заданной крутизной.

Процедура: проверка пороговых значений

- Подайте на устройство номинальное напряжение и номинальную частоту.
- Уменьшите частоту ниже уставки f< и

• Теперь произведите скачкообразное изменение частоты, которое меньше установленного значения (например, при установленном значении -0,8 Гц/с изменяйте частоту со скоростью -1 Гц/с). После окончания времени задержки отключения должно произойти отключение реле.

Результат успешной проверки

Допустимые отклонения/допуски и коэффициенты падения имеются в технических данных (⇒ «Точность защитных элементов»).

4.13.10 Ввод в эксплуатацию: f> и df/dt — повышенная частота и ROCOF

Тестируемый объект

Все ступени защиты частоты, которые запрограммированы с использованием параметров f> и df/dt.

Необходимые средства

- Источник трехфазного напряжения и
- Генератор частоты, способный генерировать и измерять линейное изменение частоты с заданной крутизной.

Процедура: проверка пороговых значений

- Подайте на устройство номинальное напряжение и номинальную частоту.
- Увеличьте частоту выше уставки f> и
- Теперь произведите скачкообразное изменение частоты, которое больше установленного значения (например, при установленном значении 0,8 Гц/с изменяйте частоту со скоростью 1 Гц/с). После окончания времени задержки отключения должно произойти отключение реле.

Результат успешной проверки

Допустимые отклонения/допуски и коэффициенты падения имеются в технических данных (⊫> «Точность защитных элементов»).

4.13.11 Ввод в эксплуатацию: f< и DF/DT — пониженная частота и DF/DT

Тестируемый объект

Все ступени защиты частоты, которые запрограммированы с использованием параметров f< и Df/Dt.

Необходимые средства

- Источник трехфазного напряжения и
- Генератор частоты, способный генерировать и измерять определенное изменение частоты.

Процедура: проверка пороговых значений

• Подайте на устройство номинальное напряжение и номинальную частоту:

- Уменьшите частоту ниже уставки f< и
- Произведите определенное (скачкообразное) изменение частоты, которое больше установленного значения (пример: при установленном значении 0,8 Гц/с изменяйте частоту со скоростью 1 Гц/с). Реле должно немедленно отключиться.

Результат успешной проверки

Допустимые отклонения/допуски и коэффициенты падения имеются в технических данных (⇒ «Точность защитных элементов»).

4.13.12 Ввод в эксплуатацию: f> и DF/DT — повышенная частота и DF/DT

Тестируемый объект

Все ступени защиты частоты, которые запрограммированы с использованием параметров f> и Df/Dt.

Необходимые средства

- Источник трехфазного напряжения и
- Генератор частоты, способный генерировать и измерять определенное изменение частоты.

Процедура: проверка пороговых значений

- Подайте на устройство номинальное напряжение и номинальную частоту:
- Увеличьте частоту выше уставки f> и
- Произведите определенное (скачкообразное) изменение частоты, которое больше установленного значения (пример: при установленном значении 0,8 Гц/с изменяйте частоту со скоростью 1 Гц/с). Реле должно немедленно отключиться.

Результат успешной проверки

Допустимые отклонения/допуски и коэффициенты падения имеются в технических данных (>> «Точность защитных элементов»).

4.13.13 Ввод в эксплуатацию: дельта фи — выброс вектора напряжения

Тестируемый объект

Все ступени защиты частоты, которые запрограммированы с использованием параметра дельта фи (выброс вектора)

Необходимые средства

• Трехфазный источник напряжения, который способен генерировать определенное скачкообразное изменение векторов напряжения (фазовый сдвиг).

Процедура: проверка пороговых значений

4 Элементы защиты

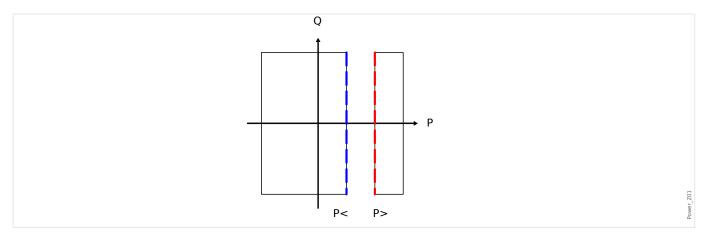
4.13 f — частота [810/U, 78, 81R]

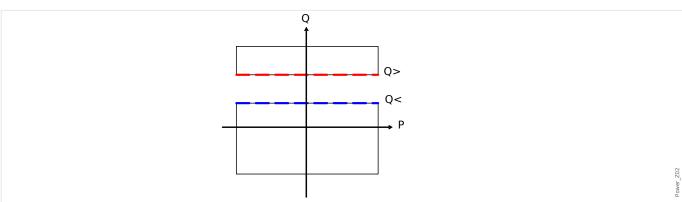
• Создайте выброс вектора (скачкообразный), превышающий установленное значение в 1,5 раза (пример: если заданное значение составляет 10° , используйте 15°).

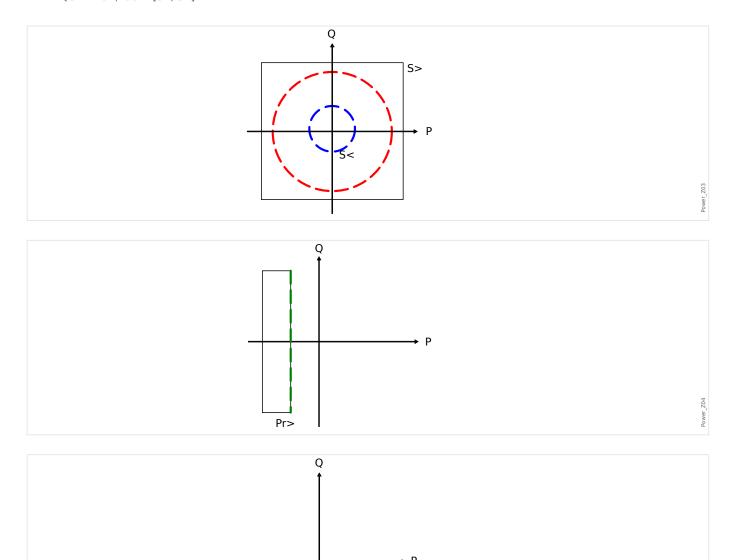
Результат успешной проверки

Допустимые отклонения/допуски и коэффициент падения имеются в технических данных (>> «Точность защитных элементов»).

4.14 PQS — мощность [32, 37]

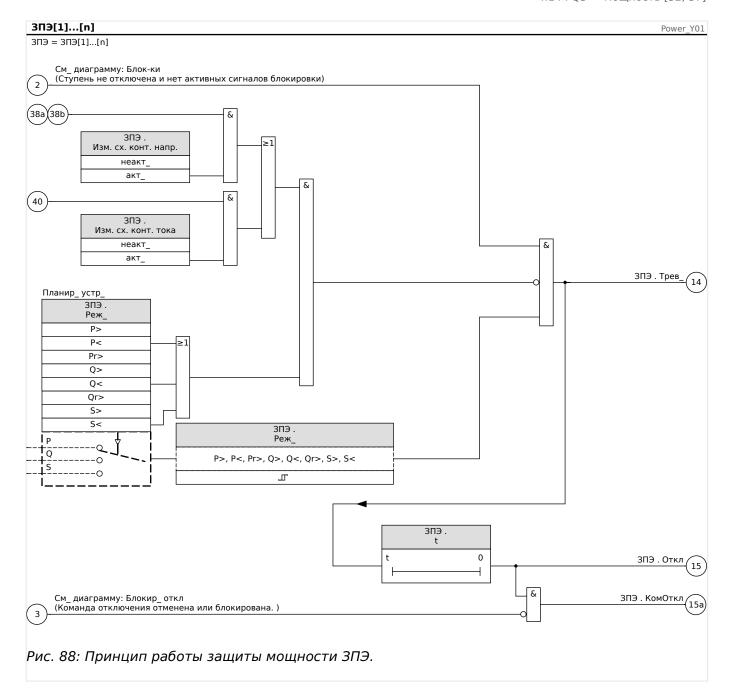

При планировании устройства каждый из элементов может использоваться в следующих режимах: P<, P>, Pr>, Q<, Q>, Qr>, S< или S>.


P< и P> устанавливаются и работают в положительном диапазоне активной мощности, Q< и Q> - в положительном диапазоне реактивной мощности. Эти режимы используются для защиты от перегрузки и недогрузки в положительном диапазоне мощностей.


Эффективная мощность вызывает изменение параметров S< или S> в виде круга во всех четвертях графика мощности. Защита происходит от недогрузки и перегрузки.

В обратном режиме в отрицательном диапазоне активной мощности эффективным является Pr>, а в отрицательном диапазоне реактивной мощности эффективным является Qr>. Оба режима защищают от изменения направления мощности с положительного на отрицательное.

Приведенные ниже графики показывают области, которые защищаются соответствующими режимами.



Qr>

Функциональные возможности

4.14.1 Настройка уставок

Все настройки/уставки в модуле мощности настраиваются в соответствии с уставками блока. По определению, Sn используется в качестве базы масштабирования.

Sn=v3* Трансформатор напряжениярасчетное_межфазное_напряжение* Трансформатор тока расчетное_напряжение

Если уставки должны быть основаны на значениях стороны первичной обмотки:

Sn=v3* Трансформатор напряженияперв. расчетное_межфазное_напряжение* Трансформатор тока перв. расчетное напряжение

Если уставки должны быть основаны на значениях стороны вторичной обмотки:

Sn=v3* Трансформатор напряжениявтор. расчетное_межфазное_напряжение* Трансформатор тока втор. расчетный ток

Пример — полевые данные:

- Трансформатор тока ТТ перв. = 200 А; ТТ втор. = 5 А
- Трансформатор напряжения ТН перв. = 10 кВ; ТН втор. =100 В
- Расчетная мощность генератора 2 МВА
- Обратная мощность должна приводить к отключению при 3%.

Пример настройки 1 для Pr> на основе значений стороны первичной обмотки

Обратная мощность должна приводить к отключению при 3%. Это означает 60 кВ (на стороне первичной обмотки)

Сначала рассчитывается Sn:

Sn=v3* Трансформатор напряженияперв. расчетное_межфазное_напряжение* Трансформатор тока перв. расчетное напряжение

Sn= 1,73 * 10000 B * 200 A = 3,464 MBA

Следующая уставка устанавливается для Pr> в устройстве = 60 кВт / Sn

Pr > = 60 kBT/3464 kBA = 0.0173 Sn

Пример настройки 1 для Pr> на основе значений стороны вторичной обмотки

Обратная мощность должна приводить к отключению при 3 %. Это означает 60 кВ (на стороне первичной обмотки)

Сначала рассчитывается Sn:

Sn=v3* Трансформатор напряжениявтор. расчетное_межфазное_напряжение* Трансформатор тока втор. расчетный ток

Sn = 1,73 * 10000 B * 5 A = 866,05 BA

Преобразуйте обратную мощность на сторону вторичной обмотки:

 $Prвтор > = PrПерв. > / (THПерв._VLL pacч./VTSвтор._VLL pacч.* TTПерв. pacч. ток/ TTвтор. pacч. ток) = 60 кВт/4000 = 15 Вт$

Следующая уставка устанавливается для Pr > B устройстве = 15 Bt / Sn

Pr > = 15 BT / 866 BA = 0.0173 Sn

4.14.2 Примеры ввода в эксплуатацию модуля защиты мощности

Тестируемый объект

- Проверка настройки модулей защиты мощности.
- P>
- P<

- Pr
- 0>
- Q<
- Or
- S>
- S

Необходимые средства

- Источник трехфазного переменного напряжения
- Источник трехфазного переменного тока
- Таймер

Процедура — Проверка схемы подключения

- Подайте номинальное напряжение и номинальный ток на измерительные входы реле.
- Отрегулируйте векторы тока таким образом, чтобы они отставали от векторов напряжения на 30°.
- Должны отобразиться следующие значения измерений:P=0,86 PnQ=0,5 QnS=1 Sn

ПРИМЕЧАНИЕ!

Если указанные значения показаны с алгебраическим знаком «минус», проверьте правильность подключения.

ПРИМЕЧАНИЕ!

Показанные в настоящей главе примеры необходимо выполнять с теми значениями величин отключения и задержек отключения, которые установлены для конкретного распределительного щита.

При проверке параметра «большего чем пороговое значение» (например P>) начинайте с 80% от величины размыкания и повышайте величину проверяемого объекта, пока не сработает реле.

При проверке параметра «меньшего чем пороговое значение» (например P<) начинайте с 120% от величины размыкания и понижайте величину проверяемого объекта, пока не сработает реле.

При проверке задержки размыкания модулей «больше чем» (например Р>) запускайте таймер одновременно с резким изменением проверяемого объекта, начиная с 80% до 120% от величины размыкания.

При проверке задержки размыкания модулей «меньше чем» (например P<) запускайте таймер одновременно с резким изменением проверяемого объекта, начиная с 120% до 80% от величины размыкания.

P>

Проверка уставок (пример: уставка равна 1,1 Pn)

- Подайте номинальное напряжение и ток, равный 0,9 от номинального, на измерительные входы реле (КМ=1).
- Измеренные значения активной мощности «Р» должны иметь положительный алгебраический знак.
- Установите порог отключения (например, 1,1 от Pn).
- Для проверки уставок отключения подайте ток, равный 0,9 от номинального, на измерительные входы реле. Медленно увеличивайте силу тока до тех пор, пока не сработает реле. Убедитесь, что угол между током и напряжением остается постоянным. Сравните значение отключения с соответствующим значением параметра.

Проверка задержки отключения (пример: уставка равна 1,1 Pn)

- Подайте номинальное напряжение и номинальный ток на измерительные входы реле (КМ=1).
- Измеренные значения активной мощности «Р» должны иметь положительный алгебраический знак.
- Установите порог отключения (например, 1,1 от Pn).
- Для проверки задержки отключения подайте ток, равный 0,9 от номинального, на измерительные входы реле. Резко увеличьте ток до 1,2 ln. Убедитесь, что угол между током и напряжением остается постоянным. Измерьте задержку отключения на выходных контактах реле.

Результат успешной проверки

Q>

Проверка уставок (пример: уставка равна 1,1 Qn)

- Подайте номинальное напряжение и ток, равный 0,9 от номинального (сдвиг фаз 90°), на измерительные входы реле (КМ=0).
- Измеренные значения реактивной мощности «Q» должны иметь положительный алгебраический знак.
- Установите порог отключения (например, 1,1 от Qn).
- Для проверки уставок отключения подайте ток, равный 0,9 от номинального, на измерительные входы реле. Медленно увеличивайте силу тока до тех пор, пока не сработает реле. Убедитесь, что угол между током и напряжением остается постоянным. Сравните значение отключения с соответствующим значением параметра.

Проверка задержки отключения (пример: уставка равна 1,1 Qn)

- Подайте номинальное напряжение и номинальный ток (сдвиг фаз 90°) на измерительные входы реле (КМ=0).
- Измеренные значения реактивной мощности «Q» должны иметь положительный алгебраический знак.
- Установите порог отключения (например, 1,1 от Qn).
- Для проверки задержки отключения подайте ток, равный 0,9 от номинального, на измерительные входы реле. Резко увеличьте ток до 1,2 ln. Убедитесь, что угол между током и напряжением остается постоянным. Измерьте задержку отключения на выходных контактах реле.

Результат успешной проверки

P<

Проверка уставок (пример: уставка равна 0,3 Pn)

- Подайте номинальное напряжение и номинальный ток на измерительные входы реле (КМ=1).
- Измеренные значения активной мощности «Р» должны иметь положительный алгебраический знак.
- Установите порог отключения (например, 0,3 от Pn).
- Для проверки уставок отключения подайте ток, равный 0,5 от номинального, на измерительные входы реле. Уменьшайте силу тока до тех пор, пока не сработает реле. Убедитесь, что угол между током и напряжением остается постоянным. Сравните значение отключения с соответствующим значением параметра.

Проверка задержки отключения (пример: уставка равна 0,3 Pn)

- Подайте номинальное напряжение и номинальный ток на измерительные входы реле (КМ=1).
- Измеренные значения активной мощности «Р» должны иметь положительный алгебраический знак.
- Установите порог отключения (например, 0,3 от Pn).
- Для проверки задержки отключения подайте ток, равный 0,5 от номинального, на измерительные входы реле. Резко увеличьте ток до 0,2 ln. Убедитесь, что угол между током и напряжением остается постоянным. Измерьте задержку отключения на выходных контактах реле.

Результат успешной проверки

Q<

Проверка уставок (пример: уставка равна 0,3 Qn)

- Подайте номинальное напряжение и ток, равный 0,9 от номинального (сдвиг фаз 90°), на измерительные входы реле (КМ=0).
- Измеренные значения реактивной мощности «Q» должны иметь положительный алгебраический знак.
- Установите порог отключения (например, 0,3 от Qn).
- Для проверки уставок отключения подайте ток, равный 0,5 от номинального, на измерительные входы реле. Уменьшайте силу тока до тех пор, пока не сработает реле. Убедитесь, что угол между током и напряжением остается постоянным. Сравните значение отключения с соответствующим значением параметра.

Проверка задержки отключения (пример: уставка равна 0,3 Qn)

- Подайте номинальное напряжение и ток, равный 0,9 от номинального (сдвиг фаз 90°), на измерительные входы реле (КМ=0).
- Измеренные значения реактивной мощности «Q» должны иметь положительный алгебраический знак.
- Установите порог отключения (например, 0,3 от Qn).
- Для проверки задержки отключения подайте ток, равный 0,5 от номинального, на измерительные входы реле. Резко увеличьте ток до 0,2 ln. Убедитесь, что угол между током и напряжением остается постоянным. Измерьте задержку отключения на выходных контактах реле.

Результат успешной проверки

Pr

Проверка уставок (пример: уставка равна 0,2 Pn)

- Подайте номинальное напряжение и номинальный ток (сдвиг фаз между векторами напряжения и тока 180°) на измерительные входы реле.
- Измеренные значения активной мощности «Р» должны иметь отрицательный алгебраический знак.
- Установите порог отключения (например, 0,2 от Pn).
- Для проверки уставок отключения подайте ток, равный 0,1 от номинального, на измерительные входы реле. Медленно увеличивайте силу тока до тех пор, пока не сработает реле. Убедитесь, что угол между током и напряжением остается постоянным. Сравните значение отключения с соответствующим значением параметра.

Проверка задержки отключения (пример: уставка равна 0,2 Pn)

- Подайте номинальное напряжение и номинальный ток (сдвиг фаз между векторами напряжения и тока 180°) на измерительные входы реле.
- Измеренные значения активной мощности «Р» должны иметь отрицательный алгебраический знак.
- Установите порог отключения (например, 0,2 от Pn).
- Для проверки задержки отключения подайте ток, равный 0,1 от номинального, на измерительные входы реле. Резко увеличьте ток до 0,3 ln. Убедитесь, что угол между током и напряжением остается постоянным. Измерьте задержку отключения на выходных контактах реле.

Результат успешной проверки

Qr

Проверка уставок (пример: уставка равна 0,2 Qn)

- Подайте номинальное напряжение и номинальный ток (сдвиг фаз между векторами напряжения и тока -90°) на измерительные входы реле.
- Измеренные значения активной мощности Q должны иметь отрицательный алгебраический знак.
- Установите порог отключения (например, 0,2 от Qn).
- Для проверки задержки отключения подайте ток, равный 0,1 от номинального, на измерительные входы реле. Медленно увеличивайте силу тока до тех пор, пока не сработает реле. Убедитесь, что угол между током и напряжением остается постоянным. Измерьте задержку отключения на выходных контактах реле.

Проверка задержки отключения (пример: уставка равна 0,2 Qn)

- Подайте номинальное напряжение и номинальный ток (сдвиг фаз между векторами напряжения и тока -90°) на измерительные входы реле.
- Измеренные значения активной мощности Q должны иметь отрицательный алгебраический знак.
- Установите порог отключения (например, 0,2 от Qn).
- Для проверки уставок отключения подайте ток, равный 0,1 от номинального, на измерительные входы реле. Резко увеличьте ток до 0,3 ln. Убедитесь, что угол между током и напряжением остается постоянным. Сравните значение отключения с соответствующим значением параметра.

Результат успешной проверки

S>

Проверьте уставки

- Подайте 80 % от уставки S> на измерительные входы реле.
- Медленно увеличивайте подаваемую мощность до тех пор, пока не сработает реле. Сравните измеренные значения в момент отключения со значениями параметров.

Проверка задержки отключения

- Подайте 80 % от уставки S> на измерительные входы реле.
- Резко увеличьте подаваемую мощность до 120% от уставки S>. Измерьте задержку отключения на выходных контактах реле.

Результат успешной проверки

Значения измерений общего времени задержки отключения и отдельных значений времени задержки, уставок и уставки на возврат, должны соответствовать значениям, указанным в списке настроек. Допустимые отклонения и допуски указаны в технических данных.

ПРИМЕЧАНИЕ!

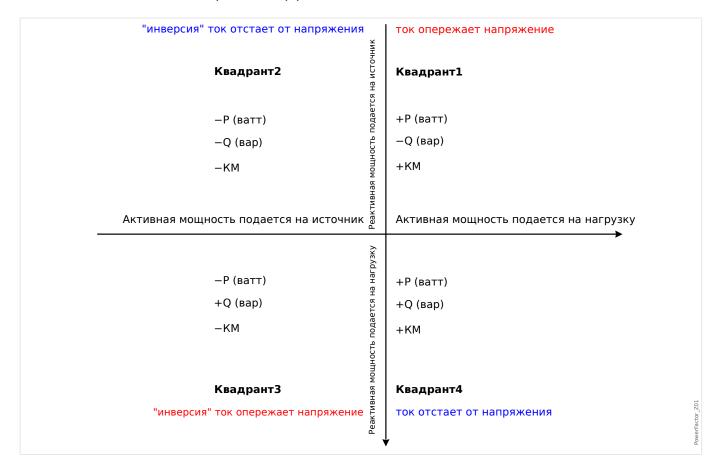
S<

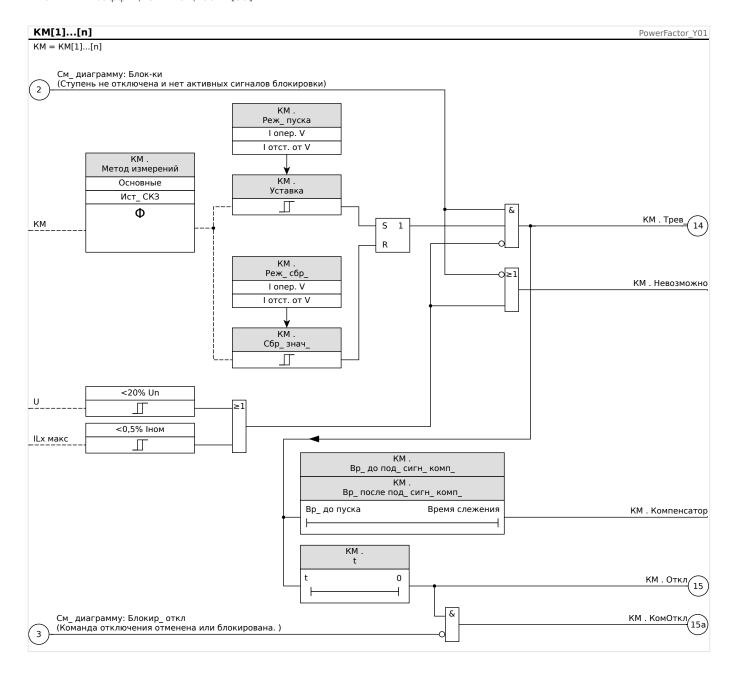
Проверьте уставки

- Подайте 120% от уставки S> на измерительные входы реле.
- Медленно уменьшайте подаваемую мощность до тех пор, пока не сработает реле. Сравните измеренные значения в момент отключения со значениями параметров.

Проверка задержки отключения

- Подайте 120% от уставки S> на измерительные входы реле.
- Резко уменьшите подаваемую мощность до 80% от уставки S<. Измерьте задержку отключения на выходных контактах реле.


Результат успешной проверки


4.15 КМ — коэффициент мощности [55]

Модуль КМ контролирует коэффициент мощности в заданной области (в заданных пределах).

Область задается четырьмя параметрами.

- Координатная четверть (квадрант) триггера (опережение или отставание).
- Уставка (коэффициента мощности).
- Координатная четверть (квадрант) сброса (опережение или отставание).
- Значение сброса (коэффициента мощности).

4.15.1 Ввод в эксплуатацию: Коэффициент мощности [55]

Тестируемый объект

• Проверка настройки модулей коэффициента мощности

Необходимые средства

- Источник трехфазного переменного тока
- источник трехфазного переменного тока;
- таймер.

Процедура — Проверка схемы подключения

• Подайте номинальное напряжение и номинальный ток на измерительные входы реле.

- Отрегулируйте векторы тока таким образом, чтобы они отставали от векторов напряжения на 30°.
- Должны отобразиться следующие значения измерений:P=0,86 PnQ=0,5 QnS=1 Sn

Если указанные значения показаны с алгебраическим знаком «минус», проверьте правильность подключения.

ПРИМЕЧАНИЕ!

В данном примере КМ-Триггер установлен на $0.86 = 30^{\circ}$ (отставание), а КМ-Сброс установлен на $0.86 = 30^{\circ}$ (опережение).

Проведите проверку с теми настройками (триггера и сброса), которые имеются для конкретного распределительного щита.

Проверьте уставки (Триггер) (Триггер КМ: пример: = 0,86 (отставание))

- Подайте номинальное напряжение и номинальный ток на измерительные входы реле (КМ=1).
- Изменяйте угол между силой тока и напряжением (вектор тока отстает) до тех пор, пока реле не сработает.
- Запишите значение при срабатывании.

Проверка сброса (Сброс КМ: пример: 0,86 (опережение))

- Изменяйте угол между силой тока и напряжением за пределы величины КМ = 1 (вектор тока опережает) до тех пор, пока аварийный сигнал не пропадет.
- Запишите значение при сбросе.

Проверьте задержку отключения (Триггер КМ: пример: = 0,86 (отставание))

- Подайте номинальное напряжение и номинальный ток на измерительные входы реле (КМ=1).
- Резко измените угол между напряжением и силой тока (вектор тока отстает) до КМ=0,707 (45°) (отставание).
- Измерьте задержку отключения на выходных контактах реле. Сравните измеренное время отключения с соответствующим значением параметра.

Результат успешной проверки

Измеренные значения задержек отключения, уставок и значений сброса соответствуют значениям, указанным в списке настроек. Допустимые отклонения и допуски указаны в технических данных.

4.16 Q->&U< — Реактивная мощность/защита от пониженного напряжения

Количество распределенных энергоресурсов (РЭ) постоянно растет. В то же время сокращается контролируемый запас мощности крупных электростанций.

Поэтому требования и нормы электросетевых стандартов предусматривают, что параллельные электростанции распределенной энергии, состоящие из одной или нескольких генераторных установок, подающих питание в сеть среднего или высокого напряжения, должны поддерживать напряжение магистрали в случае сбоя.

В случае сбоя напряжение рядом с точкой короткого замыкания падает почти до нуля. Вокруг точки сбоя образуется область изменения потенциала, распространение которой может быть ограничено путем подачи реактивной мощности в сеть. Защита от сетевых сбоев (падения напряжения) Q->&U < предотвращает распространение области изменения потенциала в случае последующего получения реактивной мощности от сети.

Данный защитный модуль предназначен не для защиты самой системы производства энергии, а больше для отсоединения системы производства энергии от электромагистрали, когда она потребляет реактивный ток из магистрали в случае падения напряжения ниже определенного уровня. Данный защитный модуль предназначен для защиты систем, расположенных выше в цепи.

Защитный модуль Q->&U< реализован как автономный защитный элемент согласно следующим нормативам для Германии:

- VDE-AR-N 4110 Anwendungsregel: 2018-11: "Technische Regeln für den Anschluss von Kundenanlagen an das Mittelspannungsnetz und deren Betrieb (TAR Mittelspannung)"
- VDE-AR-N 4120 Anwendungsregel: 2018-11: "Technische Regeln für den Anschluss von Kundenanlagen an das Hochspannungsnetz und deren Betrieb (TAR Hochspannung)"

(Рекомендации см. в разделе Б «Модуль повторного включения».)

Обширные возможности настройки и конфигурирования данного защитного элемента позволяют адаптировать подключенные источники энергии к различным условиям сети.

Для правильного функционирования данного защитного модуля нужно:

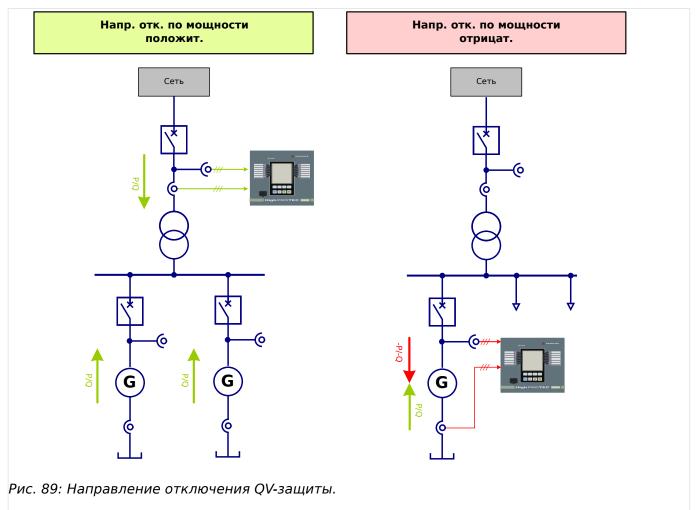
- Настроить параметры в общих настройках.
- Выбрать и задать способ отсоединения от магистрали.
- Настроить повторное подсоединение к устройству производства энергии (см. раздел «Повторное включение»).

Общие настройки

Для каждого набора параметров [Парам_ защиты / Набор 1...4 / Внутр_соед-3ащ / Q->&U< / Общие настройки] можно установить общие настройки.

Здесь можно включить или выключить все функции данного защитного элемента.

Путем активации контроля трансформатора напряжения можно предотвратить неисправность данного защитного модуля.


Направление отключения защитного модуля QV

Определения

- Система стрелок потока нагрузки = потребленные активная и реактивная мощность считаются положительными (больше нуля).
- Система стрелок распределения генератора = генерируемая мощность считается положительной (больше нуля).

С помощью параметра положительного или отрицательного направления отключения мощности можно изменить знак реактивной мощности в модуле защиты QV на противоположный.

Для защитных устройств, которые используют стрелки потока нагрузки (см. —> «1.1.2 Опорная система стрелок нагрузки»), нужно задать для параметра «Напр. отключения мощности» значение «положительное». Для защитных устройств, которые работают на основе системы стрелок распределения генератора (т. е. устройства защиты генератора), параметру «Напр. отключения мощности» нужно присвоить значение «отрицательное». Для устройств защиты генератора можно настроить систему стрелок потока нагрузки в модуле защиты QV (только). Это означает, что за пределами защитного модуля QV другие системы измерения мощности и защита мощности не подвергаются влиянию.

Настройка параметров отсоединения от магистрали

В целях поддержки при динамическом снижении (падении) напряжения вследствие сбоя электросетевые стандарты владельцев систем передачи

электроэнергии требуют перевода подключенных энергоресурсов в следующие рабочие режимы при возникновении в электросети проблем (кратковременных падений напряжения).

После сбоя в сети устройство QV-защиты отслеживает состояние сети. Энергоресурсы, отрицательно влияющие на восстановление системы за счет потребления индуктивной реактивной мощности, должны быть отключены от сети до истечения срока действия таймеров устройств сетевой защиты.

То есть источник энергии будет отключен от сети через 0,5 секунды устройством QV-защиты, если значения всех трех межфазных напряжений в общей точке присоединения цепей составят менее 0,85 Un (логическое соединение И) и если в это же время источник энергии будет потреблять индуктивную реактивную мощность сети. (VDE AR 4120).

ПРИМЕЧАНИЕ!

Оценивается реактивная мощность фазовой системы положительной последовательности (Q1).

Контроль напряжения регистрирует только линейное напряжение.

Это позволяет предотвратить воздействие на измерение смещения точки нейтрали в компенсированных электросетях.

В меню [Парам_ защиты / Набор 1...4 / Внутр_соед-3ащ / Q->&U< / Развязка] можно настроить параметры отсоединения от магистрали.

Потребность в реактивной мощности от сети можно определить двумя различными способами. Поэтому сначала нужно выбрать метод отсоединения магистрали *«QV-метод»* со следующими параметрами:

- «Контроль угла мощности» (метод 1);
- «Контр чист реак мощ » (метод 2).

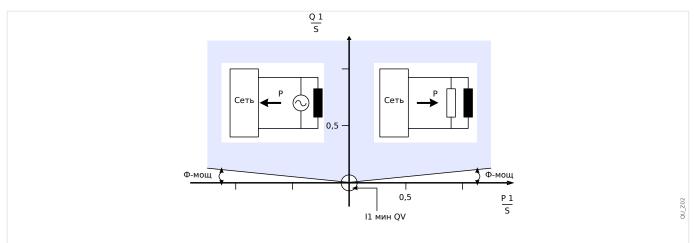


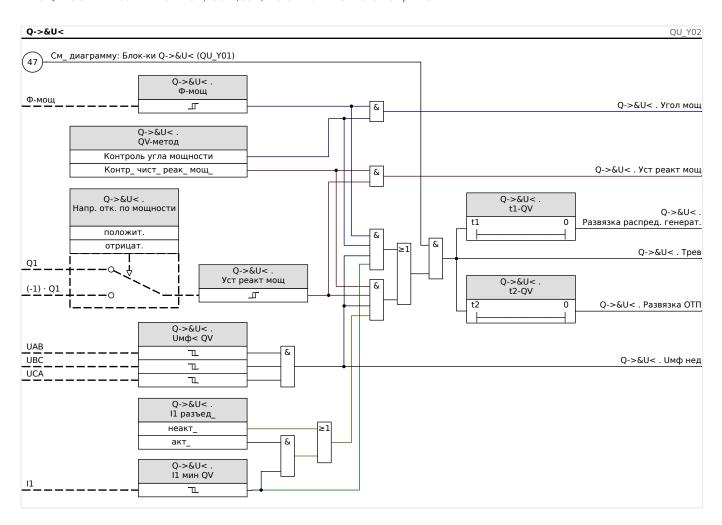
Рис. 90: Метод 1: контроль угла мощности.

Рис. 91: Метод 2: контроль чистой реактивной мощности.

Q мин QV Пуск для реактивной мощности (система положительной последовательности фаз)

Контроль минимального тока (I1) в фазовой системе положительной последовательности предотвращает гиперфункцию контроля реактивной мощности при низких уровнях мощности.

Для контроля угла мощности всегда активен контроль минимального тока. Для контроля чистой реактивной мощности контроль минимального тока является выборочным.


При использовании контроля чистой реактивной мощности (метод 1):

- Задайте угол мощности «Ф-мощ».
- Выберите подходящее значение минимального тока «*I1 мин QV*» для предотвращения ошибочных отключений.

При использовании контроля чистой реактивной мощности (метод 2):

- Задайте уставку реактивной мощности «Q мин QV».
- Выборочно задайте подходящий минимальный ток «*I1 мин QV*» для предотвращения ошибочных отключений.

Доступно два элемента таймера: «t1-QV» и «t2-QV». Оба элемента таймера будут запущены при срабатывании модуля Q->&U<. Однако согласно текущим нормативам сети требуется только один этап отсоединения магистрали.

4.17 Модуль повторного включения

Функция повторного подключения после отсоединения от магистрали основана на следующих нормативах для Германии:

- Technische Anschlussregeln für die Hochspannung (VDE-AR-N 4120)
- Technische Richtlinie "Erzeugungsanlagen am Mittelspannungsnetz", Richtlinie für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Mittelspannungsnetz, Ausgabe Juni 2008, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., siehe Kap. 3.2.3.2 Blindleistungs-Unterspannungsschutz Q->&U<

Для проверки состояния повторного включения после отсоединения от магистрали параллельно функции отсоединения реализована функция повторного включения.

Основными критериями повторного включения являются напряжение сети (линейное) и частота. Напряжение (межфазное) со стороны магистрали на размыкателе цепи генератора должно постоянно измеряться.

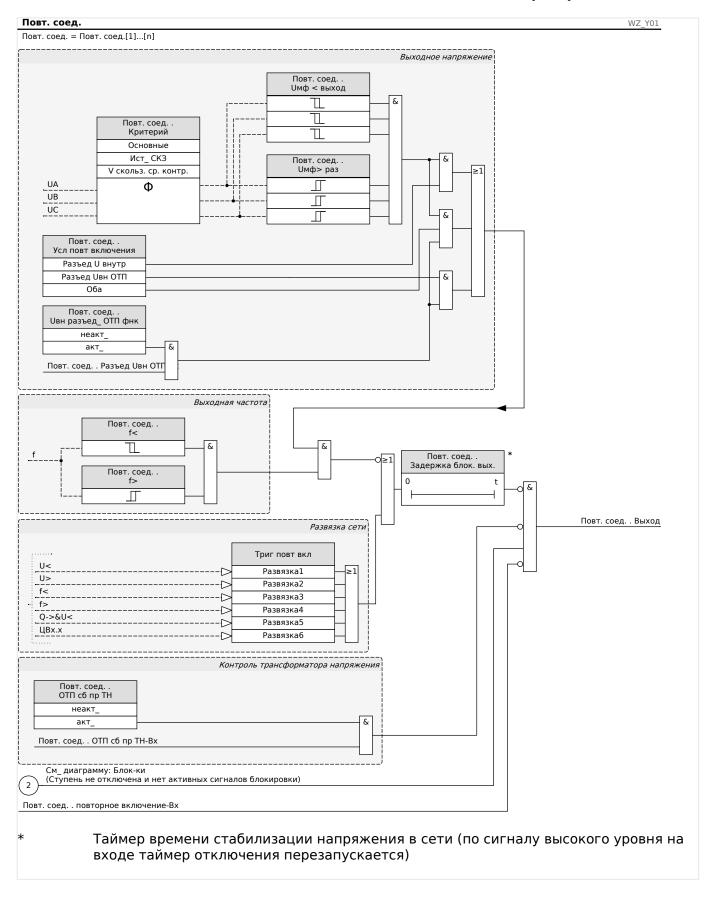
Функция повторного включения является единственной системной функцией синхронизации отсоединения от магистрали и повторного подключения.

Элемент повторного включения связан с функциями выключения, такими как элемент Q->&V< и другими встроенными функциями, например, понижения/ повышения напряжения, понижения/повышения частоты. Для запуска повторного включения можно использовать до шести отключающих элементов, цифровые входные сигналы, логические функции или сигналы системы связи (SCADA).

После размыкания выключателя в общей точке подсоединения функцией отсоединения от магистрали повторное включение должно быть выполнено вручную.

ПРЕДУПРЕЖДЕНИЕ!

Опасность несинхронного повторного подключения


Функция повторного включения не заменяет устройство синхронизации.

Перед подключением различных электросетей необходимо обеспечить синхронизацию.

После отсоединения от магистрали модулем Q->&V< или другими функциями выключения, такими как V</V<<, V>/>>, f</>>, сигнал запуска повторного включения для выключателя силовой установки будет заблокирован в течение предварительно заданного промежутка времени (значение по умолчанию — 10 минут). Это нужно для того, чтобы все операции переключения завершились. Автоматическое повторное включение не должно исполняться до возвращения напряжения и частоты сети в нормальный (квазистационарный) диапазон, т. е. к допустимым предельным значениям в течение заранее установленного, изменяемого времени.

Назначение функции повторного включения — обратное подсоединение отключенного энергетического ресурса, безопасное для электросети.

Логическая схема освобождения для выключателя генератора

Если сработал выключатель в общей точке подсоединения, повторное подключение необходимо будет выполнить вручную. Специальная логическая схема блокировки не требуется.

Если требуется повторное включение установки производства энергии выключателем генератора, то со стороны магистрали выключателя должны быть установлены трансформаторы напряжения.

Перед повторным подключением силовой установки после срабатывания функций отключения с размыканием прерывателя цепи генератора оператору сети необходимо обеспечить выполнение некоторых условий. Эти условия запуска связаны с необходимостью убедиться, что значения сетевого напряжения и частоты находятся в допустимом диапазоне. Такую проверку можно (или необходимо) выполнить путем прямого измерения сетевых напряжений и/или с помощью удаленного сигнала запуска «Внешний запуск из общей точки подсоединения».

Поскольку различным операторам сети могут потребоваться индивидуальные условия для повторного подключения к их сети среднего или высокого напряжения, существует три возможных варианта:

- 1. «Разъед U внутр» (запуск по завершении проверки на основании результатов изменения напряжения в сети);
- 2. «Разъед Ивн ОТП» (запуск на основании внешнего сигнала запуска из общей точки подсоединения);
- 3. «Оба» (если и условие 1, **и** условие 2 соблюдены).

Освобождение напряжения с помощью (самостоятельно) измеренных значений напряжения

ПРИМЕЧАНИЕ!

Данный способ используется, если общая точка подсоединения находится на стороне среднего напряжения.

Если общая точка подключения находится на стороне среднего напряжения, устройство может измерять линейное напряжение на стороне магистрали и определять, достаточно ли стабилизировалось напряжение магистрали для повторного подключения.

При использовании этого метода для параметра [Парам_ защиты / Набор х / Внутр_соед-Защ / Повт. соед.[n] / Общие настройки] *«Ивн разъед_ ОТП фнк»* должно быть установлено значение «неакт_».

Кроме того, для параметра [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед. [n] / Выходной парам.] «Усл повт включения» должно быть установлено значение «Разъед U внутр».

Освобождение напряжения с помощью дистанционного подключения из общей точки подсоединения

ПРИМЕЧАНИЕ!

До выполнения повторного включения напряжение в общей точке подсоединения должно быть восстановлено.

Если общая точка расположена на высоковольтном уровне, расстояние до нее, как правило, увеличивается.

Информация о том, что напряжение восстановлено, передается путем отправки удаленного управляющего сигнала на распределенный энергоресурс.

Данный способ необходимо использовать, если общая точка подсоединения находится на стороне высокого напряжения.

Данный способ используется, если общая точка подсоединения находится на стороне среднего напряжения.

Если требуется запуск повторного подключения на основании сигнала удаленного управления из общей точки подсоединения, выполните следующие действия.

Для параметра [Парам_ защиты / Набор х / Внутр_соед-Защ / Повт. соед.[n] / Общие настройки] «*Ивн разъед_ ОТП фнк»* должно быть установлено значение «акт_». С данной настройкой используется сигнал освобождения напряжения из общей точки подсоединения (например, сигнал через цифровой вход).

Кроме того, для параметра [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед. [n] / Выходной парам.] «Усл повт включения» должно быть установлено значение «Разъед Uвн OTП».

Более того, следует назначить сигнал дистанционного управления запуском для параметра [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед.[n] / Общие настройки] «Разъед Ивн ОТП».

Освобождение напряжения с помощью измеренных значений напряжения И дистанционного управления подключением из общей точки подсоединения

ПРИМЕЧАНИЕ!

Данный способ можно использовать, если общая точка подсоединения находится на стороне высокого напряжения.

Если общая точка подсоединения находится на стороне высокого напряжения, стандарт VDE AR-N 4120 (01/2015) допускает подключение силовой установки, только если соблюдаются **оба** следующих условия: наличие сигнала удаленного управления запуском **и** исправное состояние подключенной к силовой установке сети. Таким образом, станет доступна логическая операция «И» внутреннего и внешнего сигналов, и ее можно будет выбрать при использовании сети высокого напряжения.

Для параметра [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед.[n] / Общие настройки] «Uвн разъед_ OТП фнк» должно быть установлено значение «акт_». С данной настройкой используется сигнал освобождения напряжения из общей точки подсоединения (например, сигнал через цифровой вход).

Кроме того, для параметра [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед. [n] / Выходной парам.] *«Усл повт включения»* должно быть установлено значение «Оба».

Более того, следует назначить сигнал дистанционного управления запуском для параметра [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед.[n] / Общие настройки] «Разъед Ивн ОТП».

Общая точка подключения в системах высокого напряжения

В соответствии с VDE-AR-N 4120 повторное включение распределенного энергоресурса в электросеть не допускается, пока не выполнены следующие условия. Частота электросети должна быть между 47,5 и 51,5 Гц, а напряжение должно находиться между 93,5 и 127 кВ (уровень 100 кВ) Напряжение и частота обязательно должны оставаться в пределах установленных границ в течение не менее 5 минут.

Условия повторного подключения:

Перед повторным подключением силовой установки необходимо обеспечить стабильное напряжение сети. По стандарту VDE AR-N 4120 необходимо наличие соответствующего удаленного сигнала, а также напряжения в распределенном энергоресурсе.

Установите для параметра [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед. [n] / Выходной парам.] «Усл повт включения» значение «Оба». Задайте необходимые параметры в меню [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед.[n] / Общие настройки].

Назначьте триггерные (разъединяющие) сигналы, по которым начинается время восстановления сети (логический элемент ИЛИ), параметрам в меню [Парам_ защиты / Глоб пар защ х / Внутр соед-Защ / Повт. соед.[n] / Развязка].

Установите для параметра [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед. [n] / Выходной парам.] «Задержка блок. вых.» достаточно длительное время восстановления. Повторное подключение возможно только по истечении времени этого таймера. Данный таймер запускается триггерами в меню [Парам_ защиты / Глоб_ пар_ защ_ x / Внутр_соед-Защ / Повт. соед.[n] / Развязка], упомянутом выше (если до того, как истечет время таймера, окажется, что значение напряжения или частоты находится вне допустимого диапазона, таймер автоматически перезапустится).

В меню [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед.[n] / Выходной парам.] можно задать диапазон частоты и напряжения, который должен существовать для настройки повторного включения.

Задайте параметры для освобождения напряжения для повторного включения, как описано в разделе > «4.17 Освобождение напряжения с помощью измеренных значений напряжения И дистанционного управления подключением из общей точки подсоединения».

Если в качестве условия запуска требуются усредненные напряжения за одну минуту, в качестве (самостоятельно) измеренных значений напряжения можно использовать средние значения напряжения из модуля статистики.

Установите для параметра [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед. [n] / Выходной парам.] «Критерий» значение «V скольз. ср. контр.». Задайте параметры для освобождения напряжения для повторного включения, как описано в разделе > «Настройка расчета среднего значения на основе напряжения*».

Общая точка подключения в системах среднего напряжения

Норматив Erzeugungsanlagen am MS-Netz (BDEW, издание июня 2008 г.[2]) Германии рекомендует задать временную задержку (несколько минут) между восстановлением напряжения и повторным включением после отключения отсоединенной системы в результате сбоя сети. Это нужно для того, чтобы все операции переключения завершились. Обычно это занимает 10 минут. Повторное включение РЭ допускается, только если напряжение магистрали составляет >95 % Un, а частота находится в диапазоне 47,5-50,05 Гц.

Установите триггерные (разъединяющие) сигналы в меню [Парам_ защиты / Глоб_ пар_ защ_ x / Внутр_соед-Защ / Повт. соед.[n] / Развязка], по которым начинается время восстановления сети (логический элемент ИЛИ).

Установите для параметра [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед. [n] / Выходной парам.] «Задержка блок. вых.» достаточно длительное время восстановления. Повторное подключение возможно только по истечении времени этого таймера. Данный таймер запускается триггерами в меню [Парам_ защиты / Глоб_ пар_ защ_ x / Внутр_соед-Защ / Повт. соед.[n] / Развязка], упомянутом выше.

В меню [Парам_ защиты / Набор x / Внутр_соед-Защ / Повт. соед.[n] / Выходной парам.] можно задать диапазон частоты и напряжения, который должен существовать для настройки повторного включения.

Задайте параметры для освобождения напряжения, как описано в соответствующих разделах.

4.18 UFLS — автоматическая частотная разгрузка

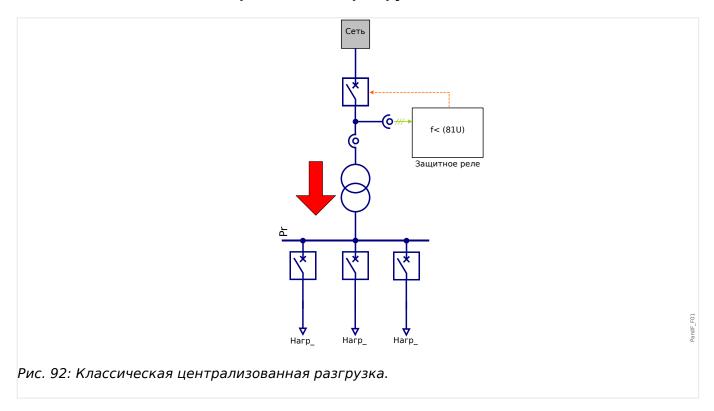
Количество распределенных энергоресурсов (РЭ) постоянно растет. В то же время сокращается контролируемый запас мощности крупных электростанций.

Поэтому требования и нормы различных электросетевых стандартов предусматривают, что параллельные электростанции распределенной энергии, состоящие из одной или нескольких генераторных установок, подающих питание в сеть среднего напряжения, должны поддерживать напряжение магистрали в случае сбоя.

Пример:

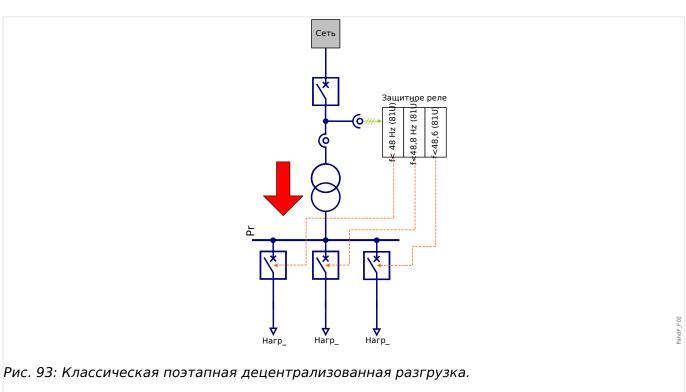
- Technische Anschlussregeln fur die Hochspannung (VDE-AR-N 4120)
- Technische Richtlinie "Erzeugungsanlagen am Mittelspannungsnetz", Richtlinie für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Mittelspannungsnetz, Ausgabe Juni 2008, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., siehe Kap. 3.2.3.2 — Blindleistungs-Unterspannungsschutz Q->&U<
- Entso-E Operation Handbook, Policy 5, Emergency Operations, V1, август 2010
- Кодекс распределительных сетей, 2007. VDN, версия 1.1, август 2007
- FNN: Technische Anforderungen an die Frequenzentlastung, июнь 2012
- Technische Anforderungen an die automatische Frequenzentlastung

Частота снижается, если из электросети забирается больше активной мощности, чем подается в нее.


Основная задача процесса автоматической частотной разгрузки заключается в том, чтобы стабилизировать частоту в сети посредством интеллектуальной разгрузки, под которой понимается выравнивание произведенной и потребленной активной мощности.

В отличие от классической разгрузки автоматическая частотная разгрузка будет выполнять разгрузку только тех участков сети, которые снижают частоту (так как потребляют активную мощность). Разгрузка участков сети, которые оказывают положительное влияние на частоту (так как подают активную мощность), будет заблокирована.

За счет адаптивных параметров можно организовать разгрузку без дискриминации.


4.18.1 Примеры применения

Классическая централизованная разгрузка

Классическая разгрузка участка сети из центральной точки подключения. Разгрузка будет инициирована при падении частоты.

Классическая децентрализованная разгрузка

Классическую децентрализованную разгрузку можно реализовать путем отключения обнаружения направления потока мощности.

За счет чередования (ротации) участков сети, для которых следует выполнять разгрузку, можно организовать разгрузку (потребителей) без дискриминации.

Централизованная автоматическая частотная разгрузка в сетях с временным электроснабжением

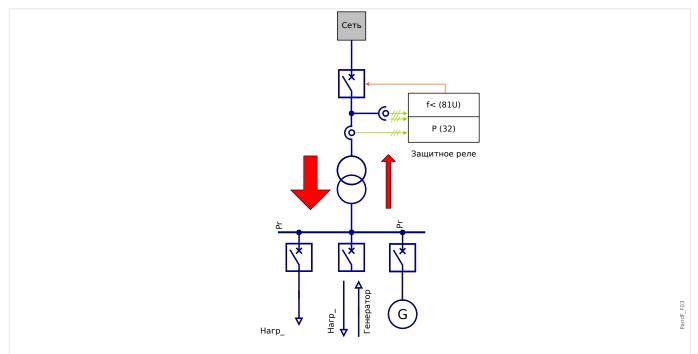


Рис. 94: Централизованная автоматическая частотная разгрузка в сетях с временным электроснабжением

Определение направления потока мощности (если оно активировано) будет в случае падения частоты блокировать разгрузку для тех подсетей, которые стабилизируют частоту. Для подсети будет выполняться разгрузка, только если снижает частоту (за счет потребления активной мощности).

Децентрализованная автоматическая частотная разгрузка в сетях с временным электроснабжением

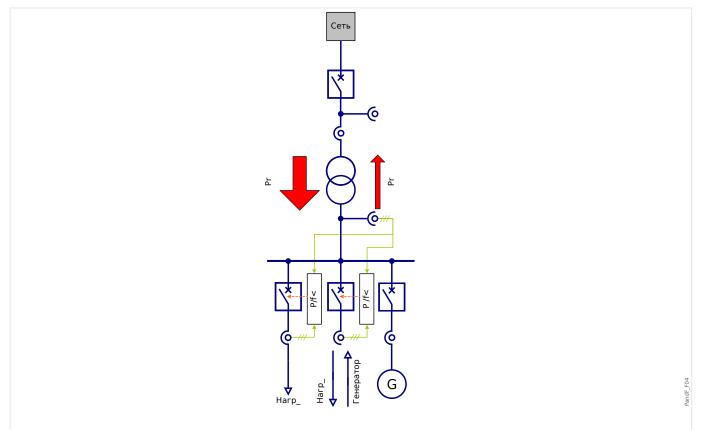


Рис. 95: Децентрализованная автоматическая частотная разгрузка в сетях с временным электроснабжением.

Определение направления потока мощности (если оно активировано) будет в случае падения частоты блокировать разгрузку для тех подсетей, которые стабилизируют частоту.

Для отдельных потребителей, которые дестабилизируют частоту за счет потребления активной мощности, может выполняться разгрузка без дискриминации.

Централизованное использование в сетях с преобладанием энергоснабжения

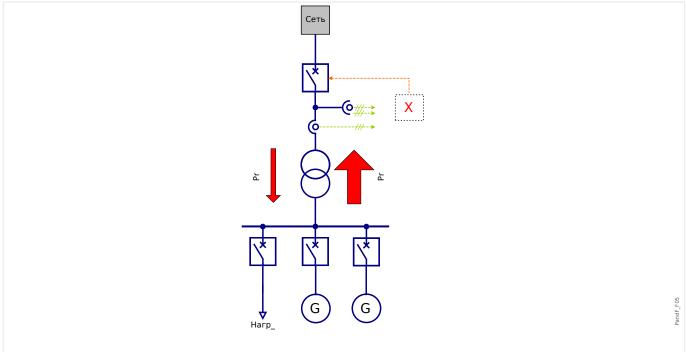


Рис. 96: Централизованное использование в сетях с преобладанием энергоснабжения.

Нет необходимости использовать автоматическую частотную разгрузку, так как в среднем подсеть подает (производит) больше активной мощности, чем потребляет. Подсеть в целом положительно влияет на частоту сети.

Деентрализованное использование в сетях с преобладанием энергоснабжения

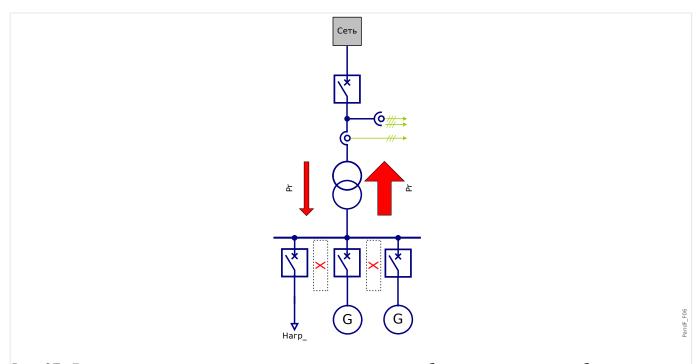


Рис. 97: Деентрализованное использование в сетях с преобладанием энергоснабжения.

Нет необходимости использовать автоматическую частотную разгрузку, так как в среднем подсеть подает (производит) больше активной мощности, чем потребляет. Подсеть в целом положительно влияет на частоту сети.

4.18.2 Направление отключения при автоматической частотной разгрузке

Определения

- Система стрелок потока нагрузки = потребленные активная и реактивная мощность считаются положительными (больше нуля).
- Система стрелок распределения генератора = генерируемая мощность считается положительной (больше нуля).

Направление отключения мощности

С помощью параметра [Парам_ защиты / Глоб_ пар_ защ_ / Внутр_соед-Защ / UFLS] «Напр. блок. P» можно изменить знак активной мощности на противоположный в модуле UFLS. Для защитных устройств, которые используют стрелки потока нагрузки (см. \Longrightarrow «1.1.2 Опорная система стрелок нагрузки») нужно задать для параметра «Напр. блок. P» значение «отриц.». Для защитных устройств, которые работают на основе системы стрелок распределения генератора, параметру «Напр. блок. P» нужно присвоить значение «полож.».

4.18.3 Настройка параметров автоматической частотной разгрузки

Оценивается активная мощность фазовой системы положительной последовательности (Р1).

Общие настройки

Войдите в меню [Парам защиты / Глоб пар защ / Внутр соед-Защ / UFLS].

В этом разделе можно выполнять следующие действия.

- Назначьте сигналы, которые активируют адаптивные параметры.
- Назначить сигнал, который блокирует оценку направления потока активной мощности.
- Изменить знак активной мощности на противоположный. (См. раздел «Направление отключения при автоматической частотной разгрузке».)

Конфигурация разгрузки

Войдите в меню [Парам_ защиты / Набор n / Внутр_соед-Защ / UFLS].

В этом меню можно определить для участка активной мощности вариант, который не будет приводить к разгрузке (то есть, разгрузка будет заблокирована) в случае снижения частоты.

Контроль минимального тока («I1 мин.») в системе с прямой последовательностью фаз предотвращает нежелательное срабатывание функции контроля активной мощности при низких уровнях мощности.

Выключающее напряжение определяет, с какого напряжения (фаза-фаза) будет запускаться UFLS.

Направление потока активной мощности можно определить разными способами. С помощью параметра *«Метод UFLS»* выберите метод, который будет использоваться:

- «Контроль угла мощности» Контроль чистой активной мощности, см. Ц⇒ «4.18.3 Метод 1 (контроль угла мощности)»
- «Контр. чистой активной мощности» Контроль чистой активной мощности, см.

 см.

 > «4.18.3 Метод 2 (контроль чистой реактивной мощности)»
- «Без напр. Р/ Внеш. напр. Р» Классическая разгрузка на основе частоты. Игнорирует направление перетока энергии и внешнего управления участка блокировки., см. ╚⇒ «4.18.3 Метод 3. Классическая разгрузка без учета направления потока активной мощности», См. «4.18.3 Метод 4 направление потока активной мощности не должно учитываться»

Метод 1 (контроль угла мощности)

Рис. 98: Метод 1 (контроль угла мощности): «Метод UFLS» = «Контроль угла мощности».

Разгрузка при понижении частоты будет заблокирована, если активная мощность находится в диапазоне, ограниченном углом мощности.

ПРИМЕЧАНИЕ!

Схема выше соответствует FNN5. На этой схеме показан участок блокировки в системе стрелок распределения генератора.

• Выберите «*Метод UFLS*» = «Контроль угла мощности».

- Задайте угол «Угол мощ».
- Выберите подходящее значение минимального тока «*I1 мин.*» для предотвращения ошибочных отключений.

Метод 2 (контроль чистой реактивной мощности)

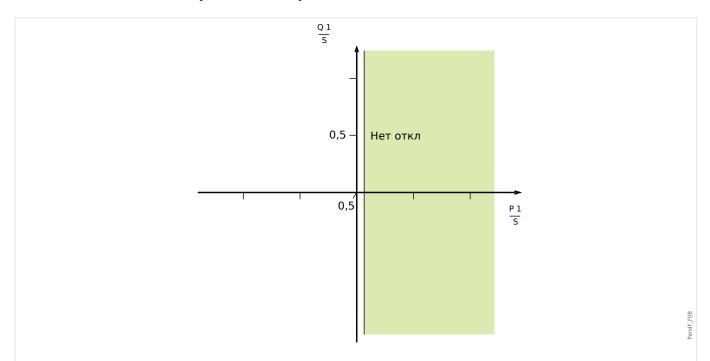


Рис. 99: Метод 2 (контроль чистой реактивной мощности): «Метод UFLS» = «Контр. чистой активной мощности».

Отключение при снижении частоты будет заблокировано, если активная мощность выше заданного порогового значения.

ПРИМЕЧАНИЕ!

Схема выше соответствует FNN5. На этой схеме показан участок блокировки в системе стрелок распределения генератора.

- Выберите «Метод UFLS» = «Контр. чистой активной мощности».
- Настройте пороговое значение активной мощности «Р мин.».
- Выберите подходящий минимальный ток *«I1 мин.»* для предотвращения ошибочных отключений.

Метод 3. Классическая разгрузка без учета направления потока активной мощности

Разгрузка будет инициирована только падением частоты. Направление потока активной мощности учитываться не будет.

Направление потока активной мощности не должно учитываться:

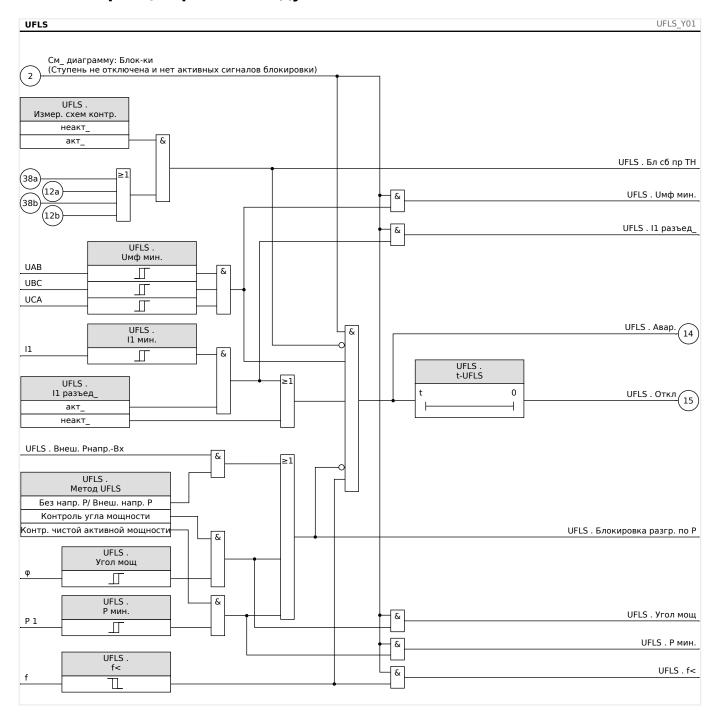
• Задайте для параметра «Метод UFLS» значение «Без напр. Р/ Внеш. напр. Р».

Метод 4 — направление потока активной мощности не должно учитываться

- Задайте для параметра «Метод UFLS» значение «Без напр. Р/ Внеш. напр. Р».
- Назначьте для параметра [Парам_ защиты / Глоб_ пар_ защ_ / Внутр_соед-Защ / UFLS] «Внеш. Рнапр.» сигнал, который указывает направления потока активной мощности.

Пороговое значение снижения частоты и задержка отключения

Следующие параметры можно использовать в качестве адаптивных, чтобы настроить разгрузку без дискриминации. (См. следующий раздел: \Longrightarrow «4.18.3 Разгрузка без дискриминации посредством адаптивных параметров».)


- Установите задержку отключения [Парам_ защиты / Набор n / Внутр_соед-Защ / UFLS / Разгрузка] «t-UFLS». Этот таймер будет запускаться, когда по аварийному сигналу запускается модуль UFLS.

Разгрузка без дискриминации посредством адаптивных параметров

За счет адаптивных параметров можно организовать разгрузку без дискриминации. При использовании этого способа не требуется заново осуществлять ввод в эксплуатацию и настраивать параметры. Адаптивные параметры/настройки дают возможность переключать настройку для одной функции посредством сигнала активации без переключения на другой набор параметров.

- Назначьте сигналы, которые должны активировать соответствующие адаптивные параметры, в глобальных параметрах[Парам_ защиты / Глоб_ пар_ защ_ / Внутр_соед-Защ / UFLS]. (См. раздел → «Наборы адаптивных параметров».)
- В меню [Парам_ защиты / Набор n / Внутр_соед-Защ / UFLS / Разгрузка] можно задать адаптивные параметры.

4.18.4 Принцип работы модуля UFLS

4.19 АПВ — Автоматическое повторное включение [79]

Автоматическое повторное включение используется для минимизации перебоев в работе воздушных линий электропередач. В соответствии с «VDE-Verlag: Schutztechnik in elektrischen Netzen 1, стр. 179, ISBN 3-8007-1753-0», большинство сбоев (дуговых вспышек) в воздушных электролиниях (> 60% в линиях среднего напряжения и > 85% в линиях высокого напряжения) является временным и может быть устранено с помощью элемента автоматического повторного включения.

ПРИМЕЧАНИЕ!

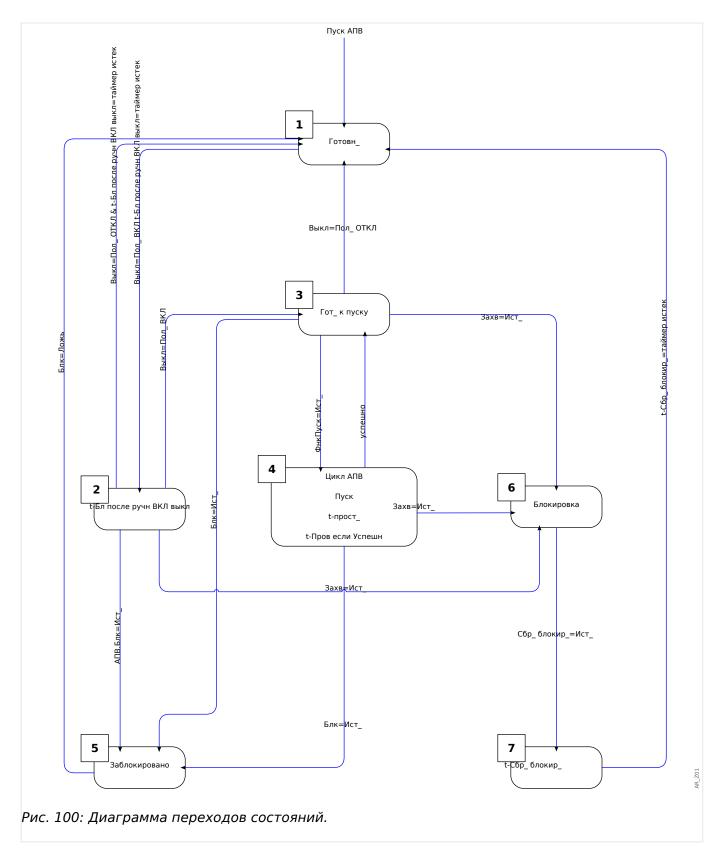
Деактивируйте элемент автоматического повторного включения (настройка [Планир_ устр_] «АПВ . $Peж_» = «-»$), если защитное устройство используется для защиты кабелей, генераторов или трансформаторов.

4.19.1 Характеристики и особенности

Функция автоматического повторного включения обладает различными гибкими комплексными характеристиками и соответствует всем требованиям коммунального и промышленного применения.

Доступные особенности функции автоматического повторного включения можно обобщить следующим образом.

- Гибкое присвоение функций инициализации для отдельных включений.
- Максимум 6 попыток автоматического повторного включения.
- Динамическая настройка значений защитных параметров (например, срабатывание, кривая отключения с задержкой и т. п.) в процессе автоматического повторного включения с помощью концепции адаптивной настройки.
- Предел срабатываний повторного включения в час.
- Контроль износа автоматического повторного включения с аварийным сигналом технического обслуживания.
- Функция программируемой блокировки повторного включения.
- Автоматическая координация зон с устройствами АПВ ниже в цепи.
- Функция автоматической блокировки ручного замыкания выключателя.
- Ручная/автоматическая блокировка сброса (с помощью панели, контактного входа, связи и т. п.)
- Автоматическое повторное включение с проверкой синхронизации (только совместно с внутренними модулями проверки синхронизации и управления).
- Можно использовать инкремент внешнего счетчика попыток АПВ.
- Оценка результатов автоматического повторного включения (успешное/ неуспешное).
- Отдельные счетчики для регистрации общего количества повторных включений, а также количества успешных/неуспешных повторных включений.


В следующей таблице приводится обзор функций и ветвей меню АПВ.

Каталог меню АПВ	Цель
АПВ [Парам_ защиты / Глоб_ пар_ защ_ / АПВ]	В этом меню можно назначить внешние заблокирования, внешние блокировки, внешнее увеличение счетчика срабатываний и внешние сбросы. Эти внешние события срабатывают, только если активированы (разрешены) в общих настройках. См. следующую строку таблицы.
Общие настройки [Парам_ защиты / Набор 14 / АПВ / Общие настройки]	В этом меню можно активировать некоторые общие настройки: саму функцию, внешнее заблокирование, координацию зон, внешние блокировки и внешнее увеличение счетчика срабатываний. Триггерные события (например, цифровые входные сигналы) должны быть назначены в соответствующих глобальных параметрах защиты. См. предыдущую строку таблицы. Кроме того, в данном меню можно задать таймеры, количество допустимых попыток повторного включения, аварийный режим (отключение/аварийный сигнал) и режим сброса.
Диспетчер срабатываний [Парам_ защиты / Набор 14 / АПВ / Мен_ пусков]	В меню диспетчера срабатываний нужно задать логику управления между отдельными срабатываниями и защитными функциями. Для каждого срабатывания (включая предварительное срабатывание) можно назначить триггерные (пускового) события. Для каждого срабатывания можно выбрать максимум 4 функции инициализации (защитные функции для запуска данного срабатывания) из списка доступных защитных функций. Если процесс автоматического повторного включения работает на стадии X, то для контроля работы на этой стадии используются соответствующие настройки защиты и управления. Кроме того, нужно задать интервалы времени задержки. Для каждого срабатывания интервал времени задержки задается отдельно. Исключение составляет срабатывание 0, для которого не требуется настройка таймера времени задержки. Срабатывание 0 является только виртуальным состоянием для определения времени перед подачей команды первого срабатывания. Каждый таймер времени задержки определяет время, которое должно

Каталог меню АПВ	Цель
	пройти перед подачей команды повторного включения для данного срабатывания.
Монитор износа [Парам_ защиты / Набор 14 / АПВ / Монитор износа]	Данная группа настроек содержит все параметры для контроля состояния износа и технического обслуживания, связанных с операциями автоматического повторного включения. Параметром «Макс АПВ/ч» определяется максимальное количество циклов АПВ в час. Соответствующая информация и контроль могут быть полезными для оптимального использования функции автоматического повторного включения.
Блокировка АПВ [Парам_ защиты / Глоб_ пар_ защ_ / АПВ / ПрерФнк]	Данная группа настроек определяет защитные функции, которые будут блокировать функцию автоматического повторного включения, если она уже инициализирована. Нужно учитывать разницу между защитными функциями, которые могут быть блокированы устройством АПВ, и данными функциями, которые могут блокировать устройство АПВ.

4.19.1.1 Состояния АПВ

На следующей схеме показаны переходы между различными состояниями функции автоматического повторного включения. Данная схема отображает логику времени работы и временную последовательность согласно направлению изменения состояния и событиям, которые запускают эти изменения.

Как правило, функция автоматического повторного включения активна (включена), только если выполнены все следующие условия.

- Функция автоматического повторного включения активна ([Парам_ защиты / Набор 1...4 / АПВ / Общие настройки] «Функция» = «акт_»).
- Выключатель в меню [Парам_ защиты / Глоб_ пар_ защ_ / АПВ] настроен.

• Автоматическое повторное включение не заблокировано сигналами блокировки («ВнБлк1/2»).

Состояние 1: Ожидание

Функция автоматического повторного включения находится в данном состоянии, если выполняются следующие условия.

- Выключатель находится в разомкнутом положении.
- Функция автоматического повторного включения не инициализирована какойлибо функцией инициализации (пуска).
- Отсутствуют внешние и внутренние сигналы блокировки АПВ.

ПРИМЕЧАНИЕ!

Срабатывание автоматического повторного включения невозможно, если функция автоматического повторного включения находится в состоянии ожидания.

Состояние 2: t-блокировка ручного замыкания

Предположим, что выключатель разомкнут и АПВ находится в состоянии ожидания. Затем выключатель замыкается вручную. Событие «Пол. Выкл. ВКЛ.» запускает таймер блокировки ручного замыкания и приводит к смене состояния ожидания на переходное состояние «t-Бл после ручн ВКЛ. выкл.». Функция автоматического повторного включения перейдет в состояние «Готовность», только когда истечет время таймера блокировки замыкания вручную и будет замкнут выключатель. Таймер блокировки замыкания вручную позволяет предотвратить неправильный запуск функции автоматического повторного включения в случае сбоя выключателя.

Состояние 3: Готово

Считается, что функция автоматического повторного включения находится в состоянии «Готово», когда выполнены все следующие условия.

- Выключатель находится в замкнутом положении.
- Время таймера блокировки ручного замыкания истекает после ручного/ удаленного замыкания.
- Функция автоматического повторного включения не инициализирована какойлибо функцией инициализации (пуска).
- Отсутствуют внешние и внутренние сигналы блокировки АПВ.

ПРИМЕЧАНИЕ!

Запуск автоматического повторного включения возможен, только если функция автоматического повторного включения находится в состоянии готовности.

Состояние 4: Выполнение (цикл)

Состояние «Выполнение» возможно, только если выполняются следующие условия.

- Перед этим функция автоматического повторного включения находилась в состоянии «Готовность».
- Перед этим выключатель находился в замкнутом положении.
- Отсутствуют внешние и внутренние сигналы блокировки АПВ.
- По крайней мере одна из назначенных функций инициализации имеет истинное значение (запускает автоматическое повторное включение).

ПРИМЕЧАНИЕ!

В состоянии выполнения осуществляется полный процесс автоматического повторного включения с множественным срабатыванием.

Если функция автоматического повторного включения переходит в состояние выполнения, она передает управление логическому элементу состояния «Выполнение», у которого имеется несколько вспомогательных состояний. Эти состояния описываются в отдельной главе, см. раздел Ч> «Цикл АПВ (срабатывание)».

Состояние 5: Заблокировано

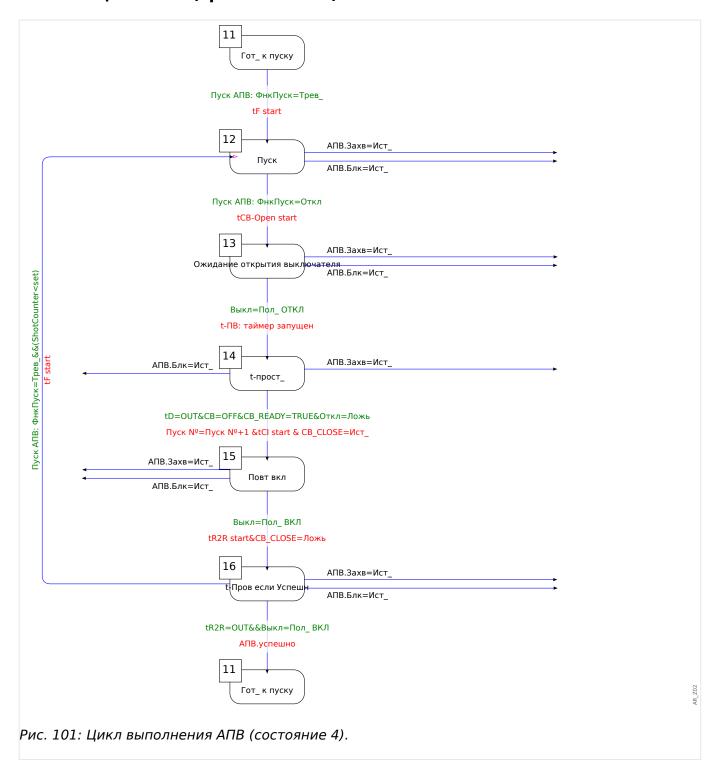
Активная функция автоматического повторного включения переходит в состояние «Заблокировано», если одна из назначенных функций блокировки имеет истинное значение.

Функция автоматического повторного включения выходит из состояния «Заблокировано», если назначенный сигнал блокировки отсутствует.

Состояние 6: Блокировка

Активная функция автоматического повторного включения переходит в состояние «Блокировка», если выполняется одно из следующих условий.

- После всех запрограммированных срабатываний автоматического повторного включения регистрируется сбой повторного включения. Неисправность носит постоянный характер.
- Сбой повторного включения (незавершенная последовательность)
- Количество автоматических повторных включений в час превышает предельное значение
- Истекло время таймера неисправности (слишком большое время отключения)
- Отказ выключателя во время пуска АПВ
- Ручное замыкание выключателя в процессе автоматического повторного включения
- По крайней мере одна защитная функция подает команду отключения перед подачей команды повторного включения


Функция автоматического повторного включения выходит из состояния «Блокировка», если подтвержден сигнал сброса блокировки и истекло заданное время сброса блокировки.

ПРИМЕЧАНИЕ!

Сервисный аварийный сигнал (сервисный аварийный сигнал 1 или 2) не приводит к блокировке функции АПВ.

4.19.2 Цикл АПВ (срабатывание)

Состояние 11: Готово

Считается, что функция автоматического повторного включения находится в состоянии «Готово», когда выполнены все следующие условия.

- Выключатель находится в замкнутом положении.
- Время таймера блокировки ручного замыкания истекает после ручного/ удаленного замыкания.
- Функция автоматического повторного включения не инициализирована какойлибо функцией инициализации (пуска).
- Отсутствуют внешние и внутренние сигналы блокировки АПВ.

Состояние 12: Раб

Это первое вспомогательное состояние после того, как процесс автоматического повторного включения перейдет из состояния «Готовность» в состояние «Выполнение» с помощью первого события инициализации АПВ. В состоянии «Выполнение» элемент автоматического повторного включения контролирует сигнал отключения функции инициализации, пока работает заданный таймер неисправности. Элемент автоматического повторного включения при получении сигнала отключения переходит в состояние «Ожидание размыкания выключателя», если время таймера неисправности не истекло и нет других условий блокировки.

Состояние 13: Ожидание размыкания выключателя

В состоянии «Ожидание размыкания выключателя» функция автоматического повторного включения контролирует фактическое отключение (размыкание) выключателя после получения флага отключения защитной функции инициализации в течение заданного времени контроля работы выключателя (200 мс). Если это так, функция автоматического повторного включения запускает заданный таймер времени задержки и переходит в состояние времени задержки «t-прост».

Состояние 14: t-задержка

В состоянии времени задержки «t-прост_» работает предварительно заданный таймер времени задержки для текущего срабатывания АПВ. Прервать его можно будет, только если возникнут какие-либо условия блокировки.

По истечении времени задержки функция автоматического повторного включения подаст команду повторного замыкания выключателя и перейдет в состояние «Повторное включение», только если будут выполнены следующие условия.

- Выключатель находится в разомкнутом положении.
- Выключатель готов к следующей операции повторного замыкания (если подается входной сигнал логики готовности выключателя)
- Отсутствует команда срабатывания от текущих (назначенных) функций инициализации АПВ
- Отсутствует команда отключения от текущих (назначенных) функций инициализации АПВ
- Отсутствует общая команда отключения

Перед подачей команды повторного замыкания выключателя увеличивается текущий счетчик срабатываний. Эта настройка необходима для инициализации с контролем срабатываний и функций блокировки.

Перед переходом в состояние «Повторное включение» также запустится предварительно заданный таймер контроля повторного замыкания выключателя («t-кмд PЦ вкл»).

Состояние 15: Повторное включение

Если во время работы таймера контроля повторного замыкания выключателя отсутствуют прочие условия блокировки, и выключатель замыкается, функция автоматического повторного включения запускает таймер [Парам_ защиты / Набор 1...4 / АПВ / Общие настройки] *(t-Успешно)* и переходит в состояние *(t-П)ров если Успешн».

Состояние 16: t-вып->гот

Успешное автоматическое повторное включение:

если в состоянии «t-Пров если Успешн» отсутствуют прочие условия блокировки и во время работы таймера «t-Успешно» не регистрируются сбои, логическая схема автоматического повторного включения переходит из состояния «Выполнение» обратно в состояние «Готово». Устанавливается флаг «успешно».

Неудачное повторное включение:

если во время работы таймера «t-Успешно» сбой регистрируется еще раз (срабатывает функция инициализации с контролем срабатываний), функция автоматического повторного включения снова переходит в состояние «Выполнение». При сбое длительного характера описанный выше процесс повторяется, пока не будет выполнено заданное количество срабатываний, и функция автоматического повторного включения не перейдет в состояние «Блокировка». Устанавливается флаг «сбой».

4.19.3 Временные диаграммы

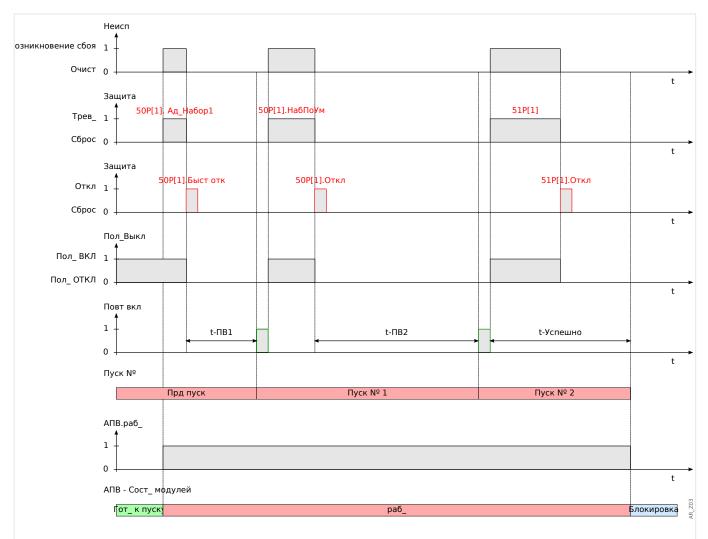


Рис. 102: Диаграмма синхронизации автоматического повторного включения для схемы с 2 **неудачными** попытками автоматического повторного включения и ускорением перед импульсом.

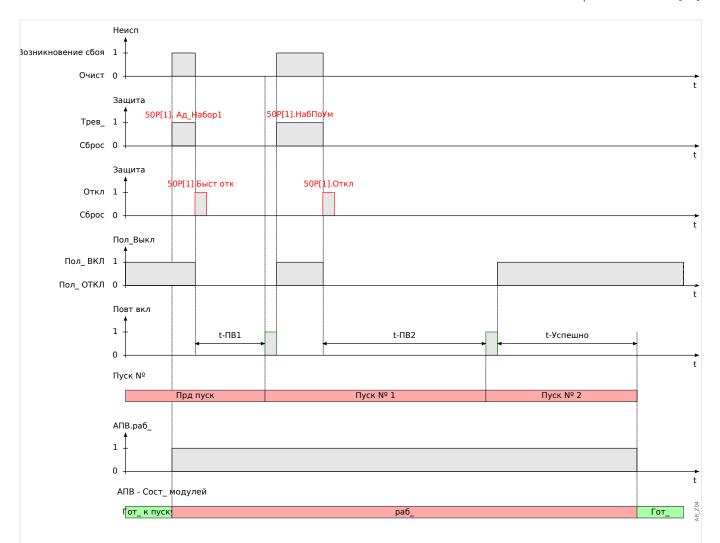


Рис. 103: Диаграмма синхронизации автоматического повторного включения для схемы с 2 **удачными** попытками автоматического повторного включения и ускорением перед импульсом.

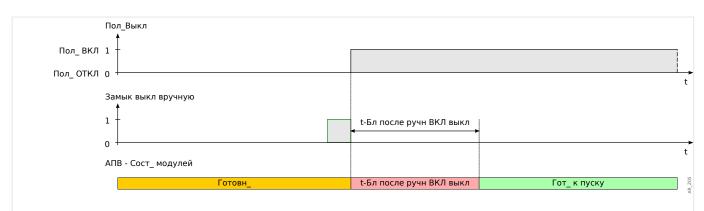


Рис. 104: Состояния автоматического повторного включения во время замыкания выключателя вручную.

Что произойдет, если защитное устройство получит сигнал отключения во время работы таймера *t-Бл после ручн BKЛ выкл*?

Пока работает этот таймер «t-Бл после ручн ВКЛ выкл», выключатель размыкается любым сигналом отключения. От самого таймера это не зависит. Тем не менее, работа таймера продолжается.

По ее завершении модуль АПВ снова проверит состояние выключателя и обнаружит, что тот разомкнут. АПВ перейдет в состояние «ОЖИДАНИЕ», автоматическое повторное включение будет невозможно. (Примечание. Функция АПВ не перейдет в состояние «БЛОКИРОВКА»!)

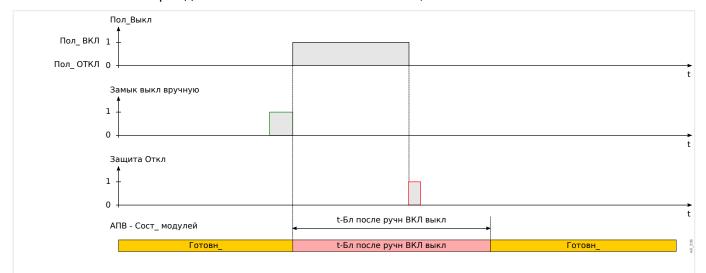


Рис. 105: Отключение защиты во время работы таймера блокировки замыкания вручную.

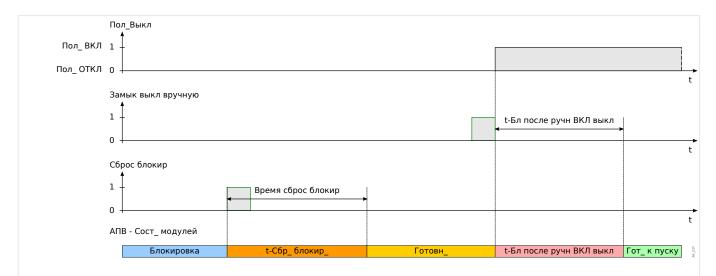


Рис. 106: Логика сброса блокировки АПВ при получении команды сброса блокировки перед замыканием выключателя вручную.

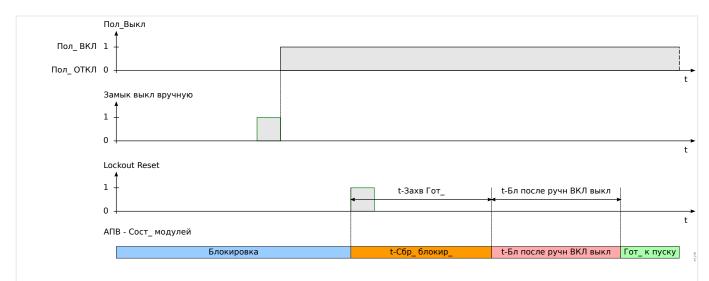


Рис. 107: Логика сброса блокировки АПВ при получении команды сброса блокировки после замыкания выключателя вручную.

4.19.4 Координация зон

Что означает термин «координация зон»?

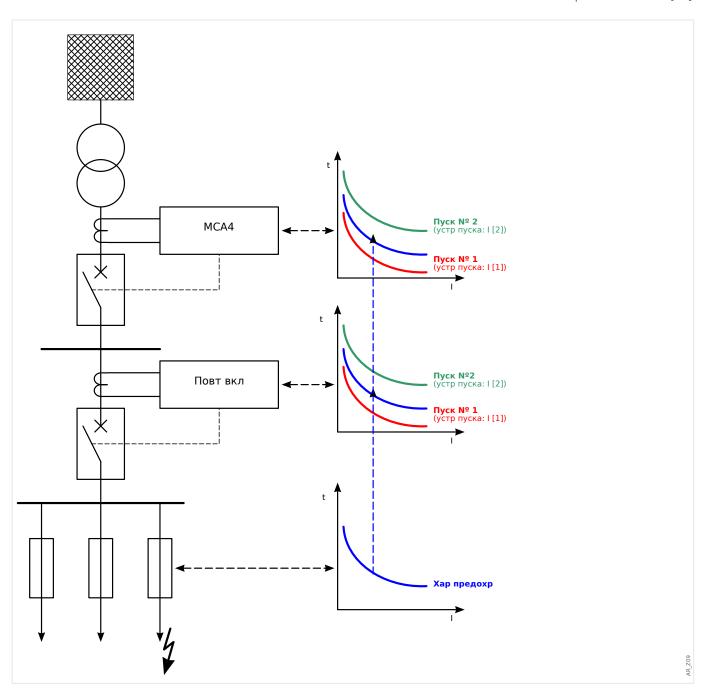
Координация зон означает, что защитное устройство выше в цепи выполняет виртуальное автоматическое повторное включение, пока защитное устройство ниже в цепи выполняет фактическое автоматическое повторное включение. Координация зон позволяет сохранять селективность, даже если защитное устройство ниже в цепи изменит свои характеристики отключения после цикла повторного включения. За автоматическим повторным включением ниже в цепи выполняется виртуальное автоматическое повторное включение устройства выше в цепи.

Какой способ применения можно реализовать с помощью координации зон?

Радиальная распределительная система защищена устройством выше в цепи (с помощью выключателя) и устройством ниже в цепи с помощью функции повторного включения и предохранителя. С помощью координации зон можно реализовать «схему сохранения предохранителей». Для «сохранения предохранителей» защитное устройство ниже в цепи может выполнить отключение для первой попытки повторного включения при низких значениях отключения (понижение номинала предохранителя, попытка избежать повреждения предохранителя). Если попытка повторного включения будет неудачной, значения отключения могут быть увеличены (повышение номинала предохранителя) для второй попытки повторного включения (с использованием более высоких значений/характеристик отключения).

Что самое главное?

Пороговые значения для отключения устройств выше и ниже в цепи должны быть одинаковыми, а время отключения должно быть задано селективно.


Как включается координация зон?

Функция координации зон является составляющей элемента автоматического повторного включения и может быть включена при настройке параметра [Парам_ защиты / Набор 1...4 / АПВ / Общие настройки] «Координация зон» = «акт_» для защитного устройства фидера, расположенного выше по цепи.

Как работает функция координации зон (для защитного устройства, расположенного выше по цепи)?

Если функция координации зон включена, она работает аналогично стандартной функции автоматического повторного включения с теми же параметрами: максимальное количество попыток повторного включения, таймер задержки для каждого срабатывания, функции инициализации для каждого срабатывания и прочие таймеры для процесса автоматического повторного включения. Но она использует следующие характеристики координации зон для координации сигналов с устройствами АПВ ниже в цепи.

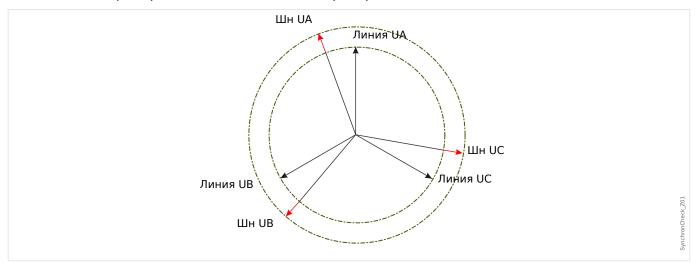
- Соответствующий таймер задержки для каждого срабатывания будет запущен, даже если выключатель реле фидера выше в цепи НЕ РАЗОМКНУТ назначенными защитными функциями инициализации.
- Таймер задержки запускается, как только функция автоматического повторного включения регистрирует погрешность сигнала срабатывания назначенной функции защиты от превышения тока. Это приводит к отключению тока короткого замыкания за счет размыкания устройств АПВ ниже в цепи.
- По истечении времени таймера задержки увеличится таймер срабатываний включенной координации зон, даже если не поступит команда повторного замыкания выключателя и будет запущен таймер «t-Успешно».
- Если после повторного включения устройства АПВ ниже в цепи присутствует сбой длительного характера, ток короткого замыкания вызывает повторное срабатывание устройства защиты от превышения тока выше в цепи, но с контролем уставок срабатывания и рабочих кривых с помощью количества срабатываний. Таким образом, фидер выше в цепи будет «следовать» настройкам защиты устройства АПВ ниже в цепи от срабатывания к срабатыванию.
- При неустойчивом сбое из-за отсутствия тока короткого замыкания автоматическое повторное включение с координацией зон не будет включено снова. Сброс будет выполнен как обычно по истечении времени таймера сброса «t-Успешно».

4.20 Синх — проверка синхронизации [25]

ПРЕДУПРЕЖДЕНИЕ!

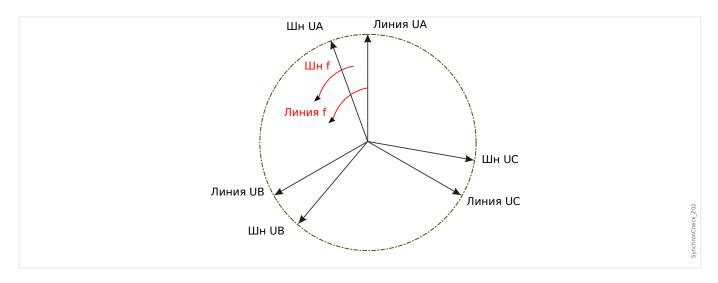
Функцию проверки синхронизации можно обойти с помощью внешних источников. В этом случае перед замыканием выключателя синхронизацию должны обеспечить прочие синхронизирующие системы!

ПРИМЕЧАНИЕ!

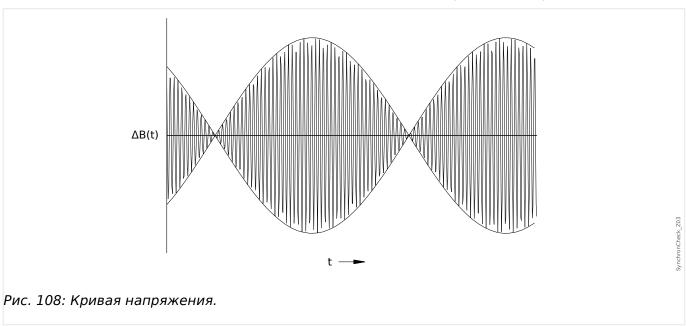

Первые три измерительных входа платы измерения напряжения (VL1/VL1-L2, VL2/VL2-L3, VL3/VL3-L1) названы/отмечены в элементе проверки синхронизации как напряжения шины (это также относится к устройствам, обеспечивающим защиту генератора). Четвертый измерительный вход платы измерения напряжения (VX) назван /отмечен как линейное напряжение (это также относится к устройствам, обеспечивающим защиту генератора). В меню [Параметры зоны/Передача напряжения/U синх] нужно задать, с какой фазой будет сравниваться четвертый измерительный вход.

Проверка синхронизма

Функция «Синх» предназначена для вариантов применения, где линия имеет двухсторонние источники питания. Функция проверки синхронизации позволяет проверять величину напряжения, разницу углов и частот (частоту скольжения) между шиной и линией. Если функция проверки напряжения включена, она позволяет следить за операцией замыкания вручную, автоматически или и так, и так одновременно. Эта функция может быть отменена определенными условиями эксплуатации линией шины и может быть обойдена с помощью внешнего источника.

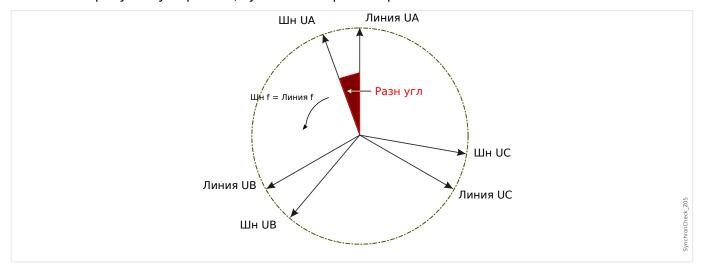

Разность потенциалов **ΔV**

Первым условием для параллельного включения двух электрических систем является то, что их векторы напряжения имеют одинаковую величину. Это может контролироваться с помощью генератора AVR.



Разность частот (частота скольжения) ДЕ

Вторым условием параллельного соединения двух электрических систем является приблизительно одинаковая величина их частот. Это может контролироваться с помощью регулятора скорости генератора.


Если частота генератора fBus не равна частоте сети fLine, между частотами двух систем имеет место частота скольжения ΔF , равная |fBus — fLine|.

Угловая разность, или разность фаз

Даже если частоты обеих систем являются совершенно идентичными, как правило, присутствует разница углов векторов напряжения.

В момент синхронизации, разница углов двух систем должна быть близкой к нулю, поскольку, в противном случае происходят нежелательные прорывы нагрузки. Теоретически угловая разница может быть сведена к нулю с помощью подачи коротких импульсов регуляторам скорости. При параллельном соединении генераторов с сетью синхронизация требуется как можно скорее, поэтому обычно допускается небольшая разница частот. В таких случаях угловая разность не постоянна, но изменяется с частотой скольжения ΔF .

Учитывая время замыкания выключателя, вывод выпускающего импульса замыкания можно рассчитать таким образом, чтобы замыкание выключателя происходило точно в то время, когда обе системы находятся в угловой согласованности.

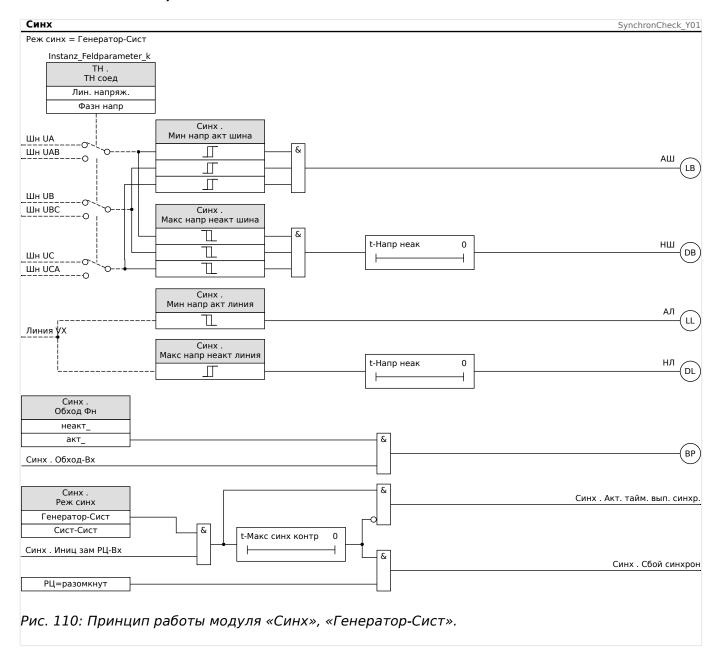
В основном применяются следующие правила:

В случаях, когда задействованы большие массы вращения, разница частот (скольжение частоты) двух систем должна быть близка к нулю в связи с очень высокими прорывами нагрузки в момент замыкания выключателя. При меньших массах вращения разница частот между системами может быть выше.

ПРИМЕЧАНИЕ!

Эту проверку синхронизации невозможно использовать для двух напряжений, которые сдвинуты на фиксированный угол (например, из-за того, что они измеряются на двух сторонах блочного трансформатора генератора).

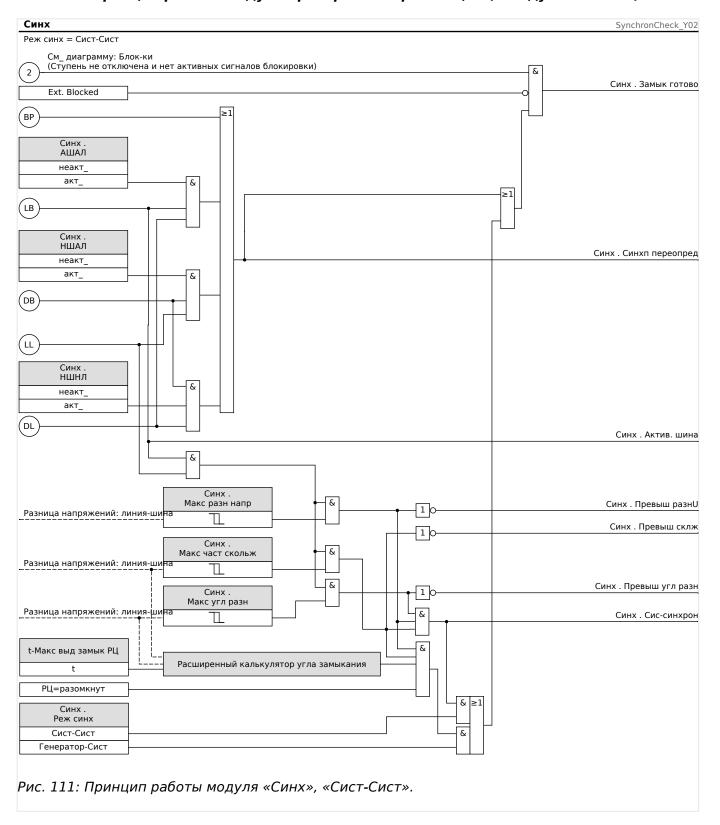
Режимы синхронизации


Модуль проверки синхронизации способен проверить синхронизацию двух электрических систем (между системами) или между генератором и электрической системой. Для параллельного соединения двух электрических систем частота, напряжение и фазовый угол станции должны полностью совпадать со значениями электросети. При синхронизации генератора с системой допускается определенная частота скольжения в зависимости от размера используемого генератора. Поэтому нужно учитывать максимальное время замыкания выключателя. При заданном времени замыкания модуль проверки синхронизации может рассчитать момент синхронизации и осуществить параллельное высвобождение.

ПРЕДУПРЕЖДЕНИЕ!

При параллельном соединении двух систем необходимо убедиться, что выбран режим синхронизации между системами. Параллельное соединение двух систем в режиме синхронизации генератора с системой может привести к серьезному повреждению!

Принцип работы модуля проверки синхронизации (между генератором и системой)



Настройка: [Парам_ защиты / Набор x / Внутр_соед-Защ / Синх / Режим / интервалы] «Реж синх» = «Генератор-Сист»

Элемент проверки синхронизации измеряет три фазных напряжения «VL1», «VL2» и «VL3» или три линейных напряжения «VL1-L2», «VL2-L3» и «VL3-L1» шины генератора. Напряжение линии Ux измеряется с помощью четвертого входа напряжения. Если выполняются все условия синхронизации (например, Δ U [разница напряжений], Δ F [частота скольжения], и Δ ϕ [угловая разница] находятся в

допустимых пределах), будет подан сигнал, что обе системы синхронны. Функция расширенного анализа угла замыкания учитывает время замыкания выключателя.

Принцип работы модуля проверки синхронизации (между системами)

Настройка: [Парам_ защиты / Набор x / Внутр_соед-Защ / Синх / Режим / интервалы] «Реж синх» = «Сист-Сист»

Функция проверки синхронизации двух систем аналогична функции проверки синхронизации между генератором и системой, за исключением того, что нет необходимости учитывать время замыкания выключателя. Элемент проверки синхронизации измеряет три фазных напряжения «VL1», «VL2» и «VL3» или три линейных напряжения «VL1-L2», «VL2-L3» и «VL3-L1» шины генератора. Напряжение линии Ux измеряется с помощью четвертого входа напряжения. Если выполняются все условия синхронизации (например, Δ U [разница напряжений], Δ F [частота скольжения], и Δ ϕ [угловая разница] находятся в допустимых пределах), будет подан сигнал, что обе системы синхронны.

Условия переопределения проверки синхронизации

Следующие условия, если включены, могут переопределять функцию проверки синхронизации.

- АШНЛ = активная шина неактивная линия
- НШАЛ = неактивная шина активная линия
- НШНЛ = неактивная шина неактивная линия

Также функцию проверки синхронизации можно обойти с помощью внешних источников.

ПРЕДУПРЕЖДЕНИЕ!

При переопределении или обходе функции проверки синхронизации перед замыканием выключателя синхронизацию должны обеспечить прочие синхронизирующие системы!

4.21 УЗВВ — модуль ускорения защит при включении выключателя

В случае если напряжение питания подано на линию с коротким замыканием (например, если заземляющий переключатель находится в замкнутом положении), требуется мгновенное отключение. Модуль ВНО предназначен для генерирования сигнала разрешения для выполнения других защитных функций, таких как функции защиты от максимального тока, в целях ускорения их срабатывания (с помощью адаптивных параметров, см. Наборы адаптивных параметров»).

Состояние ВНО определяется в соответствии с рабочим режимом пользователя. При выборе настройки [Парам_ защиты / Глоб_ пар_ защ_ / ВНО] «Реж_» становятся доступными следующие параметры:

- «Реж_» = «Пол_Выкл» состояние выключателя;
- *«Реж_»* = «I<» отсутствие тока;
- « $Peж_{}$ » = «Пол_ВыклИІ<» состояние выключателя **и** отсутствие тока;
- «Реж » = «Выкл Ручн ВКЛ» выключатель выключен вручную;
- «Реж » = «Внешн УВВ» внешний триггер.

Для модуля «ВНО» требуется, чтобы для параметра [Парам_ защиты / Глоб_ пар_ защ_ / ВНО] «Назначенное КУ» было назначено коммутационное устройство (выключатель). Допускаются к использованию только такие выключатели, которые оснащены измерительными трансформаторами, предоставляющими данные измерений МСА4.

Этот модуль выдает только один сигнал, он не выдает команд на автоматическое отключение.

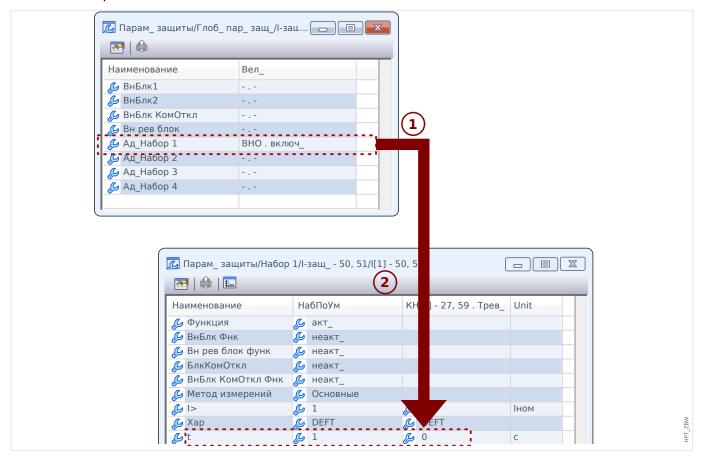
Чтобы влиять на настройки отключения функций токовой защиты в случае ВНП, пользователь должен назначить сигнал «ВНО . включ_» и включить его в «Набор адаптивных параметров». (Общее описание см. в разделе ⇒ «Наборы адаптивных параметров»). В наборе адаптивных параметров пользователь должен изменить характеристику отключения функции токовой защиты в соответствии с потребностями.

Пример. Отключение элемента защиты от перегрузки по току без задержки «I[1]»

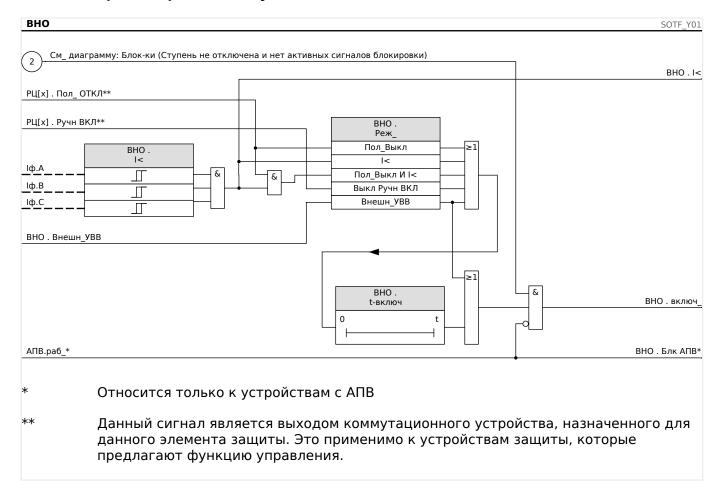
Предположим, что все настройки для элемента защиты от максимального фазового тока «I[1]» выполнены (подробное описание см. в разделе \longrightarrow «I — защита от превышения тока»). Далее необходимо настроить задержку отключения «I[1] . t», изменив значение по умолчанию 1.00 с на 0 с, если определяется условие ВНО. Далее приведен пример действий, как это можно сделать:

• Доступно 4 набора адаптивных параметров. Например, если выбрать набор адаптивных параметров 1, то процедура начинается со следующей настройки:

```
[Парам_ защиты / Глоб_ пар_ защ_ / І-защ_ / І[1]] «Aд_Набор 1» = «ВНО . включ ».
```


• Затем укажите значение «Ад Набор 1» для задержки отключения:

```
[Парам защиты / Набор 1...4 / І-защ / І[1]] «Ад Набор 1» [Ад Набор 1] = 0.00 с
```


При входе в меню [Парам_ защиты / Набор 1...4 / І-защ_ / І[1]] на панели должны появиться следующие страницы:

B Smart view настройки из того же примера должны выглядеть следующим образом:

Принцип работы модуля «ВНО»

4.21.1 Ввод в эксплуатацию: Ускорение при неисправности включения

Тестируемый объект

Проверка модуля ускорения защит при включении выключателя в соответствии с параметрами рабочего режима:

- Состояние выключателя (Пол.Выкл);
- Отсутствии тока (I<);
- Состояние выключателя и отсутствие тока (Пол.Выкл и I<);
- Включении выключателя в ручном режиме (Ав руч вкл) и/или
- На состоянии внешнего триггера (Внеш УЗВВ).

Необходимые средства

- Источник трехфазного тока (если режим включения зависит от тока);
- Амперметры (могут понадобиться, если режим включения зависит от тока), и
- Таймер.

Пример проверки режима ручного включения РЦ

ПРИМЕЧАНИЕ!

Режим I<: Проверка эффективности работы: Сначала не подавайте на устройство ток. Запустите таймер и подайте на измерительные входы реле ток с резким изменением, который значительно превышает уставку, установленную параметром I<.

Режим I< и состояние РЦ: Одновременно включите вручную выключатель и подайте ток с резким изменением, во много раз превышающим уставку I<.

Состояние РЦ: РЦ должен находиться в положении «ВЫКЛ». Сигнал «УЗВВ включен» = 0 (ложь). Если РЦ включен, то сигнал «УЗВВ.включен» = 1 принимает истинное значение и сохраняет это значение в течение всего времени таймера t-вкл.

- РЦ должен находиться в положении «ВЫКЛ.» Ток нагрузки должен отсутствовать.
- В окне отображения состояния устройства для сигнала «ВНО . включ » = 1.

Проверка

- Переведите выключатель во включенное положение вручную и одновременно с этим запустите таймер.
- После того как время задержки t-включ истечет, сигнал «ВНО . включ » = 0.
- Запишите измеренное время.

Результат успешной проверки

Значения измерений общего времени задержки отключения и отдельных значений времени задержки, уставок и уставки на возврат, должны соответствовать значениям, указанным в списке настроек. Допустимые отклонения и допуски указаны в технических данных.

4.22 МБПТ — модуль блокировки пусковых токов

Если электрическая нагрузка будет включена или повторно включена после продолжительного перерыва, то ток нагрузки стремится резко вырасти (бросок тока), причем величина тока при этом в несколько раз превышает нормальный ток нагрузки из-за пуска двигателя. Это явление называется «бросок пускового тока». Если уставка максимального тока установлена в соответствии с максимально возможной величиной броска тока, то токовая защита может оказаться нечувствительной к некоторым неисправностям и КЗ, что затрудняет общую координацию системы защиты или делает ее вовсе неосуществимой. С другой стороны, токовая защита должна сработать при броске тока, если ее настройки произведены на основании данных, полученных при измерениях тока КЗ. Модуль МБПТ предназначен для генерации сигнала временной блокировки/понижения чувствительности токовой защиты и предотвращения ее нежелательного срабатывания. Функция блокировки пусковых токов регистрирует переход из горячей нагрузки в холодную в соответствии с выбираемыми режимами холодной нагрузки:

- ПОЛ ВЫКЛ. (состояние выключателя);
- I< (пониженный ток);
- ПОЛ ВЫКЛ. и I< (состояние выключателя и пониженный ток);
- ПОЛ ВЫКЛ. или I< (состояние выключателя или пониженный ток).

После регистрации перехода с горячей нагрузки на холодную запустится указанный таймер отключения нагрузки. В некоторых случаях этот задаваемый пользователем таймер отключения нагрузки используется для подтверждения достаточного состояния холодной нагрузки. По истечении времени таймера отключения нагрузки функция МБПТ подает сигнал «МБПТ.включен», который можно использовать для блокировки некоторых чувствительных защитных элементов, таких как элементы защиты от мгновенного максимального тока, элементы защиты от несимметричного тока или элементы защиты по мощности (по выбору пользователя). Использование данного сигнала включения позволяет также по выбору пользователя снизить чувствительность некоторых элементов защиты от превышения тока с обратнозависимой временной характеристикой с помощью активации адаптивных настроек соответствующих элементов защиты от превышения тока.

Когда состояние холодной нагрузки завершено (зарегистрирован переход из холодной нагрузки в горячую) вследствие, например, замыкания выключателя или инжекции тока нагрузки, будет инициирован датчик бросков тока, который контролирует процесс бросков входящего и выходящего тока нагрузки. Бросок тока регистрируется, если входящий ток нагрузки превышает заданное пользователем пороговое значение. Такой бросок тока будет считаться завершенным, когда ток нагрузки снизится до 90% порогового значения. После снижения тока нагрузки запустится таймер установки. Сигнал включения блокировки пусковых токов может быть сброшен только по истечении времени таймера установки. Завершить сигнал включения МБПТ при слишком длительном броске тока может также другой таймер максимальной блокировки, который запускается параллельно с датчиком бросков тока по завершении состояния холодной нагрузки.

Функцию блокировки пусковых токов можно заблокировать вручную с помощью внешнего или внутреннего сигнала по выбору пользователя. Если на устройствах с соответствующей функцией будет запущено автоматическое повторное включение (сработает АПВ), то функция МБПТ будет автоматически заблокирована.

осторожно!

Этот модуль не выдает команд, а выдает только сигнал.

Чтобы изменить настройки отключения функций токовой защиты, следует назначить сигнал «МБПТ.включен» одному из наборов адаптивных параметров. См. раздел «Параметры/наборы адаптивных параметров». В наборе адаптивных параметров нужно изменить характеристику отключения функции токовой защиты в соответствии с необходимостью.

ПРИМЕЧАНИЕ!

Следует хорошо понимать значение двух таймеров задержки.

t-нагр выкл. (задержка срабатывания): После окончания этого времени устройство перестает игнорировать нагрузку.

t-макс блок (задержка на отпадание): По выполнении пускового условия (например, включения выключателя вручную) сигнал «МБПТ.включен» будет выдаваться в течение этого периода времени. Это означает, что в течение этого времени пороговые значения срабатывания токовой защиты могут быть снижены с помощью адаптивных параметров (см. раздел «Параметры»). Данный таймер будет остановлен, если ток упадет ниже значения 0,9 х уставка датчика бросков тока и останется ниже этого значения в течение времени установки.

ПРИМЕЧАНИЕ!

Данное примечание относится к защитным устройствам, которые обеспечивают только контроль! Для данного защитного элемента требуется, чтобы ему было назначено коммутационное устройство (выключатель). Допускается присвоение данному защитному элементу коммутационных устройств (выключателя), измерительные трансформаторы которого предоставляют защитному устройству данные измерений.

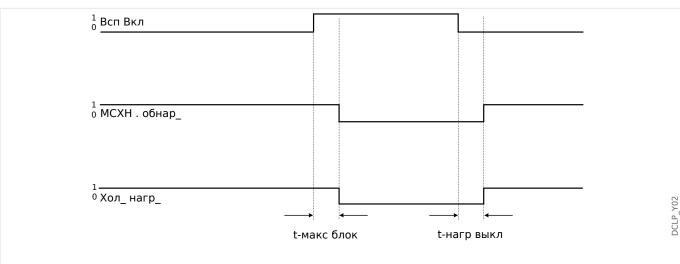
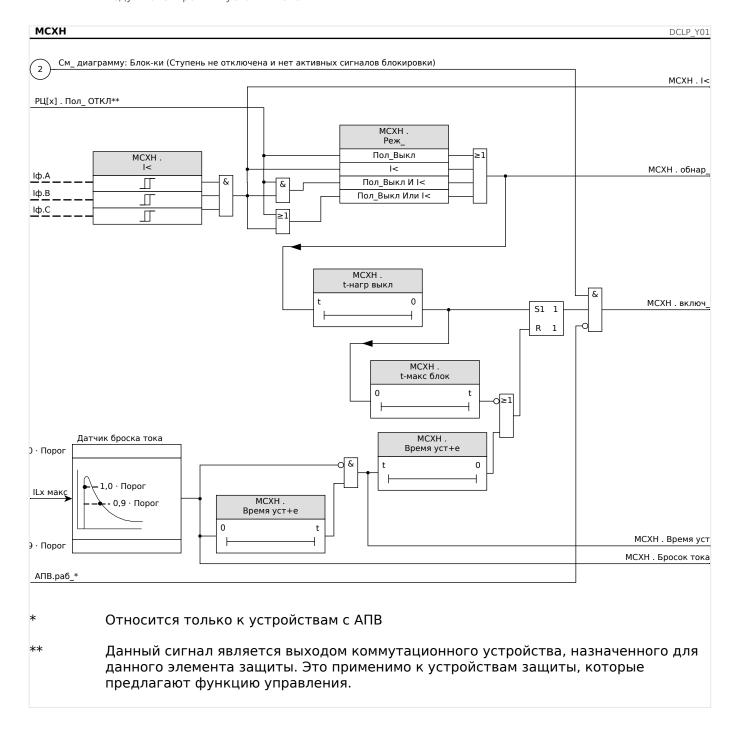



Рис. 112: Пример: Положение выключателя.

4.22.1 Ввод в эксплуатацию модуля блокировки от пусковых токов

Тестируемый объект

Проверка модуля блокировки пусковых токов в соответствии с настройками рабочего режима:

- I< (отсутствие тока);
- Состояние выключателя (положение выключателя);
- I< (отсутствие тока) и состояние выключателя (положение выключателя);
- I< (отсутствие тока) или состояние выключателя (положение выключателя).

Необходимые средства

- источник трехфазного тока (если режим включения зависит от тока);
- амперметры (могут понадобиться, если режим включения зависит от тока);
- Таймер.

Пример проверки режима состояния выключателя (положения выключателя)

ПРИМЕЧАНИЕ!

Режим I<: Для проведения проверки задержки отключения запустите таймер и подайте на измерительные входы реле ток с резким изменением, который значительно меньше уставки, установленной параметром I<. Измерьте задержку отключения. Для измерения коэффициента размыкания подайте на измерительные входы реле ток с резким изменением, значительно больший порогового значения \ll I<».

Режим I< и состояние РЦ: смоделируйте резкое изменение (включение и выключение тока) путем последовательного включения и выключения выключателя вручную.

Режим I< или состояние выкл.: сначала проведите проверку с быстро изменяющимся током, который вначале включается, а затем выключается (выше и ниже уставки I<). Измерьте время отключения. Затем проведите проверку путем замыкания и размыкания выключателя вручную.

- РЦ должен находиться в положении «ВЫКЛ». Ток нагрузки должен отсутствовать.
- В окне отображения состояния устройства для сигнала «МБПТ.включен» отображается значение 1.
- В окне отображения состояния устройства для сигнала «МБПТ.I<» отображается значение 1.
- Измерьте задержку отключения и коэффициент возврата.
- Переведите выключатель в замкнутое положение вручную и одновременно запустите таймер.
- По окончании работы таймера «t-макс блок (задержка на размыкание)» сигнал «МБПТ.включен» = 0 должен стать ложным.
- Запишите измеренное время.
- Переведите выключатель в разомкнутое положение вручную и одновременно запустите таймер.
- По окончании работы таймера «t-нагр выкл» сигнал «МБПТ.включен» = 1 должен стать истинным.
- Запишите измеренное время.

Успешные результаты проверки

Значения измерений общего времени задержки отключения и отдельных значений времени задержки, порогов и коэффициентов падения должны соответствовать

4 Элементы защиты

4.22 МБПТ — модуль блокировки пусковых токов

значениям, указанным в списке настроек. Допустимые отклонения и допуски указаны в разделе технических данных.

4.23 Зависимое выключение (удаленное)

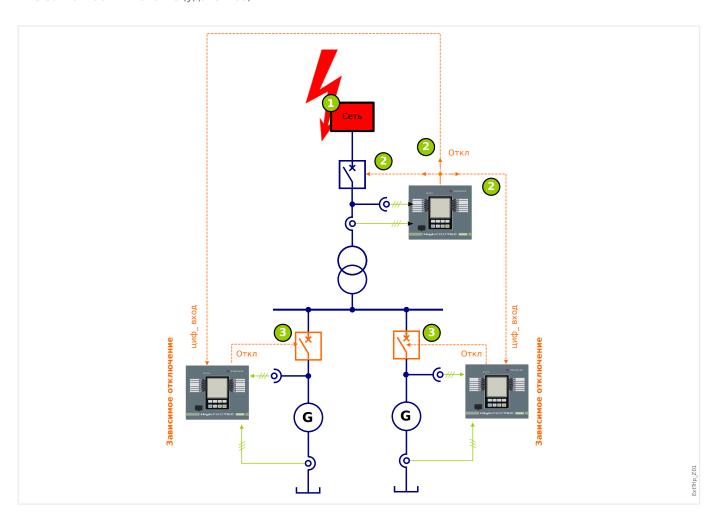
Этот модуль активирует режим зависимого отключения (выполнение внешних команд отключения).

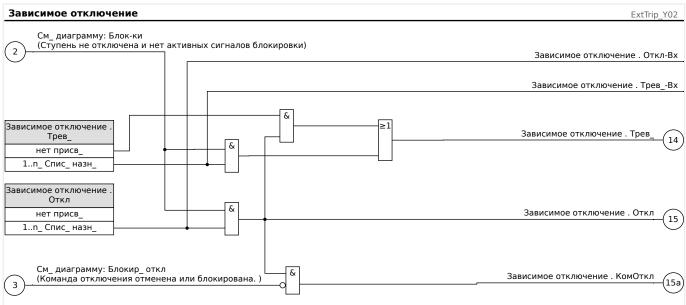
Пример применения

Несколько распределенных источников питают сеть, параллельную электросети, через общую точку присоединения (РСС).

Защитное реле электросети устанавливается в точке общего соединения. Это может быть дистанционное защитное реле, защищающее исходящую линию передачи.

Допустим, произошел сбой выходной линии передачи •


Подача распределенных энергоресурсов по исходящей линии передачи прекращается.


Теперь в сеть не подается вырабатываемая электроэнергия.

Модуль «Зависимое отключение» обеспечивает возможность передать команду отключения с защитного устройства электросети на распределенный энергоресурс.

Сигнал отключения реле сетевой защиты (в общей точке присоединения) будет передан через цифровые входы на модули «Зависимое отключение» защитных устройств распределенных энергоресурсов, расположенных ниже по цепи ②.

Питающие распределенные энергоресурсы перехватят команду отключения, и соответствующие источники питания будут отключены от электросети **⑤**. Решение о выключении защитного устройства электросети выше в сети перехватывается.

4.23.1 Ввод в эксплуатацию: Зависимое выключение

Тестируемый объект

Проверка модуля зависимого выключения (удаленное)

Необходимые средства

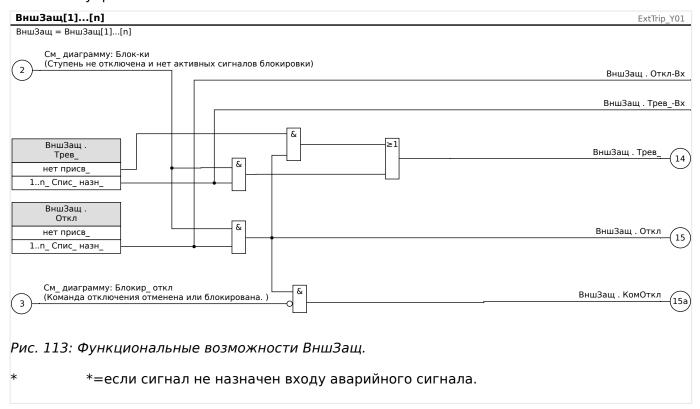
Зависит от способа применения

Описание процедуры

Смоделируйте работу отключения зависимого выключения (аварийный сигнал, отключение, блокировка и т. п.) путем включения (выключения) подачи импульсов на цифровые входы.

Результат успешной проверки

Все внешние аварийные сигналы, внешние команды отключения и внешние блокировки правильно распознаются и обрабатываются устройством.


4.24 ВншЗащ — внешняя защита

ПРИМЕЧАНИЕ!

Все 4 ступени внешней защиты ВншЗащ[1] ... ВншЗащ[4] имеют идентичную структуру.

Путем применения модуля внешней защиты функцию защиты устройства можно дополнить следующими элементами: командами отключения, аварийными сигналами и блокировками внешних средств защиты. Устройства, которые не снабжены коммуникационным интерфейсом, также могут подключаться к системе управления.

4.24.1 Ввод в эксплуатацию: Внешняя защита

Тестируемый объект

Проверка модуля внешней защиты.

Необходимые средства

Зависит от способа применения

Описание процедуры

Смоделируйте работу функции внешней защиты (аварийный сигнал, отключение и блокировку) путем включения (выключения) подачи импульсов на цифровые входы.

Включив модуль: [Планир_ устр_] «Pex_» = «исп», назначьте доступный цифровой вход для глобальных параметров срабатывания и отключения, например:

- [Парам_ защиты / Глоб_ пар_ защ_ / ВншЗащ / ВншЗащ[n]] «Трев_» = «ЦВх Слот X1 . ЦВх 1»
- [Парам_ защиты / Глоб_ пар_ защ_ / ВншЗащ / ВншЗащ[n]] « $O\tau \kappa л$ » = «ЦВх Слот X1 . ЦВх 2»

Выполните то же для параметров блокировки, например:

• [Парам_ защиты / Глоб_ пар_ защ_ / ВншЗащ / ВншЗащ[n]] «ВнБлк1» = «ЦВх Слот X1 . ЦВх З»

Результат успешной проверки

Все внешние аварийные сигналы, команды отключения и блокировки правильно распознаются и обрабатываются устройством МСА4. Кроме того, проверьте соответствующие записи в Регистратор событий.

4.25 Контроль

4.25.1 CBF — отказ силового выключателя [50BF*/62BF]

* = доступно только на защитных реле с функцией измерения тока.

4.25.1.1 Принцип работы и основные области применения

Модуль «УРОВ» используется для обеспечения резервной защиты, если выключатель не сработает правильно во время устранения сбоя. Этот сигнал используется для размыкания вышестоящего выключателя (например, ввод шины) либо через выходное реле, либо через канал связи (SCADA).

В зависимости от заказанного типа устройства существуют различные схемы (несколько схем) для выявления отказа силового выключателя.

Схемы контроля

Настройка [Парам_ защиты / Глоб_ пар_ защ_ / Контроль / УРОВ] «Схема» позволяет выбрать метод контроля, который должен использоваться для выявления отказа силового выключателя. Доступны следующие варианты:

• «500В» — контрольный таймер запускается сразу после срабатывания модуля «УРОВ» по сигналу размыкания. Распознается отказ выключателя и выдается сигнал, если измеренный ток не упадет ниже заданного порогового значения в течение заданного времени.

Это пороговое значение можно установить в следующем разделе [Парам_ защиты / Набор 1...4 / Контроль / УРОВ] «*I-CBF* >».

• «Пол ВЦ» — контрольный таймер запускается сразу после срабатывания модуля «УРОВ» по сигналу размыкания. Распознается отказ выключателя и выдается сигнал, если в результате анализа индикаторов положения выключателя было обнаружено, что выключатель не разомкнулся должным образом в течение заданного времени.

Данная схема рекомендуется, если отказы выключателя должны распознаваться очень малых токах нагрузки или их отсутствии. Это может возникать при выявлении перенапряжения или повышенной частоты для генератора, которых находится в режиме ожидания.

• «50ОВ и Пол ВЦ» — контрольный таймер запускается сразу после срабатывания модуля «УРОВ» по сигналу размыкания. Распознается отказ выключателя и выдается сигнал, если измеренный ток не опустится ниже установленного порогового значения, а также если одновременно в результате анализа индикаторов положения выключателя было обнаружено, что выключатель не разомкнулся должным образом в течение заданного времени.

Данная схема рекомендуется, если отказы выключателя необходимо перепроверять. Данная схема выдает команду на предыдущий автоматический выключатель, даже если индикаторы положения неправильно (вследствие неисправности) показывают по ошибке, что выключатель разомкнут или если измерение тока неверно (вследствие неисправности) показывает, что выключатель сейчас находится в разомкнутом положении.

ПРИМЕЧАНИЕ!

Примечание для устройств, которые обеспечивают измерение широкого частотного диапазона.

Если частота отличается больше, чем на 5% от номинальной, контрольная схема «50OB» блокируется и контрольная схема «50OB и Пол ВЦ» работает просто как схема «Пол ВЦ».

Запуск/включение таймера УРОВ

Контрольное время определяется настройкой [Парам_ защиты / Набор 1...4 / Контроль / УРОВ] *(t)-УРОВ»: Таймер запускается сразу после срабатывания модуля СВГ. Отсчет таймера продолжится, даже в случае повторного пропадания сигнала триггера. Если время таймера истечет (до того, как он будет остановлен после успешного размыкания выключателя), модуль *(y)-ОВ» выдает сигнал размыкания. Этот сигнал отключения используется для отключения выходного выключателя (резервного).

ПРИМЕЧАНИЕ!

Для предотвращения ошибочной активации модуля «УРОВ» контрольное время «*t- УРОВ*» должно быть больше суммы следующих значений:

- Время работы защитного реле
- + время замыкания и отключения выключателя (см. технические данные, предоставленные изготовителем выключателя);
- + время спада (тока или индикаторы положения)
- + запас надежности.

Остановка таймера СВГ

Отсчет таймера *«t-УРОВ»* останавливается при обнаружении размыкания выключателя. В зависимости от контрольной схемы (> «4.25.1.1 Схемы контроля») отсчет таймера останавливается, если ток упадет ниже порогового значения или сигналы положения покажут разомкнутое положение выключателя, или при сочетании этих двух событий. Модуль «УРОВ» остается в состоянии отклонения до тех пор, пока не пропадет сигнал триггера (вернется в состояние готовности).

Состояния

Модуль «УРОВ» переключается в состояние отклонения, если сигналы отказ силового выключателя по-прежнему активны и было успешно обнаружено разомкнутое положение аварийного выключателя.

В случае пропадания сигналов срабатывания модуль «УРОВ» переключается обратно в состояние ожидания (состояние готовности).

Блокировка (замыкание)

Сигнал блокировки выдается одновременно с сигналом СВF (отключения). Сигнал блокировки является постоянным. Этот сигнал должен быть подтвержден с помощью человеко-машинного интерфейса.

Этот сигнал может использоваться для блокировки выключателя от попыток переключения.

Триггеры

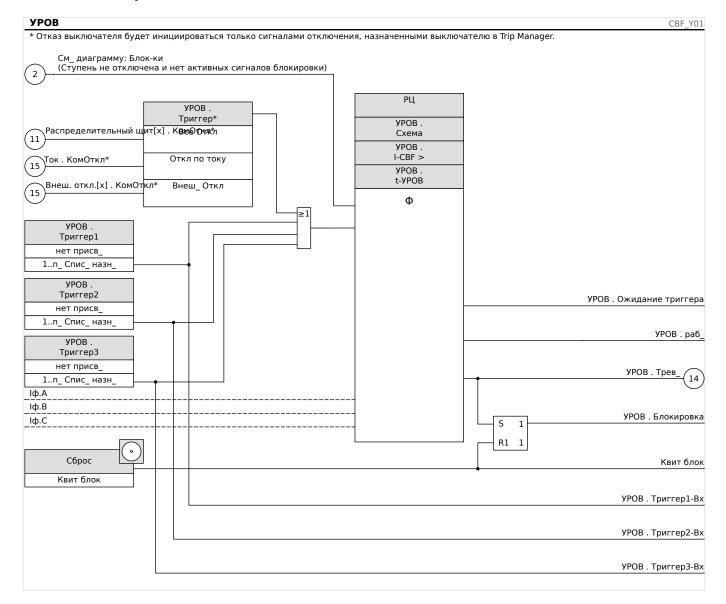
Параметр [Парам_ защиты / Глоб_ пар_ защ_ / Контроль / УРОВ] «Триггер» позволяет выбрать режим триггера. Кроме того, имеются назначаемые входы триггера, которые могут активировать модуль «УРОВ», даже если они не были назначены в диспетчере для контролируемого выключателя.

Эти дополнительные входы триггеров можно настроить в разделе [Парам_ защиты / Глоб_ пар_ защ_ / Контроль / УРОВ] «Триггер1» ... «Триггер3».

Доступны следующие параметры для «Триггер»:

- «Все Откл» все сигналы отключения, присвоенные данному выключателю (в диспетчере отключений, \Longrightarrow «5.2 Диспетчер отключения назначение команд отключения»), запускают модуль «УРОВ».
- «Внеш_ Откл» все внешние сигналы отключения, присвоенные данному выключателю (в диспетчере отключений, ⊫> «5.2 Диспетчер отключения назначение команд отключения»), запускают модуль «УРОВ».

Описание всех внешних сигналов отключения можно найти в справочном руководстве (MCA4-3.6-RU-REF), глава «Списки выбора» в таблице под названием «Внеш_ Откл».


• «Откл по току» — все сигналы отключения тока, присвоенные данному выключателю (в диспетчере отключений, ⇒ «5.2 Диспетчер отключения — назначение команд отключения»), запускают модуль «УРОВ».

Описание всех сигналов отключения тока можно найти в справочном руководстве (MCA4-3.6-RU-REF), глава «Списки выбора» в таблице под названием «Откл по току».

• «-.-» — нет назначения, пользователь планирует использовать один из трех дополнительных назначаемых триггерных входов.

4.25.1.2 Функциональные возможности

Защита от сбоя аварийного выключателя для устройств с функцией измерения тока

4.25.1.3 Пример использования: Схема контроля 50BF

Тестируемый объект:

Проверка функции защиты от отказов выключателя (Схема контроля 50ВГ).

Необходимые средства:

- Источник тока
- Амперметр и
- Таймер.

ПРИМЕЧАНИЕ!

При проведении проверки подаваемый испытательный ток всегда должен превышать пороговое значение отключения «I-CBF». Если испытательный ток уменьшается до значения ниже порогового в тот момент, когда выключатель находится в разомкнутом положении, сигнал срабатывания генерироваться не будет.

Процедура (однофазная цепь):

Для проверки времени отключения с помощью защиты CBF испытательный ток должен быть выше уставки одного из защитных модулей, назначенных для пуска защиты CBF. Задержка отключения УРОВ может быть измерена с момента, когда один из входов запуска становится активным, и до момента, когда отключение защиты УРОВ подтверждается.

Для того чтобы избежать ошибок разводки, убедитесь, что выключатель верхней системы выключается.

Время, измеряемое таймером, должно соответствовать указанным допускам.

Результат успешной проверки:

Измеренные интервалы времени должны соответствовать установочным точкам. Выключатель на участке более высокого уровня должен отключиться.

ПРЕДУПРЕЖДЕНИЕ!

Восстановите подключение кабеля управления к выключателю!

4.25.2 КЦО — контроль цепи отключения [74ТС]

Мониторинг цепи отключения выполняется, если цепь отключения готова к работе. Мониторинг можно выполнять двумя способами. При первом подразумевается, что в цепи отключения используется только параметр «Aux On (52a)». Во втором, что в дополнение к «Aux On (52a)» для мониторинга цепи также используется параметр «Aux Off (52b)».

Если в цепи используется только «Aux On (52a)», мониторинг будет эффективным только при замкнутом выключателе. Если же используются и «Aux On (52a)», и «Aux Off (52b)», мониторинг цепи отключения будет выполняться, пока включена система управления.

Необходимо помнить, что для этой цели нужно правильно настроить цифровые входы на основании управляющего напряжения цепи отключения. Если в цепи отключения будет обнаружен обрыв, с определенной задержкой подается аварийный сигнал. Задержка должна быть больше, чем время от замыкания контакта отключения до момента, когда реле четко распознает состояние выключателя.

ПРИМЕЧАНИЕ!

Слот 1 имеет 2 цифровых входа, каждый из которых имеет отдельный корень (разделение контактов) для контроля цепи отключения.

ПРИМЕЧАНИЕ!

Данное примечание относится к защитным устройствам, которые обеспечивают только контроль! Для данного защитного элемента требуется, чтобы ему было назначено коммутационное устройство (выключатель).

В этом случае напряжение питания цепи отключения служит также напряжением питания для цифровых входов, поэтому неисправность цепи отключения будет обнаруживаться напрямую.

Для отождествления неисправности проводника в цепи отключения линии подачи или катушки расцепления эта катушка должна быть включена в контур цепи контроля.

Время задержки необходимо установить таким образом, чтобы переключения не вызвали ошибочное срабатывание этого модуля.

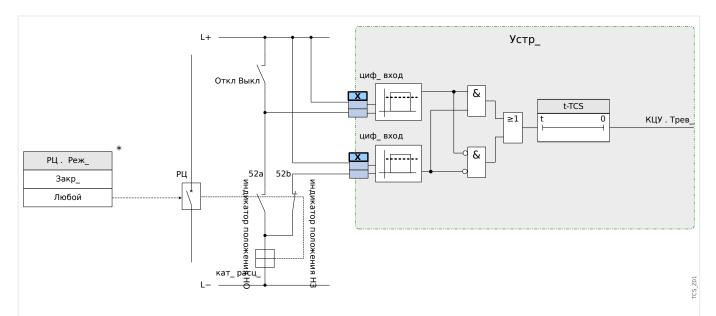


Рис. 114: Пример соединения: контроль цепи отключения с двумя вспомогательными контактами выключателя «Всп Вкл» (52a) и «Всп Выкл» (52b).

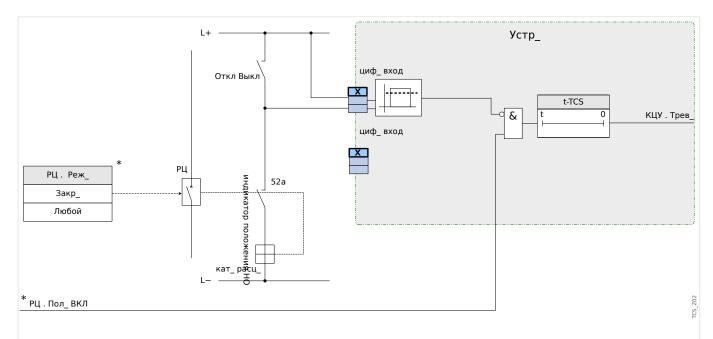


Рис. 115: Пример соединения: контроль цепи отключения только с одним вспомогательным контактом выключателя «Всп Вкл» (52a).

4.25.2.1 Ввод в эксплуатацию: Контроль цепи отключения [74ТС]

Для тех выключателей, что должны размыкаться при подаче небольшого количества энергии (например, с помощью фотоэлемента), следует обеспечить, чтобы ток входных цифровых сигналов не вызывал ложного отключения.

ПРИМЕЧАНИЕ!

Тестируемый объект

Проверка функции контроля цепи отключения

Процедура, часть 1

Смоделируйте неполадку при подаче управляющего напряжения в цепи питания.

Результат успешной проверки. Часть 1

По истечении времени «t-TCS» функция контроля цепи отключения КЦО устройства должна подать аварийный сигнал.

Процедура, часть 2

Смоделируйте разрыв кабеля цепи управления выключателем.

Результат успешной проверки. Часть 2

По истечении времени «t-TCS» функция контроля цепи отключения КЦО устройства должна подать аварийный сигнал.

4.25.3 КТТ — контроль трансформатора тока [60L]

Разрыв проводника или неисправности измерительной цепи влекут за собой повреждение трансформатора тока.

Модуль «КТТ» обнаруживает неисправность трансформатора тока в случае если расчетное значение тока утечки на землю не соответствует измеренному значению. Если регулируемое пороговое значение (разница между измеренным и расчетным значением тока утечки на землю) будет превышено, это воспринимается как неисправность трансформатора тока. При этом выдается предупреждающее сообщение/аварийный сигнал.

Предпосылкой для этого является измерение устройством тока в проводнике и силы тока утечки на землю, которое производится, например, трансформатором тока с тороидальным сердечником.

Принципы измерения при контроле цепи основаны на сравнении измеренного и расчетного значений остаточных токов:

В идеале:

$$(\overrightarrow{I\phi}.\overrightarrow{A} + \overrightarrow{I\phi}.\overrightarrow{B} + \overrightarrow{I\phi}.\overrightarrow{C}) + \overrightarrow{KI} * \overrightarrow{3Io} = 3 * I_0 + \overrightarrow{KI} * \overrightarrow{3Io} = 0$$

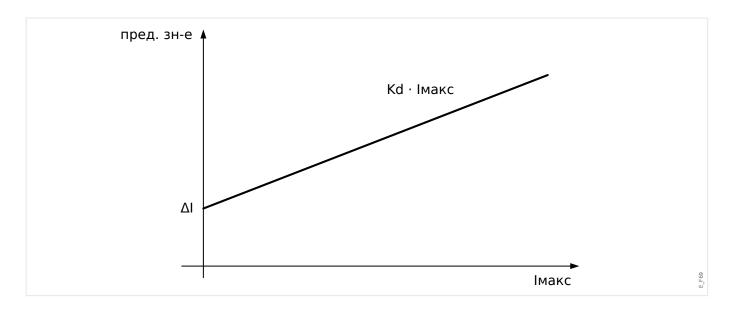
КІ представляет собой поправочный коэффициент, который учитывает различия в коэффициентах трансформации трансформаторов фазного тока и тока утечки на землю. Устройство автоматически рассчитывает этот коэффициент на основании соответствующих значений местных параметров, т. е. отношения между номинальным током в первичной и вторичной обмотках трансформаторов фазного тока и тока утечки на землю.

Для компенсации погрешности пропорции токов в измерительных цепях вводится динамический поправочный коэффициент Kd. Этот коэффициент является функцией от максимального измеренного тока и учитывает линейный рост погрешности измерений.

Предельное значение контроля трансформатора тока рассчитывается следующим образом:

DI =отклонения силы тока I (номинальное значение)

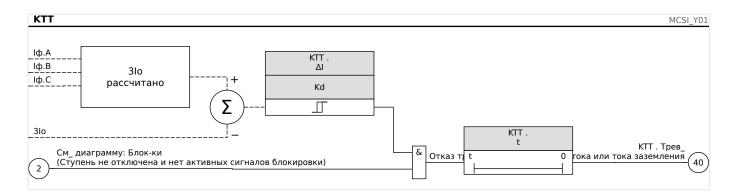
Kd = поправочный коэффициент


Імакс = максимальный ток

Предельное значение = $DI + Kd \times IMAKC$

Предпосылки идентификации погрешности

$$3*\overrightarrow{I_0} + KI*\overrightarrow{3Io} \ge ДельтаI + Kd*Імакс$$


Метод оценки контроля цепи с использованием коэффициента Kd можно графически представить в следующем виде:

осторожно!

Если происходит измерение тока только по двум фазам (например, только la/lc) или если не производится отдельного измерения тока утечки на землю (обычно при помощи кабельного трансформатора тока), функция контроля должна быть деактивирована.

4.25.3.1 Ввод в эксплуатацию: Контроль отказов трансформатора тока

примечание!

Условие:

- Измерение трех фазовых токов (приложенных к измерительным входам устройства); и:
- Ток утечки на землю определяется с помощью трансформатора кабельного типа (не по схеме Холмгрина).

Тестируемый объект

Проверка работы функции контроля трансформатора тока (путем сравнения расчетного и измеренного значения тока утечки на землю).

Необходимые средства

• Трехфазный источник тока

Описание процедуры. Часть 1:

- Установите предельную величину КТТ равной «дельта I=0,1*In».
- Подайте симметричный трехфазный ток (примерно равный номинальному) на вторичную обмотку.
- Отсоедините ток одной из фаз от одного из измерительных входов (симметричная подача тока на вторичную обмотку должна сохраниться).
- Убедитесь, что генерируется сигнал «ТТ.Трев».

Результат успешной проверки. Часть 1.

• Генерируется сигнал «ТТ.Трев».

Описание процедуры. Часть 2:

- Подайте симметричный трехфазный ток (примерно равный номинальному) на вторичную обмотку.
- Подайте ток, который превышает пороговое значение для контроля измерительной цепи, на измерительный вход тока утечки на землю.
- Убедитесь, что генерируется сигнал «КТТ.Трев».

Результат успешной проверки. Часть 2

Генерируется сигнал «ТТ.Трев».

4.25.4 ППот — Падение потенциала [60]

4.25.4.1 Падение потенциала — оценка измеренных значений

ПРИМЕЧАНИЕ!

Проследите, чтобы у «Ппот» было достаточно времени на то, чтобы блокировать ошибочное отключение модулей, использующих «Ппот».

Это означает, что время задержки падения потенциала должно быть меньше времени задержки отключения модулей, использующих падение потенциала.

ПРИМЕЧАНИЕ!

В случае реле защиты трансформатора элемент «Ппот» использует ток и напряжение, измеренные на стороне обмотки с учетом параметра:

[Параметры участка/ТН/сторона обмотки ТН].

Функция «ППот» регистрирует падение напряжения в любой из цепей измерения входного напряжения. Ошибочное отключение защитных элементов, где учитывается напряжение, можно предотвратить с помощью данного контрольного элемента. Следующие измеренные значения и информация позволяют зарегистрировать состояние неисправности трансформатора фазового тока:

- трехфазное напряжение;
- отношение напряжений отрицательной последовательности к напряжениям положительной последовательности;
- напряжение нулевой последовательности;
- трехфазные токи;
- остаточный ток (10);
- флаги срабатывания от все элементов максимальной токовой защиты;
- состояние выключателя (опция).

По истечении заданного времени задержки будет подан аварийный сигнал «LOP.LOP Blo».

Настройка падения потенциала (оценка измеренных значений)

- Задайте время задержки аварийного сигнала «t-Alarm».
- Для предотвращения сбоев системы контроля ТН при сбоях системы назначьте аварийные сигналы элементов защиты от максимального тока, которые должны блокировать элемент падения потенциала.
- Для параметра «LOP.LOP Blo Enable» необходимо задать значение «активно». В противном случае контроль измерительной цепи не сможет блокировать элементы в случае падения потенциала.

Эффективность падения потенциала (оценка измеренных значений)

Соответствующий контроль измерительной цепи падения потенциала используется для блокировки защитных элементов, таких как защита от пониженного напряжения, для предотвращения ошибочного отключения.

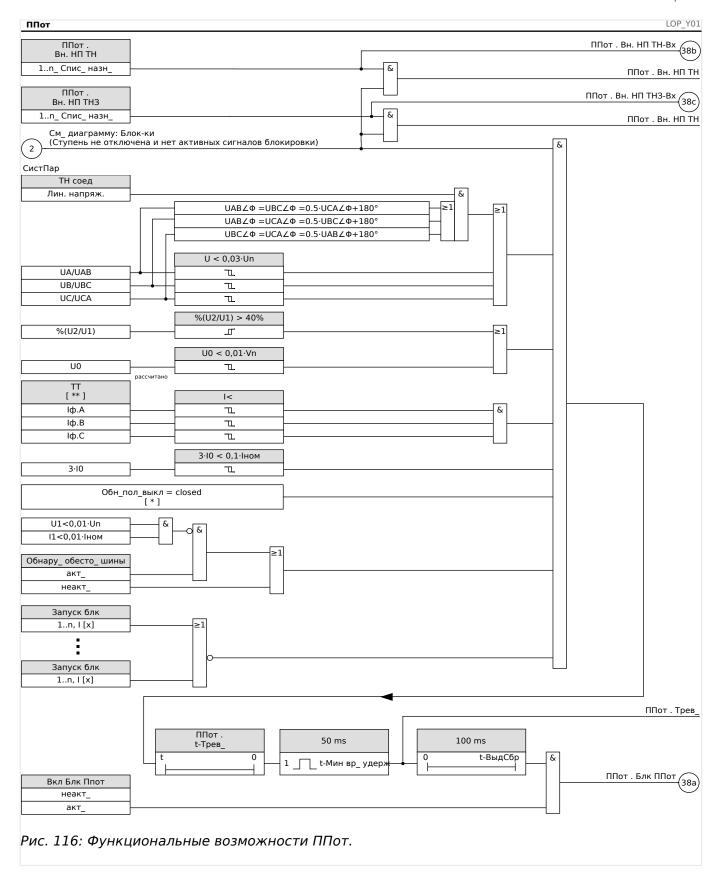
• Задайте для параметра «Контроль измерительной цепи» значение «активно» для защитных элементов, которые должны блокироваться функцией контроля падения потенциала.

4.25.4.2 Падение потенциала — неисправность предохранителя

Контроль ТН с помощью цифровых входов (отказ предохранителя)

Модуль «LOP» может обнаруживать отказы предохранителей на вторичной обмотке ТН, пока автоматические выключатели ТН подключены к устройству через цифровой вход и этот вход назначен модулю «LOP».

Установка параметров для регистрации неисправности предохранителя (НП) трансформатора фазного напряжения


Для регистрации неисправности предохранителя трансформатора фазного напряжения с помощью цифрового входа выполните следующее.

- Назначьте цифровой вход параметру «LOP.Ex FF VT», который отражает состояние автоматического выключателя трансформатора фазного тока.
- Задайте для параметра «Контроль измерительной цепи» значение «активно» для всех защитных элементов, которые должны блокироваться при отказе предохранителя.

Установка параметров для регистрации неисправности предохранителя (НП) трансформатора фазного напряжения на землю

Для регистрации неисправности предохранителя трансформатора фазного напряжения с помощью цифрового входа выполните следующее.

- Назначьте цифровой вход параметру «LOP.Ex FF EVT», который отражает состояние автоматического выключателя трансформатора фазного тока.
- Задайте для параметра «Контроль измерительной цепи» значение «активно» для всех защитных элементов, которые должны блокироваться при отказе предохранителя.

Примечания.

• [*] Если выключатель не назначен/не выбран, то его положение не учитывается.

• [**] Для устройств с несколькими ТТ обозначение «ТТ» указывает на тот, что находится на стороне, к которой подключен ТН.

4.25.4.3 Ввод в эксплуатацию: Падение потенциала

Тестируемый объект

Проверка модуля LOP.

Необходимые средства

- Трехфазный источник тока
- Источник трехфазного напряжения.

Процедура, испытание, часть 1

Проверьте, принимает ли выходной сигнал «LOP Blo» истинное значение, если...

- Любое из трехфазных напряжений падает ниже 0,01*Vn B.
- Остаточное напряжение менее 0,01*Un B или соотношение U2/U1 больше 40 %.
- Все трехфазные токи ниже уставки контроля тока нагрузки/максимального тока (I<).
- Остаточный ток ниже 0,1 * Іри (номинальный ток).
- Не срабатывает элемент ОС, который должен блокировать контроль ТН.
- Выключатель замкнут (вариант, если назначен выключатель).
- Автономные средства обнаружения не определяют обесточенную шину (не измеряются ни ток, ни напряжение).

Результат успешной проверки. Часть 1

Выходные сигналы принимают истинное значение, только если выполняются все приведенные выше условия.

Процедура, испытание, часть 2

Задайте для параметра «Контроль измерительной цепи» значение «активно» в защитных элементах, которые должны блокироваться функцией контроля падения потенциала (таких как защита от понижения напряжения, защита от перегрузки по току с пуском по напряжению, и т. д.).

Проверьте, блокируются ли эти защитные элементы, если контроль падения потенциала генерирует команду блокировки.

Результат успешной проверки. Часть 2

Все защитные элементы, которые должны блокироваться контролем падения потенциала, блокируются, если выполняются условия 1-й части процедуры.

4.25.4.4 Ввод в эксплуатацию: Падение потенциала (НП с помощью ЦВХ)

Тестируемый объект

Проверьте, распознается ли неполадка предохранителя устройством корректно.

Описание процедуры

• Выключите автоматический выключатель трансформатора напряжения (все полюса должны быть обесточены).

Результат успешной проверки

- Состояние соответствующего цифрового входа изменяется.
- Все защитные элементы блокируются, что предотвращает нежелательное срабатывание в случае отказа предохранителя, для параметра «Контроль измерительной цепи» задано значение «активно».

4.25.5 Контроль последовательности фаз

Устройство МСА4 рассчитывает последовательность фаз на каждом измерении входа (на основе составляющих прямой и обратной последовательности). Рассчитанная последовательность фаз (то есть, «АСВ» или «АВС») постоянно сравнивается со значением параметра, настроенного в меню [СистПар / Общие настройки] «Черед фаз».

В меню [Работа / Отображение состояния / Контроль / Черед_ фаз] имеется специальный (предупреждающий) сигнал для каждого ТТ и ТН. Если при проверке ТТ /ТН обнаружится, что фактическая последовательность фаз отличается от заданной в меню [СистПар], соответствующий сигнал станет истинным (акт_).

Контроль последовательности фаз полезен, прежде всего, при вводе устройства MCA4 в эксплуатацию, так как помогает убедиться, что значение параметра «Черед фаз» в меню [СистПар] настроено правильно.

ПРЕДУПРЕЖДЕНИЕ!

Для эффективного контроля требуется минимальная величина тока (для TT) или напряжения (для TH), иначе достоверно определить последовательность фаз не удастся.

- Для ТН: минимальное напряжение составляет 0,1.Un.
- Для ТТ: минимальный ток составляет 0,1·Іном.

5 Диспетчер систем управления / коммутационных устройств

ПРЕДУПРЕЖДЕНИЕ!

Неправильная конфигурация коммутационного устройства может привести к серьезным травмам или летальному исходу.. Например, это может произойти при размыкании прерывателя под нагрузкой или переключении заземленного соединителя на части системы под напряжением.

Помимо защитных функций, устройства релейной защиты также выполняют функции управления коммутационными устройствами, такими как автоматические выключатели, выключатели нагрузки, прерыватели и заземленные соединители.

Правильная конфигурация всех коммутационных устройств является обязательным условием для надлежащего функционирования защитного устройства. Это также относится к случаю, когда для коммутационных устройств осуществляется не контроль, а только наблюдение.

Однолинейная схема

Однолинейная схема представляет собой графическое описание выключателей, их обозначений (названий) и характеристик (устойчивость или неустойчивость к коротким замыканиям...). Обозначения для отображения коммутационных устройств (например, QA1, QA2, вместо абстрактного названия модуля «Распределительный щит[x]») в программном обеспечении устройства будут взяты из однолинейной схемы (файла конфигурации).

Кроме параметров коммутации файл конфигурации также содержит однолинейную схему. Параметры коммутации и однолинейную схему можно объединить с помощью файла конфигурации. Поскольку однолинейная схема не зависит от типа устройства, в файл конфигурации можно импортировать новую/другую однолинейную схему.

ПРИМЕЧАНИЕ!

Когда файл конфигурации загружается в защитное устройство, одновременно загружается однолинейная схема.

Это значит, что при передаче файла конфигурации от одного устройства на другое необходимо загрузить подходящую однолинейную схему с помощью меню [Планир_устр_].

Можно создавать и изменять однолинейные схемы (страницы), используя редактор страниц. Однолинейные схемы (страницы управления) необходимо загрузить в защитное устройство с помощью программы Smart view. Для получения подробных сведений о создании, изменении и выгрузке однолинейных схем (страниц управления) см. руководство редактора страниц или обратитесь в службу технической поддержки. Доступ к руководству редактора страниц можно получить в меню справки редактора страниц.

5.1 Управление коммутационным устройством

Представление выключателя в редакторе страниц

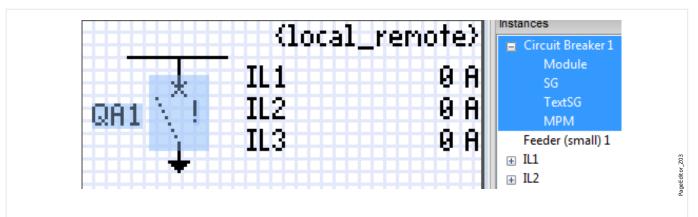


Рис. 117: Пример страницы управления, представление выключателя выделено.

Несмотря на одинаковое представление выключателя в редакторе страниц — с восклицательным знаком «!» рядом, возможно несколько вариантов представления: один для замкнутого выключателя, один для разомкнутого выключателя и один для промежуточных и неисправных положений.

После переноса однолинейной схемы на защитное устройство представление выключателя зависит от индикации его положения.

Рис. 118: Пример страницы управления, выключатель в замкнутом положении.

Рис. 119: Пример страницы управления, выключатель в аварийном (недопустимое состояние) положении.

Рис. 120: Пример страницы управления, выключатель в разомкнутом положении.

Выключатель со свойством «Отключающая способность»

Для каждого выключателя в *редакторе страниц* можно определить свойство «**Отключающая способность**». Если задано это свойство, это значит, что выключатель приобретает функции прерывателя цепи и может служить для отключения фазовых токов в случае срабатывания защиты.

Поэтому в устройстве МСА4 функция *Диспетчер отключения* доступна только для выключателей со свойством «Отключающая способность». (Сведения о диспетчере отключения см. в главе \Longrightarrow «5.2 Диспетчер отключения — назначение команд отключения».)

ПРИМЕЧАНИЕ!

В устройствах HighPROTEC необходимо, чтобы для первого выключателя, «Распределительный щит[1]», было задано свойство «**Отключающая способность**», поскольку при инициации команды защитного отключения она по умолчанию направляется именно на первый выключатель.

Страница управления без свойства «Отключающая способность» для «Распределительный щит[1]» не пройдет проверку на совместимость в редакторе страниц.

Управляемый выключатель

Для каждого выключателя в *редакторе страниц* можно определить свойство «**Управляемый**». Если задано это свойство, то защитное устройство может выполнять команды ручного замыкания и размыкания выключателя.

Если это свойство не задано, но задано свойство «Отключающая способность», выключатель все равно можно использовать для **защитных** команд размыкания. Однако его нельзя будет использовать для ручного замыкания и размыкания.

Если отключены оба свойства — и «Отключающая способность», и «Управляемый», то только выполняется мониторинг выключателя, то есть, доступны данные о его состоянии /положении, но его активное использование защитным устройством невозможно.

Изменение порядка выключателей в редакторе страниц

В этой главе говорится только об устройствах, оснащенных несколькими коммутационными устройствами.

В целом, сконфигурированные коммутационные устройства представлены именами, определенными пользователями. Это также относится к их

5.1 Управление коммутационным устройством

представлению в ИЧМ защитного устройства и диалоговых окнах программы *Smart* view.

Исключением для таких представлений являются имена коммутационных устройств в протоколах SCADA. Протоколы SCADA не распознают имена коммутационных устройств, определенные пользователем. Такие устройства распознаются по номеру коммутационной аппаратуры.

Поэтому Редактор страниц позволяет изменять назначение для коммутационной аппаратуры определенного номера. выберите элемент меню [Конфигурация / Порядок коммутационных устройств...] (клавиша «F6»). При этом откроется диалоговое окно, в котором перечислены все сконфигурированные коммутационные устройства с соответствующими номерами. После выбора любого из устройств можно использовать кнопки со стрелками «вверх» и «вниз», чтобы изменить последовательность.

ПРИМЕЧАНИЕ!

Из-за эксплуатационных требований коммутационное устройство под номером 1 должно активировать функции прерывания. Другие коммутационные устройства, если они имеются, могут быть произвольного типа.

Соотнесение номера выключателя с определенным типом проверяется программой *Smart view*: Если при смене страницы управления, определенной пользователем, изменится тип коммутационного устройства под каким-либо номером, отобразится предупреждение. Если тип коммутационного устройства изменен намеренно, необходимо подтвердить это предупреждение.

5.1.1 Настройки, выполняемые на защитном устройстве

Назначение индикации положений (цифровых входов)

Настройки в меню устройства [Управление / Распределительный щит / Распределительный щит[x] / Разв инд-в ПОЛ]:

• «Всп Вкл» — Выключатель находится в положении ВКЛ, если состояние назначенного сигнала - «Истина» (52a).

Исключение: для части заземляющего переключателя в трехпозиционном переключателенастройка называется «Всп ЗАЗЕМЛ» — Коммутационное устройство находится в положении «Заземление», если состояние назначенного сигнала - «Истина».

• «Всп Выкл» — Выключатель находится в положении ОТКЛ, если состояние назначенного сигнала - «Истина» (52b).

Исключение: для сочетания размыкателя с заземляющим переключателемнастройка называется «Всп ЗАЗЕМЛ» — Коммутационное устройство находится в положении «Заземление», если состояние назначенного сигнала - «Истина».

- «Гот_» Выключатель цепи готов к работе если состояние назначенного сигнала «Истина». Этот цифровой вход может использоваться некоторыми защитными элементами (если они установлены в устройстве), такими как АВП, например, как сигналы пуска.
- «Удалено» Съемный выключатель удален

Установка таймеров наблюдения

Настройки в меню устройства [Управление / Распределительный щит / Распределительный щит[x] / Общие настройки]:

- «t-пер ВКЛ» Момент перемещения в положение ВКЛ
- «t-пер ВЫКЛ» Момент перемещения в положение ВЫКЛ

Назначение команд для выходных реле

Доступно, если для выключателя задано свойство «**Управляемый**» в *редакторе страниц* (см. \Longrightarrow «5.1 Управляемый выключатель»).

Настройки в меню устройства [Пар устр / Двоичн вых / РелВых Раз Хх / ЦВых у]:

• «Назнач_ 1» ... «Назнач_ 7» — например, для выключателя 1 с заданным значением «Распределительный щит[1] . Кмд ВКЛ» / «Распределительный щит[1] . Кмд ВЫКЛ»

Подробные сведения см. в разделе \Longrightarrow «Диспетчер систем управления / коммутационных устройств».

Дополнительно: Внешняя команда РАЗМЫКАНИЯ/СМЫКАНИЯ

Доступно, если для выключателя задано свойство «**Управляемый**» в *редакторе страниц* (см. \searrow «5.1 Управляемый выключатель»).

Настройки в меню устройства [Управление / Распределительный щит / Распределительный щит[x] / Вн кмд ВК/ВЫК]:

- «Кмд ВКЛ» Команда переключения ВКЛ, состояние логики или цифрового входа
- «Кмд ВЫКЛ» Команда переключения ВЫКЛ, состояние логики или цифрового входа

Подробные сведения см. в разделе ⊫> «5.2 Внешнее ЗАМЫКАНИЕ /РАЗМЫКАНИЕ».

Блокировки

Доступно, если для выключателя задано свойство «**Управляемый**» в *редакторе страниц* (см. \Longrightarrow «5.1 Управляемый выключатель»).

Настройки в меню устройства [Управление / Распределительный щит / Распределительный щит[х] / Блокировки]:

- *«Блок ВКЛ1» ... «Блок ВКЛ3»* Блокировка команды ВКЛ (то есть, команды замыкания отклоняются, если назначенный сигнал истина).
- *«Блок ВЫКЛ1» ... «Блок ВЫКЛ3»* Блокировка команды ВЫКЛ (то есть, команды размыкания отклоняются, если назначенный сигнал истина).

Подробные сведения см. в разделе \Longrightarrow «5.2 Блокировки».

Диспетчер отключения (назначение команд отключения)

Доступно, если для выключателя задано свойство «**Отключающая способность**» в *редакторе страниц*.

Настройки в меню устройства [Управление / Распределительный щит / Распределительный щит[x] / Дисп откл]:

- «Кмд ОТКЛ1» ... Подача сигнала выключения отключателя в случае если назначенный сигнал принимает значение «Истина».
- *«t-КомОткл»* Минимальное время удержания команды ОТКЛ (выключатель, выключатель нагрузки)
- «Защ » Определяется, зафиксирована ли команда отключения.
- «ПодКомОткл» Подтверждение команды отключения

Более подробно см. в разделах \Longrightarrow «5.1 Выключатель со свойством «Отключающая способность»» и \Longrightarrow «5.2 Диспетчер отключения — назначение команд отключения».

Дополнительно: Синхронное переключение

Доступно, если для выключателя задано свойство «**Отключающая способность**» в *редакторе страниц*, и только для устройств, оснащенных модулем «Синх».

Настройки в меню устройства [Управление / Распределительный щит / Распределительный щит[x] / Синхронное переключение]:

- «Синхронизм» Синхронизм
- *«t-Макс синх контр»* Таймер выполнения синхронизации: Максимально разрешенное время процесса синхронизации после инициирования замыкания. Используется только для режима работы ГЕНЕРАТОР-СИСТ.

Подробные сведения см. в разделе Б> «5.2 Синхронизированное переключение*».

5.1 Управление коммутационным устройством

Дополнительно: Износ коммутационного устройства

См. раздел Б> «Износ коммутационного устройства».

5.1.2 Переключатель

Выключатель общего назначения.

[Работа / Отображение состояния / Управление / Распределительный щит[x]] «Поз»				
= 0 (НЕДОВКЛ)	= 1 (Пол_ ОТКЛ)	= 2 (Пол_ ВКЛ)	= 3 (Пол_ нар_)	
\	\		?	
)	1		1	

Назначение индикации положений (цифровых входов)

См. раздел \Longrightarrow «5.1.1 Назначение индикации положений (цифровых входов)». Эти настройки доступны в меню устройства:

[Управление / Распределительный щит / Распределительный щит[x] / Разв инд-в ПОЛ]				
«Всп Вкл»	«Всп Выкл»	«Гот_»	«Удалено»	
•	✓	✓	✓	

5.1.3 Скрытый переключатель

Выключатель, который не отображается в однолинейной схеме, но имеется в защитном устройстве.

(Поскольку он отсутствует в однолинейной схеме, его нельзя выбрать с помощью ИЧМ (панели), и поэтому им нельзя управлять вручную.)

 [Работа / Отображение состояния / Управление / Распределительный щит[x]] «Поз»

 = 0 (НЕДОВКЛ)
 = 1 (Пол_ ОТКЛ)
 = 2 (Пол_ ВКЛ)
 = 3 (Пол_ нар_)

 (невидимый)

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[x] / Разв инд-в ПОЛ]				
«Всп Вкл» «Всп Выкл» «Гот_» «Удалено»				
✓	✓	✓	✓	

5.1.4 Выключатель

Переключающее устройство, способное производить, нести и прерывать электроток в нормальных рабочих условиях, а также производить, нести в течение указанного времени и прерывать электроток в указанных аномальных условиях (например, при коротком замыкании).

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[x] / Разв инд-в ПОЛ]			
«Всп Вкл» «Всп Выкл» «Гот_» «Удалено»			
•	✓	✓	✓

5.1.5 Выключатель 1

Переключающее устройство, способное производить, нести и прерывать электроток в нормальных рабочих условиях, а также производить, нести в течение указанного времени и прерывать электроток в указанных аномальных условиях (например, при коротком замыкании).

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[x] / Разв инд-в ПОЛ]			
«Всп Вкл» «Гот_» «Удалено»			
✓	✓	✓	✓

5.1.6 Размыкатель (изолятор)

Переключающее устройство, в разомкнутом состоянии обеспечивающее изоляционное расстояние.

[Работа / Отображение состояния / Управление / Распределительный щит[x]] «Поз»				
= 0 (НЕДОВКЛ)	= 1 (Пол_ ОТКЛ)	= 2 (Пол_ ВКЛ)	= 3 (Пол_ нар_)	
	\	†	?	

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[x] / Разв инд-в ПОЛ]				
«Всп Вкл» «Гот_» «Удалено»				
✓	✓	_	_	

5.1.7 Сочетание размыкателя с заземляющим переключателем

Переключатель, объединяющий в себе функции размыкателя и заземляющего переключателя. Имеет два положения (подключение — заземление).

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[x] / Разв инд-в ПОЛ]				
«Всп Вкл» «Всп ЗАЗЕМЛ» «Гот_» «Удалено»				
✓	✓	_	_	

5.1.8 Заземляющий переключатель

Заземляющий переключатель-короткозамыкатель.

[Работа / Отображение состояния / Управление / Распределительный щит[x]] « Поз »				
= 0 (НЕДОВКЛ)	= 1 (Пол_ ОТКЛ)	= 2 (Пол_ ВКЛ)	= 3 (Пол_ нар_)	
Ť k	Ž k	_{\frac{7}{k}}	ሂ ? <u>‡</u>	

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[x] / Разв инд-в ПОЛ]				
«Всп Вкл» «Бсп Выкл» «Гот_» «Удалено»				
✓	•	_	_	

5.1.9 Переключатель нагрузки с плавким предохранителем

Переключающее устройство, способное производить, нести и прерывать нормальный электроток, подвижный контакт в котором образует плавкая перемычка.

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[х] / Разв инд-в ПОЛ]			
«Всп Вкл» «Бсп Выкл» «Гот_» «Удалено»			
✓	✓	✓	✓

5.1.10 Переключатель нагрузки с плавким предохранителем — размыкатель

Переключающее устройство, способное производить, нести и прерывать нормальный электроток.

В разомкнутом состоянии в плане изоляции отвечает требованиям к размыкателю, подвижный контакт в котором образует плавкая перемычка.

[Работа / Отображение состояния / Управление / Распределительный щит[x]] « Поз »				
= 0 (НЕДОВКЛ)	= 1 (Пол_ ОТКЛ)	= 2 (Пол_ ВКЛ)	= 3 (Пол_ нар_)	
*	*	Ď	6 ? !	

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[x] / Разв инд-в ПОЛ]				
«Всп Вкл» «Всп Выкл» «Гот_» «Удалено»				
✓	✓	✓	✓	

5.1.11 Размыкатель с плавким предохранителем (изолятор)

Переключающее устройство, в разомкнутом состоянии обеспечивающее изоляционное расстояние, подвижный контакт в котором образует плавкая перемычка.

[Работа / Отображение состояния / Управление / Распределительный щит[x]] «Поз»				
= 0 (НЕДОВКЛ) = 1 (Пол_ ОТКЛ) = 2 (Пол_ ВКЛ) = 3 (Пол_ нар_)				
		₫	?	

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[х] / Разв инд-в ПОЛ]				
«Всп Вкл» «Всп Выкл» «Гот_» «Удалено»				
✓	✓	_	_	

5.1.12 Переключатель нагрузки

Переключающее устройство, способное производить, нести и прерывать нормальный электроток.

[Работа / Отображение состояния / Управление / Распределительный щит[x]] « Поз »					
= 0 (НЕДОВКЛ)	= 1 (Пол_ ОТКЛ)	= 2 (Пол_ ВКЛ)	= 3 (Пол_ нар_)		
\ ⁶	\ <u></u>	†	ь ?		

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[х] / Разв инд-в ПОЛ]					
«Всп Вкл»	Всп Вкл» «Всп Выкл» «Гот_» «Удалено»				
✓	✓	✓	✓		

5.1.13 Переключатель нагрузки — размыкатель

Переключающее устройство, способное производить, нести и прерывать нормальный электроток.

В разомкнутом состоянии в плане изоляции отвечает требованиям к размыкателю.

Назначение индикации положений (цифровых входов)

[Управление / Распределительный щит / Распределительный щит[x] / Разв инд-в ПОЛ]					
«Всп Вкл» «Всп Выкл» «Гот_» «Удалено»					
✓	✓	✓	✓		

5.1.14 Трехпозиционный переключатель

Переключатель, объединяющий в себе функции размыкателя и заземляющего переключателя. Имеет три положения (подключение — размыкание — заземление) и прекрасно защищен от неправильного обращения.

Трехпозиционный переключатель состоит из двух выключателей. Один выключатель соответствует размыкателю трехпозиционного переключателя, а второй выключатель соответствует заземляющему переключателю.

Разделение на два выключателя предотвращает переключение из положения «Пол_ ВКЛ» через «Пол_ ОТКЛ» в положение «Пол ЗАЗЕМЛ».

С точки зрения безопасности формируются две четкие позиции переключения «Изоляция» и «Заземление». Благодаря такому разделению, для заземления и изоляции могут быть установлены индивидуальное наблюдение и таймеры переключения. В дополнение к этому, для заземления и изоляции могут быть установлены отдельные блокировки и имена устройств (обозначения).

ПРИМЕЧАНИЕ!

Наблюдение выполнения команды при попытке переключения из положения заземления в положение изоляции (напрямую) и наоборот будет выдавать следующее сообщение:

• [Работа / Отображение состояния / Управление / Распределительный щит[x]] «КВК-напр. пркл.»

Положение «Пол ЗАЗЕМЛ» трехпозиционного переключателя в документации SCADA (регистрационных картах) показано как «CB POS OFF»

Назначение индикации положений (цифровых входов)

Размыкатель, например, «Распределительный щит[1]»:

[Управление / Распределительный щит / Распределительный щит[1] / Разв инд-в ПОЛ]

«Всп Вкл»	«Всп Выкл»	«Гот_»	«Удалено»
✓	✓	✓	✓

Заземляющий переключатель, например, «Распределительный щит[2]»:

[Управление / Распределительный щит / Распределительный щит[2] / Разв инд-в ПОЛ]

«Всп ЗАЗЕМЛ»	«Всп Выкл»	«Гот_»	«Удалено»
✓	✓	_	-

5.1.15 Съемный выключатель

Выключатель для грузовиков (выдвижной).

[Работа / Отображ	[Работа / Отображение состояния / Управление / Распределительный щит[x]]				
«Поз» (*)				«Удалено»	
(*) одинаковое з примечание ниж					
= 0 (НЕДОВКЛ)	= 1 (Пол_ ОТКЛ)	= 2 (Пол_ ВКЛ)	= 3 (Пол_ нар_)	= 1	
	$\hat{\hat{x}}$	*	Ŷ ? ? ?	Ŷ	

(*) Примечание. В таблице выше представлены не все комбинации положений, технически возможные при наличии двух выключателей; в качестве примеров приведены лишь некоторые типичные конечные положения.

Съемный выключатель состоит из двух выключателей. Один выключатель соответствует прерывателю цепи, а второй выключатель соответствует выдвижному выключателю для грузовиков.

Между выключателем и механизмом не существует фиксированной связи. Пользователь должен задать блокировку, поскольку с замкнутом положении выдвигать выключатель запрещается. Выключатель может быть переключен в положение извлечения и в положение не-извлечения. Для подачи сигналов с цепи управления (низкое напряжение) необходимо проводное подключение и соответствующая настройка в защитном устройстве. При снятии заглушки цепи управления для нее задается положение «Удалено». Для прерывателя цепи задается положение «Пол_ ОТКЛ», когда активен сигнал «Удалено».

ПРИМЕЧАНИЕ!

Невозможно манипулировать сигналами положения выдвинутого (извлеченного) выключателя.

Назначение индикации положений (цифровых входов)

См. раздел \Longrightarrow «5.1.1 Назначение индикации положений (цифровых входов)». Эти настройки доступны в меню устройства:

Прерыватель цепи, например, «Распределительный щит[1]»:

[Управление / Распределительный щит / Распределительный щит[1] / Разв инд-в ПОЛ]

«Всп Вкл»	«Всп Выкл»	«Гот_»	«Удалено»
✓	✓	✓	✓

5.1 Управление коммутационным устройством

Выдвижной выключатель для грузовиков, например, «Распределительный щит[2]»:

[Управление / Распределительный щит / Распределительный щит[2] / Разв инд-в ПОЛ]

«Всп Вкл»	«Всп Выкл»	«Гот_»	«Удалено»
✓	✓	_	_

5.1.16 Съемный переключатель нагрузки с плавким предохранителем

Переключатель нагрузки с плавким предохранителем для грузовиков.

[Работа / Отображ	[Работа / Отображение состояния / Управление / Распределительный щит[x]]				
«Поз» (*)				«Удалено»	
(* одинаковое зн примечание ниж					
= 0 (НЕДОВКЛ)	= 1 (Пол_ ОТКЛ)	= 2 (Пол_ ВКЛ)	= 3 (Пол_ нар_)	= 1	
.i. V) P		Ŷ ?↓ ?↓	Ŷ	

(*) Примечание. В таблице выше представлены не все комбинации положений, технически возможные при наличии двух выключателей; в качестве примеров приведены лишь некоторые типичные конечные положения.

Съемный переключатель нагрузки с плавким предохранителем состоит из двух выключателей. Один выключатель соответствует переключателю нагрузки с плавким предохранителем, а второй выключатель соответствует выдвижному выключателю для грузовиков.

Фиксированное соединение между переключателем нагрузки с плавким предохранителем и переключателем для грузовиков отсутствует. Пользователь должен задать блокировку, поскольку с замкнутом положении выдвигать переключатель нагрузки с плавким предохранителем запрещается. Выключатель может быть переключен в положение извлечения и в положение не-извлечения. Для подачи сигналов с цепи управления (низкое напряжение) необходимо проводное подключение и соответствующая настройка в защитном устройстве. При снятии заглушки цепи управления для нее задается положение «Удалено». Для прерывателя цепи задается положение «Пол_ ОТКЛ», когда активен сигнал «Удалено».

ПРИМЕЧАНИЕ!

Невозможно манипулировать сигналами положения выдвинутого (извлеченного) переключателя нагрузки с плавким предохранителем.

Назначение индикации положений (цифровых входов)

Переключатель нагрузки с плавким предохранителем, например, «Распределительный щит[1]»:

[Управление / Распределительный щит / Распределительный щит[1] / Разв инд-в ПОЛ]

«Всп Вкл»	«Всп Выкл»	«Гот_»	«Удалено»
✓	✓	✓	✓

Выдвижной выключатель для грузовиков, например, «Распределительный щит[2]»:

[Управление / Распределительный щит / Распределительный щит[2] / Разв инд-в ПОЛ]

«Всп Вкл»	«Всп Выкл»	«Гот_»	«Удалено»
✓	✓	_	-

5.2 Конфигурация коммутационных устройств

Проводка

Сначала индикаторы положения коммутационного устройства должны быть подключены к цифровым входам защитного устройства.

Один из контактов индикаторов положения («Aux CLOSE» или «Aux OPEN») **обязательно** должен быть подключен. Однако рекомендуется подключить оба индикатора положения.

После этого к коммутационному устройству должны быть подключены выходы команд (релейные выходы).

ПРИМЕЧАНИЕ!

Необходимо рассмотреть следующий вариант: Команды CLOSE/OPEN элемента защиты в общих настройках выключателя можно задать для тех же релейных выходов, на которые подаются другие команды управления.

Если команды подаются на разные выходные реле, количество соединений увеличивается.

Установка времени наблюдения / перемещения

В меню [Управление / Распределительный щит / Распределительный щит[x] / Общие настройки] необходимо настроить время перемещения *t-пер BKJ« и *t-пер BMKJ« каждого отдельного коммутационного устройства.

В зависимости от типа коммутационного устройства может потребоваться задание дополнительных параметров, таких как время запаздывания *t-зпзд».

ПРИМЕЧАНИЕ!

Значения настройки таймеров *«t-пер ВКЛ»* и *«t-пер ВЫКЛ»* представляют как время контроля, **так и** время перемещения, то есть они не используются для определения промежуточных или неправильных положений. На самом деле очень важно понимать, что эти значения соответствуют максимальной продолжительности сигнала коммутации, который выдается на коммутационные устройства.

Это значит, что: максимальная продолжительность «Кмд ВКЛ» равна *«t-пер ВКЛ»*, которая ограничена индикацией нового положения выключателя.

Аналогичным образом: максимальная продолжительность «Кмд ВЫКЛ» равна *t-пер ВЫКЛ», которая ограничена индикацией нового положения выключателя.

Назначение индикации положений

Индикация положения необходима устройству, чтобы получить (оценить) информацию о текущем состоянии/положении выключателя. Индикация положения коммутационного устройства отображается на дисплее устройства. Каждое изменение положения коммутационного устройства приводит к изменению символа соответствующего коммутационного устройства.

ПРИМЕЧАНИЕ!

Для определения положения коммутационного устройства рекомендуется всегда использовать оба индикатора позиционирования! Если используется только один индикатор, невозможно определить промежуточные и неопределенные положения.

Наблюдение (уменьшенного) перехода (время между запуском команд и обратной связью индикации положения коммутационного устройства) возможно с использованием одного вспомогательного контакта.

В меню [Управление / Распределительный щит / Распределительный щит[x]] необходимо настроить индикации положения.

Обнаружение положения коммутационного устройства с помощью двух вспомогательных контактов — Aux CLOSE и Aux OPEN (рекомендуется!)

Для определения положения коммутационного устройства можно использовать имеющиеся вспомогательные контакты (Aux CLOSE и Aux OPEN). Рекомендуется использовать оба контакта для обеспечения возможности обнаружения также промежуточных и нарушенных позиций.

Защитное устройство постоянно отслеживает состояние входов «Всп Вкл-Вх» и «Всп Выкл-Вх».

Эти сигналы проверяются с помощью функций подтверждения таймеров наблюдения «t-пер ВКЛ» и «t-пер ВЫКЛ». В результате положение коммутационного устройства определяется с помощью следующих сигналов:

- «Пол ВКЛ»
- «Пол ОТКЛ»
- «НЕДОВКЛ»
- «Пол_ нар_»

• »Поз« (Сигнал: Положение выключателя (0 = Промежуточное, 1 = ОТКЛ, 2 = ВКЛ, 3 = Нарушенное)

Контроль выполнения команды ЗАМЫКАНИЯ

Когда подается команда ЗАМЫКАНИЯ, запускается таймер «t-пер ВКЛ». Пока таймер работает, состояние «НЕДОВКЛ» имеет значение «Истина». Если команда будет выполнена и от коммутационного устройства получен правильный сигнал обратной связи до истечения времени таймера, «Пол_ ВКЛ» примет значение «Истина». В противном же случае, если время по таймеру истечет и ожидаемая индикация нового положения не будет получена, «Пол_ нар_» примет значение «Истина».

Контроль выполнения команды РАЗМЫКАНИЯ

Когда подается команда ЗАМЫКАНИЯ, запускается таймер «t-пер ВЫКЛ». Пока таймер работает, состояние «НЕДОВКЛ» имеет значение «Истина». Если команда будет выполнена и от коммутационного устройства получен правильный сигнал обратной связи до истечения времени таймера, «Пол_ ОТКЛ» примет значение «Истина». В противном же случае, если время по таймеру истечет и ожидаемая индикация нового положения не будет получена, «Пол_ нар_» примет значение «Истина».

В следующей таблице показано подтверждение положений коммутационного устройства:

Состояния цифровых входов		Подтвержденные положения выключателя					
Всп Вкл-Вх	Всп Выкл- Вх	Пол_ ВКЛ	Пол_ ОТКЛ	НЕДОВКЛ	Пол_ нар_	Поз	
0	0	0	0	1	0	0	
				(пока работает таймер переключе- ния)	(пока работает таймер переключе- ния)	НЕДОВКЛ	
1	1	0	0	1	0	0	
				(пока работает таймер переключе- ния)	(пока работает таймер переключе- ния)	НЕДОВКЛ	
0	1	0	1	0	0	1	
						Пол_ ОТКЛ	
1	0	1	0	0	0	2	
						Пол_ ВКЛ	
0	0	0	0	0	1	3	
				(время таймера	(время таймера	Пол_ нар_	

Состояния цифровых входов		Подтвержденные положения выключателя					
Всп Вкл-Вх	Всп Выкл- Вх	Пол_ ВКЛ	Пол_ ОТКЛ	НЕДОВКЛ	Пол_ нар_	Поз	
				переключе- ния истекло)	переключе- ния истекло)		
1	1	0	0	0 (время таймера переключе- ния истекло)	1 (время таймера переключе- ния истекло)	3 Пол_ нар_	

Индикация одного положения ЗАМЫКАНИЯ или РАЗМЫКАНИЯ вспомогательного входа

Если используется однополюсная индикация, «SI SingleContactInd» принимает истинное значение.

Наблюдение за временем таймера работает только в одном направлении. Если на устройство подается сигнал РАЗМЫКАНИЯ вспомогательного входа, можно осуществлять наблюдение только за командой РАЗМЫКАНИЯ. Если на устройство подается сигнал ЗАМЫКАНИЯ вспомогательного входа, можно осуществлять наблюдение только за командой ЗАМЫКАНИЯ.

Индикация одного положения — ЗАМЫКАНИЕ вспомогательного входа

Если для индикации состояния команды ЗАМЫКАНИЯ используется только сигнал ЗАМЫКАНИЯ вспомогательного входа, то команда переключения также запустит таймер, и в это время положение будет «НЕДОВКЛ». Если коммутационное устройство достигнет конечного положения, указанного сигналами «Пол_ ВКЛ» и «КВК-успех», до истечения времени таймера, сигнал «НЕДОВКЛ» исчезнет.

Если время переключения истечет до достижения коммутационным устройством конечного положения, то операция переключения будет неуспешной, индикация положения изменится на «Пол_ нар_» и сигнал «НЕДОВКЛ» исчезнет. По истечении времени переключения запускается таймер «t-зпзд» (если задан). В течение этого времени индикация положения также будет «НЕДОВКЛ». По истечении времени «t-зпзд» индикация положения изменится на «Пол ВКЛ».

В следующей таблице показано подтверждение положений выключателя только на основании сигнала **ЗАМЫКАНИЯ вспомогательного входа**:

Состояния цифровых входов		Подтвержденные положения выключателя					
Всп Вкл-Вх	Всп Выкл- Вх	Пол_ ВКЛ	Пол_ ОТКЛ	НЕДОВКЛ	Пол_ нар_	Поз	
0	Не подсое- динен	0	0	1 (пока работает <i>«t-</i> пер ВКЛ»)	0 (пока работает <i>«t-</i> пер ВКЛ»)	0 НЕДОВКЛ	

Состояния цифровых входов		Подтвержденные положения выключателя					
Всп Вкл-Вх	Всп Выкл- Вх	Пол_ ВКЛ	Пол_ ОТКЛ	НЕДОВКЛ	Пол_ нар_	Поз	
0	Не подсое- динен	0	1	0	0	1 Пол_ ОТКЛ	
1	Не подсое- динен	1	0	0	0	2 Пол_ ВКЛ	

Если контакту *«Aux CLOSE2»* не присвоен цифровой вход, индикация положения «Поз» будет иметь значение 3 (неопределенное).

Индикация одного положения — РАЗМЫКАНИЕ вспомогательного входа

Если для индикации состояния команды РАЗМЫКАНИЯ используется только сигнал РАЗМЫКАНИЯ вспомогательного входа, то команда переключения также запустит таймер. Индикация положения будет «НЕДОВКЛ». Если коммутационное устройство достигнет конечного положения до истечения времени таймера, будут поданы сигналы «Пол_ ОТКЛ» и «КВК-успех». В то же время сигнал «НЕДОВКЛ» исчезнет.

Если время переключения истечет до достижения коммутационным устройством РАЗОМКНУТОГО положения, то операция переключения будет неуспешной, индикация положения изменится на «Пол_ нар_» и сигнал «НЕДОВКЛ» исчезнет.

По истечении времени переключения запускается таймер *«t-зпзд»* (если задан). В течение этого времени будет индикация положения «НЕДОВКЛ». После истечения времени запаздывания *»t-зпзд«* сигнал «Пол_ ОТКЛ» покажет РАЗОМКНУТОЕ положение коммутационного устройства.

В следующей таблице показано подтверждение положений выключателя только на основании сигнала **РАЗМЫКАНИЯ вспомогательного входа**:

Состояния цифровых входов		Подтвержденные положения выключателя					
Всп Вкл-Вх	Всп Выкл- Вх	Пол_ ВКЛ	Пол_ ОТКЛ	НЕДОВКЛ	Пол_ нар_	Поз	
Не подсое- динен	0	0	0		0 (пока работает <i>«t-</i> пер ВЫКЛ»)	0 НЕДОВКЛ	
Не подсое- динен	1	0	1	0	0	1 Пол_ ОТКЛ	
Не подсое- динен	0	1	0	0	0	2 Пол_ ВКЛ	

Если контакту *«Aux OPEN»* не присвоен цифровой вход, индикация положения «Поз» будет иметь значение 3 (неопределенное).

Блокировки

Во избежание неправильной работы нужно установить блокировки. Это может быть реализовано механически или электрически.

Для управляемых коммутационных устройств можно задать до трех блокировок обоих направлений переключения (ЗАМКНУТО/РАЗОМКНУТО). Эти блокировки предотвращают переключение в соответствующем направлении.

Защитная команда РАЗМЫКАНИЯ и команда повторного замыкания модуля автоматического повторного включения (модуль АПВ, наличие зависит от заказанного типа устройства) всегда выполняются без блокировок. Если защитная команда РАЗМЫКАНИЯ **не должна** выдаваться, ее необходимо заблокировать отдельно.

Дополнительные блокировки можно настроить с помощью логического модуля.

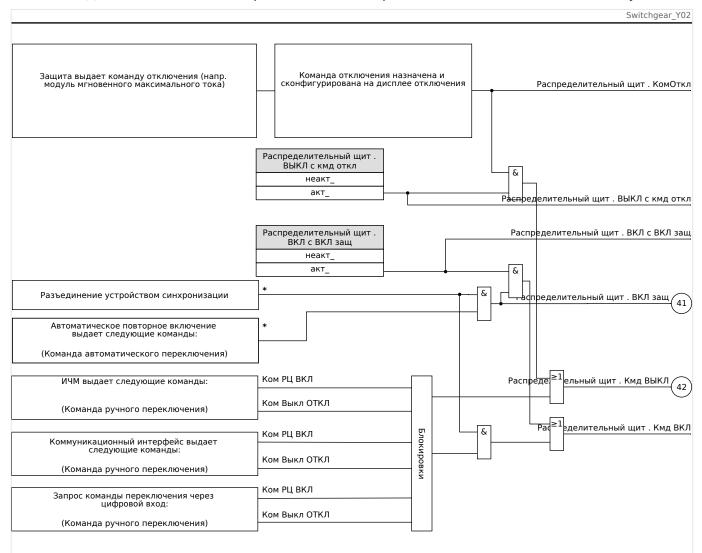
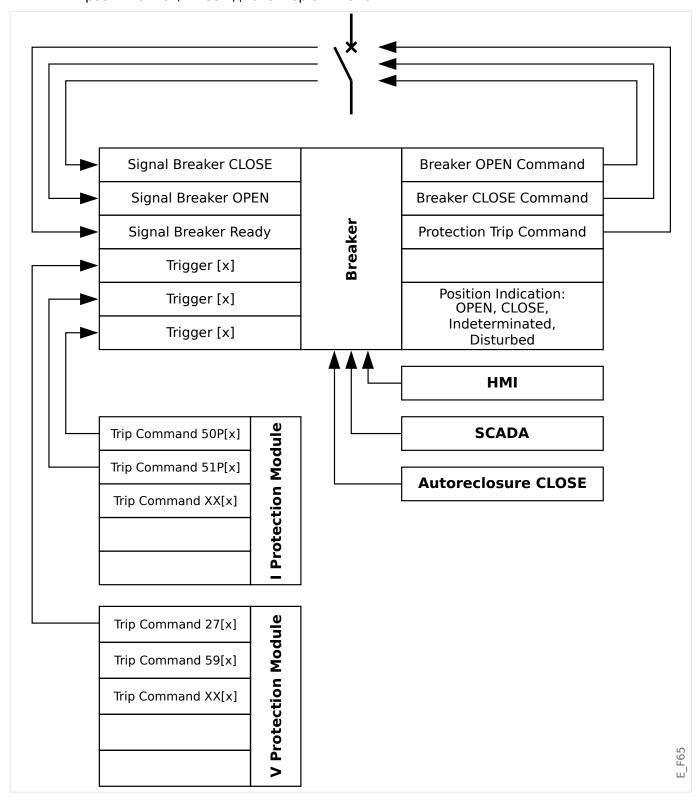
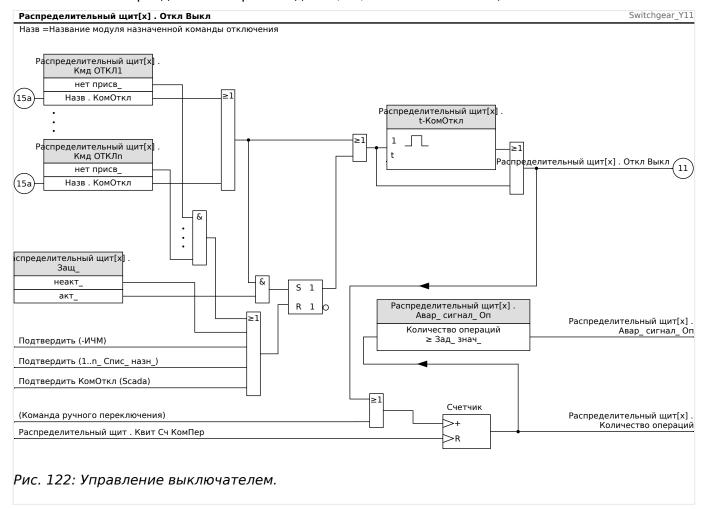



Рис. 121: Блокировки. (Детали, отмеченные «*»: наличие зависит от заказанного типа устройства.)

Диспетчер отключения — назначение команд отключения

Команды отключения защитных элементов должны присваиваться тем коммутационным устройствам, которые способны замыкаться/размыкаться (выключатели). Каждое коммутационное устройство, которое способно замыкаться/размыкаться, имеет диспетчер отключения.



В меню [Управление / Qxx / Дисп откл] (где «Qxx» соответствует обозначению коммутационного устройства, как определено на однолинейной схеме) имеются параметры настройки «Kмq OTKЛ n», для которых можно назначить команды защитного отключения. В этом так называемом диспетчере отключения все эти

назначенные команды защитного отключения объединяются с помощью логической операции «ИЛИ», что в результате приводит к выдаче команды размыкания коммутационного устройства.

На коммутационное устройство отправляется только команда размыкания, которая выдается диспетчером отключения. Это значит, что команды отключения, назначенные в диспетчере отключения, приводят к работе коммутационного устройства.

Кроме того, в данном модуле можно задать минимальное время удержания команды отключения и то, будет она блокироваться механически или нет (см. также раздел «Блокировка» далее, Ч⇒ «5.2 Замыкание»).

Обратите внимание, что на схеме выше «Распределительный щит[x]» представляет «коммутационное устройство номер x»; однако точное обозначение определено в файле однолинейной схемы, см. также \Longrightarrow «5 Однолинейная схема».

Замыкание

Если команда размыкания настроена как «Защ_» = «акт_», она будет оставаться активной до момента подтверждения (см. главу «Подтверждение», \sqsubseteq «Подтверждения»).

Заблокированная команда размыкания сбрасывается только в одном из следующих случае, а также после пропадания всех назначенных команд размыкания элементов защиты:

• Она подтверждается (либо пользователем с помощью интерфейса, либо посредством SCADA), см. ⇒ «Подтверждения».

- Она сбрасывается (подтверждается) с помощью сигнала, который был назначен параметру *«ПодКомОткл»*.
- Для нее снова задается настройка »Защ « = «неакт ».
- Если не назначена никакая команда защитного отключения, т.е. для всех «Кмд $OTKЛ\,n$ » задано значение «-».

Внешнее ЗАМЫКАНИЕ /РАЗМЫКАНИЕ

Если требуется размыкание или замыкание коммутационного устройства с помощью внешнего сигнала, можно назначить один сигнал, запускающий команду ЗАМЫКАНИЯ, и один сигнал, запускающий команду РАЗМЫКАНИЯ (например, сигналы цифровых входов или выходов логической схемы).

Для внешнего сигнала ЗАМЫКАНИЯ можно назначить значение [Управление / Распределительный щит / Распределительный щит[x] / Вн кмд ВК/ВЫК] «Кмд ВКЛ».

Для внешнего сигнала РАЗМЫКАНИЯ можно назначить значение [Управление / Распределительный щит / Распределительный щит[x] / Вн кмд ВК/ВЫК] «Kмд BЫКЛ».

Команда РАЗМЫКАНИЯ имеет приоритет. Команды ЗАМЫКАНИЯ ориентированы на градиент, команды РАЗМЫКАНИЯ ориентированы на уровень.

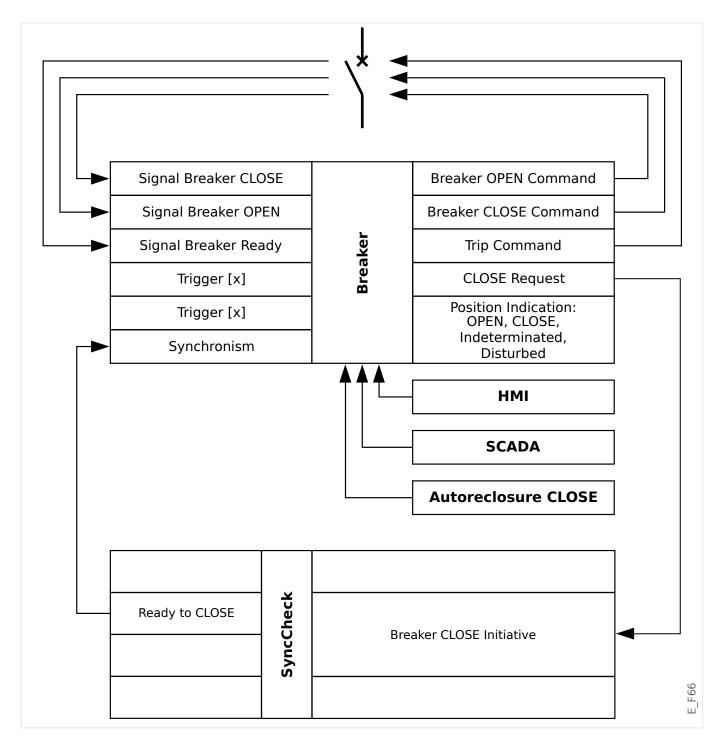
Переключение с помощью SCADA

Переключение с помощью команд SCADA возможно, если для [Управление / Общие настройки] «Право на переключение» задано значение «Удаленный» или «Локальный и удаленный». (См. также ⇒ «5.2 Право на переключение»).

Пример переключения по протоколу IEC 60870-5-104 приведен в разделе ⇒ «3.7.1 Команды IEC». Принцип аналогичен тому, что применяется для других протоколов, поддерживающих команды SCADA.

Синхронизированное переключение*

* = доступность зависит от типа заказанного устройства.


Перед тем, как коммутационное устройство сможет соединить две главные секции, должна быть обеспечена синхронность этих секций.

В меню [Управление / Распределительный щит / Распределительный щит[x] / Синхронное переключение] параметр «Синхронизм» определяет, какой сигнал будет указывать на синхронность.

Если условие синхронности должно оцениваться внутренним модулем проверки синхронности, должен быть назначен сигнал «Замык готово» (который будет подавать модуль проверки синхронизации). В качестве альтернативы можно назначить цифровой вход или логический выход.

В режиме синхронизации «Генератор-система» необходимо назначить дополнительный запрос синхронности в меню [Парам_ защиты / Глоб_ пар_ защ_ / Внутр_соед-Защ[x] / Синх].

Если сигнал синхронности назначен, команда переключения будет выполняться только в случае, когда сигнал синхронности принимает значение «Истина» за определенное максимальное время наблюдения «t-Makc cunx контр». Данный таймер наблюдения запускается, когда подается команда ЗАМЫКАНИЯ. Если сигнал синхронности не назначен, высвобождение синхронности будет постоянным.

Право на переключение

Право на переключение определяет типы команд коммутации, которые разрешены для выполнения. Она не влияет на отключения, выполняемые функциями защиты.

Для настройки прав на переключение [Управление / Общие настройки] «Право на переключение» доступны следующие параметры:

- «Нет»: Операции коммутации заблокированы. (Обратите внимание, что защитные отключения по-прежнему возможны.)
- «Локальный»: Операции отключения осуществляются только кнопками на панели.

- «Удаленный»: Операции отключения осуществляются через SCADA, цифровые входы или внутренние сигналы.
- «Локальный и удаленный»: Операции отключения осуществляются, с помощью кнопкой, SCADA, цифровых входов или внутренних сигналов.

Неблокированное переключение

Для проверок, ввода в эксплуатацию и временных операций можно отключить блокировки.

ПРЕДУПРЕЖДЕНИЕ!

Неблокированное переключение может привести к серьезным травмам или летальному исходу!

Для неблокированного переключения параметры [Управление / Общие настройки] «Нет блок. сбр.» может иметь следующие значения:

- «единичная операция»: Неблокированное переключение для одной отдельной команды
- «постоянный»: Постоянно
- «Пауза»: Неблокированное переключение на определенное время

Установленное время для неблокированного переключения задается с помощью параметра «*Нет блок. ср.*» и применяется также для режима «единичная операция».

Неблокированное переключение также можно активировать, назначив сигнал для *«Нет блок. ср.»*.

Ручное управление положением коммутационного устройства

В случае сбоя контактов индикации положения (вспомогательных контактов) или обрыва проводов индикацией положения от присвоенных сигналов можно управлять вручную (переписывать) для переключения коммутационного устройства.

Данная функция доступна в меню [Управление / Распределительный щит / Распределительный щит[x] / Общие настройки] *«Лож положение»*.

Управляемое положение коммутационного устройства будет отображаться на дисплее с помощью восклицательного знака «!» рядом с символом коммутационного устройства.

ПРЕДУПРЕЖДЕНИЕ!

Ручное управление положением коммутационного устройства может привести к серьезным травмам или летальному исходу!

Блокировка двойной операции

Все команды управления любым коммутационным устройством на участке должны обрабатываться последовательно. Во время выполнения команды управления не допускается обработка другой команды.

Контроль направления переключения

Команды переключения проверяются перед выполнением. Если коммутационное устройство уже находится в нужном положении, команда переключения не будет подана повторно. (Разомкнутый выключатель нельзя разомкнуть повторно.) Это также относится к командам переключения от ИЧМ и SCADA.

Антипульсация

При нажатии кнопки команды ЗАМЫКАНИЯ будет подан только один импульс ЗАМЫКАНИЯ независимо от того, насколько долго кнопка будет удерживаться нажатой. Коммутационное устройство выполнит команду замыкания только один раз.

5.3 Износ коммутационного устройства

Особенности износа коммутационного устройства

МСА4 ведет различную статистику по каждому коммутационному устройству.

- Число операций коммутации доступно в меню [Работа / Данн_ о сч_ и вер_ / Управление / Распределительный щит[x]] «СчКомОткл».
 - В меню [Управление / Распределительный щит[x] / Износ КУ] «Авар_ сигнал_ Оп» пользователь может настроить ограничение для максимального числа операций коммутации. Если это ограничение будет превышено, в меню [Работа / Отображение состояния / Управление / Распределительный щит[x]] «Авар_ сигнал_ Оп» выдается соответствующий сигнал предупреждения.
- Сумма накопленных токов отключения доступна в меню [Работа / Данн_ о сч_ и вер_ / Управление / Распределительный щит[x]] «СуммОткл Iф.A», ..., «СуммОткл Iф.C».
 - В меню [Управление / Распределительный щит[x] / Износ КУ] «Ісум Прер Авар» можно задать пороговое значение для максимально допустимой суммы токов отключения. Если это пороговое будет превышено, в меню [Работа / Отображение состояния / Управление / Распределительный щит[x]] «СуммОткл» выдается соответствующий сигнал предупреждения, а также сигналы избирательной защиты фаз «СуммОткл: Ixx».
- МСА4 непрерывно отслеживает «состояние размыкания» и отображается его в меню [Работа / Данн_ о сч_ и вер_ / Управление / Распределительный щит[x]] »Ресурс ВЫКЛ РАЗОМКНУТ.« (в виде значения в процентах). Если это значение достигнет 100%, это значит, что необходимо обслуживание коммутационного устройства.
- Сигнал [Работа / Отображение состояния / Управление / Распределительный щит[x]] «КУизнос медл. КУ» сообщает о том, что коммутационное устройство стало работать медленнее. (См. также ⇒ «5.3 Аварийный сигнал медленного коммутационного устройства»). Это может позволить выявить неисправность на ранней стадии.

- Пользователь может задать кривую износа для конкретного коммутационного устройства, см. ниже (> «5.3 Кривая износа коммутационного устройства»). На основе этой кривой МСА4 выдает сигнал предупреждения в меню [Работа / Отображение состояния / Управление / Распределительный щит[x]] «Трев. ур. изн.».
- МСА4 отслеживает частоту циклов ЗАМЫКАНИЯ/РАЗМЫКАНИЯ: В меню [Управление / Распределительный щит[x] / Износ КУ] «Трев Ісум откл/час» можно задать пороговое значение для максимально допустимой суммы токов отключения в час. Если это пороговое значение будет превышено, в меню [Работа / Отображение состояния / Управление / Распределительный щит[x]] «Трев Ісум откл/час» выдается соответствующий сигнал предупреждения. С помощью данного аварийного сигнала можно обнаружить лишние операции коммутационного устройства на ранней стадии.

Аварийный сигнал медленного коммутационного устройства

Увеличение времени замыкания или размыкания коммутационного устройства указывает на то, что требуется техническое обслуживание. Если измеренное время превышает время «t-пер BЫKЛ» или «t-пер BKЛ», активируется сигнал [Работа / Отображение состояния / Управление / Распределительный щит[x]] «КУизнос медл. KУ».

Кривая износа коммутационного устройства

Для поддержания хорошего рабочего состояния коммутационного устройства требуется наблюдение за ним. Состояние коммутационного устройства (срок службы) зависит, помимо прочего, от следующего.

- Количество циклов ЗАМЫКАНИЯ/РАЗМЫКАНИЯ.
- Амплитуды токов отключения.
- Частота работы коммутационного устройства (количество операций в час).

Обслуживание коммутационного устройства следует выполнять согласно графику технического обслуживания, предоставленного производителем (статистика работы коммутационного устройства). С помощью максимум 10 точек пользователь может создать кривую износа коммутационного устройства в меню [Управление / Распределительный щит / Распределительный щит[x] / Износ КУ]. У каждой точки две настройки: ток отключения в кА и допустимое количество операций. Независимо от того, сколько точек используется, количество операций в последней точке равно нулю. Защитное реле вставит допустимые операции на основании кривой износа коммутационного устройства. Если ток отключения выше тока отключения в последней точке, защитное реле примет количество операций за ноль.

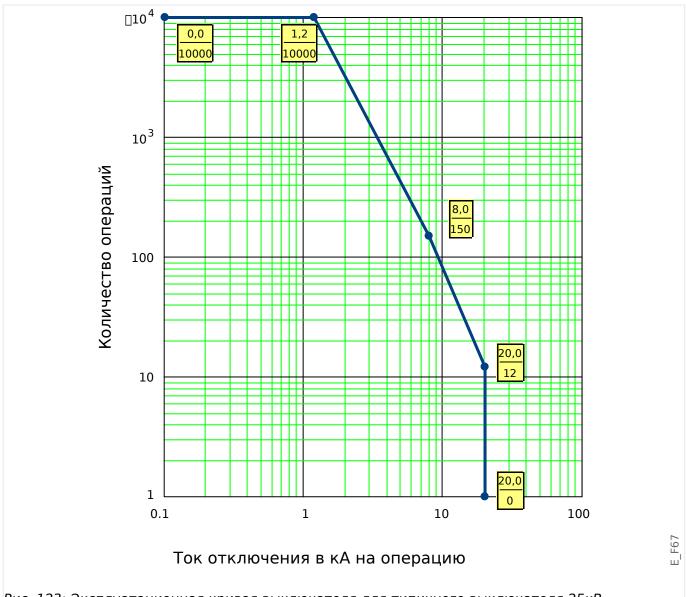
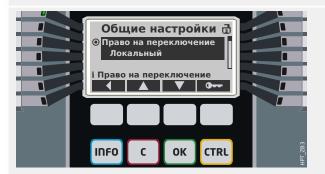


Рис. 123: Эксплуатационная кривая выключателя для типичного выключателя 25кВ

5.4 Контроль, пример: переключение выключателя

В следующем примере показано, как переключать выключатель с помощью ИЧМ-устройства.


При нажатии клавиши «CTRL» отображается на экран с одной строкой, кроме того, вы получаете прямой доступ к связанным значениям измерения и функциям управления.

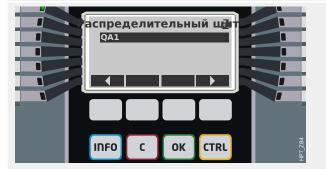
Примечание. Название коммутационного устройства «QA1» приведено лишь в качестве примера; доступный набор коммутационных устройств и их обозначение зависят от конкретного приложения.

Операция коммутации может выполняться только в том случае, если для права на переключение (которое отображается в правом верхнем углу) указано «Локальный» или «Локальный и удаленный».

Примечание. Обратите внимание, что доступ к этому однострочному экрану, а также двум программным кнопкам «Общие настройки» и «Распределительный щит» также возможен с помощью главного меню:

- Меню [Управление / Страница управления] обеспечивает доступ к этой однострочной странице.
- С помощью команд [Управление / Общие настройки] обеспечивается доступ к той же ветви меню, что и с помощью программной кнопки «Реж_».
- С помощью команд [Управление / Распределительный щит] обеспечивается доступ к той же ветви меню, что и с помощью программной кнопки «Распределительный щит».

Программная кнопка «Реж_» позволяет открыть меню [Управление / Общие настройки].


Можно выполнить несколько настроек, связанных с коммутационными устройствами, в частности (повторно) определить право на коммутацию.

При выборе настройки *«Право на переключение»* становятся доступными следующие параметры:

• «Нет»: Нет функции контроля.

- «Локальный»: Управление осуществляется только с помощью кнопок на панели (ИЧМ).
- «Удаленный»: Управление осуществляется только через SCADA, цифровые входы или внутренние сигналы.
- «Локальный и удаленный»: Управление осуществляется с помощью кнопок ИЧМ на панели, SCADA, цифровых входов или внутренних сигналов.

Как было уже сказано, в данном примере настройка должна быть либо «Локальный», либо «Локальный и удаленный».

При нажатии программной кнопки «Распределительный щит» отображается экран со списком всех подключенных коммутационных устройств.

(Для устройств HighPROTEC типа «МС...», поддерживается до 6 коммутационных устройств. Устройство типа «МК...» позволяет управлять одним коммутационным устройством.)

После выбора коммутационного устройства при нажатии программной кнопки «▶» (Ввод) отображается меню для выбранного коммутационного устройства. Можно задавать самые разные настройки, такие как время управления, индикаторы положения, внешние команды включения/выключения, блокировки.

При нажатии программной кнопки «▶» (Ввод) отображается расширенная одна строка (после ввода пароля для уровня доступа «Control-Lv1»). Коммутационное устройство выделяется с помощью небольших маркеров (а при наличии нескольких коммутационных устройств отображается программная кнопка «Выбрать», которая позволяет выбрать другое устройство).

Если право на переключение разрешают локальную коммутацию, то отображаются программные кнопки «ОТКРЫТЬ» и «ЗАКРЫТЬ», которые позволяют выполнить операцию переключения. (Обратите внимание, что обычно, то есть при правильной индикации положения от коммутационного устройства, отображается только одна из этих двух программных кнопок: Например, если определенное коммутационное устройство уже разомкнуто, отображается только «ЗАКРЫТЬ».)

После нажатия программной кнопки «ЗАКРЫТЬ» отображается диалоговое окно подтверждения, которое препятствует неумышленным операциям переключения.

После нажатия «да» операция переключения выполняется.

На дисплее отобразится новое положение коммутационного устройства (если только оно было достигнуто в соответствии с сигналом обратной связи по индикации положения ил по истечении настроенного времени коммутации).

Более того, функция программных кнопок измеряется, и появляются новые разрешенные операции коммутации.

6 Системные аварийные сигналы

ПРИМЕЧАНИЕ!

Обратите внимание, что защита мощности и (активная/реактивная/полная) нагрузка по мощности доступна только в защитных устройствах, предоставляющих измерения напряжения и тока.

После активации (с помощью [Планир_ устр_] «Системные аварийные сигналы . $Peж_{-}$ » = «исп») в меню аварийных сигналов системы [Системные аварийные сигналы] можно настроить следующие параметры.

- Общие настройки (включение/выключение управления нагрузкой, выборочное назначение сигнала, блокирующего управление нагрузкой)
- Защита мощности (пиковые значения)
- Управление нагрузкой (ток)
- Управление нагрузкой (мощность)
- Защита ОГИ

Обратите внимание, что все пороговые значения следует настраивать как основные.

Управление нагрузкой

Нагрузка — это средняя величина тока или мощности системы за тот или иной период (промежуток времени). Управление нагрузкой позволяет поддерживать более низкую потребность в электроэнергии по сравнению с целевыми показателями, предусмотренными договором (с поставщиком). При превышении предусмотренных договором целевых показателей поставщику электроэнергии причитается доплата.

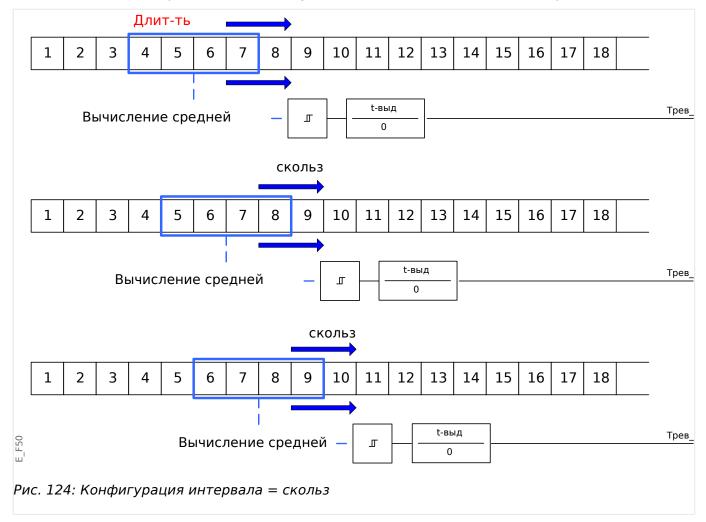
Поэтому управление нагрузкой помогает обнаружить и избежать средних пиковых нагрузок, которые учитываются при выставлении счета. Для снижения затрат на нагрузку по тарифу с учетом энергопотребления пиковые нагрузки должны быть по возможности разнообразными. Это значит, что больших одновременных нагрузок следует, по возможности, избегать. Чтобы помочь с анализом нагрузки, модуль управления нагрузкой может оповещать пользователя путем подачи аварийных сигналов. Кроме того, аварийные сигналы нагрузки можно использовать, назначив их реле, чтобы (если применимо) обеспечивать снижение нагрузки.

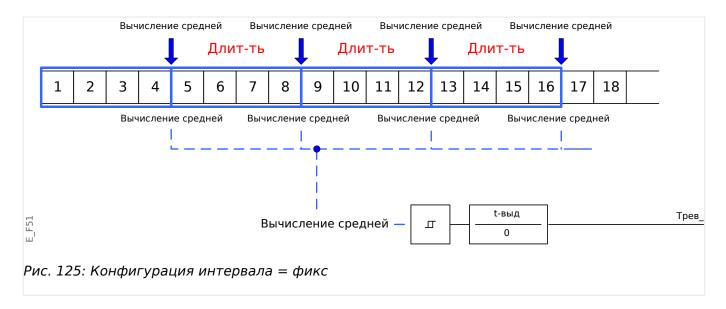
Управление нагрузкой включает в себя следующее.

- Нагрузка по мощности
- Ваттовая нагрузка (активная мощность)
- Нагрузка вар (реактивная мощность)
- Нагрузка ВА (полная мощность)
- Нагрузка по току

Настройка нагрузки

Настройка нагрузки состоит из двух шагов. Выполните следующее.


Шаг : Настройте общие параметры в меню [Пар_ устр_ / Статистика / Нагрузка]:


- Настройте для триггера значение «Длит-ть».
- Выберите временную развертку для «промежутка времени».
- Укажите, будет ли промежуток «фикс» или «скольз».
- Если применимо, назначьте сигнал сброса.

Временной интервал (промежуток) может быть фиксированным или скользящим.

Пример фиксированного промежутка: Если задать интервал 15 минут, защитное устройство рассчитает средний ток или мощность за прошедшие 15 минут и будет обновлять это значение каждые 15 минут.

Пример фиксированного промежутка: Если выбрать скользящий промежуток и задать интервал 15 минут, защитное устройство будет непрерывно рассчитывать и обновлять средние значения тока или мощности за прошедшие 15 минут (самое новое измеренное значение будет постоянно заменять самое старое).

2 шаг:

- Кроме того, в меню [Системные аварийные сигналы] необходимо будет настроить особые параметры нагрузки.
- Укажите, должен ли подаваться аварийный сигнал нагрузки или модуль должен работать в беззвучном режиме (*«Трев»* = «акт_» или «неакт_»).
- Настройте пороговое значение («Уставка»).
- Если применимо, задайте время задержки («t-выд») аварийного сигнала.

Пиковые значения

Защитное устройство также сохраняет пиковые значения нагрузки для тока и мощности. Эти показатели представляют собой максимальные значения с момента последнего сброса значений нагрузки. Пиковые нагрузки тока и мощности системы имеют метку даты и времени.

Текущие и пиковые значения нагрузки отображаются в меню [Пар_ устр_ / Статистика / Нагрузка].

Настройка контроля пиковых значений

В меню [Системные аварийные сигналы / Мощн.] можно настроить функцию контроля пиковых значений. Это позволит контролировать следующие показатели:

- активную мощность (Вт)
- реактивную мощность (вар)
- полную мощность (ВА)

В меню [Системные аварийные сигналы / Мощн.] следует настроить особые параметры.

- Укажите, должен ли подаваться аварийный сигнал контроля пиковых значений, или модуль должен работать в тихом режиме. (Активный/ неактивный сигнал тревоги).
- Задайте уставку.

• Задайте время задержки для аварийного сигнала, если применимо.

Мин. и макс. значения

В меню [Работа] отображаются минимальные (мин.) и максимальные (макс.) значения. (См. также \Longrightarrow «Статистика»).

Минимальные значения после последнего сброса: Минимальные значения постоянно сравниваются с последним минимальным измеренным значением данного параметра. Если новое минимальное значение оказывается меньше последнего, то последнее обновляется. В меню [Пар_ устр_ / Статистика] можно назначить сигнал сброса.

Минимальные значения после последнего сброса: Максимальные значения постоянно сравниваются с последним максимальным измеренным значением данного параметра. Если новое максимальное значение оказывается больше последнего, то последнее обновляется. В меню [Пар_ устр_ / Статистика] можно назначить сигнал сброса.

Защита ОГИ

Для контроля качества электроэнергии защитное устройство может контролировать напряжение (линейное) и текущие ОГИ.

В меню [Системные аварийные сигналы / КНИ] выполните следующее.

- Укажите, будет ли подаваться аварийный сигнал (*«Трев»* = «акт_» или «неакт »).
- Задайте пороговое значение («Уставка»).
- Если применимо, задайте время задержки («t-выд») аварийного сигнала.

7 Регистраторы

Реле защиты МСА4 оснащено несколькими регистраторами, которые выполняют сбор сообщений журнала определенных типов (в энергонезависимой памяти):

• Функция Сообщения о самодиагностике (⇒ «Сообщения о самодиагностике») обеспечивает сбор внутренних сообщений устройства различных типов. Это могут быть, например, события, связанные с безопасностью (например, ввод неправильного пароля) или сообщения по устранению неисправностей, которые непосредственно связаны с функциональными возможностями устройства.

Записи можно открыть в ветви меню [Работа / Самодиагностика / Сообщения].

• Функция Аварийный осциллограф (⇒ «Аварийный осциллограф») добавляет новую запись для каждого нового события аварийного нарушения (настроенное как сигнал пуска).

Записи можно открыть в ветви меню [Работа / Регистр_ / Авар_ Осц_].

Кроме того, если дважды щелкнуть на любой записи в окне «Аварийный осциллограф» в Smart view, можно сохранить данные этой записи в файл *. HptDr, который можно открыть в программном обеспечении ПК *DataVisualizer* для графического анализа.

• Функция Регистратор неисправностей (>> «Регистратор неисправностей») собирает информацию о сбоях (например, о причинах отключения).

Записи можно открыть в ветви меню [Работа / Регистр / Авар.осцил].

• Функция Регистратор событий (⇒ «Регистратор событий») собирает данные об изменениях двоичных состояний и состояний счетчиков различных модулей МСА4, чтобы можно было получить представление о недавних событиях.

Записи можно открыть в ветви меню [Работа / Регистр_ / Зап соб].

• Функция Регистратор выполнения (> «Регистратор выполнения») фиксирует значения аналоговых измерений в течение определенного периода времени.

Доступ к сводной информации (временной метке, количеству записей) можно получить в ветви меню[Работа / Регистр / Рег трд].

Кроме того, если дважды щелкнуть на сводной информации в окне «Регистратор выполнения» в Smart view, можно сохранить все данные в файл *. HptTr, который можно открыть в программном обеспечении ПК DataVisualizer для графического анализа.

7.1 Аварийный осциллограф

- Загрузка (считывание) записей аварийных нарушений осуществляется с помощью программного обеспечения для настройки и оценки параметров Smart view.
- Записи аварийных нарушений можно просматривать и анализировать с помощью ПО *DataVisualizer* (этот инструмент всегда устанавливается вместе с ПО *Smart view*).
- Записи аварийных нарушений можно преобразовывать в файловый формат COMTRADE с помощью ПО *DataVisualizer*.

Аварийный осциллограф работает с частотой 32 выборки за цикл. Аварийный осциллограф может срабатывать по любому из восьми настраиваемых сигналов запуска. Запись аварийных нарушений содержит значения измерений и время до срабатывания триггера. С помощью Smart view /DataVisualizer на экран в графическом виде могут выводиться осциллограммы аналоговых (напряжение, сила тока) и цифровых каналов (трасс). Аварийный осциллограф имеет емкость памяти, достаточную для сохранения отрезков событий с максимальной длительностью до 120 с. Аварийный осциллограф может сохранять записи длительностью до 15 с (настраивается пользователем). Количество записей зависит от размера каждой записи.

Считывание записей аварийных нарушений

С помощью меню [Работа / Регистр_ / Авар_ Осц_] можно просматривать сохраненные записи аварийных нарушений.

ПРИМЕЧАНИЕ!

С помощью меню [Работа / Регистр_ / Руч_ пуск] можно запускать аварийный осциллограф вручную.

Удаление записей о нарушениях с помощью панели управления

С помощью меню [Работа / Регистр / Авар Осц] можно выполнить следующее.

- Удалить записи аварийных нарушений.
- При помощи «ПРОГРАММНЫХ КНОПОК» «вверх» и «вниз» выбрать запись об аварийных нарушениях, подлежащую удалению.
- Вызвать вид подробного просмотра записи аварийных нарушений нажатием «ПРОГРАММНОЙ КНОПКИ» «вправо».
- Подтвердить нажатием «ПРОГРАММНОЙ КНОПКИ» «удаления».
- Ввести пароль, а затем нажать кнопку «ОК».
- Выберите записи для удаления (текущую или все).
- Подтвердить нажатием «ПРОГРАММНОЙ КНОПКИ» «ОК».

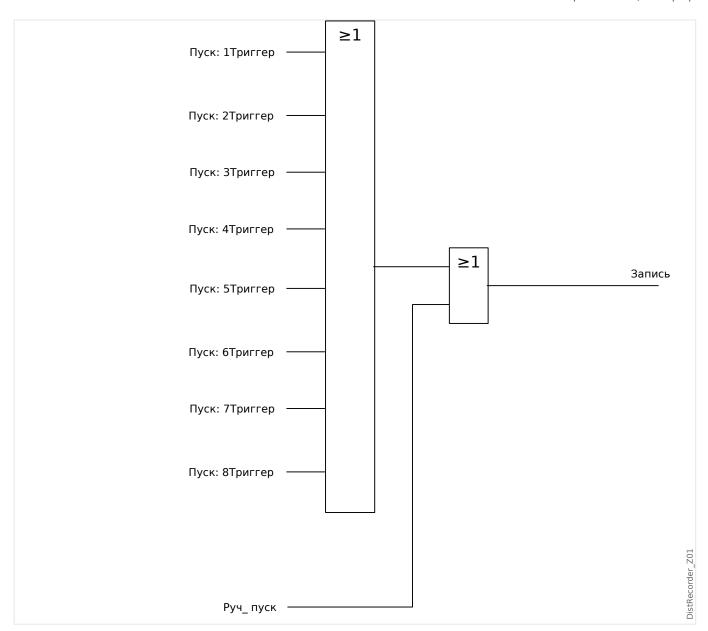
Настройка аварийного осциллографа

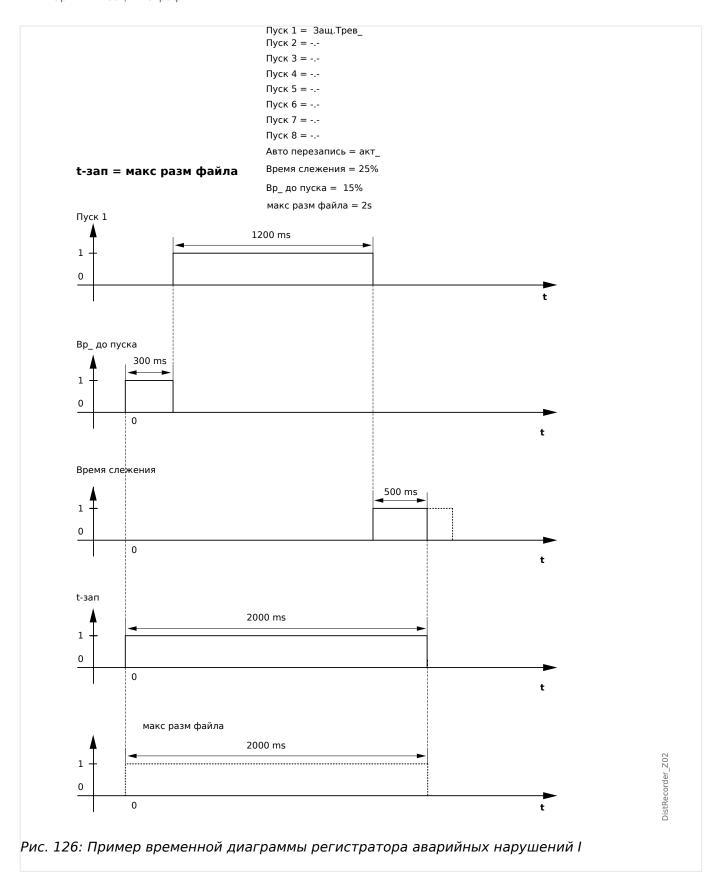
Настроить аварийный осциллограф можно в меню [Пар_ устр_ / Регистр_ / Авар_ Осц_].

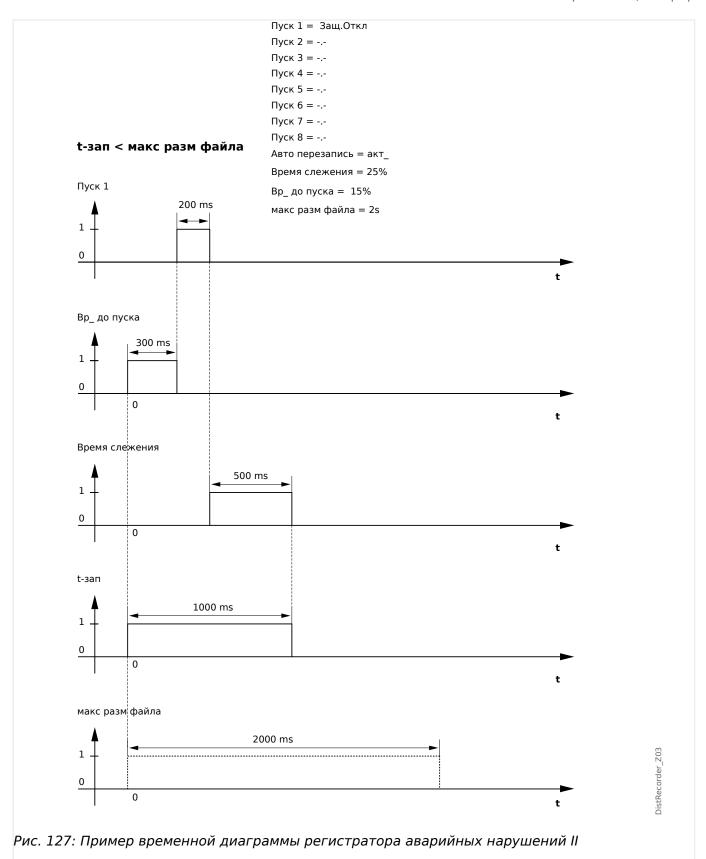
Настройте максимальное время записи события аварийного нарушения. Его можно настроить с помощью параметра «макс разм файла», максимальное значение составляет 15 с (включая время до и после срабатывания триггера). Время до и после срабатывания триггера для аварийного осциллографа устанавливается (через параметры «Вр_ до пуска» и «Время слежения») в процентах от значения параметра «макс разм файла».

Для запуска аварийного осциллографа можно выбрать до 8 сигналов. Триггерные сигналы связаны логической функцией ИЛИ. После записи события аварийных нарушений новая запись не будет включена до тех пор, пока не перестанут действовать все триггерные сигналы, вызвавшие запуск предыдущей записи.

ПРИМЕЧАНИЕ!

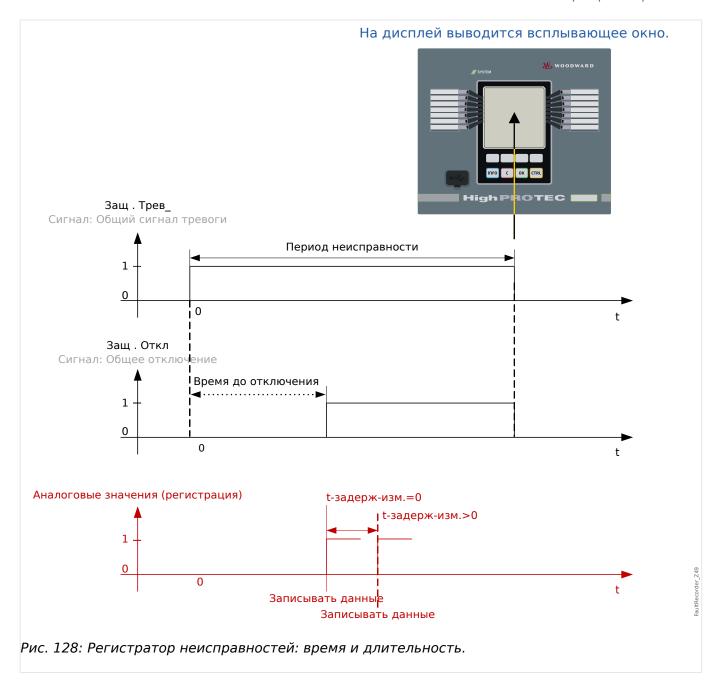

При условии, что tT — продолжительность триггерного сигнала, a tMax = «макс разм файла», $tPre = («Вр_ до пуска» \cdot tMax)$, $tPost = («Время слежения» \cdot tMax)$, то фактическая продолжительность будет следующей.


- Фактическое время до срабатывания триггера всегда равно tPre
- Событие аварийного нарушения записывается в течение tEv, которое равно: tEv = мин.(tT, (tMax tPre))
- Фактическое время после срабатывания триггера tRest paвно: tRest = мин(tPost , (tMax -tPre-tEv))


Очевидно, может случиться, что, в зависимости от фактической продолжительности триггерного сигнала и tPre, tEv < tT, то есть событие аварийного нарушения не будет записано полностью. Единственный способ снизить риск этого (кроме как задать меньшее значение для параметра tPre) — задать большее значение для параметра tMax. Однако вследствие этого в памяти возможно будет сохранить меньше событий.

Аналогичным образом может оказаться, что не останется времени после срабатывания триггера (т. е. tRest=0). Обратите внимание, что по истечении настроенного времени tMax, равного «макс. размеру файла», запись всегда останавливается.

Более того, следует определить действия аварийного осциллографа на случай, когда будет исчерпана емкость хранилища. Следует ли автоматически перезаписывать самые старые записи (*«Авто перезапись»* = «акт_») или совсем прекратить запись (*«Авто перезапись»* = «неакт_»), пока память не будет очищена вручную.


7.2 Регистратор неисправностей

Назначение регистратора неисправностей

Регистратор неисправностей содержит краткую информацию о неисправностях (например, о причинах отключения). Кроме того, краткую информацию можно прочесть в интерфейсе ИЧМ. Это может помочь при проведении быстрого анализа сбоев. После сбоя, чтобы привлечь к нему внимание пользователя, на дисплее откроется всплывающее окно. Регистратор неисправностей предоставит информацию о причинах сбоя. С помощью аварийного осциллографа можно будет вывести подробный анализ причин сбоя (в виде осциллограммы). Записи неисправности и соответствующие им записи аварийных нарушений соотносятся следующим образом: «Номер неисправности» и «Номер неисправности электросети».

Время и длительность

Время до отключения	Время между <i>первым аварийным сигналом</i> («Защ . Трев_») и сигналом <i>первого отключения</i> («Защ . Откл»).
Период неисправности	Период времени от растущего фронта импульса сигнала общего срабатывания («Защ. Трев_») до падающего фронта общего сигнала срабатывания. Следует обратить внимание, что общее срабатывание является объединением (или разъединением) всех сигналов срабатывания с помощью логической функции «или». Общее отключение («Защ. Откл») связано со всеми отключениями логической функцией ИЛИ.

Режим работы регистратора неисправностей

Как срабатывает регистратор неисправностей?

Регистратор неисправностей срабатывает при растущем фронте сигнала «Защ. Трев_» (общее срабатывание). Обратите внимание, что «Защ. Трев_» (общее срабатывание) связано со всеми сигналами срабатывания логической функцией ИЛИ. Первый сигнал срабатывания запускает регистратор неисправностей.

В какой момент происходит запись измерений неисправностей?

Измерения неисправностей регистрируются (записываются) после команды размыкания. Момент времени записи измерений (после отключения) можно при желании отсрочить. Для этого используется параметр [Пар_ устр_ / Регистр_ / Авар.осцил_ /] «Авар.осцил_ . t-задерж-изм.». Эта настройка позволяет получить более точные значения измерений (например, можно устранить искажения измерений, вызванные значительными постоянными составляющими).

Режимы

Если необходимо создать запись неисправности, даже если общий сигнал тревоги не привел к отключению, то для параметра [Пар_ устр_ / Регистр_ / Авар.осцил_ /] «Авар.осцил_ . Режим записи» следует задать значение «Авар. сигналы и отключения».

Если аварийный сигнал, за которым не последует сигнал отключения, не должен приводить к отключению, задайте для параметра «Режим записи» значение «Только отключения».

Когда на дисплее в интерфейсе ИЧМ появляется всплывающее окно?

Такое окно появляется после того, как исчезнет сигнал общего срабатывания («Защ . Трев »).

ПРИМЕЧАНИЕ!

Время до отключения не будет отображаться, если сигнал срабатывания, который запускает регистратор неисправностей, отправлен другим модулем защиты. Это может произойти, если на неисправность реагирует несколько модулей защиты.

ПРИМЕЧАНИЕ!

Необходимо помнить: Настройки параметров (пороговые значения и т. д.), отображающиеся в записи неисправности, не являются элементами самой этой записи. Они всегда считываются с текущих настроек устройства. Если окажется, что настройки параметров, отображающиеся в записи неисправности, были изменены, то они будут отмечены в записи звездочкой.

Чтобы избежать этого, выполняйте следующие инструкции.

Сохраняйте все записи неисправностей в локальной сети/на жестком диске перед любым изменением параметров. После изменения удаляйте записи неисправностей в регистраторе неисправностей.

Память

Последняя сохраненная запись неисправности хранится в *регистраторе* неисправностей в отказоустойчивом режиме (другие записи хранятся в памяти, зависимой от вспомогательного питания защитного реле). Если свободная память системы закончилась, новая запись будет записана поверх самой старой (по правилу стековой записи FIFO). Можно сохранить до 20 записей.

Как закрыть всплывающее окно?

Нажать программную кнопку «ОК».

Как быстро выяснить, привел ли сбой к отключению?

В меню просмотра регистратора неисправностей, сбои, приведшие к отключению, обозначаются значком« \pm » (справа).

О каком сбое свидетельствуют данные во всплывающем окне?

Для самых последних неисправностей.

Содержимое регистратора неисправностей

Регистратор неисправностей содержит следующую информацию:

Часть 1: Общие сведения (не зависящие от функции защиты)		
Дата и время	Дата и время неисправности	
Ном_ неисп_	Этот счетчик увеличивается после каждого сбоя («Защ . Трев_«)	
Число сбоев сети	Этот счетчик также увеличивается после каждого срабатывания «Защ . Трев_», кроме АПВ (это относится только к устройствам, обеспечивающим автоматическое повторное включение).	
Акт уст	Активная группа уставок	
Период неисправности	Период времени от растущего фронта импульса сигнала общего срабатывания («Защ . Трев_») до падающего фронта общего сигнала срабатывания. Следует обратить внимание, что общее срабатывание является объединением (или разъединением) всех сигналов срабатывания с помощью логической функции «или». Общее отключение («Защ . Откл») связано со всеми отключениями логической функцией ИЛИ.	
Время до отключения	Период между сигналом срабатывания и отключением. Необходимо помнить: Время до отключения не будет отображаться, если первое срабатывание и первое отключение запущены разными модулями защиты.	
Сраб	Название модуля, который сработал первым.	
Откл	Название модуля, который первым подал команду отключения.	
Акт_Ад_Набор	Если используется набор адаптивных параметров, будет отображаться номер активной группы параметров.	

Часть 2: Сведения о функциях защиты, с помощью которых был обнаружен сбой	
Например, Тип неисправности	В этой части предлагаются сведения, зависящие от защитного модуля. К примеру, если речь идет о функциях избирательной защиты фаз, приводятся и данные об отдельных фазах.

Часть 3: Сведения, зависящие от защитного устройства		
Измеренные значения	Отображение различных значений измерения на момент отключения (или задержки отключения в зависимости от установленных параметров). Набор данных зависит от доступных для данного конкретного устройства измеряемых величин.	

Как осуществляется навигация по записям регистратора неисправностей?

Навигация по записям регистратора неисправностей	Клавиша
Возврат к окну обзора.	•
Следующий (верхний) элемент в записи неисправности.	A

Навигация по записям регистратора неисправностей	Клавиша
Предыдущая запись неисправности.	▶▶
Следующий (нижний) элемент в записи неисправности.	▼

Как выполняется считывание данных регистратора неисправностей на панели управления?

Считать показания регистратора неисправностей можно двумя способами.

- Вариант 1: в интерфейсе ИЧМ всплывают сведения о неисправности (так как имело место отключение).
- Вариант 2: меню регистратора неисправностей вызывается вручную.

Вариант 1 (сведения о неисправности всплывают на дисплее)

- Проанализируйте запись с помощью программных кнопок «▲» и «▼».
- Закройте всплывающее окно программной кнопкой «ОК».

Вариант 2.

- Войдите в ветвь меню [Работа / Регистр_ / Авар.осцил_].
- Выберите запись неисправности.
- Проанализируйте запись с помощью программных кнопок «▲» и «▼».

7.3 Регистратор событий

Регистратор событий может регистрировать до 300 событий, при этом послдение (минимум) 50 сохраненные события регистрируются в отказоустойчивом режиме. Все записи событий содержат следующую информацию:

События регистрируются следующим образом.

Номер записи	Порядковый номер
Номер ошибки	Номер постоянной неисправности.
	Этот счетчик увеличивается на единицу при каждом последующем общем срабатывании («Защ . Трев_»).
Число сбоев сети	Сбои сети могут иметь несколько номеров.
	Этот счетчик увеличивается на единицу при каждом последующем общем срабатывании.
	(Исключение - АПВ: это относится только к устройствам, обеспечивающим автоматическое повторное включение).
Дата записи	Метка времени
Название модуля	Что изменилось?
Состояние	Измененное значение

Существует три разных класса событий.

- Изменение двоичного состояния отображается следующим образом:
- 0->1 если сигнал физически изменяется с «0» на «1».
- 1->0 если сигнал физически изменяется с «1» на «0».
- Увеличение счетчика отображается следующим образом:
- Старое состояние счетчика -> Новое состояние счетчика (например 3->4)
- Изменение нескольких состояний отображается следующим образом:
- Старое состояние -> Новое состояние (например 0->2)

Считывание записей регистратора событий

- Войдите в ветвь меню [Работа / Регистр / Зап соб].
- Выберите событие.

7.4 Регистратор выполнения

Считывание записей регистратора выполнения

Регистратор выполнения сохраняет измеренные данные по мере их развития во времени.

- Войдите в ветвь меню [Работа / Регистр_ / Рег трд].
- На панели управления отображаются сводные данные (временная метка, количество записей).

В силу технических ограничений ЖК-дисплея подробных записанных данных не отображается.

• Однако в ПО Smart view можно дважды щелкнуть запись со сводкой, что позволит загрузить аналоговые данные с устройства МСА4 и сохранить их в файл (с расширением *.HptTr).

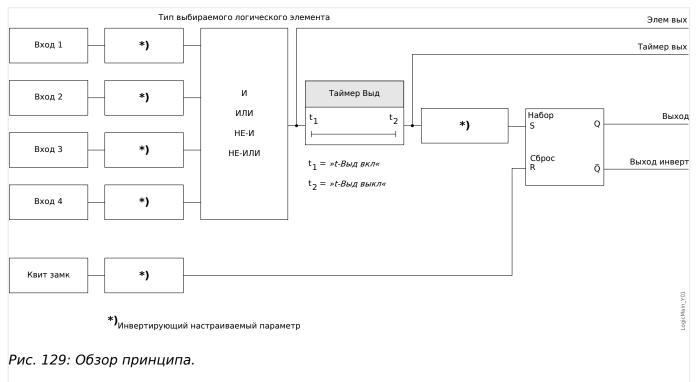
После можно будет открыть файл *. HptTr с помощью DataVisualizer. Подробное описание см. в руководстве к DataVisualizer.

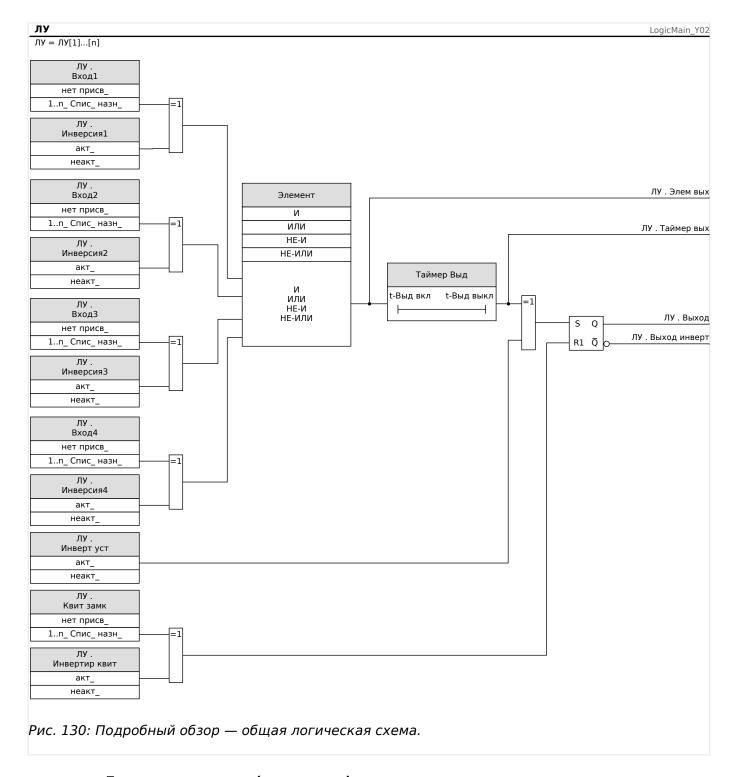
Настройка регистратора выполнения

Настроить регистратор выполнения можно в меню [Пар устр / Регистр / Рег трд].

Промежуток времени определяет расстояние между точками измерения.

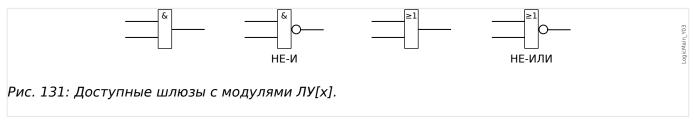
Для записи можно выбрать до десяти значений.




8 Программируемая логика

Общее описание

Защитное реле содержит программируемые логические уравнения для настройки выходных реле, блокировки защитных функций и создания собственных логических функций в реле.


Логическая схема позволяет управлять выходными реле на основании состояния входов, которые можно выбрать в списке назначений (срабатывание защитных функций, состояния защитных функций, состояния выключателей, системные аварийные сигналы и входы модулей — см. раздел \Longrightarrow «Модули, настройки, сигналы и значения»). Выходные сигналы логического уравнения можно использовать как входные для уравнений более высокого порядка (например, выходной сигнал логического уравнения 10 можно использовать как входной для логического уравнения 11).

Доступные шлюзы (операторы)

В логическом уравнении могут использоваться следующие шлюзы:

Входные сигналы

На входы шлюза можно назначить до 4 входных сигналов (из списка назначений).

По желанию каждый из 4 входных сигналов можно инвертировать (выполнить логическую операцию отрицания).

Временной шлюз (задержка включения и задержка выключения)

Для выхода шлюза можно назначить задержку. Можно задать задержку включения и выключения.

Замыкание

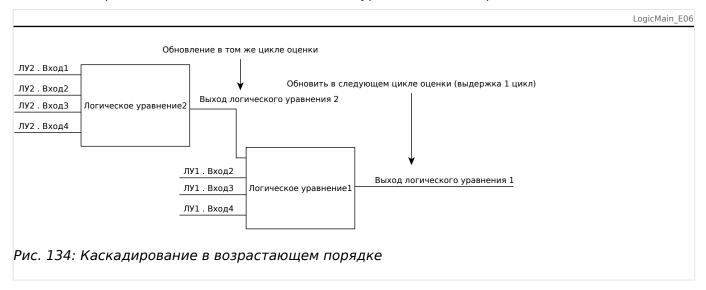
Логические уравнения посылают два сигнала. Сигналы разомкнутого и замкнутого состояния. Замкнутый выходной сигнал также можно использовать как инвертированный.

Для сброса сигнала замкнутого состояния нужно назначить сигнал сброса из списка назначений. Сигнал сброса также можно инвертировать. Замыкание зависит от приоритета сброса. Это означает, что сигнал сброса является приоритетным.

Каскадирование логических выходов

Устройство определяет состояние входов логических уравнений, начиная с логического уравнения 1 и до логического уравнения с самым большим номером. Цикл определения состояния (устройства) будет постоянно повторяться.

Каскадирование логических уравнений в возрастающем порядке


Каскадирование в возрастающем порядке означает, что выходной сигнал логического уравнения \mathbf{n} используется как входной сигнал логического уравнения $\mathbf{n+1}$. Если состояние логического уравнения \mathbf{n} изменится, состояние выходного сигнала логического уравнения $\mathbf{n+1}$ будет обновлено в ходе этого же цикла.

Каскадирование логических уравнений в убывающем порядке

Каскадирование в убывающем порядке означает, что выходной сигнал логического уравнения $\mathbf{n+1}$ используется как входной сигнал логического уравнения $\mathbf{n+1}$ изменится, изменение сигнала обратной связи на входе логического уравнения \mathbf{n} задержится на один цикл.

Программируемая логика на панели

предупреждение!

ПРЕДУПРЕЖДЕНИЕ! Неправильное применение логических уравнений может привести к травмам или повреждению электрооборудования. Не используйте логические уравнения, если не можете обеспечить безопасную работу.

Как настроить логическое уравнение?

- Откройте меню [Логика / ЛУ х].
- Задайте входные сигналы (при необходимости инвертируйте их).
- При необходимости настройте таймеры («ЛУх.t-Выд вкл» и «ЛУх.t-Выд выкл»).
- Если используется замкнутый выходной сигнал, назначьте сигнал сброса для сброса входа.
- В окне отображения состояния можно проверить состояние логических входов и выходов логического уравнения.

Если требуется каскадирование логических уравнений, необходимо помнить о временных задержках (циклах) в случае убывающего порядка (см. раздел: Каскадирование логических выходов).

С помощью отображения состояния [Работа / Отображение состояния] можно проверить логические состояния.

9 Самодиагностика

Защитные устройства проверяют сами себя на предмет наличия неисправностей в ходе нормальной эксплуатации и на этапе запуска.

Самопроверка в устройствах		
Объект	Исполнитель	Действие при обнаружении проблемы
Этап запуска	Контролируется длительность (допустимое время) фазы загрузки.	Устройство будет перезагружено. ⇒ Устройство будет выведено из эксплуатации после трех неудачных попыток запуска.
Длительность цикла защиты (программный цикл)	Максимально допустимое время цикла защиты контролируется в рамках временного анализа.	Контакт самодиагностики будет обесточен, если разрешенное время цикла защиты превышено (первое пороговое значение). Защитное устройство будет перезагружено, если время цикла защиты превышает второе пороговое значение.
Контроль обмена данными между главным процессором и цифровым сигнальным процессором (ЦСП)	Циклическая обработка измеренных значений ЦСП контролируется главным процессором.	Устройство будет перезагружено при обнаружении сбоя. Контакт самодиагностики будет обесточен.
Аналого-цифровой преобразователь	ЦСП выполняет проверку достоверности оцифрованных данных.	Защита будет заблокирована при обнаружении неисправности, чтобы предотвратить ошибочное отключение.
Контроль целостности данных после отключения источника питания (например, произошло отключение источника питания при изменении настроек параметров)	Внутренняя логика определяет неполные сохраненные данные после отключения источника питания.	Если новые данные неполные или повреждены, они будут удалены на этапе перезагрузки устройства. Устройство продолжит работать с последним действительным набором данных.
Целостность данных в целом	Формирование контрольных сумм	Устройство будет выведено из эксплуатации в случае обнаружения несогласованных данных, появившихся не в результате отключения источника питания (это неисправимая внутренняя ошибка).

Самопроверка в устройствах		
Объект	Исполнитель	Действие при обнаружении проблемы
Настройка параметров (устройство)	Защита настройки параметров путем проверки достоверности	Недопустимую конфигурацию параметров можно выявить с помощью проверки достоверности. Выявленные недопустимые значения отмечаются вопросительным знаком. Подробная информация приводится в главе о настройке параметров.
Качество источника питания	Аппаратная схема обеспечивает возможность использовать устройство, только если источник тока находится в диапазоне, указанном в технических характеристиках.	Если питающее напряжение слишком низкое, устройство не будет запущено либо будет соответствующим образом выведено из эксплуатации.
Падения питающего напряжения	Краткосрочные падения питающего напряжения обнаруживаются и в большинстве случаев могут преодолеваться с применением интегрированного буфера в оборудовании источника тока. Этот буфер также позволяет прекратить постоянные процедуры записи данных.	Модуль контроля использования системы будет обнаруживать повторяющиеся краткосрочные падения питающего напряжения.
Внутренние данные устройства (загрузка памяти, внутренние ресурсы и т. п.)	Внутренний модуль контролирует использование системы.	Модуль контроля использования системы в случае неисправимой ошибки инициирует перезагрузку устройства. В случае незначительных сбоев системный светодиод будет мигать попеременно красным и зеленым цветами (см. руководство по отладке). Проблема будет зарегистрирована как системное сообщение.
Батарея	Состояние батареи отслеживается постоянно. Примечание. Батарея служит для буферизации данных часов (часов реального	При низком уровне заряда батареи системный светодиод будет мигать попеременно красным и

Самопроверка в устройствах		
Объект	Исполнитель	Действие при обнаружении проблемы
	времени). Отказ батареи не оказывает никакого влияния на функциональность устройства. Единственная ее функция — буферизация часов на время, когда устройство обесточено.	зеленым цветами (см. руководство по отладке).
Состояние обмена данными устройства (SCADA)	Спроектированный и активированный модуль SCADA контролирует его подключение к главной системе обмена данными.	Наличие активного обмена данными с главной системой можно проверить в меню [Работа / Отображение состояния / Scada].
		Для того чтобы контролировать это состояние, можно назначить его светодиодному индикатору и (или) выходному реле.
		Для получения подробной информации о состоянии обмена данными GOOSE см. главу Бр «IEC 61850».

9.1 Запуск (перезагрузка) устройства

Перезагрузка устройства выполняется в следующих ситуациях...

- Оно подключено к питающему напряжению.
- Пользователь инициирует (намеренно) перезапуск устройства.
- Выполняется сброс устройства с восстановлением заводских настроек по умолчанию.
- При внутренней самодиагностике устройства обнаруживается неустранимая ошибка.

Каждый перезапуск устройства МСА4 фиксируется как отдельная запись в журнале самодиагностики (см. ╚→ «Сообщения о самодиагностике»). Например:

Рис. 136: Пример сообщения о перезагрузке.

Причина запуска или перезагрузки устройства отображается в цифровом виде в строке «Вел_». Значение «1» в приведенном примере свидетельствует, что запуск был обычный. Полный список значений см. в таблице ниже.

Причина также фиксируется в журнале регистратора событий (событие — Sys.Restart).

Коды запуска устройства		
1.	Обычный запуск Запуск после обычного отключения питающего напряжения.	
2.	Перезагрузка оператором Перезагрузка устройства, запущенная оператором через ИЧМ или <i>Smart view</i> .	
3.	Перезагрузка средствами общего сброса Автоматическая перезагрузка, когда восстанавливаются заводские настройки устройства по умолчанию.	
4.	(устарел)	

Коды за	Коды запуска устройства		
5 .	(устарел)		
6 .	Неизвестный источник ошибки		
	Перезагрузка из-за неизвестного источника ошибки.		
7.	Принудительная перезагрузка (инициированная главным процессором)		
	Главный процессор выявил недопустимые условия или данные.		
8.	Превышено предельное время цикла защиты		
	Неожиданное прерывание цикла защиты.		
9.	Принудительная перезагрузка (инициированная цифровым сигнальным процессором)		
	Цифровой сигнальный процессор выявил недопустимые условия или данные.		
10 .	Превышено предельное время обработки измеренных значений		
	Неожиданное прерывание циклической обработки измеренных значений.		
11.	Падения питающего напряжения		
	Перезагрузка после кратковременного падения или отключения питающего напряжения.		
12.	Недопустимое обращение к памяти		
	Перезагрузка после недопустимого обращения к памяти.		

9.2 Сообщения о самодиагностике

В меню [Работа / Самодиагностика / Сообщения] можно получить доступ к списку сообщений о самодиагностике. Рекомендуется просматривать его при возникновении проблем, имеющих прямое отношение к устройству МСА4.

В ходе самодиагностики собираются разные сообщения, связанные с безопасностью (например, о вводе неверного пароля), а также сообщения о внутреннем состоянии МСА4, предупреждения и оповещения об ошибках.

Все типы сообщений, которые могут попасть в меню [Сообщения], подробно описываются в отдельном документе, «Руководстве по отладке HighPROTEC» (HPT-3.6-RU-TSG).

На панели ИЧМ устройства МСА4 имеются ограничения по типу отображаемых данных, поэтому сообщения в списке приводятся не целиком, а в сокращенной форме. Чтобы просмотреть подробную информацию, выберите нужное сообщение с помощью программных клавиш «▲» (вверх) и «▼» (вниз) и нажмите «▶» (ввод). С помощью программной клавиши «×» (удалить) можно удалить текущее сообщение и все предшествующие.

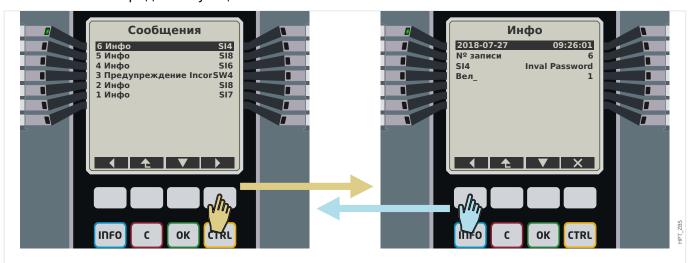


Рис. 137: Пример отображения сообщений о самодиагностике.

Рядом с каждым сообщением отображается идентификатор (например, **«S18** Перезапуск устройства» или **«S14** Неверный пароль»), который облегчает поиск информации в *руководстве по отладке*. Идентификаторы всегда начинаются с буквы **«S»**, за которой следует буква **«I»** (информация), **«W»** (предупреждение) или **«E»** (ошибка).

Описание

- **E** значит «ошибка», что указывает на серьезные проблемы. Рекомендуется найти сообщение в *руководстве по отладке*.
- **W** значит «предупреждение». Пользователю следует обратить внимание. Это может быть проблема, требующая решения, или просто информация все зависит от приложения. Например, сообщение «**SW4** Синхронизация времени», показанное ниже, сигнализирует о сбое (по крайней мере, временном) внешнего сигнала синхронизации времени. В большинстве промышленных приложений временная синхронизация системы играет очень важную роль, поэтому данное сообщение требует внимания. Зато в ситуации, когда пользователь сознательно отключил внешнюю синхронизацию, оно оказывается совершенно бесполезным.

• І значит «информация». Данные сообщения могут быть полезны при детальном анализе проблемы. В целом имеют чисто информативный характер и не сообщают ни о чем, что влияет на работу МСА4.

Просматривать сообщения о самодиагностике удобнее не на панели ИЧМ, а в ПО *Smart view* (см. пример ниже), поскольку там все они отображаются в одном диалоговом окне. Кроме того, на панели инструментов этого окна есть кнопки ① • позволяющие отфильтровать сообщения по степени серьезности. Можно, например, скрыть все информационные сообщения и оставить только «предупреждения» и «ошибки».

Также имеется кнопка удаления ओ, выполняющая ту же функцию, что и кнопка «×» на панели ИЧМ. Она позволяет удалить выбранное сообщение и все предшествующие.

Обратите внимание, что удалить отдельное сообщение невозможно ни на панели ИЧМ, ни в *Smart view*. Удаляются всегда все сообщения вплоть до выбранного.

9.3 Системный журнал

Можно настроить передачу новых сообщений о самодиагностике (Сообщения о самодиагностике») на конкретные выделенные серверы. Она будет осуществляться автоматически. Это позволяет иметь один центральный журнал, в который направляются все сообщения со всех устройств HighPROTEC. Вам не придется специально подключаться через *Smart view* к каждому устройству только ради того, чтобы собрать данные.

Для передачи сообщений используется протокол связи **Syslog**. Это простой, стандартный сетевой протокол UDP/IP для передачи текстовых сообщений максимальной длиной 1024 байт на UDP-порт 514 (номер порта на устройстве МСА4 можно настроить).

На сервере для принятия сообщений должен быть запущен syslog daemon. Набор доступных инструментов для проверки и просмотра сообщений зависит от настроек компьютера.

На устройстве MCA4 функция Syslog по умолчанию неактивна. Чтобы использовать ее, сначала активируйте:

• [Планир устр] «Системный журнал. Реж » = «акт »

Затем необходимо будет включить протокол Системный журнал, используя следующий параметр:

• [Пар устр / Безопасность / Системный журнал] «Функция» = «акт ».

Наконец, нужно будет указать адрес IP(v4) и номер порта сервера, чтобы задать для устройства MCA4 адрес для отправки сообщений.

- [Пар_ устр_Для параметра / Безопасность / Системный журнал] «Номер IPпорта» следует настроить правильный номер порта.
 - Если связь сервера осуществляется через стандартный порт, можно просто оставить порт 514, заданный по умолчанию.
- [Пар_ устр_ / Безопасность / Системный журнал] «IP-адрес, часть1» ... «IP-адрес, часть4» с помощью этих четырех параметров задается IP-адрес сервера, то есть каждый параметр представляет собой целое число от 0 до 255.

9.4 Устройство выведено из эксплуатации («Устройство остановлено»)

Защитное устройство будет выведено из эксплуатации, если есть неопределенное состояние, которое невозможно снять после трех перезагрузок.

В этом состоянии системный светодиодный индикатор будет гореть или мигать красным. На дисплее отобразится сообщение «Устройство остановлено» и 6-значный код ошибки, например, E01487.

Может оказаться, что специалистам по обслуживанию доступна дополнительная информация об ошибках. Такая информация позволяет специалистам по обслуживанию выполнять дополнительный анализ и диагностику.

ПРИМЕЧАНИЕ!

В таком случае обратитесь к специалистам компании Woodward по обслуживанию и сообщите им код ошибки.

Дополнительные сведения об устранении неисправностей см. в отдельном документе Руководство по отладке.

10 Ввод в эксплуатацию

Перед началом работы на открытом распределительном щите необходимо полностью отключить питание от щита и соблюсти следующие 5 правил техники безопасности: ,

ОПАСНОСТЬ!

Правила техники безопасности:

- Отключите устройство от источника питания
- Обезопасьте устройство от случайного включения
- Убедитесь, что устройство отключено
- Заземлите и закоротите все фазы
- Закройте все подключенные к электропитанию узлы

ОПАСНОСТЬ!

Во время работы категорически запрещается размыкать цепь вторичной обмотки трансформатора тока. Имеющееся в устройстве высокое напряжение является опасным для жизни.

ПРЕДУПРЕЖДЕНИЕ!

Даже если вспомогательное напряжение отключено, на соединительных приспособлениях может сохраняться опасное напряжение.

Необходимо строго соблюдать все местные, национальные и международные нормативы и правила по технике безопасности при работе с электрооборудованием (VDE, EN, DIN, IEC).

ПРЕДУПРЕЖДЕНИЕ!

Перед первоначальным подключением устройства к источнику напряжения необходимо убедиться в следующем:

- Устройство заземлено надлежащим образом
- необходимо проверить все сигнальные цепи;
- необходимо проверить все цепи управления;
- необходимо проверить проводку трансформатора;
- Трансформатор тока рассчитан на номинальный ток надлежащего значения
- Нагрузка трансформатора напряжения имеет надлежащее значение
- рабочие условия должны соответствовать техническим данным;
- проверьте номинал и работу предохранителей ТТ;
- Все цифровые входы подключены правильно
- Полярность и величина входного напряжения установлены правильно
- проверьте правильность подключения аналоговых входов и выходов;

ПРИМЕЧАНИЕ!

Допустимые отклонения величин измерения и настройки устройства соответствуют установленным допускам, погрешностям и техническим данным.

10.1 Ввод в эксплуатацию/проверка защиты

ПРЕДУПРЕЖДЕНИЕ!

Ввод в эксплуатацию и проверка защиты должны производиться только квалифицированным персоналом, допущенным к работам подобного рода. Перед вводом устройства в эксплуатацию необходимо тщательно ознакомиться со всей необходимой документацией.

ПРЕДУПРЕЖДЕНИЕ!

При проведении проверки всех функций защиты необходимо проверить следующее:

- Все ли сигналы/сообщения генерируются своевременно.
- Правильно ли работают все общие функции блокировок, которые задаются параметрами.
- Правильно ли работают все временные функции блокировок (через цифровые входы), которые задаются параметрами.
- Для проверки работы светодиодных индикаторов и функций реле им необходимо сопоставить соответствующие аварийные сигналы и функции отключения соответствующих защитных функций и элементов. Эти проверки необходимо провести при работающем оборудовании.

ПРЕДУПРЕЖДЕНИЕ!

Проверьте все временные блокировки (через цифровые входы):

Для предотвращения неполадок необходимо проверить все блокировки, которые относятся к срабатыванию или отключению функции защиты. Эта проверка может быть достаточно сложной и поэтому должна проводиться тем же персоналом, который занимался разработкой концепции защиты.

осторожно!

Необходимо проверить все основные блокировки отключения:

Необходимо провести проверку всех основных блокировок отключения.

ПРИМЕЧАНИЕ!

Перед первым запуском защитного устройства необходимо провести вторичную проверку всех интервалов времени отключения и параметров из списка настроек.

ПРИМЕЧАНИЕ!

Все описания функций, параметров, входов и выходов, которые не соответствуют схеме работы устройства, должны быть проигнорированы.

10.2 Вывод из эксплуатации — отключение реле

ПРЕДУПРЕЖДЕНИЕ!

Внимание! Демонтаж реле влечет за собой прекращение работы функций защиты. Убедитесь, что установлено резервное устройство. Если вы не уверены в последствиях демонтажа устройства, прекратите демонтаж! Не начинайте его.

ПРЕДУПРЕЖДЕНИЕ!

Перед началом демонтажа оповестите систему SCADA.

Отключите питание устройства.

Убедитесь, что корпус устройства отключен от электропитания и на внутренних узлах отсутствует опасное для жизни напряжение.

Отключите кабели от разъемов на задней панели устройства. Запрещается тянуть за шнур — держитесь за вилку! Если гнездо заклинило, воспользуйтесь отверткой.

Закрепите кабели и разъемы в корпусе устройства при помощи кабельных зажимов таким образом, чтобы предотвратить случайное электрическое соединение.

Удерживайте устройство спереди при вывинчивании крепежных гаек.

Аккуратной удалите устройство из корпуса.

Если это или аналогичное устройство в корпус устанавливаться не будет, закройте отверстие в дверце корпуса крышкой или постоянной панелью.

Закройте корпус.

10.3 Поддержка обслуживания и ввода в эксплуатацию

В сервисном меню различные функции поддерживают обслуживание и ввод устройства в эксплуатацию.

10.3.1 Общие положения

В меню [Сервис / Общий] можно инициировать перезагрузку устройства.

СДИ «Система ОК» («работает») горит зеленым, если после фазы загрузки (> «12 Этап загрузки») функции защиты устройства МСА4 работают. В любом ином случае следует обратиться к руководству по отладке.

10.3.2 Последовательность фаз

В меню [Работа / Отображение состояния / Контроль / Черед_ фаз] имеются сигналы, указывающие, отличается ли последовательность фаз, рассчитанная устройством, от значения параметра, настроенного в меню [СистПар / Общие настройки] »Черед_ фаз«. Подробнее см. в разделе

—> «Контроль последовательности фаз».

10.3.3 Принудительная настройка выходных контактов реле

ПРИМЕЧАНИЕ!

Принцип работы и основные области применения

ОПАСНОСТЬ!

После выполнения обслуживания СЛЕДУЕТ ОБЕСПЕЧИТЬ, чтобы выходные контакты реле работали в нормальном режиме. Если выходные контакты реле не будут работать должным образом, защитное устройство НЕ СМОЖЕТ обеспечивать защиту.

Для ввода в эксплуатацию или технического обслуживания можно принудительно настроить выходные контакты реле.

В данном режиме [Сервис / Режим теста (защ запр) / ВР Прин / РелВых Раз Хх] можно принудительно настроить выходные контакты реле:

- на постоянной основе или
- с использованием таймаута.

Если используется таймаут, «принудительное состояние» будет сохраняться, только пока работает данный таймер. По его истечении реле будет работать в нормальном режиме. Если используется постоянный режим, «принудительное состояние» будет сохраняться постоянно.

Доступно 2 варианта.

- Принудительная настройка одного реле «ВР Принх».
- Принудительная настройка целой группы выходных контактов реле *«Все Вых Прин»*.

Принудительная установка целой группы имеет преимущество по сравнению с принудительной установкой выходных контактов одного реле!

ПРИМЕЧАНИЕ!

Выходной контакт реле НЕ БУДЕТ реагировать на принудительную команду, так как будет в это время отключен.

ПРИМЕЧАНИЕ!

Выходной контакт реле будет реагировать на принудительную команду:

- Он не отключен и
- Если к реле применяется прямая команда.

Необходимо помнить, что принудительная установка всех выходных контактов реле (в одной группе сборки) имеет преимущество, по сравнению с принудительной установкой выходных контактов одного реле.

10.3.4 Отключение выходных контактов реле

ПРИМЕЧАНИЕ!

Сведения об имеющихся релейных выходах см. в разделе \Longrightarrow «Обзор слотов — группы сборки». Параметры, их значения по умолчанию и диапазоны значений можно найти в справочном руководстве.

Принцип работы и основные области применения

В данном режиме [Сервис / Режим теста (защ запр) / НЕЙТР_ / РелВых Раз Хх] [Обслуживание/Режим проверки/ОТКЛЮЧЕНИЕ] можно отключить целые группы выходных контактов реле. С помощью данного режима тестирования можно предотвратить переключение выходных контактов реле. Если выходные контакты реле отключены, можно выполнять техническое обслуживание без риска выведения целых процессов из рабочего режима.

ОПАСНОСТЬ!

По завершении обслуживания СЛЕДУЕТ ОБЕСПЕЧИТЬ, чтобы выходные контакты реле были СНОВА ВКЛЮЧЕНЫ. Если они не будут включены, защитное устройство НЕ СМОЖЕТ обеспечивать защиту.

ПРИМЕЧАНИЕ!

Блокировку зон выходов и контрольный контакт невозможно отключить.

В данном режиме [Сервис / Режим теста (защ запр) / НЕЙТР_] отключить целые группы выходных контактов реле можно:

- на постоянной основе или
- с использованием времени ожидания.

Если используется таймаут, «отключенное состояние» будет сохраняться, только пока работает данный таймер. По его истечении выходные контакты реле будут работать в нормальном режиме. Если используется постоянный режим, «отключенное состояние» будет сохраняться постоянно.

ПРИМЕЧАНИЕ!

Выходной контакт реле НЕ будет отключен, пока:

- он замкнут (и еще не сброшен);
- не истекло время таймера t-OFF-delay (время удержания выходного контакта реле);
- не активирован контроль отключения;
- не получена прямая команда.

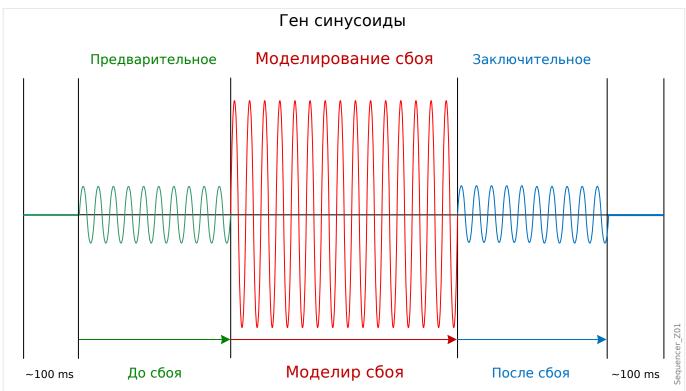
ПРИМЕЧАНИЕ!

Выходной контакт реле будет отключен, если он не замкнут и:

- нет работающего таймера t-OFF-delay (время удержания выходного контакта реле), и
- активирован контроль ОТКЛЮЧЕНИЯ, и
- поступила прямая команда.

10.3.5 Устройство моделирования сбоев (генератор последовательностей)*

* = доступность зависит от заказанного устройства.


Для ввода в эксплуатацию и анализа сбоев защитное устройство может моделировать измеренные значения.

[После настройки параметра Планир_ устр_] *«Реж_»* = «исп» меню моделирования можно найти в ветви меню [Сервис / Режим теста (защ запр) / Ген синусоиды].

Цикл моделирования состоит из трех состояний:

- До сбоя;
- Сбой:
- Состояние «После сбоя» (фаза).

Кроме этих трех состояний, непосредственно до и после сбоя наблюдаются короткие «стадии сброса» длительностью примерно 100 мс каждая, когда все функции защиты отключены. Это необходимо, чтобы снова включить все модули защиты и сопутствующие фильтры и снова привести их в рабочее состояние.

Состояния записываются с помощью регистраторов событий и сбоев следующим образом:

- **0** нормальная работа (т. е. без моделирования сбоя)
- 1 до сбоя
- 2 сбой
- **3** после сбоя
- 4 сброс/фаза инициализации

В ветви меню [Сервис / Режим теста (защ запр) / Ген синусоиды / Конфиг_ / Интервалы] можно задать продолжительность каждой фазы. Кроме того, можно определить измеренные значения для моделирования (например, напряжения, токи и соответствующие углы) для каждой фазы (и заземления). Моделирование будет прекращено, если фазовый ток превысит $0,1\cdot$ In. Моделирование может быть возобновлено через пять секунд после падения тока ниже $0,1\cdot$ In.

Кроме того, в ветви меню [Сервис / Режим теста (защ запр) / Ген синусоиды / Процесс] имеются два параметра блокировки «BнБл κ 1» и «BнБл κ 2». Сигналы, назначенные любому из них, блокируют устройство моделирования сбоев. Например, из соображений безопасности можно рекомендовать блокировать устройство моделирования сбоев, если выключатель находится в замкнутом положении.

Кроме того, имеется возможность назначить сигнал параметру «Принуд закл». Затем сигнал прерывает фактическое состояние устройства моделирования неисправностей («До сбоя» или «Сбой») и осуществляется мгновенный переход в состояние «После сбоя». Пример типового применения — проверка защитного устройства на способность правильно генерировать команду размыкания, чтобы не всегда приходилось ждать стандартное завершение состояния «Сбой». Можно назначить сигнал отключения параметру «Принуд закл», чтобы состояние «Сбой» завершилось сразу после того, как будет правильно сгенерирован сигнал отключения.

ОПАСНОСТЬ!

Перевод устройства в режим моделирования означает его вывод из эксплуатации на время моделирования. Не используйте данную функцию во время эксплуатации устройства, если невозможно гарантировать наличие правильно работающей резервной защиты.

ПРИМЕЧАНИЕ!

На время работы устройства моделирования сбоев счетчики энергии останавливаются.

ПРИМЕЧАНИЕ!

Моделируемое напряжение всегда будет фазным независимо от того, какой способ подключения трансформаторов напряжения магистрали используется (межфазный/ звезда/разомкнутый треугольник).

ПРИМЕЧАНИЕ!

Вследствие внутренних зависимостей частота модуля моделирования на 0,16% выше номинальной.

Холодное моделирование

Моделирование без отключения выключателя

Команда отключения («КомОткл») всех функций защиты заблокирована. Возможно, функция защиты отключится, но команда отключения не будет сгенерирована.

• Настроить [Сервис / Режим теста (защ запр) / Ген синусоиды / Процесс] «Реж откл кмд» = «Нет кмд откл»

Горячее моделирование

Режим моделирования может размыкать выключатель

• Настроить [Сервис / Режим теста (защ запр) / Ген синусоиды / Процесс] «Реж откл кмд» = «С кмд откл»

Варианты пуска/останова

Ручной пуск, без останова

Полный цикл: «До сбоя», «Сбой», «После сбоя».

- Настроить [Сервис / Режим теста (защ запр) / Ген синусоиды / Процесс] «Принуд закл» = «Нет присвоения»
- Нажать/вызвать на экран кнопку прямого управления [Сервис / Режим теста (защ запр) / Ген синусоиды / Процесс] «Пуск моделир».

Ручной пуск, останов с помощью внешнего сигнала

Принудительная установка состояния «После сбоя»: как только этот сигнал станет истинным, моделирование сбоя будет принудительно переведено в режим после сбоя.

- Настроить параметр [Сервис / Режим теста (защ запр) / Ген синусоиды / Процесс] «Принуд закл» на нужный сигнал.
- Нажать/вызвать на экран кнопку прямого управления [Сервис / Режим теста (защ запр) / Ген синусоиды / Процесс] «Пуск моделир».

Ручной пуск, ручной останов

Как только поступит команда останова, моделирование сбоя будет прекращено и устройство МСА4вернется к нормальной работе.

- Пуск: как описано выше.
- Останов: нажать/вызвать на экран кнопку прямого управления [Сервис / Режим теста (защ запр) / Ген синусоиды / Процесс] «Стоп моделир».

Пуск с помощью внешнего сигнала

Пуск устройства моделирования сбоя осуществляется с помощью внешнего сигнала (за исключением случаев, когда фазный ток превышает $0.1 \cdot \ln$ или устройство моделирования сбоя заблокировано; также см. описание выше).

• Настроить параметр [Сервис / Режим теста (защ запр) / Ген синусоиды / Процесс] «Моделир внеш пуска» на нужный сигнал.

11 Сервисное и гарантийное обслуживание

В рамках сервисного и гарантийного обслуживания должны проводиться следующие проверки аппаратного обеспечения устройства МСА4:

Выходные реле

Каждые 1-4 года в зависимости от внешних условий.

• Проверка выходных реле с помощью меню тестирования [Сервис / Режим теста (защ запр) / ВР Прин] / [Сервис / Режим теста (защ запр) / НЕЙТР_], см. раздел «Поддержка обслуживания и ввода в эксплуатацию»)

Цифровые входы

Каждые 1-4 года в зависимости от внешних условий.

• Подайте напряжение на цифровые входы и проверьте, что появился соответствующий сигнал о состоянии.

Штепсельные разъемы подачи тока и измерения силы тока

Каждые 1-4 года в зависимости от внешних условий.

• Подайте испытательный ток на входы измерения тока и проверьте отображаемые измеренные значения, получаемые с МСА4.

Штепсельные разъемы подачи напряжения и измерения напряжения

Каждые 1-4 года в зависимости от внешних условий.

• Подайте испытательное напряжение на входы измерения напряжения и проверьте отображаемые измеренные значения, получаемые с МСА4.

Батарея

Обычно срок службы батареи превышает 10 лет. Замена осуществляется Woodward.

Примечание. Батарея служит для буферизации данных часов (часов реального времени). Отказ батареи не оказывает никакого влияния на функциональность устройства. Единственная ее функция — буферизация часов на время, когда устройство обесточено.

• Устройство выполняет проверку батареи в рамках самодиагностики, поэтому специальной проверки не требуется. При низком уровне заряда батареи СДИ системы мигает красным/зеленым и генерируется код ошибки (см. руководство по отладке).

Контакт самодиагностики

Каждые 1-4 года в зависимости от внешних условий.

• Выключите вспомогательный источник питания устройства. После этого должно произойти размыкание Контакт самодиагностики. Снова включите вспомогательный источник питания.

Механический монтаж устройства на дверце шкафа электроавтоматики

При каждом техническом обслуживании или ежегодно:

Крутящий момент всех кабельных соединений

При каждом техническом обслуживании или ежегодно:

• Проверьте крутящий момент, указанный в спецификациях в главе «Установка» (> «Устройство МСА4 — установка и подключение»), в которой описываются модули оборудования.

Рекомендуется проводить проверку системы защиты каждые 4 года. При условии, что проверка работоспособности будет выполняться не реже, чем через каждые 3 года, этот интервал можно будет увеличить до 6 лет.

12 Технические данные

ПРИМЕЧАНИЕ!

Используйте только медные проводники, 75 °C.

Калибр проводника — AWG 14 [2,5 мм²].

Климатические условия и условия внешней среды

Температура хранения:	От -30°C до +70°C (от -22°F до 158°F)
Рабочая температура:	От -20°C до +60°C (от -4°F до 140°F)
Допустимые среднегодовые уровни влажности. Среднее значение:	<75% (отн.) (в течение 56 дней допускается отн. влажность до 95%)
Допустимая высота установки над уровнем моря:	<2000 м (6561,67 фута) При установке на высоте 4000 м (13 123,35 фута) может потребоваться изменение рабочего и испытательного напряжения.

Степень загрязнения и класс оборудования

Степень загрязнения:	2
Класс оборудования:	1

Класс защиты EN 60529

Передняя панель ИЧМ с уплотнительным приспособлением	IP54
Передняя панель ИЧМ без уплотнительного приспособления	IP50
Разъемы задней панели	IP20

Плановые испытания

Проверка изоляции в соответствии с IEC60255-5	Все испытания необходимо проводить для цепи заземления и других цепей вводавывода.
Вспомогательный источник напряжения, цифровые выходы, входы измерения тока, выходы сигнального реле	2,5 кВ (эфф.)/50 Гц
Входы измерения напряжения:	3,0 кВ (эфф.)/50 Гц
Все проводные коммуникационные интерфейсы:	1,5 кВ пост.

Корпус

Корпус В2, высота/ширина: (8 кнопок/дверное крепление)	183 мм/212,7 мм
Корпус В2, высота/ширина: (8 кнопок/19 дюймов)	173 мм (4 ПК)/ 212,7 мм (42 ЗК)
Глубина корпуса (вместе с разъемами):	208 мм (8,189 дюйма)
Материал корпуса:	Алюминиевый экструдированный профиль
Материал передней панели:	Алюминий/фольга
Монтажное положение:	Горизонтальное (допускается наклон $\pm 45^{\circ}$ относительно оси X)
Macca:	прибл. 4,7 кг (10,36 фунта)

Измерение тока и тока утечки на землю

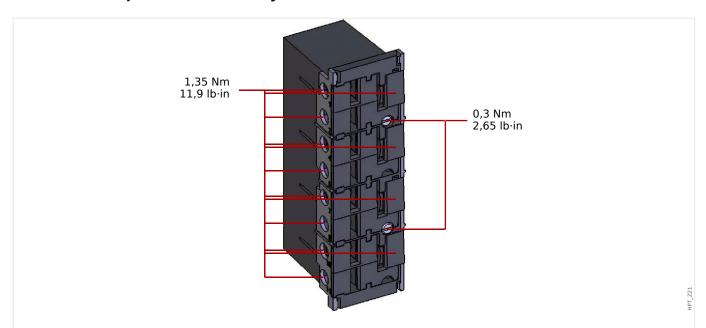


Рис. 138: Штепсельные соединения со встроенными закорачивающими перемычками (стандартные токовые входы)

Диапазон частот:	50/60 Гц ±10%
Разъемы:	Винтовые разъемы со встроенными закорачивающими перемычками (контактами)
Винты	невыпадающие винты M4, соотв. VDEW
Поперечное сечение соединений:	1 или 2 по 2,5 мм² (2 шт., AWG 14) с обжимной втулкой

1 или 2 по 4,0 мм² (2 шт., AWG 12) с кольцевой или обычной кабельной муфтой
1 или 2 по 6 мм 2 (2 шт., AWG 10) с кольцевой или обычной кабельной муфтой
Для платы измерения тока могут использоваться клеммные колодки как с 2 (двумя) проводами калибра AWG 10, 12, 14, так и с одним проводом.

Входные сигналы фазового тока и тока утечки на землю	
Номинальный ток:	1 A/5 A
Максимальный диапазон измерения:	до 40 x In (фазовые токи), до 25 x In (стандартные токи утечки на землю)
Емкость:	4 x In/непрерывно
Допустимая перегрузка по току (по результатам испытаний):	30 x ln/10 c 100 x ln/1 c 250 x ln/10 мс (1 полуволна)
Потребляемая мощность:	Входы фазового тока при $In=1$ A: $S=25$ мBA при $In=5$ A: $S=90$ мBA Входной сигнал тока утечки на землю при $In=1$ A: $S=25$ мBA при $In=5$ A: $S=90$ мBA

Входные сигналы малых токов утечки на землю	
Номинальный ток:	1 A/5 A
Максимальный диапазон измерения:	до 2,5 x In
Емкость:	2 x In/непрерывно
Допустимая перегрузка по току (по результатам испытаний):	10 x ln/10 c
	25 x ln/1 c
	100 x ln/10 мс (1 полуволна)
Потребляемая мощность:	при 1 A: S = 550 мВА

Входные сигналы малых токов утечки на землю	
	при 0,1 A: S = 7 мВА
	при 5 A: S = 870 мВА
	при 0,5 A: S = 10 мВА

Измерение напряжения и остаточного напряжения («TU»)

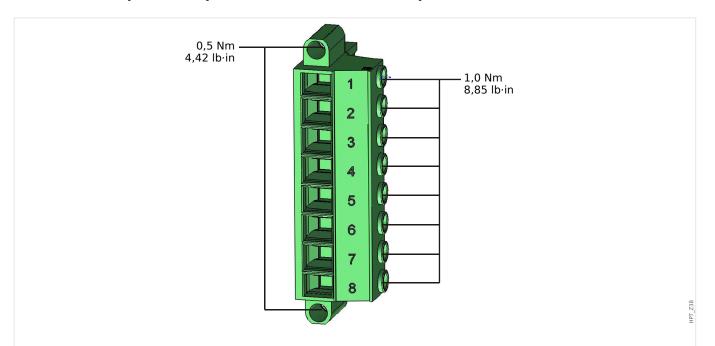


Рис. 139: Измерительные контакты платы измерения напряжения «TU» ($\mathrel{\sqsubseteq}>$ «TU — измерительные входы напряжения»).

Следующие технические данные относятся только к 8-контактным (большим) разъемам измерения напряжения.

Номинальное напряжение:	60-520 В (настраивается)
Максимальный диапазон измерений:	800 Впер.
Норма непрерывной нагрузки:	800 Впер.
Потребляемая мощность:	при Vn = 100 B: S = 22 мВА
	при Vn = 110 B: S = 25 мВА
	при Vn = 230 B: S = 110 мВА
	при Vn = 400 B: S = 330 мВА
Диапазон частот:	50/60 Гц ±10%
Разъемы:	Винтовые разъемы
Поперечное сечение соединений:	мин. 0,5 мм² (AWG 20) макс. 6,0 мм² (AWG 10) с обжимной втулкой или без нее

Измерение напряжения и остаточного напряжения («TU-OR5»)

Следующие технические данные относятся к 18-контактным (комбинированным)

• Плата измерения напряжения «TU-OR5» (> «TU-OR5 — группа сборки для измерения напряжения с 5 выходными реле») оснащена не только входами измерения напряжения, но и пятью выходными реле (> «12 Релейные выходы»).

Номинальное напряжение:	60-200 В (настраивается)
Максимальный диапазон измерений:	300 Впер.
Норма непрерывной нагрузки:	300 Впер.
Потребляемая мощность:	при Vn = 100 B: S = 22 мВА
	при Vn = 110 B: S = 25 мВА
Диапазон частот:	50/60 Γц ±10%
Разъемы:	Винтовые разъемы
Поперечное сечение соединений:	мин. 0,25 мм² (AWG 23) макс. 2,5 мм² (AWG 14) с обжимной втулкой или без нее

Измерение частоты

разъемам.

Номинальная частота:	50 Гц/60 Гц

Напряжение питания

Вспомогательное напряжение:	24-270 Впост./48-230 Впер. (-20/+10%) ≂
Время буферизации при сбое подачи электропитания:	≥ 50 мс при мин. вспомогательном напряжении

	По истечении времени буферизации устройство отключится. Примечание: возможно прерывание связи.
Максимальный допустимый ток включения:	$18 \ A - $ пиковое значение, если < 0,25 мс $12 \ A - $ пиковое значение, если < 1 мс
Предохранитель (встроенный в широкодиапазонный блок питания):	6,3 A с отставанием по времени (Данный предохранитель не подлежит замене, он необходим для безопасной работы.)

В блок питания необходимо установить предохранитель:

- 2,5 А, миниатюрный, с отставанием по времени, 5 х 20 мм (ок. 1/5 х 0,8 дюйма) в соответствии с IEC 60127
- 3,5 A, миниатюрный, с отставанием по времени, 6,3 x 32 мм (ок. 1/4 x $1\frac{1}{4}$ дюйма) в соответствии с UL 248-14

Потребляемая мощность

Диапазон потребляемой мощности	Потребляемая мощность в холостом режиме	Максимальная потребляемая мощность
24-270 Впост.:	Прибл. 8 Вт	Прибл. 13 Вт
48-230 Впер.	Прибл. 8 Вт/16 ВА	Прибл. 13 Вт/21 ВА
(для частоты 50-60 Гц):		

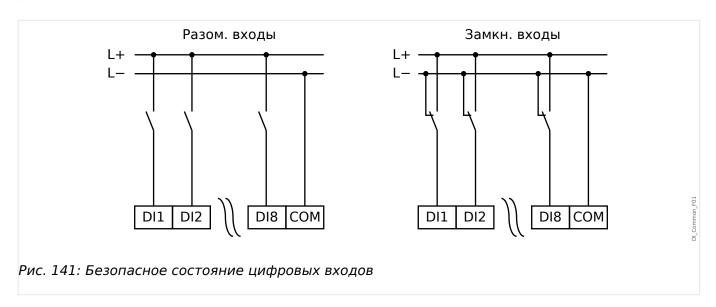
Дисплей

Тип дисплея:	ЖКИ со светодиодной подсветкой
Разрешение графического дисплея:	128 х 128 пикселя

СДИ

Тип СДИ:	Двухцветные: красный/зеленый
Количество СДИ, корпус В2:	15

USB интерфейса передней панели


Тип:	Mini B
------	--------

Часы реального времени

Запас хода часов реального времени:	не менее 1 года.
-------------------------------------	------------------

Цифровые входы

Максимальное входное напряжение:	300 Впост. / 259 Впер.
Входной ток:	пост. <4 мА
	пер. <16 мА
Время реакции:	< 20 мс
Время выпадения:	
Замкн. входы	< 30 мс
Разом. входы	< 90 MC

Пороговые значения переключения:	24 В пост. тока, 48 В пост. тока, 60 В пост. тока, 110 В пост. тока, 110 В пер. тока, 230 В пост. тока, 230 В пер. тока
Un = 24 Впост.	
Порог переключения 1 — ВКЛ:	мин. 19,2 Впост.
Порог переключения 1 — ВЫКЛ:	макс. 9,6 Впост.
Un = 48 B/60 Впост.	
Порог переключения 2 — ВКЛ:	мин. 42,6 Впост.
Порог переключения 2 — ВЫКЛ:	макс. 21,3 Впост.
Un = 110/120 Впер. / пост.	
Порог переключения 3 — ВКЛ:	мин. 88,0 Впост./88,0 Впер.
Порог переключения 3 — ВЫКЛ:	макс. 44,0 Впост./44,0 Впер.
Un = 230/240 Впер. / пост.	

Порог переключения 4 — ВКЛ:	мин. 184 Впост./184 Впер.
Порог переключения 4 — ВЫКЛ:	макс. 92 Впост./92 Впер.
Разъемы:	Винтовой разъем

Релейные выходы

Постоянный ток:	5 А пер./пост.
Максимальный ток замыкания:	25 А пер./пост. в течение 4 с
	30 А пер./пост. в течение 0,5 с
	48 Вт (ВА) при L/R = 40 мс
	30 A/230 Впер. в соответствии с ANSI IEEE C37.90-2005
	30 A/250 Впост. в соответствии с ANSI IEEE C37.90-2005
Максимальный ток отключения:	5 А пер. до 240 Впер.
	4 A пер. при 230 B и $\cos \phi = 0.4$
	5 А пост. до 30 В (резист.)
	0,3 А пост. при 250 В (резист.)
	0,1 А пост. при 220 В и L/R = 40 мс
Максимальное напряжение переключения:	250 Впер. / 250 Впост.
Коммутационная способность:	3000 BA
Время срабатывания: (*)	ном. 7 мс
Время сброса: (*)	ном. 3 мс
Тип контакта:	1 переключатель, нормально разомкнутый или нормально замкнутый
Разъемы:	Винтовые разъемы

^(*) Время срабатывания и сброса представляют собой продолжительность коммутации, которая определяется исключительно конструкцией (катушка — замыкание/размыкание контакта), то есть без учета времени, которое требуется программе для расчета решений.

Контрольный контакт (самодиагностика)

Постоянный ток:	5 А пер./пост.
Максимальный ток замыкания:	15 А пер./пост. в течение 4 с
Максимальный ток отключения:	5 А пер. до 250 Впер.

	5 А пост. до 30 В (резист.)
	0,25 А пост. при 250 В (резист.)
Максимальное напряжение переключения:	250 Впер. / 250 Впост.
Коммутационная способность:	1250 BA
Тип контакта:	1 переключающий контакт
Разъемы:	Винтовые разъемы

Синхронизация времени IRIG-B00X

Номинальное входное напряжение:	5 B
Соединение:	Винтовые разъемы (витая пара)

RS485*

*доступность зависит от устройства

Соединение:	9-контактный разъем D-Sub (внешние оконечные резисторы/в D-Sub)
	или 6 винтовых разъемов RM 3,5 мм (138 MIL) (внутренние оконечные резисторы)

осторожно!

Если в интерфейсе RS485 имеются разъемы, следует использовать экранированный кабель связи.

Оптоволоконный модуль с разъемом ST*

*доступность зависит от устройства

Разъем:	Порт ST
Совместимый оптоволоконный кабель:	HCS 50/125 мкм, 62,5/125 мкм, 100/140 мкм и 200 мкм
Длина волны	820 нм
Минимальное значение оптической входной мощности:	-24,0 дБм
Минимальное значение оптической выходной мощности:	-19,8 дБм для волокна 50/125 мкм
	-16,0 дБм для волокна 62,5/125 мкм
	-12,5 дБм для волокна 100/145 мкм
	-8,5 дБм для волокна HCS 200 мкм

Максимальная длина линии:	прибл. 2,7 км (в зависимости от затухания
	линии)

Необходимо помнить: Скорость передачи данных оптических интерфейсов ограничена до 3 Мбод для Profibus.

Оптический модуль Ethernet c разъемом LC*

*доступность зависит от устройства

Разъем:	Порт LC
Совместимый оптоволоконный кабель:	50/125 мкм и 62,5/125 мкм
Длина волны:	1300 нм
Минимальное значение оптической входной мощности:	-30,0 дБм
Минимальное значение оптической выходной мощности:	-22,5 дБм для волокна 50/125 мкм -19,0 дБм для волокна 62,5/125 мкм
Максимальная длина линии:	прибл. 2 км (в зависимости от затухания линии)

Smart viewПодключение к

Устройство MCA4 может обмениваться данными с рабочим ПО Smart view.

- Подключение через USB (с помощью USB-интерфейса на передней панели устройства MCA4).
- Подключение TCP/IP (с помощью интерфейса Ethernet* на задней панели устройства MCA4).

(*наличие зависит от устройства)

Одновременно допускается только 3 сеанса связи ПО *Smart view* с устройством MCA4.

Сообщения о самодиагностике

Емкость хранения сообщений о самодиагностике (см. раздел ⊫> «Сообщения о самодиагностике»):

- **E** ошибки до 500 сообщений. Каждое последующее (501-е) сообщение стирает самое старое сообщение об ошибке.
- **W** предупреждения до 500 сообщений. Каждое последующее (501-е) сообщение стирает самое старое сообщение с предупреждением.
- І информационные сообщения до 500. Каждое последующее (501-е) сообщение стирает самое старое информационное сообщение.

Этап загрузки

После включения питания защита будет работать примерно в течение 9 с. Примерно через 58 секунды (в зависимости от конфигурации) фаза загрузки будет закончена (произойдет инициализация интерфейса пользователя и связи).

12.1 Спецификации/погрешности

12.1.1 Технические характеристики часов реального времени

Разрешение:	1 MC
Погрешность:	< 1 мин / месяц (+20 °C [68 °F])
	< ±1 мс при синхронизации через IRIG-B

Допуски синхронизации времени

Точность различных протоколов синхронизации времени отличается:

Используемый протокол	Отклонение времени в месяц	Отклонение от времязадающего генератора
Без синхронизации времени	<1 мин (при +20 °C)	Отклонение времени
IRIG-B	Зависит от временного отклонения времязадающего генератора	<±1 мс
SNTP	Зависит от временного отклонения времязадающего генератора	$<\pm 1$ мс, если состояние сетевого подключения ХОРОШЕЕ (см. рабочее состояние SNTP)
IEC60870-5-103	Зависит от временного отклонения времязадающего генератора	<±1 мс
Modbus TCP	Зависит от временного отклонения времязадающего генератора	Зависит от сетевой нагрузки
Modbus RTU	Зависит от временного отклонения времязадающего генератора	<±1 мс
DNP3 TCP	Зависит от временного отклонения времязадающего генератора	Зависит от сетевой нагрузки
DNP3 UDP	Зависит от временного отклонения времязадающего генератора	Зависит от сетевой нагрузки
DNP3 RTU	Зависит от временного отклонения времязадающего генератора	<±1 мс

12 Технические данные

12.1 Спецификации/погрешности

Обратите внимание, что наличие протоколов зависит от варианта заказанного устройства МСА4 (см. раздел $\sqsubseteq >$ «Бланк заказа устройства»).

12.1.2 Технические характеристики собираемых значений измерений Измерение фазового тока и тока утечки на землю

Диапазон частот:	50 Γц/60 Γц ± 10%* ¹⁾
Точность:	класс 0,5
Погрешность амплитуды при I < In:	±0,5% номинального тока *2) *3)
Погрешность амплитуды при I < In:	$\pm 0,5\%$ измеренного тока $^{*2)}$ $^{*3)}$
Погрешность амплитуды при I < In:	±1,0% измеренного тока *2) *3)
Гармоника:	До 20%, 3-я гармоника ±2%
	До 20%, 5-я гармоника ±2%
Частотное воздействие:	$<\pm2\%$ / Гц в диапазоне ±5 Гц для параметризованной номинальной частоты
Температурное воздействие:	$<\pm1\%$ в диапазоне от 0°C до $+60$ °C ($+32$ °F до $+140$ °F)

 $^{^{*1)}}$ Широкий частотный диапазон (от 10 до 70 Гц) вне пределов диапазона 50-60 Гц $\pm 10\%$ fN. Значения ДПФ становятся менее точными, защитные элементы, имеющие значения ДПФ в качестве входных, могут быть автоматически заблокированы.

Измерение напряжения между фазой и землей и напряжения нулевой последовательности

Диапазон частот:	50 Гц/60 Гц ± 10%* ¹⁾
Точность для измеряемых значений:	класс 0,5
Погрешность амплитуды для V < Un:	$\pm 0,5\%$ номинального напряжения, или $\pm 0,5$ В $^{*2)}$
Погрешность амплитуды для V > Un:	$\pm 0,5\%$ измеренного напряжения, или $\pm 0,5$ В $^{*2)}$
Точность для расчетных значений:	Класс 1.0
Погрешность амплитуды для V < Un:	$\pm 1,0\%$ номинального напряжения, или ± 1 В $^{*2)}$
Погрешность амплитуды для V > Un:	$\pm 1,0\%$ расчетного напряжения, или ± 1 В $^{*2)}$

^{*2)} Точность для истинных СКЗ в широком частотном диапазоне: 30-70 Гц — точность соответствует указанной выше. < 30 Гц точность составляет < 3%. Истинные СКЗ обновляются только с каждым полным циклом (периодом времени).

 $^{^{*3)}}$ Для малых токов утечки на землю точность не зависит от номинального значения, но приводится для значения 100 мA (при $\ln = 1$ A) соответственно. 500 мA (при $\ln = 5$ A).

Гармоника:	До 20% З ^{ей} гармоники ±1%
	До 20% 5 ^{ой} гармоники ±1%
Частотное воздействие:	$<\pm2\%$ / Гц в диапазоне ±5 Гц для параметризованной номинальной частоты
Температурное воздействие:	$<\pm1\%$ в диапазоне от 0 до $+60~^{\circ}\mathrm{C}$

- $^{*1)}$ Широкий частотный диапазон (от 10 до 70 Гц) вне пределов диапазона от 50 Гц до 60 Гц $\pm 10\%$ fN. Значения ДПФ становятся менее точными, защитные элементы, имеющие значения ДПФ в качестве входных, могут быть автоматически заблокированы.
- *2) Точность для истинных СКЗ в широком частотном диапазоне: от 30 до 70 Гц точность соответствует указанной выше.

Точность при f < 30 Γ ц составляет <3%. Обычно точность < $\pm 0,5\%$ в диапазоне от 50 Γ ц до 60 Γ ц $\pm 5\%$, вне пределов этого диапазона точность составляет < $\pm 1\%$.

Вне диапазона от 50 Γ ц до 60 Γ ц $\pm 10\%$ истинные СКЗ обновляются только с каждым полным циклом (периодом времени). .

Измерение частоты

Номинальная частота:	от 50 до 60 Гц
Точность:	$\pm 0.05\%$ значения fN в диапазоне от 40 до 70 Гц при напряжении $>\!50$ В
Зависимость частотного синхронизма от напряжения:	в диапазоне частоты от 0,15 x Un

Измерение энергопотребления *)

Погрешность счетчика	1,5% измеренной электроэнергии, или 1,5% SN·1 ч
электроэнергии:	

*) Погрешность при 0,8-1,2 х Un (при Un = 100 B), |PF| > 0,5, симметричной нагрузке,

 $SN = 1,73 \cdot$ номинал $TH \cdot$ номинал TT

Измерение мощности *)

S, P, Q:	$<\pm1\%$ измеренного значения, или 0,1% SN, (для общей)
	$<\pm2\%$ измеренного значения, или 0,2% SN, (для СКЗ)
P1, Q1 (прямая последовательность):	±2% измеренного значения, или 0,2% SN

^{*)} Погрешность при $0.8-1.2 \times Un$ (при Un = 100 B), |PF| > 0.5, симметричной нагрузке,

 $SN = 1,73 \cdot$ номинал $TH \cdot$ номинал TT

Измерение коэффициента мощности *)

KM	$<\pm0,01$ измеренного коэффициента мощности, или 1°
	I > 30% Іном и S > 2% SN

 $^{^{*)}}$ Погрешность при 0,8-1,2 x Un (при Un = 100 B), |PF|>0,5, симметричной нагрузке, SN = 1,73 \cdot номинал TH \cdot номинал TT

12.1.3 Точность защитных элементов

ПРИМЕЧАНИЕ!

Задержка отключения представляет собой время между подачей аварийного сигнала и отключением. Точность показателя рабочего времени относится ко времени между моментом регистрации сбоя и моментом срабатывания защитного элемента.

Эталонные условия для всех элементов защиты: синусоида, номинальная частота, $O\Gamma N < 1\%$, метод измерения: основной.

12.1.3.1 Защита от максимального фазового тока

Элементы защиты от максимального тока	Точность *1) *2)
I[x]	
l>	$\pm 1,5\%$ от значения настройки, или $\pm 0,1\%$ Іном.
Коэффициент падения	97% или 0,5% Іном
t	DEFT
	±1% или ±10 мс
Время срабатывания	< 36 MC
При проверке тока ≥ 2-разовое значение срабатывания	(направленные элементы: < 40 мс)
Время размыкания	< 55 MC
txap	±5% (в соответствии с выбранной кривой)
t-сброс задержки (<i>«Реж_ сбр_»=</i> «задержка»)	±1% или ±10 мс

Элементы защиты от максимального тока:	Точность *3)
I[x]	
при значении параметра <i>«Метод</i> измерений» = «I2»	
(Ток отрицательной последовательности чередования фаз)	
l>	$\pm 2,0\%$ от установочного значения или $\pm 1\%$ In
Коэффициент падения	97% или 0,5% In
t	DEFT
	±1% или ±10 мс
Время срабатывания	< 60 MC
При проверке тока ≥ 2-разовое значение срабатывания	
Время размыкания	< 45 MC

• $^{*1)}$ Если выбрано СКЗ и |f-fN|>10% fN, время срабатывания и размыкания составляет <4 циклов.

Если f < 30 Гц, точность срабатывания составляет $\pm 6\%$ от значения настройки, или 5% Іном.

- $^{*2)}$ Точность УМЧ для направленных элементов: $\pm 3^{\circ}$ при I >20% Іном.
- $^{*3)}$ Работает только в частотном диапазоне |f fN| < 10% fN.

12.1.3.2 Защита от максимального тока замыкания на землю

Элементы защиты от максимального тока замыкания на землю: 3lo[x]	Точность *1) *2) *3)
310>	$\pm 1,5\%$ от установочного значения или $\pm 1\%$ Іном
Коэффициент падения	97% или 0,5% Іном
t	DEFT
	±1% или ±10 мс
Время срабатывания	< 45 MC
Начиная с IE, превышающего 1,2 x IE>	
Время размыкания	< 55 MC
txap	±5% (в соответствии с выбранной кривой)
t-сброс задержки (<i>«Реж_ сбр_»=</i> «задержка»)	±1% или ±10 мс
VG>	$\pm 1,5\%$ от значения настройки, или $\pm 0,1\%$ Un.
Коэффициент падения	97% или 0,5% Un

• $^{*1)}$ Если выбрано СКЗ и |f-fN|>10% fN, время срабатывания и размыкания составляет <4 циклов.

Если f < 30 Гц, точность срабатывания составляет $<\pm 6\%$ от значения настройки, или 5% Іном.

- $^{*2)}$ Точность УМЧ для направленных элементов: $\pm 3^{\circ}$ при 3lo >20% Іном.
- *3) Для малых токов утечки на землю точность не зависит от номинального значения, но приводится для значения 100 мA (при 100 mA))

12.1.3.3 Определение направления

ПРИМЕЧАНИЕ!

Поскольку определение направления основано на значениях ДПФ, направленные элементы работают только в номинальном диапазоне (fN \pm 5 Гц).

Чувствительность при определении направления:	Значение	Уровень высвобождения Іном = 1 A (5 A)	Уровень блокировки Іном = 1 A (5 A)
I — V (3-фазы)	1	10 мА/50 мА	5 mA/25 mA
	U	0,35 V	0,25 V

Чувствительность к направлению заземления:	Значение	Уровень высвобождения	Уровень блокировки
3lo[x]		Іном = 1 A (5 A)	Іном = 1 A (5 A)
3Iо изм — 3U0	ЗIo изм	10 mA/50 mA	5 mA/25 mA
cos(3lo изм)	310	1 мА/5 мА	0,5 мА/2,5 мА
sin(3lo изм)	(чувствительное) 3U0	0,35 V	0,25 V
31о расч — 3U0	ЗІо расч	18 мА/90 мА	11 mA/55 mA
cos(3lo pacч) sin(3lo pacч)	3U0	1 V	0,8 V
3I расч Іпол (3I изм)	31о расч	18 мА/90 мА	11 mA/55 mA
	3Io изм	10 мА/50 мА	5 мА/25 мА
	3Io (чувствительное)	1 mA/5 mA	0,5 мА/2,5 мА
3Iо изм — отр.	12	10 mA/50 mA	5 MA/25 MA
3lo расч — отр.	U2	0,35 V	0,25 V

12.1.3.4 Тепловая защита

Тепловая модель:	Точность *1)
ТепМод	
K·16	±5% от значения настройки, или 1% Іном
Задержка отключения, в соответствии с уравнением \Longrightarrow «4.7 Время отключения ступени защиты»	±5% от рассчитанного значения или ±1 с
(Объект в холодном состоянии, то есть без предыдущего нагрева)	
Коэффициент падения	97%

 $^{^{*1)}}$ Точность для этих настроек:

- $K \cdot 16 \ge 0.1$ IHOM
- т-нагр ≤ 30000 с
- τ-охл ≤ 30000 с

12.1.3.5 Защита по току

Контроль бросков:	Точность
IH2	
IH2 / IH1	±1% Iном
Коэффициент падения	5% ІН2 или 1% Іном
Время срабатывания	$< 30 \text{ mc}^{*1)}$

• $^{*1)}$ Контроль бросков возможен, если основная гармоника (IH1) > 0,1 Іном и 2^{9} гармоника (IH2) > 0,01 Іном.

Несимметричный ток:	Точность *1)
I2>[x]	
12>	$\pm 2\%$ от установочного значения или $\pm 1\%$ Іном
Коэффициент падения	97% или 0,5% Іном
%(I2/I1)	±1%
t	DEFT
	±1% или ±10 мс
Время срабатывания	< 70 MC
Время размыкания	< 50 MC
K	±5% INV
т-охл.	±5% INV

[•] $^{*1)}$ Ток обратной последовательности I2 должен составлять $\geq 0,01$ x Іном, ток прямой последовательности I1 должен составлять $\geq 0,1$ x Іном.

12.1.3.6 Защита по напряжению

Защита по напряжению:	Точность *1)
KH[x]	
Сраб	$\pm 1,5\%$ от установочного значения или $\pm 1\%$ Un
Коэффициент падения	Корректируется, минимум 0,5% Un
t	DEFT
	±1% или ±10 мс
Время срабатывания	< 40 MC
	обычно: 35 мс
Начиная со значения V, превышающего 1,2 x, значение срабатывания для U>, или	
при значении V ниже чем 0.8×3 значение срабатывания для $U <$	
Время размыкания	< 45 MC

• $^{*1)}$ Если выбрано СКЗ и |f-fN|>10% fN, время срабатывания и размыкания составляет <4 циклов, или $\pm1\%$.

Если f < 30 Гц, точность срабатывания составляет $\pm 6\%$ от значения настройки, или 5% Un.

Защита по напряжению нулевой последовательности:	Точность *1)
VG[x]	
Сраб	$\pm 1,5\%$ от установочного значения или $\pm 1\%$ Un
Коэффициент падения	97%, или 0,5% Un, для VG>
	103%, или 0,5% Un, для VG<
t	DEFT
	±1% или ±10 мс
Время срабатывания	< 40 MC
	обычно: 35 мс
Начиная со значения V, превышающего $1,2x$, значение срабатывания для VG>, или	
при значении V ниже чем 0.8×3 начение срабатывания для $VG <$	
Время размыкания	< 45 MC

• $^{*1)}$ Если выбрано СКЗ и |f-fN|>10% fN, время срабатывания и размыкания составляет <4 циклов, или $\pm1\%$.

Если f < 30 Гц, точность срабатывания составляет $\pm 6\%$ от значения настройки, или 5% Un.

Защита работы при пониженном напряжении:	Точность *1)
LVRT	
Срабатывание напряжения (Пуск)	$\pm 1,5\%$ от установочного значения или $\pm 1\%$ Un
Коэффициент падения напряжения (Восстановление)	Корректируется, минимум 0,5% Un
Время выдержки отключения	±1% от установленных или ±10 мс
Время срабатывания	< 35 MC
Начиная с В ниже чем 0,9 х значение срабатывания	
Время размыкания	< 45 MC

• $^{*1)}$ Если выбрано СКЗ и |f-fN|>10% fN, время срабатывания и размыкания составляет <4 циклов, или $\pm1\%$.

Если f < 30 Гц, точность срабатывания составляет $\pm 6\%$ от значения настройки, или 5% Un.

Несимметрия напряжений:	Точность *1)
U 012[x]	
Уставка	$\pm 2\%$ от установочного значения или $\pm 1\%$ Un
Коэффициент падения	97%, или 0,5% Un, для U 1> или U 2>
	103%, или 0,5% Un, для U 1<
%(UB/UA)	±1%
t	DEFT
	±1% или ±10 мс
Время срабатывания	<60 MC
Время размыкания	<45 MC

[•] $^{*1)}$ Напряжение обратной последовательности U2 должно составлять $\geq 0.01~{\rm x}$ Un, напряжение прямой последовательности U1 должно составлять $\geq 0.1~{\rm x}$ Un.

12.1.3.7 Защита частоты

Защита от повышения/понижения частоты:	Точность *1)
f>, f<	
f> / f<	±20 мГц
	Обычно \sim 5 мГц, если 3 фазы между fN \pm 0,2 Гц *3)
Падение	По умолчанию 20 мГц
	(корректируется в диапазоне от 10 до 100 мГц)
Время размыкания	<120 mc* ²⁾
Рабочее время (при линейном изменении) *4)	<100 мс, обычно 65 мс ^{*2)}
Рабочее время (при пошаговом изменении)	<170 мс, обычно 90 мс* ²⁾

- $^{*1)}$ Точность представлена для номинальной частоты fN $\pm 10\%$ при подаче напряжения по всем трем фазам.
- *2) Точность представлена для настройки по умолчанию [СистПар / Частота] «Стабил. окна f» = 0.

Обратите внимание, что, если увеличивается показатель «Стабил. окна f», увеличиваются рабочее время и время размыкания.

- *3) При значении параметра «Стабил. окна f» ≥ 5 можно добиться точности в $\leq \pm 10$ мГц, но при увеличении данной настройки рабочее время и время размыкания ухудшаются (то есть увеличиваются).
- *4) Для постоянного изменения частоты (когда не применяются ни бросок фазового угла, ни броски напряжения).

При использовании пошагового изменения частоты испытательного оборудования рабочее время немного увеличивается (примерно +40 мс) из-за дополнительной стабилизации.

Скорость изменения частоты:	Точность *1)
df/dt	
df/dt	±2,5% или ±0,025 Гц/с*2) *3)
Падение	0,070 Гц/с
Время срабатывания	<300 мс, обычно ~200 мс $^{*2)}$ <200 мс, при минимально количестве значений настроек: $^{*3)}$ «Окно df/dt » = 2 «Стабил. окна df/dt » = 2
Время размыкания	$<$ 300 мс, обычно \sim 160 мс $^{*2)}$ $^{*3)}$

- $^{*1)}$ Точность представлена для номинальной частоты fN $\pm 10\%$ при подаче напряжения по всем трем фазам.
- *2) Точность представлена для настроек по умолчанию [СистПар / Частота] «Окно df/dt» = 4, [СистПар / Частота] «Стабил. окна df/dt» = 5.
- $^{*3)}$ Точность можно увеличить путем повышения значений параметров «*Окно df/dt*» и «*Стабил. окна df/dt*». Однако обратите внимание, что рабочее время и время размыкания при этом ухудшаются (то есть увеличиваются).

И наоборот, при уменьшении настройки «Oкно df/dt» улучшаются (то есть уменьшаются) рабочее время и время срабатывания, но ухудшается (то есть увеличивается) погрешность.

Скорость изменения частоты:	Точность
DF/DT	
DF	±20 мГц при fN
DT	± 1% или ±10 мс

Скачок вектора:	Точность
дельта фи	
Уставка	±0,5° [1-30°] при Un и fN
Время срабатывания	< 40 MC

12.1.3.8 Защита по мощности

Коэффициент мощности:	Точность
KM	
Уставка	$\pm 0,01$ (абсолютное значение), или $\pm 1^\circ$
Сбр_ знач_	$\pm 0,01$ (абсолютное значение), или $\pm 1^\circ$
t	±1% или ±10 мс
Время срабатывания	*1)
«Метод измерений» =	
«Основные»«Ист_ СКЗ»	• < 130 мс • < 200 мс

 $^{^{*1)}}$ Расчет коэффициента мощности будет доступен через 300 мс после подачи требуемых значений измерения (I > 2,5% Іном и V > 20% Un) на измерительные входы.

Защита направленной мощности:	Точность *1 *2)
3ПЭ[x] при	
« <i>Peж_</i> » = «S>» или «S<»	
Уставка	±3%, или ±0,1% Номинальная мощность
Коэффициент падения	97%, или 1 ВА, для «S>»103%, или 1 ВА, для «S<»
t	± 1% или ±10 мс
Время срабатывания	75 мс
Время размыкания	100 мс

Защита направленной мощности: ЗПЭ[x] при «Реж_» = «Р>», «Р<», «Рр<», «Pr>»	Точность *1 *2)
Уставка	±3%, или ±0,1% Номинальная мощность
Коэффициент падения	 97%, или 1 BA, для «P>» и «Pr>» 103%, или 1 BA, для «P<» и «Pp<» для значений параметров ≤ 0,1 Номинальная мощность: 58%, или 0,5 BA, для «P>» и «Pr>» 142%, или 0,5 BA, для «P<» и «Pp<» для значений параметров ≤ 0,01 Номинальная мощность 58%, или 0,2 BA, для «P>» и «Pr>» 142%, или 0,2 BA, для «P>» и «Pp<»
t	± 1% или ±10 мс
Время срабатывания	75 мс
Время размыкания	100 мс

Защита направленной мощности:	Точность *1 *2)
3ПЭ[x] при	
«Реж_» = «Q>», «Q<», «Qp<», «Qr>»	
Уставка	±3%, или ±0,1% Номинальная мощность
Коэффициент падения	 97%, или 1 BA, для «Q>» и «Qr>» 103%, или 1 BA, для «Q<» и «Qp<» для значений параметров ≤ 0,1 Номинальная мощность: 58%, или 0,5 BA, для «Q>» и «Qr>» 142%, или 0,5 BA, для «Q<» и «Qp<» для значений параметров ≤ 0,01 Номинальная мощность 58%, или 0,2 BA, для «Q>» и «Qr>» 142%, или 0,2 BA, для «Q>» и «Qr>» 142%, или 0,2 BA, для «Q<» и «Qp<»
t	± 1% или ±10 мс
Время срабатывания	75 мс
Время размыкания	100 мс

- *1) Общие эталонные условия: |PF|>0.5, симметричная нагрузка, при fN и $0.8-1.3 \times Un$ (Un=100 B)
- *2) Если |f fN| > 10% fN, время срабатывания и размыкания составляет < 6 циклов, или $\pm 1\%$.

f < 30 Гц, точность срабатывания составляет $<\pm 6\%$ от значения настройки, или 5% Номинальная мощность. Защитные элементы Q[x] могут быть блокированы, если |f-fN|>10% fN.

Если выбрано ДПФ, элементы защиты блокируются при |f - fN| > 10% fN.

Автоматическая частотная разгрузка: UFLS	Точность
I1 мин.	$\pm 1,5\%$ от значения настройки, или $\pm 1\%$ Іном
Коэффициент падения	95% или 0,5% Іном
Uмф мин.	±1,5% от значения настройки, или ±1% Un
Коэффициент падения	98% или 0,5% Un
Угол мощ	±2°
Р мин.	±5% от значения настройки, или ±0,1% Sэфф:
Коэффициент падения	95% или 0,5% Вт
f<	±10 мГц при fN
Падение	< 0,05% fN
t-UFLS	±1% или ±10 мс
Время срабатывания:	
Начиная с частоты f, меньшей чем:	
• f< -0.02 Гц	• < 120 MC
• f< -0.1 Гц	• обычно 70 мс
• f< -2.0 Гц	• обычно 50 мс
Время размыкания	< 120 MC

12.1.3.9 Прочие функции защиты и контроля

Проверка синхронизации:	Точность
Синх	
ИЗМЕРЕНИЯ НАПРЯЖЕНИЯ	$\pm 1,5\%$ от установочного значения или $\pm 1\%$ Un
Измерение частоты скольжения	±20 мГц при fN
Измерение угла	±2°
Измерение угловой компенсации	±4°
t (все таймеры)	± 1% или ±10 мс

Q->&U развязка</th <th>Допуск</th>	Допуск
I1 мин QV	$\pm 1,5\%$ от установочного значения или $\pm 1\%$ Іном
Коэффициент падения	95% или 0,5% Іном
Uмф< QV	$\pm 1,5\%$ от установочного значения или $\pm 1\%$ Un
Коэффициент падения	102% или 0,5% Un
Ф-мощ	±1°
Q мин QV	$\pm 3\%$ от значения настройки, или $\pm 0.1\%$ Номинальная мощность
Коэффициент падения	95%
t1-QV	±1% или ±10 мс
t2-QV	±1% или ±10 мс
Время срабатывания	< 40 MC
Время размыкания	< 40 MC

Повторное подсоединение	Допуск
Повт. соед.[x]	
Uмф < выход,	$\pm 1,5\%$ от установочного значения или $\pm 1\%$ Un
Uмф> раз	
Коэффициент падения	98%, или 0,5% Un, для VLL>
	102%, или 0,5% Un, для VLL<
f<,	±20 мГц при fN
f>	
Падение	<0.05% fN
Задержка блок. вых.	±1% или ±10 мс
Время срабатывания	< 100 MC

Автоматическое повторное включение: АПВ	Точность
t (все таймеры)	± 1% или ±20 мс

Ускорение защиты при включении выключателя:	Точность
вно	
Время срабатывания	< 35 MC
l<	±1,5% от значения настройки, или 1% Іном
t-включ	±1% или ±20 мс

Блокировка от пусковых токов:	Точность
МСХН	
Порог	$\pm 1,5\%$ от установочного значения или $\pm 1\%$ Іном
Время срабатывания	< 35 MC
l<	$\pm 1,5\%$ от установочного значения или $\pm 1\%$ Іном
t-нагр выкл	±1% или ±15 мс
t-макс блок	±1% или ±15 мс
Время уст	±1% или ±15 мс

Устройство резервирования отказов выключателя:	Точность
УРОВ	
t-YPOB	±1% или ±10 мс
I-CBF >	±1,5% от значения настройки, или 1% In
Время срабатывания Начиная с тока I, превышающего значение 1,3 x I-CBF >	< 40 MC
Время размыкания	< 40 MC

Мониторинг цепи управления:	Точность
кцу	
t-TCS	±1% или ±10 мс

Контроль трансформатора тока:	Точность
КТТ	
ΔΙ	±2% от значения настройки, или 1,5% In
Коэффициент падения	94%
Выд_ ав_ сигн_	± 1% или ±10 мс

Падение потенциала:	Точность
ППот	
t-Трев_	±1% или ±10 мс

13 Приложение

13.1 Стандарты

13.1.1 Утверждения

CE	
	Номер файла UL: E217753 сертифицировано в соответствии с UL508 (производственные системы управления)
	Номер файла CSA: 251990 сертифицировано в соответствии CSA-C22.2 № 14 (производственные системы управления)
	EAC сертифицировано по EAC (евразийское соответствие)
KEMA≼	КЕМА прошло типовые испытания (и сертификацию) в соответствии с IEC 60255-1 и IEC 61850
KE	KESCO 동일성 선언서 (декларация идентичности)
TUV NORD TÜV NORD CERT GÜNÜM COGE CONTO	TUV Nord — сертифицировано в соответствии с «BDEW-Richtlinie für Erzeugungsanlagen am Mittelspannungsnetz, Ausgabe Juni 2008» (немецкий сетевой стандарт)
	ССС — сертификат типового одобрения CQC, Китай

- Соответствует стандарту IEEE 1547-2003
- Изменения в соответствии с IEEE 1547a-2014
- Соответствует стандарту ANSI C37.90-2005
- Соответствует стандарту «Рекомендации по разработке G59, издание 3, поправка 4, Июль 2018 г.»

• Соответствует стандарту «Рекомендации по разработке G99, издание 1, поправка 3, Май 2018 г.»

13.1.2 Конструкторские стандарты

Групповой стандарт	EN 61000-6-2, 2005 Γ.	
	EN 61000-6-3, 2006 Γ.	
Производственный стандарт	IEC 60255-1, 2009 г.	
	IEC 60255-26, 2013 г.	
	IEC 60255-27, 2013 г.	
	UL 508 (промышленное контрольное оборудование), 2005 г.	
	CSA C22.2 № 14-95 (промышленное контрольное оборудование), 1995 г.	
	ANSI С37.90, 2005 г.	

13.1.3 Электрические испытания

Высоковольтные испытания

Испытание на устойчивость к высокочастотным помехам			
IEC 60255-22-1	В рамках одной цепи	1 кВ/2 c	
IEC 60255-26			
IEEE C37.90.1			
IEC 61000-4-18			
	Замыкание на землю	2,5 кВ/2 с	
класс 3	Цепь-цепь	2,5 кВ/2 с	

Испытание изоляции под напряжением			
IEC 60255-27	Между всеми цепями и проводящими узлами	2,5 кВ (эфф.) /50 Гц, 1 мин.	
IEC 60255-5			
EN 50178			
	Кроме интерфейсов	1,5 кВ пост. тока, 1 мин.	
	Входной сигнал измерения напряжения	3 кВ (эфф.) / 50 Гц, 1 мин.	

Испытание импульсным напряжением		
IEC 60255-27		5 кВ/0,5 Дж, 1,2/50 мкс
IEC 60255-5		

Испытание сопротивления изоляции			
EN 60255-27 EN 50178	В рамках одной цепи	500 В постоянного тока, 5 с	
	Цепь-цепь	500 В постоянного тока, 5 c	

Испытания на невосприимчивость к электростатическим разрядам и ЭМС

Испытание на невосприимчивость к быстрым переходным процессам (броскам)			
IEC 60255-22-4	Блок питания, входы электросети	±4 кВ, 2,5 кГц	
IEC 60255-26	Прочие входы и выходы	±2 кВ, 5 кГц	
IEC 61000-4-4			

Испытание на невосприимчивость к быстрым переходным процессам (броскам)

класс 4

Испытания на устойчивость к всплескам напряжения (скачкам)		
IEC 60255-22-5	В рамках одной цепи	2 kV
IEC 60255-26	Замыкание на землю	4 kV
IEC 61000-4-5		
класс 4		
класс 3	Замыкание кабелей связи на землю	2 kV

Испытания на устойчивость к электрическим разрядам (ЭСР)		
IEC 60255-22-2	Воздушные разряды	8 kV
IEC 60255-26	Разряды в контактах	6 kV
IEC 61000-4-2		
класс 3		

Испытание на невосприимчивость к излучению радиочастотного магнитного поля			
IEC 60255-22-3	26 МГц-80 МГц	10 В/м	
IEC 60255-26	80 МГц-1 ГГц	35 В/м	
IEC 61000-4-3	1-3 ГГц	10 В/м	

Невосприимчивость к возмущениям, индуцированным полями радиочастот		
IEC 61000-4-6	150 кГц-80 МГц	10 V
IEC 60255-26		
класс 3		

Испытание на невосприимчивость к магнитному полю промышленной частоты		
IEC 61000-4-8	непрерывное	30 A/M
IEC 60255-26	3 c	300 A/M
класс 4		

Испытания на излучение и ЭМС

Испытание на подавление радиопомех		
IEC/CISPR 22 IEC 60255-26	150 кГц-30 МГц	Предельное значение для класса В

Испытание на излучение радиопомех		
IEC/CISPR 11 IEC 60255-26	30 МГц-1 ГГц	Предельное значение для класса A

13.1.4 Климатические испытания

Классификация		
IEC 60068-1	Климатическая классификация	20/060/56
IEC 60721-3-1	Классификация внешних условий (хранение)	1K5/1B1/1C1L/1S1/1M2, но не менее -30 °С (-22 °F)
IEC 60721-3-2	Классификация внешних условий (транспортировка)	2K2/2B1/2C1/2S1/2M2, но не менее -30 °С (-22 °F)
IEC 60721-3-3	Классификация внешних условий (стационарное применение в защищенных от климатических воздействий местах)	3K6/3B1/3C1/3S1/3M2, но не менее -20 °C (-4 °F)/не более 60 °C (140 °F)

Испытание Ad: холод		
IEC 60068-2-1	Температура	-20°C (-4°F)
IEC 60255-27	Длительность испытания	16 ч

Испытание Bd: сухой жар		
IEC 60068-2-2	Температура	60°C (140°F)
IEC 60255-27	Относительная влажность	<50%
	Длительность испытания	72 ч

Испытание Cab: влажный (устойчивый) жар		
IEC 60255-27	Температура	60°C (140°F)
IEC 60068-2-78	Относительная влажность	95%
	Длительность испытания	56 дней

Испытание Db: влажный (циклический) жар		
IEC 60068-2-30	Температура	60°C (140°F)
IEC 60255-27	Относительная влажность	95%
	Циклы (12 + 12-час)	2

Испытание Nb: изменение температуры		
IEC 60068-2-14	Температура	60 °C/-20 °C
	цикл	5
	Длительность испытаний	1 °С/5 мин

Испытание BD: испытание транспортировкой и хранением в сухих жарких условиях			
IEC 60255-27	Температура	70°C	
IEC 60068-2-2	Длительность испытаний	16 ч	

Испытание АВ: испытание транспортировкой и хранением в холодных условиях			
IEC 60255-27	Температура	-30°C	
IEC 60068-2-1	Длительность испытаний	16 ч	

13.1.5 Механические испытания

Испытание Fc: испытание на восприимчивость к вибрации				
IEC 60068-2-6	(10-59 Гц)	0,035 мм (0,0014 дюйма)		
IEC 60255-27	Смещение			
IEC 60255-21-1	(59-150 Гц)	0,5 g		
класс 1	Ускорение			
	Количество циклов по каждой из осей	1		

Испытание Fc: испытание на устойчивость к вибрации			
IEC 60068-2-6	(10-150 Гц)	1,0 g	
IEC 60255-21-1	Ускорение		
класс 1	Количество циклов по каждой из осей	20	

Испытание Еа: испытание ударом			
IEC 60068-2-27 IEC 60255-27	Испытание на устойчивость к ударной нагрузке	5 g, 11 мс, 3 импульса в каждом направлении	
IEC 60255-27 IEC 60255-21-2 класс 1	Испытание на сопротивление ударной нагрузке	15 g, 11 мс, 3 импульса в каждом направлении	

Испытание Eb: испытание на устойчивость к ударной нагрузке			
IEC 60068-2-29	Испытание на устойчивость к ударной нагрузке	10 g, 16 мс, 1000	
IEC 60255-21-2	ударной нагрузке	импульсов в каждом направлении	
класс 1			

Испытание Fe: испытание на устойчивость к землетрясению			
IEC 60068-3-3	Испытание на устойчивость к землетрясениям вдоль одной оси	1-9 Гц в горизонтальном положении: 7,5 мм (0,295	
IEC 60255-27	землетрясениям вдоль однои оси	дюйма)	
IEC 60255-21-3		1-9 Гц в вертикальном положении: 3,5 мм (0,137 дюйма)	
		1 прогон на каждую ось	

Испытание Fe: испытание на устойчивость к землетрясению		
класс 2	9-35 Гц в горизонтальном положении: 2 g,	
	9-35 Гц в вертикальном положении: 1 g,	
	1 прогон на каждую ось	

13.2 Функциональная совместимость по ІЕС 60870-104

Данный сопутствующий стандарт представляет наборы параметров и альтернативных вариантов, из которых следует выбирать поднаборы для внедрения конкретных систем дистанционного управления. Значения некоторых параметров, таких как выбор «структурированных» или «неструктурированных» полей АДРЕСА ОБЪЕКТА ДАННЫХ ASDU, представляют собой взаимоисключающие альтернативы. Это значит, что в каждой из систем допускается использовать только одно из значений определяемых параметров. Для других параметров, таких как список записи данных о различных процессах управления и направлении мониторинга, можно указать целые наборы или поднаборы в соответствии с имеющимися вариантами применения. В этом параграфе кратко описываются все параметры, упомянутые в предыдущих параграфах, что упрощает выбор параметров, подходящих для конкретных вариантов применения. Если в системе представлено оборудование разных производителей, необходимо, чтобы с выбранными параметрами были согласны все партнеры.

Список функциональной совместимости определяется стандартом IEC 60870-5-101 и расширен за счет приведенных в нем параметров. Текст описания параметров, которые не применимы по данному сопутствующему стандарту, зачеркнут, а соответствующие флажки зачернены.

ПРИМЕЧАНИЕ. Кроме того, полное определение технических характеристик системы может потребовать индивидуального выбора определенных параметров для некоторых ее компонентов, например, индивидуального выбора коэффициентов масштабирования для отдельных измеряемых значений.

Выбираемые параметры обозначаются, как показано ниже.

	Функция или ASDU не используется
[X]	Функция или ASDU используется как стандартная (по умолчанию)
[R]	Функция или ASDU используется в режиме реверса
[B]	Функция или ASDU используется в стандартном режиме и в режиме реверса

Возможный выбор (пусто, X, R или B) отмечается для каждого конкретного параграфа или параметра.

13.2.1 Система или устройство

(параметр, характерный для системы; определение системы или устройства указывается путем пометки одного из приведенных ниже пунктов значком «Х»)

	Определение системы
	Определение станции управления (главной)
[X]	Определение управляемой станции (починенной)

13.2.2 Конфигурация сети

(параметр, характерный для сети; все используемые конфигурации следует отменить значком «Х»)

■ Двух	точечная		Многоточечная
---------------	----------	--	---------------

	Радиальная двухточечная		Многоточечная радиальная
--	-------------------------	--	--------------------------

13.2.3 Физический уровень

(параметр, характерный для сети; все используемые интерфейсы и скорости обработки данных следует отменить значком «Х»)

Скорость передачи (контроль направления)

■ 100 бит/є	■ 2400 бит/с	■ 2400 бит/с
■ 200 бит/є	■ 4800 бит/с	■ 4800 бит/є
■ 300-бит/с	■ 9600 бит/с	■ 9600 бит/с
■ 600-бит/с		■ 19200 бит/с
■ 1200 бит/с		■ 38-400 бит/с
		■ 64000 бит/с

Скорость передачи (направление мониторинга)

100 бит/с	2400 бит/с	2400 бит/с
200 бит/с	4800 бит/с	4800 бит/с
300 бит/с	9600 бит/с	9600 бит/с
600 бит/с		19200 бит/с
1200 бит/с		38 400 бит/с
		64000 бит/с

13.2.4 Канальный уровень

(параметр, характерный для сети; все используемые варианты следует отменить значком «Х». Следует указать максимальную длину пакета. Если при асимметричной передаче данных применяются нестандартные сообщения класса 2, следует указать тип идентификатора и причину передачи для всех сообщений, приписанных к классу 2.)

Формат пакета FT 1.2, единичный символ 1 и фиксированное время таймаута используются исключительно в этом сопутствующем стандарте.

Канальная передача данных			ne адреса канала
-	Симметричная передача данных	-	отсутствует (только симметричная передача данных)
	Асимметричная передача данных		Один октет
			Два октета
			Структурированное

Канальная передача данных	Поле адреса канала
	■ Неструктурированное

■ Максимальное число L (количество октетов)

При использовании асимметричного канального уровня в ответных сообщениях класса 2 (низкого приоритета) поступают перечисленные далее ASDU с указанием причин передачи.

■ Стандартное назначение ASDU сообщениям класса 2 используется, как показано далее.

Идентификация типа	Причина передачи
9, 11, 13, 21	<1>

■ Особые варианты назначения ASDU сообщениям класса 2 не используются.

Примечание. (в отсутствие данных класса 2 в ответ на запрос класса 2 управляемая станция может отправить данные класса 1).

13.2.5 Прикладной уровень

Режим передачи прикладных данных

Режим 1 (сначала октет наименее значимых данных), как определено в п. 4.10 стандарта IEC 60870-5-4, используется исключительно в данном сопутствующем стандарте.

Общий адрес ASDU

(параметр, характерный для системы; все используемые конфигурации следует отменить значком «Х»)

■ Один октет [X] Два октета

Адрес объекта данных

(параметр, характерный для системы; все используемые конфигурации следует отменить значком «Х»)

	Один октет	[X]	Структурированное
	Два октета	[X]	Неструктурированное
[X]	Три октета		

Причина передачи

(параметр, характерный для системы; все используемые конфигурации следует отменить значком «Х»)

Один октет	[X]	Два октета (с адресом инициатора).

Если адрес инициатора не используется, то для него задается нулевое значение.

Длина APDU

(параметр, характерный для системы; указывается максимальная длина APDU для каждой системы)

Максимальная длина APDU — 253 (по умолчанию). Максимальная длина может быть уменьшена системой.

Максимальная длина APDU для каждой системы

Выбор стандартных ASDU

Информация о процессе в направлении мониторинга

(параметр, характерный для станции; каждый тип идентификатора отмечается значком «Х», если он используется только в стандартном направлении, значком «R», если он используется только в обратном направлении, или значком «В», если в обоих направлениях)

[X]	<1>	:= одноэлементная информация	M_SP_NA_1
	<2>	:= одноэлементная информация с меткой времени	M_SP_TA_1
[X]	<3>	:= двухэлементная информация	M_DP_NA_1
	<4>	:= двухэлементная информация с меткой времени	M_DP_TA_1
	<5>	:= информация о положении шагового привода	M_ST_NA_1
	<6>	:= информация о положении шагового привода с меткой времени	M_ST_TA_1
[X]	<7>	:= строка из 32 битов	M_BO_NA_1
	<8>	:= строка из 32 битов с меткой времени	M_BO_TA_1
[X]	<9>	:= измеренное значение, нормализованное значение	M_ME_NA_1
•	<10>	:= измеренное значение, нормализованное значение с меткой времени	M_ME_TA_1
[X]	<11>	:= измеренное значение, масштабированное значение	M_ME_NB_1
•	<12>	:= измеренное значение, масштабированное значение с меткой времени	M_ME_TB_1
[X]	<13>	:= измеренное значение, короткое число с плавающей запятой	M_ME_NC_1
	<14>	:= измеренное значение, короткое число с плавающей запятой с меткой времени	M_ME_TC_1
[X]	<15>	:= интегральные суммы	M_IT_NA_1
	<16>	:= интегральные суммы с меткой времени	M_IT_TA_1
	<17>	:= событие защитного оборудования с меткой времени	M_EP_TA_1

	<18>	: — события общего запуска защитного оборудования с меткой времени	M_EP_TB_1
	<19>	:= информация об общей выходной цепи защитного оборудования с меткой времени	M EP TC 1
	<20>	:= общая одноэлементная информация с обнаружением изменения состояния	M_SP_NA_1
	<21>	:= измеренное значение, нормализованное значение без дескриптора качества	M_ME_ND_1
[X]	<30>	:= одноэлементная информация с меткой времени CP56Time2a	M_SP_TB_1
[X]	<31>	:= двухэлементная информация с меткой времени CP56Time2a	M_DP_TB_1
	<32>	:= информация о положении шагового привода с меткой времени CP56Time2a	M_ST_TB_1
[X]	<33>	:= строка из 32 битов с меткой времени СР56Time2a	M_BO_TB_1
[X]	<34>	:= измеренное значение, нормализованное значение с меткой времени CP56Time2a	M_ME_TD_1
[X]	<35>	:= измеренное значение, масштабированное значение с меткой времени CP56Time2a	M_ME_TE_1
[X]	<36>	:= измеренное значение, короткое число с плавающей запятой с меткой времени CP56Time2a	M_ME_TF_1
[X]	<37>	:= интегральные суммы с меткой времени CP56Time2a	M_IT_TB_1
	<38>	:= событие защитного оборудования с меткой времени CP56Time2a	M_EP_TD_1
	<39>	:= события общего запуска защитного оборудования с меткой времени CP56Time2a	M_EP_TE_1
	<40>	:= информация об общей выходной цепи защитного оборудования с меткой времени CP56Time2a	M_EP_TF_1

Используются ASDU набора <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>, <18>, <19> или <30>-<40>.

Информация о процессе при контроле направления

(параметр, характерный для станции; каждый тип идентификатора отмечается значком «Х», если он используется только в стандартном направлении, значком «R», если он используется только в обратном направлении, или значком «В», если в обоих направлениях)

[X]	<45>	:= отдельная команда	C_SC_NA_1
[X]	<46>	:= двойная команда	C_DC_NA_1
	<47>	:= команда пошагового регулирования	C_RC_NA_1
	<48>	:= команда изменения уставки, нормализованное значение	C_SE_NA_1
	<49>	:= команда изменения уставки, масштабированное значение	C_SE_NB_1

<50>	:= команда изменения уставки, короткое число с плавающей запятой	C_SE_NC_1
<51>	:= строка из 32 битов	C_BO_NA_1
<58>	:= отдельная команда с меткой времени CP56Time2a	C_SC_TA_1
<59>	:= двойная команда с меткой времени CP56Time2a	C_DC_TA_1
<60>	:= команда пошагового регулирования с меткой времени CP56Time2a	C_RC_TA_1
<61>	:= команда изменения уставки, нормализованное значение с меткой времени CP56Time2a	C_SE_TA_1
<62>	:= команда изменения уставки, масштабированное значение с меткой времени CP56Time2a	C_SE_TB_1
<63>	:= команда изменения уставки, короткое число с плавающей запятой с меткой времени CP56Time2a	C_SE_TC_1
<64>	:= строка из 32 битов с меткой времени СР56Time2a	C_BO_TA_1

Используются ASDU набора <45>-<51> или <58>-<64>.

Информация о системе в направлении мониторинга

(параметр, характерный для станции; используется метка «Х»)

[X]	<70>	:= окончание инициализации	M_EI_NA_1
-----	------	----------------------------	-----------

Информация о системе при контроле направления

(параметр, характерный для станции; каждый тип идентификатора отмечается значком «Х», если он используется только в стандартном направлении, значком «R», если он используется только в обратном направлении, или значком «В», если в обоих направлениях)

[X]	<100>	:= команда опроса	C_IC_NA_1
	<101>	:= команда опроса счетчиков	C_CI_NA_1
	<102>	:= команда чтения	C_RD_NA_1
[X]	<103>	:= команда синхронизации часов (опция)	C_CS_NA_1
	<104>	:= команда проверки	C_TS_NA_1
[X]	<105>	:= команда сброса процесса	C_RP_NA_1
	<106>	:= команда задержки сбора данных	C_CD_NA_1
	<107>	:= команда проверки с меткой времени CP56Time2a	C_TS_TA_1

Параметр при контроле направления

(параметр, характерный для станции; каждый тип идентификатора отмечается значком «X», если он используется только в стандартном направлении, значком «R», если он используется только в обратном направлении, или значком «R», если в обоих направлениях)

<110>	:= параметр измеренного значения, нормализованное значение	P_ME_NA_1
<111>	:= параметр измеренного значения, масштабированное значение	P_ME_NB_1
<112>	:= параметр измеренного значения, короткое число с плавающей запятой	P_ME_NC_1
<113>	:= активация параметра	P_AC_NA_1

Передача файлов

(параметр, характерный для станции; каждый тип идентификатора отмечается значком «Х», если он используется только в стандартном направлении, значком «R», если он используется только в обратном направлении, или значком «В», если в обоих направлениях)

<120>	:= файл готов	F_FR_NA_1
<121>	:= раздел готов	F_SR_NA_1
<122>	:= вызов каталога, выбор файла, вызов файла, вызов раздела	F_SC_NA_1
<123>	:= последний раздел, последний сегмент	F_LS_NA_1
<124>	:= подтверждение файла, подтверждение раздела	F_AF_NA_1
<125>	:= сегмент	F_SG_NA_1
<126>	:= каталог {пусто или X, доступен только в (стандартном) направлении мониторинга}	F_DR_TA_1
<127>	:= журнал запросов — запрос архивного файла	F_SC_NB_1

Идентификатор типа и назначения причины передачи

((параметры.	характерные	для станции)

≣ Заштрихованные клетки: необязательная опция.

¦ Черные клетки: опция, недопустимая или неподдерживаемая в данном сопутствующем стандарте

□ Белые клетки: неиспользуемые функции или ASDU.

Идентификация типа значка/сочетания причин передачи:

- «Х» при использовании только в стандартном направлении;
- «R» при использовании только в обратном направлении;
- «В» при использовании в обоих направлениях.

Идентификация типа		Причина передачи																		
		1	2	3	4	5	6	7	8	9	10	11	12	13	20 36	37 41	44	45	46	47
<1>	M_SP_NA_1			[X]											[X]					
<2>	M_SP_TA_1																			
<3>	M_DP_NA_1			[X]								[X]	[X]		[X]					
<4>	M_DP_TA_1																			
<5>	M_ST_NA_1																			
<6>	M_ST_TA_1																			
<7>	M_BO_NA_1			[X]											[X]					
<8>	M_BO_TA_1																			
<9>	M_ME_NA_1	[X]		[X]											[X]					
<10>	M_ME_TA_1																			
<11>	M_ME_NB_1	[X]		[X]											[X]					
<12>	M_ME_TB_1																			
<13>	M_ME_NC_1	[X]		[X]											[X]					
<14>	M_ME_TC_1																			
<15>	M_IT_NA_1			[X]																
<16>	M_IT_TA_1																			
<17>	M_EP_TA_1																			
<18>	M_EP_TB_1																			
<19>	M_EP_TC_1																			
<20>	M_PS_NA_1																			
<21>	M_ME_ND_1																			
<30>	M_SP_TB_1			[X]																
<31>	M_DP_TB_1			[X]																
<32>	M_ST_TB_1																			
<33>	M_BO_TB_1			[X]																
<34>	M_ME_TD_1			[X]																
<35>	M_ME_TE_1			[X]																
<36>	M_ME_TF_1			[X]																
<37>	M_IT_TB_1			[X]																

Идентификация типа	Причина передачи																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	20 36	37 41	44	45	46	47
<38> M_EP_TD_1																			
<39> M_EP_TE_1																			
<40> M_EP_TF_1																			
<45> C_SC_NA_1						[X]	[X]	[X]	[X]	[X]									
<46> C_DC_NA_1						[X]	[X]	[X]	[X]	[X]									
<47> C_RC_NA_1																			
<48> C_SE_NA_1																			
<49> C_SE_NB_1																			
<50> C_SE_NC_1																			
<51> C_BO_NA_1																			
<58> C_SC_TA_1																			
<59> C_DC_TA_1																			
<60> C_RC_TA_1																			
<61> C_SE_TA_1																			
<62> C_SE_TB_1																			
<63> C_SE_TC_1																			
<64> C_BO_TA_1																			
<70> M_EI_NA_1*																			
<100>C_IC_NA_1																			
<101>C_CI_NA_1																			
<102>C_RD_NA_1																			
<103>C_CS_NA_1																			
<104>C_TS_NA_1																			
<105>C_RP_NA_1						[X]	[X]												
<106>C_CD_NA_1																			
<107>C_TS_TA_1																			
<110>P_ME_NA_1																			
<111>P_ME_NB_1																			
<112>P_ME_NC_1																			

Идентификация типа	Пр	ичи	на і	тере	едач	чи												
	1	2	3	4	5	6	7	8	9	10	11	12	13	 37 41	44	45	46	47
<113>P_AC_NA_1																		
<120>F_FR_NA_1																		
<121>F_SR_NA_1																		
<122>F_SC_NA_1																		
<123>F_LS_NA_1																		
<124>F_AF_NA_1																		
<125>F_SG_NA_1																		
<126>F_DR_TA_1*																		
* только пусто или	X																	

13.2.6 Основные функции приложения

Инициализация станции

(параметр, характерный для станции; значок «Х», если функция используется)

[X] Удаленная инициализация

Циклическая передача данных

(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)

[X] Циклическая передача данных

Процедура чтения

(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)

□ Процедура чтения

Спонтанная передача

(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)

[X] Спонтанная передача

Двойная передача объектов данных с произвольной причиной передачи

(параметр, характерный для станции; данные любого типа помечаются значком «Х», если в ответ на одиночное спонтанное изменение отслеживаемого объекта поступает сигнал, включающий в себя и тип идентификатора без указания времени, и соответствующий идентификатор типа с указанием времени)

Следующие идентификаторы типа могут передаваться последовательно в результате единичного изменения состояния объекта данных. Конкретные адреса объектов данных, для которых включается двойная передача, определены в проектном списке.

Одноэлементная информация M_SP_NA_1, M_SP_TA_1, M_SP_TB_1 и M_PS_NA_1
Двухэлементная информация M_DP_NA_1, M_DP_TA_1 и M_DP_TB_1
Информация о положении шагового привода M_ST_NA_1, M_ST_TA_1 и M_ST_TB_1
Строка из 32 битов M_BO_NA_1, M_BO_TA_1 и M_BO_TB_1 (если определена для конкретного объекта)
Измеренное значение, нормализованное значение M_ME_NA_1, M_ME_TA_1, M_ME_ND_1 и M_ME_TD_1
Измеренное значение, масштабированное значение M_ME_NB_1, M_ME_TB_1 и M_ME_TE_1
Измеренное значение, короткое число с плавающей запятой M_ME_NC_1, M_ME_TC_1 и M_ME_TF_1

Опрос станции

(параметр, характерный для станции; значок «X», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «B», если в обоих направлениях)

[X]	глобальный		
	группа 1	группа 7	группа 13
	группа 2	группа 8	группа 14
	группа 3	группа 9	группа 15
	группа 4	группа 10	группа 16
	группа 5	группа 11	Адреса объектов данных,
	группа 6	группа 12	назначенные каждой группе, должны отображаться в отдельной таблице.

Синхронизация часов

(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)

[X]

Передача команды

(параметр, характерный для объекта; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)

[X]	Прямая передача команды										
	Прямая передача команды изменения уставки										
[X]	Выбор и выполнение команды										
	Выбор и выполнение команды изменения уставки										
[X]	Используется C_SE_ACTTERM										
	Без дополнительного определения										
[X]	Длительность короткого импульса (длительность, определенная одним из системных параметров удаленной станции)										
	Длительность дол параметров удале	лгого импульса (длительность, определенная одним из системных енной станции)									
	Постоянный выхо,	дной сигнал									
[X]	Контроль максимальной задержки при отправке команд направления и команд изменения уставки										
[нас	траивается]	Максимально допустимая задержка обычных команд и команд изменения уставки									

Передача интегральных сумм

(параметр, характерный для станции или объекта; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)

	Режим А: локальная блокировка со спонтанной передачей
	Режим В: локальная блокировка с опросом счетчиков
	Режим С: блокировка и передача с использованием команд опроса счетчиков
	Режим D: блокировка по команде опроса счетчиков, блокированные значения передаются спонтанно
[X]	Считывание показаний счетчиков
	Блокировка счетчиков без сброса
	Блокировка счетчиков со сбросом
	Сброс счетчиков
	Общий счетчик запросов
	Счетчик запросов, группа 1
	Счетчик запросов, группа 2
	Счетчик запросов, группа 3

Счетчик запросов, группа 4
Загрузка параметров (параметр, характерный для объекта; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)
Пороговое значение
Коэффициент сглаживания
Нижний предел передачи измеренных значений
Верхний предел передачи измеренных значений
Активация параметра
(параметр, характерный для объекта; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)
Включение/выключение постоянной циклической или периодической передачи адресуемого объекта
Процедура проверки
Процедура проверки (параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)
(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном
(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)
(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях) Процедура проверки
(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях) Процедура проверки Передача файлов
(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях) Процедура проверки Передача файлов (параметр, характерный для станции; значок «Х», если функция используется)
(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях) Процедура проверки Передача файлов (параметр, характерный для станции; значок «Х», если функция используется) Передача файлов в направлении мониторинга
(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях) Процедура проверки Передача файлов (параметр, характерный для станции; значок «Х», если функция используется) Передача файлов в направлении мониторинга Прозрачный файл
(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «В», если она используется в обратном направлении, или значок «В», если в обоих направлениях) Процедура проверки Передача файлов (параметр, характерный для станции; значок «Х», если функция используется) Передача файлов в направлении мониторинга Прозрачный файл Передача данных о нарушениях в работе защитного оборудования
(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «В», если она используется в обратном направлении, или значок «В», если в обоих направлениях) Процедура проверки Передача файлов (параметр, характерный для станции; значок «Х», если функция используется) Передача файлов в направлении мониторинга Прозрачный файл Передача данных о нарушениях в работе защитного оборудования Передача последовательностей событий

Фоновое сканирование

(параметр, характерный для станции; значок «X», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «B», если в обоих направлениях)

Фоновое сканирование

Сбор данных о задержке передачи

(параметр, характерный для станции; значок «Х», если функция используется только в стандартном направлении, значок «R», если она используется в обратном направлении, или значок «В», если в обоих направлениях)

Сбор данных о задержке передачи

Определение таймаутов

Параметр	Значение по умолчанию	Примечания	Выбранное значение
t ₀	30 c	Таймаут установки соединения	30 с (фиксированный)
t ₁	15 c	Таймаут отправки или тестирования APDU	15 с (фиксированный)
t ₂	10 с	Таймаут подтверждения при отсутствии информационных сообщений, $t_2 < t_1$	10 с (фиксированный)
t ₃	20 c	Таймаут отправки тестовых пакетов при длительном бездействии	20 с (фиксированный)

Максимальное число неподтвержденных APDU (k) в формате I и последних подтвержденных APDU (w)

Параметр	Значение по умолчанию	Примечания	Выбранное значение
k	12 APDU	Максимальная разница при получении номера последовательности для отправки переменной состояния	12 (фиксированное)
W	8 APDU	Последнее подтверждение после получения APDU (w) в формате I	8 (фиксированное)

Значения k и w предназначены только для чтения, то есть не настраиваются.

Номер порта

Параметр	Значение	Примечания
Номер порта	2404	Настраиваемый, значение по умолчанию — 2404

Комплект RFC 2200

Комплект RFC 2200 — официальный стандарт Интернета, в котором описывается состояние стандартизации протоколов, используемых в Интернете, как определено Советом по архитектуре Интернет (IAB). Предлагается широкий спектр

13 Приложение

13.2 Функциональная совместимость по ІЕС 60870-104

фактических стандартов, используемых в Интернете. Пользователям данного стандарта следует выбрать из комплекта RFC 2200 документы, подходящие для имеющихся проектов.

[X]	Ethernet 802.3
	Последовательный интерфейс Х.21
	Другие элементы RFC 2200

13.3 Аббревиатуры и сокращения

В данном руководстве используются следующие аббревиатуры и сокращения

°C	Градусы Цельсия
°F	Градусы Фаренгейта
А	Амперы
AC	Переменный ток
Ack.	Подтверждение
И	Логический элемент (выход принимает истинное значение, если все входные сигналы имеют истинное значение)
ANSI	Американский национальный институт стандартов
avg.	Среднее значение
AWG	Американский калибр проводов
ОВ	Отказ выключателя
Bkr	Выключатель
Blo	Блокировка
ВО	Релейные выходы
BO1	Релейный выход 1
BO2	Релейный выход 2
ВОЗ	Релейный выход 3
calc	Рассчитано
СВ	Выключатель
CBF	Модуль устройства резервирования отказа выключателя
CD	Компакт-диск
Xap.	Форма кривой
МБПТ	Модуль блокировки от пусковых токов
Cmd.	Команда
CMN	Общий вход
СОМ	Общий вход
Связь	Связь
Сч.	Счетчик(и)
CSA	Канадская ассоциация стандартов
ИТ	Изолирующий трансформатор
Упр.	Управление

KTT	Контроль трансформатора тока
KTT	Контроль трансформатора тока
Д	День
Разъем D-Sub	Интерфейс связи
Пост. ток	Постоянный ток
ДБП	Характеристика определенного времени (время отключения не зависит от величины силы тока)
дельта фи	Выброс вектора
df/dt	Скорость изменения частоты
DI	Цифровой вход
Сч. диагн.	Диагностический(е) счетчик(и)
Диагн.	Диагностика
DIN	Промышленный стандарт Германии
напр.	Направленный
OX3	Характеристика очень большой обратной зависимости отключения
ЭМС	Электромагнитная совместимость
EN	Европейский стандарт
ош. /Ош.	Ошибка
EVTcon	Параметр определяющий, является ли остаточное напряжение измеренным или расчетным.
Внеш	Внешний
Ex Oil Temp	Внешняя температура масла
ВнБлк	Внешняя блокировка
ВншЗащ	Внешняя защита — модуль
ВншЗащ	Внешняя защита
ВнешнМгнДавл	Скачок давления
НаблВнешТемп	Контроль внешней температуры
f	Модуль защиты по частоте
Фнк	Функция (включение или отключение функционала = разрешить или запретить)
FIFO	В порядке поступления
Принцип FIFO	В порядке поступления
фунд.	Фундаментальный (поверхностная волна)
g	Ускорение свободного падения (9,81 м/с2)

Ч Час ИЧМ Интерфейс «человек-машина» (передняя панель защитного реле) НТL Обозначение изделия производителем Гц Герц I Ступень перегрузки фазы по току I Ток короткого замыкания I Ток I-OB Пороговое значение отключения I0 Нулевой ток (симметричные компоненты) I1 Ток прямой последовательности (симметричные компоненты) I2 Ток обратной последовательности (симметричные компоненты) I2> Ступень защиты от несимметричной нагрузки I2T Тепловая нагрузка I4T Тепловая нагрузка IA Ток фазы А IB Ток фазы В
HTL Обозначение изделия производителем Гц Герц I Ступень перегрузки фазы по току I Ток короткого замыкания I Ток I-OB Пороговое значение отключения I0 Нулевой ток (симметричные компоненты) I1 Ток прямой последовательности (симметричные компоненты) I2 Ток обратной последовательности (симметричные компоненты) I2> Ступень защиты от несимметричной нагрузки I2T Тепловая нагрузка I4T Тепловая нагрузка IA Ток фазы А
Гц Герц I Ступень перегрузки фазы по току I Ток короткого замыкания I Ток I-OB Пороговое значение отключения I0 Нулевой ток (симметричные компоненты) I1 Ток прямой последовательности (симметричные компоненты) I2 Ток обратной последовательности (симметричные компоненты) I2> Ступень защиты от несимметричной нагрузки I2T Тепловая нагрузка I4T Тепловая нагрузка IA Ток фазы А
I Ступень перегрузки фазы по току I Ток короткого замыкания I Ток I-OB Пороговое значение отключения I0 Нулевой ток (симметричные компоненты) I1 Ток прямой последовательности (симметричные компоненты) I2 Ток обратной последовательности (симметричные компоненты) I2> Ступень защиты от несимметричной нагрузки I2T Тепловая нагрузка I4T Тепловая нагрузка IA Ток фазы А
I Ток короткого замыкания I Ток I-OB Пороговое значение отключения I0 Нулевой ток (симметричные компоненты) I1 Ток прямой последовательности (симметричные компоненты) I2 Ток обратной последовательности (симметричные компоненты) I2> Ступень защиты от несимметричной нагрузки I2T Тепловая нагрузка I4T Тепловая нагрузка IA Ток фазы А
I-OB Пороговое значение отключения I0 Нулевой ток (симметричные компоненты) I1 Ток прямой последовательности (симметричные компоненты) I2 Ток обратной последовательности (симметричные компоненты) I2> Ступень защиты от несимметричной нагрузки I2T Тепловая нагрузка I4T Тепловая нагрузка IA Ток фазы А
 I-OB Пороговое значение отключения Нулевой ток (симметричные компоненты) Ток прямой последовательности (симметричные компоненты) Ток обратной последовательности (симметричные компоненты) Ступень защиты от несимметричной нагрузки Тепловая нагрузка Тепловая нагрузка Ток фазы А
ПО Нулевой ток (симметричные компоненты) ПО Ток прямой последовательности (симметричные компоненты) ПО Ток обратной последовательности (симметричные компоненты) ПО Ступень защиты от несимметричной нагрузки ПО Тепловая нагрузка ПО Тепловая нагрузка ПО Ток фазы А
 Пок прямой последовательности (симметричные компоненты) Ток обратной последовательности (симметричные компоненты) Ступень защиты от несимметричной нагрузки Тепловая нагрузка Тепловая нагрузка Ток фазы А
I2 Ток обратной последовательности (симметричные компоненты) I2> Ступень защиты от несимметричной нагрузки I2T Тепловая нагрузка I4T Тепловая нагрузка IA Ток фазы А
I2> Ступень защиты от несимметричной нагрузки I2T Тепловая нагрузка I4T Тепловая нагрузка IA Ток фазы А
I2T Тепловая нагрузка I4T Тепловая нагрузка IA Ток фазы А
I4T Тепловая нагрузка IA Ток фазы A
ІА Ток фазы А
IB Ток фазы B
IC Ток фазы C
IC's Обозначение изделия производителем
Id Модуль дифференциальной защиты
IdG Модуль дифференциальной ограниченной защиты от замыкания на землю
IdGH Модуль ограниченной токовой защиты от замыкания на землю с высокой уставкой
IdH Модуль дифференциальной защиты с высокой уставкой
МЭК Международная электротехническая комиссия
Стандарт МЭК Стандарт МЭК 61850 61850
IEEE Институт инженеров по электротехнике и электронике
IG Ступень защиты от токов замыкания на землю
IG Ток замыкания на землю
IG Ток короткого замыкания
IGном. Номинальный ток замыкания на землю
IH1 1 гармоника

IH2	Модуль защиты от бросков тока
IH2	2 гармоника
дюйм.	Дюйм
вкл.	Включая, включительно
InEn	Самопроизвольное включение
Инф.	Информация
Блок.	Блокировка
Дистанционное отключение	Дистанционное отключение
ИНВ	Характеристика обратной зависимости (время отключения рассчитывается с учетом величины силы тока)
IR	Рассчитанный (остаточный) ток замыкания на землю
IRIG	Вход для синхронизации времени (часы)
IRIG-B	Модуль IRIG-B
IT	Тепловая нагрузка
IX	4 измерительный вход группы сборки измерения тока (ток замыкания на землю или ток нейтрали)
Дж	Джоуль
КГ	Килограмм
кГц	Килогерц
кВ	Киловольт
кВ пост. тока или кВ ПОСТ. ТОКА	Напряжение постоянного тока, киловольт
l/ln	Отношение тока к номинальному току
L1	Фаза А
L2	Фаза В
L3	Фаза С
фунт-дюйм	Фунт-дюйм
СДИ	Светодиодный индикатор
динв	Характеристика длительной обратной зависимости отключения
LoE-Z1	Защита от потери возбуждения
LoE-Z2	Защита от потери возбуждения
Логика	Логика
LOP	Падение потенциала

НН	Низкое напряжение/низковольтный
РПН	Работа при пониженном напряжении
М	Метр
мА	Миллиампер(ы)
ручн.	Ручной/вручную
макс.	Максимальный
ИЗМ	Измеренный
мин.	Минимальный
мин	Минута
СИНВ	Характеристика умеренной обратной зависимости отключения
MK	Код, используемый производителем для обозначения изделия
ММ	Миллиметр
БРП	Блок распределения памяти
МС	Миллисекунда(ы)
СН	Среднее напряжение
мВА	Милливольт-ампер (мощность)
N.C.	Не подключено
H.P.	Нормально разомкнутый (контакт)
НИНВ	Характеристика стандартной обратной зависимости отключения
Нм	Ньютон-метр
N₂	Номер
Ном.	Номинальный
NT	Код, используемый производителем для обозначения изделия
Р	Обратная активная мощность
Парам.	Параметр
ПК	Персональный компьютер
ПП	Печатная плата
PE	Защитное заземление
на ед.	на единицу
KM	Коэффициент мощности, модуль
Φ.	Фаза
PQS	Модуль защиты мощности
pri	Первичный

Защ	Модуль защиты (главный модуль)
НП1	Набор параметров 1
НП2	Набор параметров 2
НПЗ	Набор параметров 3
НП4	Набор параметров 4
НП	Набор параметров
ПНП	Переключатель набора параметров (переключение с одного набора параметров на другой)
Q	Обратная реактивная мощность
Q->&V<	Направленная защита от пониженного напряжения и реактивной мощности
R	Сброс
зап.	Запись
отн.	Относительный
сбр	Сброс
ResetFct	Функция сброса
RevData	Обзорные данные
CK3	Среднеквадратичное значение
Сбрс	Сброс
ТДС	Модуль температурной защиты
С	Секунда(ы)
SC	Контрольный контакт (синонимы: контакт под напряжением, защитный контакт, контакт управления)
Sca	SCADA
SCADA	Модуль связи
сек	Секунда(ы)
сек	Вторичный
ГенПосл	Генератор синусоиды
Sig.	Сигнал
SNTP	Модуль SNTP
УЗВВ	Модуль ускорения защит при включении выключателя
StartFct	Функция пуска
Sum	Суммирование
ПО	Программное обеспечение

Синхр./синх	Проверка синхронизации
Sys.	Система
t	Задержка отключения
t или t.	Время
Tcmd	Команда отключения
TCP/IP	Протоколы связи
кцо	Контроль цепи отключения
ThR	Модуль тепловой модели
TI	Код, используемый производителем для обозначения изделия
КомОткл	Команда отключения
txt	Текст
UL	Компания Underwriters Laboratories
UMZ	ДБП (характеристика отключения с выдержкой времени)
USB	Универсальная последовательная шина
V	Величина напряжения
В	Вольт
U/f>	Перевозбуждение
V012	Симметричные элементы: контроль прямой или обратной последовательности фаз
В перем. тока	Напряжение переменного тока, вольты
В пост. тока	Напряжение постоянного тока, вольты
VDE	Verband Deutscher Elektrotechnik
VDEW	Verband der Elektrizitatswirtschaft
VE	Остаточное напряжение
VG	Ступень защиты по остаточному напряжению
винв	Характеристика большой обратной зависимости отключения
KTH	Контроль трансформатора напряжения
Вт	Ватт(ы)
WDC	Защитный контакт (контрольный контакт)
www	Всемирная компьютерная сеть
XCT	4 вход измерения тока (ток замыкания на землю или ток нейтрали)
XInv	Характеристика обратной зависимости

13.4 Перечень кодов ANSI

(Фактически данный перечень основывается на стандарте IEEE Std C37.2-2008.)

ANSI	MCA4	Функции
14		Пониженная скорость
21		Дистанционная защита
21P		Дистанционная релейная защита от межфазных КЗ
24		Защита от перевозбуждения (вольт/герц)
25	Синх	Синхронизация или проверка синхронности с помощью 4-го измерительного канала платы измерения напряжения
26		Температурная защита
27	КН	Защита от понижения напряжения
27(t)		Защита от пониженного напряжения (зависит от времени)
27A		Защита от понижения напряжения (вспомогательная) с помощью 4-го измерительного канала платы измерения напряжения
27M		Фазовая (основная) защита от понижения напряжения (с зависимостью от времени)
27N	VG	Пониженное напряжение нейтрали, с помощью 4-го измерительного канала платы измерения напряжения
27TN		Пониженное напряжение нейтрали гармоник третьего порядка, с помощью 4-го измерительного канала платы измерения напряжения
32	Pr, Qr	Защита направленной мощности
32F		Защита прямой мощности
32R		Защита обратной мощности
37		Пониженный ток/пониженная мощность
38		Температурная защита (дополнительно через интерфейс/ внешний модуль)
40		Потеря возбуждения/потеря поля
46	12>	Защита от неустановившегося тока
46G		Защита от неустановившегося тока генератора
47	U 012	Защита от несбалансированного напряжения
48		Незавершенная последовательность (контроль времени запуска)
49	ТепМод	Тепловая защита
49M		Тепловая защита электродвигателя

ANSI	MCA4	Функции
49R		Тепловая защита ротора
495		Тепловая защита статора
50BF	УРОВ	Отказ выключателя
50	1	Перегрузка по току (мгновенное действие)
50J		Заклинивание (заблокированный ротор)
50P	50P	Перегрузка фазы по току (мгновенное действие)
50N/G	310	Перегрузка нейтрали по току (мгновенное действие)
50Ns	310	Перегрузка по току нейтрали малого тока (мгновенное действие)
50R	3lo	Перегрузка нейтрали по току (мгновенное действие)
51	1	Перегрузка по току
51P		Перегрузка фазы по току
51N/G	310	Перегрузка нейтрали по току
51Ns	310	Перегрузка по току нейтрали малого тока
51LR		Заблокированный ротор
51LRS		Запуск заблокированного ротора (во время последовательности запуска)
51C	(с помощью адаптивных параметров)	Защита по току с пуском по напряжению
51Q	1	Перегрузка по току отрицательной последовательности чередования фаз (несколько характеристик отключения)
51V		Перегрузка по току с ограничением напряжения
55	KM	Защита по коэффициенту мощности
56		Реле подачи возбуждения
59	KH	Защита от избыточного напряжения
59M		Фазовая (основная) защита от повышения напряжения
59TN	VG	Повышенное напряжение нейтрали гармоник третьего порядка, с помощью 4-го измерительного канала платы измерения напряжения
59A		Защита от избыточного напряжения через 4-й (дополнительный) измерительный канал карты измерения напряжения
59N		Защита от избыточного напряжения на нейтрали
60FL	ППот	Контроль трансформатора напряжения
60L	KTT	Контроль трансформатора тока

ANSI	MCA4	Функции
64R		Защита ротора от замыкания на землю
64REF		Ограниченная защита по току замыкания на землю
66		Запусков в ч (блокировка запуска)
67	1	Направленное избыточное напряжение
67N		Направленное избыточное напряжение нейтрали
67Ns	3lo	Направленное избыточное напряжение нейтрали малого тока
68		Блокировка при качаниях мощности
74TC	КЦУ	Контроль цепи отключения
78		Несинхронное отключение
78V	дельта фи	Защита от скачка вектора
79	АПВ	Автоматическое повторное включение
81	f	Защита частоты
81U		Защита от недостаточной частоты
810		Защита от избыточной частоты
81R	df/dt	ROCOF (df/dt)
86		Блокировка
87		Дифференциальная защита (генератора/трансформатора/шины)
87B		Дифференциальная защита шины
87G		Дифференциальная защита генератора
87GN		Дифференциальная защита заземления генератора
87M		Дифференциальная защита двигателя
87SV		Открытый контроль TT (см. также 87 / 87B)
87T		Дифференциальная защита трансформатора
87TN		Дифференциальная защита заземления трансформатора
CLK	IRIG-B,	Синхронизация часов (например, с помощью интерфейса IRIG-B)
DDR	Регистратор неисправн.	Запись аварийных нарушений, не связанных со сбоем
DFR	Регистратор ошибок	Цифровая регистрация сбоев
LGC	Лог_	Логика, схема
MET	Измеренные значения	Измерения на подстанции (энергия, сила тока, напряжение, мощность, реактивная мощность, коэффициент мощности, потребление)

ANSI	MCA4	Функции
SER	Регистратор событий	Данные о событии с привязкой по времени
TCM	КЦУ	Мониторинг/контроль цепи отключения

13.5 История редакций


В данной главе приведен полный перечень изменений, начиная с версии 3.0. Для получения информации об изменениях в версиях 2.х обращайтесь в компанию Woodward.

ПРИМЕЧАНИЕ!

В принципе, все оборудование и программное обеспечение версий **3.х** обратно совместимо друг с другом. Для получения дополнительной информации обращайтесь в службу поддержки компании Woodward.

Актуальная документация

13.5.1 Версия: 3.6

• Дата: 31 января 2019 г.

• Редакция: F

Оборудование

Для версии оборудования 1 доступны два новых варианта заказа:

- МСА4-2Е.... вариант с 24 цифровыми входами и 19 выходными реле.
- МСА4-2F.... Вариант с 2 аналоговыми входами, 2 аналоговыми выходами, 16 цифровыми выходами и 14 выходными реле.

(См. код заказа.)

Программное обеспечение

Функции защиты MCA4 адаптированы в соответствии с требованиями VDE-AR-N-4110/4120:2018.

Модуль защиты частоты, Скорость изменения частоты.

Измерение частоты было оптимизировано для повышения точности и стабильности.

Гистерезис, используемый для защиты по частоте, можно изменить в соответствии с новым параметром *«Сниж. частоты»*.

Новые параметры [СистПар / Частота] «Стабил. окна f» и «Стабил. окна df/dt» позволяют стабилизировать значения частоты относительно мгновенных колебаний.

Определение направления для измерения тока замыкания на землю по мощности

Защита от замыкания на землю «ЗIo[x]» улучшена благодаря определению направления для измерения тока замыкания на землю по мощности.

(См. ⊨> «Направление замыкания на землю».)

Определение направления межфазного короткого замыкания

Исправление ошибок: устранена ошибка в алгоритме определения направления, которая могла привести неверному определению направления для систем АСВ (последовательности фаз АВС не изменены).

«Только наблюдение»

Новый параметр планирования устройства *«Только наблюдение»* добавлен в следующие функции защиты:

- 3lo[x] Защита от максимального тока замыкания на землю (см. «Максимальный ток на землю — функции»)
- VG[x] Контроль напряжения (см. Ц⇒ «4.11 Функция контроля напряжения VG, VX»)

При использовании настройки *«Только наблюдение»* = «да» в модуле будет работать только функция контроля: Аварийные сигналы/сигналы отключения по-

прежнему можно настроить как состояния в ветви меню [Работа / Отображение состояния] а также выбрать как параметр), но они больше не приводят к подаче общего аварийного сигнала или общему отключению, и, соответственно, не дается команда отключения. (См. 🛶 «Общие аварийные сигналы и общие команды отключения».)

«HVRT[x]»

Теперь доступен новый модуль защиты «HVRT[x]», который обеспечивает защиту Работа при повышенном напряжении в соответствии с требованиями директив VDE-AR-N-4110/4120/4130. См. раздел \Longrightarrow «HVRT — работа при повышенном напряжении».

Меню безопасности

Улучшения HighPROTEC см. в разделе «Безопасность ИТ».

Появилась новая ветвь меню [Работа / Безопасность / Состояния безопасности], в которой содержатся сведения о настройках, связанных с безопасностью. Например, в некоторых записях указывается, что для паролей подключения установлены определенные пользовательские значения или оставлены заводские значения по умолчанию. Когда безопасность ИТ имеет принципиальное значение, рекомендуется проверить все эти настройки при вводе устройства в эксплуатацию. (См. \Longrightarrow «1.4 Обзор настроек, связанных с безопасностью».)

Кроме того, выбрав [Работа / Безопасность / Журнал безопасности], можно открыть журнал безопасности. В нем также отображаются сообщения о самодиагностике (см. ниже), касающиеся только безопасности. (См. \hookrightarrow «1.4 Сообщения по безопасности».)

Доступ к Smart view

Еще одно изменение, связанное с безопасностью, заключается в том, что MCA4 теперь принимает подключения только от последних версий *Smart view*.

Можно определить пароли для подключения Smart view: Имеется пароль «Подключение через USB» для подключения через USB-интерфейс и еще пароль «Подключение к удаленной сети» для подключения по сети. Если настроен пароль для подключения, Smart view устанавливает подключение только после ввода соответствующего подключения (по умолчанию, однако, оба пароля для подключения оставлены пустыми).

Все подключения полностью зашифрованы и сертификаты гарантируют правильную идентификацию подключаемых устройств.

(См. Ч⇒ «Пароли для подключения к Smart view».)

Пароли

Пароли теперь сохраняются так, что они не удаляются при обновлении микропрограммы. (См.

□> «Пароли».)

Замедление работы при вводе неправильных паролей

Если неправильный пароль введен несколько раз, то MCA4 все большее время блокирует ввод пароля до тех пор, пока не будет введен верный пароль. Об этой блокировке пользователя информирует специальное сообщение. Это относится ко всем типам паролей (в том числе паролям для подключения, указанным выше), но

влияет только на ввод пароля (то есть кнопка на ответительной пользователя, которые не требуют ввода пароля, и не блокируются.

См. Ч> «1.4.2 Штрафное время при неверном вводе пароля».

Самодиагностика, Системный журнал

Усовершенствован регистратор сообщений о самодиагностике, доступный в ветви меню [Работа / Самодиагностика / Сообщения]. Теперь в ходе самодиагностики он обеспечивает сбор сообщений, связанных с безопасностью (например, например, ввод неправильного пароля) и сообщения о внутреннем состоянии МСА4, предупреждения и оповещения об ошибках.

Модуль Системный журнал можно активировать для автоматической передачи каждого нового внутреннего сообщения (самодиагностики) на определенные серверы. Он использует протокол «Системный журнал», который широко применяется в качестве стандарта передачи сообщений журнала.

См. 🕒 «Сообщения о самодиагностике», 🖶 «Системный журнал».

SCADA «ID п_y_»

Для всех протоколов SCADA параметр « $ID\ \pi_y_$ » больше недоступен для настройки, вместо него используется параметр «Прям Команда».

Так как прямые команды не сохраняются в файл настроек *. HptPara, теперь нет необходимости в уникальных идентификаторах для дополнительных устройств. Можно просто загрузить один файл *. HptPara на несколько устройств HighPROTEC. Однако с этой дополнительной безопасностью связано неудобство, которое заключается в том, что при вводе в эксплуатацию всегда должен быть настроен параметр $\ll ID$ n_y , даже если используется предварительно подготовленный файл *. HptPara.

Новый протокол связи ІЕС 60870-5-104

Теперь доступен протокол связи в соответствии с ІЕС 60870-5-104.

См. Ц⇒ «IEC 60870-5-104».

Этот протокол также можно использовать как источник синхронизации времени. (См. \Longrightarrow «Синхронизация по времени».)

Настраиваемые точки данных для Modbus и IEC 60870-5-104

Протоколы связи Modbus и IEC 60870-5-104 теперь можно адаптировать в соответствии с приложением, сопоставив с точками данных. Это помогает легко интегрировать MCA4 в существующую сеть подстанции. Новый инструмент для операционных систем Windows, *АДАПТЕР SC* позволяет сопоставлять точки данных с внутренними адресами протокола.

См. $lap{}=>$ «Сопоставление точек данных с помощью АДАПТЕР SC» и документацию АДАПТЕР SC.

Два файла сопоставления точек данных для передачи данных по каналам Modbus, совместимые с устройствами $High\ Tech\ Line\ 3\ MRI3\$ и $MRU3\$ входят в комплект поставки. См. $\sqsubseteq >$ «High Tech Line 3 — сопоставление точки данных с совместимым модулем Modbus».

Протокол связи ІЕС 61850

Изменены параметры для виртуальных входов и выходов.

Число виртуальных входов и выходов увеличено (с 32) до 64.

См. Ц⇒ «IEC 61850».

Ручной сброс состояния СДИ

Теперь можно сбросить состояние замкнутых СДИ, нажимая и удерживая клавишу «С» в течение приблизительно 1 секунды без ввода пароля. Это возможно благодаря новому значению по умолчанию следующего параметра: [Пар_ устр_ / Подтвердить] «Пдт. клавишей C» = «Пдт. СДИ без пароля»

См. Ч> «1.5 Подтверждение вручную (нажатием кнопки С на панели управления)».

Двоичн вых, СД, Дисп откл

Изменена функция инверсии сигнала запуска (входного).

Изменения коснулись замыкания: теперь стало больше условий, при которых происходит сброс замкнутого состояния.

(См. Ч> «Настройки выходных реле», Ч> «СДИ», Ч> «5.2 Диспетчер отключения — назначение команд отключения».)

Техническое руководство

Техническая документация была разделена на два независимых документа:

- *Руководство пользователя* (то есть этот документ, MCA4-3.6-RU-MAN) описывает MCA4, его функции и приложения.
 - В отличие от предыдущей редакции HighPROTEC, все разделы руководства пользователя обновлены и отредактированы для большей надежности и точности.
- Справочное руководство MCA4-3.6-RU-REF содержит все параметры, настройки, значения и двоичные состояния. Для каждой записи приводится таблица со всеми свойствами, например с указанием ветви меню, имени модуля, значения по умолчанию и диапазона значений, а также текста краткой справки.
- Изменена схема именования технических документов. В частности, номер версии теперь является частью идентификатора документа. В принципе, идентификаторы всех документов должны соответствовать следующей схеме именования: <устройства>-<версия>-<язык>-<тип документа>. (См. также >> «Комментарии к руководству»).

Данное техническое руководство, например, ранее (то есть версии 3.4) именовалось DOK-HB-MCA4-2D. Теперь он получил наименование MCA4-3.6-RU-MAN.

Добавлена глава о требованиях ТТ, см. Ц⇒ «Требования ТТ».

13.5.2 Версия: 3.4

• Дата: 2017-Октябрь-01

• Редакция: Е

Оборудование

- Добавлена металлическая заглушка к разъемам LC для Ethernet / TCP/IP через оптоволоконный кабель. Поскольку заглушка повышает уровень невосприимчивости к электростатическим разрядам и ЭМС, рекомендуется устанавливать ее после подключения разъемов LC.
- Доступен новый тип связи «Т»:

RS485 (IEC 60870-5-103, MODBUS RTU, DNP3.0 RTU) + RJ45 Ethernet 100 Мбит/с (IEC 61850, Modbus TCP, DNP3.0 TCP/UDP)

Программное обеспечение

- Микропрограммное обеспечение устройства теперь доступно на румынском языке.
- При подключении MCA4 к *Smart view* начиная с версии 4.50 при выполнении синхронизации даты автоматически учитывается, что настройки часового пояса для ПК и MCA4 могут различаться.

Связь

Меню [Пар_ устр_ / ИЧМ / Безопасность] теперь доступны следующие параметры:

- «Smart View через Eth» включение и отключение доступа к Smart view через Ethernet.
- «Smart View через USB» включение и отключение доступа к Smart view через интерфейс USB.

(См. 🖶 «Пароли для подключения к Smart view».)

IEC 60870-5-103

Данный протокол связи теперь поддерживает блокировку передачи в направлении мониторинга и режим тестирования. (См. $\sqsubseteq >$ «IEC60870-5-103».)

Modbus

Для устройств с интерфейсами RS485 и Ethernet (типы связи «I» или «Т») теперь доступна настройка проекта «Modbus RTU/TCP» (с помощью параметра [Планир_ устр_] Scada . Протокол«). Это обеспечивает обмен данными с устройством по последовательной линии (RTU) и Ethernet (TCP) параллельно. В частности, обратите внимание на следующее:

- Для всех основных устройств одно и то же множество состояний.
- Для всех основных устройств возможен сброс замкнутых состояний.
- Все основные устройства могут управлять одним выключателем, сбрасывать состояния и выдавать подтверждения.

Пар_устр_

Диалоговое окно «Сброс», вызываемое нажатием кнопки «С» при холодном пуске, адаптировано в соответствии с новыми запросами, связанными с безопасностью: теперь доступен новый параметр настройки «Настр. сброса устр.», с помощью которого можно удалить параметры из диалогового окна «Сброс». (См. Возврат к заводским настройкам, сброс всех паролей».)

Максимальный ток — I[n], 3Io[n]

Все характеристики инверсного времени ANSI и IEC теперь обладают предельным временем в соответствии с IEC 60255-151. (См. \Longrightarrow «Характеристики», \Longrightarrow «Характеристики».)

Добавлена новая характеристика инверсного времени «RINV». (См. \Longrightarrow «4.4.1 R Inverse [RINV] - Характеристика», \Longrightarrow «4.5.1 R Inverse [RINV] - Характеристика».)

Защ, перегрузка по току

В меню МСА4 теперь отображается определенное направление фазовых токов и измеренного и рассчитанного тока замыкания на землю [Работа / Измеренные значения / Направление]. При вводе в эксплуатацию рекомендуется выполнять проверку направления тока на основе этих значений.

Пониженное напряжение — КН[n]

Критерий минимального тока доступен в виде новой функции для защиты по напряжению в режиме «пониженное напряжение» -«Pex » = «U<».

Принцип действия данной «проверки по минимальному току» заключается в том, что защита от понижения напряжения блокируется, как только все фазовые токи падают ниже определенного порогового значения. Эта функция полезна тем, что ситуация, когда фазовые токи неактивны, может указывать на разомкнутый выключатель, и нежелательно, чтобы средства защиты от понижения напряжения реагировали на это событие. (См. > «V — защита по напряжению [27,59]», < «4.8 Минимальное пороговое значение тока для защиты от понижения напряжения».)

Модуль тепловой модели — ТепМод

Диапазон настроек коэффициента перегрузки «K» расширен (от 0,80–1,20) до 0,80–1,50 (IEC 60255-149).

Падение потенциала — ППот

Пороговое значение понижения напряжения (исправляется внутри системы) увеличено с 0,01 Un до 0,03 Un («FNN 2015» — спецификация опубликована Forum Netztechnik / Netzbetrieb im VDE). (См. \Longrightarrow «ППот — Падение потенциала [60]».)

Самодиагностика

В меню [Работа / Самодиагностика / Сообщения] теперь можно получить доступ к внутренним сообщениям устройства (в частности, сообщениям об ошибках).

Все возникающие здесь сообщения описываются в отдельном документе — «Руководство по отладке HighPROTEC» (DOK-HB-TS).

Контроль

МСА4 контролирует последовательность фаз и сравнивает ее со значением параметра [СистПар / Общие настройки] «Черед фаз» (то есть «АСВ» или «АВС»).

В меню [Работа / Отображение состояния / Контроль / Черед_ фаз]имеется специальный сигнал для каждого ТТ и ТН, который задается как активный, если в ходе проверки соответствующего ТТ/ТН обнаруживается различие между фактической последовательностью фаз и настройкой в меню [СистПар]. (См. Контроль последовательности фаз».)

СД

Для всех индикаторов теперь имеется новый режим автоматического подтверждения: замыкание всех светодиодных индикаторов будет подтверждено (сброшено) при поступлении аварийного сигнала (с любого модуля защиты) или в случае общего сигнала тревоги, «Защ. Трев».

Автоматическое подтверждение включается следующей настройкой: [Пар_ устр_ / СД / ИНД группа A / СД 1...n] » $3amkh_{-}$ « = «акт.,подтв.по аварийн.сиг.»

(См. \Longrightarrow «1.5 Подтверждение вручную (нажатием кнопки С на панели управления)».)

Подтверждение в ручном режиме

Подтверждать СДИ, SCADA, двоичные сигналы релейных выходов и/или отложенные команды отключения можно нажатием кнопки «С» на панели.

После назначения необходимых элементов «Пдт. клавишей С» они подтверждаются простым нажатием кнопки С (в течение 1 секунды).

Если возникнет необходимость подтверждения без ввода пароля, при настройке оставьте пустым поле пароля для уровня «Prot-Lv1». (См. \hookrightarrow «1.5 Подтверждение вручную (нажатием кнопки С на панели управления)»; общие сведения о паролях и соображениях безопасности см. в главе \hookrightarrow «Безопасность».)

13.5.3 Версия: 3.1

• Дата: 2017-Март-06

• Редакция: D

Оборудование

Нет изменений.

Программное обеспечение

Повторное подсоединение — Повт. соед.[n]

Модуль повторного подключения усовершенствован в соответствии с VDE-AR-N 4120.

- Теперь можно выбрать условие запуска в меню Повт. соед. . Усл повт включения (варианты: Разъед U внутр, Разъед Uвн ОТП, Оба).
- Метод измерения теперь можно выбрать в меню Повт. соед. . Критерий (варианты: Основные, Ист_ СКЗ, V скольз. ср. контр.).

SCADA

Были добавлены точки данных для второго экземпляра модуля повторного включения.

TCP

Исправление ошибок

• Устранена проблема связи РРР/ТСР.

13.5.4 Версия: 3.0.b

• Дата: 2016-Февраль-20

• Редакция: С

Оборудование

Нет изменений.

Программное обеспечение

Усовершенствован процесс самопроверки.

Максимальный ток — I[n]

Исправление ошибок

• В сверхтоковом модуле устранена проблема инициализации. В случае характеристик режима измерений I2 и ДБП эта проблема может быть вызвана ложным срабатыванием или выключением после запуска.

Сис

Исправление ошибок

• При определенных обстоятельствах имелась вероятность непреднамеренного «теплого» перезапуска.

SCADA /Modbus

Исправление ошибок

• Протокол Modbus неверно считывал время системы.

Самодиагностика

Исправление ошибок

• Неверно работала система предупреждений, связанных с мониторингом внутренней температуры.

13.5.5 Версия: 3.0

• Дата: 2015-Октябрь-01

• Редакция: С

Оборудование

- Новая передняя панель темно-серого цвета заменила синий корпус, который использовался во всех версиях 2.х.
- Новая передняя панель оснащена интерфейсом USB для связи с операционным программным обеспечением *Smart View* (этот интерфейс заменил последовательный интерфейс версий **2.x**).
- Доступен новый тип связи «I»:

RS485 (IEC 60870-5-103, MODBUS RTU, DNP3.0 RTU) + RJ45 Ethernet 100 Мбит/с (Modbus TCP, DNP3.0 TCP/UDP)

- Появилась возможность заказа «конформного покрытия».
- Символы -2 в коде типа означают обновление до основной версии с 2.х до 3.х.

Программное обеспечение

Микропрограммное обеспечение устройства теперь доступно и на испанском языке.

В меню и дисплей внесены различные незначительные изменения, проведена реструктуризация.

Защита

Причина отключения указывается непосредственно на дисплее.

Величина напряжения — КН

Точность настроек увеличена до 3 знаков после запятой (0,1% Un).

Автоматическая частотная разгрузка на основе направления активного потока энергии — UFLS

Стала доступной новая функция защиты UFLS.

Работа при пониженном напряжении — LVRT

Добавлен второй элемент LVRT.

Падение потенциала — ППот

Функцию обнаружения обесточенной шины теперь можно настраивать.

Назначение выключателя — опциональная функция (если выключатель не назначен, то позиция игнорируется).

Функция общей блокировки ІОС удалена.

Пороговое значение тока нагрузки ППот . I< можно настроить в диапазоне 0,5 до 4 Іном.

Q->&U</Повт. соед.

Модуль повторного включения разделен и стал независимым модулем.

Функции отключения в модуле повторного включения теперь распространены на все команды отключения.

SCADA

Стал доступен протокол DNP3 (с RTU/TCP/UDP).

Новые волоконно-оптические интерфейсы для SCADA.

Изменен порядок настройки (структура меню, настройки по умолчанию).

Появился новый сигнал «состояние подключения SCADA».

Связь Ethernet «Пакеты TCP Keep Alive» в соответствии с RFC 793.

Исправление ошибок

• После исключения оборудования можно было потерять IP-адрес.

SCADA /IEC 61850

Новая поддержка прямого контроля.

Поддержка описаний LN через ввод DAI в файле SCD.

Усовершенствована работа с InGGIO Ind.

Увеличена скорость GOOSE-сообщений. Устранена потенциальная проблема с соотнесенными по времени GOOSE-сообщениями.

Новые логические узлы для счетчиков энергии, LVRT, ВншЗащ, ТСМ, 47.

Новый класс LN для датчиков и мониторинга.

Обновление отчетов, когда углы становятся нулевыми или фазовые векторы превышают зону нечувствительности.

Улучшен алгоритм зоны нечувствительности.

Теперь для индикаторов устройства можно назначать аварийные сигналы IEC 61850.

Добавлен счетчик количества активных соединений «клиент-сервер».

Добавлены отсутствующие узлы для направленной мощности.

SCADA /Modbus

Добавлен параметр «Быстрый регистр состояния».

Добавлены настраиваемые регистры.

Чтение показаний аварийного осциллографа и некоторой информации об устройстве с помощью Modbus.

Повысилась стабильность работы Modbus TCP.

IEC 60870-5-103

Исправление ошибок

• Устранена проблема помех в процессе чтения.

SNTP

Запуск сети после активации средств защиты.

Исправление ошибок

- Возможно, была нарушена работа SNTP при разряженной батарее.
- Настройка летнего времени по умолчанию изменена на «Воскресенье».

Подключение к интерфейсу ПК/Smart View

В *Smart view* R4.30 возможен обмен однолинейными схемами между устройствами, поддерживающими этот компонент.

Интерфейс пользователя поддерживает более эффективную проверку файлов IEC 61850 SCD.

Кривые характеристик теперь можно отобразить в виде графиков.

Теперь имеется редактор страниц для создания отдельных строк и страниц с информацией об устройстве.

Исправление ошибок

- После прерывания связи могли больше не приниматься сигналы с ПК.
- После прерывания загрузки модели устройства могли возникать ошибки при обработке файлов.

Моделирование работы ПК

В программное обеспечение моделирования была добавлена функция определения состояния СДИ.

Регистратор трендов

Исправление ошибок

• Устранена проблема утечки памяти.

Аналоговый выход — Аналог вых

Исправление ошибок

• После перезапуска устройства производительность выхода устройства могла на короткое время достичь 100%.

При обновлении устройства с версии 2.х необходимо учитывать следующие данные о настройках.

- Все настройки связи необходимо определить заново. Автоматическое преобразование возможно только частично.
- Назначение VirtualOutput для связи IEC 61850 реструктурировано.

Все настройки назначений необходимо определить заново.

- Модуль повторного включения Q->&U< разделен и стал новым модулем Повт. подкл. Автоматическое преобразование невозможно.
- Режим защиты V-Prot U<(t) отменен и заменен модулем РПН.

Указатель

, Kasa .				
3lo[x]	 	 	26	53
ANSI				
25	 	 		88
27				92
27(t)			30)2
27A			30	9
27U1			33	12
32			33	37
37			33	37
46			28	34
47			312, 33	12
49			28	39
50			23	34
50BF			40	80
50N/G	 	 		 63
51	 	 	23	 34
51C	 	 	234, 25	
51N/G	 	 	26	 63
51Q	 	 	25	 55
51V	 	 	23	 34
55	 	 	34	 49
59	 	 	29	 92

59A

309

59N		309
59U1		312
60		 419
60L		 416
62BF		
020		
67		234
67N/G		263
78		315
79		 373
810/U		 315
81R		 315
D-SUB	84, 146	, 147
DNP3	84	, 168
Ethernet	84, 139	, 148
f[x]		. 315
LIV/DT[]		200
HVRT[x]		. 299 189
модулем Modbus		
12>		. 284
I2>[x]		
IEC 60870-5-103		
IEC 60870-5-104		=
IEC 61850		
IH2		
I[x]		. 234

K	
	KTT
L	LVRT
М	
P	Modbus
	Profibus
Q	Q->&U<
R	
	RJ45
5	SCADA
U	
V	U 012
	VG[x]
A	АПВ
	Автоматическое повторное включение 373 Адаптивные параметры 32
Б	
	Безопасность 52 Безопасность ИТ. 52
	Бланк заказа (код заказа)
	блокировки

	BHO	394
	Величина напряжения	292
	Величина напряжения нулевой последовательности	308
	Включение на ошибку - модуль	394
	Вход модуля	32
	внешняя команда РАЗМЫКАНИЯ/ СМЫКАНИЯ	429
	возврат к заводским настройкам	63
	вперед	209
	входов токов	110
Γ		
	Глобальные параметры	32
Д		
	Дисп откл	456
	Диспетчер отключения	130
	диалоговое окно сброса	63
ж		
	Журнал безопасности	53
3		
	ЗПЭ[x]	
	•	263
	ступеньЗначения	
И		
	ИЧМ	57
	Измеренное значение	32
K		
	KM	349
	KH[x]	
	KC	
	Код типа (см. бланк заказа)	
	Контакт самодиагностики	
	Контроль трансформатора напряжения	

	УПРВЛ	463
	коды запуска	
	коды перезагрузки	
	коммутационная аппаратура	
	криптографический алгоритм	
Л		
	Логика	483
м		
	Модули защиты коэффициента	349
	мощности	
	Модули защиты мощности	
	Модуль защиты по броску тока с учетом второй гармоники	232
	Модуль защиты частоты	
	Модуль тепловой модели	
	Модуль устройства резервирования	408
	отказа выключателя	
	масштабирование измеренных значений	71
Н		
	Наборы адаптивных параметров	42
	Настройки безопасности	
	направление замыкания на землю	
	направление малого тока замыкания на	217
	землю	
	направление межфазного короткого	208
	замыкания	
	направленная защита фидера	10
0		
	Однолинейная схема	425
	Операционное количество	
	Опорная система генератора	
	Опорная система стрелок нагрузки	
	области доступа	
	обнаружение замыканий на землю по	212
	мощности	
	обратное (реверс)	7, 209
	однолинейная схема	
	определение направления	207
	замыкания на землю	211

межфазные замыкания	208
оптоволоконный	
ΠΠοτ	419
Падение потенциала	419
Параметры группы уставок	32
. .	
Поляризующее количество	
· · . Прямые команды	
панель	
пароли	,
области доступа	59
отключить	58
сброс	54, 63
пароль	
·	
пароль уровня доступа	
подтверждение	65
право на переключение	
локальный	463
удаленный	463
проверка индикаторов	69
Работа при повышенном напряжении	299
Работа при пониженном напряжении	302
Разъем LC	85, 148
Реактивная мощность/защита от пониженного напряжения	352
Регистратор	470
(Двигатель) История	470
Записи аварийных нарушений	470, 471

П

P

C

Записи выполнения	470, 482
Записи запуска двигателя	
· · · · · · · · · · · · · · · · · · ·	
Записи неисправностей	470, 476
Записи событий	
Saturca Coobitan	
Сообщения о самодиагностике	470
Сообщения по безопасности	
· · · · · · · · · · · · · · · · · · ·	
Статистика двигателя	470
Редактор страниц	
разъем ST	84, 145
реверс (обратное)	207, 209
СДИ «Система»	500
 Сенсорные клавиши	
Сигналы	
Симметричные элементы: Контроль прямой или обратной последовательности чередования фаз	312
Синх	
Системный СДИ	
Системный журнал	
Сообщения о самодиагностике	
Сообщения по безопасности	
Состояния безопасности	
Статистическое значение	
Ступень обратной последовательности	
Ступень перегрузки фазы по току	
Счетчики	
сброс замкнутых состояний (= подтверждение)	65
сертификат	
сетевой доступ	
синхронное переключение	
сообщение (самодиагностика)	
структура меню	
ТепМод	
таймер наблюдения (для	429
выключателей)	

T

y

	УРОВ	18
	Угол направления	
	Устройство остановлено	
	управление	
	уровни отсечки (для измеряемых 7 значений)	
_		
Ф		
	фазовые углы (расчет)	′2
	файл ErPara 3	12
x		
•		
	Характеристика направления	9
Ш		
	шифрованное соединение	5
¢		
	© Опор изображ	
	(4G) 22	28
	(10)	
	(11)	
	(11)	
	(13a) 20	
	(13b)	
	(150)	
	(13c) 20	
	(14) 202, 251, 282, 286, 289, 296, 300, 309	
	349, 404, 406, 41	
	(14*) 404, 40	16
	(15) 202, 251, 282, 286, 289, 296, 300, 309	5,
	(15a) 202, 251, 282, 286, 290, 296, 300, 305	
		9,
	350, 404, 40	
	(16b) 25	
	(17b)	

	(18b)			251
•	(19)			282
•	(20)	296,	300,	
		296,		
		296,		305
	(23)			309
	(24b)			251
	(25b)			251
	(26b)			252
	(27)			283
	(28)	296,	300,	305
	(29)	296,		
	(30)	297,		
	(31)			309
	(32)			224
	(33a)		214,	
	(33b)		214,	218
	(33c)		214,	218
	(34a)		214,	218
	(34b)		214,	218
	(34c)		215,	218
	(38a)			420
	(38b)			420
	(38c)			421
•	(39)			356

	(40)		417
•	(41)		454
•	(42)		454
•	(47)		229
	(50)	202,	205
	(51)	202,	
		, 282,	308
		, 282,	
	(1)		201
	(2)		225
	(3)		224
	(4)		226
	(5)		232
	(6)		232
	(7)		232
	(8)		232
	(9)		251

Мы ценим ваше мнение о содержании наших публикаций.

Присылайте ваши предложения и замечания по адресу: kemp.doc@woodward.com К письму приложите номер руководства: MCA4-3.6-RU-MAN

http://wwdmanuals.com/mca4-2

Компания Woodward Kempen GmbH сохраняет за собой право в любой момент вносить изменения в текст настоящего документа. Информация, предоставленная компанией Woodward Kempen GmbH, считается точной и надежной. Тем не менее компания Woodward Kempen GmbH не несет ответственности за ее достоверность, за исключением специально оговоренных случаев.

Woodward Kempen GmbH Krefelder Weg 47 • D-47906 Kempen (Germany) Postfach 10 07 55 (P.O.Box) • D-47884 Kempen (Germany) Телефон: : +49 (0) 21 52 145 1

Интернет: — www.woodward.com

Отдел продаж

Телефон: : +49 (0) 21 52 145 331 Факс: : +49 (0) 21 52 145 354 Эл. почта: : SalesPGD_EMEA@woodward.com

Обслуживание

Телефон: : +49 (0) 21 52 145 600 Факс: : +49 (0) 21 52 145 455 Эл. почта: : SupportPGD_Europe@woodward.com

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address / phone / fax / email information for all locations is available on our website.